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A unification of the ADO and colored Jones polynomials

of a knot

Sonny Willetts

Abstract. In this paper we prove that the family of colored Jones polynomials of a knot in S3

determines the family of ADO polynomials of this knot. More precisely, we construct a two

variables knot invariant unifying both the ADO and the colored Jones polynomials. On the one

hand, the first variable q can be evaluated at 2r roots of unity with r 2 N� and we obtain the

ADO polynomial over the Alexander polynomial. On the other hand, the second variable A

evaluated at A D qn gives the colored Jones polynomials. From this, we exhibit a map sending,

for any knot, the family of colored Jones polynomials to the family of ADO polynomials. As

a direct application of this fact, we will prove that every ADO polynomial is holonomic and is

annihilated by the same polynomial as of the colored Jones function. The construction of the

unified invariant will use completions of rings and algebra. We will also show how to recover our

invariant from Habiro’s quantum sl2 completion studied by Habiro in [J. Pure Appl. Algebra

211 (2007), 265–292], showing that it corresponds in fact to the two-variable colored Jones

invariant defined by Habiro in [Invent. Math. 171 (2008), 1–81].

1. Introduction

Main results. In [1], Akutsu, Deguchi, and Ohtsuki gave a generalisation of the Alex-

ander polynomial, building a colored link invariant at each root of unity. These ADO

invariants, also known as colored Alexander’s polynomials, can be obtained as the

action on 1-1 tangles of the usual ribbon functor on some representation category of

a version of quantum sl2 at roots of unity (see [4, 8]). On the other hand, we have the

colored Jones polynomials, a family of invariants obtained by taking the usual ribbon

functor of quantum sl2 on finite-dimensional representations. It is known ([5]), that,

given the ADO polynomials of a knot, one can recover the colored Jones polynomials

of this knot. One of the results of the present paper is to show the other way around:

given the Jones polynomials of a knot, one can recover the ADO polynomials of this

knot.
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We denote by ADOr.A;K/ the ADO invariant at 2r root of unity seen as a

polynomial in the variable A. Also, we denote by Jn.q;K/ the n-th colored Jones

polynomial in the variable q and by AK.A/ the Alexander polynomial in the vari-

able A.

Result 1. There is a well-defined map such that, for any knot K in S3,

¹Jn.q;K/ºn2N� 7! ¹ADOr.A;K/ºr2N� :

(Detailed version: Theorem 69.)

The above result is a consequence of the construction of a unified knot invari-

ant containing both the ADO polynomials and the colored Jones polynomials of the

knot. This unified invariant is in fact equal to the two-variable colored Jones invariant

defined by Habiro in [13] and answer positively to the conjectures of its behaviour

at roots of unity. Briefly put, we obtain it by looking at the action of the universal

invariant (see [14, 15, 17]) on some Verma module with coefficients in some ring

completion. For the sake of simplicity, let us state the result for 0-framed knots.

Result 2. In some ring completion of ZŒq˙1; A˙1� equipped with suitable evalu-

ation maps, for any 0-framed knot K in S3, there exists a well-defined knot invariant

F1.q; A;K/ such that

F1.�2r ; A;K/ D
ADOr.A;K/

AK.A2r/
; F1.q; q

n;K/ D Jn.q
2;K/:

(Detailed version: Theorem 63 and Corollary 59.)

A visual representation of the relationship between all these invariants is given in

Figure 1.

Let us set J�.q
2;K/ D ¹Jn.q;K/ºn2N� and call it colored Jones function of K .

The holonomy of the unified invariant and of the ADO polynomials will follow as

a simple application of the two previous results and of the q-holonomy of the colored

Jones function as shown in [6]. Mainly, there are two operators Q and E on the set

of discrete function over ZŒq˙1� that forms a quantum plane and for any knot K and

there is a two-variable polynomial ˛K such that ˛K.Q; E/J�.q
2;K/ D 0. We say

that the colored Jones function is q-holonomic.

This paper gives a proof that the same polynomial ˛K , in some similar operators

as Q and E, annihilates the unified invariant F1.q; A;K/ and, at roots of unity,

annihilates ADOr.A;K/.
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Figure 1. Visual representation of the unified knot invariant.

Result 3. For any 0-framed knot K and any r 2 N�:

• the unified invariant F1.q; A;K/ is q-holonomic;

• the ADO invariant ADOr.A;K/ is �2r -holonomic.

Moreover, they are annihilated by the same polynomial as of the colored Jones func-

tion. (Detailed version: Theorems 71 and 73.)

Remark 1. Keep in mind that these results cover only the case of a knot K in S3.

Summary of the paper. A way to build a unified element for ADO invariants is to

do it by hand. First, one can explicit a formula for the ADO invariant at a 2r root of

unity by decomposing it as a sum of what we will call state diagrams. This explicit

formula will allow us to see what are the obstructions to unify the invariants: first,

it will depend on the root of unity �2r ; secondly the range of the sums coming from

the action of the truncated R-matrix will depend on the order 2r of the root of unity.

The first obstruction is easy to overcome, since taking a formal variable q instead of

each occurrence of �2r will do the trick. But, for the second one, one could ask that

the ranges go to infinity, and this will bring some convergence issues. A way to make

these sums convergent is to use a completion of the ring ZŒq˙1;A˙1� denoted by yR
yI .

This will allows us to define a good candidate for the unification.

But then, we will have to check that this element contains the ADO invariants.

We will show that, at each root of unity of order 2r with r 2 N�, one can define an

evaluation map that evaluates q in �2r , and that the result can be factorized into a

product of an invertible element of the complete ring and the ADO invariant.

So, we will get an element containing ADO invariants, but the way we built this

element depends on the chosen diagram of the knot. A way to prove that this element

is really a knot invariant itself is to recover it with a more advance machinery: the
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universal invariant of a knot. The universal invariant of a knot was introduced in [14,

15]; the construction can also be found in [17]. It is a knot invariant and an element

of the h-adic version of quantum sl2, we will use this fact to construct an integral

subalgebra in which the universal invariant of a 0-framed knot will lie. The integrality

of the subalgebra will allow us to build a Verma module of it whose coefficients will

lie in yR
yI , and on which the scalar action of the universal invariant gives our unified

element. A corollary will be that the unified element is a knot invariant.

Completions were studied by Habiro in [12]. For the sole purpose of the factoriz-

ation at roots of unity, we had to use a different completion than the ones mentioned

in [12]. But, as we will see, we can also recover our unified invariant from his algeb-

raic setup. Moreover, the unified invariant corresponds to its two-variable colored

Jones invariant defined in [13].

Once we have this connection between quantum sl2, the two-variable colored

Jones invariant and this unified invariant, we can henceforth relate it also to the colored

Jones polynomials. This will allow us to use the Melvin–Morton–Rozansky conjec-

ture proved by Bar-Natan and Garoufalidis in [2] in order to get some information on

the factorization at roots of unity: briefly put, the unified invariant factorize at root

of unity as ADO polynomial over the Alexander polynomial. This theorem answers

positively to [13, Conjecture 7.5 and subsequent paragraph] about the two-variable

colored Jones invariant at roots of unity.

Now, we have a unified invariant for both the ADO polynomials and the colored

Jones polynomials; the maps recovering them are also well understood. This will

allow us to prove that, given the colored Jones polynomials, one may recover the

ADO polynomials.

From the fact that the colored Jones polynomials recovers the unified invariant

and from the factorisation at roots of unity, we will prove that the unified invariant and

ADO polynomials follow the same holonomic rule as of the colored Jones function

(see [6]). In the same time this paper was made, Brown, Dimofte Garoufalidis, and

Geer got a more general result covering the case of links in [3, Theorem 4.3].

We will also see that the unified invariant is an integral version of the h-adic loop

expansion of the colored Jones function and remark that, even if it is not clear in

general if it’s a power series, it has similar properties as the power series invariant

conjectured by Gukov and Manolescu in [9, Conjectures 1.5 and 1.6] .

Finally, we will give some computations of the unified invariant and its factoriza-

tion at roots of unity, showing how the inverse of the Alexander polynomial appears.

Nota bene. In this article, any knots and links are in S3 and supposed oriented and

framed. We will use the term link or knot invariant to refer to framed oriented link or

knot invariants.
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2. The ADO invariant for knots

2.1. Definition of the ADO invariants from quantum algebra

We will expose in this section how to obtain ADO invariants for links [1], also called

colored Alexander’s polynomials, from a non-semi-simple category of module over

an unrolled version of Uq.sl2/. A more detailed and thorough construction can be

found in [4, 8].

For any variable q, we set

¹nº D qn � q�n; Œn� D
¹nº

¹1º
; ¹nºŠ D

nY

iD1

¹iº; Œn�Š D

nY

iD1

Œi �;

�
n

k

�

q

D
Œn�Š

Œn � k�ŠŒk�Š
; with convention

�
n

k

�

q

D 0 if n < 0.

In order to define ADO invariants for knots, and for the sake of simplicity, in this

section q will be an even root of unity.

Definition 2. Let q D e
i�
r D �2r root of unity. We work with an “unrolled” version

of U�2r
.sl2/ denoted by UH

�2r
.sl2/ and defined as follow:

• GENERATORS: E;F;K;K�1;H ;

• RELATIONS:

KK�1 D K�1K D 1; KE D �2
2rEK; KF D ��2

2r FK; ŒE; F � D
K �K�1

�2r � �
�1
2r

;

KH D HK; ŒH;E� D 2E; ŒH; F � D �2F; Er D F r D 0:

This algebra has a Hopf algebra structure:

�.E/ D 1˝E C E ˝K; ".E/ D 0; S.E/ D �EK�1;

�.F / D K�1 ˝ F C F ˝ 1; ".F / D 0; S.F / D �KF;

�.H/ D 1˝H CH ˝ 1; ".H/ D 0; S.H/ D �H;

�.K/ D K ˝K; ".K/ D 1; S.K/ D K�1;

�.K�1/ D K�1 ˝K�1; ".K�1/ D 1; S.K�1/ D K:

Now, we can look at some category of finite-dimensional representation of this algebra

and endow it with a ribbon structure.

Definition 3. Let Rep be the category of finite-dimensional UH
�2r
.sl2/-modules such

that

(1) the action of H is diagonalizable;

(2) the action of K and of �H
2r are the same.
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Here, �H
2r WV ! V is defined by �H

2r :v D �
�
2rv if v is a eigenvector of H with eigen-

value �.

