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A unification of the ADO and colored Jones polynomials
of a knot

Sonny Willetts

Abstract. In this paper we prove that the family of colored Jones polynomials of a knot in S
determines the family of ADO polynomials of this knot. More precisely, we construct a two
variables knot invariant unifying both the ADO and the colored Jones polynomials. On the one
hand, the first variable ¢ can be evaluated at 2r roots of unity with » € N* and we obtain the
ADO polynomial over the Alexander polynomial. On the other hand, the second variable A
evaluated at A = ¢ gives the colored Jones polynomials. From this, we exhibit a map sending,
for any knot, the family of colored Jones polynomials to the family of ADO polynomials. As
a direct application of this fact, we will prove that every ADO polynomial is holonomic and is
annihilated by the same polynomial as of the colored Jones function. The construction of the
unified invariant will use completions of rings and algebra. We will also show how to recover our
invariant from Habiro’s quantum sl» completion studied by Habiro in [J. Pure Appl. Algebra
211 (2007), 265-292], showing that it corresponds in fact to the two-variable colored Jones
invariant defined by Habiro in [Invent. Math. 171 (2008), 1-81].

1. Introduction

Main results. In [1], Akutsu, Deguchi, and Ohtsuki gave a generalisation of the Alex-
ander polynomial, building a colored link invariant at each root of unity. These ADO
invariants, also known as colored Alexander’s polynomials, can be obtained as the
action on 1-1 tangles of the usual ribbon functor on some representation category of
a version of quantum sl at roots of unity (see [4, 8]). On the other hand, we have the
colored Jones polynomials, a family of invariants obtained by taking the usual ribbon
functor of quantum !, on finite-dimensional representations. It is known ([5]), that,
given the ADO polynomials of a knot, one can recover the colored Jones polynomials
of this knot. One of the results of the present paper is to show the other way around:
given the Jones polynomials of a knot, one can recover the ADO polynomials of this
knot.
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We denote by ADO, (A4, K) the ADO invariant at 2r root of unity seen as a
polynomial in the variable A. Also, we denote by J,(g, K) the n-th colored Jones
polynomial in the variable g and by A (A) the Alexander polynomial in the vari-
able A.

Result 1. There is a well-defined map such that, for any knot X in S3,
n(q, K)nen+ = {ADO, (A, K)}ren=.

(Detailed version: Theorem 69.)

The above result is a consequence of the construction of a unified knot invari-
ant containing both the ADO polynomials and the colored Jones polynomials of the
knot. This unified invariant is in fact equal to the two-variable colored Jones invariant
defined by Habiro in [13] and answer positively to the conjectures of its behaviour
at roots of unity. Briefly put, we obtain it by looking at the action of the universal
invariant (see [14, 15, 17]) on some Verma module with coefficients in some ring
completion. For the sake of simplicity, let us state the result for O-framed knots.

Result 2. In some ring completion of Z[qT"', AT'] equipped with suitable evalu-
ation maps, for any O-framed knot X in S3, there exists a well-defined knot invariant

Fool(q, A, K) such that

ADO, (4, X)

Foo(é-2r7A7 J{) = AJ((Azr) s

Foo(q, 4", X) = Ju(q*, X).

(Detailed version: Theorem 63 and Corollary 59.)

A visual representation of the relationship between all these invariants is given in
Figure 1.

Let us set Jo(q2, K) = {Jn(q. K)}nen+ and call it colored Jones function of X.

The holonomy of the unified invariant and of the ADO polynomials will follow as
a simple application of the two previous results and of the g-holonomy of the colored
Jones function as shown in [6]. Mainly, there are two operators Q and E on the set
of discrete function over Z[g*'] that forms a quantum plane and for any knot X and
there is a two-variable polynomial a g such that g (Q, E)Je(¢%, K) = 0. We say
that the colored Jones function is g-holonomic.

This paper gives a proof that the same polynomial ¢ %, in some similar operators
as Q and FE, annihilates the unified invariant F (g, 4, K) and, at roots of unity,
annihilates ADO, (A4, KX).
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Z[g*!, A%1] completion Z[g*'] completion

Ouantum algebra (Variables: g and ) pop. g )
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Figure 1. Visual representation of the unified knot invariant.

Result 3. For any 0-framed knot K and any r € N*:
* the unified invariant F(q, A, K) is q-holonomic;
e the ADO invariant ADO, (A, K) is {5,-holonomic.

Moreover; they are annihilated by the same polynomial as of the colored Jones func-
tion. (Detailed version: Theorems 71 and 73.)

Remark 1. Keep in mind that these results cover only the case of a knot X in S3.

Summary of the paper. A way to build a unified element for ADO invariants is to
do it by hand. First, one can explicit a formula for the ADO invariant at a 2r root of
unity by decomposing it as a sum of what we will call state diagrams. This explicit
formula will allow us to see what are the obstructions to unify the invariants: first,
it will depend on the root of unity {»,; secondly the range of the sums coming from
the action of the truncated R-matrix will depend on the order 2r of the root of unity.
The first obstruction is easy to overcome, since taking a formal variable g instead of
each occurrence of {,, will do the trick. But, for the second one, one could ask that
the ranges go to infinity, and this will bring some convergence issues. A way to make
these sums convergent is to use a completion of the ring Z[g*!, A*!] denoted by RI.
This will allows us to define a good candidate for the unification.

