
Quantum Topol. 12 (2021), 461–505
DOI 10.4171/QT/157

© 2021 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license.

Flags and tangles
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Abstract. We show that two constructions yield equivalent braided monoidal categories.
The first is topological, based on Legendrian tangles and skein relations, while the second
is algebraic, in terms of chain complexes with complete flag and convolution-type products.
The category contains Iwahori–Hecke algebras of type An as endomorphism algebras of
certain objects.
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1. Introduction

Braided monoidal categories [7] provide a unifying framework for low-dimensional
topology and representation theory. Categories of tangles play a fundamental role,
being freely generated among braided monoidal categories with certain extra
properties [4]. Linearizations of the category of tangles, the passage from classical
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topology to “quantum topology,” come from HOMFLY-PT skein theory. The
novelty of this work is to consider Legendrian tangles and skein relations to obtain
an analog of Turaev’s Hecke category [15]. Our main result provides a very different
description of this category in terms of complete flags on chain complexes and
convolution-type products.

Prelude: Iwahori–Hecke algebras of type An. To motivate our later considera-
tions we begin by recalling several points of view (algebraic and topological) on
Iwahori–Hecke algebras of type An, denoted by Hn. More details may be found in
several places, e.g. the textbook [8].

Suppose we want to find a q-deformation of (the group algebra of ) the symmetric
group SnC1. The q-analog of a set X with nC 1 elements is a vector space V of
dimension nC 1 over a finite field Fq , and the q-analog of a total order on X is
a complete flag on V . Let QF l.V / be the Q-vector space with basis the set of
complete flags on V . The q-analog of the transposition .i; i C 1/ 2 SnC1 is the
linear operator Ti on QF l.V /, i D 1; : : : ; n, which takes a complete flag

0 D V0 � V1 � � � � � Vi � � � � � VnC1 D V

to the sum of the q flags

0 D V0 � V1 � � � � � V 0i � � � � � VnC1 D V

where V 0i is a subspace with Vi�1 � V 0 � ViC1 and V 0i ¤ Vi . Thus, Ti is a sort of
random modification at the i-th step. It is easy to see that the relations

TiTiC1Ti D TiC1TiTiC1; i D 1; : : : ; n � 1; (1.1)

TiTj D TjTi ; ji � j j > 1; (1.2)

T 2i D .q � 1/Ti C q; i D 1; : : : ; n (1.3)

hold, and these turn out to be a complete set of relations for the subalgebra of
End.QF l.V // generated by the Ti . Since the relations are polynomial in q, we
can also treat q as a formal parameter and define Hn over ZŒq˙1�, as is usually
done. Setting q D 1 gives the group algebra of the symmetric group Sn, and the
definition by generators and relations generalizes to arbitrary Coxeter groups.

The fact that (1.1) and (1.2) are the defining relations of the braid group suggests
that we represent elements of Hn by braid diagrams with nC 1 strands, where Ti
corresponds to the braid with a single positive crossing of the i-th and i C 1-st
strand. The relation (1.3) is then equivalent, modulo the second Reidemeister move,
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to the skein relation

� q D .q � 1/

which explains the relevance of Hn to knot theory, c.f. Jones [6].
The purpose of this work is to extend the above from vector spaces to Z-

graded chain complexes of vector spaces. Instead of defining a single algebra,
it is natural to construct a braided monoidal category H, see below. It turns out
that this category has a topological interpretation, though somewhat surprisingly
we need to use Legendrian tangles instead of ordinary (topological) tangles.
The use of Legendrian tangles was suggested by the work by the author, where
homomorphisms are constructed from Legendrian skein algebras to Hall algebras
of Fukaya categories [5]. This text is, for the most part, logically independent
from [5]. We anticipate that the braided monoidal categories defined here will be
useful in gluing “frozen” variants of the skein algebras and Hall algebras from [5].

The monoidal category H. Let us first describe the construction in terms of flags
on chain complexes. Fix a finite ground field k D Fq , then the monoidal category
H is defined as follows.

� Objects. Finite-dimensional Z-graded vector spaces V D L
i2Z Vi over k

together with a complete flag of graded subspacesFiV � V , i D 0; : : : ; dimV ,
dimFiV D i .
� Monoidal product of objects. .V; F�V /˝ .W; F�W / has underlying graded

vector space V ˚W and complete flag

0 D F0V � F1V � � � � � FdimV V � V ˚ F1W � � � �
� � � � V ˚ FdimWW D V ˚W:

(1.4)

� Morphisms. HomH.V;W / is the Q-vector space with basis the set B.V;W /
of equivalence classes of triples .dV ; f; dW / where dV is a differential (of
degree 1) on V with dV .FiV / � Fi�1V , dW is a differential on W with
dW .FiW / � Fi�1W , and f WV ! W is a quasi-isomorphism. Two triples
.dV ; f; dW / and .d 0V ; f 0; d 0W / are equivalent if there are isomorphisms of
graded vector spaces �WV ! V 0,  WW ! W 0 which preserve the flags and
differentials, and such that  ı f and f 0 ı � are homotopic (equivalently:
induce the same map on cohomology).
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� Composition. If U; V;W 2 Ob.H/ and .dU ; f; dV / represents a morphism
U ! V and .d 0V ; g; dW / represents a morphism V ! W then their
composition is defined as

.d 0V ; g; dW / ı .dU ; f; dV / WD
� 1Y
iD1

jHom�i<0.V; V /j.�1/
i
�X

b

.dU ; gbf; dW /;

(1.5)
where Hom�i<0.V; V / denotes homogeneous maps of degree �i sending FjV
to Fj�1V , and the sum runs over all isomorphisms of chain complexes
with complete flag, bW .V; dV / ! .V; d 0V /, i.e. preserving the grading, the
differential, and the flag. Extend this product bilinearly to all morphisms. The
origin of this formula is discussed in Subsection B.2.
� Monoidal product of morphisms. This is essentially the Hall algebra product

for dg-categories, see Subsection B.1. If U; V;X; Y 2 Ob.H/, .dU ; f; dV /
represents a morphism U ! V , and .dX ; g; dY / represents a morphism
X ! Y then

.dU ; f; dV /˝ .dX ; g; dY /

WD
� 1Y
iD0

.jHom�i .X;U /jjHom�i .Y; V /jjHom�i�1.X; V /j/.�1/iC1
�

�
X
ı

��
dU ı11

0 dX

�
;

�
f ı12

0 g

�
;

�
dV ı22

0 dY

��
where the sum is over

ı D .ı11; ı12; ı22/ 2 Hom1.X;U /˚Hom0.X; V /˚Hom1.Y; V /

with

dU ı11 C ı11dX D 0; dV ı22 C ı22dY D 0;
ı12dX C f ı11 D dV ı12 C ı22g:

To relate this to the Iwahori–Hecke algebra of type An we note that for the
object of H given by a vector space V D knC1 concentrated in degree zero and
with the standard complete flag we have

B.V; V / D B nGL.nC 1;k/=B D SnC1
where B is the subgroup of upper triangular matrices and the second equality is the
Bruhat decomposition. Moreover, the algebra HomH.V; V / is just Hn, specialized
to a prime power q.
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Proposition 1.1. H as defined above is a monoidal category.

The proof of this proposition is completed in Subsection 2.2. The equivalence
with the category Sjq (see below) shows that H has a natural braiding.

The monoidal category S. The braided monoidal category S is defined in
terms of graded Legendrian tangles. Before giving the definition we recall some
basic terminology from Legendrian knot theory. A Legendrian curve L in R3
is an embedded curve which is everywhere tangent to the contact distribution
Ker.dz � ydx/. The front projection of L is the image under the projection to
the .x; z/-plane. For generic compact Legendrian curve the front projection is
locally the graph of a smooth function z.x/ except near a finite set of singular
points which are either simple crossings .�/, left cusps .�/, or right cusps .�/.
A graded Legendrian tangle in J 1Œ0; 1� D Œ0; 1� �R2 � R3 is a compact graded
Legendrian curve L in Œ0; 1��R2 with boundary in ¹0; 1º �R� ¹0º. A grading or
Maslov potential for a Legendrian curve is given, in terms of the front projection,
by a labeling of the strands connecting cusps by integers such that at each cusp the
number assigned to the lower strand is one greater than the number assigned to the
upper strand.

We now come to the definition of S.

� Objects. FiniteZ-graded subsetsX ofR up to isotopy (AZ-grading is simply
a function degWX ! Z.)

� Monoidal product of objects. X ˝ Y is obtained by stacking Y on top of X ,
which is well defined up to isotopy.

� Morphisms. HomS.X; Y / is the module over ZŒq˙; .q � 1/�1� generated by
isotopy classes of tanglesLwith @0L D Y and @1L D X modulo the following
skein relations, where ım;n is the Kronecker delta. These are relations between
tangles which are identical except inside a small ball where they differ as
shown.

n

m� 1

m

� q.�1/m�n n

m� 1

m

D ım;n.q � 1/ n

m� 1

m � ım;nC1.1 � q�1/ n
m� 1

m

(S1)
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D .q � 1/�1 (S2)

D 0 (S3)

(The vertically flipped variant of (S1) already follows from (S1) and Legendrian
isotopy.)

� Composition. Horizontal composition (concatenation) of tangles

� Monoidal product of morphisms. Vertical composition (stacking) of tangles

� Braiding. The braiding morphism X˝Y ! Y ˝X is given by the following
tangle (with grading determined by X and Y ). We note that this is not
an isomorphism in general, so gives a braiding only in a weak sense, i.e.
representing the positive braid monoid only instead of the full braid group.

:::

:::

:::

:::

:::

Y

X Y

X

The following proposition is automatic.

Proposition 1.2. S as defined above is a braided monoidal category.

The local description of front projections of Legendrian curves implies that
morphisms in S are generated by the following elementary tangles under horizontal
and vertical composition:

n

1n

n

nC 1

�n

n

nC 1

�n

m

n

�m;n

(1.6)
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A remark about conventions. In Legendrian knot theory tangles are drawn
horizontally, with left and right boundary, as opposed to vertically. The composition
of morphisms f WX ! Y and gWY ! Z is usually written in the order g ı f .
Given tangles f; g, if we want g ı f to be the tangle with g on the left and f on
the right, then the source of the tangle must be on the right and the target on the
left, which is the convention adopted here.