Proposition 4. The irreducible representations of UH
�2r
.sl2/ are

• V˛ for ˛ 2 .C �Z/ [ rZ and

• Si for i 2 ¹0; : : : ; r � 2º,

where Si is the highest weight module of weight i and dimension i C 1, and V˛ is the

highest weight module of weight ˛ C r � 1 and dimension r .

Definition 5. In V˛ , we say that v has weight level n if H:v D .˛ C r � 1 � 2n/v.

We can endow Rep with a ribbon structure by giving the action of a R-matrix and

a ribbon element. For V;W 2 Rep, we define

�
H˝H

2

2r WV ˝W ! V ˝W

by

�
H˝H

2

2r :v ˝w D �
�ˇ
2

2r v ˝ w

if H:v D �v and H:w D ˇw. We set

F .n/ D
¹1ºnF n

Œn�Š
for 0 � n < r � 1.

Proposition 6. The element

R D �
H˝H

2

2r

r�1X

nD0

�
n.n�1/

2

2r En ˝ F .n/

is an R-matrix whose action is well defined on Rep and it’s inverse is

R�1 D
�r�1X

nD0

.�1/n�
� n.n�1/

2

2r En ˝ F .n/
�
�

� H˝H
2

2r :

Proposition 7. K1�r is a pivotal element for UH
�2r
.sl2/ compatible with the braiding.

We can now take the usual ribbon functor RT in order to obtain a link invariant,

but on the V˛ it will be 0 (since the quantum trace is 0). Hence, we need to be more

subtle in order to retrieve some information.

On irreducible representations, a 1-1 tangle can be seen as a scalar. If L is a link

obtained by closure of a 1-1 tangle T , we set RT.T /v0 D ADO.T /v0 where v0 is a

highest weight vector. Notice that it depends on the 1-1 tangle T chosen. In order to

have a link invariant, we must multiply it by a “modified trace.”
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We set

¹˛º�2r
D �˛

2r � �
˛
2r ; ¹˛ C kº�2r

D �˛Ck
2r � ��˛�k

2r ;

¹˛Inº�2r
D

n�1Y

iD0

¹˛ � iº�2r
:

Proposition 8. If L a link and T is any 1-1 tangle whose closure is L such that the

open component is colored with V˛ , set

d.˛/ D
¹˛º

¹r˛º
I

then

ADO0
r .L/ WD d.˛/ADOr.T /

is a framed oriented link invariant.

Although we do not have to specify ˛ and obtain a polynomial in q˛, we cannot

do the same for q. The root of unity q must be fixed in order to define the invariant,

hence it is a natural question for one to ask how such invariants behave when the root

of unity changes.

2.2. Useful form of the ADO invariant

From now on, we will only work with oriented framed knots. To see how the ADO

polynomials behave when the root of unity changes, we will explicit a formula for the

invariant using the ribbon functor on a diagram D of a knot.

Let K be a knot colored by V˛�rC1 and T a 1-1 tangle whose closure is K , since

we are working with knots ADOr.A;K/ WD ADOr.T / is well defined, where A is

the free variable �˛
2r . Let us study this element, by choosing a basis of V˛�rC1 and

computing the invariant with state diagrams.

Remark 9. V˛�rC1 is generated by v0; v1; : : : ; vr�1 where v0 is a highest weight

vector, and vi D
F .i/:v0

¹˛Iiº�2r

.

Proposition 10. We have

E:v0 D 0; E:vi D vi�1;

F:vi D Œi C 1�Œ˛ � i �viC1; F .k/:vi D

�
k C i

k

�

�2r

¹˛ � i I kº�2r
vkCi ;

K:vi D �
˛�2i
2r vi ; �

H˝H
2

2r :vi ˝ vj D �
˛2

2

2r �
�.iCj /˛
2r ; �

2ij
2r vi ˝ vj :
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Corollary 11. We have ADOr .A;K/ 2 �
f ˛2

2

2r ZŒ�2r ; �
˙˛
2r �, where f is the framing of

the knot.

More precisely, in order to calculate a useful form of this invariant one may look

at state diagram of a knot. For any knot seen as a .1;1/ tangle, take a diagramD, label

the top and bottom strands 0 and starting from the bottom strand, and label the strand

after the k-th crossing encountered with the rule described in Figure 2. The resulting

diagram is called a state diagram of D.

akbk

bk ikak C ik

(a) Positive crossing.

ak bk

bk ik ak C ik

(b) Negative crossing.

Figure 2. The two possibilities for the k-th crossing in D.

Let K be a knot and D a diagram of the knot seen as a .1; 1/ tangle. Suppose

the diagram has N crossings. Now, for any state diagram of D we can associate an

element

Dr.i1; : : : ; iN / D
� SY

j D1

�
˙.r�1/.˛�2"j /

2r

� Y

k2pos

�
ik.ik�1/

2

2r

�
ak C ik
ik

�

�2r

¹˛ � akI ikº�2r

� �
�.akCbk/˛
2r �

2.akCik/.bk�ik/
2r

Y

k2neg

.�1/ik�
�

ik.ik�1/

2

2r

�

�
ak C ik
ik

�

�2r

¹˛ � akI ikº�2r
�

.akCbk/˛
2r �

�2akbk

2r ;

where neg[ pos D Œj1; N j� and k 2 pos if the k-th crossing of D is positive, else

k 2 neg. ak; bk are the strands labels at the k-th crossing of the state diagram (see

Figure 2), S is the number of C appearing in the diagram, and "j the strand

label at the j-th or , the˙ sign is positive if and negative if .

Remark 12. Note that the ak and bk appearing are defined in terms of ij . You can

find some examples of state diagrams in Section 5, Figures 7 and 8.



A unification of the ADO and colored Jones polynomials of a knot 145

Proposition 13. If D is a diagram of K seen as a 1-1 tangle, we have

ADOr.A;K/ D �
f ˛2

2

2r

r�1X

N{D0

Dr.i1; : : : ; iN /

D �
f ˛2

2

2r

r�1X

N{D0

� SY

j D1

�
˙.r�1/.˛�2"j /

2r

� Y

k2pos

�
ik.ik�1/

2

2r

�
ak C ik
ik

�

�2r

� ¹˛ � akI ikº�2r
�

�.akCbk /˛
2r �

2.akCik/.bk�ik/
2r

Y

k2neg

.�1/ik

� �
�

ik.ik�1/

2

2r

�
ak C ik
ik

�

�2r

¹˛ � akI ikº�2r
�

.akCbk/˛
2r �

�2akbk

2r ;

where N{ D .i1; : : : ; iN /, N is the number of crossings, S the number of C

and f is the framing of the knot.

Proof. Notice that �
f ˛2

2

2r Dr.i1; : : : ; iN / is the element obtained by adding to the k-th

crossing a coupon labeled with

q
H˝H

2 q
ik.ik�1/

2 Eik ˝ F .ik/

if positive and

q
�H˝H

2 q
�ik .ik�1/

2 Eik ˝ F .ik/

if negative. Then add a coupon to labeled Kr�1 and to labeled K1�r . We

get an element of UH
�2r
.sl2/, whose action on v0 2 V˛Cr�1, the highest weight vector,

gives the element

�
f ˛2

2

2r Dr.i1; : : : ; iN /:

Summing them over ik for all k gives the ADO polynomial.

Now that we have an explicit formula, can we construct from it a suitable element

that can be evaluated at roots of unity and recover the ADO invariants?

We have two main issues here. The first is that �2r appears in the formula, so

we will have to replace each occurrence with some variable q, in order to see it as a

polynomial or a formal series. The second one is more difficult to solve: the action of

the R-matrices makes appear sums that range to r � 1, which depends on the order

of the root of unity. A solution to this problem, as we will explicit it, is to let the sum

range to infinity and define a ring in which such sums converge. Then we will see how

to factorize the ADO invariant from this new unified form.
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3. Unified form for ADO invariants of knots

The approach here will be to unify the invariants: using completions of rings and

algebras, we will explicit an integral invariant in some variable q that can be evaluated

at any root of unity, recovering ADO invariants defined previously.

In Section 3.1, will create the right setup to define a unified form inspired by

the useful form of the ADO invariant in Proposition 13. Using a completion of the

ring of integral Laurent polynomials in two variables q; A, we define a unified form

F1.q; A; D/ by taking the previous form of ADO, replacing the root of unity �2r

by q, replacing �˛
2r by A, and letting the truncated sums coming from the R-matrices

action go to infinity. Note that at this point, the defined form is not a knot invariant, as

it a priori depends on the diagramD of the knot.

In Section 3.2, will make the bridge between this new element and the ADO poly-

nomials. By evaluating the unified form at roots of unity �2r with r 2 N�, we factor

out the ADO invariant. We will then explicit a map sending the unified form of a

knot to the corresponding ADO invariants. This will show that the ADO invariants

are contained in the unified form and that we can recover them from it.

3.1. Ring completion for the unified form

Let us lay the groundwork for an unified form to exist. It must be a ring in which

infinite sums previously mentioned converge.

Let R D ZŒq˙1; A˙1�. We will construct a completion of that ring. For the sake

of simplicity, we will use the notation q˛ WD A and use previous notation for quantum

numbers. Keep in mind that, here, ˛ is just a notation, not a complex number. We set

¹˛ºq D q
˛ � q�˛; ¹˛ C kºq D q

˛Ck � q�˛�k;

¹˛Inºq D

n�1Y

iD0

¹˛ � iºq:

Definition 14. Let In be the ideal of R generated by the set ¹¹˛ C l Inºq; l 2 Zº.

Lemma 15. In is generated by elements of the form ¹nI iº¹˛In � iº, i 2 ¹0; : : : nº.

Proof. The proof can be found in Habiro’s article [12]. Replacing K (resp. K�1) by

q˛ (resp. q�˛) in [12, Proposition 5.1], one gets the proof of this lemma.

We then have a projective system

yI W I1 � I2 � � � � � In � � � � :

From which we can define the completion of R, taking the projective limit.
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Definition 16. Let

yR
yI D lim
 �

n

R

In

D
°
.an/n2N� 2

1Y

iD1

R

In

ˇ̌
ˇ �n.anC1/ D an

±
;

where

�nW
R

InC1

!
R

In

is the projection map.

This completion is a bigger ring containing R:

Proposition 17. The canonical projection maps induce an injective map R ,�! yR
yI .

