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for bottom tangles in handlebodies
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Abstract. Using an extension of the Kontsevich integral to tangles in handlebodies similar to
a construction given by Andersen, Mattes and Reshetikhin, we construct a functorZWB! yA,
where B is the category of bottom tangles in handlebodies and yA is the degree-completion
of the category A of Jacobi diagrams in handlebodies. As a symmetric monoidal linear
category, A is the linear PROP governing “Casimir Hopf algebras”, which are cocommutative
Hopf algebras equipped with a primitive invariant symmetric 2-tensor. The functor Z
induces a canonical isomorphism grB Š A, where grB is the associated graded of the
Vassiliev–Goussarov filtration on B. To each Drinfeld associator ' we associate a ribbon
quasi-Hopf algebraH' in yA, and we prove that the braided Hopf algebra resulting fromH'
by “transmutation” is precisely the image by Z of a canonical Hopf algebra in the braided
category B. Finally, we explain how Z refines the LMO functor, which is a TQFT-like
functor extending the Le–Murakami–Ohtsuki invariant.
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1. Introduction

1.1. Background. The Kontsevich integral is a powerful knot invariant, taking
values in the space of chord diagrams or Jacobi diagrams, which are unitrivalent
graphs encoding Lie-algebraic structures [37, 4]. It is universal among rational-
valued Vassiliev–Goussarov finite type invariants [62, 19], and dominates var-
ious quantum link invariants such as the colored Jones polynomials. Le and
Murakami [39] and Bar-Natan [6] extended the Kontsevich integral to a functor

ZTWTq �! A

from the category Tq of framed oriented q-tangles to the category A of Jacobi
diagrams. The Kontsevich integral was generalized to links and tangles in thickened
surfaces by Andersen, Mattes and Reshetikhin [3] and by Lieberum [42].

Le, Murakami and Ohtsuki [41] constructed a closed 3-manifold invariant by
using the Kontsevich integral. After attempts of extending the Le–Murakami–
Ohtsuki (LMO) invariant to TQFTs by Murakami and Ohtsuki [51] and by Cheptea
and Le [10], Cheptea and the authors [9] constructed a functor

zZWLCobq �! tsA;

called the LMO functor. Here tsA is the category of top-substantial Jacobi diagrams
and LCobq is the “non-strictification” of the braided strict monoidal category
LCob of Lagrangian cobordisms. The category LCob is a subcategory of the
category Cob of cobordisms between once-punctured surfaces, studied by Crane
and Yetter [11] and Kerler [34]. The LMO functor gives representations of the
monoids of homology cylinders and, in particular, the Torelli groups, which were
studied in [26, 49]. (Other representations of the monoids of homology cylinders
have also been derived from the LMO invariant by Andersen, Bene, Meilhan and
Penner [1].)

1.2. The category B of bottom tangles in handlebodies. We consider here the
category B of bottom tangles in handlebodies [22], which we may regard as a
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braided monoidal subcategory of LCob [9]. The objects of B are non-negative
integers. For m � 0, let Vm � R3 denote the cube with m handles:

Vm WD
1 m

� � �

S
`

The morphisms from m to n in B are the isotopy classes of n-component bottom
tangles in Vm, which are framed tangles, each consisting of n arc components
whose endpoints are placed on a “bottom line” ` � @Vm, in such a way that the two
endpoints of each component are adjacent on `. Here are an example of a bottom
tangle and its projection diagram, for m D 2 and n D 3:

Ý (1.1)

As another example, observe that B.0; 1/ is essentially the set of knots in R3. We
associate to each T Wm ! n in B an embedding iT WVn ,! Vm which fixes the
“bottom square” S and identifies Vn with a regular neighborhood in Vm of the union
of S with the n components of T . Then the composition of m T�! n

T 0�! p in B is
represented by the image iT .T 0/ � Vm. (See Section 2 for further details.)

We can also define composition in B using “cube presentations” of bottom
tangles. Each morphism T in B is represented by a bottom tangle which can be
decomposed into a tangle U , called a cube presentation of T , and parallel families
of cores of the 1-handles of the handlebody. For instance, the bottom tangle (1.1)
has the following cube presentation:

ÝT D D U



596 K. Habiro and G. Massuyeau

We can define the composition T 0 ı T of two morphisms T and T 0 in B as the
bottom tangle obtained by putting a suitable cabling of T on the top of a cube
presentation of T 0. For example,

ı D

We may identify B with the opposite Hop of the category H of isotopy classes
of embeddings of handlebodies rel S , via the above correspondence T 7! iT .
The category B is also isomorphic to the category sLCob of special Lagrangian
cobordisms introduced in [9]: each bottom tangle T Wm! n inB corresponds to the
cobordism obtained as the exterior of the embedding iT WVn ,! Vm. The category
sLCob, and hence B, inherit from LCob � Cob a braided strict monoidal structure.
In B, tensor product on objects is addition and tensor product on morphisms is
juxtaposition; the braiding  D  1;1W 2! 2, which determines all braidings in B,
is

 D

The first author [22] (see also forthcoming [25]) introduced the category B in
order to study universal quantum invariants of links and tangles [28, 38, 58, 53, 32]
unifying the Reshetikhin–Turaev quantum invariants associated with each ribbon
Hopf algebra [12, 59]. Indeed, for each ribbon Hopf algebra H , there is a braided
monoidal functor

JH WB �!ModH (1.2)

extending the universal quantum link invariant to bottom tangles in handlebodies,
where ModH denotes the category of left H -modules.

The categoryB admits a Hopf algebra objectHB, whose counterpart in Cob was
introduced by Crane and Yetter [11] and Kerler [34]. This Hopf algebra structure
in B and Cob may be identified with the Hopf-algebraic structure for claspers
observed in [21] (see [22, 25]). The braided monoidal category B is generated
by the Hopf algebra HB together with a few other morphisms (see Section 9.1).
Transmutation introduced by Majid [46, 47] is a process of transforming each
quasi-triangular Hopf algebra H into a braided Hopf algebra xH in ModH . The
functor JH maps the Hopf algebra HB in B to the transmutation xH of H .
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In the present paper, using the Kontsevich integral ZT , we construct and study
a functor

Z'q WBq �! yA'q ;
which is a refinement of the LMO functor zZ on the category B Š sLCob � LCob,
and which may be considered as a “Kontsevich integral version” of the functor
JH in (1.2). The target category yA'q of Z'q is constructed from the category A

of Jacobi diagrams in handlebodies, described below. (See Section 4 for further
details.)

1.3. The category A of Jacobi diagrams in handlebodies. We work over a fixed
field K of characteristic 0. For m � 0, let xVm denote the square with m handles,
which is constructed by attaching m 1-handles on the top of a square and can be
regarded as the image of the handlebody Vm under the projection R3� R2. Let
Xn WD 1 � � � n be the 1-manifold consisting of n arc components.

The objects in A are non-negative integers. The morphisms from m to n in A

are linear combinations of .m; n/-Jacobi diagrams, which are Jacobi diagrams on
Xn mapped into xVm. Specifically, an .m; n/-Jacobi diagram D consists of
� a unitrivalent graph D such that each trivalent vertex is oriented, and such

that the set of univalent vertices is embedded into the interior of Xn,
� a map Xn [D ! xVm that maps @Xn into the “bottom edge” of xVm in a way

similar to how the endpoints of a bottom tangle are mapped into the bottom
line of a handlebody.

Here is an example of a .2; 3/-Jacobi diagram:

D D W 2 �! 3: (1.3)

As usual, the Jacobi diagrams obey the STU relations

D �
:

Moreover, we identify Jacobi diagrams that are homotopic in xVm relative to the
endpoints of Xn. Since Vm deformation retracts to xVm, we could equivalently give
the same definitions with xVm replaced by Vm. Thus the diagrams of the above kind
are also referred to as Jacobi diagrams in handlebodies.
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A square presentation of an .m; n/-Jacobi diagram D is a usual Jacobi dia-
gram U (i.e., a morphism in the target category A of the Kontsevich integral ZT)
which yields D by attaching parallel copies of cores of the 1-handles in xVm. For
example, here is a square presentation of D in (1.3):

U D : (1.4)

Although not every .m; n/-Jacobi diagram admits a square presentation, the STU
relation implies that every morphism m! n in A is a linear combination of such
diagrams admitting square presentations.

Composition in A is defined by using square presentations, similarly to how
composition in B is defined by using cube presentations. For l D0�! m

D�! n in A

and a square presentation U of D, the composition D ıD0W l ! n is the stacking
of a suitable cabling CU .D0/ on the top of U . Here the cabling CU .D0/ is obtained
from D0 by replacing each component of Xm with its parallel copies so that the
target of CU .D0/ matches the source of U ; we also replace each univalent vertex
attached to a component of Xm with the sum of all ways of attaching it (with signs)
to the parallel copies of this component. For example, if DW 2! 3 and U are as
in (1.3) and (1.4), respectively, and if

D0 D W 2 �! 2;

then we have

D ıD0 D W 2 �! 3:

(Here we use “boxes” to denote the above-mentioned operation on univalent
vertices; this notation is explained in Example 3.2.)
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The category A has a structure of a linear symmetric strict monoidal cate-
gory. Tensor product on objects is addition, and tensor product on morphisms is
juxtaposition. The symmetry in A is determined by

P D P1;1 D W 2 �! 2:

Moreover, the morphism spaces A.m; n/ are graded with the usual degree of Jacobi
diagrams (i.e., half the number of vertices), and their degree completions yA.m; n/
form a linear category yA, called the degree-completion of A.

We remark that Jacobi diagrams in surfaces, such as squares with handles, were
considered earlier in the above-mentioned works [3, 42]. In Section 4, we will
define A.m; n/ in a rather different way as a space of colored Jacobi diagrams. The
latter are essentially the same as .m; n/-Jacobi diagrams, i.e., Jacobi diagrams on
Xn mapped into xVm ' Vm, but the maps in xVm ' Vm are specified by decorating
the components of Xn and the dashed part of the diagram with some beads. These
beads are labeled by elements of

�1. xVm/ Š �1.Vm/ D F.x1; : : : ; xm/ DW Fm;

the free group on the elements x1; : : : ; xm corresponding to the 1-handles of Vm.
Colored Jacobi diagrams appeared in [17, 18] for instance.

1.4. Construction of a functor ZB. The non-strictification Cq of a strict mo-
noidal category C (whose object monoid is free) is the non-strict monoidal category
obtained from C by forcing the tensor product to be not strictly associative but
associative up to canonical isomorphisms; see Section 3.3 for the definition.
For example, the category Tq of q-tangles, which is the source category of the
Kontsevich integral ZT , is the non-strictification of the strict monoidal category T

of tangles. The object set Ob.T/ of T is the free monoid Mon.˙/ on two letters
C;� corresponding to downward and upward strings; correspondingly, the set
Ob.Tq/ is the free unital magma Mag.˙/ onC;�, consisting of fully-parenthesized
words in C;� such as C, �, .�C/, .�.CC//, including the empty word ¿.

Non-strictification is applied to strict monoidal categories such as B and yA
to produce non-strict monoidal categories Bq and yAq . Since Ob.B/ D Ob.yA/ D
¹0; 1; : : : º can be identified with Mon.�/, the free monoid on one letter �, we may set
Ob.Bq/ D Ob.yAq/ D Mag.�/, the free unital magma on �. The latter consists of
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parenthesized words in � such as ¿; �; .��/; ..��/�/. The length of w 2 Mag.�/ is
denoted by jwj. The morphisms in Bq are called bottom q-tangles in handlebodies.

Recall that a Drinfeld associator ' D '.X; Y / is a group-like element of
KhhX; Y ii satisfying the so-called pentagon and hexagon equations [14]; see
Section 6.2. Here is the main construction of the present paper.

Theorem 1.1 (see Theorem 9.3). For each Drinfeld associator ', there is a braided
monoidal functor

Z'q WBq �! yA'q (1.5)

from Bq , the non-strictification of the category B, to yA'q , a “deformation” of the
non-strictification of yA which is determined by '.

To prove Theorem 1.1, we will construct a tensor-preserving functor

ZBWBq �! yA: (1.6)

If we ignore the monoidal structures, the categories yA'q and yA are equivalent in a
natural way and, under this equivalence, the functors Z'q and ZB are essentially
the same for each '. We construct the functor ZB by using the usual Kontsevich
integralZTWTq ! A as follows. HereZT is defined from the Drinfeld associator ',
using the normalization

ZT
�
.C�/

�
D 1 W¿ �! .C�/ in A;

ZT
�
.C�/

�
D � W .C�/ �! ¿ in A;

where � is the usual normalization factor. (In the literature, one often uses the
normalization with both 1 and � in the above identities being replaced with �1=2,
so that the invariant behaves well under �-rotation of tangles. In our case, like
in [9], it is more important to have a simple value on .)

Consider T W v ! w in Bq with jvj D m and jwj D n. In order to defineZB.T /,
we choose a projection diagram of T

T D � � �

u0m
� � �
um

� � �
u1 u01

� � �

� � �

� � �

T0

T1 Tm

; (1.7)
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composed of q-tangles

T0W Qv �! w.C�/; Ti W¿ �! uiu
0
i .i D 1; : : : ; m/;

where

� u1; u01; : : : ; um; u0m 2 Mag.˙/,
� Qv WD v.u1u01; : : : ; umu0m/ is obtained from the non-associative word v in � by

substituting u1u01; : : : ; umu0m into the m �’s, and w.C�/ WD w.C�; : : : ;C�/
is defined similarly.

Then we define ZB.T /Wm! n in yA by

ZB.T / D � � �

u0m
� � �
um

� � �
u1 u01

� � �

� � �

� � �

ZT.T0/

ZT.T1/ ZT.Tm/

: (1.8)

We remark that the above definition ofZB.T /, simply as an invariant of tangles
in handlebodies, is similar to the definition of the Kontsevich integral of links
in thickened surfaces given by Andersen, Mattes and Reshetikhin [3]; see also
Lieberum [42].

Theorem 1.2 (see Theorem 8.2). There is a functor ZBWBq ! yA such that

� on objects w 2 Mag.�/, we have ZB.w/ D jwj,
� on morphisms T W v ! w in Bq decomposed as (1.7), we have (1.8).

Furthermore, the functor ZB is tensor-preserving, i.e.,

ZB.T ˝ T 0/ D ZB.T /˝ZB.T 0/

for morphisms T and T 0 in Bq .

The functor ZB is not monoidal since it does not preserve the associativity
isomorphisms. The braided monoidal category yA'q mentioned in Theorem 1.1 is
constructed from the non-strictification yAq of yA by redefining the associativity
isomorphisms and braidings to be the images by ZB of those of Bq . Then
Theorem 1.1 follows from Theorem 1.2.
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1.5. Basic properties of ZB. Here are some basic properties of ZB.
The functor ZB extends the usual Kontsevich integral for bottom q-tangles in

a cube, i.e., for each T W¿! w in Bq , regarded also as T W¿! w.C�/ in Tq , we
have ZB.T / D ZT.T /.

We can enrich A and yA over cocommutative coalgebras, i.e., the morphism
spaces in A and yA have cocommutative coalgebra structures, and the compositions
and tensor products on them are coalgebra maps (see Proposition 4.15). It follows
that ZB takes values in the group-like part of yA (see Proposition 8.7).

Let F denote the category of finitely generated free groups. Consider the functor

hWB Š Hop �! Fop

that maps each bottom tangle T Wm! n to the homomorphism .iT /�WFn ! Fm

between free groups. This functor gives an Fop-grading of the categoryB. Similarly,
we have an Fop-grading of the linear category A and its completion yA, where the
Fop-degree of each .m; n/-Jacobi diagramD is the homotopy class of the underlying
map Xn ! xVm. It follows that ZB preserves Fop-grading (see Proposition 8.8).

The degree 0 part of ZB.T /, which belongs to A0 Š KFop, is given by
the homotopy class h.T / of the components of T in the handlebody. The
degree 1 part of ZB.T /, which we do not study in the present paper, is given
by equivariant linking numbers of the components of T in the handlebody. We give
the values of ZB up to degree 2 on the generators of the monoidal category Bq

(see Proposition 9.7).

1.6. ZB as a universal finite type invariant. The main property of the invari-
ant ZB is the universality among Vassiliev–Goussarov finite type invariants, for-
mulated functorially. Similarly to the case of usual tangles in a cube [31], we define
the Vassiliev–Goussarov filtration

KBq D V0 � V1 � V2 � � � �

on the linearization KBq of the non-strict monoidal category Bq , and we consider
the same filtration on the linear strict monoidal category KB. The braiding in B

induces a symmetry in the associated graded GrKB ofKB. We give yA'q the degree
filtration.

Theorem 1.3 (see Theorem 10.7 and Theorem 10.8). The functorZ'q W bKBq ! yA'q
is an isomorphism of filtered linear braided monoidal categories. Consequently,
ZB induces an isomorphism GrKB Š A of graded linear symmetric monoidal
categories.
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It is hoped that Vassiliev–Goussarov invariants distinguish knots in S3 [62];
since the usual Kontsevich integral is universal among such invariants, the hope is
that the functor ZT is faithful. More generally, we expect the following.

Conjecture 1.4. The functor ZB (resp. Z'q ) is faithful. In other words, ZB

(resp. Z'q ) is a complete invariant of bottom tangles in handlebodies.

1.7. The functor ZB as a refinement of the LMO functor. The functor ZB

refines the LMO functor zZ in the following way.

Theorem 1.5 (see Theorem 11.2 and Remark 11.3). We have a commutative
diagram of functors:

Bq yA

LCobq
tsA

 !ZB

 !E  ! �

 !
zZ

(1.9)

Here the functor EWBq ! LCobq , with the image being sLCobq , is the faithful
functor that maps each bottom tangle in a handlebody to its exterior viewed as a
Lagrangian cobordism. The linear functor �W yA! tsA is a variant of the “hair map”
defined in [16, 18], and we may also regard it as a diagrammatic enhancement of
the “Magnus expansion”:

Fm ,! KhhX1; : : : ; Xmii; xi 7�! exp.Xi / D 1CXi C
X2i
2Š
C � � � :

Theorem 1.6 (see Theorem 11.6). The “hair functor” �W yA! tsA is not faithful.
In fact, if m; n � 1, then the map �W yA.m; n/! tsA.m; n/ is not injective.

Thus the functor ZB properly refines the restriction of the LMO functor zZ
to sLCob. We prove the above theorem by adapting Patureau-Mirand’s proof [55]
of the non-injectivity of the “hair map”, which itself uses Vogel’s results [63].
The authors do not know whether ZB is strictly stronger than zZ as an invariant
of bottom tangles in handlebodies. In fact, we conjecture that the LMO functor
zZWLCobq ! tsA itself is faithful.

Recall that the construction of the LMO functor zZ involves surgery presentations
of Lagrangian cobordisms. Here surgery translates into the Aarhus integral,
which Bar-Natan, Garoufalidis, Rozansky and Thurston [7] introduced in their
reconstruction of the LMO invariant. The construction of the functor ZB in the
present paper is simpler than that of zZ since it does not involve these surgery
techniques.
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1.8. Presentation of A. The category F of finitely generated free groups is a
symmetric monoidal category, and it is well known that it is freely generated as
such by a commutative Hopf algebra [56]. By generalizing another combinatorial
proof of this fact given in [24], we obtain the following presentation of A.

Theorem 1.7 (see Theorem 5.11). The linear symmetric strict monoidal category A

is freely generated by a “Casimir Hopf algebra”.

In other words, A is the linear PROP (see [45, 48]) governing Casimir Hopf
algebras. Here a Casimir Hopf algebra in a linear symmetric monoidal category
C D .C;˝; I / is a cocommutative Hopf algebra H in C equipped with a Casimir
2-tensor, i.e., a morphism cW I ! H ˝ H which is primitive, symmetric and
ad-invariant. (See Definition 5.1.) The Casimir Hopf algebra .H; c/ in A alluded
to in Theorem 1.7 is defined in (5.28).

To illustrate this kind of structure, consider a Lie algebra g with an ad-invariant,
symmetric element t 2 g˝2. Then the universal enveloping algebra U.g/ together
with t 2 g˝2 � U.g/˝2 is a Casimir Hopf algebra in the category VectK of K-
vector spaces. Thus, by Theorem 1.7, there is a unique linear symmetric monoidal
functor

W.g;t/WA �! VectK
which maps the Casimir Hopf algebra .H; c/ in A to the Casimir Hopf algebra
.U.g/; t/. Following the usual terminology, we call W.g;t/ the weight system
associated to the pair .g; t /.

1.9. Ribbon quasi-Hopf algebras in yA. Recall that a quasi-Hopf algebraH [13]
(see also [30]) is a variant of a Hopf algebra, where coassociativity does not hold
strictly, but is controlled by a 3-tensor ' 2 H˝3; see Section 6.1 for the definition.
The notions of quasi-triangular and ribbon Hopf algebras, used in the construction
of quantum link invariants [59], admit quasi-Hopf versions, using which one can
construct link invariants as well [2]. One can also consider quasi-Hopf algebras in
symmetric monoidal categories.

As is well known, if t is an ad-invariant, symmetric 2-tensor for a Lie algebra g

as above, then each Drinfeld associator ' 2 KhhX; Y ii induces a ribbon quasi-Hopf
algebra structure on U.g/ŒŒh��. Here is a universal version of this fact.

Theorem 1.8 (see Theorem 6.2). For each Drinfeld associator ', the Casimir
Hopf algebra .H; c/ in A induces a canonical ribbon quasi-Hopf algebraH' in yA.

Specifically, the weight systemW.g;t/ associated to the above pair .g; t /mapsH'
to the quasi-triangular quasi-Hopf structure on U.g/ŒŒh�� considered in [14].
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Klim [36] generalized Majid’s transmutation to quasi-Hopf algebras. We can
perform transmutation in arbitrary symmetric monoidal categories. In particular,
by transmutation, the quasi-triangular quasi-Hopf algebraH' yields a Hopf algebra
H' in the braided monoidal category ModH' of left H'-modules in yA. On the
other hand, by Theorem 1.1, the Hopf algebra HBq in Bq (corresponding to the
Hopf algebra HB in B) is mapped by the braided monoidal functor Z'q WBq ! yA'q
into a Hopf algebra Z'q .HBq / in yA'q .

Theorem 1.9 (see Theorem 9.6). The Hopf algebra Z'q .HBq / in yA'q and the
transmutation H' in ModH' coincide, through a canonical embedding yA'q !
ModH' .

To prove Theorem 1.9, we compute the values of Z'q on a generating system
of Bq including the structure morphisms of HBq ; see Proposition 9.2.

1.10. Organization of the paper. We organize the rest of the paper as follows.
In Section 2, we define the categories B, H and sLCob. In Section 3, we recall the
definition of the usual Kontsevich integral Z WD ZT . In Section 4, we define the
category A of Jacobi diagrams in handlebodies and we start studying its algebraic
structure. In Section 5, we go further in this study by giving a presentation of A as
a linear symmetric monoidal category. In Section 6, we show that each Drinfeld
associator ' D '.X; Y / yields a ribbon quasi-Hopf algebra H' in the degree-
completion yA of A and, in Section 7, we consider the weight system functors on A

associated to Lie algebras with symmetric ad-invariant 2-tensors. The construction
of the functor Z WDZBWBq ! yA is done in Section 8, where we also give some
of its basic properties. In Section 9, we define the braided monoidal functor
Z
'
q WBq ! yA'q : thanks to this variant of ZB, we interpret the values of ZB on a

generating system ofBq as the result of applying Majid’s transmutation to the ribbon
quasi-Hopf algebra H' . In Section 10, we show that Z'q induces an isomorphism
of braided monoidal categories between the completion ofKBq with respect to the
Vassiliev–Goussarov filtration and yA'q . In Section 11, we explain how the functor
ZBWBq ! yA refines the LMO functor zZWLCobq ! tsA. Finally, in Section 12,
we explain some applications that we expect from our results.

1.11. Conventions. In what follows, we fix a field K of characteristic 0. By a
“vector space” (resp. a “linear map”), we always mean a “K-vector space” (resp. a
“K-linear map”).
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Let N D ¹0; 1; 2; : : :º be the set of non-negative integers. The unit interval is
denoted by I WD Œ�1; 1� � R, and we denote by .Ex; Ey; Ez/ the usual frame of R3
given by Ex D .1; 0; 0/, Ey D .0; 1; 0/, Ez D .0; 0; 1/.

By a “monoidal functor” between (strict or non-strict) monoidal categories, we
always mean a strict monoidal functor.

Acknowledgments. The work of K. Habiro is partly supported by JSPS KAK-
ENHI Grant Number 15K04873; the work of G. Massuyeau is supported in part
by the project ITIQ-3D, funded by the “Région Bourgogne Franche-Comté.” The
authors are grateful to Mai Katada and Jean-Baptiste Meilhan for helpful comments
on the previous versions of the manuscript.

2. The category B of bottom tangles in handlebodies

In this section, we define three strict monoidal categories
� B of bottom tangles in handlebodies [22],
� H of embeddings of handlebodies [23],
� sLCob of special Lagrangian cobordisms [9],

with the same object monoid Ob.B/ D Ob.H/ D Ob.sLCob/ D N. They are
essentially the same structures since we have isomorphisms of strict monoidal
categories

B Š Hop Š sLCob:

The categories B and H will be studied in more detail in [25].
Let m; n; p be non-negative integers throughout this section.