Main result. Fix a finite field k D Fq and consider Q as an algebra over
R WD ZŒt˙; .t � 1/�1� via the homomorphism R ! Q which sends the formal
variable t to the prime power q. Let Sjq be the category obtained from S by
base change to Q. Thus, Ob.Sjq/ D Ob.S/ and morphisms in Sjq are Q-linear
combinations of tangles modulo skein relations in which q is a prime power. A
Q-linear functor of monoidal categories from Sjq is determined by its value on
objects and elementary tangles. We claim that there is a functor ˆW Sjq ! H

defined on objects by mapping a graded subset X � R to the graded vector space
V with basis the elements of X , and filtration FiV WD Span.x1; : : : ; xi / where xi
is the i-th (smallest) element of X , and on elementary tangles as follows:

n 7�! 1kŒ�n� D .q � 1/�1.0; 1; 0/ 2 HomH.kŒ�n�;kŒ�n�/;
n

nC 1
7�! .q � 1/�1

��
0 1

0 0

�
; 0; 0

�
2 HomH.kŒ�n � 1�˚ kŒ�n�; 0/;

n

n+1
7�! .q � 1/�1

�
0; 0;

�
0 1

0 0

��
2 HomH.0;kŒ�n � 1�˚ kŒ�n�/

m

n
7�! .q � 1/�2

�
0;

�
0 1

1 0

�
; 0

�
2 HomH.kŒ�n�˚ kŒ�m�;kŒ�m�˚ kŒ�n�/:

Note that the shift of a graded vector space is by definition/convention given by
.V Œn�/k WD V kCn, so kŒ�n� is concentrated in degree n. The following theorem is
the main result of this paper.

Theorem 1.3. The above rules define a monoidal functor ˆW Sjq ! H which is an
equivalence of categories.

As a consequence of this theorem we get positive bases on the Hom-spaces in S,
since Hom-spaces in H have natural positive bases. It would be interesting to have
a version of this theorem for Z=2-graded tangles/chain complexes, since in this
case the Legendrian skein relations are specializations of the framed HOMFLY-PT
skein relations. The definition of S is completely analogous, but the definition of H
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is not clear in this case. This is related to the problem of defining the Hall algebra
for Z=2-periodic categories.

Outline. In section 2 we check that H is a monoidal category and study some
of its properties. The goal of Section 3 is to obtain a more explicit description
of the Hom-spaces in S using ideas from Legendrian knot theory. The heart of
the paper is Section 4, in which we check that ˆ is well-defined, i.e. invariant
under Reidemeister moves and skein moves, and provides an equivalence Sjq ! H.
Finally, Section A describes a dg-model for the category of complexes of quiver
representations, while Section B provides a more conceptual derivation of the
formulas used in the definition of H in terms of homotopy cardinality.

Acknowledgments. We thank Tom Bridgeland, Ben Cooper, Bernhard Keller,
Dan Rutherford, Peter Samuelson, and Ivan Smith for stimulating discussions. The
author presented an early version of the results in May 2019 at the conference on
Interactions between Representation Theory and Homological Mirror Symmetry
at the University of Leicester and greatly benefited from interactions with other
participants there. We also thank an anonymous referee for carefully reviewing the
manuscript and suggesting numerous improvements to the exposition.

2. The category H

This section is devoted to the category H. We begin with some remarks on chain
complexes with complete flag in Subsection 2.1. Subsection 2.2 contains the proof
that H is a monoidal category. The most involved step is to show that the monoidal
product of morphisms is bifunctorial. Two dualities forH, corresponding to rotation
in the category of tangles, are investigated in Subsection 2.3. The Hom-spaces of
H are studied in more detail in Subsection 2.4.

2.1. Chain complexes with complete flag. Fix a base field k throughout. Let V
be a Z-graded vector space with complete flag F�V of graded subspaces, i.e. on
object of H. We are interested in the classification of differentials d WV ! V Œ1�,
d2 D 0, up to automorphisms of V which preserve the grading and the flag.
This follows essentially the Bruhat decomposition and is contained in work of
Barannikov [2]. To state the result we introduce some terminology.

Definition 2.1. Let X be a finite, totally ordered, Z-graded set. A partial ruling
on X is given by a subset D � X and an injective function ıWD ! X nD such
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that ı.i/ < i and deg ı.i/ D deg i C 1 for all i 2 D. A partial ruling is a ruling if
X D D [ ı.D/.

A Z-graded vector space V with complete flag F�V is classified by the set
ˆ�1V WD ¹1; : : : ; nº, n WD dimV , with the usual total order and grading such that
i 2 X has the same degree as the one-dimensional space FiV=Fi�1V . Choose a
homogeneous basis b1; : : : ; bn of V such that b1; : : : ; bi span FiV . A partial ruling
.D; ı/ onˆ�1V determines a differential d.D; ı/ on V with d.bi / D bı.i/ if i 2 D
and d.bi / D 0 otherwise. For different choices of bases as above the resulting
differentials are conjugate by an automorphism of V preserving the grading and the
flag. The following is an easy consequence of the classical Bruhat decomposition,
see [2] for details.

Proposition 2.2. Let V be a Z-graded vector space with complete flag F�V , then
the assignment .D; ı/ 7! d.D; ı/ determines a one-to-one correspondence between
partial rulings on ˆ�1V on the one hand, and flag-preserving differentials on V
up to conjugation by automorphism preserving the grading and the flag on the
other.

Fix a Z-graded vector space V with complete flag, n D dimV , and a ruling
.D; ı/ on ˆ�1V . An automorphism of V which preserves the grading, the flag,
and the differential d D d.D; ı/ is given by an n � n upper-triangular matrix A
with entries aij where aij D 0 if deg i ¤ deg j , ai i ¤ 0, andX

j

aijdjk D
X
j

dijajk

for all i; k. The left-hand side above is ai;ı.k/ if k 2 D and i � ı.k/ and vanishes
otherwise, and similarly the right-hand side is aı�1.i/;k if i 2 ı.D/ and ı�1.i/ � k
and vanishes otherwise. It follows that Ad D dA is equivalent to the following list
of relations:

1) ai;ı.k/ D 0 if k 2 D, i < ı.k/, deg i D deg k C 1, and i … ı.D/ or (i 2 ı.D/
and ı�1.i/ > k);

2) aı�1.i/;k D 0 if i 2 ı.D/, ı�1.i/ < k, deg i D deg k C 1, and k … D or
(k 2 D and i > ı.k/);

3) ai;ı.k/ D aı�1.i/;k if k 2 D, i 2 ı.D/, i < ı.k/, ı�1.i/ < k, and
deg i D deg k C 1;

4) aı.k/;ı.k/ D akk if k 2 D.
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Picture pairs .i; k/ as positions in an n � n-matrix, then the first three types of
relations correspond to those pairs .i; k/ which are above or to the right of a pair
of the form .ı.j /; j /. Thus, as an abstract algebraic variety, the group Aut.V; d/
of automorphisms of V preserving the grading, the flag, and the differential d is

.A1k n 0/n�r �Am�sk

where

r D r.D; ı/ WD jDj;
s D s.D; ı/ WD j¹.i; j /W deg.i/ D deg.j /C 1;

j 2 D; ı.j / > i or i 2 ı.D/; ı�1.i/ < j ºj;
m D j¹.i; j /W i < j; deg.i/ D deg.j /ºj:

2.2. The proof of Proposition 1.1. The composition (1.5) is easily seen to be
well-defined and associative.

Lemma 2.3. The identity 1V of V 2 H is given by

1V D .q � 1/� dimV
� 1Y
iD0

jHom�i<0.V; V /j.�1/
iC1
�X

d

.d; 1; d/; (2.1)

where the sum is over all d 2 Hom1
<0.V; V / with d2 D 0.

Proof. Let .dV ; f; dW / represent a morphism V ! W . We will show that
.dV ; f; dW / ı 1V D .dV ; f; dW /, the proof that 1W ı .dV ; f; dW / D .dV ; f; dW /

being similar. The set of pairs .b; d/ where d 2 Hom1
<0.V; V / is a differential

and bW .V; d/ ! .V; dV / is an isomorphism of filtered chain complexes is in
bijection, via projection to the first factor, with the subgroup of invertible elements
in Hom0

�0.V; V /, since d D b�1dV b. This subgroup has size

.q � 1/dimV jHom0
<0.V; V /j:

Moreover, all triples .b�1dV b; f b; dW / are equivalent to .dV ; f; dW / in B.V;W /,
so

.dV ; f; dW / ı
X
d

.d; 1; d/ D .q � 1/dimV
� 1Y
iD0

jHom�i<0.V; V /j.�1/
i
�
.dV ; f; dW /;

thus .dV ; f; dW / ı 1V D .dV ; f; dW / in H. �
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Recall the definition of the monoidal product from the introduction. The
condition on ı D .ı11; ı12; ı22/ can be stated more conceptually as the requirement
of being a closed morphism of degree 1 from ..X; dX /; g; .Y; dY // to ..U; dU /;
f; .V; dV // in the derived dg-category of the A2 quiver, D.A2/, as defined in
Subsection B.1 in the appendix. In fact, the monoidal product is the Hall algebra
product for this dg-category (or rather its full subcategory of perfect objects), hence
well-definedness and associativity are general facts. Another consequence is the
following cohomological formula for the monoidal product.

Lemma 2.4. With the notation as in the definition of the monoidal product, the
morphism

T .ı/ WD
��
dU ı11

0 dX

�
;

�
f ı12

0 g

�
;

�
dV ı22

0 dY

��
depends only on the class of ı in Ext1D.A2/.X ! Y;U ! V / and

.dU ; f; dV /˝ .dX ; g; dY / WD
� 1Y
iD0

jExt�i ..X; dX /; .U; dU //j.�1/iC1
�X
Œı�

T .ı/

where the sum is over

Œı� 2 Ext1D.A2/.X �! Y;U �! V / Š Ext1..X; dX /; .U; dU //:

Proof. A morphism h 2 Hom0D.A2/.X ! Y;U ! V / is given by a triple
.h11; h12; h22/ with h11WX ! U and h22WY ! V of degree 0 and h12WX ! V of
degree �1. Then

.ı C dh/11 D ı11 C dUh11 � h11dX ;

.ı C dh/12 D ı12 C gh11 � h22f C dV h12 C h12dX ;

.ı C dh/22 D ı22 C dV h22 � h22dY ;

and T .ı C dh/ is equivalent to T .ı/ via�
1 h11

0 1

�
;

�
1 h22

0 1

�
;

�
0 h12

0 0

�
where the first and second block matrices are grading and filtration preserving
automorphisms of U ˚ X and V ˚ Y , respectively, and the third is a homotopy
between the quasi-equivalences U ˚X ! V ˚ Y .

