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The Kontsevich integral
for bottom tangles in handlebodies

Kazuo Habiro and Gwénaél Massuyeau

Abstract. Using an extension of the Kontsevich integral to tangles in handlebodies similar to
a construction given by Andersen, Mattes and Reshetikhin, we construct a functor Z: B — A,
where B is the category of bottom tangles in handlebodies and A is the degree-completion
of the category A of Jacobi diagrams in handlebodies. As a symmetric monoidal linear
category, A is the linear PROP governing “Casimir Hopf algebras”, which are cocommutative
Hopf algebras equipped with a primitive invariant symmetric 2-tensor. The functor Z
induces a canonical isomorphism grB =~ A, where gr B is the associated graded of the
Vassiliev—Goussarov filtration on B. To each Drinfeld associator ¢ we associate a ribbon
quasi-Hopf algebra H,, in A, and we prove that the braided Hopf algebra resulting from H,,
by “transmutation” is precisely the image by Z of a canonical Hopf algebra in the braided
category B. Finally, we explain how Z refines the LMO functor, which is a TQFT-like
functor extending the Le—-Murakami—Ohtsuki invariant.
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1. Introduction

1.1. Background. The Kontsevich integral is a powerful knot invariant, taking
values in the space of chord diagrams or Jacobi diagrams, which are unitrivalent
graphs encoding Lie-algebraic structures [37, 4]. It is universal among rational-
valued Vassiliev—Goussarov finite type invariants [62, 19], and dominates var-
ious quantum link invariants such as the colored Jones polynomials. Le and
Murakami [39] and Bar-Natan [6] extended the Kontsevich integral to a functor

Z7: T, — A

from the category T, of framed oriented g-fangles to the category A of Jacobi
diagrams. The Kontsevich integral was generalized to links and tangles in thickened
surfaces by Andersen, Mattes and Reshetikhin [3] and by Lieberum [42].

Le, Murakami and Ohtsuki [41] constructed a closed 3-manifold invariant by
using the Kontsevich integral. After attempts of extending the Le—Murakami-—
Ohtsuki (LMO) invariant to TQFTs by Murakami and Ohtsuki [51] and by Cheptea
and Le [10], Cheptea and the authors [9] constructed a functor

Z: LCob, — “A,

called the LMO functor. Here A is the category of rop-substantial Jacobi diagrams
and £Cob, is the “non-strictification” of the braided strict monoidal category
LCob of Lagrangian cobordisms. The category LCob is a subcategory of the
category Cob of cobordisms between once-punctured surfaces, studied by Crane
and Yetter [11] and Kerler [34]. The LMO functor gives representations of the
monoids of homology cylinders and, in particular, the Torelli groups, which were
studied in [26, 49]. (Other representations of the monoids of homology cylinders
have also been derived from the LMO invariant by Andersen, Bene, Meilhan and
Penner [1].)

1.2. The category B of bottom tangles in handlebodies. We consider here the
category B of bottom tangles in handlebodies [22], which we may regard as a
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braided monoidal subcategory of LCob [9]. The objects of B are non-negative
integers. Form > 0, let V;,, C R3 denote the cube with m handles:

The morphisms from m to n in B are the isotopy classes of n-component bottom
tangles in V,,, which are framed tangles, each consisting of n arc components
whose endpoints are placed on a “bottom line” £ C dV4,, in such a way that the two
endpoints of each component are adjacent on £. Here are an example of a bottom
tangle and its projection diagram, for m = 2 and n = 3:

@@ AL D
A

— . (1.1)
?\/% A

As another example, observe that B(0, 1) is essentially the set of knots in R3. We
associate to each T:m — n in B an embedding i7: V,, — V,, which fixes the
“bottom square” S and identifies V}, with a regular neighborhood in V;, of the union

7

of S with the n components of 7. Then the composition of m I, n— pinBis
represented by the image i7(7") C V,,. (See Section 2 for further details.)

We can also define composition in B using “cube presentations” of bottom
tangles. Each morphism 7 in B is represented by a bottom tangle which can be
decomposed into a tangle U, called a cube presentation of T, and parallel families
of cores of the 1-handles of the handlebody. For instance, the bottom tangle (1.1)
has the following cube presentation:

;”%/
LA
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We can define the composition 7’ o T' of two morphisms 7 and 7" in B as the
bottom tangle obtained by putting a suitable cabling of 7" on the top of a cube
presentation of 7”. For example,

We may identify B with the opposite H°P of the category H of isotopy classes
of embeddings of handlebodies rel S, via the above correspondence T +— ir.
The category B is also isomorphic to the category L Cob of special Lagrangian
cobordisms introduced in [9]: each bottom tangle T: m — n in B corresponds to the
cobordism obtained as the exterior of the embedding i7: V;,, < V},. The category
SLCob, and hence B, inherit from £LCob C Cob a braided strict monoidal structure.
In B, tensor product on objects is addition and tensor product on morphisms is
juxtaposition; the braiding ¢ = 1 ;:2 — 2, which determines all braidings in B,
is

The first author [22] (see also forthcoming [25]) introduced the category B in
order to study universal quantum invariants of links and tangles [28, 38, 58, 53, 32]
unifying the Reshetikhin—Turaev quantum invariants associated with each ribbon
Hopf algebra [12, 59]. Indeed, for each ribbon Hopf algebra H, there is a braided
monoidal functor

JH:B—>M0dH (1.2)

extending the universal quantum link invariant to bottom tangles in handlebodies,
where Modg denotes the category of left H-modules.

The category B admits a Hopf algebra object H®, whose counterpartin Cob was
introduced by Crane and Yetter [11] and Kerler [34]. This Hopf algebra structure
in B and Cob may be identified with the Hopf-algebraic structure for claspers
observed in [21] (see [22, 25]). The braided monoidal category B is generated
by the Hopf algebra H® together with a few other morphisms (see Section 9.1).
Transmutation introduced by Majid [46, 47] is a process of transforming each
quasi-triangular Hopf algebra H into a braided Hopf algebra H in Modg. The
functor J ¥ maps the Hopf algebra H® in B to the transmutation H of H.
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In the present paper, using the Kontsevich integral Z7, we construct and study
a functor
. A%
Z5: By — Ay,

which is a refinement of the LMO functor Z on the category B 2 S Cob C LCob,
and which may be considered as a “Kontsevich integral version” of the functor
JH in (1.2). The target category AY of Z¢ is constructed from the category A
of Jacobi diagrams in handlebodies, described below. (See Section 4 for further
details.)

1.3. The category A of Jacobi diagrams in handlebodies. We work over a fixed
field K of characteristic 0. For m > 0, let V,, denote the square with m handles,
which is constructed by attaching m 1-handles on the top of a square and can be
regarded as the image of the handlebody V;, under the projection R* — R2. Let
Xn = N1--- "\, be the 1-manifold consisting of n arc components.

The objects in A are non-negative integers. The morphisms from m to n in A
are linear combinations of (m, n)-Jacobi diagrams, which are Jacobi diagrams on
X,, mapped into V,,. Specifically, an (m, n)-Jacobi diagram D consists of

e a unitrivalent graph D such that each trivalent vertex is oriented, and such
that the set of univalent vertices is embedded into the interior of X,

e amap X, U D — V,, that maps 0X, into the “bottom edge” of ¥}, in a way
similar to how the endpoints of a bottom tangle are mapped into the bottom
line of a handlebody.

Here is an example of a (2, 3)-Jacobi diagram:

(1.3)

Moreover, we identify Jacobi diagrams that are homotopic in V, relative to the
endpoints of X,,. Since V,, deformation retracts to V,,, we could equivalently give
the same definitions with V,, replaced by V;,. Thus the diagrams of the above kind
are also referred to as Jacobi diagrams in handlebodies.
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A square presentation of an (m,n)-Jacobi diagram D is a usual Jacobi dia-
gram U (i.e., a morphism in the target category A of the Kontsevich integral Z7)
which yields D by attaching parallel copies of cores of the 1-handles in V,,. For
example, here is a square presentation of D in (1.3):

(1.4)

Although not every (m, n)-Jacobi diagram admits a square presentation, the STU
relation implies that every morphism m — n in A is a linear combination of such
diagrams admitting square presentations.

Composition in A is defined by using square presentations, similarly to how

composition in B is defined by using cube presentations. For / i; m 2, nin A
and a square presentation U of D, the composition D o D’:] — n is the stacking
of a suitable cabling Cy(D’) on the top of U. Here the cabling Cyy (D’) is obtained
from D’ by replacing each component of X,, with its parallel copies so that the
target of Cyy(D’) matches the source of U; we also replace each univalent vertex
attached to a component of X, with the sum of all ways of attaching it (with signs)
to the parallel copies of this component. For example, if D:2 — 3 and U are as
in (1.3) and (1.4), respectively, and if

then we have

(Here we use “boxes” to denote the above-mentioned operation on univalent
vertices; this notation is explained in Example 3.2.)
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The category A has a structure of a linear symmetric strict monoidal cate-
gory. Tensor product on objects is addition, and tensor product on morphisms is
juxtaposition. The symmetry in A is determined by

P="P,=

2 — 2.
<>

Moreover, the morphism spaces A (m, n) are graded with the usual degree of Jacobi
diagrams (i.e., half the number of vertices), and their degree completions K(m, n)
form a linear category A, called the degree-completion of A.

We remark that Jacobi diagrams in surfaces, such as squares with handles, were
considered earlier in the above-mentioned works [3, 42]. In Section 4, we will
define A (m, n) in a rather different way as a space of colored Jacobi diagrams. The
latter are essentially the same as (m, n)-Jacobi diagrams, i.e., Jacobi diagrams on
X, mapped into Vin =~ Vi, but the maps in Vip >~ V,, are specified by decorating
the components of X, and the dashed part of the diagram with some beads. These
beads are labeled by elements of

11 (Vi) = 11(Vip) = F(x1,...,Xm) =: Fp,

the free group on the elements x1, ..., X, corresponding to the 1-handles of V,,.
Colored Jacobi diagrams appeared in [17, 18] for instance.

1.4. Construction of a functor Z®2. The non-strictification €, of a strict mo-
noidal category C (whose object monoid is free) is the non-strict monoidal category
obtained from € by forcing the tensor product to be not strictly associative but
associative up to canonical isomorphisms; see Section 3.3 for the definition.
For example, the category T, of g-tangles, which is the source category of the
Kontsevich integral Z7, is the non-strictification of the strict monoidal category T
of tangles. The object set Ob(T) of T is the free monoid Mon(=%) on two letters
4+, — corresponding to downward and upward strings; correspondingly, the set
Ob(T,) is the free unital magma Mag(=+) on +, —, consisting of fully-parenthesized
words in +, — such as +, —, (—+), (—(++)), including the empty word &.
Non-strictification is applied to strict monoidal categories such as B and A
to produce non-strict monoidal categories B, and Kq. Since Ob(B) = Ob(K) =
{0, 1,...} canbe identified with Mon(e), the free monoid on one letter e, we may set
Ob(By) = Ob(f&q) = Mag(e), the free unital magma on e. The latter consists of
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parenthesized words in e such as &, e, (ee), ((ee)e). The length of w € Mag(e) is
denoted by |w|. The morphisms in B, are called bottom q-tangles in handlebodies.

Recall that a Drinfeld associator ¢ = ¢(X,Y) is a group-like element of
K{X,Y)) satisfying the so-called pentagon and hexagon equations [14]; see
Section 6.2. Here is the main construction of the present paper.

Theorem 1.1 (see Theorem 9.3). For each Drinfeld associator ¢, there is a braided
monoidal functor

Z¢: By — A? (1.5)

from B, the non-strictification of the category B, to N “deformation” of the
non-strictification of A which is determined by ¢.

To prove Theorem 1.1, we will construct a tensor-preserving functor
7% B, — A. (1.6)

If we ignore the monoidal structures, the categories KZ; and A are equivalent in a
natural way and, under this equivalence, the functors ZJ and Z?® are essentially
the same for each ¢. We construct the functor Z® by using the usual Kontsevich
integral Z7: T, — A as follows. Here Z7 is defined from the Drinfeld associator ¢,
using the normalization

ZT(Q) - (@\ B —> (+—) inA,
ZT((C})) = W (+-) — @ inA,

where v is the usual normalization factor. (In the literature, one often uses the
normalization with both 1 and v in the above identities being replaced with v!/2,
so that the invariant behaves well under w-rotation of tangles. In our case, like
in [9], it is more important to have a simple value on /).)

Consider T: v — w in B, with [v| = m and |w| = n. In order to define Z®(T),
we choose a projection diagram of T

: (1.7)

To

| S
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composed of g-tangles

To: 0 — w(+—), T;:@—uu; (=1,....,m),

where
o U Uy, ... Up,u,, €Mag(+),
o U :=v(uul,..., unu,,) is obtained from the non-associative word v in e by
substituting uquf, ..., um,u,, into the m o’s, and w(+—) 1= w(+—,..., +—)

is defined similarly.

Then we define Z®(T):m — n in A by

z5(T) = (1.8)

Z7 (To)

| S A

We remark that the above definition of Z®(T'), simply as an invariant of tangles
in handlebodies, is similar to the definition of the Kontsevich integral of links
in thickened surfaces given by Andersen, Mattes and Reshetikhin [3]; see also
Lieberum [42].

Theorem 1.2 (see Theorem 8.2). There is a functor Z®: By — A such that
e on objects w € Mag(e), we have Z® (w) = |w),
e on morphisms T:v — w in By decomposed as (1.7), we have (1.8).

Furthermore, the functor Z B s tensor-preserving, i.e.,
ZBreT)=2%T)9 Z%(T
for morphisms T and T' in B,.

The functor Z® is not monoidal since it does not preserve the associativity
isomorphisms. The braided monoidal category 112 mentioned in Theorem 1.1 is
constructed from the non-strictification Kq of A by redefining the associativity
isomorphisms and braidings to be the images by Z® of those of B,. Then
Theorem 1.1 follows from Theorem 1.2.
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1.5. Basic properties of Z®. Here are some basic properties of Z%.

The functor Z® extends the usual Kontsevich integral for bottom g-tangles in
acube, i.e., for each T: @ — w in B,, regarded also as T: @ — w(+—) in Ty, we
have Z®(T) = Z7(T).

We can enrich A and A over cocommutative coalgebras, i.e., the morphism
spaces in A and A have cocommutative coalgebra structures, and the compositions
and tensor products on them are coalgebra maps (see Proposition 4.15). It follows
that Z™® takes values in the group-like part of A (see Proposition 8.7).

Let F denote the category of finitely generated free groups. Consider the functor

h:B =~ HP — FP

that maps each bottom tangle 7: m — n to the homomorphism (it)«: F, — Fi
between free groups. This functor gives an F°P-grading of the category B. Similarly,
we have an F°P-grading of the linear category A and its completion A, where the
F°P-degree of each (m, n)-Jacobi diagram D is the homotopy class of the underlying
map X, — V. It follows that Z® preserves F°P-grading (see Proposition 8.8).

The degree 0 part of Z®(T), which belongs to Ay =~ KF°P, is given by
the homotopy class /#(T) of the components of 7 in the handlebody. The
degree 1 part of Z®(T'), which we do not study in the present paper, is given
by equivariant linking numbers of the components of 7" in the handlebody. We give
the values of Z® up to degree 2 on the generators of the monoidal category B,
(see Proposition 9.7).

1.6. Z® as a universal finite type invariant. The main property of the invari-
ant Z® is the universality among Vassiliev—Goussarov finite type invariants, for-
mulated functorially. Similarly to the case of usual tangles in a cube [31], we define
the Vassiliev—Goussarov filtration

KB, =V oVIoVio...

on the linearization KB, of the non-strict monoidal category B, and we consider
the same filtration on the linear strict monoidal category IKB. The braiding in B
induces a symmetry in the associated graded Gr KB of KB. We give A¥ the degree
filtration.

Theorem 1.3 (see Theorem 10.7 and Theorem 10.8). The functor Z§: ]K/fq — AY
is an isomorphism of filtered linear braided monoidal categories. Consequently,
Z® induces an isomorphism Gr KB = A of graded linear symmetric monoidal
categories.
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It is hoped that Vassiliev—Goussarov invariants distinguish knots in S3 [62];
since the usual Kontsevich integral is universal among such invariants, the hope is
that the functor Z7 is faithful. More generally, we expect the following.

Conjecture 1.4. The functor Z® (resp. Z3) is faithful. In other words, Z*®
(resp. Z) is a complete invariant of bottom tangles in handlebodies.

1.7. The functor Z® as a refinement of the LMO functor. The functor Z%
refines the LMO functor Z in the following way.

Theorem 1.5 (see Theorem 11.2 and Remark 11.3). We have a commutative

diagram of functors:

zZB ~
Bq

El l” (1.9)

LCob, 3> “A

Here the functor E: B, — L£Cob,, with the image being L Coby, is the faithful
functor that maps each bottom tangle in a handlebody to its exterior viewed as a
Lagrangian cobordism. The linear functor «: A — Y4 is a variant of the “hair map”
defined in [16, 18], and we may also regard it as a diagrammatic enhancement of
the “Magnus expansion”:

X?
Fm%]K«Xl,...,Xm», xi|—>exp(Xi):1+Xi+2—"+---.
Theorem 1.6 (see Theorem 11.6). The “hair functor” k: A — B4 is not Jaithful.

In fact, if m,n > 1, then the map «: A(m,n) — “A(m, n) is not injective.

Thus the functor Z® properly refines the restriction of the LMO functor Z
to L Cob. We prove the above theorem by adapting Patureau-Mirand’s proof [55]
of the non-injectivity of the “hair map”, which itself uses Vogel’s results [63].
The authors do not know whether Z® is strictly stronger than Z as an invariant
of bottom tangles in handlebodies. In fact, we conjecture that the LMO functor
Z: LCoby — A itself is faithful.

Recall that the construction of the LMO functor Z involves surgery presentations
of Lagrangian cobordisms. Here surgery translates into the Aarhus integral,
which Bar-Natan, Garoufalidis, Rozansky and Thurston [7] introduced in their
reconstruction of the LMO invariant. The construction of the functor Z? in the
present paper is simpler than that of 7 since it does not involve these surgery
techniques.
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1.8. Presentation of A. The category F of finitely generated free groups is a
symmetric monoidal category, and it is well known that it is freely generated as
such by a commutative Hopf algebra [56]. By generalizing another combinatorial
proof of this fact given in [24], we obtain the following presentation of A.

Theorem 1.7 (see Theorem 5.11). The linear symmetric strict monoidal category A
is freely generated by a “Casimir Hopf algebra”.

In other words, A is the linear PROP (see [45, 48]) governing Casimir Hopf
algebras. Here a Casimir Hopf algebra in a linear symmetric monoidal category
€ = (C,®, 1) is a cocommutative Hopf algebra H in C equipped with a Casimir
2-tensor, i.e., a morphism c¢: I — H ® H which is primitive, symmetric and
ad-invariant. (See Definition 5.1.) The Casimir Hopf algebra (H, ¢) in A alluded
to in Theorem 1.7 is defined in (5.28).

To illustrate this kind of structure, consider a Lie algebra g with an ad-invariant,
symmetric element ¢ € g®2. Then the universal enveloping algebra U(g) together
with t € g®2 C U(g)®? is a Casimir Hopf algebra in the category Vecty of K-
vector spaces. Thus, by Theorem 1.7, there is a unique linear symmetric monoidal
functor

W(g,t)Z A — Vect]K

which maps the Casimir Hopf algebra (H, c¢) in A to the Casimir Hopf algebra
(U(g),t). Following the usual terminology, we call W, ;) the weight system
associated to the pair (g, 7).

1.9. Ribbon quasi-Hopf algebras in A. Recallthata quasi-Hopf algebra H [13]
(see also [30]) is a variant of a Hopf algebra, where coassociativity does not hold
strictly, but is controlled by a 3-tensor ¢ € H®3; see Section 6.1 for the definition.
The notions of quasi-triangular and ribbon Hopf algebras, used in the construction
of quantum link invariants [59], admit quasi-Hopf versions, using which one can
construct link invariants as well [2]. One can also consider quasi-Hopf algebras in
symmetric monoidal categories.

As is well known, if ¢ is an ad-invariant, symmetric 2-tensor for a Lie algebra g
as above, then each Drinfeld associator ¢ € K{(X, Y')) induces a ribbon quasi-Hopf
algebra structure on U(g)[[k]]. Here is a universal version of this fact.

Theorem 1.8 (see Theorem 6.2). For each Drinfeld associator ¢, the Casimir
Hopf algebra (H, c) in A induces a canonical ribbon quasi-Hopf algebra H, in A.

Specifically, the weight system W(, ;) associated to the above pair (g, ) maps H,,
to the quasi-triangular quasi-Hopf structure on U(g)[[#]] considered in [14].
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Klim [36] generalized Majid’s transmutation to quasi-Hopf algebras. We can
perform transmutation in arbitrary symmetric monoidal categories. In particular,
by transmutation, the quasi-triangular quasi-Hopf algebra H,, yields a Hopf algebra
H, in the braided monoidal category Modpg, of left H,-modules in A. On the
other hand, by Theorem 1.1, the Hopf algebra H ®< in B, (corresponding to the
Hopf algebra H® in B) is mapped by the braided monoidal functor Z¢: B, — A?
into a Hopf algebra Z¢ (H ) in A%

Theorem 1.9 (see Theorem 9.6). The Hopf algebra Z&(H®7) in AY and the
transmutation Hy, in Modp,, coincide, through a canonical embedding Ay —
MOde.

To prove Theorem 1.9, we compute the values of Z§ on a generating system
of B, including the structure morphisms of H®¢; see Proposition 9.2.

1.10. Organization of the paper. We organize the rest of the paper as follows.
In Section 2, we define the categories B, H and LCob. In Section 3, we recall the
definition of the usual Kontsevich integral Z := Z7. In Section 4, we define the
category A of Jacobi diagrams in handlebodies and we start studying its algebraic
structure. In Section 5, we go further in this study by giving a presentation of A as
a linear symmetric monoidal category. In Section 6, we show that each Drinfeld
associator ¢ = ¢(X,Y) yields a ribbon quasi-Hopf algebra H,, in the degree-
completion A of A and, in Section 7, we consider the weight system functors on A
associated to Lie algebras with symmetric ad-invariant 2-tensors. The construction
of the functor Z :=Z%: B, — A is done in Section 8, where we also give some
of its basic properties. In Section 9, we define the braided monoidal functor
Z¢: B, — AY: thanks to this variant of Z®, we interpret the values of Z® on a
generating system of B as the result of applying Majid’s transmutation to the ribbon
quasi-Hopf algebra H,. In Section 10, we show that ZJ induces an isomorphism
of braided monoidal categories between the completion of IKB, with respect to the
Vassiliev—Goussarov filtration and Kg. In Section 11, we explain how the functor
Z 93:Bq — A refines the LMO functor Z: LCoby; — “A. Finally, in Section 12,
we explain some applications that we expect from our results.