Proof. It is sufficient to prove that

\

n2N
�

In D ¹0º:

SinceRDZŒq˙1�ŒA˙1�, it is a Laurent polynomial ring. Let us denote by degq.x/

and valq.x/ the degree and valuation of x in the variable q, respectively.

Let fk WZŒq
˙1;A˙1�!ZŒq˙1�, A 7! qk . We have fk.In/� ¹nºŠZŒq

˙1� because

In is generated by elements of the form ¹nI iº¹˛In � iº that maps to ¹nI iº¹kIn � iº,

which is divisible by ¹nºŠ. Hence, if x 2
T

n2N� In, fk.x/ 2 ¹nºŠZŒq
˙1� for all n,

since ZŒq˙1� is factorial, fk.x/ D 0 for all k.

Take x 2
T

n2N� In, written x D
P
anA

n with an 2 ZŒq˙1�. Take N such that

degq.x/ <N and valq.x/ >�N . This implies that degq.an/ <N and valq.an/ >�N

(since it is the case for x and any higher or lower terms could not compensate since

the power of A is different before each an).

Thus, since f2N .x/ D 0,
P
anq

2Nn D 0, we have degq.anq
2Nn/ < N.1C 2n/

and valq.anq
2Nn/ > N.2n � 1/, and then each terms anq

2Nn must be 0. Hence,

an D 0 for all n, meaning that x D 0.

Remark 18. If b0 2 R and bn 2 In�1 for n � 1, the partial sums
PN

iD0 bn converges

in yR
yI as N goes to infinity. We use the notation

C1X

iD0

bn WD
� NX

iD0

bn

�
N 2N�

:

Conversely, if a D .an/n2N� 2 yR
yI , let an 2 R be any representative of an in R,

then a D
PC1

iD0 bn, where b0 D a1 and bn D anC1 � an for n 2 N�.
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We proceed similarly as in the paragraph preceding Proposition 13. Let K be a

knot seen as a .1; 1/ tangle andD a diagram of it. For a state diagram ofD we define

D.i1; : : : ; iN / D
� SY

j D1

q�.˛�2"j /
� Y

k2pos

q
ik.ik�1/

2

�
ak C ik
ik

�

q

¹˛ � akI ikºq

� q�.akCbk /˛q2.akCik/.bk�ik/
Y

k2neg

.�1/ikq�
ik.ik�1/

2

�
ak C ik
ik

�

q

� ¹˛ � akI ikºqq
.akCbk /˛q�2akbk

where neg[ pos D Œj1; N j� and k 2 pos if the k-th crossing of D is positive, else

k 2 neg. Here, ak; bk are the strands labels at the k-th crossing of the state diagram

(see Figure 2), S is the number of C appearing in the diagram, and "j the

strand label at the j -th or , the� sign is negative if and positive if .

Remark 19. Note that the ak and bk appearing are defined in terms of ij . As men-

tioned previously, you can find some examples of state diagrams in Section 5, Fig-

ures 7 and 8.

Definition 20. Let K be a knot and T 1-1 tangle whose closure is K . Let D be a

diagram of T . We define

F1.q; A;D/ WD q
f ˛2

2

C1X

N{D0

D.i1; : : : ; iN /

D q
f ˛2

2

C1X

N{D0

� SY

j D1

q�.˛�2"j /
� Y

k2pos

q
ik.ik�1/

2

�
ak C ik
ik

�

q

¹˛ � akI ikºq

� q�.akCbk /˛q2.akCik/.bk�ik/
Y

k2neg

.�1/ikq�
ik.ik�1/

2

�
ak C ik
ik

�

q

� ¹˛ � akI ikºqq
.akCbk /˛q�2akbk ;

where N{ D .i1; : : : ; iN /, N is the number of crossings, S the number of C

and f is the framing of the knot. We have that F1.q;A;D/ is a well-defined element

of q
f ˛2

2 yR
yI .

Note that it is not clear that this element is a knot invariant, it could depend a

priori on the diagram D and we will have to prove later that it does not.

3.2. Recovering the ADO invariant

In this section, we will see how to evaluate at a root of unity an element of yR
yI . We

will first need some useful lemma.
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Let r any integer, Rr D ZŒ�2r ; A
˙1�, we use the same previous notations and

�˛
2r WD A:

Lemma 21. For any k,

¹˛ � kI rº�2r
D .�1/k�

�r.r�1/
2

2r ¹r˛º�2r
:

Proof. We have

¹˛ � kI rº D ¹˛ � kº : : : ¹˛ � k � r C 1º

D .�1/¹˛ � k C 1º : : : ¹˛ � k � r C 2º

D .�1/k¹˛º : : : ¹˛ � r C 1º

D .�1/k¹˛I rº

and

¹˛I rº D

r�1Y

j D0

.�
˛�j
2r � �

�˛Cj
2r /

D �
�r.r�1/

2

2r ��r˛
2r

r�1Y

j D0

.�2˛
2r � �

2j
2r /

D �
�r.r�1/

2

2r ��r˛
2r .�2r˛

2r � 1/

D �
�r.r�1/

2

2r ¹r˛º;

where the fourth equality is obtained by developing the factorized form of X r�1 at

XD�2˛
2r .

Let I D ¹r˛º�2r
Rr . We build the I -adic completion of Rr :

Definition 22. Let

yRI
r D lim
 �

n

Rr

I n
D

°
.an/n2N� 2

1Y

iD1

Rr

I n

ˇ̌
ˇ �0

n.anC1/ D an

±
;

where

�0
nW

Rr

I nC1
!

Rr

I n

is the projection map.

This completion is a bigger ring containing Rr :

Proposition 23. The canonical projection maps induce an injective map Rr ,�! yR
I
r .
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Proof. It is sufficient to prove that
T

n2N� I n D ¹0º. Since Rr D ZŒ�2r �ŒA
˙1�, it is

a Laurent polynomial ring. Hence, any non-zero element x can be uniquely written

x D
Pn

iDl anA
n where ak 2 ZŒ�2r �, for all k 2 ¹l; l C 1; : : : ; n � 1; nº and an; al ¤

0. Let us define len.x/ D n � l . We have that len.xy/ D len.x/C len.y/. Thus, if

x 2
T

n2N� I n is non-zero, of length n, there exists y 2 Rr such that x D ¹r˛ºny,

hence len.x/ D 2rnC len.y/, contradiction.

Let us now define the evaluation map from yR
yI to yRI

r . At the level of R and Rr

we have a well-defined evaluation map,

ev�2r
WR! Rr ; q 7! �2r :

We will extend this map to the completions.

Proposition 24. ev�2r
.Irn/ D I

n

Proof. Direct application of Lemma 21.

Hence, evr factorize into maps  nWR=Irn! Rr=I
n, we can then define the map

extension:

Proposition 25. We have a well-defined map

evr W yR
yI ! yRI

r

such that, if .an/n2N� 2 yR
yI , then evr..an/n2N�/ D . n.arn//n2N� .

Proof. If we denote by �nWR=Ir.nC1/ ! R=Irn the projective maps, the proof lies

on the fact that the following diagram is commutative:

R=Ir.nC1/ Rr=I
nC1

R=Irn Rr=I
n

�n

 nC1

 n

�0
n

It is now time to study the element

F1.�2r ; A;D/ WD evr.F1.q; A;D//;

we will see that the ADO invariant ADOr.A;K/ can be factorized from it. In order

to do so, we will need some useful computations.
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Lemma 26. We have the following factorizations:

�
.iCrl/.iCrl�1/

2

2r D .�1/i l�
rl.rl�1/

2

2r �
i.i�1/

2

2r ; (1)

¹˛ � a � ruI i C rlº�2r

D .�1/alCrulCuiCli �
�rl.r�1/

2

2r �
�rl.l�1/

2

2r ¹r˛ºl�2r
¹˛ � aI iº�2r

; (2)

�
aC i C r.uC l/

i C rl

�

�2r

D .�1/alCrulCui

�
uC l

l

��
aC i

i

�

�2r

; (3)

�
�rl.r�1/

2

2r �
�rl.l�1/

2

2r D �
�rl.rl�1/

2

2r : (4)

Proof. (1) The first part is obtained by developing the product.

(2) The second part is an application of Lemma 21. First,

¹˛ � a � ruI i C rlº D �
.iCrl/ru
2r ¹˛ � aI i C rlº D .�1/iu.�1/rul¹˛ � aI i C rlº:

Then,

¹˛ � aI i C rlº D ¹˛ � aI rlº¹˛ � a � rl I iº

D .�1/al�
�rl.l�1/

2

2r ¹˛I rlº¹˛ � a � rl I iº

D .�1/al�
�rl.l�1/

2

2r �
�rl.r�1/

2

2r ¹r˛ºl ¹˛ � a � rl I iº:

Finally,

¹˛ � a � rl I iº D .�1/li¹˛ � aI iº:

Putting together, we get

¹˛ � a � ruI i C rlº�2r

D .�1/alCrulCuiCli �
�rl.r�1/

2

2r �
�rl.l�1/

2

2r ¹r˛ºl�2r
¹˛ � aI iº�2r

:

(3) The third part follows from the fact that

ev�2r

�¹rkºq
¹rºq

�
D .�1/1�kk:

In
�
aCiCr.uCl/

iCrl

�
�2r

, seen as ¹aCiCr.uCl/ºŠ
¹aCruºŠ¹iCrlºŠ

, taking only the terms ¹rkº, we extract

.�1/ul
�

uCl
l

�
. Now, we only have to deal with non-multiples of quantum r . We use

the equality ¹t C rº D .�1/¹tº in order to have consecutive terms in the denominat-

ors (excepted from multiple of r), indeed

¹aC ruºŠ D ¹ruºŠ¹aC ruI aº
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and

¹i C rlº/.�1/u.iCrl/¹i C rl C ruI i C rlºI

hence

¹aC i C r.uC l/ºŠ

¹aC ruºŠ¹i C rlºŠ
D .�1/u.iCrl/ ¹aC i C r.uC l/I aº

¹aC ruI aº

D .�1/u.iCrl/.�1/au.�1/a.uCl/ ¹aC i I aº

¹aI aº

D .�1/ui.�1/rul.�1/al

�
aC i

i

�

�2r

:

Putting things together with the quantum r multiple part, we get the desired result.