2.1. Bottom tangles in handlebodies. Let Vm � R3 denote the handlebody of
genus m that is obtained from the cube I 3 � R3 by attaching m handles on the top
square I 2 � ¹1º:

Vm WD

Ex

Ey
Ez

1 m

� � �

S
`

A1 � � � Am

(2.1)
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We call S WD I 2 � ¹�1º the bottom square of Vm and ` WD I � ¹0º � ¹�1º the
bottom line of Vm. Let A1; : : : ; Am denote the arcs obtained from the cores of the
handles by “stretching” the ends down to `.

An n-component bottom tangle T D T1 [ � � � [ Tn in Vm is a framed, oriented
tangle consisting of n arc components T1; : : : ; Tn such that

(1) the endpoints of T are uniformly distributed along `,

(2) for i D 1; : : : ; n, the i-th component Ti runs from the 2i-th endpoint to the
.2i � 1/-st endpoint, where we count the endpoints of T from the left.

We usually depict bottom tangles by drawing their orthogonal projections onto
the plane R � ¹1º �R and assuming the blackboard framing convention; i.e., the
framing is given by the vector field Ey. For example, here is a 3-component bottom
tangle in V2 together with a projection diagram:

Ý
(2.2)

2.2. The category B of bottom tangles in handlebodies. Morphisms from m

to n in B are isotopy classes of n-component bottom tangles in Vm. Define the
composition of two bottom tangles m T�! n

T 0�! p by

T 0 ı T D iT .T 0/Wm �! p;

where
iT WVn ,�! Vm

is an embedding which maps S � Vn identically onto S � Vm and maps Ai
onto Ti in a framing-preserving way for all i D 1; : : : ; n. Here is an example of
the composition of morphisms 2! 1! 2:

ı D (2.3)
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The identity morphism idmWm! m in B is the union A WD A1 [ � � � [ Am of the
“stretched” cores of the handles of Vm:

idm D

1 m
� � �

� � �
(2.4)

The tensor product in B is juxtaposition.

2.3. The category H of embeddings of handlebodies. Morphisms from n tom
in H are isotopy classes rel S of embeddings Vn ,! Vm restricting to idS . Define
the composition and the identity in H in the obvious way.

We have an isomorphism B Š Hop of categories given by

H.n;m/
Š�!B.m; n/;

.Vn
i

,�! Vm/ 7�! .i.A/ � Vm/;
.Vn

iT
,�! Vm/ 7�!.T � Vm/;

transporting the strict monoidal structure of B to H.

2.4. The category sLCob of special Lagrangian cobordisms. Here we will
define the category sLCob of special Lagrangian cobordisms. We will not need it
until Section 11; we define it here for comparison with B.

Let †m;1 be the compact, connected, oriented surface of genus m with one
boundary component, located at the top of Vm � R3:

†m;1 WD

1 m

� � �

	

We identify @†m;1 with @I 2.
A cobordism from †m;1 to †n;1 is an equivalence class of pairs .C; c/ of

a compact, connected, oriented 3-manifold C and an orientation-preserving
homeomorphism

cW ..�†n;1/ [@I2�¹�1º .@I 2 � I / [@I2�¹1º †m;1/ �! @C:

Here, two cobordisms .C; c/ and .C 0; c0/ are equivalent if there is a homeomor-
phism f WC ! C 0 such that c0 D f j@C ı c. For instance, the handlebody Vm (with
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the obvious boundary parametrization) defines a cobordism from †m;1 to †0;1.
More generally, every n-component bottom tangle T � Vm defines a cobordism

ET WD .ET ; eT /

from †m;1 to †n;1 by considering the exterior ET of T in Vm, together with the
boundary parametrization eT induced by the framing of T .

Define the category Cob of 3-dimensional cobordisms introduced by Crane
and Yetter [11] and Kerler [34] as follows. Set Ob.Cob/ D N. Morphisms from m

to n in Cob are equivalence classes of cobordisms from †m;1 to †n;1. We obtain
the composition C 0 ı C Wm! p of C 0 D .C 0; c0/Wn! p and C D .C; c/Wm! n

from C 0 and C by identifying the target surface of C with the source surface of C 0
using the boundary parametrizations. The identity morphism idmWm! m is the
cylinder †m;1 � I with the boundary parametrization defined by the identity maps.

We equip Cob with a strict monoidal structure such that m ˝ m0 D m C m0,
and we obtain the tensor product C ˝ C 0 of C D .C; c/ and C 0 D .C 0; c0/ from C

and C 0 by identifying the right square c.¹1º � I � I / of @C with the left square
c0.¹�1º � I � I / of @C 0.

A cobordism C from †m;1 to †n;1 is said to be special Lagrangian if we have

Vn ı C D VmWm �! 0:

The special Lagrangian cobordisms form a monoidal subcategory sLCob of Cob.
We have an isomorphism B Š sLCob of strict monoidal categories given by

B.m; n/
Š�!sLCob.m; n/;

.T � Vm/7�! ET ;

.A � .Vn ı C// 7�!C :

3. Review of the Kontsevich integral

In this section, we briefly review the combinatorial construction of the Kontsevich
integral of tangles in the cube. See [6, 39, 31, 54] for further details.

3.1. Free monoids and magmas. For a finite set ¹s1; : : : ; srº, let Mon.s1; : : : ; sr/
denote the free monoid on s1; : : : ; sr , consisting of words in the letters s1; : : : ; sr .
For w 2 Mon.s1; : : : ; sr/, let jwj denote the length of w, and w1; : : : ; wjwj the
consecutive letters in w.
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Let also Mag.s1; : : : ; sr/ denote the free unital magma on s1; : : : ; sr , consisting
of non-associative words in s1; : : : ; sr . Let

U WMag.s1; : : : ; sr/ �! Mon.s1; : : : ; sr/

be the (surjective) map forgetting parentheses. Sometimes the word U.w/ for
w 2 Mag.s1; : : : ; sr/ will be simply denoted by w.

3.2. The category T of tangles in the cube. By a tangle in the cube I 3 we mean
a framed, oriented tangle 
 in I 3, whose boundary points are on the intervals
I � ¹0º � ¹�1; 1º. We assume that the framing at each endpoint is the vector Ey. In
figures we use the blackboard framing convention as before.

The source s.
/ 2 Mon.˙/ WD Mon.C;�/ of a tangle 
 is the word inC and�
that are read along the oriented interval I � ¹0º � ¹C1º, where each boundary
point of 
 is given the sign C (resp. �) when the orientation of 
 at that point is
downwards (resp. upwards). The target t .
/ 2 Mon.˙/ of 
 is defined similarly.
The tangle 
 is said to be from s.
/ to t .
/.

We define the strict monoidal category T of tangles (in the cube) as follows. Set
Ob.T/ D Mon.˙/. Morphisms from w to w0 in T are the isotopy classes of tangles
from w to w0. We obtain the composition 
 ı 
 0 of two tangles 
 and 
 0 such that
t .
 0/ D s.
/ by gluing 
 0 on the top of 
 . The identity idw Ww ! w of w 2 Ob.T/
is the trivial tangle with straight vertical components. The tensor product in the
strict monoidal category T is juxtaposition.

3.3. The category Tq of q-tangles in the cube. Here we define the category Tq

of q-tangles in the cube as the “non-strictification” of the strict monoidal category T.
Since we use this construction also for other categories, we first give a general
definition.

Let C be a strict monoidal category such that the object monoid Ob.C/ is a
free monoid Mon.S/ on a set S . Then the non-strictification of C is the (non-
strict) monoidal category Cq defined as follows. Set Ob.Cq/ D Mag.S/, the free
unital magma on S . Let U WMag.S/! Mon.S/ be the canonical map, forgetting
parentheses. Set Cq.x; y/ D C.U.x/; U.y// for x; y 2 Ob.Cq/ D Mag.S/. The
compositions, identities and tensor products in Cq are given by those of C. We
define the associativity isomorphism by

˛x;y;z D idx˝y˝z 2 Cq..x ˝ y/˝ z; x ˝ .y ˝ z// D C.x ˝ y ˝ z; x ˝ y ˝ z/:



The Kontsevich integral for bottom tangles in handlebodies 611

Note that the tensor product in Cq is strictly left and right unital, i.e., ¿ ˝ x D
x D x˝¿ for x 2 Ob.Cq/, where ¿ 2 Mag.S/ is the unit. Then Cq is a monoidal
category, which is not strict if S is not empty. The map U WOb.Cq/ ! Ob.C/
extends to an equivalence of categories

U WCq '�! C

such that U.f / D f for all f 2 Cq.x; y/ D C.U.x/; U.y//. If C is a braided (resp.
symmetric) strict monoidal category, then the non-strictification Cq naturally has
the structure of a braided (resp. symmetric) non-strict monoidal category.

Now, define the non-strict braided monoidal category Tq of q-tangles (in
the cube) to be the non-strictification of T. Since Ob.T/ D Mon.˙/, we have
Ob.Tq/ D Mag.˙/ WD Mag.C;�/.

3.4. Cabling. Here we review the definition of the “cabling” operations for q-
tangles in the cube.

Define the duality involution w 7! w� on Mag.˙/ inductively by ¿� D ¿,
˙� D � and .ww0/� D .w0/�w�. For w 2 Mag.˙/ and f W ¹1; : : : ; jwjº !
Mag.˙/, we obtain Cf .w/ 2 Mag.˙/ from w by replacing each of its consecutive
letters wi with the subword f .i/ (resp. f .i/�) if wi D C (resp. wi D �). For
every q-tangle 
 Ww ! w0 and every map1 f W�0.
/! Mag.˙/, let Cf .
/ be the
q-tangle obtained from 
 by replacing each connected component c � 
 with the
f .c/-cabling of c. (For instance, if f .c/ D �, then the f .c/-cabling of c is obtained
by reversing the orientation of c and, if f .c/ D .CC/, then the f .c/-cabling of c
is obtained by doubling c using the given framing.) We call Cf .
/ the f -cabling
of 
 , and we regard it as a morphism

Cf .
/ W Cfs .w/ �! Cft .w
0/

in Tq . Here fsW ¹1; : : : ; jwjº ! Mag.˙/ denotes the composition of f and the
map ¹1; : : : ; jwjº ! �0.
/ relating the top boundary points of 
 to its connected
components, and ft W ¹1; : : : ; jw0jº ! Mag.˙/ is defined similarly.

One can easily verify the following lemma explaining the behavior of the cabling
operation on compositions.

1 Here the reader is warned that 
 should not be thought of as a morphism in Tq , especially
if 
 has (more than one) closed components. Note that if 
 denotes a morphism in Tq , i.e., an
isotopy class of q-tangles, then “�0.
/” is not well-defined.



612 K. Habiro and G. Massuyeau

Lemma 3.1. For q-tangles 
 and 
 0 with s.
/ D t .
 0/ and maps f W�0.
/ !
Mag.˙/ and f 0W�0.
 0/! Mag.˙/ with fs D f 0t , we have

Cf [f 0.
 ı 
 0/ D Cf .
/ ı Cf 0.
 0/; (3.1)

where f [ f 0 denotes the unique map �0.
 ı 
 0/! Mag.˙/ compatible with f
and f 0 through the canonical maps �0.
/! �0.
 ı 
 0/ and �0.
 0/! �0.
 ı 
 0/.

3.5. Spaces of Jacobi diagrams. Let X be a compact, oriented 1-manifold.
A chord diagram D on X is a disjoint union of unoriented arcs, called chords, and
whose set of endpoints is embedded in the interior of X . We identify two chord
diagramsD andD0 onX if there is a homeomorphism .X[D;X/! .X[D0; X/
preserving the orientations and connected components of X . Let A.X/ be the
vector space generated by chord diagrams on X modulo the 4T relation:

C D C
4T

(3.2)

Here the dashed lines represent chords, and the solid lines are intervals in X with
the orientation inherited from X .

Bar-Natan [4] gave an alternative definition of A.X/ as follows. A Jacobi
diagram D on X is a unitrivalent graph such that each trivalent vertex is oriented
(i.e., equipped with a cyclic ordering of the incident half-edges), the set of univalent
vertices is embedded in the interior of X , and such that each connected component
of D contains at least one univalent vertex. We identify two Jacobi diagrams
D and D0 on X if there is a homeomorphism .X [ D;X/ ! .X [ D0; X/
preserving the orientations and connected components of X and respecting the
vertex-orientations. In pictures, we draw the 1-manifold partX with solid lines, and
the graph partDwith dashed lines, and the vertex-orientations are counterclockwise.
For instance, we can view chord diagrams as Jacobi diagrams without trivalent
vertices. The vector space A.X/ is isomorphic to, hence identified with, the vector
space generated by Jacobi diagrams on X modulo the STU relation:

STU

D �
(3.3)

As proved in [4, Theorem 6], the STU relation implies the AS and IHX relations:

AS IHX

D � � C D 0
(3.4)
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Note that A.X/ is a graded vector space, where we define the degree of a
Jacobi diagram to be half the total number of vertices. Let A.X/ also denote its
degree-completion.

Example 3.2. The box notation is a useful way to represent certain linear combi-
nations of Jacobi diagrams:

WD �
� � � � � � � � � � � � � � �

˙ � � �CC

Here, dashed edges and solid arcs are allowed to go through the box, and each
of them contributes to one summand in the box notation. A solid arc contributes
with a plus or minus sign, depending on the compatibility of its orientation with
the direction of the box. A dashed edge always contributes with a plus sign, the
orientation of the new trivalent vertex being determined by the direction of the
box. We also define

� � �

WD

� � �

so that D �

� � � � � �

.

3.6. The category A of Jacobi diagrams. A compact, oriented 1-manifold X
is said to be polarized if @X is decomposed into a top part @CX and a bottom part
@�X with each of them totally ordered. The target t .X/ 2 Mon.˙/ of X is the
word obtained from @�X by replacing each positive (resp. negative) point with C
(resp. �). The source s.X/ 2 Mon.˙/ of X is defined similarly using @CX , but
the rule for the signs C;� is reversed.

Example 3.3. Every q-tangle is naturally regarded as a polarized 1-manifold.

Example 3.4. For w 2 Mon.˙/, let # w� � �# denote the identity tangle idw as a
polarized 1-manifold.

We define the categoryA of Jacobi diagrams as follows. Set Ob.A/ D Mon.˙/,
and for w;w0 2 Mon.˙/ set

A.w;w0/ D
a
X

A.X/Sc.X/ (3.5)



614 K. Habiro and G. Massuyeau

whereX runs over homeomorphism classes of polarized 1-manifolds with s.X/Dw
and t .X/ D w0, c.X/ is the number of closed components of X , the symmetric
group Sc.X/ acts on A.X/ by permutation of closed components and A.X/Sc.X/
denotes the space of coinvariants. The composition D ıD0 of a Jacobi diagram D

on a polarized 1-manifold X with a Jacobi diagram D0 on a polarized 1-manifold
X 0 with s.X/ D t .X 0/ is the Jacobi diagram D tD0 on X [s.X/Dt.X 0/ X 0. The
identity idw of w 2 Ob.A/ is the empty Jacobi diagram on # w� � �#.

The category A admits a strict monoidal structure such that the tensor product
on objects is concatenation of words, and the tensor product on morphisms is
juxtaposition of Jacobi diagrams.

Remark 3.5. Note that the category A is not linear, since we can not add up two
Jacobi diagrams with the same source and target but with different underlying
polarized 1-manifolds. However, by setting

A.w;w0/ D
M
X

A.X/Sc.X/

instead of (3.5), we obtain a linear strict monoidal category A. We sometimes
need this linear version of A.

Finally, we have the following analogs of the cabling operations for q-tangles
recalled in Section 3.3. We define the dualityw 7! w� on Mon.˙/ similarly to that
on Mag.˙/. For w 2 Mon.˙/ and f W ¹1; : : : ; jwjº ! Mon.˙/, we define Cf .w/
as in the non-associative case. For every D 2 A.X/ representing a morphism in
A.w;w0/ with w;w0 2 Mon.˙/ and every map f W�0.X/! Mon.˙/, we define
the f -cabling of D as an element Cf .D/ 2 A.Cf .X// representing a morphism

Cf .D/WCfs .w/ �! Cft .w
0/ in A

as follows. Let fs be the obvious map ¹1; : : : ; jwjº ! �0.X/ composed with f ,
and define ft similarly. Then we obtain Cf .D/ from D by applying, to every
connected component c � X , the usual “deleting operation” � if jf .c/j D 0, or
the usual “doubling operation” � repeatedly to get jf .c/j new solid components
if jf .c/j > 0, and then the usual “orientation-reversal operation” S to every new
solid component corresponding to a letter � in the word f .c/. (The definitions of
the operations �, � and S appear in [54, §6.1] for instance.)

We can easily verify the following analog of Lemma 3.1.
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Lemma 3.6. Let D and D0 be Jacobi diagrams on polarized 1-manifolds X and
X 0, respectively, with s.X/ D t .X 0/. Let f W�0.X/ ! Mon.˙/, f 0W�0.X 0/ !
Mon.˙/ be maps with fs D f 0t . Then we have

Cf [f 0.D ıD0/ D Cf .D/ ı Cf 0.D0/; (3.6)

where f [f 0 denotes the unique map�0.X[s.X/Dt.X 0/X 0/! Mon.˙/ compatible
with f and f 0.

3.7. The Kontsevich integral Z . Let ˆ 2 A.###/ be an associator. In other
words, ˆ is the exponential of a series of connected Jacobi diagrams on ### which
trivializes if any of the three strings is deleted, and ˆ is solution of one “pentagon”
equation and two “hexagon” equations; see [54, (6.11)–(6.13)]. Define

� D

0
B@ S2.ˆ/

1
CA
�1

D C 1

48
C .deg > 2/ 2 A.#/; (3.7)

where S2WA.###/! A.#"#/ is the diagrammatic “orientation-reversal operation”
applied to the second string.

Theorem 3.7 (See [6, 8, 39, 57, 31]). Fix a; u 2 Q with aC u D 1. There is a
unique tensor-preserving functor ZWTq ! A such that
(i) Z is the canonical map U WMag.˙/! Mon.˙/ on objects,
(ii) for 
 Ww ! w0 in Tq , we have Z.
/ 2 A.
/Sc.
/ � A.w;w0/,
(iii) for 
 Ww ! w0 in Tq and ` 2 �0.
/, the value of Z on the q-tangle obtained

from 
 by reversing the orientation of ` is S`.Z.
//,
(iv) Z takes the following values on elementary q-tangles:

Z

� .CC/

.CC/

�
D

exp
�
1
2

�
2 A

� CC
CC

�
� A.CC;CC/;

Z

� .w.w0w00//
..ww0/w00/

�
D Cw;w0;w00.ˆ/ 2 A

�
#ww0w00� � � � � � #

�
� A.ww0w00; ww0w00/

for w;w0; w00 2 Mag.˙/;
Z
�
.C�/

�
D

�a

2 A
�
C�

�
� A.¿;C�/;

Z
�
.C�/

�
D

�u
2 A

�
C�

�
� A.C�;¿/:
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The proof of the case a D u D 1=2 [54, Theorem 6.7, Proposition 6.8(2)] apply
to the general case. (The reader should, however, be aware that the composition
laws for the categories Tq and A adopted in [54] are opposite to ours.)

Now we review the behavior of the Kontsevich integral under cabling. For
w 2 Mag.˙/, define aw ; a0w ; uw ; u0w 2 A.# w� � �#/ � A.w;w/ by

ZCw

�
.C�/

�
D

w�� � �w� � �
aw

CwZ
� �
.C�/

; ZCw

�
.�C/

�
D

w� � �w�� � �
a0w

CwZ
� �
.�C/

;

ZCw

�
.C�/

�
D w� � � w�� � �

uw

CwZ
� �.C�/

; ZCw

�
.�C/

�
D w�� � � w� � �

u0w

CwZ
� �.�C/

:

Lemma 3.8. For w 2 Mag.˙/, we have aw D a0w , uw D u0w and aw D .uw/�1.

Proof. Using Lemmas 3.1 and 3.6, we can deduce aw D a0w , uw D u0w and
a0wuw D 1 from

,D D , D

respectively. See the proof of [54, Proposition 6.8(1)] for the case a D u D 1=2
and w D .CC/. We can easily adapt the arguments given there to the general
case. �

For w 2 Mon.˙/ and f W ¹1; : : : ; jwjº ! Mag.˙/, we obtain

c.w; f /WCf .w/ �! Cf .w/ in A

from idw Ww ! w by replacing, for each i 2 ¹1; : : : ; jwjº, the i-th string with af .i/
if wi D C and with idf .i/� if wi D �.
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Lemma 3.9. For a q-tangle 
 Ww ! w0 and f W�0.
/! Mag.˙/, we have

ZCf .
/ D c.w0; ft / ı CfZ.
/ ı c.w; fs/�1:

Here, fs is the composition of f with the map ¹1; : : : ; jwjº ! �0.
/ relating the
top boundary points of 
 to its connected components, and ft is defined similarly.

Proof. This lemma is proved by adapting the arguments of [40, Lemma 4.1], and
by using Lemma 3.8. �

To conclude this section, we emphasize that there are several “good” choices
of a and u in Theorem 3.7. The most common choice is to take a D u D 1=2.
However, for technical convenience, we set

a D 0; u D 1:

Thus, in what follows, the “cabling anomaly” aw 2 A.# w� � �#/ � A.w;w/ assigned
to w 2 Mag.˙/ satisfies

ZCw

�
.C�/

�
D

w�� � �w� � �
aw

: (3.8)

4. The category A of Jacobi diagrams in handlebodies

In this section, we introduce the linear symmetric strict monoidal category A of
Jacobi diagrams in handlebodies.

4.1. Spaces of colored Jacobi diagrams. Here we define the notion of Jacobi
diagrams colored by elements of a group [17, 42], and define the space A.X; �/ of
�-colored Jacobi diagrams on a 1-manifold X , where � is a group.

Let S be a set, and D a Jacobi diagram on a compact, oriented 1-manifold X .
An S-coloring of D consists of an orientation of each edge of D and an S-valued
function on a (possibly empty) finite subset of .intX[D/nVert.D/. In figures, the
S-valued function is encoded by “beads” colored with elements of S . We identify
two S-colored Jacobi diagrams D and D0 on X if there is a homeomorphism
.X [ D;X/ Š .X [ D0; X/ preserving the orientations and the connected
components of X , respecting the vertex-orientations and compatible with the
S-colorings. These definitions for Jacobi diagrams restrict to chord diagrams.
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Now, let S D � be a group. Two �-colorings of a chord diagram D on X are
said to be equivalent if they are related by a sequence of the following local moves:

x y xy 1
$ ; ;

$ ;

$
;

;

$

x y xy 1
$

x Nx x

x

x
$ :

8x; y 2 � ,

(4.1)

Here and in what follows, we use the notation Nx D x�1. (In the fifth relation above,
it is understood that, if there are several beads on the reversed edge, then the colors
at all the beads on it should be inverted.)

Example 4.1. Here are several equivalent �-colored chord diagram on " ", where
x; y 2 � .

D D Dx

Nx

xy

y
x

x Nx

xy

y
x

1

xy

y

y

xy 1

y
x

Similarly, two �-colorings of a Jacobi diagramD onX are said to be equivalent
if they are related by a sequence of the local moves in (4.1) and

$x
x

x
8x 2 � , :

Thus, �-colored Jacobi diagrams generalize �-colored chord diagrams. Here is a
topological interpretation of �-colorings.

Lemma 4.2. Let D be a Jacobi diagram on X with no closed component. Then
there is a bijection between the set of equivalence classes of �-colorings of D and
Hom.�1..X [D/=@X; ¹@Xº/; �/.

Corollary 4.3. LetD and X be as in Lemma 4.2. Let � D �1.M; ?/ for a pointed
space .M; ?/, and assume that @X is embedded in a contractible neighborhood of
? in M . Then the equivalence classes of �-colorings of D correspond bijectively
to the homotopy classes (rel @X) of continuous maps .X [D; @X/! .M; @X/.
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Proof of Lemma 4.2. Let c be a�-coloring ofD, and let˛ be a loop in .X[D/=@X
based at ¹@Xº. Let 'c.˛/ 2 � be the product of the contributions of all the
consecutive beads along ˛, where each bead contributes either by its color or its
inverse depending on compatibility of ˛ with the orientation at the bead. This
clearly defines a homomorphism 'c W�1..X [D/=@X; ¹@Xº/! � , depending only
on the equivalence class of c. Thus, we obtain a map ¹cº 7! 'c , from the set of
equivalence classes of �-colorings ofD to Hom.�1..X [D/=@X; ¹@Xº/; �/. One
can construct the inverse map by using a maximal tree of the graph .X [D/=@X ;
see [17, Lemma 4.3] for a very similar result. �

A �-colored Jacobi diagram D on X is said to be restricted if D has no bead
(but there may be beads on X). Two restricted �-colorings of a Jacobi diagram
D on X are said to be equivalent if they are related by a sequence of the first two
moves in (4.1) and

8x 2 � ,
a component of D

� � �

$
a component of D

x Nx x Nx x Nx� � �

The above figure shows all the univalent vertices (and their neighborhoods in X)
of the same connected component of D. For instance, if D is a chord diagram,
then there are exactly two such vertices.