1.11. Conventions. In what follows, we fix a field KK of characteristic 0. By a
“vector space” (resp. a “linear map”), we always mean a “IK-vector space” (resp. a
“K-linear map”).
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Let N = {0, 1,2,...} be the set of non-negative integers. The unit interval is
denoted by I := [-1,1] C R, and we denote by (X, y, Z) the usual frame of R>
given by X = (1,0,0), y = (0,1,0), Z = (0,0, 1).

By a “monoidal functor” between (strict or non-strict) monoidal categories, we
always mean a strict monoidal functor.

Acknowledgments. The work of K. Habiro is partly supported by JSPS KAK-
ENHI Grant Number 15K04873; the work of G. Massuyeau is supported in part
by the project ITIQ-3D, funded by the “Région Bourgogne Franche-Comté.” The
authors are grateful to Mai Katada and Jean-Baptiste Meilhan for helpful comments
on the previous versions of the manuscript.

2. The category B of bottom tangles in handlebodies

In this section, we define three strict monoidal categories
e B of bottom tangles in handlebodies [22],
e H of embeddings of handlebodies [23],
e “LCob of special Lagrangian cobordisms [9],

with the same object monoid Ob(B) = Ob(H) = Ob(*£Cob) = N. They are
essentially the same structures since we have isomorphisms of strict monoidal
categories

B =~ HP =~ LCob.

The categories B and H will be studied in more detail in [25].
Let m,n, p be non-negative integers throughout this section.

2.1. Bottom tangles in handlebodies. Let V,, C R3 denote the handlebody of
genus m that is obtained from the cube 73 C R3 by attaching m handles on the top
square 12 x {1}:

Vin 1= (2.1)
Ay | Am z
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We call S := I? x {—1} the bottom square of Vy, and £ := I x {0} x {—1} the
bottom line of V,,. Let Ay, ..., A, denote the arcs obtained from the cores of the
handles by “stretching” the ends down to £.

An n-component bottom tangle T = Ty, U --- U T, in V}, is a framed, oriented
tangle consisting of n arc components 77, ..., T, such that

(1) the endpoints of T are uniformly distributed along ¢,

(2) fori =1,...,n, the i-th component 7; runs from the 2i-th endpoint to the
(2i — 1)-st endpoint, where we count the endpoints of T from the left.

We usually depict bottom tangles by drawing their orthogonal projections onto
the plane R x {1} x R and assuming the blackboard framing convention; i.e., the
framing is given by the vector field y. For example, here is a 3-component bottom
tangle in V, together with a projection diagram:

AR alla
-

N / . (22)
?\/% A

2.2. The category B of bottom tangles in handlebodies. Morphisms from m

to n in B are isotopy classes of n-component bottom tangles in V;,,. Define the
T T’
composition of two bottom tangles m — n — p by

T'oT =ir(T'):m — p,

where

iT: Vn —> Vm

is an embedding which maps S C V, identically onto S C V,, and maps A4;
onto 7; in a framing-preserving way for alli = 1,...,n. Here is an example of
the composition of morphisms 2 — 1 — 2:

iﬁ . o _ @ (23)

9
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The identity morphism id,,: m — m in B is the union A := A; U --- U A,, of the
“stretched” cores of the handles of V,,:

i

The tensor product in B is juxtaposition.

(2.4)

2.3. The category H of embeddings of handlebodies. Morphisms from n to m
in H are isotopy classes rel S of embeddings V,, < V}, restricting to ids. Define
the composition and the identity in  in the obvious way.

We have an isomorphism B =~ H°P of categories given by

x(n,m)iﬁ(m,n),
(Vi <= Vi) = (i(4) C Vi),
(Vi <L V)<t (T C Vi),

transporting the strict monoidal structure of B to J{.

2.4. The category LCob of special Lagrangian cobordisms. Here we will
define the category 5L Cob of special Lagrangian cobordisms. We will not need it
until Section 11; we define it here for comparison with B.

Let X,,,1 be the compact, connected, oriented surface of genus m with one
boundary component, located at the top of Vj,, C R3:

1 m

We identify 0%,,,; with 972,

A cobordism from X, ; to X, ; is an equivalence class of pairs (C,c) of
a compact, connected, oriented 3-manifold C and an orientation-preserving
homeomorphism

C: ((_Zn,l) UBIZX{—l} (812 X I) UBIZX{I} Zm,l) — aC.

Here, two cobordisms (C, ¢) and (C’, ¢’) are equivalent if there is a homeomor-
phism f:C — C’such that ¢’ = f|3¢ o c. For instance, the handlebody V;, (with
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the obvious boundary parametrization) defines a cobordism from X%,, ; to X, ;.
More generally, every n-component bottom tangle 7 C V;, defines a cobordism

Er = (ET.er)

from X,, ;1 to ¥, ; by considering the exterior E7 of T in V},, together with the
boundary parametrization er induced by the framing of 7.

Define the category Cob of 3-dimensional cobordisms introduced by Crane
and Yetter [11] and Kerler [34] as follows. Set Ob(Cob) = IN. Morphisms from m
to n in Cob are equivalence classes of cobordisms from %, ; to X, ;. We obtain
the composition C' o C:m — pof C' = (C',¢'):n — pand C = (C,c):m —n
from C’ and C by identifying the target surface of C with the source surface of C’
using the boundary parametrizations. The identity morphism id,,: m — m is the
cylinder X,, 1 x I with the boundary parametrization defined by the identity maps.

We equip Cob with a strict monoidal structure such that m @ m’ = m + m’,
and we obtain the tensor product C ® C’ of C = (C,c¢) and C’ = (C’,¢’) from C
and C’ by identifying the right square c({1} x I x I') of dC with the left square
(=1} x I x I)ofdC’.

A cobordism C from X, ; to X,,; is said to be special Lagrangian if we have

ViooC = V,:m — 0.

The special Lagrangian cobordisms form a monoidal subcategory £ Cob of Cob.
We have an isomorphism B = 3CCob of strict monoidal categories given by

B(m, n)—>LCob(m, n),

(T C V)— ET,
(AC (VyoC))«—C.

3. Review of the Kontsevich integral

In this section, we briefly review the combinatorial construction of the Kontsevich
integral of tangles in the cube. See [6, 39, 31, 54] for further details.

3.1. Free monoids and magmas. For a finite set {sy,...,s,},letMon(sy,...,s;)
denote the free monoid on s1, ..., s,, consisting of words in the letters s1, ..., ;.
For w € Mon(sy,...,s,), let |w| denote the length of w, and wy,..., wyy,| the

consecutive letters in w.
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Let also Mag(ss, .. ., sr) denote the free unital magma on s1, ..., s;, consisting
of non-associative words in sy, ..., s,. Let

U:Mag(sy,...,s;) — Mon(sy,...,Sr)

be the (surjective) map forgetting parentheses. Sometimes the word U(w) for
w € Mag(sy, ..., s,) will be simply denoted by w.

3.2. The category J of tangles in the cube. By a tangle in the cube /3 we mean
a framed, oriented tangle y in I3, whose boundary points are on the intervals
I x {0} x {—1,1}. We assume that the framing at each endpoint is the vector y. In
figures we use the blackboard framing convention as before.

The source s(y) € Mon(+) := Mon(+, —) of a tangle y is the word in + and —
that are read along the oriented interval /I x {0} x {+1}, where each boundary
point of y is given the sign 4 (resp. —) when the orientation of y at that point is
downwards (resp. upwards). The target t(y) € Mon(=) of y is defined similarly.
The tangle y is said to be from s(y) to t(y).

We define the strict monoidal category T of tangles (in the cube) as follows. Set
Ob(7) = Mon(=%). Morphisms from w to w’ in T are the isotopy classes of tangles
from w to w’. We obtain the composition y o y’ of two tangles y and y’ such that
t(y’) = s(y) by gluing y’ on the top of y. The identity idy: w — w of w € Ob(T)
is the trivial tangle with straight vertical components. The tensor product in the
strict monoidal category 7 is juxtaposition.

3.3. The category T, of g-tangles in the cube. Here we define the category T,
of g-tangles in the cube as the “non-strictification” of the strict monoidal category 7.
Since we use this construction also for other categories, we first give a general
definition.

Let C be a strict monoidal category such that the object monoid Ob(C) is a
free monoid Mon(S) on a set S. Then the non-strictification of C is the (non-
strict) monoidal category €, defined as follows. Set Ob(C;) = Mag(S), the free
unital magma on S. Let U: Mag(S) — Mon(S) be the canonical map, forgetting
parentheses. Set C,;(x,y) = C(U(x),U(y)) for x,y € Ob(C;) = Mag(S). The
compositions, identities and tensor products in €, are given by those of €. We
define the associativity isomorphism by

Uxyz = idxgye: €C((x®))®2.xQ(¥Y®2) =CxRY Rz, xRy ®2).
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Note that the tensor product in € is strictly left and right unital, i.e., @ ® x =
x = x ® @ for x € Ob(Cy), where & € Mag(S) is the unit. Then €, is a monoidal
category, which is not strict if S is not empty. The map U:Ob(C;) — Ob(C)
extends to an equivalence of categories

U:e, —¢

suchthat U(f) = f forall f € C4(x,y) = C(U(x),U(y)). If Cis a braided (resp.
symmetric) strict monoidal category, then the non-strictification €, naturally has
the structure of a braided (resp. symmetric) non-strict monoidal category.

Now, define the non-strict braided monoidal category T, of q-tangles (in
the cube) to be the non-strictification of J. Since Ob(7) = Mon(+), we have
Ob(T,) = Mag(+) := Mag(+. -).

3.4. Cabling. Here we review the definition of the “cabling” operations for g-
tangles in the cube.

Define the duality involution w — w* on Mag(#) inductively by @* = &,
+* = F and (ww")* = (w)*w*. For w € Mag(+) and f:{1,...,|w|} —
Mag(+), we obtain C s (w) € Mag(+£) from w by replacing each of its consecutive
letters w; with the subword f(i) (resp. f(i)*)if w; = + (resp. w; = —). For
every g-tangle y:w — w’ and every map! f:mo(y) — Mag(£), let Cr(y) be the
g-tangle obtained from y by replacing each connected component ¢ C y with the
f(c)-cabling of ¢. (Forinstance, if f(c) = —, thenthe f(c)-cabling of ¢ is obtained
by reversing the orientation of ¢ and, if f(c¢) = (4++), then the f(c)-cabling of ¢
is obtained by doubling ¢ using the given framing.) We call C s (y) the f-cabling
of y, and we regard it as a morphism

Cr(y): Cr(w) — Cy,(w)

in T,. Here f:{1,...,|w|} — Mag(+£) denotes the composition of f and the
map {1,...,|w|} — mo(y) relating the top boundary points of y to its connected
components, and f;:{1,...,|w’|} — Mag(=+) is defined similarly.

One can easily verify the following lemma explaining the behavior of the cabling
operation on compositions.

! Here the reader is warned that y should not be thought of as a morphism in T, especially
if y has (more than one) closed components. Note that if ¥ denotes a morphism in T, i.e., an
isotopy class of g-tangles, then “mo(y)” is not well-defined.
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Lemma 3.1. For g-tangles y and y’' with s(y) = t(y’) and maps f:mo(y) —
Mag(+) and f':7wo(y’) — Mag(L) with f; = f/, we have

Crupi(yoy) =Cr(y)oCpi(y), (3.1

where | U [’ denotes the unique map mo(y o y') — Mag(%) compatible with f
and f’ through the canonical maps wo(y) — mwo(y o y’) and wo(y') — 7o(y o y’).

3.5. Spaces of Jacobi diagrams. Let X be a compact, oriented 1-manifold.
A chord diagram D on X is a disjoint union of unoriented arcs, called chords, and
whose set of endpoints is embedded in the interior of X. We identify two chord
diagrams D and D’ on X if there is a homeomorphism (X U D, X) — (X U D’, X)
preserving the orientations and connected components of X. Let A(X) be the
vector space generated by chord diagrams on X modulo the 4T relation:

FRFEH-HET

Here the dashed lines represent chords, and the solid lines are intervals in X with
the orientation inherited from X .

Bar-Natan [4] gave an alternative definition of A(X) as follows. A Jacobi
diagram D on X is a unitrivalent graph such that each trivalent vertex is oriented
(i.e., equipped with a cyclic ordering of the incident half-edges), the set of univalent
vertices is embedded in the interior of X, and such that each connected component
of D contains at least one univalent vertex. We identify two Jacobi diagrams
D and D’ on X if there is a homeomorphism (X U D,X) — (X U D', X)
preserving the orientations and connected components of X and respecting the
vertex-orientations. In pictures, we draw the 1-manifold part X with solid lines, and
the graph part D with dashed lines, and the vertex-orientations are counterclockwise.
For instance, we can view chord diagrams as Jacobi diagrams without trivalent
vertices. The vector space A(X) is isomorphic to, hence identified with, the vector
space generated by Jacobi diagrams on X modulo the STU relation:

(3.3)

STU

As proved in [4, Theorem 6], the STU relation implies the AS and IHX relations:

LT X =0
LN (3.4)
AS IHX
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Note that A(X) is a graded vector space, where we define the degree of a
Jacobi diagram to be half the total number of vertices. Let A(X) also denote its
degree-completion.

Example 3.2. The box notation is a useful way to represent certain linear combi-
nations of Jacobi diagrams:

Here, dashed edges and solid arcs are allowed to go through the box, and each
of them contributes to one summand in the box notation. A solid arc contributes
with a plus or minus sign, depending on the compatibility of its orientation with
the direction of the box. A dashed edge always contributes with a plus sign, the
orientation of the new trivalent vertex being determined by the direction of the
box. We also define

3.6. The category A of Jacobi diagrams. A compact, oriented 1-manifold X
is said to be polarized if X is decomposed into a top part d4+ X and a bottom part
d_X with each of them totally ordered. The rarget t(X) € Mon(z) of X is the
word obtained from d_ X by replacing each positive (resp. negative) point with +
(resp. —). The source s(X) € Mon(%) of X is defined similarly using 4+ X, but
the rule for the signs +, — is reversed.

Example 3.3. Every g-tangle is naturally regarded as a polarized 1-manifold.

Example 3.4. For w € Mon(=), let |-*-] denote the identity tangle id,, as a
polarized 1-manifold.

We define the category A of Jacobi diagrams as follows. Set Ob(A) = Mon(%),
and for w, w’ € Mon(=) set

Aw, w') = | [AX)e, (3.5)
X
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where X runs over homeomorphism classes of polarized 1-manifolds with s (X) =w
and 71 (X) = w’, ¢(X) is the number of closed components of X, the symmetric
group S.(x) acts on A(X) by permutation of closed components and A(X)es.. y,
denotes the space of coinvariants. The composition D o D’ of a Jacobi diagram D
on a polarized 1-manifold X with a Jacobi diagram D’ on a polarized 1-manifold
X' with s(X) = 1(X’) is the Jacobi diagram D U D" on X Ugx)=;x) X'. The
identity id,, of w € Ob(A) is the empty Jacobi diagram on |-*-|.

The category A admits a strict monoidal structure such that the tensor product
on objects is concatenation of words, and the tensor product on morphisms is
juxtaposition of Jacobi diagrams.

Remark 3.5. Note that the category A is not linear, since we can not add up two
Jacobi diagrams with the same source and target but with different underlying
polarized 1-manifolds. However, by setting

Aw. w') = PAX) e,
X

instead of (3.5), we obtain a linear strict monoidal category A. We sometimes
need this linear version of A.

Finally, we have the following analogs of the cabling operations for ¢-tangles
recalled in Section 3.3. We define the duality w — w* on Mon(Z) similarly to that
on Mag(=£). For w € Mon(£) and f:{1,..., |w|} — Mon(%), we define C s (w)
as in the non-associative case. For every D € A(X) representing a morphism in
A(w, w") with w, w’ € Mon(+) and every map f: mwo(X) — Mon(=), we define
the f-cabling of D as an element Cy (D) € A(Cr(X)) representing a morphism

Cr(D):Cyr,(w) — Cp,(w') inA

as follows. Let f; be the obvious map {1,..., |w|} — mo(X) composed with f,
and define f; similarly. Then we obtain C (D) from D by applying, to every
connected component ¢ C X, the usual “deleting operation” € if | f(c)| = 0, or
the usual “doubling operation” A repeatedly to get | f(c)| new solid components
if | f(¢)| > 0, and then the usual “orientation-reversal operation” S to every new
solid component corresponding to a letter — in the word f(c). (The definitions of
the operations €, A and S appear in [54, §6.1] for instance.)

We can easily verify the following analog of Lemma 3.1.
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Lemma 3.6. Let D and D’ be Jacobi diagrams on polarized 1-manifolds X and
X', respectively, with s(X) = t(X'). Let f:m9(X) = Mon(z), f":7me(X') —
Mon(+) be maps with fs = f/. Then we have

Cfo/(D o D/) = Cf(D) o Cf/(D/), (36)

where f U f' denotes the unique map mwo(X Us(x)=t(x) X') — Mon(=) compatible
with f and f’.

3.7. The Kontsevich integral Z. Let ® € A(||J) be an associator. In other
words, @ is the exponential of a series of connected Jacobi diagrams on || | which
trivializes if any of the three strings is deleted, and ® is solution of one “pentagon”
equation and two “hexagon” equations; see [54, (6.11)—(6.13)]. Define

1

NaNy RS
v =] |S20®) = | +— | +deg>2) €Al). (BT
U T 48 -

where S>: A(L ) — A(] 1)) is the diagrammatic “orientation-reversal operation”
applied to the second string.

Theorem 3.7 (See [6, 8, 39, 57, 31]). Fixa,u € Q witha +u = 1. There is a
unique tensor-preserving functor Z: T4 — A such that

(i) Z is the canonical map U:Mag(x) — Mon(z) on objects,
(i) for y:w — w' in Ty, we have Z(y) € A(y)e., C Aw,w’),

(iii) for y:w — w'in T4 and € € wo(y), the value of Z on the q-tangle obtained
from y by reversing the orientation of € is S¢(Z(y)),

(iv) Z takes the following values on elementary q-tangles:

g2 exp(4[) o
Z(A) - % eA(X)cA(++,++),

++) ++
(w(w'w’”)) o
Z( l/l = Cypuwuw(® € A(\L’f).“f wi) C Aww'w”, ww'w”)
(ww")w”)

SJor w,w’, w” € Mag(+),

2(50) = 7 ea() cawo,
Z(@) - k@j eA(D)cA(Jr—,@).
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The proof of the case a = u = 1/2 [54, Theorem 6.7, Proposition 6.8(2)] apply
to the general case. (The reader should, however, be aware that the composition
laws for the categories T, and A adopted in [54] are opposite to ours.)

Now we review the behavior of the Kontsevich integral under cabling. For
w € Mag(=), define ay,, al,, uy, u, € A(}*+]) C A(w, w) by

cwz(Q) CoZ Q)
ZCu( 4y ) = - C ZCu( ey ) = L.
w ay

ZCW(@)Z (=7 |= . zcw(@)z w*
e ) ()

(
| ‘
(

Lemma 3.8. For w € Mag(%), we have ay, = ., uy, = 1y, and ay, = (uy) "

Proof. Using Lemmas 3.1 and 3.6, we can deduce a,, = al,, uy,, = u), and

w
/ —
ay, Uy = 1 from

TR U

respectively. See the proof of [54, Proposition 6.8(1)] for the case a = u = 1/2
and w = (4+4). We can easily adapt the arguments given there to the general
case. O

For w € Mon(#%) and f:{1,...,|w|} - Mag(%), we obtain
c(w, f):Cr(w) — Cr(w) inA

from id,,: w — w by replacing, for eachi € {1,..., |w|}, the i-th string with a 7;)
if w; = + and with idf(,')* if w; = —.
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Lemma 3.9. For a g-tangle y:w — w’ and f:mo(y) — Mag(+), we have

ZCp(y) = cw', f) o CrZ(y) oc(w, f5)~".

Here, fs is the composition of f with the map {1, ..., |w|} — wo(y) relating the
top boundary points of y to its connected components, and f; is defined similarly.

Proof. This lemma is proved by adapting the arguments of [40, Lemma 4.1], and
by using Lemma 3.8. O

To conclude this section, we emphasize that there are several “good” choices
of a and u in Theorem 3.7. The most common choice is to take a = u = 1/2.
However, for technical convenience, we set

Thus, in what follows, the “cabling anomaly” a,, € A({-*-]) C A(w, w) assigned
to w € Mag(+) satisfies

(3.8)

4. The category A of Jacobi diagrams in handlebodies

In this section, we introduce the linear symmetric strict monoidal category A of
Jacobi diagrams in handlebodies.

4.1. Spaces of colored Jacobi diagrams. Here we define the notion of Jacobi
diagrams colored by elements of a group [17, 42], and define the space A(X, ) of
w-colored Jacobi diagrams on a 1-manifold X, where 7 is a group.

Let S be a set, and D a Jacobi diagram on a compact, oriented 1-manifold X .
An S-coloring of D consists of an orientation of each edge of D and an S-valued
function on a (possibly empty) finite subset of (int X U D)\ Vert(D). In figures, the
S-valued function is encoded by “beads” colored with elements of S. We identify
two S-colored Jacobi diagrams D and D’ on X if there is a homeomorphism
(X UD,X) = (X U D’ X) preserving the orientations and the connected
components of X, respecting the vertex-orientations and compatible with the
S-colorings. These definitions for Jacobi diagrams restrict to chord diagrams.
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Now, let S = 7 be a group. Two w-colorings of a chord diagram D on X are
said to be equivalent if they are related by a sequence of the following local moves:

————> > ———>— ’ . e
x Yy Xy 1
Vx,y em, * o8> oo ®--->- - O oD > oneeees >-
y Xy 1
e x =1
g 'p'
----- i S (4.1)

Here and in what follows, we use the notation ¥ = x~!. (In the fifth relation above,
it is understood that, if there are several beads on the reversed edge, then the colors
at all the beads on it should be inverted.)