(4) The last part is obtained as follow:

�
�rl.rl�1/

2

2r D

rl�1Y

kD0

��k
2r D

lY

j D0

r�1Y

kD0

�
�k�rj
2r

D

lY

j D0

�
�rj
2r

r�1Y

kD0

��k
2r

D �
�rl.r�1/

2

2r �
�rl.l�1/

2

2r :

We proceed similarly as in the paragraph preceding Definition 20 and define an

element to each state diagram ofD that will be used to factorise F1.q;A;D/. Let K

be a knot seen as a .1; 1/ tangle and D a diagram of it. For a state diagram of D, we

define

DC;r.l1; : : : ; lN / D
� SY

j D1

��r˛
2r

� Y

k2pos

�
uk C lk
lk

�
¹r˛º

lk

�2r
�

�.ukCvk/r˛
2r

�
Y

k2neg

.�1/lk

�
uk C lk
lk

�
¹r˛º

lk

�2r
�

.ukCvk /r˛
2r ;

where neg[ pos D Œj1; N j� and k 2 pos if the k-th crossing of D is positive, else

k 2 neg, ak; bk 2 Œj0; : : : ; r � 1j�, and ak C ruk ; bk C rvk are the strands labels at

the k-th crossing of the state diagram (see Figure 3), S is the number of C

appearing in the diagram, and "j the strand label at the j-th or , the � sign

is negative if and positive if .

Proposition 27. For a knot K and a diagram of the knot D, r 2 N�, we have the

following factorization in yRI
r :

F1.�2r ; A;D/ D C1.r; A;D/ � ADOr .A;K/
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where

C1.r; A;D/ D

C1X

xlD0

DC;r.l1; : : : ; lN /

D

C1X

xlD0

� SY

j D1

��r˛
2r

� Y

k2pos

�
uk C lk
lk

�
¹r˛º

lk

�2r
�

�.ukCvk/r˛
2r

�
Y

k2neg

.�1/lk

�
uk C lk
lk

�
¹r˛º

lk

�2r
�

.ukCvk /r˛
2r

where xl D .l1; : : : ; lN /, N is the number of crossings, S the number of C

and f is the framing of the knot.

Proof. For the sake of simplicity, we will only consider positive crossings in the fol-

lowing proof. We factorize as follows:

F1.�2r ; A;D/ D �
f ˛2

2

2r

C1X

xsD0

� SY

j D1

�
�.˛�2"j /

2r

� NY

kD1

�
sk.sk�1/

2

2r

�
zk C sk
sk

�

�2r

� ¹˛ � zk I skº�2r
�

.�zk�yk/˛
2r �

2.zkCsk /.yk�sk/
2r

D �
f ˛2

2

2r

C1X

{CrlD0

� SY

j D1

�
�.˛�2"j /

2r

� NY

kD1

�
.ikCrlk/.ikCrlk�1/

2

2r

�

�
ak C ik C r.uk C lk/

ik C rlk

�

�2r

¹˛ � .ak C ruk/I ik C rlkº�2r

� �
.�.akCruk /�.bkCrvk //˛
2r �

2..akCruk/C.ikCrlk//.bkCrvk�.ikCrlk//
2r

D �
f ˛2

2

2r

r�1X

N{D0

� SY

j D1

�
˙.r�1/.˛�2"j /

2r

� NY

kD1

�
ik.ik�1/

2

2r

�
ak C ik
ik

�

�2r

� ¹˛ � akI ikº�2r
�

.�ak�bk/˛
2r �

2.akCik/.bk�ik/
2r

�

C1X

xlD0

� SY

j D1

��r˛
2r

� NY

kD1

�
uk C lk
lk

�
¹r˛º

lk

�2r
�

.�uk�vk/r˛
2r :

The second equality is obtained by changing variables sk D ik C rlk 0 � ik �

r � 1 and writing the strands labels at crossings zk as zk D ak C ruk 0 � ak � r � 1

and yk as yk D bk C rvk 0 � bk � r � 1. Note that ak , bk solely depends on ik and

uk , bk on lk . This relies on the fact that
�

nCm
n

�
q
D 0 at q D �2r if n;m � r � 1 and

nCm � r .
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The third equality is obtained by replacing each term with its factorization given

by Lemma 26, the crossed terms between ik and lk are just signs, that eventually

compensate. Hence, we have the factorization.

ak C rukbk C rvk

bk C rvk ik rlkak C ruk C ik C rlk

(a) Positive crossing.

ak C ruk bk C rvk

bk C rvk ik rlk ak C ruk C ik C rlk

(b) Negative crossing.

Figure 3. The two possibilities for the k-th crossing in D when factorizing.

In order to get back ADOr.A;K/ from F1.�2r ; A; D/, we need to prove that

C1.r; A;D/ is a unit in yRI
r .

Proposition 28. If a D .an/n2N� 2 yRI
r and a1 2 Rr=I is a unit, then a is a unit

in yRI
r .

Proof. Let a D .an/n2N� 2 yRI
r such that a1 is a unit of Rr=I . Let us prove that an is

also a unit in Rr=I
n. If y is an element of Rr=I

n such that any D a1y D 1 mod I ,

then there exists z 2 I:Rr=I
n such that any D 1C z, z D any � 1, thus 0 D zn D

.any � 1/
n, which proves that an is invertible. Hence, a�1D .a�1

n /n2N� is the inverse

of a in yRI
r .
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SinceC1.r;A;D/D .
QS

j D1 �
�r˛
2r / mod¹r˛º�2r

is an invertible element ofRr=I ,

then C1.r; A;D/ is a unit of yRI
r .

Corollary 29. ADOr.A;K/ D F1.�2r ; A;D/C1.r; A;D/
�1.

Finally, one can recover C1.r; A;D/ with F1.q; A;D/, this will prove that not

only that ADO is contained in F1.q;A;D/ but that it’s possible to extract them with

the sole datum of F1.q; A;D/.

For r D 1, one gets

ev1.F1.q; A;D// D F1.�2; A;D/

D C1.1; A;D/ �ADO1.A;K/

D q
f ˛2

2 C1.1; A;D/:

Remark 30. Note that ADO1.A;K/ is only defined as the case r D 1 in Proposi-

tion 13, which is well defined. Nevertheless, the algebraic setup at Section 2 fails at

r D 1 since ŒE; F � is not well defined.

But then

C1.1; A;D/ 2
4
ZŒA˙1�¹˛º WD lim

 �
n

ZŒA˙1�

¹˛ºn
;

for each r we have a well-defined map

gr W
4
ZŒA˙1�¹˛º !

4
ZŒA˙1�¹r˛º; q˛ 7! qr˛;

such that gr.C1.1; A;D// D C1.r; A;D/.

This proves the following proposition:

Proposition 31. For all r , we have a well-defined map

FCr D gr ı ev1W yR
yI !

4
ZŒA˙1�¹r˛º

and, for any knot K and any diagramD of the knot,

F1.q; A;D/ 7! C1.r; A;D/:

Corollary 32. For all r , we have a well-defined map

evr �
1

FCr

W . yR
yI /� ! . yRI

r /
�

and, for any knot K and any diagramD of the knot,

F1.q; A;D/ 7! ADOr .A;K/:
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Proof. Let x 2 . yR
yI /� an invertible element, since FCr is a ring morphism, FCr .x/

is invertible. Then,

Id�
1

FCr

.F1.q;A;D// D F1.�2r ;A;D/ � C1.r;A;D/
�1 D ADOr.A;K/:

4. Universal invariant and Verma module

We have built by hand an element F1.q; A; D/ in some completion of a ring, from

which we have evaluation maps that recovers the ADO invariants. This element is

built from the diagram of a knot, thus it depends a priori on it. In order to prove that

this element is indeed a knot invariant, we will see how to obtain it using Hopf algebra

machinery.

Section 4.1 will be dedicated to create an integral subalgebra of the h-adic version

of quantum sl2 containing the universal invariant of a 0-framed knot.

This will allow us to define, in Section 4.2, a Verma module on it. Since the algebra

previously defined is integral, this will also be the case for the Verma module, whose

coefficients will lie in yR
yI . The unified form F1.q; A; D/ will be seen as the scalar

action of the universal invariant on this Verma module. Since the universal invariant

is a knot invariant, so will be F1.q; A;D/.

This algebraic setup is made to get back the unified form and prove its invariance,

and it is a completion which is very close to that of Habiro’s in [12]. But they are

not the same, and we will see in Section 4.3 how to connect this work to Habiro’s

setup in the article. We will interpret our ring completion yR
yI as some subalgebra

completion found in [12], allowing to prove some nice properties on the ring struc-

ture (integral domain, subring of some h-adic ring). Moreover, we will show that

the unified invariant can also be recovered from Habiro’s algebraic setup, using the

same process as in Section 4.1, but with his completions. This will allow us to show

that the unified invariant is equal to the two-variable colored Jones invariant defined

in [13, Section 7.1] .

Using this fact, we will see that we can also recover the colored Jones polyno-

mials from the unified invariant. First this will allow us to study the factorisation in

Proposition 27, and find that C1.r; A; D/ is just the inverse of the Alexander poly-

nomial. Lastly, using the unified invariant as a bridge between the family of colored

Jones polynomials and the family of ADO polynomials, we will show that they are

equivalent, meaning that we can recover one family with the other.

As a direct application of this facts, we will show that the unified invariant and

every ADO polynomials follow the same holonomic rule as the colored Jones function

(see [6]).
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Remark 33. The variable q in this paper corresponds to the variable v in [12, 13].

4.1. The universal invariant

In order to build F1.q; A;D/ from Hopf algebra, we will need some “big enough”

integral version quantum sl2, but not too big in order to have a yR
yI Verma module on

it.

First let us define the biggest integral quantum sl2, Uh.

Definition 34. We set

Uh WD Uh.sl2/;

the QŒŒh�� algebra topologically generated by H;E;F and relations

ŒH;E� D 2E; ŒH; F � D �2F; ŒE; F � D
K �K�1

q � q�1
;

where q D eh andK D qH D ehH .

It is endowed with an Hopf algebra structure

�.E/D 1˝E CE ˝K; ".E/D 0; S.E/D �EK�1;

�.F /D K�1 ˝ F C F ˝ 1; ".F /D 0; S.F /D �KF;

�.H/D 1˝H CH ˝ 1; ".H/D 0; S.H/D �H;

and an R-matrix

R D q
H˝H

2

1X

iD0

¹1ºnq
n.n�1/

2

Œn�Š
En ˝ F n;

R�1 D

1X

iD0

.�1/n¹1ºnq
�n.n�1/

2

Œn�Š
En ˝ F nq� H˝H

2 :

Altogether with a ribbon element:K�1u where u D
P
S.ˇ/˛ if R D

P
˛ ˝ ˇ.