But then, we will have to check that this element contains the ADO invariants.
We will show that, at each root of unity of order 2r with r € N*, one can define an
evaluation map that evaluates ¢ in {»,, and that the result can be factorized into a
product of an invertible element of the complete ring and the ADO invariant.

So, we will get an element containing ADO invariants, but the way we built this
element depends on the chosen diagram of the knot. A way to prove that this element
is really a knot invariant itself is to recover it with a more advance machinery: the
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universal invariant of a knot. The universal invariant of a knot was introduced in [14,
15]; the construction can also be found in [17]. It is a knot invariant and an element
of the h-adic version of quantum sl,, we will use this fact to construct an integral
subalgebra in which the universal invariant of a O-framed knot will lie. The integrality
of the subalgebra will allow us to build a Verma module of it whose coefficients will
lie in R! , and on which the scalar action of the universal invariant gives our unified
element. A corollary will be that the unified element is a knot invariant.

Completions were studied by Habiro in [12]. For the sole purpose of the factoriz-
ation at roots of unity, we had to use a different completion than the ones mentioned
in [12]. But, as we will see, we can also recover our unified invariant from his algeb-
raic setup. Moreover, the unified invariant corresponds to its two-variable colored
Jones invariant defined in [13].

Once we have this connection between quantum sl,, the two-variable colored
Jones invariant and this unified invariant, we can henceforth relate it also to the colored
Jones polynomials. This will allow us to use the Melvin—-Morton—Rozansky conjec-
ture proved by Bar-Natan and Garoufalidis in [2] in order to get some information on
the factorization at roots of unity: briefly put, the unified invariant factorize at root
of unity as ADO polynomial over the Alexander polynomial. This theorem answers
positively to [13, Conjecture 7.5 and subsequent paragraph] about the two-variable
colored Jones invariant at roots of unity.

Now, we have a unified invariant for both the ADO polynomials and the colored
Jones polynomials; the maps recovering them are also well understood. This will
allow us to prove that, given the colored Jones polynomials, one may recover the
ADO polynomials.

From the fact that the colored Jones polynomials recovers the unified invariant
and from the factorisation at roots of unity, we will prove that the unified invariant and
ADO polynomials follow the same holonomic rule as of the colored Jones function
(see [6]). In the same time this paper was made, Brown, Dimofte Garoufalidis, and
Geer got a more general result covering the case of links in [3, Theorem 4.3].

We will also see that the unified invariant is an integral version of the 4-adic loop
expansion of the colored Jones function and remark that, even if it is not clear in
general if it’s a power series, it has similar properties as the power series invariant
conjectured by Gukov and Manolescu in [9, Conjectures 1.5 and 1.6] .

Finally, we will give some computations of the unified invariant and its factoriza-
tion at roots of unity, showing how the inverse of the Alexander polynomial appears.

Nota bene. In this article, any knots and links are in S and supposed oriented and
framed. We will use the term link or knot invariant to refer to framed oriented link or
knot invariants.



A unification of the ADO and colored Jones polynomials of a knot 141

2. The ADO invariant for knots

2.1. Definition of the ADO invariants from quantum algebra

We will expose in this section how to obtain ADO invariants for links [1], also called
colored Alexander’s polynomials, from a non-semi-simple category of module over
an unrolled version of U, (sl2). A more detailed and thorough construction can be
found in [4, 8].

For any variable g, we set

n

ny=q"—q". [nl= {1} Dy = l'[{z} (]t = [0,
i=1
[Z]q = % with convention [Z]q =0ifn <O.

In order to define ADO invariants for knots, and for the sake of simplicity, in this
section g will be an even root of unity.

Definition 2. Let g = et = Loy root of unity. We work with an “unrolled” version
of Ug,, (sl2) denoted by Ugr (s12) and defined as follow:
* GENERATORS: E, F, K, K1, H;

* RELATIONS:

K—K!
KK '=K'K=1, KE=(EK, KF=U7?FK, [E F]=
§2r §2r
KH = HK, [H,E|=2E, [H,Fl=-2F, E"=F =0.

This algebra has a Hopf algebra structure:
AE)=1QE+EQ®K, &E)=0 S(E)=-EK7!,
AF)y=K'® F+F®]l, &F)=0, S(F)=-KF,
AH)=19H+H®1, &H)=0 SH)=-
A(K) = K ® K, gK)y=1,  S(K)=K"!
AKH)Y=K1® K, gKH=1 SKH=K

Now, we can look at some category of finite-dimensional representation of this algebra
and endow it with a ribbon structure.

Definition 3. Let Rep be the category of finite-dimensional U glj, (sl3)-modules such
that
(1) the action of H is diagonalizable;

(2) the action of K and of ¢ g are the same.
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Here, (H:V — V is defined by ¢ .v = ¢}, v if v is a eigenvector of H with eigen-

value A.