Let Ach.X; �/ (resp. AJac.X; �/) denote the vector space generated by equiva-
lence classes of�-colored chord (resp. Jacobi) diagrams onX , modulo the 4T (resp.
STU) relation. There are also “restricted” versions Ach;r.X; �/ and AJac;r.X; �/

of Ach.X; �/ and AJac.X; �/, respectively. We have a commutative diagram of
canonical maps:

Ach;r.X; �/ Ach.X; �/

AJac;r.X; �/ AJac.X; �/

 !uch

 !�r  ! �

 !
uJac

(4.2)

The special case � D ¹1º of Theorem 4.4 below is due to Bar-Natan [4,
Theorem 6]. The general case seems to be new.

Theorem 4.4. All the maps in (4.2) are isomorphisms. Furthermore, the AS and
IHX relations hold in AJac;r.X; �/ and AJac.X; �/.

Proof. By the STU relation, �r is surjective. The map � is also surjective by the
same reason and the following observation: each bead in the neighborhood of a



620 K. Habiro and G. Massuyeau

univalent vertex of a �-colored Jacobi diagram onX can be displaced fromD using
the last move of (4.1) (without changing the equivalence class of the �-coloring).
Therefore, it suffices to prove that

(i) � is injective,
(ii) uch is an isomorphism,
(iii) the AS and IHX relations hold in AJac.X; �/.

The AS and IHX relations in AJac.X; �/ reduce to the STU relation by using
the above observation and the arguments of the last two paragraphs in the proof of
[4, Theorem 6]. This proves (iii).

To prove (ii) we construct an inverse to uch. Applying the operation

x1x2 � � � xr

Nx x WD
Qr
iD1 xi

7�!

to all the chords transforms each�-colored chord diagram onX into a restricted one.
It is easy to check that this operation maps equivalent �-colorings to equivalent
�-colorings and defines an inverse to uch.

To prove (i), we partly follow the proof of [4, Theorem 6]. Let Y be a compact,
oriented 1-manifold. Let DJac.Y; �/ denote the set of equivalence classes of �-
colored Jacobi diagrams on Y . For k � 0, let DJac

k
.Y; �/ � DJac.Y; �/ consist of

diagrams with exactly k trivalent vertices. Let  0WDJac
0 .Y; �/! Ach.Y; �/ be the

canonical map.

Claim. There are maps  k WDJac
k
.Y; �/! Ach.Y; �/ for k � 1 such that we have

 k.D
S / D  k�1.DT

i / �  k�1.DU
i /

for k � 1 andDS 2 DJac
k
.Y; �/, where i denotes a univalent vertex ofDS adjacent

to a trivalent vertex vi and where DT
i ;D

U
i 2 DJac

k�1
.Y; �/ differ from DS around i

as shown in the STU relation (3.3).

Applying this claim to Y D X , we obtain a left inverse  WAJac.X; �/ !
Ach.X; �/ to �. This proves (i) and concludes the proof of Theorem 4.4. �

Proof of Claim. By the 4T relation,  1 is well defined from  0. Let k > 1 and
suppose  1; : : : ;  k�1 have been defined for all compact, oriented 1-manifolds Y .
To have  k well defined, we need to check

 k�1.D
T
i / �  k�1.DU

i / D  k�1.DT
j / �  k�1.DU

j / (4.3)



The Kontsevich integral for bottom tangles in handlebodies 621

for all DS 2 DJac
k
.Y; �/ and all univalent vertices i and j of DS adjacent to

some trivalent vertices vi and vj , respectively. If vi ¤ vj , then we can apply the
argument in the second paragraph of the proof of [4, Theorem 6]. If vi D vj , then
the arguments provided in [4] for this situation do not fully apply when � 6D ¹1º,
because of the “exceptional case” alluded to in the third paragraph of the proof of
[4, Theorem 6]. Thus, we need a different proof.

First, observe that the maps  0; : : : ;  k�1 defined so far have the following
properties: for every oriented 1-manifold Y 0" with a distinguished component ",
the diagrams

KDJac
i .Y 0"; �/ Ach.Y 0"; �/

KDJac
i .Y 0""; �/ Ach.Y 0""; �/

 ! i

 !�  ! �

 !
 i

(4.4a)

and

KDJac
i .Y 0"; �/ Ach.Y 0"; �/

KDJac
i .Y 0 #; �/ Ach.Y 0 #; �/

 ! i

 !S  ! S

 !
 i

(4.4b)

commute for i 2 ¹0; : : : ; k�1º. (Here the doubling operations� and the orientation-
reversal operations S for colored chord/Jacobi diagrams are defined in the same
way as for uncolored chord/Jacobi diagrams, except that beads of a duplicated
component should be repeated on each new component, and beads of a reversed
component should be transformed into their inverses.) Next, we drawDS as follows:

DS D

� � �

i j

X0‚ …„ ƒ

Xi
Xj

Here the arcs Xi ; Xj are neighborhoods in X of the vertices i; j , and X 0 � X is a
neighborhood of the remaining univalent vertices of DS . From this local picture
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of DS , we define

R D

� � �

2 DJac
k�1.X

0!; �/

and expand

 k�1.R/ D
X
l

"l �

� � �

l 2 Ach.X 0!; �/:

Since

DT
i �DU

i D

� � �

and DT
j �DU

j D

� � �

we deduce from (4.4) that

 k�1.D
T
i / �  k�1.DU

i / D
X
l

"l �
l

� � �

2 Ach.X; �/

and

 k�1.D
T
j / �  k�1.DU

j / D
X
l

"l �
l

� � �

2 Ach.X; �/:

Thus, the identity (4.3) follows from the local relation

8x 2 �;
x xD

in spaces of �-colored chord diagrams, which is equivalent to the 4T relation. �
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In what follows, let A.X; �/ denote the isomorphic spaces

Ach;r.X; �/ Š Ach.X; �/ Š AJac;r.X; �/ Š AJac.X; �/:

For instance, if � D ¹1º, then we have A.X/ Š A.X; ¹1º/. In general, A.X/
embeds into A.X; �/ by the following lemma.

Lemma 4.5. If X has no closed component, then the canonical map from A.X/

to A.X; �/ is injective.

Proof. For every Jacobi diagram D on X with �-coloring c, define p.D; c/ 2
A.X/ by

p.D; c/ D
´
D with c deleted if 'c is trivial,
0 otherwise,

(4.5)

where 'c W�1..X [D/=@X; ¹@Xº/ ! � is the homomorphism corresponding to
c by Lemma 4.2. Observe that, for all �-colored Jacobi diagrams .D; c/ and
.D0; c0/ on X involved in an STU relation, there is a homotopy equivalence
hWX [D '�!X [D0 rel @X such that 'c0 ı h� D 'c . Hence (4.5) induces a linear
map pWA.X; �/! A.X/. Clearly, p ı i D idA.X/, where i WA.X/! A.X; �/ is
the canonical map. �

Remark 4.6. There are analogs of Lemmas 4.2 and 4.5 for compact, oriented 1-
manifolds with closed components. Moreover, we can extend Lemma 4.5 as follows:
if X has no closed components, then the map A.X; � 0/ ! A.X; �/ induced by
an injective group homomorphism � 0 ! � is injective. We will not need these
generalizations in what follows.

4.2. The category A of Jacobi diagrams in handlebodies. Now we introduce
the linear category A of Jacobi diagrams in handlebodies. Set Ob.A/ D N.

For m � 0, let Fm D F.x1; : : : ; xm/ be the free group on ¹x1; : : : ; xmº. We
identify Fm with �1.Vm; `/ (see Section 2). Here x1; : : : ; xm are represented by
the “stretched cores” A1; : : : ; Am of the handles of Vm. For n � 0, let

Xn D 1 � � � n

be an oriented 1-manifold consisting of n arc components.
For m; n � 0, set

A.m; n/ D A.Xn; Fm/;

which is generated by Fm-colored Jacobi diagrams on Xn. We will call them
.m; n/-Jacobi diagrams for brevity. Using Corollary 4.3, we may regard an
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.m; n/-Jacobi diagram as a homotopy class rel @Xn of maps

Xn [D �! Vm: (4.6)

Here we assume that the 2n boundary points of Xn are uniformly distributed along
the line `. Since Vm deformation-retracts onto a square with m handles, we can
present an .m; n/-Jacobi diagram D by a projection diagram of the corresponding
homotopy class of maps (4.6).

Example 4.7. Here are a .2; 3/-Jacobi diagram and its projection diagram in the
square with handles:

Ý
x2

x21
x2

x1

1 2 3

(4.7)

We will use the following convention for presenting the morphisms in A.
A square presentation of a restricted .m; n/-Jacobi diagram D is a projection
diagram of D in the square with m handles, such that the dashed part of D does
not appear in the handles. Thus a square presentation of D consists of words
w1; : : : ; wn 2 Mon.˙/ and a Jacobi diagram

S Ww1w�1 � � �wmw�m �! .C�/n in A

such that

� � �

� � �x1

x1

xm

xm

w1
� � �

wm
� � �

S �D D

C � C �

In what follows, we write d.w/ D ww� 2 Mon.˙/ for w 2 Mon.˙/. Since
A.m; n/ is spanned by restricted .m; n/-Jacobi diagrams, we can regard its elements
as linear combinations of square presentations.
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Example 4.8. Here is a restricted .2; 3/-Jacobi diagram D, together with a square
presentation S such that w1 D w2 D CC:

ÝD S
x2

x21
x2

1 2 3

W d.w1/d.w2/ �! .C�/3.

Now we define the composition in A. We compose an .n; p/-Jacobi diagram
D0 with an .m; n/-Jacobi diagram D as follows. First, we may assume that each
bead of D0 is colored by x˙1i for some i , by using the moves in (4.1). For each
j 2 ¹1; : : : ; nº, let kj be the number of beads colored by x˙1j in D0 and number
them from 1 to kj in an arbitrary way. This defines a word �.j / 2 Mon.˙/ of
length kj by assigning a letter C to each xj -colored bead and a letter � to each
x�1j -colored bead. Let

C�.D/ 2 A.Xk1C���Ckn ; Fm/

be the linear combination of .m; k1 C � � � C kn/-Jacobi diagrams obtained from D

by �-cabling, i.e., by repeated applications of the deleting operation �, the doubling
operation� and the orientation-reversal operation S . By using the correspondence
between the beads of D0 and the solid components of C�.D/ induced by their
numberings, we can identify some local neighborhoods of the former with the
latter in an orientation-preserving way. Thus, by “gluing” C�.D/ toD0 accordingly,
we obtain a linear combination of .m; p/-Jacobi diagrams

D0 QıD 2 A.Xp; Fm/ D A.m; p/:

Clearly, D0 QıD depends only on the equivalence class of D, but not on the
numbering of the beads of D0. By the STU relation, D0 QıD depends only on
the equivalence class of D0.

Example 4.9. We can describe the operation Qı in terms of projection diagrams in
squares with handles, using the box notation recalled in Example 3.2. For instance,
let m D n D p D 2 and

D0 WD
x1x2 x1

1 2
, D WD

1 2

x1

x1
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with the projection diagrams

D0 D , D D .

Then, setting x D x1, we have

� C

�

D0 QıD D

C �

C � C

x

x

Nx

x

Nx
x

x

x

Nx

x

x

Nx

x

x

Nx

x

x

Nx x
Nx
x

x
Nx
x

x
Nx
x

with the projection diagram

D0 QıD D .

One can easily verify the following lemma.

Lemma 4.10. Let D be a restricted .m; n/-Jacobi diagram and let D0 be a
restricted .n; p/-Jacobi diagram, with square presentations

S W d.w1/ � � � d.wm/ �! .C�/n and S 0W d.w01/ � � � d.w0n/ �! .C�/p;
respectively. Then

S 0 ı Cf .S/WCft .d.w1/ � � � d.wm// �! .C�/p

is a square presentation of D0 QıD, where ı denotes the composition in A,

f W�0.1-manifold underlying S/ �! Mon.˙/
is defined in the obvious way fromw01; : : : ; w0n and the polarized oriented 1-manifold
underlying S , and ft W ¹1; : : : ; 2jw1j C � � � C 2jwmjº ! Mon.˙/ is induced by f .
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Using Lemma 4.10, we can easily prove the following.

Lemma 4.11. For m; n; p � 0, there is a unique bilinear map

ıWA.n; p/ �A.m; n/ �! A.m; p/

such that D0 ıD D D0 QıD for each .m; n/-Jacobi diagram D and each .n; p/-Ja-
cobi diagram D0.

Finally, the following lemma shows that we have a well-defined linear category
A with the above composition ı and the identity

idn WD 1 n
� � �

x1 xn

D

1 n
� � �

� � �
:

Lemma 4.12. If m
D�! n

D0�! p
D00�! q in A, then we have

�
1 n
� � �

x1 xn � ıD DD; (4.8)

D0 ı � 1 n
� � �

x1 xn �DD0; (4.9)

D00 ı .D0 ıD/D .D00 ıD0/ ıD: (4.10)

Proof. We may assume that D, D0 and D00 are restricted. Let

S W d.w1/ � � � d.wm/ �! .C�/n;

S 0W d.w01/ � � � d.w0n/ �! .C�/p;

S 00W d.w001/ � � � d.w00p/ �! .C�/q:
be square presentations of D, D0 and D00, respectively.

First, by Lemma 4.10, a square presentation of
�

1 n
� � �

x1 xn � ıD is

.#" � � � #"/ ı S D S:
This proves (4.8).

Next, a square presentation of D0 ı � 1 n
� � �

x1 xn �
is

S 0 ı Cf .#" � � � #"/ D S 0;
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where f W�0.#" � � � #"/! Mon.˙/ is the unique map such thatCft .C�� � �C�/ D
d.w01/ � � � d.w0n/. This proves (4.9).

Finally, a square presentation of D00 ı .D0 ıD/ is

S 00 ı Cf 0.S 0 ı Cf .S// D S 00 ı .Cf 0
0
.S 0/ ı Cf0.S//

for some maps f; f 0; f0 and f 00 . By associativity of the composition in A, the latter
is a square presentation of .D00 ıD0/ ıD. This proves (4.10). �

4.3. A symmetric monoidal structure on A. We define a symmetric monoidal
structure on the linear category A as follows. The tensor product on objects is
addition. The monoidal unit is 0. The tensor product on morphisms is juxtaposition
followed by relabelling the solid arcs and the beads. More precisely, we obtain
the tensor product D ˝D0 of an .m; n/-Jacobi diagram D and an .m0; n0/-Jacobi
diagramD0 from the juxtaposition ofD andD0 by renaming j inD0 with nCj

for j D 1; : : : ; n0, and replacing xi with xmCi for i D 1; : : : ; m0.

Lemma 4.13. The strict monoidal category A admits a symmetry defined by

Pm;n D
� � � � � �„ ƒ‚ …
n

„ ƒ‚ …
m

� � � � � �

n‚ …„ ƒm‚ …„ ƒ

WmC n �! nCm: (4.11)

Proof. We show that the Pm;n are natural in m and n. To post-compose a Jacobi
diagram in A.nCm; k/ with Pm;n, one transforms the labels of the beads by

x1 7! xnC1; : : : ; xm 7! xnCm; xmC1 7! x1; : : : ; xmCn 7! xn:

To pre-compose a Jacobi diagram in A.k;mC n/ with Pm;n, one transforms the
labels of the arcs by

1 7! nC 1; : : : ; m 7! nCm; mC 1 7! 1; : : : ; mC n 7! n:

It follows that, for U Wm! m0 and V Wn! n0, we have

.V ˝ U/ ı Pm;n D Pm0;n0 ı .U ˝ V /;
i.e., Pm;n is natural.

One can easily check the other axioms of symmetric monoidal category. �

Before giving a presentation of the category A in the next section, we describe
some additional structures in A.
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4.4. Two gradings on A. We first define an N-grading on A. We have

A.m; n/ D
M
k2N

Ak.m; n/

for m; n � 0, where Ak.m; n/ is spanned by Jacobi diagrams of degree k. (Recall
that the degree of a Jacobi diagram is half the total number of its vertices.) It is easy
to check that A has the structure of an N-graded linear strict monoidal category.
In what follows, N-gradings are simply referred to as “gradings”.

Let yA denote the degree-completion of A with respect to the above-defined
grading on A. Thus, we set Ob.yA/ D Ob.A/ D N, and yA.m; n/ is the degree-
completion of A.m; n/.

Before defining the second grading on A, we define the notion of a linear
strict monoidal category graded over a strict monoidal category. This generalizes
the notion of a linear category graded over a category considered in [43, 61].
Let D be a strict monoidal category. A D-grading on a linear, strict monoidal
category C consists of a monoid homomorphism i WOb.C/! Ob.D/ and a direct
sum decomposition

C.m; n/ D
M

d Wi.m/!i.n/

C.m; n/d

for each pair of objects m; n in C, such that

� idm 2 C.m;m/idi.m/ for each m 2 Ob.C/,

� C.n; p/e ı C.m; n/d � C.m; p/eıd for all m; n; p 2 Ob.C/ and all morphisms
i.m/

d�! i.n/
e�! i.p/ in D,

� C.m; n/d ˝ C.m0; n0/d 0 � C.m˝m0; n˝ n0/d˝d 0 for all m; n;m0; n0 2 Ob.C/
and all morphisms d W i.m/! i.n/; d 0W i.m0/! i.n0/ in D.

Then we say that the linear strict monoidal category C is D-graded, or that C is
graded over D.

For instance, we may regard the N-grading of A defined above as a grading
over the commutative monoid N, viewed as a strict monoidal category with one
object.

Now we define another grading of A. Let F be the full subcategory of the
category of groups with Ob.F/ WD ¹Fn j n � 0º, and identify Ob.F/ with N in the
natural way. The category F has a symmetric strict monoidal structure given by
free product. We define an Fop-grading on A as follows. The homotopy class of an
.m; n/-Jacobi diagram D is the homomorphism h.D/WFn ! Fm that maps each
generator xj to the product of the beads along the oriented component j ; we
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emphasize that h.D/ is independent of the dashed part of D. Then we have

A.m; n/ D
M

d2Fop.m;n/

A.m; n/d ;

where A.m; n/d is spanned by Jacobi diagrams of homotopy class d . It is easy to
check that A has the structure of an Fop-graded linear strict monoidal category.

Let A0 denote the degree 0 part of A, which is a linear, symmetric strict
monoidal subcategory of A. The morphisms in A0 are linear combinations of
Jacobi diagrams in handlebodies without dashed part, which are fully determined
by their homotopy classes. Thus, there is an isomorphism of linear symmetric
strict monoidal categories

hWA0 Š�! KFop;

where KFop denotes the linearization of Fop. The isomorphism h extends to a full
linear functor hWA! KFop vanishing on morphisms of positive degree.

Remark 4.14. The Fop-grading of A induces a (completed) Fop-grading on the
degree-completion yA in the obvious way. We have

yA.m; n/ D yM
d2Fop.m;n/

yA.m; n/d

where yA.m; n/d is the degree-completion of A.m; n/d , and yL denotes the com-
pleted direct sum.

4.5. Coalgebra enrichment of A. Here we define coalgebra structures on the
spaces A.m; n/ (m; n � 0) by generalizing the usual coalgebra structures of the
spaces of Jacobi diagrams [4]. Moreover, we show that the category A is enriched
over cocommutative coalgebras. (See [33] for the definitions in enriched category
theory.)

Define a linear map

�WA.m; n/ �! A.m; n/˝A.m; n/

by

�.D/ D
X

DDD0tD00
D0 ˝D00

for every .m; n/-Jacobi diagram D, where the sum is over all splittings ofD as the
disjoint union of two parts D0 and D00. Define also a linear map

�WA.m; n/ �! K
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by �.D/ D 1 if D is the empty diagram, and �.D/ D 0 otherwise. It is easy to see
that .A.m; n/;�; �/ is a cocommutative coalgebra.

Proposition 4.15. The symmetric monoidal category A is enriched over the
symmetric monoidal category of cocommutative coalgebras. In other words, the
linear maps

ı D ım;n;pWA.n; p/˝A.m; n/ �! A.m; p/ .m; n; p � 0/;
K �! A.m;m/; 1 7�! idm .m � 0/;

˝WA.m; n/˝A.m0; n0/ �! A.mCm0; nC n0/ .m; n;m0; n0 � 0/;
K �! A.mC n; nCm/; 1 7�! Pm;n .m; n � 0/

are coalgebra maps.

To prove this proposition, we need the lemma below, which one can easily
verify.

Lemma 4.16. Let S be a square presentation of a restricted .m; n/-Jacobi dia-
gram D. Then �.S/ (resp. �.S/), the usual comultiplication (resp. counit) of
Jacobi diagrams applied to S , is a square presentation of �.D/ (resp. �.D/).

Proof of Proposition 4.15. We will check that ım;n;p is a coalgebra map; clearly,
so are the other maps listed in the proposition. Consider restricted Jacobi diagrams
DWm! n and D0Wn! p in A with square presentations S and S 0, respectively.
By Lemma 4.10, D0 ıD admits a square presentation of the form S 0 ıCf .S/ for a
map f determined by S 0. The connected components of the dashed part of Cf .S/
are in one-to-one correspondence with those of S . Hence we have

�.S 0 ı Cf .S//
D

X
SDS�tS��

X
S 0DS 0�tS 0��

.S 0� ı Cf .S�//˝ .S 0�� ı Cf .S��//

D .ı ˝ ı/
� X
SDS�tS��

X
S 0DS 0�tS 0��

.S 0� ˝ Cf .S�//˝ .S 0�� ˝ Cf .S��//
�

D .ı ˝ ı/.id˝P ˝ id/
� X
S 0DS 0�tS 0��

.S 0� ˝ S 0��/

˝
X

SDS�tS��
.Cf .S�/˝ Cf .S��//

�

D .ı ˝ ı/.id˝P ˝ id/.�.S 0/˝ .Cf ˝ Cf /�.S//
D ..� ı Cf .�//˝ .� ı Cf .�///.id˝P ˝ id/.�˝�/.S 0 ˝ S/;
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where P is the linear map x ˝ y 7! y ˝ x. We deduce from Lemma 4.16 that

�.D0 ıD/ D .ı ˝ ı/.id˝P ˝ id/.�˝�/.D0 ˝D/;

i.e., ı D ım;n;p preserves comultiplication. Clearly, ım;n;p preserves counit, i.e.,
we have �.D0 ıD/ D �.D0/�.D/. Hence ım;n;p is a coalgebra map. �

Corollary 4.17. For m � 0 the coalgebra structure of A.m;m/ and the endomor-
phism algebra structure of A.m;m/ makes A.m;m/ a cocommutative bialgebra.

The coalgebra structure on A.m; n/ induces a coalgebra structure on yA.m; n/.
By Proposition 4.15, yA also is enriched over cocommutative coalgebras. Let

yAgrp.m; n/ D ¹f 2 yA.m; n/ j �.f / D f ˝ f; �.f / D 1º

be the group-like part of yA.m; n/. Then the sets yAgrp.m; n/ for m; n � 0 form a
symmetric monoidal subcategory of yA, which we call the group-like part of yA.

5. Presentation of the category A

In this section, we give a presentation of the category A of Jacobi diagrams in
handlebodies.

5.1. Hopf algebras in symmetric monoidal categories. Let C be a symmetric
strict monoidal category, with monoidal unit I and symmetry PX;Y WX ˝ Y !
Y ˝X .

Let H be a Hopf algebra in C with the multiplication, unit, comultiplication,
counit and antipode

�WH ˝H �! H; �W I �! H;

�WH �! H ˝H; �WH �! I;

S WH �! H:

The axioms for a Hopf algebra in C are

�.�˝ id/ D �.id˝�/; �.�˝ id/ D id D �.id˝�/; (5.1)
.�˝ id/� D .id˝�/�; .� ˝ id/� D id D .id˝�/�; (5.2)

�� D idI ; �� D � ˝ �; �� D �˝ �; �� D .�˝ �/.id˝P ˝ id/.�˝�/;
(5.3)

�.id˝S/� D �.S ˝ id/� D ��: (5.4)
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Here and in what follows, we write id D idH and P D PH;H for simplicity. In the
following, we assume that H is cocommutative, i.e., we have

P� D �: (5.5)

We will also use the notions of algebras and coalgebras in symmetric monoidal
categories, defined by axioms (5.1) and (5.2), respectively. For m � 0, define
�Œm�WH˝m ! H and �Œm�WH ! H˝m inductively by

�Œ0� D �; �Œ1� D id; �Œm� D �.�Œm�1� ˝ id/ .m � 2/;
�Œ0� D �; �Œ1� D id; �Œm� D .�Œm�1� ˝ id/� .m � 2/:

A (left) H -module in C is an object M with a morphism �WH ˝M ! M ,
called a (left) action, such that

�.�˝ idM / D �.idH ˝�/; �.�˝ idM / D idM :

For H -modules .M; �/ and .M 0; �0/, a morphism f WM ! M 0 is a morphism of
H -modules if

f� D �0.idH ˝f /:

Since H is a cocommutative Hopf algebra, the category ModH of H -modules
inherits from C a symmetric strict monoidal structure. Specifically, the tensor
product of two H -modules .M; �/ and .M 0; �0/ is M ˝M 0 with the action

.�˝ �0/.idH ˝PH;M ˝ idM 0/.�˝ idM ˝ idM 0/WH ˝M ˝M 0 !M ˝M 0:

The monoidal unit in ModH is the trivial H -module .I; �/.
Define the (left) adjoint action adWH ˝H ! H by

ad D �Œ3�.id˝ id˝S/.id˝P /.�˝ id/:

Since H is cocommutative, all the structure morphisms �; �;�; �; S of H as well
as the symmetry PH;H areH -module morphisms with respect to the adjoint action.
Thus, the H -module .H; ad/ is a cocommutative Hopf algebra in ModH .