Example 4.1. Here are several equivalent 7z-colored chord diagram on 1 1, where

X,y €.
x X y
57 X x ‘;,1./-" x o
14 17 A 1 A PS4
a7 4 7 -7
Xy Xy Xy X

Similarly, two 7-colorings of a Jacobi diagram D on X are said to be equivalent
if they are related by a sequence of the local moves in (4.1) and

X )
Vx em, > D

Thus, w-colored Jacobi diagrams generalize w-colored chord diagrams. Here is a
topological interpretation of w-colorings.

Lemma 4.2. Let D be a Jacobi diagram on X with no closed component. Then
there is a bijection between the set of equivalence classes of w-colorings of D and
Hom(m((X U D)/0X,{3X}), ).

Corollary 4.3. Let D and X be as in Lemma 4.2. Let w1 = (M, x) for a pointed
space (M, x), and assume that 0X is embedded in a contractible neighborhood of
* in M. Then the equivalence classes of w-colorings of D correspond bijectively
to the homotopy classes (rel 0X) of continuous maps (X U D, dX) — (M, dX).
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Proof of Lemma 4.2. Letc be am-coloring of D, andlet o be aloopin (XUD)/dX
based at {dX}. Let ¢.(¢) € m be the product of the contributions of all the
consecutive beads along «, where each bead contributes either by its color or its
inverse depending on compatibility of o with the orientation at the bead. This
clearly defines a homomorphism ¢.: 71 ((X U D)/dX,{0X}) — 7, depending only
on the equivalence class of ¢. Thus, we obtain a map {c} — ¢,, from the set of
equivalence classes of -colorings of D to Hom(w1((X U D)/dX,{0X}), ). One
can construct the inverse map by using a maximal tree of the graph (X U D)/dX;
see [17, Lemma 4.3] for a very similar result. O

A m-colored Jacobi diagram D on X is said to be restricted if D has no bead
(but there may be beads on X). Two restricted wr-colorings of a Jacobi diagram
D on X are said to be equivalent if they are related by a sequence of the first two
moves in (4.1) and

a component of D

a component of D ‘

Vx em, x)—cx)‘cx)_c

The above figure shows all the univalent vertices (and their neighborhoods in X)
of the same connected component of D. For instance, if D is a chord diagram,
then there are exactly two such vertices.

Let AN (X, ) (resp. A’ (X, )) denote the vector space generated by equiva-
lence classes of w-colored chord (resp. Jacobi) diagrams on X, modulo the 4T (resp.
STU) relation. There are also “restricted” versions A™ (X, ) and A2 (X, )
of A"(X, ) and A" (X, i), respectively. We have a commutative diagram of
canonical maps:

AT x —>uCh ANX,
(X, ) (X, m)
¢rl l¢ 4.2)

AJaC’r(X, 7t) — ‘AJaC(X’ JT)
u

The special case m# = {1} of Theorem 4.4 below is due to Bar-Natan [4,
Theorem 6]. The general case seems to be new.

Theorem 4.4. All the maps in (4.2) are isomorphisms. Furthermore, the AS and
IHX relations hold in A" (X, 7r) and A’ (X, r).

Proof. By the STU relation, ¢" is surjective. The map ¢ is also surjective by the
same reason and the following observation: each bead in the neighborhood of a
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univalent vertex of a w-colored Jacobi diagram on X can be displaced from D using
the last move of (4.1) (without changing the equivalence class of the -coloring).
Therefore, it suffices to prove that

(i) ¢ is injective,
(i) uMis an isomorphism,
(iii) the AS and THX relations hold in A" (X, r).

The AS and IHX relations in A’2°(X, ) reduce to the STU relation by using
the above observation and the arguments of the last two paragraphs in the proof of
[4, Theorem 6]. This proves (iii).

To prove (ii) we construct an inverse to u". Applying the operation

X1X2 o0 Xp
,-0-®---@_  ammem=aa
4

to all the chords transforms each -colored chord diagram on X into a restricted one.
It is easy to check that this operation maps equivalent w-colorings to equivalent
m-colorings and defines an inverse to 1",

To prove (i), we partly follow the proof of [4, Theorem 6]. Let Y be a compact,
oriented 1-manifold. Let D'*(Y, ) denote the set of equivalence classes of -
colored Jacobi diagrams on Y. For k > 0, let DiaC(Y, 7) C D'%(Y, ) consist of
diagrams with exactly k trivalent vertices. Let ¥q: D{)aC(Y ) — AN(Y, 7) be the
canonical map.

A

Claim. There are maps Vy: D}cac(Y, ) — AN, ) for k > 1 such that we have

Ye(D¥) = Y1 (D]) — Y1 (DY)

fork > 1and DS e DJkaC (Y, ), where i denotes a univalent vertex of DS adjacent
to a trivalent vertex v; and where DiT, DiU € @}cafl (Y, ) differ from DS around i
as shown in the STU relation (3.3).

Applying this claim to Y = X, we obtain a left inverse ¥: A’ (X, 7) —
AM(X, ) to ¢. This proves (i) and concludes the proof of Theorem 4.4. O

Proof of Claim. By the 4T relation, v is well defined from . Let k > 1 and
suppose ¥, ..., Yx—1 have been defined for all compact, oriented 1-manifolds Y.
To have ¥, well defined, we need to check

Vi—1(D]) = Yi—1(DY) = Y1 (D)) — Y1 (DY) (4.3)
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for all DS € DJ*(Y, ) and all univalent vertices i and j of DS adjacent to
some trivalent vertices v; and v;, respectively. If v; # v;, then we can apply the
argument in the second paragraph of the proof of [4, Theorem 6]. If v; = v;, then
the arguments provided in [4] for this situation do not fully apply when = # {1},
because of the “exceptional case” alluded to in the third paragraph of the proof of
[4, Theorem 6]. Thus, we need a different proof.

First, observe that the maps vy, ..., ¥x—; defined so far have the following
properties: for every oriented 1-manifold Y’ 1 with a distinguished component 1,
the diagrams

KD (Y’ 4, 7) Vi ANy )

Al lA (4.42)
KDF(Y' 11, 7) —— AT 1. 7)
and
KDy (Y’ 1, 1) —— ANY’ 1, 7)
s l l s (4.4b)
KDY |.m) —— AN’ |.7)
commute fori € {0, ...,k—1}. (Here the doubling operations A and the orientation-

reversal operations S for colored chord/Jacobi diagrams are defined in the same
way as for uncolored chord/Jacobi diagrams, except that beads of a duplicated
component should be repeated on each new component, and beads of a reversed
component should be transformed into their inverses.) Next, we draw D* as follows:

Here the arcs X;, X; are neighborhoods in X of the vertices i, j, and X' C X isa
neighborhood of the remaining univalent vertices of DS. From this local picture
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of DS, we define
R= [T enk o
and expand
R =Y e (0 AT s,
l i

Since

pl-pY = Cj P Cj
) ESEN

we deduce from (4.4) that
PN ll |’/

Vi1 (D)) =Y (DY) =) gy - H € AM(X, )
| / ( ;\
N
..l |»'

Vi1 (DF) = Y1 (DY) = ey - € AM(X, 7).
"IN

Thus, the identity (4.3) follows from the local relation

d

and

X 0 “‘.\x
Vx em, o
b o

in spaces of w-colored chord diagrams, which is equivalent to the 4T relation. O
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In what follows, let A(X, =) denote the isomorphic spaces
ADN(X, 1) = ANX, 1) = ATON(X, 1) = ATC(X, 7).

For instance, if 7 = {1}, then we have A(X) = A(X,{1}). In general, A(X)
embeds into A(X, ) by the following lemma.

Lemma 4.5. If X has no closed component, then the canonical map from A(X)
to A(X, i) is injective.

Proof. For every Jacobi diagram D on X with w-coloring ¢, define p(D,c) €
A(X) by

p(D,c) = 4.5

D with ¢ deleted if ¢, is trivial,
otherwise,

where ¢.: 71 ((X U D)/0X,{0X}) — n is the homomorphism corresponding to
¢ by Lemma 4.2. Observe that, for all w-colored Jacobi diagrams (D, c¢) and
(D’,c¢’) on X involved in an STU relation, there is a homotopy equivalence
h: X U D—>X U D’ rel 9X such that @ o hy = @.. Hence (4.5) induces a linear
map p: A(X, ) — A(X). Clearly, p oi = id4(x), where i: A(X) — A(X, m) is
the canonical map. O

Remark 4.6. There are analogs of Lemmas 4.2 and 4.5 for compact, oriented 1-
manifolds with closed components. Moreover, we can extend Lemma 4.5 as follows:
if X has no closed components, then the map A(X, 7’) — A(X, 7) induced by
an injective group homomorphism 7’ — 7 is injective. We will not need these
generalizations in what follows.

4.2. The category A of Jacobi diagrams in handlebodies. Now we introduce
the linear category A of Jacobi diagrams in handlebodies. Set Ob(A) = IN.

Form > 0, let F,, = F(x1,...,Xn) be the free group on {xi,...,x,}. We
identify F,, with 1 (Vy,,£) (see Section 2). Here x4, ..., x,, are represented by
the “stretched cores” A1, ..., A,, of the handles of V},,. For n > 0, let

X,= D10y

be an oriented 1-manifold consisting of n arc components.
For m,n > 0, set
A(m,n) = A(X,, Fn),

which is generated by F;,-colored Jacobi diagrams on X,. We will call them
(m,n)-Jacobi diagrams for brevity. Using Corollary 4.3, we may regard an
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(m,n)-Jacobi diagram as a homotopy class rel 0 X, of maps
XnUD — V. (4.6)

Here we assume that the 2# boundary points of X, are uniformly distributed along
the line £. Since V;, deformation-retracts onto a square with m handles, we can
present an (m, n)-Jacobi diagram D by a projection diagram of the corresponding
homotopy class of maps (4.6).

Example 4.7. Here are a (2, 3)-Jacobi diagram and its projection diagram in the
square with handles:

(4.7)

We will use the following convention for presenting the morphisms in A.
A square presentation of a restricted (m,n)-Jacobi diagram D is a projection
diagram of D in the square with m handles, such that the dashed part of D does
not appear in the handles. Thus a square presentation of D consists of words
wi,..., W, € Mon(£) and a Jacobi diagram

S:twwy - wpw,, — (+-)" inA

such that

X1 Xm
w X1 m
[ Im [ [ m\f'\\ [
D= S
L4 U
+ - + -

In what follows, we write d(w) = ww* € Mon(%) for w € Mon(%). Since
A(m, n) is spanned by restricted (m, n)-Jacobi diagrams, we can regard its elements
as linear combinations of square presentations.



The Kontsevich integral for bottom tangles in handlebodies 625

Example 4.8. Here is a restricted (2, 3)-Jacobi diagram D, together with a square
presentation S such that wy = wy = ++:

rd(w)d(wz) — (+-)°.

Now we define the composition in A. We compose an (#, p)-Jacobi diagram
D’ with an (m, n)-Jacobi diagram D as follows. First, we may assume that each
bead of D’ is colored by xijEl for some i, by using the moves in (4.1). For each
J €{1,...,n}, let k; be the number of beads colored by xjil in D’ and number
them from 1 to k; in an arbitrary way. This defines a word «(j) € Mon(+) of
length k; by assigning a letter + to each x;-colored bead and a letter — to each
x; '-colored bead. Let

CK(D) € .A(Xkl+...+k’1, Fm)

be the linear combination of (m, k1 + - -- + k,)-Jacobi diagrams obtained from D
by k-cabling, i.e., by repeated applications of the deleting operation ¢, the doubling
operation A and the orientation-reversal operation S. By using the correspondence
between the beads of D’ and the solid components of C,(D) induced by their
numberings, we can identify some local neighborhoods of the former with the
latter in an orientation-preserving way. Thus, by “gluing” C,. (D) to D’ accordingly,
we obtain a linear combination of (m, p)-Jacobi diagrams

D'3D € A(Xp, F) = A(m, p).

Clearly, D'5 D depends only on the equivalence class of D, but not on the
numbering of the beads of D’. By the STU relation, D’5 D depends only on
the equivalence class of D’.

Example 4.9. We can describe the operation 6 in terms of projection diagrams in
squares with handles, using the box notation recalled in Example 3.2. For instance,
letm =n=p=2and

S R RERL LT EI .
X1X2 X : ' Y
., .
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with the projection diagrams

One can easily verify the following lemma.

Lemma 4.10. Let D be a restricted (m,n)-Jacobi diagram and let D' be a
restricted (n, p)-Jacobi diagram, with square presentations

S:d(wy) -+ d(wm) — (+—)" and S":d(w})---d(w,) — (+-)7,
respectively. Then
§"0 Cr(S): Cy(d(wr) -+ d(wm)) —> (+-)”
is a square presentation of D' & D, where o denotes the composition in A,
f: wo(1-manifold underlying S) —> Mon(=%)

is defined in the obvious way from w', . . ., w;, and the polarized oriented 1-manifold
underlying S, and f;:{1,...,2|w1| + -+ + 2|wy|} — Mon(2) is induced by f.
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Using Lemma 4.10, we can easily prove the following.
Lemma 4.11. For m,n, p > 0, there is a unique bilinear map
o:A(n, p) x A(m,n) — A(m, p)

such that D' o D = D’ D for each (m, n)-Jacobi diagram D and each (n, p)-Ja-
cobi diagram D'.

Finally, the following lemma shows that we have a well-defined linear category
A with the above composition o and the identity

X1 Xn
id, ;=\, =
D D’ D" .
Lemma 4.12. I[fm — n — p —> ¢ in A, then we have
X1 Xn
(ﬂl"'f\n)oDzD, (4.8)
X1 Xn
D'o({ ¢ y) =D, (4.9)
D" o(D'oD)=(D"oD")oD. (4.10)

Proof. We may assume that D, D’ and D" are restricted. Let

S:d(wy) -+ d(wm) — (+-)",
§hd(wh) - d(wy) — (+-)7,

S d(wy) -+ - d(wy,) — (+-)7.
be square presentations of D, D’ and D", respectively.

X Xn
First, by Lemma 4.10, a square presentation of ([’1\ T ) oDis

(1t esS =5

This proves (4.8). 0 .
Next, a square presentation of D’ o ([‘\ AT ) is

S'oCr(It- I =S
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where f:7o({1 -+ }1) — Mon(%) is the unique map such that C 7, (+—-+-+—) =
d(w})---d(w},). This proves (4.9).
Finally, a square presentation of D" o (D’ o D) is

§"0 Cp(S'0Cr(8)) = 8" 0 (Cps(S) 0 Cp,o(S))

for some maps f, f’, fo and f;. By associativity of the composition in A, the latter
is a square presentation of (D" o D’) o D. This proves (4.10). O

4.3. A symmetric monoidal structure on A. We define a symmetric monoidal
structure on the linear category A as follows. The tensor product on objects is
addition. The monoidal unit is 0. The tensor product on morphisms is juxtaposition
followed by relabelling the solid arcs and the beads. More precisely, we obtain
the tensor product D ® D’ of an (m, n)-Jacobi diagram D and an (m’, n’)-Jacobi
diagram D’ from the juxtaposition of D and D’ by renaming /\; in D’ with 1\, ;

for j = 1,...,n, and replacing x; with x,,4; fori =1,...,m’.

Lemma 4.13. The strict monoidal category A admits a symmetry defined by

Proof. We show that the P, , are natural in m and n. To post-compose a Jacobi
diagram in A(n + m, k) with P, ,, one transforms the labels of the beads by

X1 = Xp+1ye oo X 2 Xntms Xm+1 > X1, 0, Xm+n B> Xp.

To pre-compose a Jacobi diagram in A (k, m + n) with P, ,, one transforms the
labels of the arcs by

l>n+1,... m—>n+m, m+1l—=1... m+n—n.
It follows that, for U:m — m’ and V:n — n’, we have
(V@U)O mn — m’,n’O(U®V)7

i.e., Py, is natural.
One can easily check the other axioms of symmetric monoidal category. O

Before giving a presentation of the category A in the next section, we describe
some additional structures in A.



The Kontsevich integral for bottom tangles in handlebodies 629

4.4. Two gradings on A. We first define an IN-grading on A. We have

A(m,n) = EBAk(m,n)

kelN

for m,n > 0, where Ay (m, n) is spanned by Jacobi diagrams of degree k. (Recall
that the degree of a Jacobi diagram is half the total number of its vertices.) It is easy
to check that A has the structure of an IN-graded linear strict monoidal category.
In what follows, IN-gradings are simply referred to as “gradings”.

Let A denote the degree-completion of A with respect to the above-defined
grading on A. Thus, we set Ob(z&) = Ob(A) = N, and K(m,n) is the degree-
completion of A(m,n).

Before defining the second grading on A, we define the notion of a linear
strict monoidal category graded over a strict monoidal category. This generalizes
the notion of a linear category graded over a category considered in [43, 61].
Let D be a strict monoidal category. A D-grading on a linear, strict monoidal
category C consists of a monoid homomorphism i: Ob(€) — Ob(D) and a direct
sum decomposition

C(m.n) = P Cim.n)q

d:i(m)—i(n)
for each pair of objects m, n in C, such that

e id,, € C(m,m) for each m € Ob(C),

idi(m)
o C(n,pleocC(m,n)g C C(m, p)eoq forall m,n, p € Ob(C) and all morphisms
. d . e . .
i(m) — i(n) — i(p)inD,

o C(m,n)g @C(m',n")gr CCMm',nQ@n')jgq forallm,n,m’,n" € Ob(C)
and all morphisms d:i(m) — i(n),d’:i(m’) — i(n’) in D.

Then we say that the linear strict monoidal category C is D-graded, or that C is
graded over D.

For instance, we may regard the IN-grading of A defined above as a grading
over the commutative monoid IN, viewed as a strict monoidal category with one
object.

Now we define another grading of A. Let F be the full subcategory of the
category of groups with Ob(F) := {F,, | n > 0}, and identify Ob(F) with IN in the
natural way. The category F has a symmetric strict monoidal structure given by
free product. We define an F°P-grading on A as follows. The homotopy class of an
(m, n)-Jacobi diagram D is the homomorphism A(D): F,, — F,, that maps each
generator x; to the product of the beads along the oriented component /;; we
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emphasize that (D) is independent of the dashed part of D. Then we have
A(m,n) = P A, n)a,

d €F°P(m,n)

where A(m,n)y is spanned by Jacobi diagrams of homotopy class d. It is easy to
check that A has the structure of an F°P-graded linear strict monoidal category.

Let Ay denote the degree 0 part of A, which is a linear, symmetric strict
monoidal subcategory of A. The morphisms in Ay are linear combinations of
Jacobi diagrams in handlebodies without dashed part, which are fully determined
by their homotopy classes. Thus, there is an isomorphism of linear symmetric
strict monoidal categories

h: Ay —> KFOP,

where IKF°P denotes the linearization of F°P. The isomorphism /4 extends to a full
linear functor #: A — IKF°P vanishing on morphisms of positive degree.

Remark 4.14. The F°P-grading of A induces a (completed) F°P-grading on the
degree-completion A in the obvious way. We have

K(m,n) = @K(m,n)d

d eF°P(m,n)

where K(m, n)q is the degree-completion of A(m,n)y, and @ denotes the com-
pleted direct sum.

4.5. Coalgebra enrichment of A. Here we define coalgebra structures on the
spaces A(m,n) (m,n > 0) by generalizing the usual coalgebra structures of the
spaces of Jacobi diagrams [4]. Moreover, we show that the category A is enriched
over cocommutative coalgebras. (See [33] for the definitions in enriched category
theory.)

Define a linear map

A:A(m,n) — A(m,n) @ A(m,n)
by

A(D)=>"D'® D"
D=D'uD"”
for every (m,n)-Jacobi diagram D, where the sum is over all splittings of D as the
disjoint union of two parts D’ and D"”. Define also a linear map

e:A(m,n) — K
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by e(D) = 1if D is the empty diagram, and €(D) = 0 otherwise. It is easy to see
that (A(m,n), A, €) is a cocommutative coalgebra.

Proposition 4.15. The symmetric monoidal category A is enriched over the
symmetric monoidal category of cocommutative coalgebras. In other words, the
linear maps

© = ompn,p:An, p) ® A(m,n) — A(m,p) (m,n,p=0),
K— A(m,m), 1+—id, ((m=>0),
R:A(m,n) @ A(m',n") — Am +m',n+n") (m,n,m',n" >0),
K— Am+n,n+m), 1+ Pyn, (m,n=>0)

are coalgebra maps.

To prove this proposition, we need the lemma below, which one can easily
verify.

Lemma 4.16. Let S be a square presentation of a restricted (m, n)-Jacobi dia-
gram D. Then A(S) (resp. €(S)), the usual comultiplication (resp. counit) of
Jacobi diagrams applied to S, is a square presentation of A(D) (resp. €(D)).

Proof of Proposition 4.15. We will check that o, ,, , is a coalgebra map; clearly,
so are the other maps listed in the proposition. Consider restricted Jacobi diagrams
D:m — n and D’:n — p in A with square presentations S and S’, respectively.
By Lemma 4.10, D’ o D admits a square presentation of the form S" o C £ (S) for a
map f determined by S’. The connected components of the dashed part of C (.S)
are in one-to-one correspondence with those of S. Hence we have

A(S" 0 C£(S))
= ) D (840 Cr(S0)) ® (Siw © Cr(Sax))

S=S4USxx §'=S,US},

=@ Y Y (SL®C/(50) 8 (Sl 8 Cr(Sw))

S=8xUSxx S'=S,US},

— (o (%) o)(id RP ® ld)( Z (S; b2 S;*)
S/=8LuUS},
S=8SxUSxx
= (c®0)(id®P ®id)(A(S") ® (Cr ® Cr)A(S))
= (=0 CH(=) ® (— 0 CH ()P ®id)(A ® A)(S' ® S),
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where P is the linear map x ® y — y ® x. We deduce from Lemma 4.16 that
A(D'o D) =(c®0)(id®P ®id)(A ® A)(D' ® D),

i.e., 0 = oy, p preserves comultiplication. Clearly, o, , , preserves counit, i.e.,
we have (D’ o D) = e¢(D’")e(D). Hence oy, ,,p is a coalgebra map. O

Corollary 4.17. For m > 0 the coalgebra structure of A(m,m) and the endomor-
phism algebra structure of A(m, m) makes A(m,m) a cocommutative bialgebra.