Hence, if K is a knot and T a 1-1 tangle whose closure is K . We set QUh.K/ 2

Uh the universal invariant associated to T in Uh. The definition of this element is

given in Ohtsuki’s book [17, Section 4.2]. It is a knot invariant.

Let us now build a suitable subalgebra of Uh and a yR
yI Verma module on it. We

will then see that the universal invariant is in some extent inside the subalgebra and

its scalar action on the Verma module will give us F1.q; A; D/. The subalgebra

considered is an integral version of Uq.sl2/ defined as follows.
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Definition 35. We set

U WD UD
q .sl2/;

the ZŒq˙1�-subalgebra of Uh generated by E;F .n/; K, where F .n/ D ¹1ºnF n

Œn�Š
.

U inherits the Hopf algebra structure from Uh.

Remark 36. The R-matrix is not an element of U but we have

R D q
H˝H

2

1X

iD0

¹1ºnq
n.n�1/

2

Œn�Š
En ˝ F n D q

H˝H
2

1X

iD0

q
n.n�1/

2 En ˝ F .n/:

Hence, aside from q
H˝H

2 (that we can control in the universal invariant as we will

see further on), we need the convergence of
P1

iD0 q
n.n�1/

2 En ˝ F .n/ in some tensor

product of the algebra with itself. Thus we need to complete the algebra U.

We set

¹H Cmºq D Kq
m �K�mq�m;

¹H CmInºq D

n�1Y

iD0

¹H Cm � iºq:

Definition 37. Let Ln be the ZŒq˙1� ideal generated by ¹nºŠ. Let Jn be the U two

sided ideal generated by the following elements:

F .iCk/¹H CmIn � iºq;

where m 2 Z, i 2 ¹0; : : : ; nº and k 2 N.

Lemma 38. Jn is generated by elements of the form F .iCk/¹n� i Ij º¹H In� i � j º,

j 2 ¹0; : : : ; n � iº, i 2 ¹0; : : : ; nº, and k 2 N.

Proof. The proof can be found in Habiro’s article [12, Proposition 5.1].

Following the completion described by Habiro in is article [12, Section 4]. We

have

(1) JnC1 � Jn,

(2) Ln � Jn (see [12, Proposition 5.1]),

(3) �.Jn/ �
P

iCj Dn Ji ˝ Jj ,

(4) ".Jn/ � Ln,

(5) S.Jn/ � Jn.
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Thus, we can define the completion

yU WD lim
 �

n

U

Jn

as a 2ZŒq˙1� WD lim
 �n

ZŒq˙1�
Ln

-algebra (2ZŒq˙1� is Habiro’s ring). And it is endowed with

a complete Hopf algebra structure:

y�W yU! yU y̋ yU; O"W yU!2
ZŒq˙1�; yS W yU! yU

where

yU y̋ yU D lim
 �
k;l

yU˝
1

ZŒq˙1�

yU

yU˝1
ZŒq˙1�

Jk C Jl ˝1
ZŒq˙1�

yU

and Jn is the closure of Jn in yU.

This completion is a bigger algebra than U:

Proposition 39. The canonical projection maps induce an injective map U ,�! yU.

Proof. Take the projective maps jnWU!U=Jn, they induce a map j WU! yU. This

map in injective because if j.x/ D 0 then x 2
T

n2N� Jn. But since Jn � h
nUh thenT

n2N� Jn �
T

n2N� hnUh. It is a well-known fact that
T

n2N� hnUh D ¹0º.

Moreover, since Jn � h
nUh we have a map i yU ! Uh. Since we do not know

if this map is injective, we consider zU WD i. yU/ the image in Uh. It is also an Hopf

algebra.

Remark 40.
P1

iD0 q
n.n�1/

2 En ˝ F .n/ 2 zU y̋ zU:

We will need a lemma to compute some commutation rules.

Lemma 41. We have

.E ˝ 1/ � q
H˝H

2 D q
H˝H

2 � .E ˝ 1/ � .1˝K/

and

.F .n/ ˝ 1/ � q
H˝H

2 D q
H˝H

2 � .F .n/ ˝ 1/ � .1˝K�n/:

Proof. Notice that since

EHn D .H C 2/nE and q
H˝H

2 D
X� hn

2nnŠ

�
Hn ˝Hn;

then

.E ˝ 1/ � q
H˝H

2 D q
.HC2/˝H

2 � .E ˝ 1/ D q
H˝H

2 � .1˝K/ � .E ˝ 1/:

The same can be done for F .n/.
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Let us now construct the universal invariant QUh.K/ by hand, seeing it as the

.1; 1/-tangle with coupons.

We can picture it as a 1-1 tangle with .2; 2/ coupons for R-matrix, i.e.,

D
R

; D
R 1

and also with .1; 1/ coupons for the pivotal element:

The rest of the tangle remains unchanged.

By replacing the R-matrix with its formula, we get sums of diagrams with

.1; 1/-couponsEn, F .n/,K and .2; 2/-coupons q
H˝H

2 , q� H˝H
2 (that we can decom-

pose into sum of .1; 1/-coupons if seen as exponentials). To compute the universal

invariant, start from the top of the tangle and multiply (to the right) every coupons

encountered.

Now, let us see that we can separate the universal invariant into two pieces. The

example of the trefoil knot will illustrate the process all along. The first step is to rep-

resent the knot with R-matrices (2,2)-coupons andK˙1 (1,1)-coupons for the pivotal

elements, as illustrated in Figure 4b. Now, we write R as a sum, so the .2; 2/-coupons

labeled by R become the composition of (2,2)-coupons labeled by q
H˝H

2 and

.1; 1/-coupons labeled by En or F .n/ (see Figure 4c).

We now slide down – following the orientation – the .1; 1/-coupons En, F .n/

andKn, taking first (at any step) the closest to the bottom (see Figure 5a). During this

process, the only non-trivial commutations that appear are betweenEn˝ 1 or 1˝En

or F .n/ ˝ 1 or 1˝ F .n/ and q
H˝H

2 or q� H˝H
2 . By Lemma 41, this only add some

.1; 1/ coupons labeled by K˙n (see Figure 5b).

We are only left with coupons labeled by q
H˝H

2 and q� H˝H
2 , you can see Fig-

ure 6a for the example of the trefoil knot. These are exponentials and we can see them

as the sum

q˙ H˝H
2 D

X� .˙h/n
2nnŠ

�
Hn ˝Hn;

the .2; 2/-coupons now become a sum of .1; 1/-coupons as shown for the trefoil knot

in Figure 6b. Now, take one of the .1; 1/-coupon labeled by Hn and slide it towards

the second .1; 1/-coupon labeled by Hn (see Figure 6b). Since one is only left with

coupons labeled by powers of H , everything commutes and we get couponsH 2n (as

shown in Figure 6c), summing them over n gives us .1; 1/-coupons labeled by q˙ H2

2

(see Figure 6d).
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Now, since we control the quadratic part q
H˝H

2 and since the sum in theR-matrix

converge in zU by construction, we thus have the following proposition:

Proposition 42. If K a knot andD a diagram of a 1-1 tangle T whose closure is K ,

then

QUh.K/ D qf H2

2 Q
zU.D/;

where Q
zU.D/ 2 zU � Uh and f is the writhe of the diagram.

(a) The trefoil knot.

K

R

R

R

(b) The universal invariant.

X

n1;n2;n3

q
n1.n1 1/

2 q
n2.n2 1/

2 q
n3.n3 1/

2

q
H˝H

2

q
H˝H

2

q
H˝H

2

F .n1/En1

F .n2/En2

F .n2/En2

K

(c) R-matrices seen has sums.

Figure 4. The example of the trefoil knot.
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K

q
H˝H

2

q
H˝H

2

q
H˝H

2

X

n1;n2;n3

q
n1.n1 1/

2 q
n2.n2 1/

2 q
n3.n3 1/

2

F .n1/En1

F .n2/En2

F .n3/En3

1

2

(a) The first two steps, sliding coupons.

K

q
H˝H

2

q
H˝H

2

q
H˝H

2

X

n1;n2;n3

q
n1.n1 1/

2 q
n2.n2 1/

2 q
n3.n3 1/

2 En3

F .n1/En1

F .n3/

En2

F .n2/ K n2

3

(b) The third step, passing through the (2,2) coupons.

Figure 5. Sliding coupons example with the trefoil knot.

4.2. The completed Verma module

Now, it is time to construct the Verma module on which the universal invariant will

act as F1.q; A;D/. Let V ˛ be a R-module freely generated by vectors ¹v0; v1; : : : º,

and we endow it with a U-module structure

E:v0 D 0; E:viC1 D vi ; K:vi D q
˛�2ivi ;

F .n/:vi D

�
nC i

i

�

q

¹˛ � i InºqvnCi :
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q
H˝H

2

q
H˝H

2

q
H˝H

2

(a) Quadratic part of trefoil universal invari-

ant.

X

n

hn

2n

H n H n

q
H˝H

2

q
H˝H

2

(b) Illustration of quadratic simplification:

first step.

X

n

hn

2n

H 2n

q
H˝H

2

q
H˝H

2

(c) Illustration of quadratic simplification:

second step.

q
H2

2

q
H˝H

2

q
H˝H

2

(d) Illustration of quadratic simplification:

third step.

Figure 6. Quadratic factorization and simplification for the trefoil knot.

We define the completed Verma module as the yR
yI -module

cV ˛ D lim
 �

n

V ˛

InV ˛

where InV
˛ is the ideal generated by elements of the form � � v, � 2 In, v 2 V ˛.

Since Jn:V
˛ � InV

˛, we can naturally endow it with a zU module structure.

Moreover, since
T
In D 0 then

T
InV

˛ D 0 and thus V ˛ � cV ˛ as a R-module.
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We denote this representation by �W zU! End.cV ˛/I if A 2 zU and v 2 cV ˛ we will

write

Av WD �.A/.v/:

Proposition 43. If K is a knot and D is a diagram of a 1-1 tangle T whose closure

is K , then

QUh.K/:v0 D q
f H2

2 Q
zU.D/:v0 D F1.q; A;D/v0:

Hence, in particular, F1.q;A;D/ is independent of the choice of the diagram and we

denote it by F1.q; A;K/.