For the second claim note that the projection

Hom�D.A2/.X ! Y;U ! V / Š Hom�..X; dX /; .U; dU //
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is a quasi-isomorphism since f and g are quasi-isomorphism and thus the two
representation are contained in a full subcategory of D.A2/ which is quasi-
equivalent to the category of chain complexes. In general, if C is a finite-
dimensional chain complex over k with cohomology H.C/ then

j!j
1Y
iD0

jC�i j.�1/iC1 D
1Y
iD0

jH�i .C /j.�1/iC1 (2.2)

for any class ! 2 H 1.C /. Combining these two fact we get

1Y
iD0

.jHom�i .X;U /jjHom�i .Y; V /jjHom�i�1.X; V /j/.�1/iC1

D
1Y
iD0

jHom�iD.A2/.X ! Y;U ! V /j.�1/iC1

D jdHom0
D.A2/

j�1
1Y
iD0

jExt�iD.A2/.X ! Y;U ! V /j.�1/iC1

D jdHom0
D.A2/

j�1
1Y
iD0

jExt�i ..X; dX /; .Y; dY //j.�1/iC1

and X
ı

T .ı/ D jdHom0
D.A2/

j
X
Œı�

T .ı/

where the first sum is over cocycles and the second over cohomology classes, which
together show the claimed formula. �

Lemma 2.5. The monoidal product defined above is bifunctorial, i.e.

.ˇ ˝ ı/ ı .˛ ˝ 
/ D .ˇ ı ˛/˝ .ı ı 
/ (2.3)

for ˛WU ! V , ˇWV ! W , 
 WX ! Y , ıWY ! Z, and

1V ˝ 1W D 1V˝W :

Proof. The product on the left-hand side of (2.3) is a weighted sum over certain
9-tuples of maps

.a1; a2; b11; b12; b22; b23; b33; b34; b44/
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with jai j D jbi;iC1j D 0, jbi i j D 1, fitting into in a diagram

X Y Y Z

U V V W

 !g1

 ! b11

 

!
b12  ! b22

 

!
b23

 !a1

 ! b33

 

!
b34

 !f1

 ! b44

 !
g2

 !
a2

 !
f2

(2.4)

where horizontal and vertical arrows are chain maps and squares commute up to
homotopies given by diagonal arrows. Here, the differentials on U and the first
copy of V and g2 come from ˛, and similarly the other differentials and f2; g1; f1
from ˇ; 
; ı respectively. The product on the right-hand side of (2.3) is a weighted
sum over certain 5-tuples of maps

.a1; a2; c11; c12; c22/

with jai j D jc12j D 0, jci i j D 1, fitting into in a diagram

X Y Y Z

U V V W

 ! c11

 

!
c12

 !g1  !a1  !f1
 ! c22

 !
g2

 !
a2

 !
f2

(2.5)

where horizontal and vertical arrows are chain maps and the square commute up
to homotopy given by c12. The condition on the cij , given a1; a2, is precisely that
they give a closed morphism of degree one

.c11; c12; c22/ 2 Hom1
D.A2/

.X �! Z;U �! W /

in the dg-category of representations of the A2 quiver (� ! �) defined in
Appendix A. Similar, the condition on the bij , given a1; a2, is that they given
a closed morphism of degree one

.bij /ij 2 Hom1
D.A4/

.X �! Y �! Y �! Z;U �! V �! V �! W /

in the dg-category of representations of the A4 quiver (� ! � ! � ! �).
Furthermore, let

r1 WD
1Y
iD1

.jHom�i<0.V; V /jjHom�i<0.Y; Y /j/.�1/
i

;

r2 WD
1Y
iD0

jHom�iD.A4/.X �! Y �! Y �! Z;U �! V �! V �! W /j.�1/iC1 ;

r3 WD
1Y
iD0

jHom�iD.A2/.X �! Z;U �! W /j.�1/iC1 I
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then the left-hand side of (2.3) is

r1r2
X
a1;a2

X
b

��
dU b11

0 dX

�
;

�
f2a2g2 s

0 f1a1g1

�
;

�
dW b44

0 dZ

��
(2.6)

with s WD f2a2b12 C f2b23g1 C b34a1g1 and the right-hand side is

r1r3
X
a1;a2

X
c

��
dU c11

0 dX

�
;

�
f2a2g2 c12

0 f1a1g1

�
;

�
dW c22

0 dZ

��
: (2.7)

We claim that the equivalence classes of the morphisms (triples) which appear
as summands in (2.6) and (2.7), which we denote by T .b/ and T .c/, depend only
on the classes of Œb� 2 Ext1D.A4/.X ! Y ! Y ! Z;U ! V ! V ! W /

and Œc� 2 Ext1D.A2/.X ! Z;U ! W /, respectively (as well as other maps and
differentials involved). This is very similar to what was proven in Lemma 2.4, in
particular in the case of c. In the case of b one has to use the homotopy given by

f2a2h12 C f2h23g1 C h34a1g1

instead of just h12.
Next, note that all horizontal arrows in (2.4) (which are the same as those

in (2.5)) are quasi-isomorphisms, and thus there are quasi-isomorphisms of
Hom-complexes

HomD.A2/.X �! Z;U �! W / ' Hom.X;U /
' HomD.A4/.X �! Y �! Y �! Z;U �! V �! V �! W /:

providing an isomorphism

�WExt1D.A4/.X �! Y �! Y �! Z;U �! V �! V �! W /

�! Ext1D.A2/.X �! Z;U �! W /:

We claim that T .�.Œb�// D T .Œb�/ as morphisms U ˝ X ! V ˝ Y . Indeed, let
b 2 Hom1

D.A4/
.X ! Y ! Y ! Z;U ! V ! V ! W / be closed, then

.c11; c12; c22/ WD .b11; f2a2b12 C f2b23g1 C b34a1g1; b44/

is a closed in Hom1
D.A2/

.X ! Z;U ! W /, �.Œb�/ D Œc� since b11 D c11, and
T .Œc�/ D T .Œb�/ is clear.
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Finally, note that r2jŒb�j D r3jŒc�j using the quasi-isomorphism above and (2.2).
Putting everything together, we have

.ˇ ˝ ı/ ı .˛ ˝ 
/ D r1r2
X
a1;a2

X
b

T .b/

D r1r2
X
a1;a2

X
Œb�

jŒb�jT .Œb�/

D r1
X
a1;a2

X
Œb�

r2jŒb�jT .�.Œb�//

D r1
X
a1;a2

X
Œc�

r3jŒc�jT .Œc�/

D r1r3
X
a1;a2

X
c

T .c/ D .ˇ ı ˛/˝ .ı ı 
/:

The second part, 1V˝W D 1V ˝ 1W , is proven using the quasi-isomorphism

Hom.W; V / ' HomD.A2/.W
1W��! W;V

1V��! V /

where the complex on the left appears in the definition of 1V˝W and the complex
on the right appears in the product 1V ˝ 1W . The identity also follows from (4.1)
or (4.2) below. �

2.3. Dualities. Given a triple .dV ; f; dW / there are two natural duals to take:

D.dV ; f; dW / WD .dW ; f 0; dV /; f 0 inverts f up to homotopy (2.8)

and
.dV ; f; dW /

_ WD .d_W ; f _; d_V / (2.9)

induced by vector space duality. In this subsection we show that these two
operations induce contravariant autoequivalences from H to itself which are
compatible with the monoidal product.

We first discuss the functor DWH ! H which is the identity on objects and
acts on morphisms by (2.8). Contravariance with respect to composition in H uses
only the fact that b 7! b�1 is a bijection from filtration preserving isomorphisms
of chain complexes .V; dV / ! .V; d 0V / to filtration preserving isomorphisms of
chain complexes .V; d 0V /! .V; dV /. It is also clear that D preserves identities.

Proposition 2.6. The functorD is covariant with respect to the monoidal product.
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Proof. Let X; Y;U; V; dX ; dY ; dU ; dV ; f; g; ı11; ı12; ı22 be as in the definition of
the monoidal product, thus forming a diagram of chain maps

X Y

U V

 !g

 ! ı11

 

!
ı12  ! ı22

 !
f

commuting up homotopy given by ı12. We can interpret the triple .g; ı12; f / as a
closed morphism in Hom0

D.A2/
..X ! U/; .Y ! V // and it has an inverse up to

homotopy denoted .g0; ı012; f 0/ 2 Hom0
D.A2/

..Y ! V /; .X ! U// and forming a
diagram

Y X

V U

 !g0

 ! ı22

 

!
ı0
12  ! ı11

 !
f 0

with the properties of the previous one. Moreover, the map which sends
.ı11; ı12; ı22/ to .ı22; ı012; ı11/ induces an isomorphism

Ext1D.A2/..X �! Y /; .U �! V // �! Ext1D.A2/..Y �! X/; .V �! U//

compatible with the identification of both spaces with Ext1..X; dX /; .U; dU //.
Setting

r WD
1Y
iD0

jExt�i ..X; dX /; .U; dU //j.�1/iC1

D
1Y
iD0

jExt�i ..Y; dY /; .V; dV //j.�1/iC1

and using Lemma 2.4 and the notation T .ı/ in its proof we compute

D..dU ; f; dV /˝ .dX ; g; dY // D r
X
Œı�

D.T .ı//

D r
X
Œı�

T .ı0/

D r
X
Œı0�

T .ı0/

D D.dU ; f; dV /˝D.dX ; g; dY /
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where the sums are over

Œı� 2 Ext1D.A2/..X �! Y /; .U �! V //

and
Œı0� 2 Ext1D.A2/..Y �! X/; .V �! U//;

respectively. �

We turn to the second duality, (2.9). The functor acts on objects by V ! V _,
sending a graded vector space to its dual in the graded sense and with the dual
complete flag given by

FiV
_ WD Ann.FdimV�iV /

where Ann.W / � V _ denotes the annihilator of W � V . We also write this as
AnnV .W / if the choice of ambient space needs to be emphasized.

The assignment V 7! V _ on objects in H is contravariant with respect to the
monoidal product of objects, i.e.

.V ˝W /_ Š W _ ˝ V _

as graded spaces with flag, where the identification comes from the usual
isomorphism .V ˚ W /_ Š W _ ˚ V _. Indeed, on the left-hand side we get
the flag

� � � � AnnV˚W .V ˚ FdimW�jW / � � � � � AnnV˚W .FdimV�iV / � � � �

which under the identification above is the same as

� � � � AnnW .FdimW�jW / � � � � � AnnV .FdimV�iV /˚W _ � � � �

which we get on the right-hand side.
We note that taking the dual of a map of graded vector spaces gives an

isomorphism
Homi .V;W / Š Homi .W _; V _/

which moreover send flags-preserving morphisms to flag-preserving ones if V and
W are equipped with flags and V _ andW _ with the dual ones. Using this fact it is
straightforward to see that the functor (2.9) is contravariant with respect to both
the composition and the monoidal product of morphisms.
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2.4. Cones. There is an identification

HomH.V;W / �! HomH.W Œ�1�˝ V; 0/;
.dV ; f; dW / 7�!