The coalgebra structure on A (m, n) induces a coalgebra structure on K(m, n).
By Proposition 4.15, A also is enriched over cocommutative coalgebras. Let

AEP(m,n) = {f € A(m,n) | A(f) = f ® [, e(f) =1}

be the group-like part of K(m, n). Then the sets Agr (m,n) form,n > 0 form a
symmetric monoidal subcategory of A, which we call the group-like part of A.

5. Presentation of the category A

In this section, we give a presentation of the category A of Jacobi diagrams in
handlebodies.

5.1. Hopf algebras in symmetric monoidal categories. Let C be a symmetric
strict monoidal category, with monoidal unit / and symmetry Pxy: X ® ¥ —
Y ® X.

Let H be a Hopf algebra in € with the multiplication, unit, comultiplication,
counit and antipode

wH®H —H, nl—H,
AH—H®@H, e¢H-—I,
S:H— H.

The axioms for a Hopf algebra in C are

p(p ®@id) = p(id®u), wpn®id) =id = u(id ®n), (5.1

(A ®id)A = (dRA)A, (e ®id)A =id = (Id®e)A, (5.2)

en=1id;, eu=¢®e¢, An=1Qn Au=WwRu(HdRP Qid)(A R A),
(5.3)

pn(id®S)A = u(S ® id)A = ne. 5.4)
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Here and in what follows, we write id = idg and P = Py g for simplicity. In the
following, we assume that H is cocommutative, i.e., we have

PA = A. (5.5)

We will also use the notions of algebras and coalgebras in symmetric monoidal
categories, defined by axioms (5.1) and (5.2), respectively. For m > 0, define
wml: H®m s H and Al H — H®™ inductively by

p=n pM=id, p"=pE"eid m=2).
A= ¢ AT =jq, Al = (A" U gid)A (m > 2).

A (left) H-module in C is an object M with a morphism p: H @ M — M,
called a (left) action, such that

p(n ®idy) = p(ida ®p), p(n @ idy) =idy .

For H-modules (M, p) and (M’, p’), a morphism f: M — M’ is a morphism of
H -modules if

fo=p(idg ®f).

Since H is a cocommutative Hopf algebra, the category Mody of H-modules
inherits from € a symmetric strict monoidal structure. Specifically, the tensor
product of two H-modules (M, p) and (M’, p') is M ® M' with the action

(p® p)(idg @ Pr,m ®idy)(A ®idy Qidy ) HIM QM — M @ M'.

The monoidal unit in Modg is the trivial H-module (7, €).
Define the (left) adjoint action ad: H @ H — H by

ad = uPPl(id®id ®S)(id @ P)(A ® id).

Since H is cocommutative, all the structure morphisms p, 1, A, €, S of H as well
as the symmetry Pg, g are H-module morphisms with respect to the adjoint action.
Thus, the H-module (H, ad) is a cocommutative Hopf algebra in Mod g .

5.2. Convolutions. LetCbeasymmetric strict monoidal category. Let (A4, w4, 714)
be an algebra and (C, Ac, €c) a coalgebra in C. We define the convolution product
on C(C, A)

#:C(C, A) x C(C, A) —> C(C, A) (5.6)
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by

f*xg=pa(f ®gAc

for f,g: C — A. This operation is associative with unit n4ec.

A morphism f:C — A is convolution-invertible if there is g: C — A such
that f * ¢ = g * f = naec. In this case, we call g the convolution-inverse to f,
and it is denoted by f ! if there is no fear of confusing it with the inverse of f.

In what follows, we mainly use convolutions when A = H®" and C = H®™
(m,n > 0) for a Hopf algebra H in C. For example, the convolution on C(H, H ®?)
is given by

fxg=u(f ®9A,

where i = (1 ® 1) (id ® P ® id), and the convolution on C(1, H®") is given by

f*g=un(f®g), (5.7)

where we define u,: H®" ®@ H®" — H®" inductively by o = id;, u; = p and
ttn = (Un—1 ® W)(id®" ' @ Py pow-n ®id) (n = 2).

This convolution product is defined whenever (H, u, 1) is an algebra in C.

5.3. Casimir Hopf algebras. Let H be a cocommutative Hopf algebra in a linear
symmetric strict monoidal category C.

Definition 5.1. A Casimir 2-tensor for H is a morphism c: I — H®? which is
primitive, symmetric and invariant:

(A ®id)c = c13 + 23, (5.8)
Pc=c, (5.9
(ad ® ad)(id @ P ® id)(A ® ¢) = ce, (5.10)

where ¢13 := (iId ®7 ® id)c and ¢23 := 1 ® c.
By a Casimir Hopf algebra in C, we mean a cocommutative Hopf algebra in C
equipped with a Casimir 2-tensor.

The condition (5.10) means that ¢: I — H®? is a morphism of H-modules.
Thus a Casimir Hopf algebra (H, ¢) in € is also a Casimir Hopf algebra in Modg .
Here are elementary properties of Casimir 2-tensors:

(d®A)c = c12 + c13, (5.11)
(e ®id)c = (id ®¢€)c = 0, (5.12)
(S ®id)c = (id®S)c = —c. (5.13)
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Lemma 5.2. For c:1 — H®?2, the identity (5.10) is equivalent to

A xce =cex A. (5.14)
Proof. 1t is easy to see that (5.10) is equivalent to A * ce * A~ = ce, where
A7 = (S ® S)A is the convolution-inverse to A. Thus (5.10) is equivalent to

(5.14)xA~. Since A is convolution-invertible, (5.10) and (5.14) are equivalent. [

Proposition 5.3. Let (H, c) be a Casimir Hopf algebra. Then we have a version
of the 4T relation in C(I, H®3):

(c12 + €13) * €23 = 23 * (C12 + €13). (5.15)
Proof. Using (5.11) and (5.14), we have

(c12 +¢13) * 23 = (Ad®A)c * ¢33 = (Id (A * ce€))c
= ([d®(ce * A))c

= c23 % (Id®A)c = 23 * (c12 + C13).
O

Example 5.4. (1) In Section 7, we consider Casimir Lie algebras (including
semi-simple Lie algebras) and observe that their universal enveloping algebras are
instances of Casimir Hopf algebras.

(2) Every linear combination of Casimir 2-tensors is a Casimir 2-tensor. In
particular, 0: I — H ® H is a Casimir 2-tensor.

5.4. Casimir Hopf algebras and infinitesimal braidings. The above notion
of Casimir Hopf algebra is a Hopf-algebraic version of the notion of infinitesi-
mal braiding for symmetric monoidal categories, introduced by Cartier [8] (see
also [30]).

Recall that an infinitesimal braiding in a linear symmetric strict monoidal
category C is a natural transformation

Ixy: XQ®Yy —xXxQYy
such that
Px,ytx,y = ty,xPx,y, (516)

Ix,y@z = lx,y ®id; +(1dx ®P; ;) (tx,; ®idy)([(dx ® Py 7) (5.17)
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for x, y,z € Ob(C). For instance, the linear version of the category A of Jacobi
diagrams (see Remark 3.5) admits an infinitesimal braiding; see [30, Section XX.5].
Note that (5.16) and (5.17) imply

Ix@y,z = (Py,x X idz)(idy ®[x,z)(Px,y X idz) + idx ®ty,z- (5-18)

Let H be a cocommutative Hopf algebra in €. A H-module (x, p) is said to be
trivial if p = € ® idx. An infinitesimal braiding ¢, , in the symmetric monoidal
category Modg of H-modules is called strong if it vanishes whenever x or y is a
trivial H-module. The following shows that strength of infinitesimal braiding
in module categories is automatic for some underlying symmetric monoidal
categories C, such as the category Vecty of vector spaces.

Proposition 5.5. Let C be a linear symmetric strict monoidal category. We assume
that the functor C(I,—):C — Vecty is faithful, and the tensor product map
C,x) ® C(I,y) — CU,x ® y) is surjective for each x,y € Ob(C). Then,
for every cocommutative Hopf algebra H, every infinitesimal braiding t in Modg
is strong.

Proof. The assumptions on € imply that the map

Try: C(x ® y,x ® y) —> Homg (C(1,x) ® €(1,y),C(/,x ® y))
defined by 74,,(a) := (b ® ¢ = a(b ® c)) is injective for x,y € Ob(C). Let
x,y € Ob(Modg) with y being a trivial H-module. Then, for each b: I — x,

c:I — yin G, we have

Ty (tey) (b ® ) = ty.y (b ® ) = tyy(idy ®C)b = (idy ®C)tx.1b = 0,

since ¢ is an H-module morphism and (5.17) implies that z, ; = 0 for every
infinitesimal braiding. Since ty,, is injective, we have #,, = 0. Thus ¢ is
strong. O

We now prove that, given a cocommutative Hopf algebra H in C, there is a one-
to-one correspondence between Casimir 2-tensors for H and strong infinitesimal
braidings in Modg. This result generalizes [30, Proposition XX.4.2], where
@ = Vectyk. Let H! := (H, u) € Mody, the regular representation of H.
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Proposition 5.6. Let H be a cocommutative Hopf algebra in a linear symmetric
strict monoidal category C.

(a) Every Casimir2-tensor for H induces a strong infinitesimal braiding in Mod g
defined by

tr,y = (px ® py)(idy ® P x ®idy)(c ®idy ®idy):x®y — x®y (5.19)

for H-modules x = (x, px) and y = (y, py).

(b) Every strong infinitesimal braiding t in Mody induces a Casimir 2-tensor
ci=tgmgn®n):1 — HH (5.20)

for H in C and t y is of the form (5.19) for each x,y € Modg.

Proof. We only sketch the proof of (a), leaving the details to the reader. It is easy
to check (5.16) and (5.17). Naturality of 7, i.e., 1y, (f @ g) = (f ® g)tx,y for
f:x - x’and g:y — y’ in Modg, follows from the definition of H-module
morphisms. We can check that 7, ), is an H-module morphism by using (5.14) and
the definition of H-modules. Using (¢ ® id)c = 0 = (id ®¢)c, we see that 7, ), is
a strong infinitesimal braiding.

We now prove (b). We first verify (5.19). Note that for each H-module
x = (x, px), the action p, gives a morphism py: H! ® x¢ — x in Mod, where
x€ 1= (x,€ ®idy) is the trivial H-module. Therefore, the naturality of ¢ implies
that

Lx,y =Ix,y(px ® py) (N ® idx ®7 ® idy)
= (px ® Py)lgigue Higye (N ® idx @1 @ idy). (5.21)

Using (5.17) and (5.18), we can express fyi g e figye as a sum of four morphisms
involving 1y i, tyi ye, tye g1 and fxe ye, with the last three being 0 since 7 is
strong. Hence,

tigne Higye = (ida ® Prx ®idy) (tg1 g ® idy ®id,)(idy @ Py g ® idy).

This and (5.21) imply (5.19).

We now check the axioms of a Casimir 2-tensor for c. We easily obtain (5.9)
from (5.16). The identity (5.8) follows from (5.18) since A: H' - H @ H'isa
morphism of H-modules. It remains to verify (5.10) or, equivalently, (5.14). Since
tg! g is a morphism in Modg, we have

(1 ® w)(id®P ®id)(A ® id ®id)(id @1 1)
=ty (@ (A ®P ® id)(A ® id ® id)
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and, by pre-composing with id ®n ® 1, we obtain A * ce = 11 g1 A. Moreover,
B.19) withx =y = H! implies 71 g1 A = ce x A. Hence (5.14). O

Remark 5.7. It is not possible to generalize Proposition 5.6(b) to infinitesimal
braidings that are not strong. Here is a counterexample. Let C be a linear
symmetric strict monoidal category equipped with a non-zero infinitesimal braiding
t. Consider the trivial Hopf algebra in C, defined by H = [ withu =n=A =
€ = § = id;. Then ¢ is an infinitesimal braiding in Mod; via the canonical
isomorphism Mod; =~ €. Since every /-module is trivial, ¢ is not strong in Mod; .
However, the Casimir 2-tensor ¢ for I given in (5.20) is zero since I’ = (I,idy) is
the monoidal unit of Mod; =~ €. Therefore, ¢ and ¢ are not related by (5.19).

5.5. Casimir elements. Now we give an alternative viewpoint on Casimir 2-ten-
sors. Let H be a cocommutative Hopf algebra in a linear symmetric strict monoidal
category C.

Definition 5.8. A Casimir element for H is a morphism r: I — H which is central
and quadratic:

pid®r) = pu(r ® id), (5.22)
Fi23 —Fi2—ri3—rp+ri+r+r3=0, (5.23)
Sr=r, (5.24)

where
rios = APy rpi=Ar®n, 3= (d®n@id)Ar, rai=n® Ar,
rn:=r®®n®n nrn:=mrn r:=menr.

The notion of a Casimir Hopf algebra is equivalent to that of a cocommutative
Hopf algebra with a Casimir element, as follows.

Proposition 5.9. There is a one-to-one correspondence

ck—=re
{Casimir 2-tensors for H} ——— {Casimir elements for H }, (5.25)
cp<r

associating to a Casimir 2-tensor ¢ a Casimir element
1
Fe i= Euczl — H, (5.26)
and to a Casimir element r a Casimir 2-tensor

cri=Ar—r®n—n®r:l — H®H. (5.27)



The Kontsevich integral for bottom tangles in handlebodies 639

Proof. Let ¢ be a Casimir 2-tensor. Let r = r.. We have (5.24) by (5.9) and (5.13).
Post-composing p(id ®5) to (5.14) gives re = id*re x S; taking (—) * id, we
obtain re * id = id xre, equivalent to (5.22). Finally, (5.23) follows from

ri2z3 =ry+r2+r3+ci2+c13 + ca3,

rij=ri+ri+c; (1=<i<j<3).

Therefore r = r. is a Casimir element.

Now let r be a Casimir element. Set ¢ = ¢,. Then (5.8) follows from (5.23),
and (5.9) follows from the cocommutativity of H. Moreover, (5.14) follows
from (5.22). Hence ¢ = ¢, is a Casimir 2-tensor.

If ¢ is a Casimir 2-tensor, then c(,.) = ¢ follows from (5.8) and (5.9). If r is a
Casimir element, then

(5.13)
r(Cr) = r(_(id ®S)cr)

1
O29_2 1 (d®S)e,
27 1 . . .
= —E(//L(ld RSHAr — u(id®S)(r @ n) — u(id RS)(n ® r))
1
= —E(ner—r Sr )(8—4) ( + Sr )(5—24) O

5.6. Presentation of A. Recall from Section 4.3 that A is a linear symmetric
monoidal category. Define morphisms in A

N @
LR

(5.28)

11— 2,
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Proposition 5.10. We have a Casimir Hopf algebra (1,1, 1, e, A, S, c) in A.

Proof. One can easily verify the axioms of a Hopf algebra. (In fact, this can also
be checked by reducing up to homotopy the topological arguments given in [25]
for the category B. See also [24] for related algebraic arguments in the symmetric
monoidal category F of finitely generated free groups.) The cocommutativity

follows from
PA = E 1 =A

where we write P = Py ;.
Now we check for ¢ the relations (5.8), (5.9) and (5.14) of a Casimir 2-tensor.
We have (5.8):

(A ®id)c = %
= m mm + m m m = C13 + C23.

We have (5.9):

Axce=(u@uideP ®id)(A ®c)

Seninme
VAAVARRVARLY

=(u@u(id®P Qid)(c ® A) = ce x A. O

We have (5.14):
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Let H denote the cocommutative Hopf algebra (1, i, 1, A, €, S) in A. We prove
the following theorem in the rest of this section.

Theorem 5.11. As a linear symmetric strict monoidal category, A is free on the
Casimir Hopf algebra (H, c).

Remark 5.12. Hinich and Vaintrob [29] proved that the algebra A(Q) of chord
diagrams on a circle (i.e., the target of the usual Kontsevich integral of knots) is
in some sense the “universal enveloping algebra” of the generating object in the
linear PROP governing “Casimir Lie algebras”. This gives a universal property
for the space A(0, 1) = A(O), whereas Theorem 1.7 gives a universal property for
the entire category A.

5.7. The category P generated by a Casimir Hopf algebra. Let P be the free
linear symmetric strict monoidal category on a Casimir Hopf algebra (P,c) =
(P,u,n, A€, S,c). Thus, as a linear symmetric strict monoidal category, P is
generated by the object P and the morphisms u, 1, A, €, S and ¢, and all the
relations in P are derived from the axioms of a linear symmetric monoidal category
and the relations (5.1)—(5.5) and (5.8)—(5.10). In other words, P is the linear PROP
(see [48]) governing Casimir Hopf algebras. Define a grading of P by

deg(u) = deg(y) = deg(A) = deg(e) = deg(S) = 0, deg(c) = 1.

For m > 0, we identify the object P®” with m.

The category P has the following universal property. If C is a linear symmetric
strict monoidal category and (H, c) is a Casimir Hopf algebra in C, then there is a
unique linear symmetric monoidal functor F' = Fg ): P — € which maps the
Casimir Hopf algebra (P, ¢) in P to the Casimir Hopf algebra (H, ¢) in C.

Consequently, since A has a Casimir Hopf algebra (H, c¢) by Proposition 5.10,
there is a unique (graded) linear symmetric monoidal functor

F = F(H’C)ZP — A

mapping (P, c) to (H, ¢). To prove Theorem 5.11, we need to show that F is an
isomorphism.

5.8. The space W(m, n) of tensor words. Let m,n > 0 be integers. A tensor
word from m to n of degree k is an expression of the form

W=w R Q wy,

where
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e foreachi € {l,...,n}, w; is a word in the symbols
(. x; 1< j <myUfcy.cy|1<p=<k}

e eachofc,,c, (1 < p < k)appears in the concatenated word wy - - - wy, exactly
once.

In this case we write w: m — n. For example,
W = xicjch ® chelcyxa @ x7 el xpxy:2 — 3 (5.29)

is a tensor word of degree 3. As we will see below, the symbols x]il may be
considered as elements of the free group F,, on xq, ..., x,.

Two tensor words w, w’: m — n are equivalent if they have the same degree k
and they are related by a permutation of {1,..., k}. For example, the above w is
equivalent to the tensor word

(12)w := x1chc) ® cheyelxs @ x7 el xax1:2 —> 3

obtained from w by exchanging (c, ¢{) and (c5, c5). Let [w] denote the equivalence
class of w. Let W(m, n) denote the vector space with basis consisting of equivalence
classes of tensor words from m to n.
Let W(m, n) denote the quotient space of W(m,n) by the subspace generated
by the following elements:
e (chord orientation) [w]— [w'], where w and w' differ by interchanging c,
and ¢, for some p,

e (cancellation) [w]— [w’], where w and w’ differ locally as

+1 1
w:(.-.xi xi:F )’

w o= (- ),

for some i,

e (bead slide) [w]— [w'], where w and w’ differ locally as

W :(.. xlcp ..xicg...)’
W/= ("'C;,xi"'chi"'),
for some i and p,
o (4T) [wi]—[wo]—[w3]+[w4] and [wy]—[w2] —[Ws] + [We], Where wy, ..., Wg
differ locally as
Wi=(oclnclcl el
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Wo = (coec)oclic) erclhens),
W3 = () oeclioeclicl o),
Wa = (o) oeclioecllclhes),
Ws = (- clcl oclocl o),
We = (- clycl el el o)

for some i, i’ withi # i’.

In the above expressions, each - -- means a subexpression of a tensor word possibly
containing the tensor signs.

5.9. The isomorphism z: W(m,n) — A(m,n). By an admissible chord dia-
gram from m to n of degree k we mean a restricted F,-colored chord diagram

Don X, = N--- N, with k chords, with each bead in D labelled by one of

+1 s
X;h X

We define a linear map
7 W(m,n) — A(m,n)

as follows. Given a tensor word w = w; ® --- ® wy,: m — n of degree k, put the
symbols appearing in each w; on the ith strand /; (in the order inverse to the
orientation) and, for each j = 1,..., k, connect the two points labelled by c]’. and
c}’ with a chord. Then we obtain an admissible chord diagram 7(w), regarded as
an element of Ay (m, n). For example, for w in (5.29) we have

- =z
- >
/ -’ >

/

- N

f S . (5.30)

N "

Lemma 5.13. The map T is surjective, and induces an isomorphism

T(w) =

:W(m,n) — A(m,n).

Proof. The lemma follows directly from the isomorphism u*: AM(X,,, F,) —
A (X, F,,) obtained in Theorem 4.4. O

5.10. The map o: W(m,n) — P(m,n). We will assign to every tensor word
w:m — n of degree k a morphism @(w):m — n in P of degree k. For example,
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for the tensor word w: 2 — 3 of degree 3 in (5.29), corresponding to the admissible
chord diagram 7(w) in (5.30), we have graphically

a(w) =
In general, the diagram representing &(w) has m edges ey, ..., e, at the top
(corresponding to the generators xy, ..., X,) and n edges e}, . .., e, at the bottom.

For each j = 1,...,n, the bottom edge e} is locally attached to / j’ input edges,
where lJ’. is the length of w;. In our example, we have (/1,/5,15) = (3,4, 4). For
eachi = 1,...,m, the top edge ¢; is locally attached to as many output edges as
the number /; of occurrences of xl-il in w. In our example, we have (I1,1) = (3, 2).
Moreover, the diagram contains k “caps” labelled by ¢ encoding k copies of
¢:0 — 2. Each “cap” has two output ends. The outputs of top edges, the inputs of
bottom edges and the outputs of “caps” are connected by using the following rules.

o Ifthe rthsymbolinw; (1 <j <n,1<r = lj’.) is x{ (e = %£1), then the rth
input at e]’. is connected by an arc to one of the outputs of e;. If € = —1 here,
then a label S is added to the arc to encode the antipode S: 1 — 1.

e If the rth symbolin w; (1 < j <n,1 <r < lj’.) is ¢, (resp. c,), with
1 < p < k, then the rth input at e} is connected by an arc to the left (resp.
right) output of the pth “cap”.

We interpret the diagram thus obtained as a morphism in P in the usual way. At
the top we have the tensor product of m multi-output comultiplications, and at the
bottom we have the tensor product of » multi-input multiplications.