Proof. The identity comes from the definition of the state diagrams contribution

D.i1; : : : ; iN / and the definition of the action of the R-matrices, where ij is the index

of the sum corresponding to the R-matrix at the j -th crossing.

Indeed, recall that

F1.q; A;D/ WD q
f ˛2

2

C1X

N{D0

D.i1; : : : ; iN /

D q
f ˛2

2

C1X

N{D0

� SY

j D1

q�.˛�2"j /
� Y

k2pos

q
ik.ik�1/

2

�
ak C ik
ik

�

q

¹˛ � akI ikºq

� q�.akCbk /˛q2.akCik/.bk�ik/
Y

k2neg

.�1/ikq�
ik.ik�1/

2

�
ak C ik
ik

�

q

� ¹˛ � akI ikºqq
.akCbk/˛q�2akbk ;

where N{ D .i1; : : : ; iN /, N is the number of crossings, S the number of C

and f is the framing of the knot, and

R:.vbk
˝ vak

/ D q
˛2

2

X

ik

q
ik.ik�1/

2

�
ak C ik
ik

�

q

¹˛ � akI ikºq

� q�.akCbk/˛q2.akCik/.bk�ik/vbk�ik ˝ vakCik :

Hence,

QUh.K/:v0 D q
f H2

2 Q
zU.D/:v0 D F1.q; A;D/v0:

We have a bit better, the action of QUh.K/ is in fact scalar.

Proposition 44. The zU-endomorphism of cV ˛ are scalars, i.e.,

End zU
.cV ˛/ D yR

yIIdcV ˛ :
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Proof. Let f 2 End zU
.cV ˛/. We get K:f .vi/ D f .K:vi / D q˛�2if .vi /, thus there

exists �i 2 yR
yI such that f .vi /D �ivi . Now, sinceE:f .viC1/D f .E:viC1/D f .vi /,

then �iC1vi D �ivi ; hence we define � WD �i and we have f D �IdcV ˛ .

Remark 45. Since �.Z. zU// � End zU
.cV ˛/, there is a well-defined map

f WZ. zU/! yR
yI ; x 7! �x ;

where �.x/ D �xIdcV ˛

We set

q˙ H2

2 vi D q
˙ .˛�2i/2

2 vi 2 q
˙ ˛2

2 cV ˛ :

Proposition 46. QUh.K/ is in the center of Uh.

Proof. See [11, Proposition 8.2].

Corollary 47. f .QUh.K// D F1.q; A;K/.

4.3. Connection to Habiro’s work

This section will be dedicated to connect our setup (the ring setup yR
yI and the quantum

algebra setup zU) to Habiro’s algebra setup in [12]. As we will see, we will get

that our ring yR
yI is contained in some h-adic ring, and hence that it is an integral

domain. Moreover, we will see how to get back our unified invariant F1.q; A;K/

from Habiro’s quantum algebra completions.

Once this is done, we will show that F1.q;A;K/ is in fact the two-variable Jones

polynomial JK.q
˛; q/ defined by Habiro in [13, Section 7] .

Remark 48. Recall that the variable q in this paper corresponds to the variable v

in [12, 13]

4.3.1. Unified invariant from Habiro’s quantum algebra. We define the subalgeb-

ras generated by H .

• In Uh, we set U 0
h

the subalgebra topologically generated by H .

• In U, we set U
0 the subalgebra generated byH .

We can complete the algebra into

yU0 D lim
 �

n

U
0

h¹H CmInº; m 2 Zi
:

We then have the following proposition.
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Proposition 49. U 0
h
ŠQŒ˛�ŒŒh��, the h-adic completion of the polynomial ring QŒ˛�,

and yU0 Š yR
yI .

Proof. The first statement is the definition of U 0
h

replacingH with formal variable ˛.

The second statement comes from the fact that, replacingK byA, U
0ŠZŒq˙1;A˙1�

and ¹H CmInº Š In.

Now, one can use Proposition 6.8 and 6.9 in Habiro’s article [12] and we have:

Proposition 50. We have that yR
yI � QŒ˛�ŒŒh��, and thus yR

yI is an integral domain.

Moreover, elements in yR
yI can be uniquely expressed. This fact comes from [12,

Corollary 5.5]. Recall that q˛ WD A and let ¹˛I nº0 D
Qn�1

iD0.q
2˛ � qi / we have the

following proposition:

Proposition 51. We have the following isomorphism:

yR
yI Š lim
 �

n

bZŒq�ŒA�

.¹˛Inº0/
:

Moreover, any element t 2 yR
yI can be uniquely written

P1
nD0 tn¹˛I nº

0 where tn 2
bZŒq�C bZŒq�A.

Proof. See [12, Corollary 5.5].

Remark 52. This means that the unified invariantF1.q;A;K/ can be uniquely writ-

ten as a series
P1

nD0 tn¹˛Inº
0 where tn 2 bZŒq�C bZŒq�A.

Now, let us present the quantum algebra setup used by Habiro. Our algebra and

completion was done for the sole purpose of getting a nice form for our unified invari-

ant, allowing us to factorize it at each roots of unity. Habiro’s quantum algebra setup

has been studied more in details, and thus have more proprieties.

Let UHab be the ZŒq˙1�-subalgebra of Uh generated by elements K˙1; e; F Œn�,

where

e D ¹1ºE and F Œn� D
F n

¹nºŠ
:

Let zJn be the ideal generated by elements ei ¹H CmIn � iº for all m 2 Z We set

yUHab WD lim
 �

n

UHab

zJn

:

Habiro proved that there is an injective map

i W yUHab! Uh

(see [13, Propositions 6.8 and 6.9]).
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Now, that his algebra setup is stated, let us make the connection with our unified

invariant F1.q;A;K/. To do so, we will build a unified invariant with Habiro’s setup

and prove that it is in fact F1.q; A;K/.

First remark that, since the sums in the R-matrix also converge in yUHab:

Remark 53. If K a knot and D a diagram of a 1-1 tangle T whose closure is K ,

then

QUh.K/ D qf H2

2 Q
zU.D/;

where Q
zU.D/ 2 i. yUHab/ � Uh and f is the writhe of the diagram.

We can then define the corresponding Verma module on yR
yI . We can endow V ˛

with a UHab-module structure and we denote it by V ˛
Hab:

e:v0 D 0; e:viC1 D ¹˛ � iºqvi ; K:vi D q
˛�2ivi ; F Œn�:vi D

�
nC i

i

�

q

vnCi :

Moreover, since zJn:V
˛

Hab � InV
˛

Hab, we can naturally endow cV ˛ with a yUHab-module

structure and we denote it by cV ˛
Hab.

We denote this representation by

�HabW zU! End.cV ˛
Hab/I

if A 2 yUHab and v 2 cV ˛
Hab we write

A:v WD �Hab.A/.v/:

Then, in a similar fashion, we have that:

Remark 54. If K is a knot and D is a diagram of a 1-1 tangle T whose closure is

K , then there exists an element F Hab
1 .q; A;K/ 2 qf ˛2

2 � yR
yI such that

QUh.K/:v0 D q
f H2

2 Q
zU.D/:v0 D F

Hab
1 .q; A;K/v0:

Let us V ˛
h
D V ˛ ˝R QŒ˛�ŒŒh��. We define the h-adic completed Verma module

cV ˛
h D lim

 �
n

V ˛
h

hnV ˛
h

:

cV ˛
h

is the QŒ˛�ŒŒh��-module topologically generated by vectors ¹v0; v1; : : : º, and we

endow it with a Uh-module structure:

E:v0 D 0; E:viC1 D vi ; H:vi D .˛ � 2i/vi ; F:vi D Œ˛ � i �qviC1:
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We can also use another useful topological basis ¹w0;w1; : : :º such thatwi D Œ˛I i �qvi

and get hence

E:w0 D 0; E:wiC1 D Œ˛ � i �qwi ; H:wi D .˛ � 2i/wi ; F:wi D wiC1:

Using yR
yI � QŒ˛�ŒŒh��, we have that cV ˛ � cV ˛

h
as zU-modules and that cV ˛

Hab � cV ˛
h

as yUHab-modules.

Proposition 55. cV ˛ � cV ˛
h

as zU-modules and cV ˛
Hab � cV ˛

h
as yUHab-modules.

Proof. We have a well-defined zU-modules map

i WcV ˛ ! cV ˛
h ; vi 7! vi ;

since InV
˛ � hnV ˛

h
and the action of zU coincide on the topological basis. Moreover,

cV ˛ D
°
.uk/k2N� 2

V ˛

IkV ˛

ˇ̌
ˇ ukC1 D uk mod IkV

˛
±

D
°�X

n

ak;nvn

�
k2N�

2
V ˛

IkV ˛

ˇ̌
ˇ ak;n 2

R

Ik

; .ak;n/n2N have finite support;

akC1;n D ak;n mod Ik

±
:

Note that an WD .ak;n/k2N� 2 yR
yI by definition.

If u D .uk/k2N� D .
P

n ak;nvn/k2N� 2 cV ˛ is such that i.u/ D 0 then, using

j W yR
yI ,! QŒ˛�ŒŒh��,

j.an/ D 0 for all n 2 N:

Hence, by injectivity,

an D 0 for all n 2 N:

Thus, u D 0 and the map i is injective.

We proceed in the same fashion with i WcV ˛
Hab ! cV ˛

h
, vi 7! wi .

It follows that F Hab
1 .q; A;K/ D F1.q; A;K/ as elements of QŒ˛�ŒŒh��. Since

yR
yI � QŒ˛�ŒŒh��, then F Hab

1 .q; A;K/ D F1.q; A;K/ as elements of yR
yI .

4.3.2. The unified invariant and the two-variable colored Jones invariant are the

same. In [13, Section 7], Habiro define a two-variable colored Jones invariant unify-

ing the colored Jones polynomials.

Remark 56. Recall that the notation v (resp. q) in [13] correspond to the notation q

(resp. q2) in this article.
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This two-variables colored Jones invariant is defined as the universal invariant of

a long knot seen in a completion ring

lim
 �

k

ZŒq; q�1; t; t�1�=
� Y

�k<i<k

.t � q2i /
�
;

where t is defined, using the Casimir element C D ¹1º2FE C qK C q�1K�1, by

C 2 D t C t�1 C 2:

The Casimir element is in the center of Uh and

Cv0 D .q
˛C1 C q�˛�1/v0:

We thus have the identification

t D q2.˛C1/:

Let us come back to the unified invariant. For a 0-framed knot K , we have

QUh.K/ 2 Z. yUHab/:

We also have, using [13, Theorem 9.1 and Section 9.2],

Z. yUHab/ ,�! yU0:

Since yU0 Š yR
yI , we have the following equality in yR

yI :

f .QUh.K// D F1.q; q
˛;K/;

where f WZ. yUHab/! yR
yI the scalar action of central elements on cV ˛

Hab.