���dW f

0 dV

�
; 0; 0

�
(2.10)

using the fact that the cone over a quasi-isomorphism is an acyclic complex. The
isomorphism (2.10) can alternatively be written in terms of horizontal and vertical
composition as follows. Let

ˇW WD .q � 1/� dimW
� 1Y
iD0

jHom�i<0.W;W /j.�1/
iC1
�X

d

���d 1

0 d

�
; 0; 0

�
; 2

where d ranges over flag preserving differentials on W . Note the similarity
with (2.1).

Lemma 2.7. One has���dW f

0 dV

�
; 0; 0

�
D ˇW ı .1W Œ�1� ˝ .dV ; f; dW //:

Proof. Recall from (2.1) that

1W Œ�1� D .q � 1/� dimW
� 1Y
iD0

jHom�i<0.W;W /j.�1/
iC1
�X

d

.d; 1; d/;

where the sum ranges over differentials d WW ! W Œ1�. We compute

.d; 1; d/˝ .dV ; f; dW /

D
1Y
iD0

.jHom�i .V;W Œ�1�/jjHom�i .W;W Œ�1�/jjHom�i�1.V;W Œ�1�/j/.�1/iC1

�
X
ı

��
d ı11

0 dV

�
;

�
1 ı12

0 f

�
;

�
d ı22

0 dW

��
;

where ı12 2 Hom0.V;W Œ�1�/ is arbitrary, ı22 2 Hom1.W;W Œ�1�/ satisfies
dı22 C ı22dW D 0, and ı11 D dW ı12 C ı22f � ı12dV in Hom1.V;W Œ�1�/. This
simplifies since

1Y
iD0

.jHom�i .V;W Œ�1�/jjHom�i�1.V;W Œ�1�/j/.�1/iC1 D 1

jHom0.V;W Œ�1�/j
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and a change of basis eliminates the ı12 term, giving

.d; 1; d/˝ .dV ; f; dW / D
� 1Y
iD0

jHom�i .W;W Œ�1�/j.�1/iC1
�

�
X
ı22

��
d ı22f

0 dV

�
;

�
1 0

0 f

�
;

�
d ı22

0 dW

��
:

Next we compute the horizontal product with ˇW , where we rename the d
in ˇW to " to prevent a clash of notation. Non-zero terms come from invertible
upper-triangular matrices B D

h
b11 b12
0 b22

i
such that�

b11 b12

0 b22

��
d ı22

0 dW

�
D
��" 1

0 "

��
b11 b12

0 b22

�
;

but this implies�
c11 c12

0 1

��
d ı22f

0 dV

�
D
��dW f

0 dV

��
c11 c12

0 1

�
;

with c11 WD b�122 b11 and c12 WD b�122 b12f . Hence���dW f

0 dV

�
; 0; 0

�
D
� 1Y
iD0

jHom�i<0.W Œ�1�˚W;W Œ�1�˚W /j.�1/
i
�

�
���" 1

0 ";

�
; 0; 0

�
ı
X
d;ı;"

��
d ı22f

0 dV

�
;

�
1 0

0 f

�
;

�
d ı22

0 dW

��
but

Hom�i<0.W Œ�1�˚W;W Œ�1�˚W /
D Hom�i<0.W;W /˚Hom�i<0.W;W /˚Hom�i�1.W;W /;

so several terms cancel giving the desired formula. �

Using Proposition 2.2 we can describe the sets B.V;W / of equivalence classes
of triples .dV ; f; dW / which, by definition, provide a basis for HomH.V;W /, more
explicitly . First, in the special case W D 0, there is a one-to-one correspondence
between B.V; 0/ and the set of rulings of ˆ�1V . For the general case we can use
the bijection B.V;W / Š B.W Œ�1�˝ V; 0/ from (2.10) to obtain:
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Proposition 2.8. Suppose V1; V2 2 Ob.H/ and let Xi D ˆ�1.Vi /, i D 1; 2, be
the corresponding totally ordered graded sets. The set B.V1; V2/ is canonically
identified with the set of quintuples .D1; ı1;D2; ı2; �/ where .Di ; ıi / is a partial
ruling of Xi and

� WX1 n .D1 [ ı1.D1// �! X2 n .D2 [ ı2.D2//

is a grading-preserving bijection.

3. The category S

The goal of this section is to obtain explicit bases of HomS.X; Y /. In the first
subsection we discuss how to reduce the problem to the case Y D ;. In
Subsection 3.2 we provide a small spanning set for HomS.X;;/. In Subsection 3.3
we define rulings of tangles with right boundary only, which give a way to construct
a natural basis of HomS.X;;/. The final subsection describes two dualities of the
category S which are used to simplify proofs later.

3.1. Bending tangles. Given a graded Legendrian L and n 2 Z denote by LŒn�
the same underlying Legendrian curve but with the grading k on each strand
replaced by k � n. This induces an autoequivalence of S. There is a canonical
isomorphism (even without imposing skein relations)

HomS.X; Y / Š HomS.Y Œ�1�˝X;;/ (3.1)

which takes a tangle, L, and reattaches the left end at the right boundary below
the right end of L. This operation looks simpler when viewed under Lagrangian
projection and assuming that the boundary X and Y Œ�1� are placed at an offset in
the y direction. The argument to show this operation is a bijection on Legendrian
isotopy classes is then the usual straightening of a cap-cup:

Y X 7�!
Y Œ�1�
X

Algebraically, we can express (3.1) as L 7! ˇY ı .1Y Œ�1� ˝ L/ where ˇY 2
HomS.Y Œ�1�˝Y;;/ is the tangle in Figure 3.1 and is a union of several left-cusps,
their number and grading corresponding to Y . Given (3.1), we reduce the problem
of determining HomS.X; Y / to the special case where Y D ;.
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Y

Y Œ�1�

:::

:::

:::

Figure 3.1. The tangle ˇY .

3.2. Generating the skein. The following gives an upper bound on HomS.X;;/
which will be used in the next subsection to determine a basis.

Lemma 3.1. The module HomS.X;;/ is generated by tangles which are horizontal
compositions of tangles as in Figure 3.2 with n1 D n2 D 0.

:::
:::

:::
:::

:::
:::

:::
:::

n4

°
n3

°
n2

°
n1

°
Figure 3.2. A tangle with a single left cusp and n2 C n3 crossings.

Proof. We will arrive at the statement of the lemma via a route of successively
stronger claims.

(1) Claim: HomS.X;;/ is generated by tangles without right cusps.

This follows from the proof in [12, Section 3]. Roughly, the idea is to
consider the left-most right cusp as part of a tangle mirror to the one in
Figure 3.2 and perform a case-by-case analysis based on the basic tangle
immediately to the left. In all cases one can, using planar isotopy, Reidemeister
moves, and skein relations, reduce either the number of crossings or simplify
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the part of the tangle to the left of the cusp, and so the claim follows by a
nested induction argument.

(2) Claim: HomS.X;;/ is generated by tangles which are compositions of tangles
as in Figure 3.2. Moreover, a given tangle L without right cusps can be
written as a linear combination of such tangles which have the same number
or less crossings than L.

Using the first claim we may restrict to tangles without right cusps. One
considers the right-most left cusp as part of tangle as in Figure 3.2 and the
basic tangle, necessarily a crossing, immediately to the right of it. As before,
the case-by-case analysis in [12] shows one can reduce the number of crossings
to the right of the cusp without increasing the total number of crossings.

(3) Claim: HomS.X;;/ is generated by tangles which are a composition Ln ı
� � � ıL1 of tangles L1; : : : ; Ln as in Figure 3.2 and if k 2 ¹1; : : : ; nº such that
Lk contains the left cusp whose bottom strand connects to the lowest point in
X then n2 D 0 for Lk and n3 D 0 for L1; : : : ; Lk�1.

LetL be a tangle without right cusps. We show by induction on the number
of crossings in L that it may be written as a linear combination of tangles
as in the statement of the claim. By the previous claim we may assume
that L is a composition Ln ı � � � ı L1 of tangles L1; : : : ; Ln as in Figure 3.2.
Let k 2 ¹1; : : : ; nº such that Lk contains the left cusp whose bottom strand
connects to the lowest point inX . The skein relation (S1) allows us to decrease
n2 for Lk , should it be positive, modulo terms which have less crossings and
are thus taken care of by induction, until n2 D 0. Similarly we may decrease
n3 for L1; : : : ; Lk�1 using (S1) until reaching a tangle as in the statement of
the claim.

Finally, suppose L D Ln ı � � � ıL1 is as in the third claim, then we can use a
Legendrian isotopy to move the left-cusp in Lk to the right past all the left cusps
in L1; : : : ; Lk�1 giving a tangle which factors into a tangle as in Figure 3.2 with
n1 D n2 D 0 and a tangle with two boundary points less. The lemma follows by
induction on jX j. �

3.3. Rulings. Counting rulings of Legendrian links provide a way of extracting
invariants under isotopy and skein moves. The technique, due to Chekanov–
Pushkar [11] based on earlier ideas of Eliashberg [3], may be used to find a basis
of the skein of tangles, i.e. of HomS.X; Y / for any X; Y 2 Ob.S/. This will lead
to an alternative definition of ˆ and the proof of the main theorem. Rulings of
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Legendrian tangles where also considered in [13], which generalized several results
from Legendrian knot theory to tangles.

Let L be a tangle with @0L D ;. Suppose also that the front projection of L
is generic in the sense that all singularities are cusps and simple crossings and
project to distinct points on the x-axis. A (graded, normal) ruling � of L is given
by a collection of closed intervals Ii � Œ0; 1� and piecewise smooth functions
˛i ; ˇi W Ii ! R, i D 1; : : : ; n such that

1) The graphs of ˛i ; ˇi are contained in the front projection of L.

2) For x 2 @Ii , x ¤ 1, the endpoints .x; ˛i .x//, .x; ˇi .x// are the same cusp
of L.

3) ˛i .x/ � ˇi .x/, x 2 Ii , with equality iff x 2 @Ii , x ¤ 1.

4) The graphs of ˛1; : : : ; ˛n; ˇ1; : : : ; ˇn together cover all ofL and intersect only
at crossings and cusps.

5) At a crossing, a path may switch from one strand to another, but only if the
strands have the same grading degree, and furthermore the following condition
is satisfied. Let the paths meeting at the crossing be one of ˛i ; ˇi and one
of j̨ ; ǰ , then for x just to the left (equivalently right) of the x-coordinate
of the crossing, the two intervals Œ˛i .x/; ˇi .x/�, Œ j̨ .x/; ǰ .x/� must either be
disjoint or one must entirely contain the other (see top row in Figure 3.3). A
crossing where a pair of paths jumps strands is called a switch of the ruling.
A ruling is completely determined by its set of switches.