These rules yield a well-defined morphism @(w): m — n in P. Indeed, the only
possible ambiguities are the ordering of the outputs at each top edge, the positions
of the “caps” between the top and bottom, and the choices of the connecting arcs.
Independence of &(w) from those choices follows from the cocommutativity of P
and the general properties of symmetric monoidal categories. Thus we obtain a
linear map

& W(m,n) — P(m,n)

defined by w — (W) on generators.
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Lemma 5.14. The map & induces a linear map o: W(m,n) — P(m, n).

Proof. 1t suffices to check that each of the relations defining the vector space
W(m,n) as a quotient of W(m, n) in Section 5.8 is mapped to 0 in P. Indeed,

e the “chord orientation” relation is mapped to 0 because of the symmetry
axiom (5.9),

e the “cancellation” relation is mapped to 0 because of the antipode rela-
tion (5.4),

o the “bead slide” relation is mapped to 0 because of (5.14),

o the “4T” relation is mapped to 0 because of (5.15). O

5.11. Surjectivity of «. Forn > 0, let &, denote the symmetric group of order ».
Define a homomorphism

S, — Pmn,n), or—— P4 (5.31)
by Pgiy1) =idi—1 ® P11 ®id,—j—y fori € {1,...,n —1}. Set
M[Ql ,,,,, qn] — /L[QI] ® - ®M[‘1n]7 AlPtopm]l — AlP1] @ o AlPm]
forqi,....qn, p1,---, pm = 0.

Lemma 5.15. Let m,n > 0. Every homogeneous element of P (m, n) of degree k
is a linear combination of morphisms of the form

(5.32)

where s, p1,.... Pmrq1s---sqn = 0wWiths = p1+--++ pm =q1 + -+ qn — 2k,
e1,...,es €{0,1} and 0 € Sz .

Proof. We adapt the proof of [24, Lemma 2]. The main difference here is that our
category is a linear category, and we have an extra morphism c.

Let P? (resp. PT, P~, P¢) denote the linear monoidal subcategory of P
generated by the object 1 and the set of morphisms {P;1,S} (resp. {u,n},
{A,€}, {c}). We also use the symbol P* (with x = 0,+,—,¢) to denote the
set ]_[m,n>0 P*(m,n).

We will consider compositions of such spaces. For instance, PTP? denotes
the subset of P consisting of all well-defined linear combinations of compositions
f £ of composable pairs of morphisms £+ € P* and f° € PO.
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First, we will prove
P =PtP°PP". (5.33)

Fori > 0, let P; denote the degree i part of P. If i > 0, then P; is the product
Py ---Py of i copies of Py. Set P = P N P;. Note that Py is the linear symmetric
monoidal subcategory of P generated by u,n, A,€,S. Thus, the proof of [24,
Lemma 2] gives

P PTcPtP’P, PPt cP™P’ P P’cCPP, (5.34)
P, =P PP". (5.35)
For P¢, we have
PPt cPTP¢, P°P°c PP, (5.36)
P P° Cc PTPP°P". (5.37)
Here (5.36) easily follows. To prove (5.37), we use
P P{ Cc PTPP{P,

which we can check using (5.8) and (5.11)—(5.12). Then, proceeding by induction
oni > 1 and using (5.34)—(5.36), we obtain P"Pf C P*P°PfP~. This
implies (5.37).

Using the inclusions obtained so far, we can check that PTPOP¢P~ is closed
under composition, i.e.,

(PTPPP)(PTPPP™) Cc PTPOP°P.

Since PTPOP¢P~ contains the identity morphisms, it is a linear subcategory of P.
Since PTPOP¢P~ contains P*, P, P¢ and P, we obtain (5.33).

Letk > 0. Homogeneous elements of P°P¢ of degree k are linear combinations
of morphisms of the form

(S ® -+ ® S+2k) Py (id ®C®k),

where s > 0, e1,...,e540k € {0,1} and 0 € S 4;. Thus, by (5.33), every
homogeneous element of P (m, n) of degree k is a linear combination of morphisms
of the form

M[ql ..... q”]Po(Sel ® -+ @ §+2k)(id, ®c®k)A[p1 ””” pm]’ (5.38)
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where p1,..., pm.q1,...,4n = Oaresuchthat py +---+p,, = g1+ +gn — 2k,
S =p1+-+ Pmse€1,---,sq2r €140,1} and 0 € S;4k. Since (5.13) gives

(S ® -+ ® S&+2)(id; @c®F) = £(S ® - ® §% ® idy)(ids ®c®F),
a morphism of the form (5.38) is, up to sign, also of the form (5.32). O
Lemma 5.16. The linear map o: W(m,n) — P(m,n) is surjective.
Proof. Let f:m — n in P be as in (5.32). Define a tensor word w:m — n by
W =1Up Uy QUg +1 " Ugi+qr Q@ @ Ug +tqu_1+1° " Ugi+tqn_1+dn>

where u; 1= v,-1(;) with

x‘(lzjl))ej (G=1,...,5),

vj = Céj—s+1)/2 (J=s+1Ls+3,....,s+2k—-1),
ng—s)/z (J=s+2,s+4,....5 +2k)

forj =1,...,4q1 +--- + qn. Here we define the map a: {1,...,s} — {1,...,m}
by

a(jy=max{a e{l,...,m} | j < p1+---+ pa}.

Then one can check a([w]) = f. Hence, by Lemma 5.15, « is surjective. d

5.12. Proof of Theorem 5.11. Let m,n > 0. Consider the diagram

P(m,n) F

A(m,n)

"x v (5.39)

W(m,n)

Il

By Lemma 5.13, 7 is an isomorphism and, by Lemma 5.16, « is surjective. Thus,
to prove that F is an isomorphism it suffices to prove that the diagram (5.39)
commutes.

We have factorization of morphisms in A similar to Lemma 5.15 for P.

Lemma 5.17. Every homogeneous element of A(m,n) of degree k is a linear
combination of morphisms of the form

f= M[‘Il ,,,,, qn]Po(Sel Q- ® 8% ® idyy)(id ®c®k)A[p‘ ,,,,, pml, (5.40)

Wheres’l’lw--’Pm’Ch,---,Qn ZOWl[hS =p1+-+ Pm =611+—|—qn—2k,
e1,...,es €{0,1} and 0 € Sy .
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Proof. This follows from the surjectivity of ©: W(m,n) — A(m,n). d

Now one can easily see that, for every f € A(m,n) of degree k decomposed
as in (5.40), we have Fat™'(f) = f. Hence the diagram (5.39) commutes. This
completes the proof of Theorem 5.11.

6. A ribbon quasi-Hopf algebra in A

In this section, we construct a ribbon quasi-Hopf algebra in A for each choice of a
Drinfeld associator.

6.1. Ribbon quasi-Hopf algebras. We recall the notions of quasi-triangular and
ribbon quasi-Hopf algebras in symmetric monoidal categories. See [30] for an
introduction to quasi-triangular quasi-Hopf algebras, and see [2, 60] for their ribbon
versions.

Let € be a (possibly linear) symmetric strict monoidal category with monoidal
unit / and symmetry Pxy: X ® Y — Y ® X. Let (H, u, n) be an algebra in €.
We defined the convolution product * on €(I, H®") in (5.7). For X € Ob(C), we
can extend * to

% C(I, H®") x C(X, H®") — C(X, H®"), gx [ := (g ® f),
% C(X, H®") x C(I, H®") — C(X, H®"), fxh:= u,(f ®h).

Thus, the convolution monoid C(7, H®") acts on C(X, H®") from both left and
right. These actions commute, i.e., (g * f)xh = g * (f x h).

A quasi-bialgebra H in C is an algebra (H, u, n) equipped with morphisms of
algebras

AH—H®@H, e¢H-—I,

and a convolution-invertible morphism

p: 1 — H®3
such that
(e A = id = (I[d®e)A, (6.1)
({dQA)A = ¢ * (A ® id)A * go_l, (6.2)

(id ®¢) * (i[d ®A ® id)g * (¢ ® id) = (I[dRiIdRA)¢ * (A ® id®id)g, (6.3)
(id®e ® id)gp = n Q1. (6.4)
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A quasi-bialgebra H is cocommutative if Pg g A = A, and special if we have
pn(id®x) = u(x ® id) forevery x: 1 — H. (6.5)

A quasi-Hopf algebra is a quasi-bialgebra H equipped with an algebra anti-
automorphism

S:H — H
and convolution-invertible morphisms
a, Bl — H
such that
uBl(S ® a ®id)A = ae, uBPlid®B ® S)A = Be, (6.6)
pPlide e S@aeidp =1, WPlSe®idep®S)e ' =1 (6.7)

A quasi-Hopf algebra H is quasi-triangular if it is equipped with a convolution-
invertible morphism

RI— HQ®H

such that
RxA*xR'=PygA, (6.8)
(A ®id)R = @321 * R13 * 0135 * Raz * 0123, (6.9)
(id®A)R = @33 * Ri3 % @213 % Rin % 91k, (6.10)

where we set
R>=R®n, Ri3=(d®n®id)R, Ry =n®R

and gol]k =P 123 ¢*!. Here P,: H®> — H®3 for 0 € &3 is the permutation
morphism deﬁned similarly to (5.31). A quasi-triangular quasi-Hopf algebra H is
triangular if Ry; = R, where we set Ry; = PpgR:1 — HQ® H.

We can view every cocommutative Hopf algebra (H, i, n, A, €, S) as a quasi-
triangular quasi-Hopf algebra by setting ¢ = 7%, « = 8 = nand R = ®?

A quasi-triangular quasi-Hopf algebra H is ribbon if it admits a convolution-
invertible morphism

r:/ —H

such that

Sr=r, (6.11)
Ar =Ry * R+ (r ®r). (6.12)
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6.2. Kohno-Drinfeld Lie algebras and associators. We recall the definition of
Drinfeld associators.

Forn > 0, the Kohno—Drinfeld Lie algebra t,, is the Lie algebra over K generated
by t;; (i,j € {1,...,n},i # j) with relations

tij = tji, [lij,tik + tjk] =0 (i,j,k distinct), [l,’j,lkl] =0 (i,j,k,l distinct).

We regard the universal enveloping algebra U(t,) of t, as a subalgebra of the
algebra A({®") C A(+®", +®") of Jacobi diagrams on [®":= | --. |, via the
injective algebra homomorphism

U(ty) — A(®") (6.13)

that maps each ¢;; to the chord diagram with a chord connecting the i-th and j-th
strings. (See [5, Corollary 4.4] or [20, Remark 16.2] for the injectivity of (6.13).)

Let K{(X, Y')) denote the algebra of formal power series in two non-commuting
generators. As usual, K({(X, Y)) is a complete Hopf algebra, with X and Y primitive.
A Drinfeld associator is a group-like element ¢(X, Y) € K{(X, Y)) such that

@(t12, 123 + 124) (113 + 123, 134) = @(123,134)@(t12 + 113, 124 + 134)@(t12, 123),
(6.14)

t _ t
) = ¢(t13,112) €Xp (g)fﬂ(lm, t23) "' exp (?)fﬂ(llz, 123),
6.15)

exp(lw + 123
2

i+t _ t t _
Xp (%) = ¢(t23,113) ! exp (;)90(112, 113) €Xp (%)fp(llz, 13) 7"
(6.16)

Remark 6.1. A Drinfeld associator ¢(X, Y') gives rise to an associator

D= p(t1a, 123) ' € A(LLL)

in the sense of Section 3.7.

6.3. A ribbon quasi-Hopf algebra in A. We consider A0,n) (n > 0) as an
algebra with the convolution product *. We have an algebra isomorphism

A% — A(0,n), Ejzjj —
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Forl <i < j <n,set
cij = u(t) = 1V @id@n®i Y @ id @y )c: 0 — n.

Clearly, the cocommutative Hopf algebra structure (1, i, 1, A, €, .S) in A given
in Proposition 5.10 induces a cocommutative Hopf algebra structure in the degree-
completion A of A.

Let (X, Y) € K{X, Y)) be a Drinfeld associator. Define morphisms in A:

¢ = L(p(t12,123)) = @(Cc12,¢23):0 —> 3, (6.17)
R = L<exp (ltu)) = exp,(c/2):0 — 2, (6.18)
2 *
1
r=1|exp 3 5 = exp,(nc/2):0 — 1. (6.19)

Set ® = ¢(t12,123) ! € A(}}]), and define v:0 — 1 by

-1 -1

al A\
p=1] [S2@7H or, equivalently, by v =] | S>® (6.20)
[ A

where S>: A(L ) — A(] 1)) is the diagrammatic “orientation-reversal operation”
applied to the second string. (The equivalence of those two definitions of v follows
from ¢(t23.112) = @(t12.123) "}, which is a consequence of (6.15)—(6.16); see [6,
Proposition 3.7].)

Let 5:0 — 1in A be convolution-invertible (equivalently, €8 # 0), and let
a = v * B~ We denote

Hyp=(1,pn,n A €¢,S,a B, R,r).

and, for 8 = n, weset H, = Hy 5.

Theorem 6.2. For each Drinfeld associator ¢ = ¢(X,Y) and each convolution-
invertible :0 — 1, H,, g is a (triangular, cocommutative, special) ribbon quasi-
Hopf algebra in A.

Proof. To prove that H,, g is a ribbon quasi-Hopf algebra, it suffices to check
(6.2)—(6.12) since (1, i, n, A, €, S) is a Hopf algebra. First, note that

A s x = x % A" forn > 0and x:0 — n. (6.21)
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We obtain (6.2) and (6.6) from (6.21). We obtain (6.3) from the pentagon
equation (6.14). We obtain (6.4) from ¢(0,0) = 1, which holds since ¢(X,Y)
is group-like. We obtain (6.7) from (6.21), the well-known identity S(:~1(v)) =
1(v) € A(}) and

pPlid®S @ id)y = v = uPld ®S ® id)gsy,.

which follows from (6.20). We obtain (6.8) from (6.21) and cocommutativity of A.
We obtain (6.9) and (6.10) from the hexagon equations (6.15) and (6.16). We
obtain (6.11) as follows:

St = Sexp,(1c/2) = exp, S(uc/2) = exp,(u(S ® S)Pii¢/2) =r.
To obtain (6.12), let us apply to it the algebra isomorphism (~!. We have

CHAr) = Cip (THI)

1. 1
=expC sl = 5
exXpl++ % exXp )
Lo b,
= €X — — j -
P KZ 5| |
1 1] ]
= €X €x - €X - S
p P50 Pl3] 1

where the second equality follows from Lemma 3.6, and the last equality follows
since

mutually commute. Since H,, g is triangular, we have

CHRa * R+ (r@r) = (IR () @ H(r))

1] 1]
=exp| exp 3 ® exp 3

Hence we have (6.12). O



The Kontsevich integral for bottom tangles in handlebodies 653

The universal property of A (Theorem 5.11) implies the following generalization
of Theorem 6.2. Let C be a linear symmetric strict monoidal category equipped
with a filtration € = F° > F1 5 F2 5 ... Let €7 = lim, €/F* be the completion
of € with respect to &, and let

j:€—>@?

be the canonical functor. (See Section 10.1 for a brief review of filtrations and
completions.)

Corollary 6.3. Let (H,c) be a Casimir Hopf algebra in C and assume that
c € FY(H®Y, H®?). Then there is a unique continuous linear symmetric monoidal
functor

F(H,C)Z 1& —> érf

that maps the Casimir Hopf algebra in Ao J(H,c). Therefore, F(y ) maps the
ribbon quasi-Hopf algebra in A to a ribbon quasi-Hopf algebra in C7.

Remark 6.4. We can consider the quasi-triangular quasi-Hopf algebra

Hy=(1,u,nA€,¢,5v,1nR)

as a deformation of the cocommutative Hopf algebra Hy := (1,u,n,A,¢€,S)
in the following way. Let s € K. An s-associator is a group-like element
e(X,Y) € K{X,Y) satisfying the pentagon relation (6.14) and the following
two hexagon relations:

(S(f13 + 123)
exp (——=

> >_(p(113,t12)exp< 5 ) (t13,123)" CXP( t2 ) (t12.123),

(6.22)

s(tiz + t13)
Xp (—

2 >_§0(123,l13) ICXP< 2 )¢(112,l13)CXP( > >¢(l12,lz3)

(6.23)

Note that a 1-associator is a Drinfeld associator in the sense of Section 6.2, and
that 0-associators constitute the so-called Grothendieck—Teichmiiller group. (In
fact, Furusho [15] proved that if ¢ (X, Y') satisfies (6.14), then it satisfies (6.22) and
(6.23) for some s in the algebraic closure of KK.) Given an s-associator ¢z(X,Y),
define ¢5;:0 — 3 and vs:0 — 1 by (6.17) and (6.20), respectively, and define
R;:0 — 2 by (6.18) with ¢ replaced with sc. Then, by a proof completely parallel
to that of Theorem 6.2, it follows that

HS = (1’/*1/7 naA’€7(pS’S’vs’n’Rs)
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is a quasi-triangular quasi-Hopf algebra in A. Assume now that @ is a Drinfeld
associator. Then ¢5(X,Y) := ¢(sX, sY) is an s-associator for every s € IK, so that
{H;}sek is a one-parameter family of quasi-triangular quasi-Hopf algebras. We
have H; = H, and H, is a cocommutative Hopf algebra.

7. Weight systems

We illustrate the results of the previous two sections by considering weight systems,
which transform Jacobi diagrams into linear maps.

7.1. Casimir Lie algebras and weight systems. A Casimir Lie algebra is a Lie
algebra g (over K) equipped with an ad-invariant, symmetric 2-tensor ¢ € g ® g.
Then the universal enveloping algebra U(g) of g together with ¢ € g®2 C U(g)®?
is a Casimir Hopf algebra in the category of vector spaces.

Consequently, (U(g).c) is also a Casimir Hopf algebra in My := Modyq),
the linear symmetric strict monoidal category of U(g)-modules. The universal
property of A gives a unique linear symmetric monoidal functor

W(g,c)i A — Mg

mapping the Casimir Hopf algebra (H, ¢) in A to the Casimir Hopf algebra (U(g), ¢).
We call W, . the weight system of the Casimir Lie algebra (g, ¢).

Example 7.1. (1) A quadratic Lie algebra is a pair (g, «) of a finite-dimensional Lie
algebra g and a non-degenerate symmetric ad-invariant bilinear form «x: g x g — K.
Let ¢, € g ® g be the 2-tensor corresponding to k via

Hom(g ® g, K) =~ Hom(g, K) ® Hom(g,K) ~ g ® g,

with the second isomorphism induced by «. Then (g, ¢, ) is a Casimir Lie algebra,
and hence (U(g), ¢,) is a Casimir Hopf algebra in the category of vector spaces.

(2) The Cartan trivector T, € g®3 of (g, k) is the skew-symmetric, ad-invariant
3-tensor corresponding to the trilinear form

gRg®g— K, (x,y,2) — «([x,y].2).

We have

T, = W(g,cK) € U(g)®3~

A A
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7.2. Continuous weight systems. Let I{[[/]] be the formal power series algebra.
For a vector space V, let V[[/]] denote the /#-adic completion of V ® K[[/]].

We fix a Casimir Lie algebra (g, ¢). Let M[[/]] be the K[[A]]-linear symmetric
strict monoidal category such that Ob(M[[]]) = Ob(M,) and

M [[R]](V, W) = Mg (V, W)[[A]]

for V,W e Ob(Mg[[h]]). The composition in the category M[[h]] and its

symmetric strict monoidal structure are inherited from M, in the obvious way.
Since (U(g), ¢) is a Casimir Hopf algebra in Mg, so is (U(g), hc) in Mg[[A]].

By the universal property of A, there is a unique linear symmetric monoidal functor

Wig.he): A —> Mg[[h]]

such that Wy pcy(m) = U(g)®™ for m > 0 and which maps the Casimir Hopf
algebra (H,c) in A to the Casimir Hopf algebra (U(g),hc) in Mg[[h]]. By
continuity, the functor W4 ) above extends uniquely as

Wiahor: A — Mg[[hl]
Remark 7.2. (1) Let g be a Lie algebra. One could also work within Mody )]

the category of U(g)[[#]]-modules, instead of Mg([[A]]. In fact, there is a canonical
linear functor

i: Mg[[h]] — Mody gy

which maps each U(g)-module V' to V[[k]] and maps each f:V — W in Mg[[h]],
ie., f e My(V, W)I[[h]], tothe mapi(f): V[[h]] — W([h]]induced by f. Since the
functor i is fully faithful, we may regard M[[A]] as a subcategory of Mody(g)(i4];-

(2) Let (g, c) be a Casimir Lie algebra. Then, by Corollary 6.3, the composition
i 0 Wig.her: A — Mody )

maps the ribbon quasi-Hopf algebra in A (see Theorem 6.2) to a ribbon quasi-Hopf
algebra structure on U(g)[[#]]. This structure is known from Drinfeld’s work [14].
See [30, Theorem XIX.4.2] for the description of the underlying quasi-triangular
quasi-bialgebra structure.

8. Construction of the functor Z

In this section, we construct a functor
Z:B, — A, (8.1)

from the non-strictification B, of B to the degree-completion Aof A.
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8.1. The category B, of bottom g-tangles in handlebodies. Define the cate-
gory B, of bottom ¢-tangles in handlebodies to be the non-strictification (see
Section 3.3) of the strict monoidal category B. Here we identify Ob(B) = IN with
the free monoid Mon(e) on an element o. Hence we have Ob(B,) = Mag(e), the
free unital magma on e.

Example 8.1. For w € Mag(e), we regard B, (<, w) as a subset of T, (2, w(+-—)),
where w(+—) € Mag(=) is obtained from w by substituting ¢ = (+—).

8.2. The extended Kontsevich integral Z. The rest of this section is devoted to
the proof of following result.

Theorem 8.2. There is a functor Z: B, — A such that
(i) for w € Mag(e), we have Z(w) = |w|,

(i) if T € By(D,w) C Ty(B, w(+—)), w € Mag(e), then the value of Z on T is
the usual Kontsevich integral Z(T), as defined in Section 3.7,

(iii) Z is tensor-preserving, i.e., we have
Z(TRT)=Z(T)R® Z(T")
for morphisms T and T' in B,.

The functor Z: B; — A is not a monoidal functor. By replacing the target
monoidal category A with an appropriate “parenthesized” version Aj, we can
make Z into a braided monoidal functor ZJ: B, — AY; see Section 9.3.