5.2. Convolutions. LetC be a symmetric strict monoidal category. Let .A; �A;�A/
be an algebra and .C;�C ; �C / a coalgebra in C. We define the convolution product
on C.C;A/

�WC.C;A/ � C.C;A/ �! C.C;A/ (5.6)
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by

f � g D �A.f ˝ g/�C
for f; gWC ! A. This operation is associative with unit �A�C .

A morphism f WC ! A is convolution-invertible if there is gWC ! A such
that f � g D g � f D �A�C . In this case, we call g the convolution-inverse to f ,
and it is denoted by f �1 if there is no fear of confusing it with the inverse of f .

In what follows, we mainly use convolutions when A D H˝n and C D H˝m
(m; n � 0) for a Hopf algebraH in C. For example, the convolution on C.H;H˝2/

is given by
f � g D �2.f ˝ g/�;

where �2 WD .�˝ �/.id˝P ˝ id/, and the convolution on C.I;H˝n/ is given by

f � g D �n.f ˝ g/; (5.7)

where we define �nWH˝n ˝H˝n ! H˝n inductively by �0 D idI , �1 D � and

�n D .�n�1 ˝ �/.id˝n�1˝PH;H˝.n�1/ ˝ id/ .n � 2/:
This convolution product is defined whenever .H;�; �/ is an algebra in C.

5.3. Casimir Hopf algebras. LetH be a cocommutative Hopf algebra in a linear
symmetric strict monoidal category C.

Definition 5.1. A Casimir 2-tensor for H is a morphism cW I ! H˝2 which is
primitive, symmetric and invariant:

.�˝ id/c D c13 C c23; (5.8)
Pc D c; (5.9)

.ad˝ ad/.id˝P ˝ id/.�˝ c/ D c�; (5.10)

where c13 WD .id˝�˝ id/c and c23 WD �˝ c.
By a Casimir Hopf algebra in C, we mean a cocommutative Hopf algebra in C

equipped with a Casimir 2-tensor.

The condition (5.10) means that cW I ! H˝2 is a morphism of H -modules.
Thus a Casimir Hopf algebra .H; c/ in C is also a Casimir Hopf algebra in ModH .

Here are elementary properties of Casimir 2-tensors:

.id˝�/c D c12 C c13; (5.11)

.� ˝ id/c D .id˝�/c D 0; (5.12)
.S ˝ id/c D .id˝S/c D �c: (5.13)
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Lemma 5.2. For cW I ! H˝2, the identity (5.10) is equivalent to

� � c� D c� ��: (5.14)

Proof. It is easy to see that (5.10) is equivalent to � � c� � �� D c�, where
�� WD .S ˝ S/� is the convolution-inverse to �. Thus (5.10) is equivalent to
(5.14)���. Since� is convolution-invertible, (5.10) and (5.14) are equivalent. �

Proposition 5.3. Let .H; c/ be a Casimir Hopf algebra. Then we have a version
of the 4T relation in C.I;H˝3/:

.c12 C c13/ � c23 D c23 � .c12 C c13/: (5.15)

Proof. Using (5.11) and (5.14), we have

.c12 C c13/ � c23 D .id˝�/c � c23 D .id˝.� � c�//c
D .id˝.c� ��//c
D c23 � .id˝�/c D c23 � .c12 C c13/:

�

Example 5.4. (1) In Section 7, we consider Casimir Lie algebras (including
semi-simple Lie algebras) and observe that their universal enveloping algebras are
instances of Casimir Hopf algebras.

(2) Every linear combination of Casimir 2-tensors is a Casimir 2-tensor. In
particular, 0W I ! H ˝H is a Casimir 2-tensor.

5.4. Casimir Hopf algebras and infinitesimal braidings. The above notion
of Casimir Hopf algebra is a Hopf-algebraic version of the notion of infinitesi-
mal braiding for symmetric monoidal categories, introduced by Cartier [8] (see
also [30]).

Recall that an infinitesimal braiding in a linear symmetric strict monoidal
category C is a natural transformation

tx;y W x ˝ y �! x ˝ y

such that

Px;y tx;y D ty;xPx;y ; (5.16)

tx;y˝z D tx;y ˝ idzC.idx˝Pz;y/.tx;z ˝ idy/.idx˝Py;z/ (5.17)
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for x; y; z 2 Ob.C/. For instance, the linear version of the category A of Jacobi
diagrams (see Remark 3.5) admits an infinitesimal braiding; see [30, Section XX.5].
Note that (5.16) and (5.17) imply

tx˝y;z D .Py;x ˝ idz/.idy ˝tx;z/.Px;y ˝ idz/C idx˝ty;z : (5.18)

Let H be a cocommutative Hopf algebra in C. A H -module .x; �/ is said to be
trivial if � D � ˝ idx . An infinitesimal braiding tx;y in the symmetric monoidal
category ModH of H -modules is called strong if it vanishes whenever x or y is a
trivial H -module. The following shows that strength of infinitesimal braiding
in module categories is automatic for some underlying symmetric monoidal
categories C, such as the category VectK of vector spaces.

Proposition 5.5. Let C be a linear symmetric strict monoidal category. We assume
that the functor C.I;�/WC ! VectK is faithful, and the tensor product map
C.I; x/ ˝ C.I; y/ ! C.I; x ˝ y/ is surjective for each x; y 2 Ob.C/. Then,
for every cocommutative Hopf algebra H , every infinitesimal braiding t in ModH
is strong.

Proof. The assumptions on C imply that the map

�x;y WC.x ˝ y; x ˝ y/ �! HomK.C.I; x/˝ C.I; y/;C.I; x ˝ y//

defined by �x;y.a/ WD .b ˝ c 7! a.b ˝ c// is injective for x; y 2 Ob.C/. Let
x; y 2 Ob.ModH / with y being a trivial H -module. Then, for each bW I ! x,
cW I ! y in C, we have

�x;y.tx;y/.b ˝ c/ D tx;y.b ˝ c/ D tx;y.idx˝c/b D .idx˝c/tx;Ib D 0;

since c is an H -module morphism and (5.17) implies that tx;I D 0 for every
infinitesimal braiding. Since �x;y is injective, we have tx;y D 0. Thus t is
strong. �

We now prove that, given a cocommutative Hopf algebraH in C, there is a one-
to-one correspondence between Casimir 2-tensors for H and strong infinitesimal
braidings in ModH . This result generalizes [30, Proposition XX.4.2], where
C D VectK. Let H l WD .H;�/ 2ModH , the regular representation of H .



The Kontsevich integral for bottom tangles in handlebodies 637

Proposition 5.6. Let H be a cocommutative Hopf algebra in a linear symmetric
strict monoidal category C.
(a) Every Casimir 2-tensor forH induces a strong infinitesimal braiding in ModH

defined by

tx;y D .�x˝�y/.idH ˝PH;x˝ idy/.c˝ idx˝ idy/W x˝y �! x˝y (5.19)

for H -modules x D .x; �x/ and y D .y; �y/.
(b) Every strong infinitesimal braiding t in ModH induces a Casimir 2-tensor

c WD tH l ;H l .�˝ �/W I �! H ˝H (5.20)

for H in C and tx;y is of the form (5.19) for each x; y 2ModH .

Proof. We only sketch the proof of (a), leaving the details to the reader. It is easy
to check (5.16) and (5.17). Naturality of t , i.e., tx0;y0.f ˝ g/ D .f ˝ g/tx;y for
f W x ! x0 and gWy ! y0 in ModH , follows from the definition of H -module
morphisms. We can check that tx;y is anH -module morphism by using (5.14) and
the definition of H -modules. Using .� ˝ id/c D 0 D .id˝�/c, we see that tx;y is
a strong infinitesimal braiding.

We now prove (b). We first verify (5.19). Note that for each H -module
x D .x; �x/, the action �x gives a morphism �x WH l ˝ x� ! x in ModH , where
x� WD .x; � ˝ idx/ is the trivial H -module. Therefore, the naturality of t implies
that

tx;y D tx;y.�x ˝ �y/.�˝ idx˝�˝ idy/
D .�x ˝ �y/tH l˝x� ;H l˝y� .�˝ idx˝�˝ idy/: (5.21)

Using (5.17) and (5.18), we can express tH l˝x� ;H l˝y� as a sum of four morphisms
involving tH l ;H l , tH l ;y� , tx� ;H l and tx� ;y� , with the last three being 0 since t is
strong. Hence,

tH l˝x� ;H l˝y� D .idH ˝PH;x ˝ idy/.tH l ;H l ˝ idx˝ idy/.idH ˝Px;H ˝ idy/:

This and (5.21) imply (5.19).
We now check the axioms of a Casimir 2-tensor for c. We easily obtain (5.9)

from (5.16). The identity (5.8) follows from (5.18) since �WH l ! H l ˝H l is a
morphism ofH -modules. It remains to verify (5.10) or, equivalently, (5.14). Since
tH l ;H l is a morphism in ModH , we have

.�˝ �/.id˝P ˝ id/.�˝ id˝ id/.id˝tH l ;H l /
D tH l ;H l .�˝ �/.id˝P ˝ id/.�˝ id˝ id/
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and, by pre-composing with id˝�˝ �, we obtain � � c� D tH l ;H l�. Moreover,
(5.19) with x D y D H l implies tH l ;H l� D c� ��. Hence (5.14). �

Remark 5.7. It is not possible to generalize Proposition 5.6(b) to infinitesimal
braidings that are not strong. Here is a counterexample. Let C be a linear
symmetric strict monoidal category equipped with a non-zero infinitesimal braiding
t . Consider the trivial Hopf algebra in C, defined by H D I with � D � D � D
� D S D idI . Then t is an infinitesimal braiding in ModI via the canonical
isomorphism ModI Š C. Since every I -module is trivial, t is not strong in ModI .
However, the Casimir 2-tensor c for I given in (5.20) is zero since I l D .I; idI / is
the monoidal unit of ModI Š C. Therefore, c and t are not related by (5.19).

5.5. Casimir elements. Now we give an alternative viewpoint on Casimir 2-ten-
sors. LetH be a cocommutative Hopf algebra in a linear symmetric strict monoidal
category C.

Definition 5.8. A Casimir element forH is a morphism r W I ! H which is central
and quadratic:

�.id˝r/ D �.r ˝ id/; (5.22)
r123 � r12 � r13 � r23 C r1 C r2 C r3 D 0; (5.23)

Sr D r; (5.24)

where

r123 WD �Œ3�r; r12 WD �r ˝ �; r13 WD .id˝�˝ id/�r; r23 WD �˝�r;
r1 WD r ˝ �˝ �; r2 WD �˝ r ˝ �; r3 WD �˝ �˝ r:

The notion of a Casimir Hopf algebra is equivalent to that of a cocommutative
Hopf algebra with a Casimir element, as follows.

Proposition 5.9. There is a one-to-one correspondence

¹Casimir 2-tensors for H º
c 7!rc����! ����
cr 7!r

¹Casimir elements for H º; (5.25)

associating to a Casimir 2-tensor c a Casimir element

rc WD 1

2
�cW I �! H; (5.26)

and to a Casimir element r a Casimir 2-tensor

cr WD �r � r ˝ � � �˝ r W I �! H ˝H: (5.27)
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Proof. Let c be a Casimir 2-tensor. Let r D rc . We have (5.24) by (5.9) and (5.13).
Post-composing �.id˝S/ to (5.14) gives r� D id�r� � S ; taking .�/ � id, we
obtain r� � id D id�r�, equivalent to (5.22). Finally, (5.23) follows from

r123 D r1 C r2 C r3 C c12 C c13 C c23;
rij D ri C rj C cij .1 � i < j � 3/:

Therefore r D rc is a Casimir element.
Now let r be a Casimir element. Set c D cr . Then (5.8) follows from (5.23),

and (5.9) follows from the cocommutativity of H . Moreover, (5.14) follows
from (5.22). Hence c D cr is a Casimir 2-tensor.

If c is a Casimir 2-tensor, then c.rc/ D c follows from (5.8) and (5.9). If r is a
Casimir element, then

r.cr /
(5.13)D r.�.id˝S/cr /

(5.26)D �1
2
�.id˝S/cr

(5.27)D �1
2
.�.id˝S/�r � �.id˝S/.r ˝ �/ � �.id˝S/.�˝ r//

D �1
2
.��r � r � Sr/ (8.4)D 1

2
.r C Sr/(5.24)D r: �

5.6. Presentation of A. Recall from Section 4.3 that A is a linear symmetric
monoidal category. Define morphisms in A

� D W 0 �! 1; � D W 2 �! 1;

� D W 1 �! 0; � D W 1 �! 2;

S D W 1 �! 1; c D W 0 �! 2:

(5.28)
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Proposition 5.10. We have a Casimir Hopf algebra .1; �; �; �;�; S; c/ in A.

Proof. One can easily verify the axioms of a Hopf algebra. (In fact, this can also
be checked by reducing up to homotopy the topological arguments given in [25]
for the category B. See also [24] for related algebraic arguments in the symmetric
monoidal category F of finitely generated free groups.) The cocommutativity
follows from

P� D D �

where we write P D P1;1.
Now we check for c the relations (5.8), (5.9) and (5.14) of a Casimir 2-tensor.

We have (5.8):

.�˝ id/c D

D C D c13 C c23:

We have (5.9):

Pc D D c:

We have (5.14):

� � c� D .�˝ �/.id˝P ˝ id/.�˝ c/

D D

D .�˝ �/.id˝P ˝ id/.c ˝�/ D c� ��: �
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LetH denote the cocommutative Hopf algebra .1; �; �;�; �; S/ in A. We prove
the following theorem in the rest of this section.

Theorem 5.11. As a linear symmetric strict monoidal category, A is free on the
Casimir Hopf algebra .H; c/.

Remark 5.12. Hinich and Vaintrob [29] proved that the algebra A.	/ of chord
diagrams on a circle (i.e., the target of the usual Kontsevich integral of knots) is
in some sense the “universal enveloping algebra” of the generating object in the
linear PROP governing “Casimir Lie algebras”. This gives a universal property
for the space A.0; 1/ Š A.	/, whereas Theorem 1.7 gives a universal property for
the entire category A.

5.7. The category P generated by a Casimir Hopf algebra. Let P be the free
linear symmetric strict monoidal category on a Casimir Hopf algebra .P; c/ D
.P; �; �;�; �; S; c/. Thus, as a linear symmetric strict monoidal category, P is
generated by the object P and the morphisms �, �, �, �, S and c, and all the
relations in P are derived from the axioms of a linear symmetric monoidal category
and the relations (5.1)–(5.5) and (5.8)–(5.10). In other words, P is the linear PROP
(see [48]) governing Casimir Hopf algebras. Define a grading of P by

deg.�/ D deg.�/ D deg.�/ D deg.�/ D deg.S/ D 0; deg.c/ D 1:
For m � 0, we identify the object P˝m with m.

The category P has the following universal property. If C is a linear symmetric
strict monoidal category and .H; c/ is a Casimir Hopf algebra in C, then there is a
unique linear symmetric monoidal functor F D F.H;c/WP ! C which maps the
Casimir Hopf algebra .P; c/ in P to the Casimir Hopf algebra .H; c/ in C.

Consequently, since A has a Casimir Hopf algebra .H; c/ by Proposition 5.10,
there is a unique (graded) linear symmetric monoidal functor

F D F.H;c/WP �! A

mapping .P; c/ to .H; c/. To prove Theorem 5.11, we need to show that F is an
isomorphism.

5.8. The space W.m; n/ of tensor words. Let m; n � 0 be integers. A tensor
word from m to n of degree k is an expression of the form

w D w1 ˝ � � � ˝ wn;
where
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� for each i 2 ¹1; : : : ; nº, wi is a word in the symbols

¹xj ; x�1j j 1 � j � mº [ ¹c0p; c00p j 1 � p � kº;

� each of c0p; c00p (1 � p � k) appears in the concatenated wordw1 � � �wn exactly
once.

In this case we write w Wm! n. For example,

w D x1c01c02 ˝ c03c001c003x2 ˝ x�11 c002x2x1W 2 �! 3 (5.29)

is a tensor word of degree 3. As we will see below, the symbols x˙1j may be
considered as elements of the free group Fn on x1; : : : ; xn.

Two tensor words w ;w 0Wm! n are equivalent if they have the same degree k
and they are related by a permutation of ¹1; : : : ; kº. For example, the above w is
equivalent to the tensor word

.12/w WD x1c02c01 ˝ c03c002c003x2 ˝ x�11 c001x2x1W 2 �! 3

obtained from w by exchanging .c01; c001/ and .c02; c002/. Let Œw � denote the equivalence
class of w . Let zW.m; n/ denote the vector space with basis consisting of equivalence
classes of tensor words from m to n.

Let W.m; n/ denote the quotient space of zW.m; n/ by the subspace generated
by the following elements:
� (chord orientation) Œw � � Œw 0�, where w and w 0 differ by interchanging c0p

and c00p for some p,
� (cancellation) Œw � � Œw 0�, where w and w 0 differ locally as

w D .� � � x˙1i x�1i � � � /;
w 0 D .� � � � � � /;

for some i ,
� (bead slide) Œw � � Œw 0�, where w and w 0 differ locally as

w D .� � � xic0p � � � xic00p � � � /;
w 0 D .� � � c0pxi � � � c00pxi � � � /;

for some i and p,
� (4T) Œw1�� Œw2�� Œw3�C Œw4� and Œw1�� Œw2�� Œw5�C Œw6�, where w1; : : : ;w6

differ locally as

w1 D .� � � c0i � � � c00i c0i 0 � � � c00i 0 � � � /;
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w2 D .� � � c0i � � � c0i 0c00i � � � c00i 0 � � � /;
w3 D .� � � c0i � � � c0i 0 � � � c00i 0c00i � � � /;
w4 D .� � � c0i � � � c0i 0 � � � c00i c00i 0 � � � /;
w5 D .� � � c0ic0i 0 � � � c00i 0 � � � c00i � � � /;
w6 D .� � � c0i 0c0i � � � c00i 0 � � � c00i � � � /:

for some i; i 0 with i ¤ i 0.
In the above expressions, each � � � means a subexpression of a tensor word possibly
containing the tensor signs.

5.9. The isomorphism �WW.m; n/ ! A.m; n/. By an admissible chord dia-
gram from m to n of degree k we mean a restricted Fm-colored chord diagram
D on Xn D 1 � � � n with k chords, with each bead in D labelled by one of
x˙11 ; : : : ; x˙1m .

We define a linear map

Q� W zW.m; n/ �! A.m; n/

as follows. Given a tensor word w D w1 ˝ � � � ˝ wnWm! n of degree k, put the
symbols appearing in each wi on the i th strand i (in the order inverse to the
orientation) and, for each j D 1; : : : ; k, connect the two points labelled by c0j and
c00j with a chord. Then we obtain an admissible chord diagram Q�.w/, regarded as
an element of Ak.m; n/. For example, for w in (5.29) we have

Q�.w/ D
x�1
1

x1

c03
c02

c01 c003 x1

x2

c001
x2

c002

: (5.30)

Lemma 5.13. The map Q� is surjective, and induces an isomorphism

� WW.m; n/ �! A.m; n/:

Proof. The lemma follows directly from the isomorphism uchWAch;r.Xn; Fm/!
Ach.Xn; Fm/ obtained in Theorem 4.4. �

5.10. The map ˛WW.m; n/ ! P .m; n/. We will assign to every tensor word
w Wm! n of degree k a morphism Q̨ .w/Wm! n in P of degree k. For example,
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for the tensor word w W 2! 3 of degree 3 in (5.29), corresponding to the admissible
chord diagram Q�.w/ in (5.30), we have graphically

Q̨ .w/ D

x1 x2

c
c

c

S

:

In general, the diagram representing Q̨ .w/ has m edges e1; : : : ; em at the top
(corresponding to the generators x1; : : : ; xm) and n edges e01; : : : ; e0n at the bottom.
For each j D 1; : : : ; n, the bottom edge e0j is locally attached to l 0j input edges,
where l 0j is the length of wj . In our example, we have .l 01; l 02; l 03/ D .3; 4; 4/. For
each i D 1; : : : ; m, the top edge ei is locally attached to as many output edges as
the number li of occurrences of x˙1i in w . In our example, we have .l1; l2/ D .3; 2/.
Moreover, the diagram contains k “caps” labelled by c encoding k copies of
cW 0! 2. Each “cap” has two output ends. The outputs of top edges, the inputs of
bottom edges and the outputs of “caps” are connected by using the following rules.
� If the r th symbol in wj (1 � j � n, 1 � r � l 0j ) is x�i (� D ˙1), then the r th

input at e0j is connected by an arc to one of the outputs of ei . If � D �1 here,
then a label S is added to the arc to encode the antipode S W 1! 1.
� If the r th symbol in wj (1 � j � n, 1 � r � l 0j ) is c0p (resp. c00p), with
1 � p � k, then the r th input at e0j is connected by an arc to the left (resp.
right) output of the pth “cap”.

We interpret the diagram thus obtained as a morphism in P in the usual way. At
the top we have the tensor product of m multi-output comultiplications, and at the
bottom we have the tensor product of n multi-input multiplications.

These rules yield a well-defined morphism Q̨ .w/Wm! n in P . Indeed, the only
possible ambiguities are the ordering of the outputs at each top edge, the positions
of the “caps” between the top and bottom, and the choices of the connecting arcs.
Independence of Q̨ .w/ from those choices follows from the cocommutativity of P
and the general properties of symmetric monoidal categories. Thus we obtain a
linear map

Q̨ W zW.m; n/ �! P .m; n/

defined by w 7! ˛.w/ on generators.
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Lemma 5.14. The map Q̨ induces a linear map ˛WW.m; n/! P .m; n/.

Proof. It suffices to check that each of the relations defining the vector space
W.m; n/ as a quotient of zW.m; n/ in Section 5.8 is mapped to 0 in P . Indeed,
� the “chord orientation” relation is mapped to 0 because of the symmetry

axiom (5.9),
� the “cancellation” relation is mapped to 0 because of the antipode rela-

tion (5.4),
� the “bead slide” relation is mapped to 0 because of (5.14),
� the “4T” relation is mapped to 0 because of (5.15). �

5.11. Surjectivity of ˛. For n � 0, let Sn denote the symmetric group of order n.
Define a homomorphism

Sn �! P .n; n/; � 7�! P� (5.31)

by P.i;iC1/ D idi�1˝P1;1 ˝ idn�i�1 for i 2 ¹1; : : : ; n � 1º. Set

�Œq1;:::;qn� D �Œq1� ˝ � � � ˝ �Œqn�; �Œp1;:::;pm� D �Œp1� ˝ � � � ˝�Œpm�;

for q1; : : : ; qn; p1; : : : ; pm � 0.

Lemma 5.15. Let m; n � 0. Every homogeneous element of P .m; n/ of degree k
is a linear combination of morphisms of the form

�Œq1;:::;qn�P� .S
e1 ˝ � � � ˝ Ses ˝ id2k/.ids˝c˝k/�Œp1;:::;pm�

D �Œq1;:::;qn�P� ..Se1 ˝ � � � ˝ Ses /�Œp1;:::;pm� ˝ c˝k/;
(5.32)

where s; p1; : : : ; pm; q1; : : : ; qn � 0 with s D p1C � � � Cpm D q1C � � � C qn � 2k,
e1; : : : ; es 2 ¹0; 1º and � 2 SsC2k .

Proof. We adapt the proof of [24, Lemma 2]. The main difference here is that our
category is a linear category, and we have an extra morphism c.

Let P0 (resp. PC, P�, P c) denote the linear monoidal subcategory of P

generated by the object 1 and the set of morphisms ¹P1;1; Sº (resp. ¹�; �º,
¹�; �º, ¹cº). We also use the symbol P� (with � D 0;C;�; c) to denote the
set

`
m;n�0 P�.m; n/.