Let R.L/ denote the set of rulings of L. Any ruling of a tangle induces a ruling
of the boundary of L in the following way. Recall from Subsection 2.1 that a
ruling of a graded subset X � R is given by a subset D � X and a bijection
ıWD ! X nD such that

ı.x/ < x; deg.ı.x// D deg.x/C 1 (3.2)

for all i 2 D. The set of such rulings will be denoted by R.X/. A ruling � of a
tangle L with @0L D ; induces a ruling .D; ı/ D @� of X D @1L where ı.x/ D y
if there is an i with ˛i .1/ D x and ˇi .1/ D y.

In order to get an invariant under skein moves we need to count each ruling,
� 2 R.L/, with a certain weight, c� 2 R WD ZŒq˙; .q� 1/�1� which is a product of
factors corresponding to cusps and crossings ofL, see the table below. (Recall (1.6)
for the notation of the elementary tangles �n, �n, �m;n.)
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n�1

n

n

nC1

n

n

nC1

nC1 n

n

n�1

n�1

n�1

n

n

nC1

n

n

nC1

nC1 n

n

n�1

n�1

Figure 3.3. Switches (top row) and departures (bottom row). Returns are departures reflected
on the vertical axis.

Type of cusp/crossing Factor of c�
left cusp �n .q � 1/�1

right cusp �n 1

�m;n, m < n q.�1/
n�m

�m;n, m > n 1

�n;n, switch q � 1
�n;n, departure 1

�n;n, return q

Define
�.L/ WD

X
�2R.L/

c�@� 2 RR.@1L/

as the total count of rulings of L.

Lemma 3.2. �.L/ is invariant under Legendrian isotopy. Moreover, � is
compatible with skein relations in the sense that it induces a map

�X WHomS.X;;/ �! RR.X/

for any X 2 Ob.S/.

Proof. On needs to check invariance under three types of moves: 1) a cusp/crossing
passing over another cusp/crossing (coinciding x-coordinate), 2) Reidemeister
moves (see Figure 3.4), and 3) skein moves. This is a lengthy but straightforward
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case-by-case analysis, c.f. [11], which we omit since invariance will follow instead
from Proposition 4.3 which gives an alternative definition of �X . �

 ! (R1)

 ! (R2)

 ! (R3)

Figure 3.4. Legendrian Reidemeister moves.

Our next goal is to show that �X is an isomorphism, and thus HomS.X;;/ has a
basis given by the set of rulings ofX . Since HomS.X; Y / Š HomS.Y Œ�1�˝X;;/,
see (3.1), this yields an explicit basis of all Hom-spaces in S.

Proposition 3.3. The map �X WHomS.X;;/! RR.X/ is an isomorphism for any
X 2 Ob.S/.

Proof. We prove the statement by induction on the size jX j of X 2 Ob.S/. The
base case jX j D 0 follows from the fact that HomS.;;;/ is generated by the empty
link, a special case of Lemma 3.1. Also, if jX j is odd then HomS.X;;/ D 0 and
R.X/ are empty.

In the general case let y 2 X be the smallest element and

J WD ¹x 2 X j deg.x/ D deg.y/ � 1º
then there is a bijection

R.X/ Š
G
x2J

R .X n ¹x; yº/ (3.3)

where a ruling of X n ¹x; yº, extended by ı.x/ D y, gives a ruling of X . Consider
the diagram M

x2J

HomS .X n ¹x; yº;;/
M
x2J

RR.Xn¹x;yº/

HomS.X;;/ RR.X/

 !

 !�Xn¹x;yº

 !

 !
�X
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where the left vertical arrow is given on HomS .X n ¹x; yº;;/ by composition on
the right with a tangle of the form shown in Figure 3.2 with n1 D n2 D 0 and the
right vertical arrow is defined so that the diagram commutes, which is possible
since the top horizontal arrow is an isomorphism by the induction hypothesis. The
left vertical map is surjective by Lemma 3.1. Hence, it suffices to show that the
right vertical map is an isomorphism to conclude that �X is an isomorphism.

Choose a total order on each of the sets R .X n ¹x; yº/, y 2 J . This, together
with the rule that

ı�1.y/ < ı0�1.y/ H) ı < ı0

and (3.3) determines a total order of R.X/, thus an ordered basis on RR.X/. We
also have a corresponding basis of

L
x2J R

R.Xn¹x;yº/ of the same size. The matrix
of the right vertical arrow in the diagram with respect to these bases is block upper
triangular with diagonal blocks which are scalar multiples of the identity. The
scalars on the diagonal are of the form qm.q� 1/n, so in particular units in R. This
follows from considering how a ruling of a tangle L with @1L D X n¹x; yº extends
to a ruling of L composed with a tangle as in Figure 3.2. The coefficients in the
diagonal blocks come from extensions of rulings without additional switches. �

Remark 3.4. The proof of Proposition 3.3 shows that the tangles from Lemma 3.1
form a basis of HomS.X;;/, in general different from the basis coming from R.X/

which does not have an obvious geometric interpretation.

Finally, as an example and for later purposes, we compute �Y Œ�1�˝Y .ˇY / where
ˇY is the tangle in Figure 3.1. To state the result, recall that .D; ı/ is a partial ruling
of Y if D � Y , ıWD ! Y nD is injective and (3.2) holds, but we do not require
that the image of ı is all of Y nD. Let Rpart.Y / denote the set of partial rulings.
Any partial ruling, .D; ı/, of Y gives a ruling . xD; Nı/ of Y Œ�1�˝ Y as follows. Let
n D jY j and identify Y (resp. Y Œ�1�˝ Y ) with ¹1; : : : ; nº (resp. ¹1; : : : ; 2nº) as
ordered sets then

xD WD D [ .D C n/ [ ..Y n .D [ ı.D///C n/;

Nı.i/ WD

8̂̂<̂
:̂
ı.i/; i 2 D;
ı.i � n/C n; i 2 D C n;
i � n; i 2 .Y n .D [ ı.D//C n;

where D C n WD ¹y C n j y 2 Y º is the translated set.

Lemma 3.5. If Y 2 Ob.S/ and ˇY is the tangle in Figure 3.1, then

�Y Œ�1�˝Y .ˇY / D
X

.D;ı/2Rpart.Y /

.q � 1/�jY jCjDjqa.D;ı/. xD; Nı/;
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where
a.D; ı/ WD s.D;�/ �

X
1�i<j�jY j

deg.i/�deg.j /

.�1/deg.i/�deg.j /

and

s.D; ı/ WD j¹.i; j /W deg.i/ D deg.j /C 1;
j 2 D; ı.j / > i or i 2 ı.D/; ı�1.i/ < j ºj

as before.

Proof. The tangle ˇY has n D jY j left cusps and n.n � 1/=2 crossings where the
i-th upper strand crosses the j -th lower strand, 1 � i < j � n. Given a partial
ruling .D; ı/ of Y define a ruling �.D; ı/ of ˇY such that the crossings of the form
.ı.j /; j /, j 2 D are switches. The ruling �.D; ı/ of ˇY restricts to the ruling
. xD; Nı/ of Y Œ�1�˝ Y . The Cusp Lemma of Ng–Rutherford [10] implies that this
defines a one-to-one correspondence between partial rulings of Y and rulings of
ˇY . The main point is that the two paths of the ruling starting at a given left cusp
encounter at most one switch in total. Thus, for each left cusp one of three things
occurs.

1) Neither of the paths starting at the cusp encounters a switch, so the upper path
ends at Y while the lower path ends at Y Œ�1�.

2) The lower path encounters a switch, so both paths end at Y .

3) The upper path encounters a switch, so both paths end at Y Œ�1�.
To compute c�.D;ı/ we need to determine the contributions from the cusps and
crossings. By definition, the number of switches of �.D; ı/ is jDj, so the cusps and
switches contribute a factor .q � 1/�jY jCjDj. Let i < j and consider the crossing
where the i-th upper strand, which has degree deg.i/, meets the j -th lower strand,
which has degree deg.j /C 1. If deg.i/ � deg.j /, then the crossing contributes
a factor q�.�1/deg.i/�deg.j/ . If deg.i/ D deg.j / C 1, then the crossing is a switch
if i D ı.j /, a return if there is a switch on one of the two strands and to the left
of the crossing, i.e. if j 2 D, ı.j / > i or i 2 ı.D/, ı�1.i/ < j , and a departure
otherwise. Thus, in total, we get a contribution qa.D;ı/ from crossings which are
not switches. �

3.4. Dualities. The standard contact form dz � ydx on R3 is invariant under
.x; y; z/ 7! .�x;�y; z/ and switches sign under .x; y; z/ 7! .x;�y;�z/, thus
induce maps on Legendrian curves denoted by Dv and Dh respectively. We can
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upgrade these to maps of graded Legendrian curves by the following rule: For Dv
keep the same integers on the strands and for Dh reverse the sign of the integers
on the strands. This rule is essentially forced, up to overall shift, by the condition
on the grading near cusps, c.f. the discussion on grading in the introduction.

We claim that the mapsDv andDh are compatible with the skein relations (S1),
(S2), and (S2). This is fairly easy to see except perhaps for Dv and (S1), but
obvious for the relation equivalent to (S1) (up to Legendrian isotopy) found in the
proof of Proposition 4.2. Thus Dv and Dh give functor from S to itself where Dv
acts as the identity on objects and is contravariant with respect to composition
and covariant with respect to the monoidal product, and Dh acts on objects by
.X; deg/ 7! .�X;� deg/ where X � R, degWX ! Z, is covariant with respect to
composition and contravariant with respect to monoidal product. The functors are
involutive and commute. We summarize the discussion in the table below:

Dv Dh

mapping .x; y; z/ 7! .�x;�y; z/ .x; y; z/ 7! .x;�y;�z/
front flip on vertical axis flip on horizontal axis

grading n 7! n n 7! �n
ı contravariant covariant
˝ covariant contravariant

4. The functor ˆWSjq ! H

To define a monoidal functor ˆ from the category of tangles S it suffices to fix
the value of ˆ on objects, elementary tangles �m;n, �n, �n (see (1.6)), and check
invariance under Legendrian isotopy (planar isotopy and Reidemeister moves)
and the skein relations. Fix a prime power q and let Sjq be the Q-linear category
obtained by base change along the homomorphism ZŒt˙; .t � 1/�1�! Q sending
the formal variable t to the given prime power q. The same remarks about defining
functors apply.