Proposition 4. The irreducible representations of U gr (slp) are

e Vyfora e (C—2Z)UrZ and

o Siforie{0,....,r =2}

where S; is the highest weight module of weight i and dimensioni + 1, and Vy is the

highest weight module of weight o + r — 1 and dimension r.

Definition 5. In V,, we say that v has weight leveln if Hv = (¢ +r — 1 — 2n)v.
We can endow Rep with a ribbon structure by giving the action of a R-matrix and

aribbon element. For V, W € Rep, we define

HQQH

0y VOW VW

by
HQH

A8
5,Y VW =000w

if Hv = Avand H.w = Bw. We set

1} F"
poo - W7 for0<n<r—1.
[]!
Proposition 6. The element
HoH ™"l amo1
R=¢,,°> Zé-zr T Ern@ F®
n=0

is an R-matrix whose action is well defined on Rep and it’s inverse is

r—1 _n=1) _H®H
R = (310, = E"g F®)g,

n=0
Proposition 7. K'~" is a pivotal element for U, §121r (sl2) compatible with the braiding.

We can now take the usual ribbon functor RT in order to obtain a link invariant,
but on the V it will be 0 (since the quantum trace is 0). Hence, we need to be more
subtle in order to retrieve some information.

On irreducible representations, a 1-1 tangle can be seen as a scalar. If L is a link
obtained by closure of a 1-1 tangle 7', we set RT(T)vy = ADO(T)vo where vy is a
highest weight vector. Notice that it depends on the 1-1 tangle 7' chosen. In order to
have a link invariant, we must multiply it by a “modified trace.”
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We set

ey = £ 1 ot Koy, = 57— 10k,
n—1
{O[;n}§2r = l_[{a - i}fz;ﬂ
i=0

Proposition 8. If L a link and T is any 1-1 tangle whose closure is L such that the
open component is colored with V,, set
{o}
d(a) = ;
() ra)
then
ADO, (L) := d(«) ADO,(T)

is a framed oriented link invariant.

Although we do not have to specify « and obtain a polynomial in g%, we cannot
do the same for ¢. The root of unity ¢ must be fixed in order to define the invariant,
hence it is a natural question for one to ask how such invariants behave when the root
of unity changes.

2.2. Useful form of the ADO invariant

From now on, we will only work with oriented framed knots. To see how the ADO
polynomials behave when the root of unity changes, we will explicit a formula for the
invariant using the ribbon functor on a diagram D of a knot.

Let K be a knot colored by V,—_,4+1 and T a 1-1 tangle whose closure is K, since
we are working with knots ADO, (4, KX) := ADO,(T) is well defined, where 4 is
the free variable {f.. Let us study this element, by choosing a basis of Vi1 and
computing the invariant with state diagrams.

Remark 9. V,_,4, is generated by vy, vy, ..., v,—; where vy is a highest weight
o F”),v()
vector, and v; = {@iTe, "

Proposition 10. We have
E.vg =0, Ev; =v;_,
. . k+i .
Fop=[i + o —iJvisr.  F®o; = |: « ] {o —isk}ey, Vit
§2r

2i A9 G i+ 2if
— pFa—21 — -
K.vi =&, vi, o™ Vi @V = yp Gy »Cor Vi ® V).
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Sa?
Corollary 11. We have ADO, (A, KX) € {,,> Z[lar, Zir“], where f is the framing of
the knot.

More precisely, in order to calculate a useful form of this invariant one may look
at state diagram of a knot. For any knot seen as a (1, 1) tangle, take a diagram D, label
the top and bottom strands 0 and starting from the bottom strand, and label the strand
after the k-th crossing encountered with the rule described in Figure 2. The resulting
diagram is called a state diagram of D.

ap + i b — ik b —ix ay + iy
bk d (257 bk
(a) Positive crossing. (b) Negative crossing.

Figure 2. The two possibilities for the k-th crossing in D.

Let KX be a knot and D a diagram of the knot seen as a (1, 1) tangle. Suppose
the diagram has N crossings. Now, for any state diagram of D we can associate an

element
. . e £(r—1)(a—2¢;) w ay + ik B
D,(i1,....iN) = (l_[ $or )Hfz, ; (o —ag;ix)e,,

Jj=1 kepos k Sor

—(ax +br)e p2(ax +ix) bk —ix) AL U S
X C2r kTOk §2r ki) (br—ik l_[(_l)zké-” >

k€neg

ar + ik , b p—2axh

X[ i ] {0 — ag; iy bey, (PO g 20k bk
§2r

where neg U pos = [|1, N|] and k € pos if the k-th crossing of D is positive, else
k € neg. ay, by are the strands labels at the k-th crossing of the state diagram (see
Figure 2), S is the number of \,__/ 4 » appearing in the diagram, and ¢; the strand
label at the j-th \,__/ or /", the =+ sign is positive if \,__/ and negative if /.