We will consider compositions of such spaces. For instance, PCP0 denotes
the subset of P consisting of all well-defined linear combinations of compositions
f Cf 0 of composable pairs of morphisms f C 2 PC and f 0 2 P0.
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First, we will prove

P D PCP0P cP�: (5.33)

For i � 0, let Pi denote the degree i part of P . If i > 0, then Pi is the product
P1 � � �P1 of i copies of P1. Set P ci D P c \Pi . Note that P0 is the linear symmetric
monoidal subcategory of P generated by �; �;�; �; S . Thus, the proof of [24,
Lemma 2] gives

P�PC � PCP0P�; P0PC � PCP0; P�P0 � P0P�; (5.34)
P0 D PCP0P�: (5.35)

For P c , we have

P cPC � PCP c ; P cP0 � P0P c ; (5.36)
P�P c � PCP0P cP�: (5.37)

Here (5.36) easily follows. To prove (5.37), we use

P�P c1 � PCP0P c1P�;

which we can check using (5.8) and (5.11)–(5.12). Then, proceeding by induction
on i � 1 and using (5.34)–(5.36), we obtain P�P ci � PCP0P ci P�. This
implies (5.37).

Using the inclusions obtained so far, we can check that PCP0P cP� is closed
under composition, i.e.,

.PCP0P cP�/.PCP0P cP�/ � PCP0P cP�:

Since PCP0P cP� contains the identity morphisms, it is a linear subcategory of P .
Since PCP0P cP� contains PC, P0, P c and P�, we obtain (5.33).

Let k � 0. Homogeneous elements of P0P c of degree k are linear combinations
of morphisms of the form

.Se1 ˝ � � � ˝ SesC2k /P� .ids˝c˝k/;

where s � 0, e1; : : : ; esC2k 2 ¹0; 1º and � 2 SsC2k . Thus, by (5.33), every
homogeneous element of P .m; n/ of degree k is a linear combination of morphisms
of the form

�Œq1;:::;qn�P� .S
e1 ˝ � � � ˝ SesC2k /.ids˝c˝k/�Œp1;:::;pm�; (5.38)
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where p1; : : : ; pm; q1; : : : ; qn � 0 are such that p1C� � �Cpm D q1C� � �Cqn�2k,
s WD p1 C � � � C pm, e1; : : : ; esC2k 2 ¹0; 1º and � 2 SsC2k . Since (5.13) gives

.Se1 ˝ � � � ˝ SesC2k /.ids˝c˝k/ D ˙.Se1 ˝ � � � ˝ Ses ˝ id2k/.ids˝c˝k/;
a morphism of the form (5.38) is, up to sign, also of the form (5.32). �

Lemma 5.16. The linear map ˛WW.m; n/! P .m; n/ is surjective.

Proof. Let f Wm! n in P be as in (5.32). Define a tensor word w Wm! n by

w D u1 � � �uq1 ˝ uq1C1 � � �uq1Cq2 ˝ � � � ˝ uq1C���Cqn�1C1 � � �uq1C���Cqn�1Cqn ;
where uj WD v��1.j / with

vj WD

8̂
<̂
ˆ̂:

x
.�1/

ej

a.j /
.j D 1; : : : ; s/;

c0
.j�sC1/=2

.j D s C 1; s C 3; : : : ; s C 2k � 1/;
c00
.j�s/=2

.j D s C 2; s C 4; : : : ; s C 2k/
for j D 1; : : : ; q1 C � � � C qn. Here we define the map aW ¹1; : : : ; sº ! ¹1; : : : ; mº
by

a.j / D max¹a 2 ¹1; : : : ; mº j j � p1 C � � � C paº:
Then one can check ˛.Œw �/ D f . Hence, by Lemma 5.15, ˛ is surjective. �

5.12. Proof of Theorem 5.11. Let m; n � 0. Consider the diagram

P .m; n/ A.m; n/

W.m; n/

 !F

 !�

Š 

�

˛
(5.39)

By Lemma 5.13, � is an isomorphism and, by Lemma 5.16, ˛ is surjective. Thus,
to prove that F is an isomorphism it suffices to prove that the diagram (5.39)
commutes.

We have factorization of morphisms in A similar to Lemma 5.15 for P .

Lemma 5.17. Every homogeneous element of A.m; n/ of degree k is a linear
combination of morphisms of the form

f D �Œq1;:::;qn�P� .Se1 ˝ � � � ˝ Ses ˝ id2k/.ids˝c˝k/�Œp1;:::;pm�; (5.40)

where s; p1; : : : ; pm; q1; : : : ; qn � 0 with s D p1C � � � Cpm D q1C � � � C qn � 2k,
e1; : : : ; es 2 ¹0; 1º and � 2 SsC2k .
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Proof. This follows from the surjectivity of � WW.m; n/! A.m; n/. �

Now one can easily see that, for every f 2 A.m; n/ of degree k decomposed
as in (5.40), we have F˛��1.f / D f . Hence the diagram (5.39) commutes. This
completes the proof of Theorem 5.11.

6. A ribbon quasi-Hopf algebra in yA

In this section, we construct a ribbon quasi-Hopf algebra in yA for each choice of a
Drinfeld associator.

6.1. Ribbon quasi-Hopf algebras. We recall the notions of quasi-triangular and
ribbon quasi-Hopf algebras in symmetric monoidal categories. See [30] for an
introduction to quasi-triangular quasi-Hopf algebras, and see [2, 60] for their ribbon
versions.

Let C be a (possibly linear) symmetric strict monoidal category with monoidal
unit I and symmetry PX;Y WX ˝ Y ! Y ˝ X . Let .H;�; �/ be an algebra in C.
We defined the convolution product � on C.I;H˝n/ in (5.7). For X 2 Ob.C/, we
can extend � to

�WC.I;H˝n/ � C.X;H˝n/ �! C.X;H˝n/; g � f WD �n.g ˝ f /;
�WC.X;H˝n/ � C.I;H˝n/ �! C.X;H˝n/; f � h WD �n.f ˝ h/:

Thus, the convolution monoid C.I;H˝n/ acts on C.X;H˝n/ from both left and
right. These actions commute, i.e., .g � f / � h D g � .f � h/.

A quasi-bialgebra H in C is an algebra .H;�; �/ equipped with morphisms of
algebras

�WH �! H ˝H; �WH �! I;

and a convolution-invertible morphism

'W I �! H˝3

such that

.� ˝ id/� D id D .id˝�/�; (6.1)
.id˝�/� D ' � .�˝ id/� � '�1; (6.2)

.id˝'/ � .id˝�˝ id/' � .' ˝ id/ D .id˝ id˝�/' � .�˝ id˝ id/'; (6.3)
.id˝� ˝ id/' D �˝ �: (6.4)
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A quasi-bialgebra H is cocommutative if PH;H� D �, and special if we have

�.id˝x/ D �.x ˝ id/ for every xW I ! H: (6.5)

A quasi-Hopf algebra is a quasi-bialgebra H equipped with an algebra anti-
automorphism

S WH �! H

and convolution-invertible morphisms

˛; ˇW I �! H

such that
�Œ3�.S ˝ ˛ ˝ id/� D ˛�; �Œ3�.id˝ˇ ˝ S/� D ˇ�; (6.6)

�Œ5�.id˝ˇ ˝ S ˝ ˛ ˝ id/' D �; �Œ5�.S ˝ ˛ ˝ id˝ˇ ˝ S/'�1 D �: (6.7)

A quasi-Hopf algebraH is quasi-triangular if it is equipped with a convolution-
invertible morphism

RW I �! H ˝H
such that

R �� �R�1 D PH;H�; (6.8)
.�˝ id/R D '321 �R13 � '�1132 �R23 � '123; (6.9)
.id˝�/R D '�1231 �R13 � '213 �R12 � '�1123; (6.10)

where we set

R12 D R˝ �; R13 D .id˝�˝ id/R; R23 D �˝R
and '˙1

ijk
D P.1;2;3i;j;k/

'˙1. Here P� WH˝3 ! H˝3 for � 2 S3 is the permutation
morphism defined similarly to (5.31). A quasi-triangular quasi-Hopf algebra H is
triangular if R21 D R, where we set R21 D PH;HRW I ! H ˝H .

We can view every cocommutative Hopf algebra .H;�; �;�; �; S/ as a quasi-
triangular quasi-Hopf algebra by setting ' D �˝3, ˛ D ˇ D � and R D �˝2.

A quasi-triangular quasi-Hopf algebra H is ribbon if it admits a convolution-
invertible morphism

rW I �! H

such that
Sr D r; (6.11)
�r DR21 �R � .r ˝ r/: (6.12)
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6.2. Kohno–Drinfeld Lie algebras and associators. We recall the definition of
Drinfeld associators.

Forn � 0, the Kohno–Drinfeld Lie algebra tn is the Lie algebra overK generated
by tij (i; j 2 ¹1; : : : ; nº, i ¤ j ) with relations

tij D tj i ; Œtij ; tik C tjk� D 0 .i; j; k distinct/; Œtij ; tkl � D 0 (i; j; k; l distinct):

We regard the universal enveloping algebra U.tn/ of tn as a subalgebra of the
algebra A.#˝n/ � A.C˝n;C˝n/ of Jacobi diagrams on #˝nWD # � � � #, via the
injective algebra homomorphism

U.tn/ �! A.#˝n/ (6.13)

that maps each tij to the chord diagram with a chord connecting the i-th and j -th
strings. (See [5, Corollary 4.4] or [20, Remark 16.2] for the injectivity of (6.13).)

Let KhhX; Y ii denote the algebra of formal power series in two non-commuting
generators. As usual,KhhX; Y ii is a complete Hopf algebra, withX and Y primitive.
A Drinfeld associator is a group-like element '.X; Y / 2 KhhX; Y ii such that

'.t12; t23 C t24/'.t13 C t23; t34/ D '.t23; t34/'.t12 C t13; t24 C t34/'.t12; t23/;
(6.14)

exp
� t13 C t23

2

�
D '.t13; t12/ exp

� t13
2

�
'.t13; t23/

�1 exp
� t23
2

�
'.t12; t23/;

(6.15)

exp
� t12 C t13

2

� D '.t23; t13/�1 exp
� t13
2

�
'.t12; t13/ exp

� t12
2

�
'.t12; t23/

�1:

(6.16)

Remark 6.1. A Drinfeld associator '.X; Y / gives rise to an associator

ˆ WD '.t12; t23/�1 2 A.###/

in the sense of Section 3.7.

6.3. A ribbon quasi-Hopf algebra in yA. We consider A.0; n/ (n � 0) as an
algebra with the convolution product �. We have an algebra isomorphism

�WA.#˝n/ �! A.0; n/;

� � �

� � �

D 7�!
� � �

D

� � �

� � � :
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For 1 � i < j � n, set

cij WD �.tij / D .�˝.i�1/ ˝ id˝�˝.i�j�1/ ˝ id˝�˝.n�j //cW 0 �! n:

Clearly, the cocommutative Hopf algebra structure .1; �; �;�; �; S/ in A given
in Proposition 5.10 induces a cocommutative Hopf algebra structure in the degree-
completion yA of A.

Let '.X; Y / 2 KhhX; Y ii be a Drinfeld associator. Define morphisms in yA:

' D �.'.t12; t23// D '.c12; c23/W 0 �! 3; (6.17)

R D �
�

exp
�1
2
t12

��
D exp�.c=2/W 0 �! 2; (6.18)

r D �
0
@exp

0
@1
2

1
A
1
A D exp�.�c=2/W 0 �! 1: (6.19)

Set ˆ D '.t12; t23/�1 2 A.###/, and define �W 0! 1 by

� D �

0
BB@ S2.ˆ

�1/

1
CCA

�1

or, equivalently, by � D �

0
BB@ S2.ˆ/

1
CCA

�1

(6.20)

where S2WA.###/! A.#"#/ is the diagrammatic “orientation-reversal operation”
applied to the second string. (The equivalence of those two definitions of � follows
from '.t23; t12/ D '.t12; t23/�1, which is a consequence of (6.15)–(6.16); see [6,
Proposition 3.7].)

Let ˇW 0 ! 1 in yA be convolution-invertible (equivalently, �ˇ ¤ 0), and let
˛ D � � ˇ�1. We denote

H';ˇ D .1; �; �;�; �; '; S; ˛; ˇ;R; r/:

and, for ˇ D �, we set H' D H';�.

Theorem 6.2. For each Drinfeld associator ' D '.X; Y / and each convolution-
invertible ˇW 0! 1, H';ˇ is a (triangular, cocommutative, special) ribbon quasi-
Hopf algebra in yA.

Proof. To prove that H';ˇ is a ribbon quasi-Hopf algebra, it suffices to check
(6.2)–(6.12) since .1; �; �;�; �; S/ is a Hopf algebra. First, note that

�Œn� � x D x ��Œn� for n � 0 and xW 0! n: (6.21)
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We obtain (6.2) and (6.6) from (6.21). We obtain (6.3) from the pentagon
equation (6.14). We obtain (6.4) from '.0; 0/ D 1, which holds since '.X; Y /
is group-like. We obtain (6.7) from (6.21), the well-known identity S.��1.�// D
��1.�/ 2 A.#/ and

�Œ3�.id˝S ˝ id/' D ��1 D �Œ3�.id˝S ˝ id/'�1321;

which follows from (6.20). We obtain (6.8) from (6.21) and cocommutativity of�.
We obtain (6.9) and (6.10) from the hexagon equations (6.15) and (6.16). We
obtain (6.11) as follows:

Sr D S exp�.�c=2/ D exp� S.�c=2/ D exp�.�.S ˝ S/P1;1c=2/ D r:

To obtain (6.12), let us apply to it the algebra isomorphism ��1. We have

��1.�r/ D CCC.��1.r//

D expCCC

0
B@1
2

1
CA D exp

0
B@1
2

1
CA

D exp

0
B@1
2

C 1

2
C

1
CA

D exp

0
B@

1
CA exp

0
B@1
2

1
CA exp

0
B@1
2

1
CA ;

where the second equality follows from Lemma 3.6, and the last equality follows
since

; ;

mutually commute. Since H';ˇ is triangular, we have

��1.R21 �R � .r ˝ r//D .��1.R//2.��1.r/˝ ��1.r//

D exp

0
B@

1
CA
0
B@exp

0
B@1
2

1
CA˝ exp

0
B@1
2

1
CA
1
CA :

Hence we have (6.12). �
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The universal property of A (Theorem 5.11) implies the following generalization
of Theorem 6.2. Let C be a linear symmetric strict monoidal category equipped
with a filtration C D F0 � F1 � F2 � � � � . Let yCF D lim �k C=F

k be the completion
of C with respect to F, and let

j WC �! yCF

be the canonical functor. (See Section 10.1 for a brief review of filtrations and
completions.)

Corollary 6.3. Let .H; c/ be a Casimir Hopf algebra in C and assume that
c 2 F1.H˝0;H˝2/. Then there is a unique continuous linear symmetric monoidal
functor

F.H;c/W yA �! yCF

that maps the Casimir Hopf algebra in yA to j.H; c/. Therefore, F.H;c/ maps the
ribbon quasi-Hopf algebra in yA to a ribbon quasi-Hopf algebra in yCF.

Remark 6.4. We can consider the quasi-triangular quasi-Hopf algebra

H' D .1; �; �;�; �; '; S; �; �; R/
as a deformation of the cocommutative Hopf algebra H0 WD .1; �; �;�; �; S/

in the following way. Let s 2 K. An s-associator is a group-like element
'.X; Y / 2 KhhX; Y ii satisfying the pentagon relation (6.14) and the following
two hexagon relations:

exp
�s.t13 C t23/

2

�
D '.t13; t12/ exp

�st13
2

�
'.t13; t23/

�1 exp
�st23
2

�
'.t12; t23/;

(6.22)

exp
�s.t12 C t13/

2

�
D '.t23; t13/�1 exp

�st13
2

�
'.t12; t13/ exp

�st12
2

�
'.t12; t23/

�1:

(6.23)

Note that a 1-associator is a Drinfeld associator in the sense of Section 6.2, and
that 0-associators constitute the so-called Grothendieck–Teichmüller group. (In
fact, Furusho [15] proved that if '.X; Y / satisfies (6.14), then it satisfies (6.22) and
(6.23) for some s in the algebraic closure of K.) Given an s-associator 's.X; Y /,
define 'sW 0 ! 3 and �sW 0 ! 1 by (6.17) and (6.20), respectively, and define
RsW 0! 2 by (6.18) with c replaced with sc. Then, by a proof completely parallel
to that of Theorem 6.2, it follows that

Hs WD .1; �; �;�; �; 's; S; �s; �; Rs/
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is a quasi-triangular quasi-Hopf algebra in yA. Assume now that ' is a Drinfeld
associator. Then 's.X; Y / WD '.sX; sY / is an s-associator for every s 2 K, so that
¹Hsºs2K is a one-parameter family of quasi-triangular quasi-Hopf algebras. We
have H1 D H' and H0 is a cocommutative Hopf algebra.

7. Weight systems

We illustrate the results of the previous two sections by considering weight systems,
which transform Jacobi diagrams into linear maps.

7.1. Casimir Lie algebras and weight systems. A Casimir Lie algebra is a Lie
algebra g (over K) equipped with an ad-invariant, symmetric 2-tensor c 2 g˝ g.
Then the universal enveloping algebra U.g/ of g together with c 2 g˝2 � U.g/˝2
is a Casimir Hopf algebra in the category of vector spaces.

Consequently, .U.g/; c/ is also a Casimir Hopf algebra in Mg WD ModU.g/,
the linear symmetric strict monoidal category of U.g/-modules. The universal
property of A gives a unique linear symmetric monoidal functor

W.g;c/WA �!Mg

mapping the Casimir Hopf algebra .H; c/ in A to the Casimir Hopf algebra .U.g/; c/.
We call W.g;c/ the weight system of the Casimir Lie algebra .g; c/.

Example 7.1. (1) A quadratic Lie algebra is a pair .g; �/ of a finite-dimensional Lie
algebra g and a non-degenerate symmetric ad-invariant bilinear form �W g� g! K.
Let c� 2 g˝ g be the 2-tensor corresponding to � via

Hom.g˝ g;K/ Š Hom.g;K/˝Hom.g;K/ Š g˝ g;

with the second isomorphism induced by �. Then .g; c�/ is a Casimir Lie algebra,
and hence .U.g/; c�/ is a Casimir Hopf algebra in the category of vector spaces.

(2) The Cartan trivector T� 2 g˝3 of .g; �/ is the skew-symmetric, ad-invariant
3-tensor corresponding to the trilinear form

g˝ g˝ g �! K; .x; y; z/ 7�! �.Œx; y�; z/:

We have

T� D W.g;c�/

0
B@

1
CA 2 U.g/˝3:
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7.2. Continuous weight systems. Let KŒŒh�� be the formal power series algebra.
For a vector space V , let V ŒŒh�� denote the h-adic completion of V ˝KŒŒh��.

We fix a Casimir Lie algebra .g; c/. Let MgŒŒh�� be the KŒŒh��-linear symmetric
strict monoidal category such that Ob.MgŒŒh��/ D Ob.Mg/ and

MgŒŒh��.V;W / DMg.V;W /ŒŒh��

for V;W 2 Ob.MgŒŒh��/. The composition in the category MgŒŒh�� and its
symmetric strict monoidal structure are inherited from Mg in the obvious way.

Since .U.g/; c/ is a Casimir Hopf algebra in Mg, so is .U.g/; hc/ in MgŒŒh��.
By the universal property of A, there is a unique linear symmetric monoidal functor

W.g;hc/WA �!MgŒŒh��

such that W.g;hc/.m/ D U.g/˝m for m � 0 and which maps the Casimir Hopf
algebra .H; c/ in A to the Casimir Hopf algebra .U.g/; hc/ in MgŒŒh��. By
continuity, the functor W.g;hc/ above extends uniquely as

yW.g;hc/W yA �!MgŒŒh��:

Remark 7.2. (1) Let g be a Lie algebra. One could also work within ModU.g/ŒŒh��,
the category of U.g/ŒŒh��-modules, instead of MgŒŒh��. In fact, there is a canonical
linear functor

i WMgŒŒh�� �!ModU.g/ŒŒh��
which maps each U.g/-module V to V ŒŒh�� and maps each f WV ! W in MgŒŒh��,
i.e., f 2Mg.V;W /ŒŒh��, to the map i.f /WV ŒŒh��! W ŒŒh�� induced by f . Since the
functor i is fully faithful, we may regard MgŒŒh�� as a subcategory of ModU.g/ŒŒh��.

(2) Let .g; c/ be a Casimir Lie algebra. Then, by Corollary 6.3, the composition

i ı yW.g;hc/W yA �!ModU.g/ŒŒh��

maps the ribbon quasi-Hopf algebra in yA (see Theorem 6.2) to a ribbon quasi-Hopf
algebra structure on U.g/ŒŒh��. This structure is known from Drinfeld’s work [14].
See [30, Theorem XIX.4.2] for the description of the underlying quasi-triangular
quasi-bialgebra structure.

8. Construction of the functor Z

In this section, we construct a functor

ZWBq �! yA; (8.1)

from the non-strictification Bq of B to the degree-completion yA of A.
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8.1. The category Bq of bottom q-tangles in handlebodies. Define the cate-
gory Bq of bottom q-tangles in handlebodies to be the non-strictification (see
Section 3.3) of the strict monoidal category B. Here we identify Ob.B/ D N with
the free monoid Mon.�/ on an element �. Hence we have Ob.Bq/ D Mag.�/, the
free unital magma on �.

Example 8.1. Forw 2 Mag.�/, we regard Bq.¿; w/ as a subset of Tq.¿; w.C�//,
where w.C�/ 2 Mag.˙/ is obtained from w by substituting � D .C�/.

8.2. The extended Kontsevich integral Z . The rest of this section is devoted to
the proof of following result.

Theorem 8.2. There is a functor ZWBq ! yA such that

(i) for w 2 Mag.�/, we have Z.w/ D jwj,
(ii) if T 2 Bq.¿; w/ � Tq.¿; w.C�//, w 2 Mag.�/, then the value of Z on T is

the usual Kontsevich integral Z.T /, as defined in Section 3.7,

(iii) Z is tensor-preserving, i.e., we have

Z.T ˝ T 0/ D Z.T /˝Z.T 0/

for morphisms T and T 0 in Bq .

The functor ZWBq ! yA is not a monoidal functor. By replacing the target
monoidal category yA with an appropriate “parenthesized” version yA'q , we can
make Z into a braided monoidal functor Z'q WBq ! yA'q ; see Section 9.3.

8.3. Notations. Let C be a monoidal category with (left) duals. The dual of
x 2 Ob.C/ is denoted by x�. For x 2 Ob.C/, set

d.x/ D x ˝ x� 2 Ob.C/:

We extend this definition to finite sequences of objects of C as follows.
First, assume that the monoidal category C is strict. For Nx D .x1; : : : ; xk/ 2

Ob.C/k (k � 1), set

d.Nx/ D d.x1; : : : ; xk/ WD d.x1/˝ � � � ˝ d.xk/ 2 Ob.C/:

Now, assume that the monoidal category C is non-strict. For w 2 Mag.�/ of length
k � 1 and

N
y D .y1; : : : ; yk/ 2 Ob.C/k , let w.

N
y/ D w.y1; : : : ; yk/ 2 Ob.C/ be

the object obtained from w by replacing its k consecutive letters by y1; : : : ; yk
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in this order. (For instance, if k D 3 and w D ..��/�/, then w.y1; y2; y3/ D
.y1 ˝ y2/˝ y3.) Set

dw.Nx/ D dw.x1; : : : ; xk/ WD w.d.x1/; : : : ; d.xk//

for Nx D .x1; : : : ; xk/ 2 Ob.C/k .
Moreover, we will need the following notation when the monoidal category C is

non-strict. Let w 2 Mag.�/ of length k, let Nx D .x1; : : : ; xk/; N
y D .y1; : : : ; yk/ 2

Ob.C/k and let f1W x1 ! y1; : : : ; fk W xk ! yk be morphisms in C. Then,

w.f1; : : : ; fk/Ww.Nx/ �! w.
N
y/

denotes the “w-parenthesized” tensor product of f1; : : : ; fk .

8.4. Construction of Z . Let m; n � 0. We decompose the handlebody Vm as

Vm D .Œ�1; 1�2 � Œ0; 7=8�/„ ƒ‚ …
a “lower” copy of the cube

[ ..Œ�1; 1�2 � Œ7=8; 1�/ [ .m 1-handles//„ ƒ‚ …
an “upper” copy of Vm

: (8.2)

For every T Wm! n in B there is an n-component bottom tangle in Vm such that

� it intersects transversally the square Œ�1; 1�2 � ¹7=8º in finitely many points
uniformly distributed along the line Œ�1; 1� � ¹0º � ¹7=8º,
� its intersection with the “upper” part of (8.2) consists of finitely many parallel

copies of the cores of the 1-handles.

Then T is determined by the intersection of this representative tangle with the
“lower” part of (8.2), which defines a tangle

U W d.v1; : : : ; vm/ �! .C�/n in T

for some v1; : : : ; vm 2 Mon.˙/. We call U a cube presentation of T .

Example 8.3. Here is a 3-component bottom tangle T in V2, together with a cube
presentation U where v1 D v2 D .CC/:

ÝT D D U:

CC �� CC ��

C�C� C�

(8.3)
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If T is upgraded to a morphism T W v ! w in Bq with jvj D m, jwj D n, and if
v1; : : : ; vm are upgraded to v1; : : : ; vm 2 Mag.˙/, then we call

U W dv.v1; : : : ; vm/ �! w.C�/ in Tq

a cube presentation of the bottom q-tangle T .