The functor ˆW Sq ! H is defined on objects as follows. An object of S is
represented by a Z-graded set of reals X � R, and ˆ sends it to the graded vector
space V over Fq with basis X and complete flag such that FiV has basis the first
(smallest) i elements of X , i D 0; : : : ; jX j. To avoid writing lots of matrices, let
eij denote the matrix with all zeros except for a 1 in the i-th row and j -th column.
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ˆ is defined on elementary tangles by

ˆ.�m;n/ WD .q � 1/�2.0; e12 C e21; 0/;
ˆ.�n/ WD .q � 1/�1.e12; 0; 0/;
ˆ.�n/ WD .q � 1/�1.0; 0; e12/:

Since ˆ should preserve identity morphisms we also have

ˆ.1n/ D .q � 1/�1.0; 1; 0/:

Our first task is to compute the value ofˆ on basic tangles. It will be convenient
to introduce the symbol

�m;n WD
´
1; m > n;

q.�1/
m�n

; m � n;

which depends only on the difference m � n.

Lemma 4.1. Let X; Y 2 Ob.S/ be Z-graded subsets of R and let V D ˆ.X/,
W D ˆ.Y / be the corresponding Z-graded vector spaces with complete flag.

(1) The tangle 1X D Œ0; 1� �X � ¹0º maps to 1V , see (2.1), under ˆ.

(2) The tangle 1X ˝ �n ˝ 1Y maps to

.q � 1/� dim.V˚W /�1
� 1Y
iD0

jHom�i<0.V ˚W;V ˚W /j.�1/
iC1
�

�
X
B

0BBB@
26664
B11 0 B12

0

�
0 1

0 0

�
0

0 0 B22

37775 ;
�
1 0 0

0 0 1

�
;

�
B11 B12

0 B22

�1CCCA;
where the sum is over all matrices B giving a filtration decreasing differential
on V ˚W .

(3) Let E WD kŒ�n � 1�˚ kŒ�n�. The tangle 1X ˝ �n ˝ 1Y maps to

.q � 1/� dim.V˚E˚W /
� 1Y
iD0

jHom�i<0.V ˚E ˚W;V ˚E ˚W /j.�1/
iC1
�

�
X
B

0@�B11 B13 � B12B 022B23
0 B33

�
;

241 0

0 �B 022B23
0 1

35;24B11 B12 B13

0 B22 B23

0 0 B33

351A;
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where the sum is over all matrices B giving a filtration decreasing differential
on V ˚E ˚W and such that B22 ¤ 0, thus B22 D

�
0 b
0 0

�
with b ¤ 0 and we

set B 022 WD
�
0 0
1=b 0

�
.

(4) Let m; n 2 Z, E WD kŒ�m�˚ kŒ�n�. The tangle 1X ˝ �m;n ˝ 1Y maps to

�m;n

.q � 1/dim.V˚E˚W /

� 1Y
iD0

jHom�i<0.V ˚E ˚W;V ˚E ˚W /j.�1/
iC1
�

�
X
B

0@24B11 B12T B13

0 0 TB23

0 0 B33

35;241 0 0

0 T 0

0 0 1

35;24B11 B12 B13

0 0 B23

0 0 B33

351A;
where T D �

0 1
1 0

�
and the sum is over all matrices B giving a filtration

decreasing differential on V ˚E ˚W and such that B22 D 0.

Proof. We begin by computing the monoidal product of a general morphism with
a morphism of the form .d; 1; d/. We claim that

.dU ; 1; dU /˝ .dX ; g; dY /

D
� 1Y
iD0

jHom�i .Y; U /j.�1/iC1
�X
ı22

��
dU ı22g

0 dX

�
;

�
1 0

0 g

�
;

�
dU ı22

0 dY

��
;

(4.1)
where the sum is over ı22 2 Hom1.Y; U / with dU ı22 C ı22dY D 0, and

.dU ; f; dV /˝ .dX ; 1; dX /

D
� 1Y
iD0

jHom�i .X;U /j.�1/iC1
�X
ı11

��
dU ı11

0 dX

�
;

�
f 0

0 1

�
;

�
dV f ı11

0 dX

��
;

(4.2)
where the sum is over ı11 2 Hom1.X;U / with dU ı11 C ı11dX D 0.

To see (4.1) apply the definition of ˝ which gives

.dU ; 1; dU /˝ .dX ; g; dY /

D
� 1Y
iD0

.jHom�i .X;U /jjHom�i .Y; U /jjHom�i�1.X;U /j/.�1/iC1
�

�
X
ı

��
dU ı11

0 dX

�
;

�
1 ı12

0 g

�
;

�
dU ı22

0 dY

��
:

This becomes (4.1) after noting that the Hom�i .X;U / and Hom�i�1.X;U / terms
in the product cancel except for

ˇ̌
Hom0.X;U /

ˇ̌�1 and that a shear transformation
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on X ˚ U can be applied to remove ı12 2 Hom0.X;U /. The proof of (4.2) is
similar. We continue with the individual basic tangles.

1. This follows by induction from 1V ˝1W D 1V˚W (with dimW D 1), which
in turn follows directly from (4.1) or (4.2).

2. Using (4.1) and (4.2) we get

1V ˝ˆ.�n/˝ 1W
D .q � 1/� dim.V˚W /�1

�
� 1Y
iD0

.jHom�i<0.V; V /j � jHom�i<0.W;W /j � jHom�i<0.W; V ˚E/j/.�1/
iC1
�

�
X

B;b1;b2

0BBB@
26664
B11 0 B12

0

�
0 1

0 0

�
b1

b2

0 0 B22

37775 ;
�
1 0 0

0 0 1

�
;

�
B11 B12

0 B22

�1CCCA;
where E WD kŒ�m�˚ kŒ�n�. Note that

1Y
iD0

jHom�i<0.W;E/j.�1/
iC1 D jHom0.W; kŒ�n�/j�1

because of the telescoping product and that in the sum above we can choose

b1 2 Hom1.W;kŒ�n � 1�/ D Hom0.W;kŒ�n�/
arbitrary while b2 D �b1B22. Applying a shear transformation on E ˚W we find
that there are jHom0.W;kŒ�n�/j summands equivalent to ones with b1 D b2 D 0,
thus showing the claimed formula for ˆ.1X ˝ �n ˝ 1Y /.

3. With B22 as in the statement of the lemma we can write

ˆ.�n/ D .q � 1/� dimE
X
B22

.0; 0; B22/ :

Again we apply (4.1) and (4.2) which after some rearranging of the products gives

1V ˝ˆ.�n/˝ 1W

D .q � 1/� dim.V˚E˚W /
� 1Y
iD0

jHom�i<0.V ˚E ˚W;V ˚E ˚W /j.�1/
iC1
�

� jHom0.W;kŒ�n�/j
X
B

0@�B11 B13

0 B33

�
;

241 0

0 0

0 1

35 ;24B11 B12 B13

0 B22 0

0 0 B33

351A;
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but

jHom0.W;kŒ�n�/j
0@�B11 B13

0 B33

�
;

241 0

0 0

0 1

35 ;24B11 B12 B13

0 B22 0

0 0 B33

351A
D
X
B23

0@�B11 B 0013 � B12B 022B23
0 B33

�
;

241 0

0 �B 022B23
0 1

35 ;24B11 B12 B 0013
0 B22 B23

0 0 B33

351A;
with B 0013 WD B13 C B12B

0
22B23, B 022 as in the statement of the lemma, and

B23 D
�
b1

b2

�
, with b1 2 Hom1.W;kŒ�n � 1�/ arbitrary and b2 D �b�1b1B33.

4. This follows again from (4.1) and (4.2) and
1Y
iD0

jHom�i<0.E;E/j.�1/
i D

1Y
iD0

jHom�i .kŒ�n�;kŒ�m�/j.�1/i D �m;n

where E D kŒ�m�˚ kŒ�n� as in the statement of the lemma. �

From this, the value of ˆ on a tangle which is presented as a horizontal
composition of basic tangles is fixed by the requirement that ˆ is a functor.

Proposition 4.2. The above rules define a unique functorˆW Sjq ! H of monoidal
categories. This functor is compatible with the dualities: ˆ ıDv Š D ı ˆ and
ˆ ıDh ıDv Š D0 ıˆ where D0 is the functor V 7! V _ induced by vector space
duality, see (2.9).

Proof. Note that the value of ˆ on elementary tangles is compatible with the
dualities, so compatibility with dualities for general morphisms follows from their
covariance/contravariance properties once we have shown that ˆ is well-defined.

We first check invariance of ˆ under planar isotopy. Any planar isotopy is a
composition of the following basic moves: a cusp/crossing passing over another
cusp/crossing (i.e. switching the order of their projection to the x-axis). Invariance
of ˆ thus follows immediately from the fact that H is monoidal, more specifically
that identities of the form

.a˝ 1/ ı .1˝ b/ D a˝ b D .1˝ b/ ı .a˝ 1/

or pictorially
1 b

a 1
D b

a
D b 1

1 a
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hold. It remains to show that ˆ is compatible with the Reidemeister moves R1,
R2, R3, and the skein relations S1, S2, S3. For R1 there are two variants obtained
by reflection on the horizontal axis and for R2 there are four variants obtained by
reflection on both the horizontal and vertical axes. However, once we show one of
these variants the others follow by duality in the category H.

(R1) The first Reidemeister move is the identity

.1n ˝ �n�1/.�n;n ˝ 1n�1/.1n ˝ �n�1/ D
n

n� 1

n
D n D 1n

so we need to show that

ˆ.1n ˝ �n�1/ˆ.�n;n ˝ 1n�1/ˆ.1n ˝ �n�1/ D ˆ.1n/
holds. By Lemma 4.1 we have

ˆ.1n/ D .q � 1/�1.0; 1; 0/;
ˆ.1n ˝ �n�1/ D .q � 1/�2.e23; e11; 0/;
ˆ.1n ˝ �n�1/ D .q � 1/�2.0; e11; e23/;
ˆ.�n;n ˝ 1n�1/ D .q � 1/�3

X
a;b

.be13 C ae23; T ˚ 1; ae13 C be23/;

D .q � 1/�3..0; T ˚ 1; 0/C .q � 1/.e23; T ˚ 1; e13/
C .q � 1/.e13; T ˚ 1; e23/
C .q � 1/2.e23; e11; e23//;

where the four summands correspond to the cases a D b D 0, a ¤ 0; b D 0,
a D 0; b ¤ 0, and a; b ¤ 0 respectively. Note also that we use a homotopy as
well as a change of basis to show the equivalence with .e23; e11; e23/. Only the
.e23; e11; e23/ term contributes to the product

ˆ.1n ˝ �n�1/ˆ.�n;n ˝ 1n�1/ˆ.1n ˝ �n�1/
D .q � 1/�5.e23; e11; 0/.e23; e11; e23/.0; e11; e23/

which is equal to .q � 1/�1.0; 1; 0/ using the fact that the filtered complex kŒ�n�˚
kŒ�n�˚ kŒ�nC 1� with differential d D e23 has group of automorphisms .k�/2
whose size is .q � 1/2.