Remark 12. Note that the a; and by appearing are defined in terms of i;. You can
find some examples of state diagrams in Section 5, Figures 7 and 8.
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Proposition 13. If D is a diagram of K seen as a 1-1 tangle, we have

2r1

ADO, (4, X) _§2, > Dy(ir.....in)

1=0

12¢ +(r—1)(@—2 W=D Fay + iy
(IR e e
§2r

1
1=0 j=1 kepos k

x {o — ay; Zk}ﬁzr (ak+b1\)t¥é-2(ak+lk)(bk ix) n(_l)ik

k€neg

lk(!k 1 a _|_ :
k Ik (a1\+b1\)a —2ay by
X oy , o —agsixe,, & G s
lk §2r

where 1 = (i1,...,iN), N is the number of crossings, S the number of \__J + F \
and [ is the framing of the knot.

Lo2
Proof. Notice that {,> D,(iy,...,iy) is the element obtained by adding to the k-th
crossing a coupon labeled with

HQH :kuk 9

g 2 q 7 E'x ® FUx)

if positive and
—HQH —iglig—1

g 2 qf)Eik ® FUx)

if negative. Then add a coupon to \.__/ labeled K”~! and to /™ labeled K'~". We
get an element of U, gr (sl,), whose action on vy € Vy4,—1, the highest weight vector,
gives the element

so?
8 Di(in,....iN).
Summing them over iy for all k& gives the ADO polynomial. ]

Now that we have an explicit formula, can we construct from it a suitable element
that can be evaluated at roots of unity and recover the ADO invariants?

We have two main issues here. The first is that {5, appears in the formula, so
we will have to replace each occurrence with some variable ¢, in order to see it as a
polynomial or a formal series. The second one is more difficult to solve: the action of
the R-matrices makes appear sums that range to r — 1, which depends on the order
of the root of unity. A solution to this problem, as we will explicit it, is to let the sum
range to infinity and define a ring in which such sums converge. Then we will see how
to factorize the ADO invariant from this new unified form.
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3. Unified form for ADO invariants of knots

The approach here will be to unify the invariants: using completions of rings and
algebras, we will explicit an integral invariant in some variable ¢ that can be evaluated
at any root of unity, recovering ADO invariants defined previously.

In Section 3.1, will create the right setup to define a unified form inspired by
the useful form of the ADO invariant in Proposition 13. Using a completion of the
ring of integral Laurent polynomials in two variables g, A, we define a unified form
Fso(q, A, D) by taking the previous form of ADO, replacing the root of unity &,
by g, replacing {5, by A, and letting the truncated sums coming from the R-matrices
action go to infinity. Note that at this point, the defined form is not a knot invariant, as
it a priori depends on the diagram D of the knot.

In Section 3.2, will make the bridge between this new element and the ADO poly-
nomials. By evaluating the unified form at roots of unity {,, with » € N*, we factor
out the ADO invariant. We will then explicit a map sending the unified form of a
knot to the corresponding ADO invariants. This will show that the ADO invariants
are contained in the unified form and that we can recover them from it.

3.1. Ring completion for the unified form

Let us lay the groundwork for an unified form to exist. It must be a ring in which
infinite sums previously mentioned converge.

Let R = Z[g*', A*!]. We will construct a completion of that ring. For the sake
of simplicity, we will use the notation g% := A and use previous notation for quantum
numbers. Keep in mind that, here, « is just a notation, not a complex number. We set

{Ol}q — th _q—tx’ {Ol + k}q — qa-‘rk _q—a—k’
n—1

{ain}y = [Jhe — ity

i=0
Definition 14. Let [, be the ideal of R generated by the set {{a + [;n}4.[ € Z}.
Lemma 15. [, is generated by elements of the form {n;i}{o;n —i}, i € {0,...n}.

Proof. The proof can be found in Habiro’s article [12]. Replacing K (resp. K~ !) by
q% (resp. ¢~ %) in [12, Proposition 5.1], one gets the proof of this lemma. |

We then have a projective system
I D--DI, D

From which we can define the completion of R, taking the projective limit.
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Definition 16. Let

Pn(ant1) = an},

n

AT R
R' = lim = = {(an)neN* € ]_[
n i=1

where

Pn:

~
=
&=

n+1
is the projection map.

This completion is a bigger ring containing R:
Proposition 17. The canonical projection maps induce an injective map R — Rl

Proof. Tt is sufficient to prove that

() 1n = {0}

neN*

Since R = Z[q*'][A*"], it is a Laurent polynomial ring. Let us denote by deg, (x)
and val, (x) the degree and valuation of x in the variable ¢, respectively.

Let fi: Z[g*', AT — Z[g*"], A — ¢*. We have fi(I,)) C {n})Z[g*"] because
I, is generated by elements of the form {n;i}{o;n — i} that maps to {n;i}{k;n —i},
which is divisible by {n}!. Hence, if x € (\,en* In» fx(x) € {n}'Z[g*!] for all n,
since Z[g*1] is factorial, fj(x) = 0 for all k.

Take x € (,en+ In» Written x = 3" a, A" with a, € Z[g*"]. Take N such that
deg,(x) < N and valy(x) > —N. This implies that deg, (a,) < N and valy(an) > —N
(since it is the case for x and any higher or lower terms could not compensate since
the power of A is different before each a,).