In other words, the two-variables colored Jones invariant JK.t; q
2/ defined in [13,

Section 7] verifies

JK.q
2.˛C1/; q2/ D F1.q; q

˛;K/

as elements in yR
yI .

4.4. About the colored Jones polynomials

The colored Jones polynomials and the study of C1.1; A; K/. Knowing that the

unified invariant comes from the universal invariant, we can use this fact to recover

the colored Jones polynomials. When we evaluate A D q˛ at qn in F1.q; A;K/,

we obtain the n-colored Jones polynomial, denoted by Jn .q;K/ (with normalization

Jn.q; unknot/ D 1). Moreover, we can use this fact to compute C1.1; A;K/ as the

inverse of the Alexander polynomial, simplifying the factorization in Proposition 27.

The following lemma and proposition are a reformulation of the proof that the uni-

versal invariant contains the colored Jones polynomials as found in [13, Section 7.1].
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Lemma 57. If we denote by Vn the .nC 1/-dimensional highest weight module of zU

and cV n the Verma module of highest weight qn and highest weight vector v0, then

Vn Š zU:v0 � cV n.

Proof. It comes down to F .nC1/:v0 D ¹nInC 1ºvnC1 D 0 � vnC1 D 0.

Proposition 58. If cV n is the Verma of highest weight qn,

QUh.K/:v0 D q
f n2

2 qf nJn.q
2;K/v0:

Moreover, if we denote by 2ZŒq˙1� Habiro’s ring completion of ZŒq˙1� by ideals

.¹nºŠ/, we have some well-defined evaluation maps

jnW yR
yI !2

ZŒq˙1�; q˛ 7! qn:

This allows us to state the following corollary.

Corollary 59. F1.q; q
n;K/ D q

f n2

2 qf nJn.q
2;K/.

Hence, F1.q; A;K/ plays a double role in this dance: evaluating its first vari-

able q at a root of unity �2r , gives us the r-th ADO polynomial multiplied by this

C1.r; A;K/ element; but if one evaluates the second variable A at qn, one gets the

n-th colored Jones polynomial.

We will use this double role to study the factorization of ADO polynomials.

Indeed, the Melvin–Morton–Rozansky conjecture (MMR) proved by Bar-Natan and

Garoufalidis in [2] makes the junction between the inverse of the Alexander polyno-

mial and the colored Jones polynomials. We will use the h-adic version that we state

below in Theorem 60 (see [7, Theorem 2]).

We denote byAK.t/ the Alexander polynomial of the knot K , with normalisation

Aunknot.t/ D 1 and AK.1/ D 1.

Theorem 60 (Bar-Natan, Garoufalidis). For K a knot, we have the following equality

in QŒŒh��:

lim
n!1

Jn.e
h=n/ D

1

AK.eh/
:

For the sake of simplicity, let us assume that the knot K is 0-framed so f D 0.

Note that, sinceF1.q;q
n;K/D Jn.q

2;K/2ZŒq˙1� and ZŒq˙1��QŒŒh��, we have a

map QŒŒh��!QŒŒh��, h 7! h
n

that sendsF1.q;q
n;K/ 7!F1.q

1=n;q;K/ as elements

of QŒŒh��. But now F1.q
1=n; q;K/ converges to F1.1; q;K/ in the sense stated

in [7, below Theorem 2], namely:

lim
n!1

F1.q
1=n; q;K/ D F1.1; q;K/
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() lim
n!1

coeff.F1.q
1=n; q;K/; hm/

D coeff.F1.1; q;K/; hm/ for all m 2 N;

where, for any analytic function f ,

coeff.f .h/; hm/ D
1

mŠ

dm

dhm
f .h/

ˇ̌
ˇ
hD0

:

By Theorem 60,

F1.1; q;K/ D
1

AK.q2/
in QŒŒh��.

On the other hand, if we denote by 4ZŒA˙1�¹1ºA the ring completion of ZŒA˙1�

by ideals ..A � A�1/n/, then F1.1; A;K/ D C1.1; A;K/ in 4ZŒA˙1�¹1ºA . Indeed,

setting q D 1 in Definition 20 and looking at the definition of C1.1; A;K/ in Pro-

position 27, one gets F1.1; A;K/ D C1.1; A;K/.

Since 4ZŒA˙1�¹1ºA ,�! QŒŒh��, A! eh (see [12, Proposition 6.1] and [10, Corol-

lary 4.1]), then we have the following proposition:

Proposition 61. If K is 0-framed, C1.1; A;K/ D 1
AK .A2/

:

By the discussion in the paragraph preceding Proposition 31, we have:

Corollary 62. If K is 0-framed, then C1.r; A;K/ D 1
AK .A2r /

.

This allows us to state a factorization theorem:

Theorem 63 (factorization). For a knot K and an integer r 2 N�, we have the fol-

lowing factorization in cRI
r :

F1.�2r ; A;K/ D
Arf � ADOr .A;K/

AK.A2r/
;

where f is the framing of the knot.

Corollary 64. As an immediate consequence, [13, Conjecture 7.5 and subsequent

paragraph] are verified. In other word,

JK.t;�1/ D
AK.�t/

AK.t2/

where t D q2.˛C1/; or, in terms of unified invariant,

F1.i; q
˛;K/ D

AK.q
2˛/

AK.q4˛/
:
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Proof. Recall that ADO2.q
˛;K/ D AK.q

2˛/. At r D 2, using the identification t D

q2.˛C1/, we have the following:

JK.t;�1/ D F1.i; q
˛;K/

D
ADO2.q

˛;K/

AK.q4˛/

D
AK.q

2˛/

AK.q4˛/

D
AK.�t/

AK.t2/
:

The colored Jones polynomials determine the ADO polynomials. One may ask

what is the relationship between ADO invariants and the colored Jones polynomials.

Does one family of polynomial determines completely the other? For the sake of

simplicity the knot K is supposed 0-framed in this paragraph.

This is the case for ¹ADOr .A;K/ºr2N� ! ¹Jn.q
2;K/ºn2N� , knowing the ADO

polynomials allows to find the colored Jones polynomials. This result was stated in [5,

Corollary 15]. With our setup, we can get back this result as follows.

Remark 65. Notice that

F1.�2r ; �
N
2r ;K/ D JN .�r ;K/ D

ADOr.�
N
2r ;K/

AK.1/
D ADOr.�

N
2r ;K/:

Since JN is a polynomial knowing an infinite number of value of it determines

it. Given the family of polynomials ¹ADOr.A;K/ºr2N� we then know each value of

JN at any root of unity hence we know JN entirely.

But we can also have the other way around:

¹Jn.q
2;K/ºn2N� ! ¹ADOr.A;K/ºr2N� :

Knowing only the colored Jones polynomials recover the ADO polynomials. We will

prove it by seeing that the colored Jones polynomials determines the unified invariant

F1.q; A;K/.

For all k 2 N, let

fkWQŒ˛�ŒŒh��! QŒŒh��; ˛ 7! k;

the evaluation map.

Proposition 66. \k2N ker.fk/ D ¹0º

Proof. Let x 2
T

k2N
ker.fk/, we write xD

P
ngn.˛/h

n where gn.˛/ 2QŒ˛�. Then,

for each k 2N, we have that gn.k/D 0 for all n. Since gn are polynomials that vanish

at an infinite number of point, they are 0. Hence,
T

k2N
ker.fk/ D ¹0º.
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Let

f WQŒ˛�ŒŒh��!
Y

k2N

QŒŒh��; x 7! .fk.x//k2N :

ker.f / D
T

k2N
ker.fk/ D ¹0º, hence f is injective.

Remark 67. For any knot K , f .F1.q; A;K// D ¹Jn.q
2;K/ºn2N� .

Proposition 68. For any knot K , F1.q; A;K/ D f �1.¹Jn.q
2;K/ºn2N�/.

Setting

gW yR
yI !

Y

r2N�

yRI
r ; x 7!

�
evr �

1

FCr

.x/
�

r2N�
;

we get the following theorem:

Theorem 69. The map

h D g ı f �1W Im.f j yR yI /!
Y

r2N�

yRI
r

is such that, for every knot K ,

¹ADOr .A;K/ºr2N� D h.¹Jn.q
2;K/ºn2N�/:

Application 1: the unified invariant and the ADO invariants are q-holonomic.

The fact that the colored Jones polynomials are q-holonomic was proved in [6]. Let

us state what it means and then let us prove that the unified invariant and the ADO

polynomials verify the same holonomic rule. For the sake of simplicity we will work

with 0-framed knot.

Let

QWZŒq˙1�N
�
! ZŒq˙1�N

�
and EWZŒq˙1�N

�
! ZŒq˙1�N

�

be such that

.Qf /.n/ D q2nf .n/; .Ef /.n/ D f .nC 1/:

Note that these operators can be extended to operators on QŒŒh��N
�
.

Let us denote by J�.q
2;K/D ¹Jn.q

2;K/ºn2N� the colored Jones function. Now,

from [6, Theorem 1], for any knot K there exists a polynomial ˛K.Q;E; q
2/ such

that ˛K.Q;E; q
2/J�.q

2;K/ D 0. We say that J�.q
2;K/ is q-holonomic.

We define similar operators on QŒ˛�ŒŒh�� and show that the same polynomial ˛K ,

taken in terms of those new operators, annihilates F1.q; q
˛;K/.

Let
zQWQŒ˛�ŒŒh��! QŒ˛�ŒŒh�� and zEWQŒ˛�ŒŒh��! QŒ˛�ŒŒh��
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be such that if we take

x.˛/ WD

C1X

kD0

xk.˛/h
k 2 QŒ˛�ŒŒh��

with xk.˛/ 2 QŒ˛�, then

zQ.x.˛// D q2˛x.˛/; zE.x.˛// D x.˛ C 1/;

where

x.˛ C 1/ WD

C1X

kD0

xk.˛ C 1/h
k:

Remark 70. Here, zQ is just the multiplication of any element with q2˛ .