(R2) The second Reidemeister move is the identity

.�m;nC1 ˝ 1n/.1nC1 ˝ �m;n/.�n ˝ 1m/ D
n m

nC 1

D
n

m

D 1m ˝ �n;
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so we need to show that

ˆ.�m;nC1 ˝ 1n/ˆ.1nC1 ˝ �m;n/ˆ.�n ˝ 1m/ D ˆ.1m ˝ �n/ (4.3)

holds. By Lemma 4.1 we have

ˆ.�n ˝ 1m/ D .q � 1/�2.0; e13; e12/;
ˆ.1nC1 ˝ �m;n/
D .q � 1/�3��1nC1;m

�X
a

.ae12; 1˚ T; ae13/

C ım;n
X
a;b¤0

.ae12 C be13; 1˚ T; be12 C ae13/
�

D .q � 1/�2��1nC1;m.e12; 1˚ T; e13/C � � � ;
ˆ.�m;nC1 ˝ 1n/
D .q � 1/�3��1m;n

�X
a

.ae13; T ˚ 1; ae23/

C ım;nC1
X
a;b¤0

.ae13 C be23; T ˚ 1; be13 C ae23/
�

D .q � 1/�2��1m;n.e13; T ˚ 1; e23/C � � � ;
where the ellipsis (� � � ) represents terms which do not contribute to the product (4.3).
Looking at the sizes of automorphism groups of filtered complexes in the various
cases m D n, m D nC 1, m ¤ n; nC 1 one finds that the product of the first two
factors in (4.3) contributes a scalar factor .q � 1/2�nC1;m�m;n and the product of
the second and third factors in (4.3) contributes a scalar factor .q � 1/2. It follows
that the left-hand side of (4.3) is equal to

ˆ.1m ˝ �n/ D .q � 1/�2.0; e11; e23/
as claimed.

(R3) The third Reidemeister move is the identity

.1k ˝ �n;m/.�k;m ˝ 1n/.1m ˝ �k;n/ D
k

n

m

D
m

n

k

D .�k;n ˝ 1m/.1n ˝ �k;m/.�n;m ˝ 1k/;
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so we need to show that
ˆ.1k ˝ �n;m/ˆ.�k;m ˝ 1n/ˆ.1m ˝ �k;n/
D ˆ.�k;n ˝ 1m/ˆ.1n ˝ �k;m/ˆ.�n;m ˝ 1k/

(4.4)

holds. We claim that both sides are equal to .q � 1/�3.0; e13 C e22 C e31; 0/ and
will show this for the left-hand side, the calculation for the right-hand side being
similar.

To simplify the calculation, note first that while each factor on the left-hand side
of (4.4) potentially has terms with non-zero differential, these do not contribute to
the final product. Furthermore, a five-term product of matrices of the form

.1˚ T /B1.T ˚ 1/B2.1˚ T /
with B1; B2 being invertible upper-triangular 3-by-3 matrices, lies in the generic
Bruhat-cell, i.e. becomes e13 C e22 C e31 after multiplying by certain upper-
triangular matrices on the left and right. (This is because .13/ D .23/ ı .12/ ı .23/
is a minimal factorization of the longest element in S3 into simple transposition,
but can be easily checked directly.) It only remains to work out the scalar factor.
The horizontal product of the three factors contributes

.q � 1/6�k;m�k;n�m;n�m;k�m;n�k;n
while from the vertical product used to form each factor (or Lemma 4.1) we get

.�k;m�k;n�m;n�m;k�m;n�k;n/
�1

which shows that the end result comes with a factor .q � 1/�3.
(S1) Modulo Reidemeister moves, the first skein relation can also be written as

n

m

� q.�1/m�n
m

n

D ım;n.q � 1/
n

n

� ım;nC1.1 � q�1/
nn

We verify the cases m D n, m D nC 1, and m ¤ n; nC 1 separately. For n D m
we compute

ˆ.�n;n/ˆ.�n;n/ D .q � 1/�4.0; T; 0/.0; T; 0/
D .q � 1/�2.0; 1; 0/C .q � 1/�1.0; T; 0/
D qˆ.1n ˝ 1n/C .q � 1/ˆ.�n;n/;
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for m D nC 1 we have

ˆ.1nC1 ˝ 1n/ D .q � 1/�2.0; 1; 0/C .q � 1/�1.e12; 1; e12/
D qˆ.�nC1;n/ˆ.�n;nC1/C .q � 1/ˆ.�n/ˆ.�n/;

while for m ¤ n; nC 1 we have

ˆ.�m;n/ˆ.�n;m/ D .q � 1/�2�n;m.0; 1; 0/ D q.�1/m�nˆ.1m ˝ 1n/;

where we used that �m;n�n;m D q.�1/m�n for m ¤ n.
(S2) The claim is that

ˆ.�n ˝ 1n�1/ˆ.1nC1 ˝ �n�1/ D 0

which follows from the fact that the filtered complexes .C; d/ and .C; d 0/ with

C WD kŒ�n � 1�˚ kŒ�n�˚ kŒ�nC 1�; d WD e12; d 0 WD e23
are not isomorphic.

(S3) To see that

ˆ.�n/ˆ.�n/ D .q � 1/�2.e12; 0; 0/.0; 0; e12/ D .q � 1/�1

note that the elementary two-step complex has group of automorphisms k�. �

Proposition 4.3. Let X 2 Ob.S/. Under the identification

HomH.ˆ.X/; 0/ Š QR.X/

(see Subsection 2.1) we have

ˆ D �WHomSjq .X;;/ �! HomH.ˆ.X/; 0/ (4.5)

i.e. the value of ˆ on a one-sided tangle is equal to a weighted count of rulings.

Proof. Suppose L is a tangle with @0L D ; and @1L D X . We prove by induction
on the number of crossings and cusps of L that ˆ.L/ D �.L/. Let B be a basic
tangle (i.e. with a single cusp or crossing) such that @0B D X and set X 0 WD @1B .
We get a diagram

HomSjq .X;;/ HomSjq .X
0;;/

HomH.ˆX; 0/ HomH.ˆX
0; 0/

 !ıB

 ! �  ! �

 !ıˆB
(4.6)
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which we need to show commutes since this would imply

ˆ.L ı B/ D ˆL ıˆB D �.L/ ıˆB D �.L ı B/
proving the claim for the tangle L ı B with one more cusp/crossing than L. The
lower arrow in (4.6) can be described more explicitly with the help of Lemma 4.1
which gives formulas forˆB . On the other hand, the map which follows the diagram
from the lower-left corner to the lower-right corner via the upper path is described
as follows: take a ruling .D; ı/ ofX ; then it maps to

P
� c�@1� where � ranges over

all rulings of B which extend .D; ı/ to B . Here we are using a slight generalization
of the notion of a ruling for tangles with possibly both boundaries non-empty. We
will describe this map explicitly in each of the three cases, depending on the type
of B .

Suppose first that B has a left cusp, so B D 1Y ˝ �n ˝ 1Z where Y ˝Z D X .
The map

QR.Y˝Z/ �! QR.Y˝@1�n˝Z/

is given by
.D; ı/ 7�! .q � 1/�1.D0; ı0/;

where, if @0�n D ¹y; zº with y < z, then .D0; ı0/ is the extension of the ruling
.D; ı/ of Y ˝ Z with D0 D D [ ¹zº and ı0.z/ D y. It follows from Lemma 4.1
that composition withˆB on the right has the same effect, i.e. maps .d.D; ı/; 0; 0/
to .q � 1/�1.d.D0; ı0/; 0; 0/. To see this, note that in the formula for ˆB the
set of triples which appear is preserved under the action of filtration-preserving
automorphisms on the target V ˚W . Thus in the formula for the composition in
H we do not need to take the sum over all b but just one particular one and add an
overall factor counting the number of filtration preserving isomorphisms. Finally,
note that if we set B D d.D; ı/ in the triple in the formula ofˆB from Lemma 4.1,
then the differential on the source is d.D0; ı0/.

Suppose thatB has a right cusp, soB D 1Y˝�n˝1Z where Y ˝@0�n˝Z D X .
Let @0�n D ¹y; zº with y < z. The map

QR.Y˝@0�n˝Z/ �! QR.Y˝Z/

sends rulings with z 2 D and ı.z/ D y to their restriction to Y ˝Z and all other
rulings to zero. From Lemma 4.1 we see by the same argument as in the previous
case that composition with ˆB on the right has the same effect.

Finally, suppose that B has a crossing, so B D 1Y ˝ �m;n ˝ 1Z where
X D Y ˝ @0�m;n ˝ Z. Let @0�m;n D ¹y; zº with ordering y < z and
@1�m;n D ¹z; yº with ordering z < y. The map

QR.Y˝@0�m;n˝Z/ �! QR.Y˝@1�m;n˝Z/
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is described as follows. In the case m ¤ n a ruling .D; ı/ gets sent to zero if
z 2 D and ı.z/ D y and to �m;n.D; ı/ otherwise. In the case m D n a ruling
.D; ı/ gets sent to q.D; ı/ if when extending the ruling to B without a switch, the
crossing becomes a return and to .D; ı/C .q � 1/.D0; ı0/ if the crossing becomes
a departure, where .D0; ı0/ is obtained from .D; ı/ by switching the roles of y
and z, i.e. is the same ruling if the two sets are identified via the order preserving
bijection. From Lemma 4.1 we see that composition with ˆB on the right has
the same effect. Unlike the previous cases, the set triples which appear in the
formula for ˆB is not invariant under flag preserving automorphism of the target,
but this becomes true when instead of using the fixed T we take the sum over all
elements of the form T b where b is a two-by-two upper triangular matrix. The
same reasoning as in the previous cases then works. The computation is essentially
the same as the one which verified that the skein relation S1 holds in H in the proof
of Proposition 4.2. �

We previously introduced the tangle ˇY 2 HomS.Y;;/ and the morphism
ˇW 2 HomH.W; 0/. As the notation suggests, these correspond to one another
under ˆ.

Proposition 4.4. Let Y 2 Ob.S/, then ˆ.ˇY / D ˇˆY .

Proof. The proof follows from Lemma 3.5, where �.ˇY / was computed, and
Proposition 4.3. Note that it follows from the discussion in Subsection 2.1 thatX

d

���d 1

0 d

�
; 0; 0

�
D
X

.D;ı/2Rpart.Y /

.q � 1/jDjqs.D;ı/
���d.D; ı/ 1

0 d.D; ı/

�
; 0; 0

�
;

where the sum on the left ranges over differentials on ˆY . �

Corollary 4.5. Let X; Y 2 Ob.S/ then the diagram

HomSjq .X; Y / HomH.ˆX;ˆY /

HomSjq .Y Œ�1�˝X;;/ HomH.ˆY Œ�1�˝ˆX; 0/

 !ˆ

 !  !