Definition 8.4. Let T W v ! w in Bq with m D jvj, n D jwj, and let

U W dv.v1; : : : ; vm/ �! w.C�/ in Tq

be a cube presentation of T . The extended Kontsevich integral of T is the morphism

Z.T /Wm �! n in yA

with square presentation

Z.U / ı .av1 ˝ idv�
1
˝ � � � ˝ avm ˝ idv�m/W d.v1; : : : ; vm/ �! .C�/n in A:

Thus, diagrammatically, we have

U Z.U/
Z

0
BBBBBBBBB@

1
CCCCCCCCCA
D

„ ƒ‚ …
w

v‚ …„ ƒ

� � �

� � �

v1� � � vm� � � av1 avm

� � �

� � �„ ƒ‚ …
n

m‚ …„ ƒ

.

(8.4)

The next lemma shows that the extended Kontsevich integral is well defined.

Lemma 8.5. Let T W v ! w in Bq , m D jvj, n D jwj. For all cube presentations

U W dv.v1; : : : ; vm/ �! w.C�/; U 0W dv.v01; : : : ; v0m/ �! w.C�/ in Tq

of T , the morphisms

Z.U / ı .av1 ˝ idv�
1
˝ � � � ˝ avm ˝ idv�m/;

Z.U 0/ ı .av0
1
˝ id.v0

1
/� ˝ � � � ˝ av0m ˝ id.v0m/�/

are square presentations of the same morphism m! n in yA.
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Proof. For V W x ! y in Tq , let r.V /Wy� ! x� denote the �-rotation of V around
the Ey axis of R3.

We can realize an isotopy of bottom tangles with cube presentations as a
sequence of isotopies of cube presentations and “sliding subtangles through the
handles”. (Similar arguments appear in [42].) Thus, without loss of generality,
we can assume that there are morphisms T0W v.v1.v01/�; : : : ; vm.v0m/�/ �! w.C�/
and T1W v01 ! v1; : : : ; TmW v0m ! vm in Tq such that

´
U D T0 ı v.idv1 ˝r.T1/; : : : ; idvm ˝r.Tm//;
U 0 D T0 ı v.T1 ˝ id.v0

1
/� ; : : : ; Tm ˝ id.v0m/�/:

It follows that
´
Z.U / ı A D Z.T0/ ı .av1 ˝Z.r.T1//˝ � � � ˝ avm ˝Z.r.Tm///;
Z.U 0/ ı A0 D Z.T0/ ı .Z.T1/av0

1
˝ id.v0

1
/� ˝ � � � ˝Z.Tm/av0m ˝ id.v0m/�/;

where A WD .av1 ˝ idv�
1
˝ � � � ˝ avm ˝ idv�m/, and A0 is defined similarly from the

words v01; : : : ; v0m. Thus, it suffices to prove that

� � �

av1 Z.r.T1//
avm Z.r.Tm//

v1
� � �

v1
� � �

vm
� � �

vm
� � �

is equal to

� � �

av0
1

Z.T1/

av0m

Z.Tm/

v0
1
� � �

v0
1
� � �

v1
� � �

v0m
� � �

v0m
� � �

vm
� � �
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in the space of F.x1; : : : ; xm/-colored Jacobi diagrams on the appropriate oriented
1-manifold. For this, it suffices to show that

rZr.Ti /

avi

av0
i

Z.Ti /

D W v0i �! vi in A,

v0
i� � �

vi� � �

vi� � � vi� � �

v0
i� � �

v0
i� � �

which follows by applying the usual Kontsevich integral to the following identity
of q-tangles:

r.Ti / D Ti W¿ �! vi .v
0
i /
� in Tq .

� � � � � � � � � � � � �

Obviously, we have (ii) in Theorem 8.2. We have (iii) since the usual Kontsevich
integral itself is tensor-preserving. Therefore, it remains to prove that Z is
functorial.

8.5. Functoriality of Z . To prove that Z is a functor, we need a recurrence
formula on the cabling anomalies aw Ww ! w in A.

Lemma 8.6. For each w 2 Mag.˙/ of length n and each map

f W�0.# w� � �#/ D ¹1; : : : ; nº �! Mag.˙/;
we have

aCf .w/ D .r Œw1�.af .1//˝ � � � ˝ r Œwn�.af .n/// ı Cf .aw/ 2 A.#Cf .w/� � � #/;
where r ŒC� D id and r Œ�� D r with r being the �-rotation.

Proof. Setting x D Cf .w/ 2 Mag.˙/, we have

x�� � �x� � �
ax

D ZCx
�
.C�/

�
D ZCf Cw

�
.C�/

�
:
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By Lemma 3.9, we deduce that

x�
� � �

x
� � �

ax

D c.ww�; ft / ı CfZCw
�
.C�/

�

D c.ww�; ft / ı Cf

0
BBBB@

w�
� � �

w
� � �

aw

1
CCCCA

D c.ww�; ft / ı
x�
� � �

x
� � �

Cf.aw/
:

The series of diagrams c.ww�; ft / is obtained from idw ˝ idw� by replacing the i-
th string of idw by af .i/ ifwi D C or by idf .i/� ifwi D � and, next, by replacing the
i-th string of idw� by af .n�iC1/ if wn�iC1 D � or by idf .n�iC1/� if wn�iC1 D C.
Thus, using the STU relation, we obtain

x�� � �x� � �
ax

D .r Œw1�.af .1//˝ � � � ˝ r Œwn�.af .n//˝ idx�/ ı
x�
� � �

x
� � �

Cf.aw/

and we have the conclusion. �

Let v T�! w
T 0�! x in Bq with jvj D m, jwj D n, jxj D p, and let

U W dv.v1; : : : ; vm/ �! w.C�/; U 0W dw.w1; : : : ; wn/ �! x.C�/ in Tq

be cube presentations of T and T 0, respectively. Then

U 0 ı Cf .U /W dv.v01; : : : ; v0m/ �! x.C�/ in Tq

is a cube presentation of T 0 ı T W v ! x, where f W�0.U / ! Mag.˙/ is an
appropriate map and v01; : : : ; v0m 2 Mag.˙/ are such that

Cfs .d
v.v1; : : : ; vm// D dv.v01; : : : ; v

0
m/:



662 K. Habiro and G. Massuyeau

Therefore, Z.T 0 ı T / has the following square presentation:

Z.U 0 ı Cf .U // ı .av0
1
˝ id.v0

1
/� ˝ � � � ˝ av0m˝ id.v0m/�/

D Z.U 0/ ıZ.Cf .U // ı .av0
1
˝ id.v0

1
/� ˝ � � � ˝ av0m˝ id.v0m/�/

D Z.U 0/ ı c.w.C�/; ft / ı CfZ.U /
ı c.dv.v1; : : : ; vm/; fs/�1 ı .av0

1
˝ id.v0

1
/� ˝ � � � ˝ av0m˝ id.v0m/�/

D Z.U 0/ ı .aw1˝ idw�
1
˝ � � � ˝ awn˝ idw�n / ı CfZ.U /

ı c.dv.v1; : : : ; vm/; fs/�1 ı .av0
1
˝ id.v0

1
/� ˝ � � � ˝ av0m˝ id.v0m/�/:

Here the second identity is given by Lemma 3.9. By m applications of Lemma 8.6
and using the STU relation, we obtain the following square presentation of
Z.T 0 ı T /:

Z.U 0/ ı .aw1˝ idw�
1
˝ � � � ˝ awn˝ idw�n / ı CfZ.U /

ı Cfs .av1˝ idv�
1
˝ � � � ˝ avm˝ idv�m/

D Z.U 0/ ı .aw1˝ idw�
1
˝ � � � ˝ awn˝ idw�n /

ı Cf .Z.U / ı .av1˝ idv�
1
˝ � � � ˝ avm˝ idv�m//:

By Lemma 4.10, we have Z.T 0 ı T / D Z.T 0/ ıZ.T /.

8.6. Proof of Theorem 1.2. Consider a morphism T W v ! w in Bq with a
decomposition into q-tangles T0; T1; : : : ; Tm as shown in (1.7), where m WD jvj,
n WD jwj and

T0W v.u1u01; : : : ; umu0m/ �! w.C�/; Ti W¿ �! uiu
0
i .i D 1; : : : ; m/ in Tq:

To deduce Theorem 1.2 from Theorem 8.2, it suffices to show that the functor
ZWBq ! yA resulting from the latter satisfies (1.8) with ZB WD Z. Let us write

T D ŒT0I T1; : : : ; Tm� D ŒT0I .Ti /iD1;:::;m�

and extend this notation Œ�I �; : : : ;�� to other compatible sequences of q-tangles
T 00; T

0
1; : : : ; T

0
m. We use the same kind of notation for Jacobi diagrams. In these

notations, what we have to prove is the following:

Z.T / D ŒZ.T0/I Z.T1/; : : : ; Z.Tm/�: (8.5)

For each i D 1; : : : ; m, let QTi Wu�i ! u0i be the unique morphism in Tq such that

Ti D .idui ˝ QTi / ı Cui
� �

: (8.6)
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Then, we have

ŒZ.T0/I Z.T1/; : : : ; Z.Tm/�
(8.6)D �Z.T0/I �Z�.idui ˝ QTi / ı Cui

� ���
iD1;:::;m

�
D �Z.T0/I �Z.idui ˝ QTi / ıZ

�
Cui

� ���
iD1;:::;m

�

D
h
Z.T0/ ı

mO
iD1

Z.idui ˝ QTi /I
�
Z
�
Cui

� ���
iD1;:::;m

i

D
h
Z
�
T0 ı

mO
iD1

.idui ˝ QTi /
�
I �Z�Cui

� ���
iD1;:::;m

i
:

By Definition 8.4 and (3.8), the right hand side is equal to

Z
�h
T0 ı

mO
iD1

.idui ˝ QTi /I
�
Cui

� ��
iD1;:::;m

i�

D Z��T0I �.idui ˝ QTi / ı Cui
� ��

iD1;:::;m

��
(8.6)D Z.ŒT0I .Ti /iD1;:::;m�/ D Z.T /:

Hence we have (8.5), which completes the proof of Theorem 1.2.

8.7. Group-like property of Z . Recall from Section 4.5 that the category yA is
enriched over cocommutative coalgebras, and that there is a monoidal subcategory
yAgrp of yA, the group-like part of yA.

Proposition 8.7. The extended Kontsevich integral Z takes group-like values, i.e.,
for T W v ! w in Bq , we have

Z.T / 2 yAgrp.jvj; jwj/:

Thus we have a (tensor-preserving) functor ZWBq ! yAgrp.

Proof. Since the usual Kontsevich integral takes group-like values, this follows
from Lemma 4.16 and the definition of Z.T / using a cube presentation of T . �

8.8. F-grading on Z . We recall from Section 4.4 that the linear category A

is graded over the opposite of the category F of finitely generated free groups,
and that this grading corresponds to homotopy classes of Jacobi diagrams in
handlebodies. Similarly, we define the homotopy class of T Wm! n in B to be the
group homomorphism h.T /WFn ! Fm induced by iT WVn ! Vm on fundamental
groups.
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Proposition 8.8. The extended Kontsevich integral Z preserves the homotopy
class: if T W v ! w in Bq , then we have

Z.T / 2 yA.jvj; jwj/h.T /:

Proof. This follows from the definition ofZ.T / using a cube presentation of T . �

9. The braided monoidal functor Z'
q and computation of Z

In this section, we assume that the associatorˆ 2 A.###/ used in the construction
of ZWBq ! yA arises from a Drinfeld associator '.X; Y / 2 KhhX; Y ii as explained
in Remark 6.1. We compute Z on a generating set of Bq and construct a braided
monoidal functor Z'q WBq ! yA'q , which is a variant of Z with values in a
deformation of the non-strictification of yA.

9.1. Generators of Bq . As announced in [22, §14.5] and will be proved in [25],
the strict monoidal category B is generated by the morphisms

 WD ;  �1 WD ;

� WD ; � WD ; � WD ; � WD ;

S WD ; S�1 WD ; rC WD ; r� WD :

(9.1)

The monoidal category B has a unique braiding

 p;qWp C q �! q C p; p; q � 0

such that  1;1 D  . The object 1 is a Hopf algebra in the braided category B, with
multiplication �, unit �, comultiplication �, counit � and invertible antipode S .
The canonical functor B! Cob (see Section 2.4) maps this Hopf algebra to the
Hopf algebra in Cob given by Crane and Yetter [11] and Kerler [34], and it maps
the morphisms r˙ to the “ribbon elements” in the sense of [35].
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Example 9.1. We can use the Hopf algebra structure of 1 in B to define some
additional morphisms. The adjoint action is the morphism

ad WD �Œ3�.id1˝ /.id1˝S ˝ id1/.�˝ id1/ D W 2 �! 1:

Using the ribbon elements r˙ and following [35], we define

c WD ��.r� ˝ id1/˝ �.id1˝r�/
�
�rC D W 0 �! 2:

The above generating set for the strict monoidal categoryB induces a generating
set for the non-strict monoidal category Bq:

 ˙1W �� �! ��; �W �� �! �; �; r˙W¿ �! �;

�W � �! ��; �W � �! ¿; S˙1W � �! �:
The associativity isomorphisms of Bq are denoted by ˛u;v;w W .uv/w ! u.vw/.

9.2. Values of Z on the generators. We compute the values of Z on the
generators of the monoidal category Bq given in the previous subsection. Our
formulas will be expressed only in terms of the chosen Drinfeld associator '.X; Y /,
and they will involve the structural morphisms of the Casimir Hopf algebra
.H; c/ D .1; �; �; �;�; S; c/ in A. (See Proposition 5.10.)

As in Section 6.3, we equip yA.0;m/ (m � 0) with its convolution product �
and consider the following morphisms in yA:

' D '.c12; c23/W 0 �! 3;

R D exp�.c=2/W �! 2;

r D exp�.�c=2/W 0 �! 1:

Set

� D .�Œ3�.id1˝S ˝ id1/'/�1W 0 �! 1 in yA;
where . /�1 denotes convolution-inverse. Note that � corresponds to the ele-
ment (6.20) of A.#/ through the isomorphism � of Section 6.3.

In what follows, we use the usual graphical calculus for morphisms in yA,
where morphisms run downwards. The antipode S , the iterated multiplication �Œn�
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and the iterated comultiplication �Œn� (n � 0) are depicted by

,
� � �

,
� � �

respectively. For instance, the adjoint action of the Hopf algebra H

ad D �Œ3�.id1˝P1;1/.id1˝S ˝ id1/.�˝ id1/W 2 �! 1

is depicted by

WD :

Proposition 9.2. We have

Z. ˙1/ D

R˙1

; Z.r˙/ D
r�1

; Z.�/ D ; Z.�/ D ;

(9.2)

Z.˛˙1u;v;w/ D
'˙1 � � � � � � � � �

� � �� � �� � �„ƒ‚…
juj

„ƒ‚…
jvj

„ƒ‚…
jwj

for u; v;w 2 Mag.�/, (9.3)

Z.S˙1/ D
r˙1=2

; (9.4)

Z.�/ D
�

'�1'

; (9.5)
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Z.�/ D

' '�1

'

'�1

R

'�1

: (9.6)

Proof. First, we briefly explain how to compute Z. /, Z.rC/, Z.�/, Z.�/ and
Z.˛u;v;w/. One can compute Z. �1/, Z.r�/ and Z.˛�1u;v;w/ similarly. We only
indicate the decompositions into q-tangles of some cube presentations leading
to (9.2) and (9.3):

 D
_+

+

+

+

_

_

(

( (

) )(

) )_

; rC D )

+ _)

+_

(

(

;

� D
)+ _(

; � D ;

˛u;v;w D
)

+ + + + +

++

_ _

_ + +_ _ _ _

( _

+ )

_

(( _

_

+( ) ))(

( ) ( ) )

) ( ))((

(

( )

)()(( ( ) ( ) ( _ ) ) + )

(( )

� � �

� � � � � �

� � �

� � �

� � �

„ ƒ‚ …
u.C�/

„ ƒ‚ …
v.C�/

„ ƒ‚ …
w.C�/

We leave the details to the interested reader.

Now we compute Z.S/. Since

S D

)+

+

_

_

+_( )

( )

(

;
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we have

Z.S/ D
exp

�
� 1
2

�
exp

�
1
2

�
D

exp
�
� 1
2

�
exp

�
1
4

�
exp

�
1
4

�

D
!

exp
 
1
4

which implies (9.4). The computation of Z.S�1/ is similar.
One can easily derive (9.5) from the following decomposition into q-tangles of

a cube presentation of �:

� D (

+ _+_

+

+

+

_

_

+

+

_

_

_

( ) )(

)( )

( ( ) )

Finally, let us consider (9.6). We need to compute a WD �.a.CC// 2 yA.0; 2/,
where a.CC/ 2 A.##/ is the cabling anomaly. Since we have

a.CC/ D Z
 

) _ _ )(++(

!
D Z

 
+

+ +)( __( )

+ +( ) _

+ + _

)_(

( )_( )

_ !
;

we obtain

a D

' '�1

: (9.7)
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Then (9.6) follows from (9.7) and the following decomposition into q-tangles of a
cube presentation of �:

� D

)

+ + _ _

+ + _ _

+ + _ _

+ _ _+

+ _+ _

( ) ( )

)(( )

( )( )

( ( ))

( ) (

: �

9.3. The braided monoidal functor Z'
q WBq ! yA

'
q . Using the above compu-

tations of Z on the braiding and associativity isomorphisms of Bq , we define a
non-strict braided monoidal category yA'q as follows.

Let yAq denote the non-strictification of the linear strict monoidal category yA,
see Section 3.3. (The non-strictification defined there extends to linear strict
monoidal categories in the obvious way.) We identify Ob.yA/ D N with Mon.�/:
consequently, Ob.yAq/ D Mag.�/. The symmetry in yA gives one in yAq:

Pv;w WD Pjvj;jwj 2 yAq.vw;wv/ D yA.jvj C jwj; jwj C jvj/ for v;w 2 Mag.�/.

Thus yAq is a linear symmetric non-strict monoidal category.
Using the Drinfeld associator ' D '.X; Y /, we deform yAq into a linear braided

non-strict monoidal category yA'q as follows. The underlying category, the tensor
product functor and the monoidal unit of yA'q are the same as those of yAq . The tensor
product for yA'q is strictly unital, and the left and right unitality isomorphisms in yA'q
are the identities. Define the associativity isomorphism ˛u;v;w W .uv/w ! u.vw/

by

˛u;v;w WD
' � � � � � � � � �

� � �� � �� � �„ƒ‚…
juj

„ƒ‚…
jvj

„ƒ‚…
jwj

; (9.8)

and define the braiding  v;w W vw ! wv by

 v;w WD

R � � � � � �

� � � � � �„ƒ‚…
jwj

„ƒ‚…
jvj

: (9.9)
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The tensor-preserving functor ZWBq ! yA is upgraded to a braided monoidal
functor as follows.

Theorem 9.3. With the above description, the category yA'q is braided monoidal
and there is a (unique) braided monoidal functor

Z'q WBq �! yA'q (9.10)

which is the identity on objects, such that

Z'q .f / D Z.f / 2 yA'q .w;w0/ D yA.jwj; jw0j/

for morphisms f Ww ! w0 in Bq .

Proof. We can check that yA'q is a braided monoidal category using the properties
of a Drinfeld associator (see Section 6.2). Alternatively, using the universality of
Z proved in the next section, this follows since Bq itself is a braided monoidal
category and we have Z. v;w/ D  v;w , Z.˛u;v;w/ D ˛u;v;w ; see (9.2) and (9.3).

Clearly, Z'q is a well-defined functor. Since Z is tensor-preserving, so is Z'q .
By (9.2) and (9.3), Z'q preserves the braidings and the associativity isomorphisms.
Both Bq and yA'q have the identity left and right unitality isomorphisms. Hence we
have the assertion. �

Remark 9.4. The braided monoidal structure of yA'q descends to a braided monoidal
structure on the category yA, with the tensor product functor defined in Section 4.3,
as follows. Form; n; p � 0, the associativity isomorphism ˛m;n;pW .mC n/Cp !
mC .nC p/ and the braiding  n;p W nC p ! p C n are defined to be the right
hand sides of (9.8) and (9.9), respectively, where we set juj D m, jvj D n and
jwj D p. (Note that ˛m;n;p and  n;p depend only on the choices of m; n; p and
not on u; v;w.) Let yA' denote the linear braided non-strict monoidal category thus
obtained, with the identity left and right unitality isomorphisms. There is a fully
faithful, linear braided monoidal functor

� W yA'q �! yA'

which maps each object w 2 Mag.�/ to its length, and maps the morphisms
identically. Clearly, � is an equivalence of linear braided monoidal categories.
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9.4. Transmutation of quasi-triangular quasi-Hopf algebras. In Section 9.5,
we will interpret the formulas for Z in Proposition 9.2 in terms of transmutation.
For a quasi-triangular Hopf algebra H , Majid introduced a Hopf algebra xH in the
braided monoidal category ModH of H -modules, called the transmutation of H
[46, 47]. Here we consider transmutation of quasi-triangular quasi-Hopf algebras
introduced by Klim [36].

Let H D .H; �; �; �;�; '; S; ˛; ˇ;R/ be a quasi-triangular quasi-Hopf algebra
in a symmetric strict monoidal category C with monoidal unit I . Following [36,
Theorem 3.1], define morphisms

N
�W I ! H; N�WH ! I;

N
�WH ˝H ! H; x�WH ! H ˝H; xS WH ! H

in C by

N
� D ˇ; N� D �; (9.11)

N
�.b ˝ b0/ D q1.x1 F b/S.q2/x2b0S.x3/; (9.12)

x�.b/ D x
1X1b.1/g

1S.x2R2y3X3.2//˝ x3R1 F y1X2b.2/g2S.y2X3.1//;
(9.13)

xS.b/ D X
1R2x2ˇS.q1.X2R1x1 F b/S.q2/X3x3/; (9.14)

where the adjoint action adWH ˝H ! H is denoted by l ˝ r 7! l F r , we use
Sweedler’s notation �.z/ D z.1/ ˝ z.2/ for z 2 H , and we set

q D q1 ˝ q2 D X1 ˝ S�1.˛X3/X2;
' D X1 ˝X2 ˝X3; '�1 D x1 ˝ x2 ˝ x3 D y1 ˝ y2 ˝ y3;

g D g1 ˝ g2 D .�.S.x1/˛x2//ı.S ˝ S/.�op.x3//;

ı D ı1 ˝ ı2 D B1ˇS.B4/˝ B2ˇS.B3/;
B1 ˝ B2 ˝ B3 ˝ B4 D .�˝ id˝ id/.'/.'�1 ˝ 1/;

R D R1 ˝R2:

Here we use the notations for a quasi-triangular quasi-Hopf algebra over a field,
but the meaning of the above formulas in the category C should be clear. Let

xH D .H; ad/ denote the object H with the adjoint action. Klim proved that

xH D .xH; N
�;
N
�; N�; x�;xS/ is a Hopf algebra in the braided monoidal category ModH .

(Recall that the monoidal category ModH is not strict in general, although we
assumed that C is strict monoidal.)

By straightforward computation, we can rewrite (9.12) and (9.13) as follows.
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Lemma 9.5. We have

N
� D �
2
1; (9.15)

x� D �5�4�3�2�1�; (9.16)

where we define 
1; 
2; �1; : : : ; �5WH˝2 ! H˝2 by


1.b ˝ b0/ D .x1 F b/˝ x2b0S.x3/; 
2.b ˝ b0/ D X1bS.X2/˛X3 ˝ b0;
�1.b ˝ b0/ D bg1 ˝ b0g2; �2.b ˝ b0/ D X1bS.X3.2//˝X2b0S.X3.1//;
�3.b ˝ b0/ D bS.y3/˝ y1b0S.y2/; �4.b ˝ b0/ D bS.R2/˝ .R1 F b0/;

�5.b ˝ b0/ D x1bS.x2/˝ .x3 F b0/:

9.5. Transmutation and the functor Z . Consider now the quasi-triangular
quasi-Hopf algebra in yA

H WD H' D .1; �; �; �;�; '; S; ˛; ˇ;R/ (9.17)

given by Theorem 6.2 with ˇ D � (and, hence, ˛ D �). Let xH D .xH; N
�;
N
�; N�; x�;xS/be the transmutation of H , which is a Hopf algebra in the braided non-strict

monoidal category ModH of H -modules in yA.
Let HBq D .�; �; �; �;�; S/ denote the Hopf algebra in Bq defined in Sec-

tion 9.1. It follows from Theorem 9.3 that

Z'q .H
Bq / D ��; Z'q .�/; Z'q .�/;Z'q .�/; Z'q .�/;Z'q .S/�

is a Hopf algebra in the braided non-strict monoidal category yA'q .
Next, we define a fully faithful linear functor

F W yA'q �!ModH

by F.w/ D w.xH/ for w 2 Mag.�/ and

F.f / D f for f 2 yA'q .v; w/ D yA.jvj; jwj/ with v;w 2 Mag.�/:

Then, by (9.8) and (9.9), F is a braided monoidal functor. Hence F.Z'q .HBq // is
a Hopf algebra in ModH .