Thus, since fon(x) = 0, Y. apg®N" = 0, we have deg, (a,¢g*M") < N(1 + 2n)
and val,(a,q®¥™) > N(2n — 1), and then each terms a,¢>"" must be 0. Hence,
a, = 0 for all n, meaning that x = 0. n

Remark 18. If by € R and b, € I,,_; for n > 1, the partial sums ny:o by converges
in Rl as N goes to infinity. We use the notation

N

Jiob" = (Zb")NeN*'

i=0 i=0

Conversely, if a = (a,)nen* € R! , let a, € R be any representative of a, in R,
thena = Z;;og by, where by = a; and b, = a,+1 —a, forn € N*.
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We proceed similarly as in the paragraph preceding Proposition 13. Let K be a
knot seen as a (1, 1) tangle and D a diagram of it. For a state diagram of D we define

S .
. . DY = lar +1 .
D(iy,....iN) =(l_[q$(a 28’)) l_[ q 2 [ k. kj| lo —agiklq
q

1
j=1 kepos k

. . . iplp—1) |
x g~ @b e+ b T (—D)ikg= "5 [ak i+ ’k}
k€neg k 4q
x {Ol — a; ik}qq(ak-i-bk)aq—Zakbk

where neg U pos = [|1, N|] and k € pos if the k-th crossing of D is positive, else
k € neg. Here, ay, by are the strands labels at the k-th crossing of the state diagram
(see Figure 2), S is the number of \__/ + /" appearing in the diagram, and ¢; the
strand label at the j-th\__/ or # 7\, the F sign is negative if \__/ and positive if .

Remark 19. Note that the ax and by appearing are defined in terms of i;. As men-
tioned previously, you can find some examples of state diagrams in Section 5, Fig-
ures 7 and 8.

Definition 20. Let J be a knot and T 1-1 tangle whose closure is K. Let D be a
diagram of T'. We define

o2 +o00
Foo(g. A, D) :=q"2 Y D(iy.....iN)

1=0
+o0 S L .
La? o ikie=D lag +1i
_ (@—2¢;) k k .
¢ (TTam ) [T ™| 1] - awiinl
=0 j=1 kepos Tk q
x g~ +bow g 2ac+iobi—in) T (—1yieg— 4" [“k + ik]
k€neg Tk 4q
(ax+bi)a ,—2ai by

x{o —ag;ix}qeq q

where 7 = (i1,...,in), N is the number of crossings, S the number of \_/J + "\
and f is the framing of the knot. We have that F (g, A, D) is a well-defined element
a2 A7
of g = RI.
Note that it is not clear that this element is a knot invariant, it could depend a
priori on the diagram D and we will have to prove later that it does not.

3.2. Recovering the ADO invariant

In this section, we will see how to evaluate at a root of unity an element of RT. We
will first need some useful lemma.
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Let r any integer, R, = Z[{>,, Ail], we use the same previous notations and
05, = A

Lemma 21. For any k,

—r(r—1)
o —kirye, = (D", 7 {rajg,.

Proof. We have

{fo—kiry={a—k}.. {o—k—-r+1}
=(-)o—-k+1}...{la—k—r+2}
= (=DM} .. fa—r + 1}
= (=)¥eur}

and

r—1
or) = []@57 =655
j=0

—r(r—1)
2

r—1
_ — 2 2j
=6, 7 oo l@r-6)
Jj=0

—r(r—1) 5
—ro ro
= Czr > 2r (§2r -1

—r(;—l)
=8, 2 Araj,

where the fourth equality is obtained by developing the factorized form of X" —1 at
X =2 [

Let I = {raje,, R,. We build the I-adic completion of R,

Definition 22. Let

pl . R, > R,
R, = @I_n = {(an)nEN* € 1_[ I_n
n

P;, (an+1) = an},

i=1
where
, Ry R,
Pn: Jntl - ]_n
is the projection map.

This completion is a bigger ring containing R, :

Proposition 23. The canonical projection maps induce an injective map R, — Rf .
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Proof. 1t is sufficient to prove that (), .y« I = {0}. Since R, = Z[Lar ][ATY], it is
a Laurent polynomial ring. Hence, any non-zero element x can be uniquely written
x =Y ! ;anA" where ay € Z[(o,], forallk € {I,] +1,...,n—1,n} and a,,a; #
0. Let us define len(x) = n — [. We have that len(xy) = len(x) + len(y). Thus, if
X € (),en* I" is non-zero, of length n, there exists y € R, such that x = {ra}"y,
hence len(x) = 2rn 4+ len(y), contradiction. [

Let us now define the evaluation map from Rl to ﬁf . At the level of R and R,
we have a well-defined evaluation map,

eve,, i R — Ry, q > {ar.
We will extend this map to the completions.
Proposition 24. evy, (I;,) = 1"
Proof. Direct application of Lemma 21. |

Hence, ev, factorize into maps ¥,,: R/I,, — R, /1", we can then define the map
extension:

Proposition 25. We have a well-defined map
evy: RT = R

such that, if (an)nen+ € RT, then evy((an)nen+) = (Yn(@rn))nen+.