8.3. Notations. Let C be a monoidal category with (left) duals. The dual of
x € Ob(C) is denoted by x*. For x € Ob(C), set

d(x) = x ® x* € Ob(C).

We extend this definition to finite sequences of objects of € as follows.
First, assume that the monoidal category C is strict. For x = (x1,...,x%) €
Ob(C)¥ (k = 1), set

d(x) = d(x1,. .., x%) ;= d(x1) ® - ® d(x) € Ob(C).

Now, assume that the monoidal category C is non-strict. For w € Mag(e) of length
k>1andy = (y1,..., ) € Ob(C)*, let w(y) = wy1,...,yx) € Ob(C) be
the object obtained from w by replacing its k consecutive letters by yi,..., yx
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in this order. (For instance, if ¥k = 3 and w = ((ee)e), then w(y1, y2,y3) =
(»1 ® y2) ® y3.) Set

d¥(x) = d¥(x1,...,xx) := w(d(xy),...,d(xr))

for x = (x1,...,x%) € Ob(C)X.

Moreover, we will need the following notation when the monoidal category C is
non-strict. Let w € Mag(e) of length k, let x = (x1,...,x%),y = (¥1,..., V&) €
Ob((?)k and let fi:x; — y1,..., fx: Xk — Vi be morphisms in C. Then,

w(fro-s fi)rw@) — w(y)

denotes the “w-parenthesized” tensor product of f1,..., fx.

8.4. Construction of Z. Letm,n > 0. We decompose the handlebody V;, as

Ve = ([=1,1]2 x [0,7/8]) U (=1, 1]? x [7/8,1]) U (m 1-handles)).  (8.2)

a “lower” copy of the cube an “upper” copy of V;;,

For every T:m — n in B there is an n-component bottom tangle in V},, such that

e it intersects transversally the square [—1, 1]? x {7/8} in finitely many points
uniformly distributed along the line [—1, 1] x {0} x {7/8},

e its intersection with the “upper” part of (8.2) consists of finitely many parallel
copies of the cores of the 1-handles.

Then T is determined by the intersection of this representative tangle with the
“lower” part of (8.2), which defines a tangle

U:d(vy,...,vpm) — (+=)" inT
for some vy, ..., v, € Mon(x). We call U a cube presentation of T.

Example 8.3. Here is a 3-component bottom tangle 7 in V5, together with a cube
presentation U where v; = vy = (+4):

++ — ++ —

;J% // NCEY
LA
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If T is upgraded to a morphism 7:v — w in B, with |v| = m, |w| = n, and if
v1i,..., Uy are upgraded to vy, ..., v, € Mag(x), then we call

U:d’(vi,...,0m) — w(+—) inTy

a cube presentation of the bottom g-tangle 7.

Definition 8.4. Let T:v — w in B, withm = |v|, n = |w|, and let
U:d°(vy,...,0m) — w(+—) inTy,

be a cube presentation of 7'. The extended Kontsevich integral of T is the morphism

Z(T)ym —n in A
with square presentation
Z(U) o (ay; ®idyr ® -+ ® Gy, @idyx):d(vy, ..., v;m) — (+-)" inA.

Thus, diagrammatically, we have

Z(U)

b " (8.4)

The next lemma shows that the extended Kontsevich integral is well defined.
Lemma 8.5. Let T:v — w in B;, m = |v|, n = |w|. For all cube presentations
U:d’(v,...,0m) — w(+—), U:d°(),...,v,) — w(+-) inTy,

of T, the morphisms

Z(U) o (al)l ® idvT ® ot ® avm ® idv;‘n),
Z(U') o (ay, @ idgyyx ® -+ ® ayy, @ id gy, )+)

are square presentations of the same morphism m — n in A.
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Proof. For V:x — yin Ty, let r(V): y* — x* denote the m-rotation of V' around
the j axis of R3.

We can realize an isotopy of bottom tangles with cube presentations as a
sequence of isotopies of cube presentations and “sliding subtangles through the
handles”. (Similar arguments appear in [42].) Thus, without loss of generality,
we can assume that there are morphisms To: v(vi(v))*, ..., vm(V),)*) — w(+—)
and Ty:v] = v1, ..., Tt v, — U in T, such that

U =Toov(idy, ®r(T1),...,idy,, ®r(Tm)),
U’ = T() o U(Tl ® id(v/l)*, ey Tm & ld(v’/n)*)

It follows that

Z(U) o A= Z(Ty) o (av, ® Z(r(T1)) ® -+ Q av,, ® Z(r(Twm))),
Z(U’) oA = Z(T()) o (Z(T])avfl % ld(v/l)* R & Z(Tm)av;n %) ld(v;n)*),

where 4 1= (a,, ® idu;‘ ® -+ ® ay,, ®idyx ), and A" is defined similarly from the
words v/, ..., v,,. Thus, it suffices to prove that

is equal to
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in the space of F(xy, ..., X;;)-colored Jacobi diagrams on the appropriate oriented
1-manifold. For this, it suffices to show that

which follows by applying the usual Kontsevich integral to the following identity
of g-tangles:

(@ — v (v)* inTy.

O

Obviously, we have (ii) in Theorem 8.2. We have (iii) since the usual Kontsevich
integral itself is tensor-preserving. Therefore, it remains to prove that Z is
functorial.

8.5. Functoriality of Z. To prove that Z is a functor, we need a recurrence
formula on the cabling anomalies a,,: w — w in A.

Lemma 8.6. For each w € Mag(%) of length n and each map

fimo(l¥-1) = {1.....n) — Mag(=),

we have
Crw)
ac,w = ("Nar@) ®- @ rtasw)) o Crlaw) € AULTD).
where r'™1 = id and r'=1 = r with r being the n-rotation.

Proof. Setting x = Cr(w) € Mag(&), we have
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By Lemma 3.9, we deduce that

The series of diagrams c(ww*, f;) is obtained from id,, ® id,,* by replacing the i -
thstring ofidy, by a r(;) if w; = + orby id ;)= if w; = — and, next, by replacing the
i-th string of idy,+ by a r(n—i+1) if wy—i41 = —orby id ru—iy1y* if Wp—iy1 = +.
Thus, using the STU relation, we obtain

and we have the conclusion. O
Let v —> w — x in B, with [v] = m, [w| = n, |x| = p, and let
U:d'(v1,...,0m) — w(+—), U:d”(wy,...,wy) — x(+-) inTy

be cube presentations of 7" and 7”, respectively. Then

U'oCrU):d’(v],....,v,,) — x(+—) inTy

is a cube presentation of 7/ o T:v — x, where f:mo(U) — Mag(x) is an

appropriate map and v/, ..., v,, € Mag(<£) are such that

*'m

Cr (d"(v1,...,0m)) =d¥(v],....Vp).
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Therefore, Z(T’ o T') has the following square presentation:

Z(U' 0 Cr(U)) 0 (ay ®idyrys ® -+ ® ayy, ® idy,)+)
=Z(U") o Z(Cs(U)) o (ay, ® id@y) ) @+ @ ayy, @ id(y,)+)
=Z{U")oc(w(+-), fr) o CrZ(U)
oc(d’(v1.....vm), f5) ' o (@y, ®idg/yr @+ ® ayy, ® id(yy,)«)
=Z(U")o (ay,® idyx ® -+ ® aw, ®idy;) o Cr Z(U)
oc(d¥(vy,...,vm), fs) Lo (avf1 ® id(v;)* ® - ® ay, ®idgy ).
Here the second identity is given by Lemma 3.9. By m applications of Lemma 8.6
and using the STU relation, we obtain the following square presentation of
Z(T' o T):
Z(U') 0 (ay, ® idyyx ® -+ ® ay,, ® idyx) 0 Cr Z(U)
0 Cp(ay, ®idyr @+ ® ay,, ® idyz,)
=Z(U")o (ay, ® idyr ® -+ ® aw, ® idyx)
0 Cr(Z(U) o (ay, ®idyx ® -+ ® ay, ® idyz ).

By Lemma 4.10, we have Z(T' o T) = Z(T’) o Z(T).

8.6. Proof of Theorem 1.2. Consider a morphism 7:v — w in B, with a

decomposition into g-tangles Tg, Ty, ..., Ty, as shown in (1.7), where m := |v|,
n = |w| and
To:v(uyul, ..., umu,,) — w+-), 71— wu; (G =1,...,m) inTy,.

To deduce Theorem 1.2 from Theorem 8.2, it suffices to show that the functor
Z:B, — A resulting from the latter satisfies (1.8) with Z B .= Z. Let us write

T =[To: Ty.....Twm) = [To; (T3)i=1,....m]

and extend this notation [—; —, ..., —] to other compatible sequences of ¢-tangles
Ty. Ty, ..., T,. We use the same kind of notation for Jacobi diagrams. In these
notations, what we have to prove is the following:

Z(T) = [Z(To); Z(Th), ..., Z(Tm)]. (8.5)
Foreachi =1,...,m, let iu;“ — u; be the unique morphism in T such that

T = (idy, ®T3) 0 Gy, (L) (8.6)
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Then, we have

[Z(To): Z(T1), ..., Z(Ty)]

.....

.....

.....

.....

.....

i=1
= Z([To: ((idu; ®T1) © Cuiy (¢ N)i—1m))
O 2 (To: (Th)iz1...m]) = Z(T).

Hence we have (8.5), which completes the proof of Theorem 1.2.

8.7. Group-like property of Z. Recall from Section 4.5 that the category Ais
enriched over cocommutative coalgebras, and that there is a monoidal subcategory
A®'P of A, the group-like part of A.

Proposition 8.7. The extended Kontsevich integral Z takes group-like values, i.e.,
for T:v — w in By, we have

Z(T) € A= ([o]. [w]).
Thus we have a (tensor-preserving) functor Z: B, — AgP,

Proof. Since the usual Kontsevich integral takes group-like values, this follows
from Lemma 4.16 and the definition of Z(7T') using a cube presentation of 7. [

8.8. F-grading on Z. We recall from Section 4.4 that the linear category A
is graded over the opposite of the category F of finitely generated free groups,
and that this grading corresponds to homotopy classes of Jacobi diagrams in
handlebodies. Similarly, we define the homotopy class of T:m — n in B to be the
group homomorphism A(T): F,, — F,, induced by ir: V,, — V,, on fundamental
groups.
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Proposition 8.8. The extended Kontsevich integral Z preserves the homotopy
class: if T:v — w in By, then we have

Z(T) € A(]v], [wDncr-

Proof. This follows from the definition of Z(7") using a cube presentationof 7. [

9. The braided monoidal functor Z ;’ and computation of Z

In this section, we assume that the associator ® € A({ | |) used in the construction
of Z: B; — A arises from a Drinfeld associator o(X,Y) € K{X,Y)) as explained
in Remark 6.1. We compute Z on a generating set of B, and construct a braided
monoidal functor Z7: B, — Kﬁ, which is a variant of Z with values in a
deformation of the non-strictification of A.

9.1. Generators of B,. As announced in [22, §14.5] and will be proved in [25],
the strict monoidal category B is generated by the morphisms

e [

> ’

N

=

: , (9.1
N j o
= AN = A

The monoidal category B has a unique braiding

DSBS
>OED

Vpg:P+q—q+p, pqg=0

such that ¥y ; = . The object 1 is a Hopf algebra in the braided category B, with
multiplication pu, unit 1, comultiplication A, counit € and invertible antipode S.
The canonical functor B — Cob (see Section 2.4) maps this Hopf algebra to the
Hopf algebra in Cob given by Crane and Yetter [11] and Kerler [34], and it maps
the morphisms r4 to the “ribbon elements” in the sense of [35].
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Example 9.1. We can use the Hopf algebra structure of 1 in B to define some
additional morphisms. The adjoint action is the morphism

ad := uPl(id; @) (id; ®S ® id;)(A ® id;) = Q T

Using the ribbon elements 71 and following [35], we define

c:= (/L(I’_ ® idy) ® u(idy ®r_))Ar+ = ?Jf\ 00— 2.
)

The above generating set for the strict monoidal category B induces a generating
set for the non-strict monoidal category B,:

wil:oo —> 00, [ll00— 0 10— e

S:|:1

Ao —> o0, c:0 — T, I

The associativity isomorphisms of B, are denoted by oy, 4, (UV)W — u(vw).

9.2. Values of Z on the generators. We compute the values of Z on the
generators of the monoidal category B, given in the previous subsection. Our
formulas will be expressed only in terms of the chosen Drinfeld associator ¢ (X, Y),
and they will involve the structural morphisms of the Casimir Hopf algebra
(H,c)=(1,n,u,¢e,A,S,c)in A. (See Proposition 5.10.)

As in Section 6.3, we equip 11(0, m) (m > 0) with its convolution product *
and consider the following morphisms in A:

¢ = ¢(c12,23):0 — 3,
R = exp,(c/2): — 2.
r = exp,(uc/2):0 — 1.

Set
v = (uPid; ®S ®id))p) 10 — 1 in A,

where ( )~! denotes convolution-inverse. Note that v corresponds to the ele-
ment (6.20) of A(]) through the isomorphism ¢ of Section 6.3.

In what follows, we use the usual graphical calculus for morphisms in A,
where morphisms run downwards. The antipode S, the iterated multiplication ]
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and the iterated comultiplication A" (n > 0) are depicted by

T A

respectively. For instance, the adjoint action of the Hopf algebra H
ad = uPl(id; ® P 1)(id; ®S ® id;)(A ® idy):2 —> 1

is depicted by

Proposition 9.2. We have

L Z =, Z(= |,

9.2)

Joru,v,w € Mag(e), (9.3)

94

Z(p) = : 9.5)
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Z(A) = (9.6)

Proof. First, we briefly explain how to compute Z(v), Z(r+), Z(n), Z(¢) and
Z(0oty,v,w)- One can compute Z(y 1), Z(r_) and Z (ay, }]’w) similarly. We only
indicate the decompositions into g-tangles of some cube presentations leading

to (9.2) and (9.3):

v = ;
]” = m s € = s
o -)
((+ =) (- =) (+ =) (+ ) ((+ -) + =)
Cyy,w = l | | \\\\ l |l |
(+ -) (+ -) ((+ -) (+ =) (+ -) + -»)
S ——
u(+-) v(4-) w(+—)

We leave the details to the interested reader.

Now we compute Z(S). Since
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we have

Z(S) =

which implies (9.4). The computation of Z(S™!) is similar.
One can easily derive (9.5) from the following decomposition into g-tangles of
a cube presentation of u:

Finally, let us consider (9.6). We need to compute a := t(a4+)) € K(O, 2),
where a4 ) € A(l|) is the cabling anomaly. Since we have

J

we obtain

9.7
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Then (9.6) follows from (9.7) and the following decomposition into g-tangles of a
cube presentation of A:

)

z
7
|

/

F——7%
O

—

s
/

i

F——t—<—p—<—+—<—F
i \\
o 2

| —>—

3

9.3. The braided monoidal functor ZJ: B, — A?. Using the above compu-
tations of Z on the braiding and associativity isomorphisms of B,, we define a
non-strict braided monoidal category Kg as follows.

Let Kq denote the non-strictification of the linear strict monoidal category A,
see Section 3.3. (The non-strictification defined there extends to linear strict
monoidal categories in the obvious way.) We identify Ob(f&) = IN with Mon(e):
consequently, Ob(z’iq) = Mag(e). The symmetry in A gives one in Kq:

Py = Py w| € Kq(vw,wv) = A(v| + |w],|Jw| + |v]) forv,w e Mag(e).

Thus Kq is a linear symmetric non-strict monoidal category.

Using the Drinfeld associator ¢ = ¢(X, Y'), we deform Kq into a linear braided
non-strict monoidal category 3‘2 as follows. The underlying category, the tensor
product functor and the monoidal unit of Kg are the same as those of Kq. The tensor
product for KZ is strictly unital, and the left and right unitality isomorphisms in 115

are the identities. Define the associativity isomorphism oy, 4 4 : (V)W — u (VW)
by

, 9.8)

va,w = . (99)

lwl [v]
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The tensor-preserving functor Z: B, — Ais upgraded to a braided monoidal
functor as follows.

Theorem 9.3. With the above description, the category KZ is braided monoidal
and there is a (unique) braided monoidal functor

Z8: By —> AY (9.10)
which is the identity on objects, such that
Z5(f) = Z(f) € Ay (w.w') = Awl. [w'])
for morphisms f:w — w' in By.

Proof. We can check that K? is a braided monoidal category using the properties
of a Drinfeld associator (see Section 6.2). Alternatively, using the universality of
Z proved in the next section, this follows since B, itself is a braided monoidal
category and we have Z(Vy,w) = Yv,w> Z(Qu,p,w) = Qu,p,w; se€ (9.2) and (9.3).
Clearly, Z{ is a well-defined functor. Since Z is tensor-preserving, so is Z.
By (9.2) and (9.3), Z; preserves the braidings and the associativity isomorphisms.
Both B, and K? have the identity left and right unitality isomorphisms. Hence we
have the assertion. O

Remark 9.4. The braided monoidal structure of 113 descends to a braided monoidal
structure on the category K, with the tensor product functor defined in Section 4.3,
as follows. For m, n, p > 0, the associativity isomorphism o, »,p: (m +n) + p —
m + (n + p) and the braiding ¥, , : n + p — p + n are defined to be the right
hand sides of (9.8) and (9.9), respectively, where we set |u| = m, |v| = n and
|lw| = p. (Note that oy, ,,, and ¥, , depend only on the choices of m,n, p and
not on u, v, w.) Let A? denote the linear braided non-strict monoidal category thus
obtained, with the identity left and right unitality isomorphisms. There is a fully
faithful, linear braided monoidal functor

n:AZ — A?

which maps each object w € Mag(e) to its length, and maps the morphisms
identically. Clearly, 7 is an equivalence of linear braided monoidal categories.
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9.4. Transmutation of quasi-triangular quasi-Hopf algebras. In Section 9.5,
we will interpret the formulas for Z in Proposition 9.2 in terms of transmutation.
For a quasi-triangular Hopf algebra H, Majid introduced a Hopf algebra H in the
braided monoidal category Mody of H-modules, called the transmutation of H
[46, 47]. Here we consider transmutation of quasi-triangular quasi-Hopf algebras
introduced by Klim [36].

Let H=(H,n u e, A,¢,S,a, B, R) be a quasi-triangular quasi-Hopf algebra
in a symmetric strict monoidal category € with monoidal unit /. Following [36,
Theorem 3.1], define morphisms

g:]—>H, ¢ H —1, [_LZH(X)H—)H, AMH—-H®H, S:H—>H

in C by
n=p €e=c¢, 9.11)
pb®b') =q'(x' > b)S(g*)x*b'S(x>), 9.12)
AD) = x"X"ba1yg' SPR*Y* X)) @ X’ R' > y' X?b(2) g S(»* X (1)),
(9.13)
S(b) = X'R2x2BS(¢ " (X2R'x' > b)S(¢®) X 3x3), (9.14)

where the adjoint action ad: H ® H — H is denoted by / ® r — [ > r, we use
Sweedler’s notation A(z) = z(y) ® z(p) for z € H, and we set
1=q¢"®q¢*=X"'® S (aX?X?,
e=X'0X?20X> ¢ l=x'0x’0x’=y'®)y?2x)°
g=g'®g”> = (AS(xax?)s(S ® §)(AP(x?),
§ =8'®6% = B'BS(B*) ® B2BS(B?),
B'®B’® B*® B* = (A®id®id)(p)(¢”' ® 1),
R=R'® R
Here we use the notations for a quasi-triangular quasi-Hopf algebra over a field,
but the meaning of the above formulas in the category € should be clear. Let
H = (H,ad) denote the object H with the adjoint action. Klim proved that
H = (H, N1, €A, S)isa Hopf algebra in the braided monoidal category Modp .
(Recall that the monoidal category Modg is not strict in general, although we

assumed that C is strict monoidal.)
By straightforward computation, we can rewrite (9.12) and (9.13) as follows.
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Lemma 9.5. We have

W= KLy2Y1, (9.15)
A = 050,0:0,0, A, (9.16)

where we define y1,y2.01,...,0s: H®? — H®? by

b ®@b) = x'ob)@x*0'S(x3), y2(b®@b)=XbS(XPaX3 @b,

01(b@b)=bg' @b'g* O(b@b)=X"bS(X32) ®X?b'S(X3)),

03(b ® b') = bS(y*) @ y'b'S(y?), 6a(b ® D) = bS(R*) @ (R' > '),
O5(b ® b') = x'bS(x?) ® (x> > D).

9.5. Transmutation and the functor Z. Consider now the quasi-triangular
quasi-Hopf algebra in A

H:= H<p=(177’a,u7€,A’(p’57auB’R) (9'17)

given by Theorem 6.2 with 8 = n (and, hence, @« = v). Let H = (H,n, u,€, A, S)
be the transmutation of H, which is a Hopf algebra in the braided non-strict
monoidal category Modg of H-modules in A.

Let HP4 = (o,7,11,€, A, S) denote the Hopf algebra in B, defined in Sec-
tion 9.1. It follows from Theorem 9.3 that

ZE(HP1) = (0. Z2(1). ZS (W). ZL(€). ZL (D). ZL(S))

is a Hopf algebra in the braided non-strict monoidal category f&g.
Next, we define a fully faithful linear functor

F:KZ —> Mody
by F(w) = w(H) for w € Mag(e) and
F(f)=f for f € A%(v.w)=A(lv].|w|) withv,w e Mag(e).

Then, by (9.8) and (9.9), F is a braided monoidal functor. Hence F(ZJ (H Ba)) is
a Hopf algebra in Modg .

Theorem 9.6. The two braided Hopf algebras F(ZJ(H®%)) and H coincide.
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Proof. Since the antipode of a braided bialgebra is unique, it suffices to prove
Zm)=n, Z)=¢ Zw=pn Z(A)=A.

It is easy to check the first two identities. We can check Z(u) = w by using (9.5),
(9.15), and

wya(b @by = X'bs(x2x 3y 2V x1ps(x2)Xx3b'y,

where, as before, b and b’ are formal variables denoting virtual elements in the
Hopf algebra.

Let us now prove Z(A) = A. We have

g = A(S(xHvx*)SA(S(x?))
CZDA(S(x)rx?)A(S(x?))8
= AS(xHvx2S(x?))s

(6.7)

9.7
0Ds = X1 yx'1S(X?) ® X' x2S (x¥)s(x2) P a.