Theorem 9.6. The two braided Hopf algebras F.Z'q .HBq // and xH coincide.
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Proof. Since the antipode of a braided bialgebra is unique, it suffices to prove

Z.�/ D
N
�; Z.�/ D N�; Z.�/ D

N
�; Z.�/ D x�:

It is easy to check the first two identities. We can check Z.�/ D
N
� by using (9.5),

(9.15), and

�
2.b ˝ b0/ D X1bS.X2/�X3b0 (6.21)D X1bS.X2/X3b0�;

where, as before, b and b0 are formal variables denoting virtual elements in the
Hopf algebra.

Let us now prove Z.�/ D x�. We have

g D �.S.x1/�x2/ı�.S.x3//
(6.21)D �.S.x1/�x2/�.S.x3//ı

D �.S.x1/�x2S.x3//ı
(6.7)D ı D X1.1/x1S.X3/˝X1.2/x2S.x3/S.X2/ (9.7)D a:

Hence, �1�.b/ D �.b/g D �.b/a (6.21)D a�.b/. Therefore,

x�.b/
(9.16)D �5 � � � �1�.b/ D �5 � � � �2.a�.b// (9.6)D Z.�/.b/

where we use P1;1R D R in the last identity. Hence x� D Z.�/. �

9.6. Computations of Z up to degree 2. Here we give the values of Z for the
generators of Bq up to degree 2.

Proposition 9.7. We have Z.�/ D , Z.�/ D and the following

identities hold true up to degree 2:

Z.�/ D C 1

24
C 1

48

� 1

48
� 1

48
;
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Z.�/ D � 1
2

C 1

8

C 1

48
� 1

12
C 1

24

C 1

24
C 1

24
;

Z.S˙1/ D ˙ 1

2
� 1

2

C 1

8
� 1
4

C 1

8
;

Z.r˙/ D �1
2

C 1

8
;

Z. ˙1/ D ˙ 1

2
C 1

8
;

Z.˛˙1u;v;w/ D
...

... ...

... ...

...

juj‚ …„ ƒ jvj‚ …„ ƒ jwj‚ …„ ƒ

� 1

24
... ... ...

.........

juj‚ …„ ƒ jvj‚ …„ ƒ jwj‚ …„ ƒ

:

Proof. One can check these formulas by direct computations using Proposition 9.2
and the well-known identity

'.X; Y / D 1C 1

24
ŒX; Y �C (terms of degree > 2); (9.18)

which follows from (6.15) and (6.16). We leave the details to the interested
reader. �
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Remark 9.8. The quasi-triangular quasi-Hopf algebra H D H' in yA given
in (9.17) has the following structure up to degree 2. The morphisms �; �; �;�; S
are as depicted in (5.28) and concentrated in degree 0. Combining (6.17) to (9.18),
using (6.18) and using (6.20), respectively, we obtain the following identities up to
degree 2:

'˙1 D � 1

24
;

R˙1 D ˙ 1

2
C 1

8
;

� D C 1

48
:

We can also deduce Proposition 9.7 from these identities by using Theorem 9.6.

10. Universality of the extended Kontsevich integral

In this section, we show that the extended Kontsevich integral Z'q WBq ! yA'q
(given by Theorem 9.3) induces an isomorphism Z

'
q W bKBq ! yA'q of linear braided

monoidal categories, where bKBq is the completion of the linearizationKBq of Bq
with respect to the Vassiliev–Goussarov filtration. This implies the universality of
Z among Vassiliev–Goussarov invariants of bottom tangles in handlebodies.

10.1. Ideals in monoidal categories. Let C be a linear (possibly non-strict)
monoidal category. We partly borrow from [31, §3.3] the following terminology.
An ideal I of C consists of a family of linear subspaces I.v; w/ � C.v; w/ for all
v;w 2 Ob.C/ such that f ˝ g; f ı g 2 I for morphisms f; g 2 C with either f 2 I

or g 2 I. For instance, the ideal generated by a set S of morphisms of C is the
smallest ideal of C containing S . Every ideal I of C defines a congruence relation
in C, and the quotient category C=I is a linear monoidal category.

A filtration F in C is a decreasing sequence C D F0 � F1 � F2 � � � � of ideals
of C such that Fk ı Fl � FkCl for k; l � 0. Then Fk ˝ Fl � FkCl follows. The
completion of C with respect to F

yCF WD lim �
k

C=Fk
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inherits a structure of filtered linear monoidal category from C. Let yF denote the
filtration of yCF induced by F. Let GrFC denote the graded linear monoidal category
associated to F: we have Ob.GrFC/ D Ob.C/ and

GrFC.v; w/ D
M
k�0

Fk.v; w/=FkC1.v; w/:

The product JI of two ideals I; J � C is the ideal of C generated by gf for
all composable pairs of g 2 J, f 2 I. For an ideal I � C, the I-adic filtration
C D I0 � I1 � I2 � � � � of C is defined inductively by I0 D C and IkC1 D IIk

for k � 0. We write yC D yCI and GrC D GrI C if the ideal I is clear from the
context. Note that Ik contains all morphisms of C that can be obtained by taking
compositions and tensor products of a finite number of morphisms in C containing
at least k elements of I.

We define the tensor power w˝k of an object w in C inductively by w˝0 D I ,
the monoidal unit, and w˝.kC1/ D w˝k˝w. The tensor power f ˝k W v˝k ! w˝k

of a morphism f W v ! w is defined similarly. (If C is a strict monoidal category,
then these tensor powers coincide with those we have already used.)

10.2. The Vassiliev–Goussarov filtration. We now generalize the Vassiliev–
Goussarov filtration for links/tangles in a ball (see e.g. [6]) to bottom tangles in
handlebodies. In the definition of the Vassiliev–Goussarov filtration, one usually
uses only crossing-change moves to form alternating sums of tangles that generate
the filtration. We here also use framing-change moves since we work with framed
tangles.

Let KBq denote the linearization of the category Bq . A plot P of a diagram D

of a bottom q-tangle T W v ! w is a disk in which D appears as either a crossing
or a positive curl:

; :

We get a new bottom q-tangle TP W v ! w from T by the following move at P :

T D 7�! TP D ; T D 7�! TP D : (10.1)

More generally, if P is a finite set of pairwise disjoint plots of D, then we obtain a
new bottom q-tangle TP from T by applying the above move in each plot of P .
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For k � 0, let Vk.v; w/ denote the linear subspace of KBq.v; w/ spanned by

ŒT IP � WD
X
S�P

.�1/jS jTS ;

where T 2 Bq.v; w/ and P is a set of k pairwise disjoint plots of an arbitrary
diagram of T . The spaces Vk.v; w/ give the Vassiliev–Goussarov filtration of
KBq:

KBq D V0 � V1 � V2 � � � � :
As we will see, V is a filtration of KBq in the sense of Section 10.1.

Recall from Section 9.1 the morphisms �; rC; r� W ¿ ! � and cW¿ ! �� in
Bq . Let J be the ideal of KBq generated by

rC � � 2 KBq.¿; �/:

We have
c � �˝2 2 J.¿; ��/: (10.2)

Indeed, since r� D �.r� ˝ �/ �
J
�.r� ˝ rC/ D �, we have

c D .�.r� ˝ id/˝ �.id˝r�//�rC �
J
.�.�˝ id/˝ �.id˝�//�� D �˝2:

Now we give a categorical description of the Vassiliev–Goussarov filtration.

Proposition 10.1. The Vassiliev–Goussarov filtration coincides with the J-adic
filtration; i.e., we have Vk D Jk for k � 0.

Proof. We first prove that V is a filtration. It is easy to see that each Vk is an ideal.
To prove Vk

0 ı Vk � VkCk
0 , consider morphisms w T�! w0

T 0�! w00 in Bq , and let
P (resp. P 0) consist of k (resp. k0) pairwise disjoint plots of a diagram of T (resp.
T 0). We will prove ŒT 0IP 0� ı ŒT IP � 2 VkCk

0 . We can assume that the diagrams of
T and T 0 arise from diagrams of some cube presentations U and U 0 of T and T 0,
respectively. Then

ŒT 0IP 0� ı ŒT IP �D
X
S�P

X
S 0�P 0

.�1/jS jCjS 0jT 0S 0 ı TS

has a cube presentation
X
S�P

X
S 0�P 0

.�1/jS jCjS 0jU 0S 0 ı Cf .US /D ŒU 0IP 0� ı Cf .ŒU; P �/
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for some map f W�0.U / ! Mag.˙/. We can decompose the cabling of each of
the moves in (10.1) into a finite sequence of moves in (10.1). Therefore we have

Cf .ŒU; P �/ D
X
i

ŒVi ; Pi �;

where each Vi is a q-tangle differing from Cf .U / only in the plots of P , and each
Pi consists of k smaller plots in a diagram of Vi . It follows that

X
i

ŒU 0IP 0� ı ŒVi ; Pi � D
X
i

ŒU 0 ı Vi IP 0 [ Pi �

is a cube presentation of ŒT 0IP 0� ı ŒT IP �. Hence it belongs to VkCk
0 .

Now we prove Jk D Vk for k � 1. We have Jk � Vk since V is a filtration and
we have rC � � 2 V1. To prove Vk � Jk , consider an element ŒT IP � 2 Vk.v; w/;

where T 2 Bq.v; w/ and P is a set of k pairwise disjoint plots of a diagramD of T .
Assume that P has k0 plots containing crossings and k00 WD k � k0 plots containing
positive curls. We can realize the moves in (10.1) by the moves �˝2 7! c and
� 7! rC. Thus, by moving the plots of P towards the upper right corner ofD using
planar isotopy and Reidemeister moves, we obtain

ŒT IP � D ˙T 0 ı .idv˝..c � �˝2/˝k0 ˝ .rC � �/˝k00//;

where T 0 is a morphism in Bq . By (10.2), it follows that ŒT IP � 2 Jk . �

Remark 10.2. (1) One can define the filtrations V and J in KB as well. Proposi-
tion 10.1 is valid in this setting, too.

(2) A result similar to Proposition 10.1 is given in [22]. The braided monoidal
category B defined there is a subcategory of the category T of tangles, and there
is a braided monoidal functor B! B. The result [22, Theorem 9.19] essentially
states that the Vassiliev–Goussarov filtration of the linearization ZB of B coincides
with the IB-adic filtration, where IB is the ideal in ZB generated by the morphism
corresponding to �˝2 � c.

(3) In Sections 10.1 and 10.2, one can work over a commutative, unital ring. In
particular, Proposition 10.1 holds for ZBq and ZB as well.

Let bKBq WD bKBqV D bKBqJ, the completion of KBq with respect to the
Vassiliev–Goussarov filtration or the J-adic filtration. Let bKB DbKBV DbKBJ be
the completion of KB similarly defined. Then bKBq is naturally identified with the
non-strictification .bKB/q of bKB.
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Let GrKBq denote the graded linear braided monoidal category associated to
the filtrationV D J ofKBq . The braidings v;w in GrKBq are actually symmetries,
i.e., we have  w;v v;w D idv;w in GrKBq . Indeed, since  w;v v;w and idv;w are
related by finitely many crossing changes, we have

 w;v v;w � idv˝w 2 V1:

Thus, GrKBq is a graded linear symmetric (non-strict) monoidal category. Simi-
larly, GrKB is a graded linear symmetric strict monoidal category.

10.3. The degree filtration of Aq . Let Aq denote the non-strictification of the
linear strict monoidal category A. The grading of A induces that of Aq . Thus Aq
has a degree filtration

Aq D D0 � D1 � D2 � � � �

defined by

Dk.v; w/ D
M
i�k

Ai .jvj; jwj/ � Aq.v; w/ for k � 0; v; w 2 Mag.�/:

Now we give a categorical description of the degree filtration D. Each of the
generators of the monoidal category A provided by Theorem 5.11, say f 2 A.m; n/,
have a lift in f 2 Aq.�˝m; �˝n/. Let I be the ideal of Aq generated by the
Casimir element r 2 Aq.¿; �/. Then I is also generated by the Casimir 2-tensor
c 2 Aq.¿; ��/ since

r D 1

2
�c and c D �r � r ˝ � � �˝ r:

Proposition 10.3. The degree filtration coincides with the I-adic filtration; i.e.,
we have Dk D Ik for k � 0.

Proof. We have Ik � Dk for k � 0 since D is a filtration and we have r 2 D1.
To prove Dk � Ik , consider a restricted chord diagram D 2 Dk.v; w/. By

moving the k chords towards the top-right corner of a projection diagram of D,
we obtain D D D0 ı � idv˝c˝k

� 2 Ik , where D0 is a morphism in Aq . �

Remark 10.4. We can define the filtrations D and I in the linear strict monoidal
category A as well. Proposition 10.3 is valid in this setting, too.

We can naturally identify cAqD D cAqI, namely the degree-completion or the
I-adic completion of Aq , with the non-strictification yAq of yA defined in Section 9.3.
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It should not be confused with the monoidal category yA'q , which is a deformation of
yAq whose associativity isomorphisms involve a Drinfeld associator '. However, yAq
and yA'q have naturally identified underlying categories and tensor product functors.
Thus we may regard the ideals yDk of yAq D cAqD as ideals of yA'q .

Consider the graded linear braided monoidal category Gr yA'q associated to the
filtration yD on yA'q . We have the following.

Proposition 10.5. The category Gr yA'q is symmetric monoidal, and is isomorphic
to Aq as a graded linear symmetric monoidal category. (Thus, the structure of
Gr yA'q does not depend on the choice of '.)

Proof. The braiding  v;w in yA'q defined in (9.9) becomes symmetric in Gr yA'q ,
i.e.,  w;v v;w D idv˝w in Gr yA'q , since  w;v v;w � idv˝w 2 yD1. Thus, Gr yA'q is
symmetric monoidal.

The associativity isomorphism ˛u;v;w W .u ˝ v/ ˝ w ! u ˝ .v ˝ w/ in yA'q
defined in (9.8) is congruent modulo yD1 to the associativity isomorphism

˛u;v;w D id 2 yA.juj C jvj C jwj; juj C jvj C jwj/
D yAq..u˝ v/˝ w; u˝ .v ˝ w//

in yAq . Similarly, the braiding  u;vWu ˝ v ! v ˝ u in yA'q defined in (9.9) is
congruent modulo yD1 to the symmetry Pu;vWu˝ v ! v ˝ u in yAq . Hence Gr yA'q
is isomorphic to Gr yAq D Aq as a linear symmetric monoidal category. �

In the following we identify Gr yA'q with Aq .

10.4. Universality of Z'
q . We first check that Z'q is filtration-preserving.

Proposition 10.6. The functor Z'q WKBq ! yA'q induced by Z'q WBq ! yA'q
preserves filtrations; i.e., Z'q .Vk/ � yDk for k � 0. Hence Z'q induces a filtered
linear braided monoidal functor

Z'q W bKBq �! yA'q : (10.3)
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Proof. Since rC � � generates the ideal J D V1 � KBq , since we have

Z'q .rC � �/
(9.2)D r�1 � � D �r C .deg � 2/ 2 yD1; (10.4)

and since Z'q is a monoidal functor, it follows that Z'q .V1/ � yD1. Hence,

Z'q .V
k/ � Z'q .V1/k � . yD1/k � yDk : �

By Proposition 10.6,Z'q W bKBq ! yA'q induces a graded linear braided monoidal
functor

GrZ'q WGrKBq �! Gr yA'q D Aq:

We already know that both GrKBq and Gr yA'q D Aq are symmetric monoidal.
Thus, GrZ'q is a graded linear symmetric monoidal functor. Recall that GrKBq
and Aq are the non-strictifications of GrKB and A, respectively. It is easy to see
that the functor GrZ'q is the non-strictification of a unique graded linear symmetric
monoidal functor

xZWGrKB �! A:

More concretely, we can define xZ by

xZ.t/ WD .degree k part of Z'q .tq//

for t 2 Vk.m; n/, m; n; k � 0, where tq D t 2 Vk.�˝m; �˝n/ � KBq.�˝m; �˝n/.

Theorem 10.7. The functor GrZ'q WGrKBq ! Aq is an isomorphism of graded
linear symmetric (non-strict) monoidal categories. The functor xZWGrKB! A is
an isomorphism of graded linear symmetric strict monoidal categories.

Proof. It suffices to prove the latter assertion, since the former corresponds to the
latter by non-strictification.

Let HB D .1; �; �;�; �; S/ be the Hopf algebra in B defined in Section 9.1. It
induces a Hopf algebra HGrKB D .1; �; �;�; �; S/ in GrKB, concentrated in the
degree 0 part Gr0KB D V0=V1.

Let us prove that HGrKB has a Casimir Hopf algebra structure. Since � and
 1;1� in B are related by some crossing changes, we have � �  1;1� 2 V1.1; 2/,
i.e., � D  1;1� in GrKB. Thus HGrKB is cocommutative. Furthermore,

Qc WD c � �˝2 2 V1.0; 2/
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gives a Casimir 2-tensor for HGrKB. Indeed, the identities in B

.�˝ id1/c D .id2˝�/.id1˝c˝ id1/c;
 c D .ad˝ id1/.rC ˝ c/;

c� D .ad˝ ad/.id1˝ ˝ id1/.�˝ c/

imply

.�˝ id1/Qc � .id1˝�˝ id1/Qc � �˝ Qc D .id2˝�/.id1˝Qc˝ id1/Qc 2 V2.0; 3/;

 Qc � Qc D  c � c D .ad˝ id1/
�
.rC � �/˝ Qc

� 2 V2.0; 2/;

Qc� D .ad˝ ad/.id1˝ ˝ id1/.�˝ Qc/;

respectively. By Theorem 5.11, there is a unique symmetric monoidal functor

GWA �! GrKB

which maps the Casimir Hopf algebra .HA; c/ in A to the Casimir Hopf algebra
.HGrKB;�Qc/ in GrKB.

We prove that G is full. By Proposition 10.1, GrKB is generated by its
degree 0 part V0=V1 and its degree 1 part V1=V2. We have V0=V1 D G.A0/

since V0=V1 (resp. A0) is generated by the Hopf algebra HGrKB (resp. HA).
Thus it suffices to prove V1=V2 D J1=J2 � G.A1/. As an ideal of KB=J2, J is
generated by QrC WD rC � � 2 J1=J2. Hence it suffices to check QrC 2 G.A1/. Since
�.rC ˝ rC/ D �c 2 B.0; 1/, we have

J2 3 �.zrC ˝ zrC/ D �c � 2rC C � D �Qc � 2 QrC:

Therefore,

G.r/ D G
�1
2
�c
�
D 1

2
G.�/G.c/ D �1

2
�Qc D �QrC: (10.5)

The linear symmetric monoidal functor xZGWA! A preserves HA. Moreover,
(10.4) and (10.5) imply xZG.r/ D r . Thus xZG is the identity on the generators
of A; hence xZG D idA. Therefore xZ is an isomorphism. �

We conclude this section with a stronger version of Theorem 10.7 and two
remarks about it.

Theorem 10.8. The functor Z'q W bKBq ! yA'q is an isomorphism of filtered linear
braided (non-strict) monoidal categories.
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Proof. Theorem 10.7 and an induction on k shows that

Z'q W bKBq=yVkC1 �! yA'q= yDkC1

is an isomorphism for all k � 0. Hence

Z'q W bKBq �! yA'q
is an isomorphism. �

Remark 10.9. The map GWA.m; n/ ! .GrKB/.m; n/, m; n � 0, defined in the
proof of Theorem 10.7 can also be constructed as a direct sum of maps

Gd WA.m; n/d �! .GrKB/.m; n/d

indexed by d 2 F.n;m/, using calculus of claspers instead of the presentation of A.
More precisely, the map Gd is defined by fixing an n-component bottom tangle

d in Vm of homotopy class d , and by realizing every .m; n/-Jacobi diagram D of
homotopy class d as a “simple strict graph clasper” CD on 
d in the sense of [21].
ThenGd .D/ is defined as the alternating sum of clasper surgeries on the connected
components of CD . See [21, §8.2] for the special case m D 0.

Remark 10.10. Theorem 10.8 implies the universal property of Z and Z'q among
K-valued Vassiliev–Goussarov invariants of bottom tangles in handlebodies. For
links in handlebodies (and, more generally, for links in thickened surfaces), similar
results have been obtained in [3, 42].

11. Relationship with the LMO functor

In this section, we explain how the extended Kontsevich integral relates to the
LMO functor introduced in [9].

11.1. Review of the LMO functor. The LMO functor as defined in [9]

zZWLCobq �! tsA

is a functor from the category LCobq of Lagrangian q-cobordisms to (the degree-
completion of ) the category tsA of “top-substantial Jacobi diagrams”. Here we
consider the restriction of zZ to the category sLCobq Š Bq of special Lagrangian
q-cobordisms, which is the non-strictification of the strict monoidal category
sLCob Š B recalled in Section 2.4. By [9, Corollary 5.4], it turns out that zZ on
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sLCob takes values in a subcategory sA of tsA, which we call the category of special
(top-substantial) Jacobi diagrams. Thus, we here consider the restricted version
of the LMO functor:

zZW sLCobq �! sA:

The category sA is defined as follows. Set Ob.sA/ D N. Given a finite set U , a
U -labeled Jacobi diagram is a unitrivalent graph with oriented trivalent vertices,
with each univalent vertex labeled by an element of U . We identify two U -labeled
Jacobi diagrams if there is a homeomorphism from one to the other preserving the
vertex-orientations and the labelings. Let A.U / denote the vector space generated
byU -labeled Jacobi diagrams modulo the AS and IHX relations (3.4). Form; n � 0,
let sA.m; n/ be the subspace of

A
�¹1C; : : : ; mCº [ ¹1�; : : : ; n�º�

spanned by special Jacobi diagrams, which are those diagrams with no connected
component without labels in ¹1�; : : : ; n�º. (Recall that a top-substantial Jacobi
diagram in [9] allows such connected components that are not struts. Thus, we
have sA.m; n/ � tsA.m; n/, where tsA.m; n/ is the space of top-substantial Jacobi
diagrams.) The compositionD0 ıD of two special Jacobi diagramsm D�! n

D0�! p

in sA is the sum of all possible ways of gluing some i�-vertices of D with some
iC-vertices of D0 for all i 2 ¹1; : : : ; nº. Define the identity morphisms in sA by

idm D expt
� mX
iD1

i�
iC �Wm �! m;

where t denotes the disjoint union of Jacobi diagrams.
The category sA has a strict monoidal structure such that m˝m0 D mCm0 for

m;m0 � 0, and the tensor product D ˝D0 of two special Jacobi diagrams D and
D0 is the disjoint union D tD0 with the appropriate re-numbering of the colors
of D0. The category sA is graded, where the degree of a special Jacobi diagram
is half the total number of vertices. The degree-completion of sA is also denoted
by sA.

The LMO functor is a functor zZW sLCobq ! sA with the following properties.
(i) We have zZ.w/ D jwj for w 2 Mag.�/.
(ii) Let T 2 Bq.¿; w/ � Tq

�
¿; w.C�/� with w 2 Mag.�/, jwj D n and let

ET 2 sLCobq.¿; w/ be the cobordism corresponding to T . Then we have
zZ.ET / D ��1Z.T /, where Z.T / is the usual Kontsevich integral (as defined
in Section 3.7) and

�W sA.0; n/ Š�! A.Xn/
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is the diagrammatic analog of the PBW isomorphism (see [4]). Here, recall
Xn D 1 � � � n.

(iii) For morphisms T and T 0 in LCobq , we have zZ.T ˝ T 0/ D zZ.T /˝ zZ.T 0/.

11.2. From the extended Kontsevich integral to the LMO functor. For two
integers m; n � 0, define a linear map �WA.m; n/! sA.m; n/ by

�

0
BBB@

1 n

1 m
� � �

� � �

1
CCCA

WD ��1

0
BBBBBBB@

1 n� � �

� � �

exp.1C / exp.mC /

1
CCCCCCCA
;

where an F.x1; : : : ; xm/-colored Jacobi diagram onXn, is presented by a projection
diagram in the square with handles. By the IHX and STU relations, � is well-
defined. Note that � is an analog of the “hair map” considered by Garoufalidis,
Kricker and Rozansky in [16, 18].

Proposition 11.1. The maps �WA.m; n/ ! sA.m; n/ for m; n � 0 define a
monoidal functor �WA ! sA, which induces a monoidal functor �W yA ! sA by
continuity.

Proof. Consider two restricted Jacobi diagramsD andD0 with square presentations
S and S 0, respectively:

D0 D
1 p

S0

1 n

� � �

� � �

2 A.n; p/;

D D
1 n

1

S

m

� � �

� � �

2 A.m; n/:

In what follows, we express exponentials with square brackets and, given two
Jacobi diagrams E and E 0 labeled by the finite sets ¹1�; : : : ; n�º and ¹1C; : : : ; nCº,
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respectively, let hE 0; Ei denote the sum of all possible ways of gluing some
i�-vertices of E with some iC-vertices of E 0 for all i 2 ¹1; : : : ; nº. Then
�.D0/ ı �.D/ is equal to

�

 

1 p

1 n

� � �

� � �

S0

!
ı �
 

1 n

1 m

� � �

� � �

S

!