Proof. 1f we denote by A,: R/ Iy, +1) — R/I,, the projective maps, the proof lies
on the fact that the following diagram is commutative:

R/ 1y (n+1) v R, /1"t
n—+
An[ [pz
R/ I Ry/I"

n

It is now time to study the element
Foo(é-Zr’ A’ D) = eVV(FOO(q’ A’ D))’

we will see that the ADO invariant ADO, (4, KX) can be factorized from it. In order
to do so, we will need some useful computations.
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Lemma 26. We have the following factorizations:
(i+r1)(§+rl—1) .7 r1<r£—1) i<i2—1)
— 1
é‘Zr - (_1) §2r §2r ’
o —a—ru;i +rlje,,

— (_l)al+rul+ui+lig-_rl(zr_” é—#
- 2r 2r

{roz}lgz" {a—aiile,,,

a+i+r(u+l) _(_l)al+rul+ui u+l\la+i
i + rl Sar - l i §2r’

—ri(r—1) —ril-—1) —ri(ri—1)
é- 2 2 — 2
2r 2r — S2r

Proof. (1) The first part is obtained by developing the product.
(2) The second part is an application of Lemma 21. First,
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6]

2

“4)

{oa—a—rui +rl} = ngrrl)m{a —aii+rl} = (D)= —a;i +rl)}.

Then,
{a—aji+rl}={o—ari}f{lo—a—rl;i}
—rl(—1)
= (=), 7 Aasrla —a—rl;i}
—ri(l—1) —ri(r—1)
= (=D, 2 &, 2 {ra)f{a—a—rl;i).
Finally,

{o—a—rl;i}=(=D)""a—ai).

Putting together, we get

o —a—ru;i +rlje,,

_ (1)@l +rultuitli G0 Srg=n e
- ( ) §2r §2r {ra}é'zr {a a’l}izw

(3) The third part follows from the fact that

k
evﬁr({{rr}i") = (1) %,

{a+i+ru+D}!

a+i+ru+l)
In [ i+rl

] £y, SEEN A (omT taking only the terms {rk}, we extract
. . !

(—1)¥ (”;H). Now, we only have to deal with non-multiples of quantum r. We use
the equality { + r} = (—1){¢} in order to have consecutive terms in the denominat-

ors (excepted from multiple of r), indeed

{a + ru}! = {ru}l{a + ru;a}
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and
i+ ri) (D" DG 4 rl + rusi +rl);

hence

{fa+i+ru+D} _ (— 1)yt {la+i+ru+li);a}
{a +rup{i +ri}! {a + ru;a}
_( l)u(t—i-rl)( l)au( l)a(u—i-l) {a+l a}
{a:a}

— ( l)ul( l)rul( 1)al |:a + l:| ]
§2r

Putting things together with the quantum r multiple part, we get the desired result.
(4) The last part is obtained as follow:

rl—1

H G = H 1‘[:"‘ "

—tl(rl 1)

J=0k=0
) r—1
= l_[ §2r” l_[ CZ_rk
j=0 k=0
—ri(r=1) —=ri(l—1)
= §2r : §2r : . u

We proceed similarly as in the paragraph preceding Definition 20 and define an
element to each state diagram of D that will be used to factorise Fo(q, A, D). Let K
be a knot seen as a (1, 1) tangle and D a diagram of it. For a state diagram of D, we
define

Dcy(l1,...,In) = (1_[ g-:Fra) 1—[ (uk + lk){ }er 2r(u]\ +vp)ra

ke€pos

« 1_[ ( l)lk (uk + lk){ } (uk+vk)rtx’

k€neg

where neg U pos = [|1, N|] and k € pos if the k-th crossing of D is positive, else
k € neg, ag,bx €[|0,...,r — 1], and ag + rug, by + rvy are the strands labels at
the k-th crossing of the state diagram (see Figure 3), S is the number of \__/ + "\
appearing in the diagram, and ¢; the strand label at the j-th \__/ or /™, the F sign
is negative if \,__/ and positive if F .

Proposition 27. For a knot X and a diagram of the knot D, r € N*, we have the
following factorization in Rf :

Foo(l2r, A, D) = Co(r, A, D) x ADO, (A4, X)
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where

+o00
Coo(r.A.D) =) Dc,(lr.....IN)

1=
+°2 5 ug +1
Z(l_[ é-:Frtx) l_[ ( k k){ Ol} (uk-l-v;\)ra
=0 J=1 kepos
l
« ( l)lk (uk+ k){ } (uk-‘rvk)ra
kle_n[:g

where | = (I, ...,1y), N is the number of crossings, S the number of \_J + F
and [ is the framing of the knot.