Hence, 0, A(h) = A(b)g = A(b)a °Z" aA(b). Therefore,
9.16 9.6
AB) O2 650, A(b) = b5---62(aAB)) 2 Z(A) (D)
where we use P; 1 R = R in the last identity. Hence A = Z(A). O

9.6. Computations of Z up to degree 2. Here we give the values of Z for the
generators of B, up to degree 2.

Proposition 9.7. We have Z(n) = m , Z(e) = @ and the following

identities hold true up to degree 2:
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Z(S:I:I) —

Z(ry) =

Zy*h =

Z(azl:l ) —

u,v,w

Proof. One can check these formulas by direct computations using Proposition 9.2
and the well-known identity

1
(X, Y)=1+ ﬁ[X’ Y]+ (terms of degree > 2), (9.18)

which follows from (6.15) and (6.16). We leave the details to the interested
reader. u
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Remark 9.8. The quasi-triangular quasi-Hopf algebra H = H, in A given
in (9.17) has the following structure up to degree 2. The morphisms 7, 4, €, A, S
are as depicted in (5.28) and concentrated in degree 0. Combining (6.17) to (9.18),
using (6.18) and using (6.20), respectively, we obtain the following identities up to
degree 2:

+1 1
24

1

We can also deduce Proposition 9.7 from these identities by using Theorem 9.6.

10. Universality of the extended Kontsevich integral

In this section, we show that the extended Kontsevich integral Z¢: B, — A?
(given by Theorem 9.3) induces an isomorphism Z: @q — Kg of linear braided
monoidal categories, where ]K/fq is the completion of the linearization KB, of B,
with respect to the Vassiliev—Goussarov filtration. This implies the universality of
Z among Vassiliev—Goussarov invariants of bottom tangles in handlebodies.

10.1. Ideals in monoidal categories. Let C be a linear (possibly non-strict)
monoidal category. We partly borrow from [31, §3.3] the following terminology.
An ideal J of € consists of a family of linear subspaces J(v, w) C C(v, w) for all
v,w € Ob(C) such that f ® g, f o g € J for morphisms f, g € C with either f € J
or g € J. For instance, the ideal generated by a set S of morphisms of € is the
smallest ideal of € containing S. Every ideal J of € defines a congruence relation
in C, and the quotient category C/J is a linear monoidal category.

A filtration ¥ in C is a decreasing sequence C = F° > F! 5 32 5 ... of ideals
of @ such that 3% o 7/ < F%*+! for k,1 > 0. Then 7% ® F! ¢ F**! follows. The
completion of C with respect to F

€7 .= lime/F*
%



676 K. Habiro and G. Massuyeau

inherits a structure of filtered linear monoidal category from C. Let F denote the
filtration of G induced by F. Let Gr” € denote the graded linear monoidal category
associated to F: we have Ob(Gr” €) = Ob(€) and

Gr'e(v,w) = @@ F* (v. w)/FH (v, w).
k>0

The product JJ of two ideals J,J C € is the ideal of C generated by g f for
all composable pairs of g € J, f € J. For an ideal J C €, the J-adic filtration
e=7°>7" 592> ... of €is defined inductively by J© = € and J¥+1 = gk
for k > 0. We write @ = ¢’ and Gr€@ = Gr’ C if the ideal 7 is clear from the
context. Note that J¥ contains all morphisms of C that can be obtained by taking
compositions and tensor products of a finite number of morphisms in € containing
at least k elements of J.

We define the tensor power w®* of an object w in € inductively by w®® = I,
the monoidal unit, and w®*+1D = 1®k ® w. The tensor power f&k: y® — 1y®k
of a morphism f:v — w is defined similarly. (If € is a strict monoidal category,
then these tensor powers coincide with those we have already used.)

10.2. The Vassiliev—Goussarov filtration. We now generalize the Vassiliev—
Goussarov filtration for links/tangles in a ball (see e.g. [6]) to bottom tangles in
handlebodies. In the definition of the Vassiliev—Goussarov filtration, one usually
uses only crossing-change moves to form alternating sums of tangles that generate
the filtration. We here also use framing-change moves since we work with framed
tangles.

Let KB, denote the linearization of the category B,. A plot P of a diagram D
of a bottom g-tangle 7:v — w is a disk in which D appears as either a crossing
or a positive curl:

We get a new bottom g-tangle Tp: v — w from T by the following move at P:

_X
T -_ ‘,‘x»>\/,‘

_ / T = ;Q\“; — Tp = .,jf‘“/‘;. (10.1)

More generally, if P is a finite set of pairwise disjoint plots of D, then we obtain a
new bottom g-tangle Tp from T by applying the above move in each plot of P.
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For k > 0, let V¥ (v, w) denote the linear subspace of KB, (v, w) spanned by

[T:P]:= ) ()T,

ScpP

where T € B, (v, w) and P is a set of k pairwise disjoint plots of an arbitrary
diagram of T. The spaces V¥ (v, w) give the Vassiliev—Goussarov filtration of
KBy:

KB, =V VIoV:is....
As we will see, V is a filtration of KB, in the sense of Section 10.1.

Recall from Section 9.1 the morphisms n,ry,7— : @ — e and ¢: & — ee in
By. Let J be the ideal of KB, generated by

ry —1n € KBy(2, ).
We have
c— %% € (2, ve). (10.2)

Indeed, since r— = u(r— ® n) ? u(r— ® ry) = n, we have

¢ = (u(r- ®id) ® p(id®r_))Ary = (u(n ®id) ® wu(id ®n))An = n®2.
Now we give a categorical description of the Vassiliev—Goussarov filtration.

Proposition 10.1. The Vassiliev—Goussarov filtration coincides with the J-adic
filtration; i.e., we have vk = gk fork > 0.

Proof. We first prove that V is a filtration. It is easy to see that each V¥ is an ideal.

’

To prove V¥ o VK ¢ VE+K' | consider morphisms w Lw D win By, and let
P (resp. P’) consist of k (resp. k') pairwise disjoint plots of a diagram of T (resp.
T'). We will prove [T’; P'] o [T; P] € VK+*'_We can assume that the diagrams of
T and 7' arise from diagrams of some cube presentations U and U’ of T and 7",
respectively. Then

[T Plo[T:P]= DY Y (=DSHSI71g 07

SCP S'CP’

has a cube presentation

YD D)SHSIUG o Cp(Us) = [U': P/ o Cr([U. P))
SCP S'cP’/
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for some map f:mo(U) — Mag(4). We can decompose the cabling of each of
the moves in (10.1) into a finite sequence of moves in (10.1). Therefore we have

Cr(IU. P) = ) Vi, P,

where each V; is a g-tangle differing from C s (U) only in the plots of P, and each
P; consists of k smaller plots in a diagram of V;. It follows that

Z[U’ [m,P]—Z[U’on,P U ]

is a cube presentation of [T'; P’] o [T; P]. Hence it belongs to VK.

Now we prove J% = V¥ for k > 1. We have J* C V* since V is a filtration and
we have ry —n € V1. To prove V¥ c J¥, consider an element [T'; P] € V¢ (v, w),
where T € B, (v, w) and P is a set of k pairwise disjoint plots of a diagram D of T'.
Assume that P has &’ plots containing crossings and k" := k — k’ plots containing
positive curls. We can realize the moves in (10.1) by the moves n®? — ¢ and
n + r4+. Thus, by moving the plots of P towards the upper right corner of D using
planar isotopy and Reidemeister moves, we obtain

[T: P] = £T" 0 (idy ®((c = 1% @ (ry = )®)),
where 7’ is a morphism in B,. By (10.2), it follows that [T’; P] € g*. O

Remark 10.2. (1) One can define the filtrations V and g in IKB as well. Proposi-
tion 10.1 is valid in this setting, too.

(2) A result similar to Proposition 10.1 is given in [22]. The braided monoidal
category B defined there is a subcategory of the category T of tangles, and there
is a braided monoidal functor B — B. The result [22, Theorem 9.19] essentially
states that the Vassiliev—Goussarov filtration of the linearization ZB of B coincides
with the Jg-adic filtration, where Jg is the ideal in ZB generated by the morphism
corresponding to n®? — c.

(3) In Sections 10.1 and 10.2, one can work over a commutative, unital ring. In
particular, Proposition 10.1 holds for ZB, and ZB as well.

Let ]K/’.B\ = ]K/§ Vo= ]KBq , the completion of ]KB with h respect to the
Vassiliev—Goussarov filtration or the J-adic ﬁltratlon Let ]KB KBY = KB be
the completion of IKB similarly defined. Then ]KBq is naturally identified with the
non-strictification (@)q of KB.
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Let Gr KB, denote the graded linear braided monoidal category associated to
the filtration V = J of K'B,. The braidings ¥, ,, in Gr KB, are actually symmetries,
i.e., we have Yy v Yy,w = idy, in GrIKB,. Indeed, since Yy, ¥y, w and id, ,, are
related by finitely many crossing changes, we have

ww,vwv,w - idv®w € ’\71-

Thus, Gr KB, is a graded linear symmetric (non-strict) monoidal category. Simi-
larly, Gr KB is a graded linear symmetric strict monoidal category.

10.3. The degree filtration of A,. Let A, denote the non-strictification of the
linear strict monoidal category A. The grading of A induces that of A,. Thus A,
has a degree filtration

A, =D°>D'oD?> -
defined by

D*(v. w) = P Ai(Jvl. |w|) C Ag(v.w) fork >0, v,w € Mag(e).

i>k

Now we give a categorical description of the degree filtration D. Each of the
generators of the monoidal category A provided by Theorem 5.11, say f € A(m,n),
have a lift in f € A (e®™ e®"). Let J be the ideal of A, generated by the
Casimir element r € A,(2, »). Then J is also generated by the Casimir 2-tensor
c € A (D, ee) since

1
r=§uc and c=Ar—r®@n—nQr.
Proposition 10.3. The degree filtration coincides with the J-adic filtration; i.e.,
we have Dk = gk fork > 0.

Proof. We have ¥ D for k > 0 since D is a filtration and we have r € D!.
To prove D¥ c J¥, consider a restricted chord diagram D € D*(v, w). By

moving the k chords towards the top-right corner of a projection diagram of D,

we obtain D = D’ o (id, ®c®*) € ¥, where D’ is a morphism in A,. O

Remark 10.4. We can define the filtrations D and J in the linear strict monoidal
category A as well. Proposition 10.3 is valid in this setting, too.

We can naturally identify K;D = K;j , namely the degree-completion or the
J-adic completion of A4, with the non-strictification A, of A defined in Section 9.3.
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It should not be confused with the monoidal category 1&2, which is a deformation of
Kq whose associativity isomorphisms involve a Drinfeld associator ¢. However, f&q
and 1&3 have naturally identified underlying categories and tensor product functors.
Thus we may regard the ideals D¥ of Kq = K;D as ideals of K?.

Consider the graded linear braided monoidal category Gr KZ associated to the
filtration D on Ag. We have the following.

Proposition 10.5. The category Gr Kg is symmetric monoidal, and is isomorphic
to A4 as a graded linear symmetric monoidal category. (Thus, the structure of
Gr A{ does not depend on the choice of ¢.)

Proof. The braiding v, ,, in AY defined in (9.9) becomes symmetric in Gr A,
i.e., Yy pVow = idygw in GrAY, since ¥y, v ¥y — idygw € D'. Thus, GrAY is
symmetric monoidal.

The associativity isomorphism oy (¥ @ V) @ W — u ® (v ® w) in 23
defined in (9.8) is congruent modulo D! to the associativity isomorphism

Qo = id € A(lu| + [v] + |w], [u] + |v] + |w])
= A (u®V)@w,u® (v ®w))

in A Similarly, the braiding ¥ ;v ® v — v ® u in A(p defined in (9.9) is

congruent modulo D1 to the symmetry Py ,:u @ v — v @ u in A Hence Gr A")
is isomorphic to Gr Aq = A, as a linear symmetric monoidal category. O

In the following we identify Gr AY with A,,.

10.4. Universality of Z;. We first check that Z{ is filtration-preserving.

Proposition 10.6. The functor Z¢: KB, — A% induced by Z9: B, — A%
preserves filtrations; i.e., Zq‘p(\?k) c D* for k > 0. Hence Z§ induces a filtered
linear braided monoidal functor

Z9: KB, — AL (10.3)



The Kontsevich integral for bottom tangles in handlebodies 681

Proof. Since ry — n generates the ideal § = V! C KB, since we have

Z8rs = Er = —r + (deg = 2) € D', (10.4)

and since Z¢ is a monoidal functor, it follows that Z¢ (V') c D!. Hence,
Ze(V%) c z¢(VHE c (DYF ¢ DR, O

By Proposition 10.6, Z¢: KB, — A? induces a graded linear braided monoidal
functor

GrZp:GrKB; — Grﬁg = Ay.

We already know that both Gr KB, and Gr 112 = A, are symmetric monoidal.
Thus, Gr Z fl" is a graded linear symmetric monoidal functor. Recall that Gr KB,
and A are the non-strictifications of GrIKB and A, respectively. It is easy to see
that the functor Gr Z{ is the non-strictification of a unique graded linear symmetric
monoidal functor

Z:GrKB — A.
More concretely, we can define Z by
Z(t) := (degree k part of ZJ(t5))
fort € VK(m,n), m,n,k > 0, where lg=1E¢€ VK (e®™ o®M) KB, (o2, o®1),

Theorem 10.7. The functor Gr Z}): Gr KB, — A, is an isomorphism of graded
linear symmetric (non-strict) monoidal categories. The functor Z:Gr KB — A is
an isomorphism of graded linear symmetric strict monoidal categories.

Proof. It suffices to prove the latter assertion, since the former corresponds to the
latter by non-strictification.

Let H® = (1, 1,1, A, €, S) be the Hopf algebra in B defined in Section 9.1. It
induces a Hopf algebra H GrKB — (1, u,n, A, e, S) in Gr KB, concentrated in the
degree 0 part Gr’ KB = V0/V!,

Let us prove that HS"%® has a Casimir Hopf algebra structure. Since A and
V1.1 in B are related by some crossing changes, we have A — 1 1 A € V1(1,2),
i.e., A =y 1A in GrKB. Thus HO % is cocommutative. Furthermore,

¢:=c—1% V40,2
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gives a Casimir 2-tensor for HO"%® Indeed, the identities in B

(A X id])C = (1d2 ®/,L)(ld1 RXCc R idl)C,
Ye=(ad®id;)(r+ ® ¢),
ce = (ad ® ad)(id; @Y ® id1)(A ® ¢)

imply

(A ®id;)¢ — (id; ® ® id;)¢ — 1 ® ¢ = (id, ®u)(id; ®¢ ® id;)E € V3(0, 3),
ye—¢=vyc—c=(ad®id))((r+ —n) ®¢) € V*(0,2),
¢e = (ad ® ad)(id; ®Y ® id;)(A ® €),

respectively. By Theorem 5.11, there is a unique symmetric monoidal functor
G:A — GrKB

which maps the Casimir Hopf algebra (H*, ¢) in A to the Casimir Hopf algebra
(HO™®B _§)in GrKB.

We prove that G is full. By Proposition 10.1, Gr KB is generated by its
degree 0 part V°/V! and its degree 1 part V!/V2. We have V°/V! = G(Ay)
since V°/V! (resp. Ag) is generated by the Hopf algebra HO'®® (resp. HA).
Thus it suffices to prove V1/V? = J1/g?> C G(A;). As an ideal of KB/J?, g is
generated by 74 := r. —n € §'/J?. Hence it suffices to check 7+ € G(Ay). Since
w(ry ®ry) = pue € B(0, 1), we have

F? 3 u(Fr ®@T4) = pe —2ry + 1 = pu€ — 274
Therefore,

1 1 1
G(r) = G(E,uc) = SG(WG(e) = —uE = —F4. (10.5)

The linear symmetric monoidal functor ZG: A — A preserves H. Moreover,
(10.4) and (10.5) imply ZG(r) = r. Thus ZG is the identity on the generators
of A; hence ZG = ida. Therefore Z is an isomorphism. O

We conclude this section with a stronger version of Theorem 10.7 and two
remarks about it.

Theorem 10.8. The functor ZJ: @q — Kg is an isomorphism of filtered linear
braided (non-strict) monoidal categories.
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Proof. Theorem 10.7 and an induction on k shows that
Z9 KB, /VET! — Ag /D!
is an isomorphism for all ¥ > 0. Hence
Z7: KBy — AY
is an isomorphism. O

Remark 10.9. The map G: A(m,n) — (GrKB)(m,n), m,n > 0, defined in the
proof of Theorem 10.7 can also be constructed as a direct sum of maps

Gig:A(m,n)g — (GrKB)(m,n)q

indexed by d € F (n, m), using calculus of claspers instead of the presentation of A.
More precisely, the map Gy is defined by fixing an n-component bottom tangle
v4 in V, of homotopy class d, and by realizing every (m, n)-Jacobi diagram D of
homotopy class d as a “simple strict graph clasper” Cp on y, in the sense of [21].
Then G4 (D) is defined as the alternating sum of clasper surgeries on the connected
components of Cp. See [21, §8.2] for the special case m = 0.

Remark 10.10. Theorem 10.8 implies the universal property of Z and ZJ among
K-valued Vassiliev—Goussarov invariants of bottom tangles in handlebodies. For
links in handlebodies (and, more generally, for links in thickened surfaces), similar
results have been obtained in [3, 42].

11. Relationship with the LMO functor

In this section, we explain how the extended Kontsevich integral relates to the
LMO functor introduced in [9].

11.1. Review of the LMO functor. The LMO functor as defined in [9]
Z:LCob; — “A

is a functor from the category £Cob, of Lagrangian g-cobordisms to (the degree-
completion of) the category “A of “top-substantial Jacobi diagrams”. Here we
consider the restriction of Z to the category £ Coby = B, of special Lagrangian
q-cobordisms, which is the non-strictification of the strict monoidal category
SLCob =~ B recalled in Section 2.4. By [9, Corollary 5.4], it turns out that Z on
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SCCob takes values in a subcategory SA of A, which we call the category of special
(top-substantial)) Jacobi diagrams. Thus, we here consider the restricted version
of the LMO functor:

Z:3LCob, —> SA.

The category °A is defined as follows. Set Ob(®A) = IN. Given a finite set U, a
U-labeled Jacobi diagram is a unitrivalent graph with oriented trivalent vertices,
with each univalent vertex labeled by an element of U. We identify two U -labeled
Jacobi diagrams if there is a homeomorphism from one to the other preserving the
vertex-orientations and the labelings. Let A(U) denote the vector space generated
by U -labeled Jacobi diagrams modulo the AS and IHX relations (3.4). Form,n > 0,
let SA(m, n) be the subspace of

A1, ..omTu{1m, o nTY)

spanned by special Jacobi diagrams, which are those diagrams with no connected
component without labels in {17, ...,n~}. (Recall that a top-substantial Jacobi
diagram in [9] allows such connected components that are not struts. Thus, we
have $A(m,n) C “A(m,n), where BA(m, n) is the space of top-substantial Jacobi
diagrams.) The composition D’ o D of two special Jacobi diagrams m 2, n i p
in %A is the sum of all possible ways of gluing some i ~—-vertices of D with some

i T-vertices of D’ foralli € {1,...,n}. Define the identity morphisms in 4 by

m . it
idy, = expy (; . ):m — m,
where LI denotes the disjoint union of Jacobi diagrams.

The category %A has a strict monoidal structure such that m ® m’ = m + m’ for
m,m’ > 0, and the tensor product D ® D’ of two special Jacobi diagrams D and
D’ is the disjoint union D LI D’ with the appropriate re-numbering of the colors
of D’. The category %A is graded, where the degree of a special Jacobi diagram
is half the total number of vertices. The degree-completion of A is also denoted
by SA.

The LMO functor is a functor Z:5C Coby — A with the following properties.

(i) We have Z(w) = |w| for w € Mag(e).

(ii) Let T € By(@,w) C T4(2. w(+-)) with w € Mag(e), [w| = n and let
Er € %LCoby (2, w) be the cobordism corresponding to 7. Then we have
Z(E7) = y~'Z(T), where Z(T) is the usual Kontsevich integral (as defined
in Section 3.7) and

2SA0. 1) —> A(Xn)
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is the diagrammatic analog of the PBW isomorphism (see [4]). Here, recall
Xp= Ny Dy

(iii) For morphisms 7" and 7’ in £Cob,, we have Z(T®T)=Z(T)® Z(T.

11.2. From the extended Kontsevich integral to the LMO functor. For two
integers m,n > 0, define a linear map «: A(m,n) — SA(m,n) by

where an F(xy, ..., x;)-colored Jacobi diagram on X,,, is presented by a projection
diagram in the square with handles. By the IHX and STU relations, « is well-
defined. Note that « is an analog of the “hair map” considered by Garoufalidis,
Kricker and Rozansky in [16, 18].

Proposition 11.1. The maps k: A(m,n) — SA(m,n) for m,n > 0 define a
monoidal functor k: A — A, which induces a monoidal functor k: A — SA by
continuity.

Proof. Consider two restricted Jacobi diagrams D and D’ with square presentations
S and §’, respectively:

=] g | €A@p).

Tl 1ol
1

D = ‘ 5 ‘EA(m,n).

bl .. Pnf

m

In what follows, we express exponentials with square brackets and, given two
Jacobi diagrams E and E’ labeled by the finite sets {17, ...,n Yand {1T,...,n"},
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respectively, let (E’, E) denote the sum of all possible ways of gluing some
i ~-vertices of E with some i*-vertices of E’ foralli € {I,...,n}. Then

k(D’) o k(D) is equal to
l 1 L Ln * )

X ’X S
ba b bet bao b btk
<[1+-®U}® _1([1+ ] [m+m )>)
=X s’ > X S
}

Pob e dpd

_1(
P
MY L PHE o b v . _vmw; m
-1 o Cf ‘ . ‘
_1(

s/

— ol el
‘ ! P U
B 1 e Apen pi . min;; m
=y & o Cr(s) )
Pl TR
=X S"0C 1 (S) =K S"0C f(S) ,
1] . 1r]

Fob o dpl

where the last four o denote compositions in A, and f: 7¢(S) — Mon(=%) is an
appropriate map. We deduce from Example 4.10 that x(D’) o k(D) = k(D' o D).
We can easily check «(id,,) = id,, for m > 0. Thus we obtain a functor x: A — 34,
which is obviously monoidal. d

Theorem 11.2. The following square of functors commutes:

B, —Z A

%l lx (11.1)



The Kontsevich integral for bottom tangles in handlebodies 687

Proof. Let T:v — win By, |v| = m, lw| = n, andlet U:d"(vy,...,vm) —
w(+—) in T, be a cube presentation of 7. Then «(Z(T)) is equal to

KkZ
=y Z(U)
Vo o
and the result directly follows from [9, Lemma 5.5]. O

Theorem 11.2 shows that the extended Kontsevich integral Z dominates the
LMO functor Z. However, the converse might not hold since, as we will see in
the next subsection, the functor « is not faithful. Some other remarks about the
functor « follow.