 !ˆ
(4.7)

where the left vertical arrow is the isomorphism given in equation (3.1), mapping
L to ˇY ı .1Y Œ�1� ˝ L/, and the right vertical arrow is the isomorphism (2.10)
mapping .dV ; f; dW / to .Cone.f /Œ�1�; 0; 0/, commutes.
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Proof. Follows from the previous proposition and Lemma 2.7 which says that the
right vertical arrow is also given by f 7! ˇˆY ı .1ˆY Œ�1� ˝ f /. �

Proof of Theorem 1.3. ˆ is essentially surjective, since to any graded vector
space with flag V 2 Ob.H/ we can assign ˆ�1V 2 Ob.S/ where ˆ�1V WD
¹1; : : : ; dimV º with grading deg.i/ D degFiV=Fi�1V as before.

For X; Y 2 Ob.S/ we need to show that ˆ gives an isomorphism from
HomSjq .X; Y / to HomH.ˆX;ˆY /. By Corollary 4.5 it suffices to consider
the special case Y D ;, but then the claim follows from Proposition 3.3 and
Proposition 4.3. �

Appendices

A. Quiver representations

In this section we provide an explicit dg-model for the derived category of
representations of a quiver Q. This particular model has the virtue of having
small Hom-complexes and comes from computing Ext�.E; F / by replacing E by
its minimal projective resolution. It is well-known to experts, though we could not
find a suitable reference. The dg-category will be used as a starting point for the
categories defined in the following section.

Fix a (finite) quiver Q with set of vertices Q0 and an arbitrary field k. Define
a dg-category D.Q/ of complexes of quiver representations. An object of D.Q/
is given by a chain complex .Ei ; d / (over k) for each vertex i 2 Q0 and a chain
map T˛WEi ! Ej of degree 0 for each arrow ˛W i ! j . Given a pair of objects
E D ..Ei /i ; .S˛/˛/ and F D ..Fi /i ; .T˛/˛/ let

HomD.Q/.E; F / WD
M
i2Q0

Hom.Ei ; Fi /˚
M
i
˛�!j

Hom.Ei Œ1�; Fj /

where Hom.Ei ; Fi / D
L
k Homk.Ei ; Fi / includes homogeneous maps of all

degrees. The differential is given by

d..fi /i ; .g˛/˛/

WD ..d ı fi � .�1/jfi jfi ı d/i ;
..�1/jfi jT˛ ı fi � .�1/jfj jfj ı S˛ C d ı g˛ C .�1/jg˛ jg˛ ı d/˛/

where ˛W i ! j . Composition is defined by

..fi /i ; .g˛/˛/ ı ..f 0i /i ; .g0˛/˛/ D ..fi ı f 0i /i ; .fj ı g˛ C .�1/jfi jg˛ ı fi //:
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The proof of the following proposition is a straightforward checking of signs
and will be omitted.

Proposition A.1. D.Q/ is a dg-category.

B. Counting in higher categories

A good definition of the cardinality of an essentially finite groupoid G isX
X2Iso.G/

1

jAut.X/j

where Iso.G/ D Ob.G/= Š is the set of isomorphism classes of objects in G and
Aut.X/ D HomG.X;X/. This idea was generalized to1-groupoids, aka homotopy
types, by Baez–Dolan [1] and we will apply it to dg-categories following Toen [14].

Let C be a dg-category over a finite field Fq such that for eachX; Y 2 Ob.C/ all
Exti .X; Y / WD H i .Hom�C.X; Y // are finite-dimensional and vanish for i � 0. In
this situation one can define the counting measure, �#, on the set of isomorphism
classes Iso.C/ by

�#.¹Xº/ WD jAut.X/j�1
1Y
iD1

jExt�i .X;X/j.�1/iC1 :

The set QIso.C/ of finite Q-linear combinations of elements in Iso.C/ has two
interpretations: one as finitely supported functions on Iso.C/ and another as finite
signed measures on Iso.C/. We will adopt the latter here, following Kontsevich–
Soibelman [9, Section 6.1]. Note that Toen [14] uses the former convention. The
conversion factor between the two is given by �#.

Suppose F WC ! D is a dg-functor where C and D are Fq-linear and satisfy
the finiteness conditions as in the previous paragraph. Assume furthermore that
F sends only finitely many distinct X 2 Iso.C/ to a given Y 2 Iso.D/. Define
induced linear maps F�WQIso.C/! QIso.D/ and F ŠWQIso.D/! QIso.C/ by

.F�f /.Y / WD
X

X2Iso.C/
F .X/DY

f .X/

.F Šf /.X/ WD f .F.X// jAut.FX/j
jAut.X/j

1Y
iD1

.
jExt�i .FX; FX/j
jExt�i .X;X/j /.�1/

i

:
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The maps F�, F Š fit with the “measures” interpretation of QIso.C/. For the
“functions” interpretation it is more natural to use

F �WQIso.D/ �! QIso.C/
and

FŠWQIso.C/ �! QIso.D/

defined by

.F �f /.X/ WD f .F.X//;

.FŠf /.Y / WD
X

X2Iso.C/
F .X/DY

f .X/
jAut.Y /j
jAut.X/j

1Y
iD1

� jExt�i .Y; Y /jj
jExt�i .X;X/j

�.�1/i
;

so that
F Š.f�#/ D .F �f /�#; F�.f�#/ D .FŠf /�#:

There is a simpler formula for F Š for a special class of functors which was
proven in [5]. More precisely, in addition to the finiteness conditions already
imposed, we will assume that

1) F is full at the chain level, i.e. the maps Hom�C.X; Y /! Hom�D.FX; F Y /
are surjective.

2) F has the isomorphism lifting property: given an isomorphism f WFX ! Y

in D there is an object eY 2 Ob.C/ with FeY D Y and an isomorphism
Qf WX ! eY with F. Qf / D f .

3) F reflects isomorphisms: if F.f /WFX ! FY is an isomorphism then f is
an isomorphism.

(Here an isomorphism is a map which is invertible up to homotopy.) By the first
assumption on F we have an exact sequence of cochain complexes

0 �! K�.X; Y / �! Hom�C.X; Y / �! Hom�D.FX; F Y / �! 0

for each X; Y 2 Ob.C/, where

Ki .X; Y / WD Ker.Homi
C.X; Y /! Homi

D.FX; F Y //;

and thus long exact sequences

� � � �! HKi .X; Y / �! ExtiC.X; Y / �! ExtiD.FX; F Y / �! � � � : (B.1)

Given Y 2 D let FY be the set of equivalence classes of objects X 2 C with
FX D Y where X � X 0 if there is an isomorphism f WX ! X 0 with F.f / D 1Y
in Hom0.Y; Y / (equivalently, F.f / D 1Y in Ext0.Y; Y /).
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Lemma B.1. Let F WC! D be an dg-functor satisfying the above conditions, then

F Š.Y / D
X
X2FY

1Y
iD0

jHK�i .X;X/j.�1/iC1X

for any Y 2 QIso.D/.

See [5] for the proof in the more general case of A1-categories.

B.1. Hall algebra. The monoidal product in the category H turns out to be a
special case of the Hall algebra product for dg-categories, which in particular
implies its associativity by general results which we recall in this subsection.

Let C be a dg-category over a finite field Fq satisfying the finiteness conditions
as above. Assume furthermore that C is triangulated, i.e. closed under shifts, cones,
and has a zero object. Then we have a diagram of categories and functors

CA2

C � C C

 !F  

!
G

where CA2 is the category of exact triangles in C, whose objects can be concretely
represented by twisted complexes C ı�! A, ı 2 Hom1.C;A/, m1.ı/ D 0, which F
sends to the pair .A; C / and G sends to Cone.C Œ�1� ı�! A/. Passing to QIso.C/,
the pull–push along the diagram gives a product map

QIso.C/˝QIso.C/ F Š�! QIso.CA2/
G��! QIso.C/:

Lemma B.1 provides the following explicit formula for the product.

A � C D
� 1Y
iD0

jExt�i .C;A/j.�1/iC1
� X
f 2Ext1.C;A/

Cone.C Œ�1� f�! A/: (B.2)

The vector space QIso.C/ together with this product is called the Hall algebra of
C, denoted Hall.C/. This is an associative algebra, see [14] or [5] for a short proof,
with unit the class of the zero object 0 2 Ob.C/.

B.2. Deriving the formula for composition in H. Fix an arbitrary field k. We
begin by defining dg-categories Fn for each integer n � 1, whose objects are
roughly speaking given by an object of Perf.k/ with n complete flags, in the sense
of triangulated categories, on it. Formally, an object of Fn is given by n chain
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complexes with complete flags .Ci ; d; F�Ci /, i D 1; : : : ; n and quasi-isomorphisms
�i WCi ! CiC1, i D 1; : : : ; n � 1. Forgetting the flags, the Ci and �i given an
object in D.An/, where An is the quiver with underlying graph the An Dynkin
diagram and all arrows oriented in the same direction. A morphism of degree k in
D.An/ has components fi WCi ! Di , i D 1; : : : ; n, of degree k and gi WCi ! Di ,
i D 1; : : : ; n � 1 of degree k � 1 fitting into a diagram

C1 C2 � � � Cn

D1 D2 � � � Dn

 !�1

 ! f1

 

!
g1

 !�2

 ! f2

 

!
g2

 !�n�1

 

!
gn�1  ! fn

 ! 1  ! 2  ! n�1

were for a closed morphism each square commutes up to chain homotopy given
by gi . We define morphisms in Fn to be the subset of those morphisms in D.An/

such that fi .FjCi / � FjDi . The differential and composition in Fn are defined as
for D.An/.

Assume from now on that k D Fq is a finite field. To make contact with
the definition of H consider for given V1; : : : ; Vn 2 Ob.H/ the full subcategory
Fn.V1; : : : ; Vn/ � Fn of objects with .Ci ; F�Ci / D Vi , then

Iso.F2.V;W // D B.V;W /; QIso.F2.V;W // D HomH.V;W /;

essentially by definition. For a triple U; V;W 2 Ob.H/ there is a diagram of
functors

F3.U; V;W /

F2.V;W / F2.U; V / F2.U;W /

 

!

 
!P Q

where

P.C1
�1�! C2

�2�! C3/ WD .C2
�2�! C3; C1

�1�! C2/;

Q.C1
�1�! C2

�2�! C3/ WD C1
�2ı�1����! C3;

and the pull-push along the diagram gives a map

QIso.F2.V;W //˝QIso.F2.U; V //
Q�ıP

Š

����! QIso.F2.U;W //

which, by Lemma B.1 has the explicit formula (1.5) which is the composition in H.
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