Proof. For the sake of simplicity, we will only consider positive crossings in the fol-
lowing proof. We factorize as follows:

L Sklog=D
Faoltor. A, D) = (.5 Z(l_[ ) l—[ 2 [zk +skl

=0 j=1 Sk

( Zx— J’A)Olé-Z(ZA-i-SA)(J’A —Sk)

x o — zk; Sk}zz, o

(lk+rlk)(lk+rlk 1)

:é‘;r% Z (l—[é_ﬂF(a 25,)1—[ -

+rl=0 J=1
ar +ix +r(ug +1 )
£t i+ Tt hy) {a —(ag + rup)iix + rlghe,,
lk + rlk tor
(—(ag+rug)—br+rve))a o 2(ax +rug)+Gx +ri)) by +rvg—(ix+riy))
X é‘ §2r
+r—1)(a—2¢;) D Fap + i
—é-zr Z(HZ J)l_[ 2r
=0 j=1 ke,
X {a —ag:ix}ey, & ( ak bk)“é-z(ak‘i‘lk)(bk 179)
+oo S up + 1
k k
% Z(l_[ é-:Fra) l_[ ( ){ } ( ug vA)ra
=0 Jj=1

The second equality is obtained by changing variables s = iy + rlx 0 < iy <
r — 1 and writing the strands labels at crossings zx as zxy = ax +rux 0 <ax <r —1
and yg as yr = bx + rvg 0 < by <r — 1. Note that ag, b solely depends on iy and
Uy, by on Ii. This relies on the fact that ["+m] =0atg =& ifn,m <r—1and
n+mz=r.
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The third equality is obtained by replacing each term with its factorization given
by Lemma 26, the crossed terms between iy and /i are just signs, that eventually

compensate. Hence, we have the factorization. n
ak+ruk+ik+rlk bk—l—rvk—ik—rlk
br + rug ap + rug

(a) Positive crossing.

b +rvg —ip —rli ax +rug + iy +rig

ax + rug br + rvg

(b) Negative crossing.

Figure 3. The two possibilities for the k-th crossing in D when factorizing.

In order to get back ADO, (A4, K) from F ({2, A, D), we need to prove that
Coo(r, A, D) is a unit in ﬁf

Proposition 28. If a = (a,)nen* € ﬁf and a1 € R, /1 is a unit, then a is a unit
in R\rl

Proof. Leta = (a)nen* € ﬁf such that a; is a unit of R, /1. Let us prove that a,, is
also aunitin R,/I". If y is an element of R, /1" suchthata,y = a1y =1 mod[,
then there exists z € I.R, /1" such thata,y =1+ z,z =a,y — 1,thus 0 = z" =
(any — 1)", which proves that a,, is invertible. Hence,a ! = (a, 1) en+ is the inverse
of a in ﬁf n
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Since Coo(r, A, D) = (]_[f=1 77%) mod{ra}e,, is an invertible element of R, /1,

then Coo (7, A, D) is a unit of ﬁf

Corollary 29. ADO, (A, X) = Feo(¢2r, A, D)Coo(r, A, D)™ 1.

Finally, one can recover Co (7, A, D) with F(q, A, D), this will prove that not
only that ADO is contained in Foo (g, A, D) but that it’s possible to extract them with
the sole datum of Fo(q, A, D).

For r = 1, one gets

€vi (FOO(q’ A’ D)) = FOO(EZ’ A’ D)

= Coo(1, A, D) x ADO; (4, X)

Sa?
=q 2 Cx(1,4,D).

Remark 30. Note that ADO; (A4, K) is only defined as the case r = 1 in Proposi-
tion 13, which is well defined. Nevertheless, the algebraic setup at Section 2 fails at
r = 1 since [E, F] is not well defined.

But then

Z[A:I:I]
+1{a} ._ 1;
Coo(1, A, D) € Z[AEY] .—hin e

for each r we have a well-defined map
gr:Z[A:I:I]{oc} s Z[A:I:I]{roc}’ qoc . qra’

such that g,(Coo (1, 4, D)) = Coo(r, A, D).
This proves the following proposition:

Proposition 31. For all r, we have a well-defined map
FC, = g, oevlzﬁi—> Z‘m}
and, for any knot KX and any diagram D of the knot,
Foo(q, A, D) = Cxo(r, A, D).

Corollary 32. For all r, we have a well-defined map

1 AT A~
Ao (RTY* — (RI)*

and, for any knot K and any diagram D of the knot,

Fso(q, A, D) > ADO, (4, X).
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Proof. Letx € (Ei )* an invertible element, since F C, is a ring morphism, FC(x)
is invertible. Then,

1

Id x c (Fso(q, A, D)) = Foo(Car, A, D) X Coo(r, A, D)™ = ADO, (4, K). m
r

F

4. Universal invariant and Verma module

We have built by hand an element Foo(g, A, D) in some completion of a ring, from
which we have evaluation maps that recovers the ADO invariants. This element is
built from the diagram of a knot, thus it depends a priori on it. In order to prove that
this element is indeed a knot invariant, we will see how to obtain it using Hopf algebra
machinery.

Section 4.1 will be dedicated to create an integral subalgebra of the i-adic version
of quantum sl, containing the universal invariant of a O-framed knot.