Remark 11.3. Theorem 1.5 in Section 1 is stated in a way slightly different from
Theorem 11.2. In fact, the latter differs from the former simply because we have
restricted the source of Z to %CCob, C L£Cob, and its target to A C “A.

Remark 11.4. Several interesting structures in A (and A) are mapped by « into the
categories A and “A. For instance, the symmetry Py, ,:m +n — n + m in (4.11)
is mapped to a symmetry

m LiT

; 2 ot
Pon ::expu(z :‘(n+i)_+z . ):m+n—>n+m
1 j=1

for the strict monoidal category $A (resp. ®A). Similarly, the braided monoidal struc-
ture of Kg is mapped by « into a braided monoidal structure on the non-strictification
of %A (resp. ®A). The Casimir Hopf algebra in A (given by Proposition 5.10) and
the ribbon quasi-Hopf algebra in A (given by Theorem 6.2) are mapped by « into
such structures in 34, and hence in “A.
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Remark 11.5. Recall from Section 4.5 that the categories A and A are enriched
over the category CC of cocommutative coalgebras. It is not difficult to verify that
the categories “A and %A are enriched over CC, with the coalgebra structure on the
morphism spaces described in [9], where connected Jacobi diagrams are primitive
as usual. Then one can check that the “hair functor” x: A — $4 is a CC-functor, i.c.,
the maps «: K(m, n) — SA(m, n) are coalgebra maps. By applying the “group-like
part functor” grp: CC — Set, we obtain a group-like version of «:

KEP: AEP s SAEP

11.3. Non-faithfulness of . Using Vogel’s results [63], Patureau-Mirand has
proved that the “hair map” in [16, 18] is not injective [55, Theorem 4]. The next
proposition is proved by adapting his arguments to our situation.

Theorem 11.6. If m,n > 1, then x: A(m,n) — SA(m,n) is not injective, and,
therefore, neither is k: A(m,n) — SA(m, n).

Proof. Let G(n) be the subspace of A({1,...,n}) spanned by connected Jacobi
diagrams with exactly » univalent vertices labeled from 1 to n. There is a natural
action of the symmetric group &,, on G(n), and we consider the subspace A of G(3)
consisting of those x € G(3) suchthato-x = sgn(o)x forall 0 € G3. According to
Vogel [63], the space A admits a structure of commutative algebra with non-trivial
zero divisors. Based on these results, Patureau-Mirand [55, Corollary 2] proved
the existence of an element r € A \ {0} of degree 17 such that

@------- 1 #£0e AD), (11.2)
@ =0eG0). (11.3)
: }
Then we define
O ©
e e A(X1. F(x1)) = AL, D).

By (11.3), we have x(x(u)) = 0 € A(X;.{1"}), and hence k(u) = 0. More
generally, if m,n > 1,then«: A(m,n) — SA(m, n) vanishes on u @@~ e®m—1)
Thus, to prove that it is not injective, it suffices to check u # 0.
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Recall the projection p: A(X1, F(x1)) — A(X;) introduced in the proof of
Lemma 4.5. We have

x‘l(p(u))=—x‘1< /—\) = - @ Ay,
1 Lo

since G(1) = 0 [63, Proposition 4.3]. By (11.2), the right hand side is not zero,
and hence we have u # 0. O

11.4. Jacobi diagrams colored by a cocommutative Hopf algebra. In order to
give a Hopf-algebraic description of the kernel of « in the next subsection, we need
to generalize some constructions of Section 4.1.

Let X be a compact oriented 1-manifold, and let H be a cocommutative Hopf
algebra with comultiplication A: H — H ® H, counit ¢: H — IK and (involutive)
antipode S: H — H.

Recall from Section 4.1 the notion of chord diagrams colored by a set. Let
D (X, H) be the vector space generated by H-colored chord diagrams on X,
modulo the following local relations:

k +1
kx + 1y < x y

----- *--> & ko> ] e,
kx + 1y x y

<~ s <~ s
b i . (11.4)
@ > meeee @---D- 9 eeee- [ IEED i g E >-
x Yy Xy 1
b x"
x e
----- 0D (> @ ’ —,———> Z —e—>
* S(x) ™ *

forall x,y € H and k,/ € K, where A(x) = } () x’ ® x” is written using
Sweedler’s notation. Let R°*(X, H) be the subspace of D" (X, H) generated by
the 4T relations (3.2), and set

ANX, H) = DX, H)/RN (X, H).

We still let AN (X, H) denote the degree-completion of this space, where the degree
of an H -colored chord diagram on X is the number of chords.
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More generally, let D3 (X, H) be the vector space generated by H-colored
Jacobi diagrams on X, modulo the local relations

e x\ 7
Ve H, > o Y sl and (11.4).
W™ ety (11.5)

Let R12(X, H) be the subspace of D' (X, H) generated by the STU relations (3.3),
and set
A’ (X, H) = D'*(X, H)/R"™ (X, H).

We still let A'(X, H) denote the degree-completion of this space, where the
degree of an H -colored Jacobi diagram on X is half the total number of vertices.

Example 11.7. Assume that H = K[x] is the group Hopf algebra of a group
7. Then A"(X, H) and A’*(X, H) are canonically isomorphic to the spaces
AN (X, ) and A% (X, 1), respectively, introduced in Section 4.1.

Let I := ker(e: H — IK) be the augmentation ideal of H and, for k > 0, let
Fi DM (X, H) be the subspace of D" (X, H) spanned by H -colored chord diagrams
on X with (at least) k beads colored by elements of /. Let FyA"(X, H) denote
the image of FyD®*(X, H) in A"(X, H). Thus we obtain a filtration

ANX, H) = FoAMNX, H) D FLAMNX, H) D FHAMNX, H) D --- .

The I -adic completion

ANX, H) := lim ATH)

< FrAN(X, H)
of AN(X, H ) inherits a filtration from A" (X, H). Leta: AN(X, H) — AN(X, H)
be the canonical map. Applying the same definitions to Jacobi diagrams yields
the space Alae (X, H). According to the next theorem, we can identify the filtered
spaces AN(X, H) and A% (X, H) (resp. AN(X, H) and A**(X, H)) and simply
denote them by A(X, H) (resp. fL(X, H)).

Theorem 11.8. The canonical map
¢: ANX, H) — A" (X, H)

is an isomorphism of filtered spaces. Furthermore, the AS and IHX relations (3.4)
hold in A’ (X, H).
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Proof. Clearly, ¢ is a filtration-preserving linear map, i.e., ¢ (Fx AN (X, H)) is
contained in Fy A" (X, H) for k > 0. We can check

¢ (FrAM(X, H)) = Fr A™ (X, H)

by using the STU relation, the identity

in A’2°(X, H) for x € H, and the inclusion A(J) C I @ K+ K® I.
The proofs of the injectivity of ¢ and the AS and IHX relations given in
Theorem 4.4 for a group algebra H = IK[x] work for a general H. O

Every homomorphism f: H — H’ of cocommutative Hopf algebras induces a
linear map fi: A(X, H) — A(X, H') by applying f to all beads of an H -colored
Jacobi diagram on X. Thus we obtain a functor A(X, —) from cocommutative
Hopf algebras to vector spaces, which admits a “continuous” version as follows.

Let H := 1<iLnk H /¥ be the I -adic completion of H, which is a cocommutative
complete Hopf algebra. The canonical map H — H will be omitted from our
notations, although it may not be injective. We can express every X € H as

&= x(k) wherex(k) e I*.
k=0

For a set S, we write an S-colored Jacobi diagram D on X as
D = D(sy,...,8),

where 51, ..., s, are the colors of the beads numbered from 1 to r, and D(—, ..., —)
stands for the corresponding Jacobi diagram on X with “uncolored” beads. Thus
every H -colored Jacobi diagram on X

o0 o0
D=D@&.....%) where %y = Y xi(ki).....% = > x.(ky)
k1=0 k=0

defines an element
w ~
D(1.... %) =) a(DOrlkr).....xr(kr)) € AX, H).

We can easily verify the following lemma.
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Lemma 11.9. Every homomorphism f H —> H of complete Hopf algebras,
between the I-adic completions of cocommutative Hopf algebras H and H’,
induces a unique filtration-preserving linear map f*:AA(X, H) — AA(X, H')
such that

fra(D(x1, ..., xx)) = D(f(x1), ..., f(xx)) (11.6)

Jor every H-colored Jacobi diagram D(x1,...,x;) on X. Moreover, we have
(f' )« = f f« for all such homomorphisms H i) H i) H.

11.5. A Hopf-algebraic description of the kernel of «. In this subsection, we
fix m,n > 1 and set

Fm:F(X],...,xm), Xn= ﬂl"'ﬂn-

Recall that the degree-completion of A(X,,, IK[F},]) is denoted by the same no-
tation A (X}, K[Fy]), and the /-adic completion of A(X,, IK[F,,]) is denoted by
fl(Xn, K[F]). We have seen in Section 11.4 that the canonical homomorphism
K[F,] — m], where H@] is the /-adic completion of K[F},], has a dia-
grammatic counterpart o: A(X,, K[F,]) — ﬁ(X,,,]K[F,,J). Theorem 11.6 and
Proposition 11.10 below imply that « is not injective, in contrast with the well-
known injectivity of K[ F,] — E@].

Proposition 11.10. There is a canonical isomorphism between SA(m,n) and
A(X,, K[F,,u]) which makes the following diagram commute:

A(m,n) —E—— SA(m,n)

ll l=

AXn K[Fnl) —* AXn K[Fp))
In particular, the kernel of k coincides with the kernel of o.

Proof. Set Uy, = {17,...,m™}. We can merge the notions of “U,,-labeled Jacobi
diagram” and “Jacobi diagram on X,” into the notion of “U,,-labeled Jacobi
diagram on X, ”; the degree of such a diagram is half the total number of vertices.
(Here we assume that each connected component of a Uy,-labeled Jacobi diagram
on X, has at least one univalent vertex on X,.) Let A(X,, U,) be the (degree-
completion of the) vector space generated by U,,-labeled Jacobi diagrams on X,
modulo the STU relation.

Let y:3A(m,n) — A(X,, Up) be the diagrammatic analog of the PBW isomor-
phism. We will prove that the maps « and « fit into the following commutative
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diagram:
K(m,n) — 5 SA(m,n) +> A(Xy, Up)
” Ti (11.7)
e

AXn K[Fn]) —% AXn. K[F]) —2—> A(Xp, T(Vin)

Here T'(V},) is the tensor algebra over the vector space V,, with basis {vy,..., vm},
equipped with the usual Hopf algebra structure. Using Lemma 11.9, the iso-
morphism f is induced by the complete Hopf algebra isomorphism f: E@] —
T/(—Vm\) that maps each x; to exp(v;). The map A is induced by a filtration-preserving
linear map A: A(X,, T (Vi) = A(Xn, Uy) defined below.

We can transform every T (V;,)-colored Jacobi diagram D on X,, into a U, -
labeled Jacobi diagram on X, by applying the following transformations to beads:

R
I 1 Iy
Vi1 Vip =" Vi, ~ HE
JE S S S
Vil,...,ir € {1,...,m}, i+i+ i+
12 r
Vi Vin - Vi b
ViV i

By the STU (and AS, IHX) relations in A(X},, Uy,), the above procedure defines a
linear map D'%¢(X,,, T (V;n)) — A(X,, Up), which induces a linear map

AMAXy, T (Vi) — A(Xn, Un).

Obviously, A is filtration-preserving. One easily checks from the definitions that
the resulting map A makes the diagram (11.7) commute.

To prove the proposition, it suffices to show that A is an isomorphism. For this,
we will construct an inverse to A. Let D be a U,,-labeled Jacobi diagram on X,.
We can decompose D uniquely as

D =DyUDjU---UD,,

where Dy is a Jacobi diagram on X,,, we have r distinguished points *1, ..., *,
in the interiors of the edges of X, U Do, each D] is a (U, U {x;})-labeled tree-
shaped Jacobi diagram with exactly one univalent vertex labeled by *;, and we have
D;ND; =gforalli # jand D] N Do = {;} for all i. Note that each tree D/,
rooted at ;, defines a Lie word with letters in U,,: hence, using the correspondence
it < v; between U, and the basis of V,,, each D} defines a primitive element
d; € T(Vp). Choose an orientation on each edge of Dy. Foreachi € {1,...,r},
set &; = 0 if *; belongs to X, or if *; belongs to an edge of Dy and the tree D is
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above this edge when its orientation goes from left to right; set ¢; = 1 otherwise.
Let S denote the antipode of 7'(V,,). By considering the 7' (V;,)-colored Jacobi
diagram on X, that is obtained from D, by putting a bead colored by S® (d/) at
x; foralli € {1,...,r}, we obtain an element

p(D) € DX, T (Vi)

which does not depend on the above choice of edge-orientations. It is easy to verify
that an STU relation in A(X,, Uy,) is mapped by p either to 0 or to an STU relation
in D'%¢(X,,, T (V;,)). Hence we obtain a linear map

with A(X,, Uy,) before completion, inducing a linear map
5: A(Xns Up) —> A(Xn, T(Vin)),

with A(X,,, Uy,) after degree-completion. Obviously, we have p o A = id. Using
the STU (and AS, IHX) relations in A(X,, Uy,), itiseasy tocheck Ao p =id. O

12. Perspectives

We plan to consider several developments of the functor Z = Z2: 8, — A
in forthcoming works. For simplicity, the degree-completion A of A will now
be denoted as A. Also, we will ignore parenthesization of objects in non-strict
monoidal categories and write B for B, for instance.

12.1. Incorporation of tangles. One can naturally construct a braided strict
monoidal category BT which contains both the categories B and T as braided
monoidal subcategories. The objects of BT are words in the letters +, —,  and
morphisms are bottom tangles in handlebodies mixed with additional tangles.
Similarly, there is £LCobT containing both £Cob and T as braided monoidal
subcategories. We can extend the functors Z: B — A and Z:LCob — “A to
BT and LCobT, respectively, so that the commutative square (1.9) extends to

BT —Z At

El l“ (12.1)

LCobT —Z5 gt

Here AT is a linear symmetric monoidal category extending both A and the linear
version of A mentioned in Remark 3.5, and, similarly, “A" extends both A and this
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linear version of A. We remark that the extension of Z to £CobT also generalizes
Nozaki’s extension of the LMO functor to Lagrangian cobordisms of punctured
surfaces [52].

As a symmetric monoidal linear category, A' is free on a triple (H,V,V*)
consisting of a Casimir Hopf algebra H, a left H-module V and its dual V*. The
functor Z induces an isomorphism of graded linear symmetric monoidal categories
between the associated graded of the Vassiliev—Goussarov filtration for BT and AT,

Letm > 0 be an integer and recall that S C 90V, is the bottom square. Consider
the compact oriented surface X, 1 := 0V}, \ int(S) of genus m with one boundary
component. The morphisms in BT whose underlying bottom tangle in a handlebody
is id,, € B(m, m) can be regarded as tangles in the thickened surface X,, ; x /. In
particular, by specializing the above functor Z: BT — AT to that kind of morphisms,
we obtain

o expansions of the free group 71 (X,,,1), which refine the symplectic expansions
derived from the LMO functor [49],

e representations of pure braid groups on X,, 1, and, more generally, represen-
tations of monoids of string-links in X,, ; x I.

We plan to study elsewhere these new representations.

12.2. Handlebody groups and twist groups. Fix an integer m > 0. The
automorphism group of the object m in H{ =~ B°P is naturally identified with
the handlebody group

Hom,1 := Homeo(Vyy,, S)/ =,

which is the group of isotopy classes rel S of self-homeomorphisms of V;, that
restrict to ids. Hence the functor Z: B — A restricts to a monoid homomorphism

Z:Hma1 —> Am := A(m,m)P. (12.2)

It is well known that the group 7, ; naturally embeds into the mapping class

group
Mpm,1 := Homeo(Zpn,1,0% 1)/

of the surface £, 1 = 0V}, \ int(S). Since the LMO functor 7 is injective? on the
Lagrangian subgroup of M, ; (i.e., the automorphism group of the object m in
LCob), Theorem 1.5 implies that Z: H,,,; — A, is injective. We plan to use this

2 This follows easily from the injectivity of Z on the Torelli group [9, Corollary 8.22] since
the strut part of Z encodes the action of the Lagrangian subgroup of M, 1 on Hi (X, 1;7Z).
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homomorphism to study the algebraic structure of 3, ; and the inclusion of this
group in the monoid H(m, m).

In particular, we are interested in the twist group T,,,1 which is the kernel
of the natural homomorphism J,,,1 — Aut(F,,). Here F,,, := 71 (Vi, S) is the
fundamental group of V;,, based at the contractible subspace S. Note that T, ;
is the kernel of the degree 0 part of Z: 3,1 — Ap, since the latter gives the
homotopy class of bottom tangles in handlebodies. It is known that, as a subgroup
of M,y 1, the group T, 1 is generated by Dehn twists along boundaries of properly
embedded disks in V},, \ S [44].

The pair (handlebody group, twist group) can be regarded as an analogue of the
pair (mapping class group, Torelli group). We recall some of the features of the
Johnson—-Morita theory, which consists in studying the group M, ; via its action
on the lower central series of the fundamental group = of X,, 1 (see [50] for a
survey):

(1) the Johnson filtration JoMp,1 O JiMpm1 D - D JgMyu,1 D -+ consists of
the kernels of the actions of M,, ; on the successive nilpotent quotients of 7
(so that JoM,,,1 = My,,1 and J1M,, 5 is the Torelli group);

(2) for every k > 1, the k-th Johnson homomorphism vy maps Jix My, 1 to an
abelian group and encodes the action of J;M,, ;1 on the k-th nilpotent quotient
of m;

(3) for every k > 1, the k-th Johnson homomorphism has a diagrammatic
description and then corresponds to the leading term of the “tree reduction”
of the LMO functor Z on JeMpm1 [9, 26];

(4) more generally, the action of J;M,, ; on (the Malcev completion of) 7 is
encoded in the full “tree reduction” of the LMO functor Z by means of a
“symplectic expansion” [49].

There is an analogue of the Johnson—Morita theory for the pair (handlebody
group, twist group). This has been introduced in [27, §10.1] as an instance of
a “general theory” of Johnson homomorphisms, and will be studied with further
details in a forthcoming work. In this approach, the group 7, ; is studied via its
action on the lower central series of the kernel of the homomorphism 7 — F,
induced by the inclusion X,, 1 < V,,. Then the analogue of (1) is a filtration of
J(m,1 whose first term is 7, 1, and the analogue of (2) consists of two sequences
of homomorphisms (r,?)k and (r,i) x which happen to be equivalent one to the
other. There are also analogues of (3) and (4), which involve the “tree reduction”
of Z:H,y,1 — Am and the refinement of the “symplectic expansion” mentioned in
Section 12.1.
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We expect the homomorphism Z: 5, ; — A, to be a powerful tool to study the
associated graded of the lower central series of T;,,; in relation with the associated
graded of the Vassiliev—Goussarov filtration that has been identified in Section 10.4.

12.3. Extension of Z to boundary Lagrangian cobordisms. The reader may
wonder whether one can extend the functor Z:%0Cob — A on LCob =~ B to the
category £Cob of Lagrangian cobordisms, with the target category still involving
some homotopy classes of Jacobi diagrams in handlebodies. This does not hold,
but one can extend Z to a functor °Z:2£Cob — PA which fits into the following
commutative diagram of monoidal categories and monoidal functors:

SLCoh —Z— A

! l

breob —Z bA

.

LCob —Z 5 5y

The category 2£Cob of boundary Lagrangian cobordisms, defined below, is a
braided monoidal subcategory of £Cob which contains 5 Cob as a braided monoidal
subcategory. The vertical arrows on the left are inclusion functors. Like £ Cob
and £Cob, the objects of 2L Cob are non-negative integers. The morphisms from
m to n in L Cob are cobordisms C = (C,c):m — n, in the sense of Section 2.4,
such that the composite C := V,, o C:m — 0 is a homology handlebody where
the m meridian curves in dC = 9V}, bound mutually disjoint, connected, oriented
surfaces Sy, ..., Sy. This notion may be thought of as a cobordism version of
boundary links. Note that 2CCob(0,0) = LCob(0, 0) is essentially the monoid of
homology 3-spheres (whereas CCob (0, 0) is trivial).

The target category ?A of ®Z is much larger than A: there, Jacobi diagrams in
handlebodies may involve connected components with no univalent vertex. Note
that #A (0, 0) is the target of the LMO invariant of homology 3-spheres (whereas
A(0,0) is 1-dimensional). The category ?A includes A as a symmetric monoidal
linear subcategory, and the functor «’: 2A — “A is a natural extension of the hair
map «: A — A,

We plan to construct the functor ®Z as follows. Every boundary Lagrangian
cobordism C:m — n is obtained from a special Lagrangian cobordism C’:m — n
by surgery along a framed link L in C’ such that

e each component of L is null-homotopic in V;, o C' = V,,,,
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o the linking matrix of L is diagonal with diagonal entries +1, where linking

numbers and framings of components of L are defined in V,, o C' = V,.

The Kontsevich integral Z(C’' U L) € Af(m,n) is as outlined in Section 12.1.
Then the invariant 2Z(C) is obtained from Z(C’ U L) by applying an equivariant
version of the Aarhus integral developed by Garoufalidis and Kricker [16] to each
component of the surgery link L.

We hope that 2Z will be useful to study the LMO invariant of homology 3-
spheres in relation with their fundamental groups. Indeed, it seems difficult to
conduct such a study using the LMO functor Z instead of /Z.
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