Notice that, if one take the injective map

f WQŒ˛�ŒŒh��! QŒŒh��N
�
; x.˛/ 7! .x.k//k2N�

previously defined, then

f ı zQ D Q ı f; f ı zE D E ı f:

Hence, f ı ˛K. zQ; zE; q
2/ D ˛K.Q;E; q

2/ ı f . Since ˛K.Q;E; q
2/J�.q

2;K/D0

and f .F1.q;q
˛ ;K//DJ�.q

2;K/, we obtain f ı ˛K. zQ; zE;q
2/.F1.q;q

˛;K//D 0.

The injectivity of f gives the following theorem.

Theorem 71. For any 0-framed knot K , ˛K. zQ; zE; q
2/.F1.q; q

˛;K// D 0.

Let us look at what happens at roots of unity. To do so we must restrict ourselves

to a ring allowing evaluation at roots of unity such as yR
yI . Since zQ.In/ � In and

zE.In/ � In, we can restrict the operators zQ and zE to yR
yI , for the sake of simplicity

we will still write them zQW yR
yI ! yR

yI and zEW yR
yI ! yR

yI .

Now, let r 2 N� and let

xQW yRI
r !

yRI
r and xEW yRI

r !
yRI

r

be such that if we take

x.˛/ D

1X

kD0

xk.˛/¹r˛º
k 2 yRI

r

with xk.˛/ 2 ZŒ�2r ; A� (recall that �˛
2r WD A), then

xQ.x.˛// D �2˛
2r x.˛/;

xE.x.˛// D x.˛ C 1/;
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where

x.˛ C 1/ D

1X

kD0

xk.˛ C 1/.�1/
k¹r˛ºk :

Since evr ı zQ D xQ ı evr and evr ı zE D xE ı evr , the same formula holds:

˛K. xQ; xE; �
2
2r/.F1.�2r ; �

˛
2r ;K// D 0:

By Theorem 63,

˛K. xQ; xE; �
2
2r/

�ADOr.�
˛
2r ;K/

AK.�
2r˛
2r /

�
D 0:

Remark 72. We have the following identities:

xQ
�ADOr .�

˛
2r ;K/

AK.�
2r˛
2r /

�
D q2˛ ADOr.�

˛
2r ;K/

AK.�
2r˛
2r /

D
xQ.ADOr.�

˛
2r ;K//

AK.�
2r˛
2r /

and

xE
�ADOr .�

˛
2r ;K/

AK.�
2r˛
2r /

�
D
xE.ADOr.�

˛
2r ;K//

xE.AK.�
2r˛
2r //

D
xE.ADOr.�

˛
2r ;K//

AK.�
2r˛
2r /

(because �
2r.˛C1/
2r D �2r˛

2r ).

Hence,
˛K. xQ; xE; �

2
2r/.ADOr.�

˛
2r ;K//

AK.�
2r˛
2r /

D 0;

which proves the following theorem:

Theorem 73. For any 0-framed knot K ,

˛K. xQ; xE; �
2
2r/.ADOr.�

˛
2r ;K// D 0:

Remark 74. In the upcoming article [3], Brown, Dimofte, Garoufalidis, and Geer

proved that the ADO invariant of links are q-holonomic (Theorem 4.3), which gen-

eralise Theorem 73. Their Theorem 4.4 actually gives a converse statement of The-

orem 73: any polynomial annihilating the ADO family will also annihilate the colored

Jones. This proves that the ADO and colored Jones family are annihilated by the same

polynomials.
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Application 2: the unified invariant is the loop expansion of the colored Jones

function. Let us first introduce the loop expansion of the colored (see in [7, Sec-

tion 2]). We can write the colored Jones polynomials as an expansion (see [19] for

more details):

Jn.e
2h;K/ D

C1X

kD0

Pk.e
2nh/

AK.e2nh/2kC1
hk

where Pk.X/ 2 QŒX;X�1�.

Hence, we get an element

J˛.q
2;K/ D

C1X

kD0

Pk.e
2˛h/

AK.e2˛h/2kC1
hk 2 QŒ˛�ŒŒh��

that is such that f .J˛.q
2;K// D J�.q

2;K/. This means that it evaluates into the

colored Jones at ˛ D n, we call it loop expansion of the colored Jones function.

Proposition 75. For any knot K , we have the following identity in QŒ˛�ŒŒh��:

J˛.q
2;K/ D F1.q; q

˛;K/:

Proof. The fact that f is injective proves the proposition.

Remark 76. Putting everything together, the results of this section imply that the

unified invariant F1.q; A;K/ is an integral version of the colored Jones function,

built in a ring allowing evaluations at roots of unity. The integrality and the existence

of evaluation maps allow us to recover the ADO polynomials, the fact that the com-

pletion ring is a subring of an h-adic ring allows us to connect it to other notions of

colored Jones function/invariants.

Another approach, described by Gukov and Manolescu in [9], would be to see the

unified invariant as a power series in q;A (as opposed to a quantum factorial expansion

as we have here). This would be another integral version of it. Indeed, because it

verifies Proposition 75 and Theorem 71, the unified invariant F1.q; A;K/ except

being a power series, also verifies [9, Conjectures 1.5 and 1.6]. Thus, if F1.q;A;K/

could be written as a power series, it would fully verify the conjectures. This is the

case for positive braid knots, as show by Park in [18]. This means that for a positive

braid knot, the unified invariant and the GM power series coincide.

5. Some computations

This section will be dedicated to compute the unified invariant F1.q;A;K/ on some

examples. We will also explicitly compute C1.1;A;K/ and see that it is equal to the

inverse of the Alexander polynomial.
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To do so we will use state diagrams and compute the unified invariant from it. You

can also use them to compute the ADO polynomials (see [16, Section 4]). Recall that

q˛ WD A.

0

0

0

0
i

i

i

(a) The trefoil knot.

0

0

0

0

j

j

i C j

i

i

(b) The figure eight knot.

Figure 7. Examples of state diagrams to compute the invariants.

The trefoil knot. We denote by 31 the trefoil knot. We have

F1.q; A; 31/ D q
3˛2

2

X

i

q˛�2iq
i.i�1/

2 ¹˛I iºqq
�3i˛;

C1.1; A; 31/ D q
˛
X

i

q�3i˛¹˛ºiq

D q˛ 1

1 � q�3˛¹˛ºq

D
q3˛

A31
.q2˛/

:

The figure eight knot. We denote by 41 the figure eight knot. We have

F1.q; A; 41/ D
X

i;j

q2.i�j /qi˛q�j˛.�1/jq
i.i�1/

2

�
i C j

j

�

q

¹˛ � j I iºqq
.iCj /˛

� q�2ij q� j.j �1/
2 ¹˛I j ºqq

�.iCj /˛q2ij

D
X

i;j

q2.i�j /q.i�j /˛.�1/j
�
i C j

j

�

q

q
i.i�1/

2 q� j.j �1/
2 ¹˛I i C j ºq ;
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C1.1; A; 41/ D
X

i;j

q.j �i/˛.�1/i
�
i C j

j

�
¹˛ºiCj

q

D
X

N

NX

iD0

qN˛q�2i˛.�1/j
�
i C j

j

�
¹˛ºNq

D
X

N

qN˛¹˛ºNq

NX

iD0

.�q�2˛/i
�
i C j

j

�

D
X

N

qN˛¹˛ºNq .1� q
�2˛/N

D
X

N

¹˛º2N
q

D
1

1 � ¹˛º2q

D
1

A41
.q2˛/

:

The cinquefoil knot. We denote by 51 the cinquefoil knot. We have

F1.q; A; 51/ D q
5˛2

2

X

i;j;k

q˛�2.i�j Ck/q�5.i�j Ck/˛q2i.k�j /q2k.i�j /q
i.i�1/

2 q
j.j �1/

2

� q
k.k�1/

2 ¹˛I iºq¹˛ � k C j I j ºq¹˛ � i C j I kºq

�

�
k

k � j

�

q

�
i � j C k

k

�

q

;

C1.1; A; 51/ D q
˛

X

i;j;k

q�5.i�j Ck/˛¹˛ºiCj Ck
q

�
k

k � j

��
i � j C k

k

�

D q˛
X

i;j;k

q�5.i�j Ck/˛¹˛ºiCj Ck
q

�
i � j C k

j; k � j; i � j

�

D q˛
X

N

X

j;k

q�5N˛¹˛ºN C2j
q

�
N

j; k � j;N � k

�

D q˛
X

N

q�5N˛¹˛ºNq

X

j;k

¹˛º2j
q

�
N

j; k � j;N � k

�

D q˛
X

N

q�5N˛¹˛ºNq .2C ¹˛º
2
q/

N

D q˛ 1

1 � q�5˛¹˛ºq.2C ¹˛º2q/
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D
q5˛

A51
.q2˛/

:

The three twist knot. We denote by 52 the three twist knot. We have

F1.q; A; 52/ D q
�5˛2

2

X

i;j;k

q2.i�k/�˛q.5iC5j �3k/˛q�2ij q�2.j �k/.iCj /q
�i.i�1/

2

� q
�j.j �1/

2 q
�k.k�1/

2 .�1/iCj Ck¹˛I iºq¹˛ � i I j ºq¹˛ � j C kI kºq

�

�
j

j � k

�

q

�
i C j

j

�

q

;

C1.1; A; 52/ D q
�˛

X

i;j;k

q.5iC5j �3k/˛.�1/iCj Ck¹˛ºiCj Ck
q

�
j

j � k

��
i C j

j

�

D q˛
X

i;j;k

q.5iC5j �3k/˛.�1/iCj Ck¹˛ºiCj Ck
q

�
i C j

k; j � k; i

�

D q�˛
X

N

X

j;k

q.5N �3k/˛.�1/N Ck¹˛ºN Ck
q

�
N

k; j � k;N � i

�

D q�˛
X

N

q5N˛.�1/N ¹˛ºNq

X

j;k

q�3k˛.�1/k¹˛ºkq

�

�
N

k; j � k;N � i

�

D q�˛
X

N

q5N˛.�1/N ¹˛ºNq .2� q
�3˛¹˛ºq/

N

D q�˛ 1

1C q5˛¹˛ºq.2 � q�3˛¹˛ºq/

D
q�5˛

A52
.q2˛/

:
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0
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(a) The Cinquefoil Knot.

0
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i

(b) The three twist Knot.

Figure 8. Examples of state diagrams to compute the invariants.
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