D
*
��1

 

1 p� � �

� � �
Œ1C � ŒnC �

S0

!
; ��1

 

1 n� � �

� � �
Œ1C � ŒmC �

S

! +

D ��1
 *

1 p� � �

� � �
Œ1C � ŒnC �

S0 ; ��1

 

1 n� � �

� � �
Œ1C � ŒmC �

S

! +!

D ��1
 � � �

S0

� � �1 p

1 n

ı Cf
 

1 n� � �

� � �
Œ1C � ŒmC �

S

!!

D ��1
 � � �

S0

� � �1 p

1 n

ı
1 n� � �

� � �
Œ1C � ŒmC �

Cf .S/

!

D ��1
 

1 p� � �

� � �
Œ1C � ŒmC �

S0 ıCf .S/

!
D �

 

1 p

1 m

� � �

� � �

S0 ıCf .S/

!
;

where the last four ı denote compositions in A, and f W�0.S/ ! Mon.˙/ is an
appropriate map. We deduce from Example 4.10 that �.D0/ ı �.D/ D �.D0 ıD/.
We can easily check �.idm/ D idm form � 0. Thus we obtain a functor �WA! sA,
which is obviously monoidal. �

Theorem 11.2. The following square of functors commutes:

Bq yA

sLCobq sA

 !Š

 !Z

 ! �

 !
zZ

(11.1)
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Proof. Let T W v ! w in Bq , jvj D m, jwj D n, and let U W dv.v1; : : : ; vm/ !
w.C�/ in Tq be a cube presentation of T . Then �.Z.T // is equal to

A@@ A
U Z.U/

0
BBBBBBB

1
CCCCCCCD

0
BBBBBBB

av1
avm

1
CCCCCCC

av1
avm

Z.U/

exp.1C
/ exp.mC

/

1

0
BBB@D

1
CCCA

and the result directly follows from [9, Lemma 5.5]. �

Theorem 11.2 shows that the extended Kontsevich integral Z dominates the
LMO functor zZ. However, the converse might not hold since, as we will see in
the next subsection, the functor � is not faithful. Some other remarks about the
functor � follow.

Remark 11.3. Theorem 1.5 in Section 1 is stated in a way slightly different from
Theorem 11.2. In fact, the latter differs from the former simply because we have
restricted the source of zZ to sLCobq � LCobq and its target to sA � tsA.

Remark 11.4. Several interesting structures in A (and yA) are mapped by � into the
categories sA and tsA. For instance, the symmetry Pm;nWmC n! nCm in (4.11)
is mapped to a symmetry

Pm;n WD expt
� mX
iD1

iC

.nCi/�
C

nX
jD1

.mCj /C

j�

�
WmC n �! nCm

for the strict monoidal category sA (resp: tsA). Similarly, the braided monoidal struc-
ture of yA'q is mapped by � into a braided monoidal structure on the non-strictification
of sA (resp: tsA). The Casimir Hopf algebra in A (given by Proposition 5.10) and
the ribbon quasi-Hopf algebra in yA (given by Theorem 6.2) are mapped by � into
such structures in sA, and hence in tsA.
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Remark 11.5. Recall from Section 4.5 that the categories A and yA are enriched
over the category CC of cocommutative coalgebras. It is not difficult to verify that
the categories tsA and sA are enriched over CC, with the coalgebra structure on the
morphism spaces described in [9], where connected Jacobi diagrams are primitive
as usual. Then one can check that the “hair functor” �W yA! sA is a CC-functor, i.e.,
the maps �W yA.m; n/! sA.m; n/ are coalgebra maps. By applying the “group-like
part functor” grpWCC! Set, we obtain a group-like version of �:

�grpW yAgrp �! sAgrp:

11.3. Non-faithfulness of �. Using Vogel’s results [63], Patureau-Mirand has
proved that the “hair map” in [16, 18] is not injective [55, Theorem 4]. The next
proposition is proved by adapting his arguments to our situation.

Theorem 11.6. If m; n � 1, then �WA.m; n/ ! sA.m; n/ is not injective, and,
therefore, neither is �W yA.m; n/! sA.m; n/.

Proof. Let G.n/ be the subspace of A.¹1; : : : ; nº/ spanned by connected Jacobi
diagrams with exactly n univalent vertices labeled from 1 to n. There is a natural
action of the symmetric groupSn onG.n/, and we consider the subspaceƒ ofG.3/
consisting of those x 2 G.3/ such that � �x D sgn.�/x for all � 2 S3. According to
Vogel [63], the space ƒ admits a structure of commutative algebra with non-trivial
zero divisors. Based on these results, Patureau-Mirand [55, Corollary 2] proved
the existence of an element r 2 ƒ n ¹0º of degree 17 such that

r ¤ 0 2 A.¿/; (11.2)

r

1 2

3
D 0 2 G.3/: (11.3)

Then we define

u D
1

x1

r

�
1

r

2 A
�
X1; F .x1/

� D A.1; 1/:

By (11.3), we have �.�.u// D 0 2 A
�
X1; ¹1Cº

�
, and hence �.u/ D 0. More

generally, ifm; n � 1, then �WA.m; n/! sA.m; n/ vanishes on u˝�˝.n�1/�˝.m�1/.
Thus, to prove that it is not injective, it suffices to check u ¤ 0.
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Recall the projection pWA�X1; F .x1/� ! A
�
X1
�

introduced in the proof of
Lemma 4.5. We have

��1
�
p.u/

�D���1
 

1

r !
D � r

1 1

2 A.¹1º/;

since G.1/ D 0 [63, Proposition 4.3]. By (11.2), the right hand side is not zero,
and hence we have u ¤ 0. �

11.4. Jacobi diagrams colored by a cocommutative Hopf algebra. In order to
give a Hopf-algebraic description of the kernel of � in the next subsection, we need
to generalize some constructions of Section 4.1.

Let X be a compact oriented 1-manifold, and let H be a cocommutative Hopf
algebra with comultiplication �WH ! H ˝H , counit �WH ! K and (involutive)
antipode S WH ! H .

Recall from Section 4.1 the notion of chord diagrams colored by a set. Let
Dch.X;H/ be the vector space generated by H -colored chord diagrams on X ,
modulo the following local relations:

x y xy 1
$

;

; ;

$ ;

$
;

;

$

x y xy 1
$

x S.x/

:

$ k
kxC ly x y

C l

$ k
kxC ly x y

C l ;

x
$

X
.x/

x0

x00

;

(11.4)

for all x; y 2 H and k; l 2 K, where �.x/ D P
.x/ x

0 ˝ x00 is written using
Sweedler’s notation. Let Rch.X;H/ be the subspace of Dch.X;H/ generated by
the 4T relations (3.2), and set

Ach.X;H/ D Dch.X;H/=Rch.X;H/:

We still letAch.X;H/ denote the degree-completion of this space, where the degree
of an H -colored chord diagram on X is the number of chords.
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More generally, let DJac.X;H/ be the vector space generated by H -colored
Jacobi diagrams on X , modulo the local relations

$
X
.x/

x
x0

x00
8x 2 H , and (11.4).

(11.5)

LetRJac.X;H/ be the subspace ofDJac.X;H/ generated by the STU relations (3.3),
and set

AJac.X;H/ D DJac.X;H/=RJac.X;H/:

We still let AJac.X;H/ denote the degree-completion of this space, where the
degree of an H -colored Jacobi diagram on X is half the total number of vertices.

Example 11.7. Assume that H D KŒ�� is the group Hopf algebra of a group
� . Then Ach.X;H/ and AJac.X;H/ are canonically isomorphic to the spaces
Ach.X; �/ and AJac.X; �/, respectively, introduced in Section 4.1.

Let I WD ker.�WH ! K/ be the augmentation ideal of H and, for k � 0, let
FkD

ch.X;H/ be the subspace ofDch.X;H/ spanned byH -colored chord diagrams
on X with (at least) k beads colored by elements of I . Let FkAch.X;H/ denote
the image of FkDch.X;H/ in Ach.X;H/. Thus we obtain a filtration

Ach.X;H/D F0Ach.X;H/ � F1Ach.X;H/ � F2Ach.X;H/ � � � � :

The I -adic completion

yAch.X;H/ WD lim �
k

Ach.X;H/

FkAch.X;H/

ofAch.X;H/ inherits a filtration fromAch.X;H/. Let˛WAch.X;H/! yAch.X;H/

be the canonical map. Applying the same definitions to Jacobi diagrams yields
the space yAJac.X;H/. According to the next theorem, we can identify the filtered
spaces Ach.X;H/ and AJac.X;H/ (resp. yAch.X;H/ and yAJac.X;H/) and simply
denote them by A.X;H/ (resp. yA.X;H/).

Theorem 11.8. The canonical map

�WAch.X;H/ �! AJac.X;H/

is an isomorphism of filtered spaces. Furthermore, the AS and IHX relations (3.4)
hold in AJac.X;H/.
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Proof. Clearly, � is a filtration-preserving linear map, i.e., �.FkAch.X;H// is
contained in FkAJac.X;H/ for k � 0. We can check

�.FkA
ch.X;H// D FkAJac.X;H/

by using the STU relation, the identity

x� D
X
.x/

S.x0/
�

x00
�

in AJac.X;H/ for x 2 H , and the inclusion �.I/ � I ˝KCK˝ I .
The proofs of the injectivity of � and the AS and IHX relations given in

Theorem 4.4 for a group algebra H D KŒ�� work for a general H . �

Every homomorphism f WH ! H 0 of cocommutative Hopf algebras induces a
linear map f�WA.X;H/! A.X;H 0/ by applying f to all beads of an H -colored
Jacobi diagram on X . Thus we obtain a functor A.X;�/ from cocommutative
Hopf algebras to vector spaces, which admits a “continuous” version as follows.

Let yH WD lim �kH=I
k be the I -adic completion ofH , which is a cocommutative

complete Hopf algebra. The canonical map H ! yH will be omitted from our
notations, although it may not be injective. We can express every Ox 2 yH as

Ox D
1X
kD0

x.k/ where x.k/ 2 I k :

For a set S , we write an S-colored Jacobi diagram D on X as

D D D.s1; : : : ; sr/;

where s1; : : : ; sr are the colors of the beads numbered from 1 to r , andD.�; : : : ;�/
stands for the corresponding Jacobi diagram on X with “uncolored” beads. Thus
every yH -colored Jacobi diagram on X

D D D. Ox1; : : : ; Oxr/ where Ox1 D
1X
k1D0

x1.k1/; : : : ; Oxr D
1X
krD0

xr.kr/

defines an element

D. Ox1; : : : ; Oxr/ WD
1X

k1;:::;krD0

˛.D.x1.k1/; : : : ; xr.kr/// 2 yA.X;H/:

We can easily verify the following lemma.
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Lemma 11.9. Every homomorphism f W yH ! yH 0 of complete Hopf algebras,
between the I -adic completions of cocommutative Hopf algebras H and H 0,
induces a unique filtration-preserving linear map f�W yA.X;H/ ! yA.X;H 0/
such that

f�˛.D.x1; : : : ; xk// D D.f .x1/; : : : ; f .xk// (11.6)

for every H -colored Jacobi diagram D.x1; : : : ; xk/ on X . Moreover, we have
.f 0f /� D f 0�f� for all such homomorphisms yH f! cH 0 f 0!bH 00.
11.5. A Hopf-algebraic description of the kernel of �. In this subsection, we
fix m; n � 1 and set

Fm D F.x1; : : : ; xm/; Xn D 1 � � � n:

Recall that the degree-completion of A.Xn;KŒFm�/ is denoted by the same no-
tation A.Xn;KŒFm�/, and the I -adic completion of A.Xn;KŒFm�/ is denoted by
yA.Xn;KŒFm�/. We have seen in Section 11.4 that the canonical homomorphism
KŒFm� ! 1KŒFm�, where 1KŒFm� is the I -adic completion of KŒFm�, has a dia-
grammatic counterpart ˛WA.Xn;KŒFm�/ ! yA.Xn;KŒFm�/. Theorem 11.6 and
Proposition 11.10 below imply that ˛ is not injective, in contrast with the well-
known injectivity of KŒFm�! 1KŒFm�.

Proposition 11.10. There is a canonical isomorphism between sA.m; n/ and
yA.Xn;KŒFm�/ which makes the following diagram commute:

yA.m; n/ sA.m; n/

A.Xn;KŒFm�/ yA.Xn;KŒFm�/

((

 !�

 ! Š

 !˛

In particular, the kernel of � coincides with the kernel of ˛.

Proof. Set Um D ¹1C; : : : ; mCº. We can merge the notions of “Um-labeled Jacobi
diagram” and “Jacobi diagram on Xn” into the notion of “Um-labeled Jacobi
diagram on Xn”; the degree of such a diagram is half the total number of vertices.
(Here we assume that each connected component of a Um-labeled Jacobi diagram
on Xn has at least one univalent vertex on Xn.) Let A.Xn; Um/ be the (degree-
completion of the) vector space generated by Um-labeled Jacobi diagrams on Xn
modulo the STU relation.

Let �W sA.m; n/! A.Xn; Um/ be the diagrammatic analog of the PBW isomor-
phism. We will prove that the maps ˛ and � fit into the following commutative
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diagram:

yA.m; n/ sA.m; n/ A.Xn; Um/

A.Xn;KŒFm�/ yA.Xn;KŒFm�/ yA.Xn; T .Vm//
((

 !�  !
Š

�

 !˛  !f�
Š

 ! O� (11.7)

Here T .Vm/ is the tensor algebra over the vector space Vm with basis ¹v1; : : : ; vmº,
equipped with the usual Hopf algebra structure. Using Lemma 11.9, the iso-
morphism f� is induced by the complete Hopf algebra isomorphism f W1KŒFm�!
2T .Vm/ that maps each xi to exp.vi /. The map O� is induced by a filtration-preserving
linear map �WA.Xn; T .Vm//! A.Xn; Um/ defined below.

We can transform every T .Vm/-colored Jacobi diagram D on Xn into a Um-
labeled Jacobi diagram on Xn by applying the following transformations to beads:

8i1; : : : ; ir 2 ¹1; : : : ; mº;
Ý

Ý

vi1vi2 � � � vir�

vi1vi2 � � � vir�

� � �

� � �

iC
1
iC
2 iCr

iC
1
iC
2 iCr

By the STU (and AS, IHX) relations in A.Xn; Um/, the above procedure defines a
linear map DJac.Xn; T .Vm//! A.Xn; Um/, which induces a linear map

�WA.Xn; T .Vm// �! A.Xn; Um/:

Obviously, � is filtration-preserving. One easily checks from the definitions that
the resulting map O� makes the diagram (11.7) commute.

To prove the proposition, it suffices to show that O� is an isomorphism. For this,
we will construct an inverse to O�. Let D be a Um-labeled Jacobi diagram on Xn.
We can decompose D uniquely as

D D D0 [D01 [ � � � [D0r ;

where D0 is a Jacobi diagram on Xn, we have r distinguished points �1; : : : ;�r
in the interiors of the edges of Xn [D0, each D0i is a .Um [ ¹�iº/-labeled tree-
shaped Jacobi diagram with exactly one univalent vertex labeled by �i , and we have
D0i \D0j D ¿ for all i ¤ j and D0i \D0 D ¹�iº for all i . Note that each tree D0i ,
rooted at �i , defines a Lie word with letters in Um: hence, using the correspondence
iC $ vi between Um and the basis of Vm, each D0i defines a primitive element
d 0i 2 T .Vm/. Choose an orientation on each edge of D0. For each i 2 ¹1; : : : ; rº,
set "i D 0 if �i belongs to Xn or if �i belongs to an edge of D0 and the tree D0i is
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above this edge when its orientation goes from left to right; set "i D 1 otherwise.
Let S denote the antipode of T .Vm/. By considering the T .Vm/-colored Jacobi
diagram on Xn that is obtained from D0 by putting a bead colored by S"i .d 0i / at
�i for all i 2 ¹1; : : : ; rº, we obtain an element

�.D/ 2 DJac.Xn; T .Vm//

which does not depend on the above choice of edge-orientations. It is easy to verify
that an STU relation in A.Xn; Um/ is mapped by � either to 0 or to an STU relation
in DJac.Xn; T .Vm//. Hence we obtain a linear map

�WA.Xn; Um/ �! A.Xn; T .Vm//;

with A.Xn; Um/ before completion, inducing a linear map

O�WA.Xn; Um/ �! yA.Xn; T .Vm//;

with A.Xn; Um/ after degree-completion. Obviously, we have O� ı O� D id. Using
the STU (and AS, IHX) relations in A.Xn; Um/, it is easy to check O� ı O� D id. �

12. Perspectives

We plan to consider several developments of the functor Z D ZBWBq ! yA
in forthcoming works. For simplicity, the degree-completion yA of A will now
be denoted as A. Also, we will ignore parenthesization of objects in non-strict
monoidal categories and write B for Bq , for instance.

12.1. Incorporation of tangles. One can naturally construct a braided strict
monoidal category BT which contains both the categories B and T as braided
monoidal subcategories. The objects of BT are words in the letters C;�; � and
morphisms are bottom tangles in handlebodies mixed with additional tangles.
Similarly, there is LCobT containing both LCob and T as braided monoidal
subcategories. We can extend the functors ZWB ! A and zZWLCob ! tsA to
BT and LCobT, respectively, so that the commutative square (1.9) extends to

BT A�

LCobT tsA�

 !Z

 !E  ! �

 !zZ
(12.1)

Here A� is a linear symmetric monoidal category extending both A and the linear
version of A mentioned in Remark 3.5, and, similarly, tsA� extends both tsA and this
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linear version of A. We remark that the extension of zZ to LCobT also generalizes
Nozaki’s extension of the LMO functor to Lagrangian cobordisms of punctured
surfaces [52].

As a symmetric monoidal linear category, A� is free on a triple .H; V; V �/
consisting of a Casimir Hopf algebra H , a left H -module V and its dual V �. The
functorZ induces an isomorphism of graded linear symmetric monoidal categories
between the associated graded of the Vassiliev–Goussarov filtration for BT and A�.

Letm � 0 be an integer and recall that S � @Vm is the bottom square. Consider
the compact oriented surface †m;1 WD @Vm n int.S/ of genus m with one boundary
component. The morphisms inBT whose underlying bottom tangle in a handlebody
is idm 2 B.m;m/ can be regarded as tangles in the thickened surface †m;1 � I . In
particular, by specializing the above functorZWBT ! A� to that kind of morphisms,
we obtain

� expansions of the free group�1.†m;1/, which refine the symplectic expansions
derived from the LMO functor [49],

� representations of pure braid groups on †m;1, and, more generally, represen-
tations of monoids of string-links in †m;1 � I .

We plan to study elsewhere these new representations.

12.2. Handlebody groups and twist groups. Fix an integer m � 0. The
automorphism group of the object m in H Š Bop is naturally identified with
the handlebody group

Hm;1 WD Homeo.Vm; S/=Š;

which is the group of isotopy classes rel S of self-homeomorphisms of Vm that
restrict to idS . Hence the functor ZWB! A restricts to a monoid homomorphism

ZWHm;1 �! Am WD A.m;m/op: (12.2)

It is well known that the group Hm;1 naturally embeds into the mapping class
group

Mm;1 WD Homeo.†m;1; @†m;1/=Š
of the surface †m;1 D @Vm n int.S/. Since the LMO functor zZ is injective2 on the
Lagrangian subgroup of Mm;1 (i.e., the automorphism group of the object m in
LCob), Theorem 1.5 implies that ZWHm;1 ! Am is injective. We plan to use this

2 This follows easily from the injectivity of zZ on the Torelli group [9, Corollary 8.22] since
the strut part of zZ encodes the action of the Lagrangian subgroup of Mm;1 onH1.†m;1IZ/.
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homomorphism to study the algebraic structure of Hm;1 and the inclusion of this
group in the monoid H.m;m/.

In particular, we are interested in the twist group Tm;1 which is the kernel
of the natural homomorphism Hm;1 ! Aut.Fm/. Here Fm WD �1.Vm; S/ is the
fundamental group of Vm based at the contractible subspace S . Note that Tm;1
is the kernel of the degree 0 part of ZWHm;1 ! Am, since the latter gives the
homotopy class of bottom tangles in handlebodies. It is known that, as a subgroup
of Mm;1, the group Tm;1 is generated by Dehn twists along boundaries of properly
embedded disks in Vm n S [44].

The pair (handlebody group, twist group) can be regarded as an analogue of the
pair (mapping class group, Torelli group). We recall some of the features of the
Johnson–Morita theory, which consists in studying the group Mm;1 via its action
on the lower central series of the fundamental group � of †m;1 (see [50] for a
survey):

(1) the Johnson filtration J0Mm;1 � J1Mm;1 � � � � � JkMm;1 � � � � consists of
the kernels of the actions of Mm;1 on the successive nilpotent quotients of �
(so that J0Mm;1 DMm;1 and J1Mm;1 is the Torelli group);

(2) for every k � 1, the k-th Johnson homomorphism �k maps JkMm;1 to an
abelian group and encodes the action of JkMm;1 on the k-th nilpotent quotient
of �;

(3) for every k � 1, the k-th Johnson homomorphism has a diagrammatic
description and then corresponds to the leading term of the “tree reduction”
of the LMO functor zZ on JkMm;1 [9, 26];

(4) more generally, the action of J1Mm;1 on (the Malcev completion of ) � is
encoded in the full “tree reduction” of the LMO functor zZ by means of a
“symplectic expansion” [49].

There is an analogue of the Johnson–Morita theory for the pair (handlebody
group, twist group). This has been introduced in [27, §10.1] as an instance of
a “general theory” of Johnson homomorphisms, and will be studied with further
details in a forthcoming work. In this approach, the group Hm;1 is studied via its
action on the lower central series of the kernel of the homomorphism � ! Fm

induced by the inclusion †m;1 ,! Vm. Then the analogue of (1) is a filtration of
Hm;1 whose first term is Tm;1, and the analogue of (2) consists of two sequences
of homomorphisms .�0

k
/k and .�1

k
/k which happen to be equivalent one to the

other. There are also analogues of (3) and (4), which involve the “tree reduction”
of ZWHm;1 ! Am and the refinement of the “symplectic expansion” mentioned in
Section 12.1.
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We expect the homomorphismZWHm;1 ! Am to be a powerful tool to study the
associated graded of the lower central series of Tm;1 in relation with the associated
graded of the Vassiliev–Goussarov filtration that has been identified in Section 10.4.

12.3. Extension of Z to boundary Lagrangian cobordisms. The reader may
wonder whether one can extend the functor ZW sLCob ! A on sLCob Š B to the
category LCob of Lagrangian cobordisms, with the target category still involving
some homotopy classes of Jacobi diagrams in handlebodies. This does not hold,
but one can extend Z to a functor bZW bLCob ! bA which fits into the following
commutative diagram of monoidal categories and monoidal functors:

sLCob A

bLCob bA

LCob tsA

 !Z
 !  !

 !bZ

 !  ! �0

 !zZ

The category bLCob of boundary Lagrangian cobordisms, defined below, is a
braided monoidal subcategory ofLCobwhich contains sLCob as a braided monoidal
subcategory. The vertical arrows on the left are inclusion functors. Like sLCob

and LCob, the objects of bLCob are non-negative integers. The morphisms from
m to n in bLCob are cobordisms C D .C; c/Wm! n, in the sense of Section 2.4,
such that the composite xC WD Vn ı C Wm ! 0 is a homology handlebody where
the m meridian curves in @xC Š @Vm bound mutually disjoint, connected, oriented
surfaces S1; : : : ; Sm. This notion may be thought of as a cobordism version of
boundary links. Note that bLCob.0; 0/ D LCob.0; 0/ is essentially the monoid of
homology 3-spheres (whereas sLCob.0; 0/ is trivial).

The target category bA of bZ is much larger than A: there, Jacobi diagrams in
handlebodies may involve connected components with no univalent vertex. Note
that bA.0; 0/ is the target of the LMO invariant of homology 3-spheres (whereas
A.0; 0/ is 1-dimensional). The category bA includes A as a symmetric monoidal
linear subcategory, and the functor �0W bA! tsA is a natural extension of the hair
map �WA! tsA.

We plan to construct the functor bZ as follows. Every boundary Lagrangian
cobordism C Wm! n is obtained from a special Lagrangian cobordism C 0Wm! n

by surgery along a framed link L in C 0 such that

� each component of L is null-homotopic in Vn ı C 0 D Vm,
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� the linking matrix of L is diagonal with diagonal entries ˙1, where linking
numbers and framings of components of L are defined in Vn ı C 0 D Vm.

The Kontsevich integral Z.C 0 [ L/ 2 A�.m; n/ is as outlined in Section 12.1.
Then the invariant bZ.C/ is obtained from Z.C 0 [ L/ by applying an equivariant
version of the Aarhus integral developed by Garoufalidis and Kricker [16] to each
component of the surgery link L.

We hope that bZ will be useful to study the LMO invariant of homology 3-
spheres in relation with their fundamental groups. Indeed, it seems difficult to
conduct such a study using the LMO functor zZ instead of bZ.
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