This will allow us to define, in Section 4.2, a Verma module on it. Since the algebra
previously defined is integral, this will also be the case for the Verma module, whose
coefficients will lie in ﬁi . The unified form F(q, A, D) will be seen as the scalar
action of the universal invariant on this Verma module. Since the universal invariant
is a knot invariant, so will be Foo(g, 4, D).

This algebraic setup is made to get back the unified form and prove its invariance,
and it is a completion which is very close to that of Habiro’s in [12]. But they are
not the same, and we will see in Section 4.3 how to connect Ehis work to Habiro’s
setup in the article. We will interpret our ring completion R’ as some subalgebra
completion found in [12], allowing to prove some nice properties on the ring struc-
ture (integral domain, subring of some /-adic ring). Moreover, we will show that
the unified invariant can also be recovered from Habiro’s algebraic setup, using the
same process as in Section 4.1, but with his completions. This will allow us to show
that the unified invariant is equal to the two-variable colored Jones invariant defined
in [13, Section 7.1] .

Using this fact, we will see that we can also recover the colored Jones polyno-
mials from the unified invariant. First this will allow us to study the factorisation in
Proposition 27, and find that C (7, A, D) is just the inverse of the Alexander poly-
nomial. Lastly, using the unified invariant as a bridge between the family of colored
Jones polynomials and the family of ADO polynomials, we will show that they are
equivalent, meaning that we can recover one family with the other.

As a direct application of this facts, we will show that the unified invariant and
every ADO polynomials follow the same holonomic rule as the colored Jones function
(see [6]).
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Remark 33. The variable ¢ in this paper corresponds to the variable v in [12, 13].

4.1. The universal invariant

In order to build Fo(g, A, D) from Hopf algebra, we will need some “big enough”
integral version quantum sl,, but not too big in order to have a R Verma module on
it.

First let us define the biggest integral quantum sl,, Uj,.

Definition 34. We set
Up := Up(sl2),
the Q[[#]] algebra topologically generated by H, E, F and relations
K—K™1
[H,E]=2E, [H,F]=-2F, [E,F]= ———,
q9—49

where ¢ = e" and K = gf = "H |

It is endowed with an Hopf algebra structure
AME)=1QE+EQ®K, ¢E)=0, S(E)y=-EK',
AF)=K'®F+F®]l, &F)=0, S(F)=-KF
AH)=19H+H®I1, &H)=0, SH)=-H,

and an R-matrix

HE®H {1}”qn(n2_1)
R:(] 2 ZTEn@Fn’
i=0

—n(n—1)

o0
_ D1} 2 _HQH
i=0 ’

Altogether with a ribbon element: K~ 'y whereu = Y S(B)aif R = Y o ® B.

Hence, if KX is a knot and T a 1-1 tangle whose closure is K. We set QU7 (K) e
Uy, the universal invariant associated to 7T in Uj. The definition of this element is
given in Ohtsuki’s book [17, Section 4.2]. It is a knot invariant.

Let us now build a suitable subalgebra of Uy and a R! Verma module on it. We
will then see that the universal invariant is in some extent inside the subalgebra and
its scalar action on the Verma module will give us Foo(q, A, D). The subalgebra
considered is an integral version of Uy (sl,) defined as follows.
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Definition 35. We set
U := UL (slr).

the Z[qil]—subalgebra of Uy generated by E, F® K where F® = 160 iy

[n]!

U inherits the Hopf algebra structure from Uj,.

Remark 36. The R-matrix is not an element of U but we have
HQH {1}”qn(n2_l) HQH = ntn=1)
i=0 [n]! i=0

. HQH . . . . .
Hence, aside from ¢~ 2~ (that we can control in the universal invariant as we will
(=1 .
see further on), we need the convergence of Y ;o ¢ T E" @ F™ in some tensor
product of the algebra with itself. Thus we need to complete the algebra U.

We set

{H+m}; =Kq" — K "qg™"™,

n—1

{H+m;n}, = l_[{H+m—i}q.
i=0

Definition 37. Let L, be the Z[g¥'] ideal generated by {n}!. Let J, be the U two
sided ideal generated by the following elements:

FUrOey 4 om:n — itq,
wherem € Z,i €{0,...,n}and k € N,

Lemma 38. J, is generated by elements of the form FE+tK{n —i: j\{H:n —i — j},
j€{0,...,n—i},i€f{0,...,n},andk € N.

Proof. The proof can be found in Habiro’s article [12, Proposition 5.1]. ]

Following the completion described by Habiro in is article [12, Section 4]. We
have

(1) Jnt1 C Jn,

(2) L, C Jy (see[12, Proposition 5.1]),
(3) Aln) C Xigjmn Ji @ ),

(4) e(Jn) C Ln,

(5) S(Jn) C Jn.
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Thus, we can define the completion

U =

SIS

15

+
Z[Z—nl]-algebra (Z[g*"] is Habiro’s ring). And it is endowed with

a complete Hopf algebra structure:

asaZ[gt']:= l(inn

AU — URU, &U—ZgF'], S:U— U

where

URU =

UL
k,u

Jk +J;
Zlg*] Zlg*]
and J,, is the closure of J,, in U.
This completion is a bigger algebra than U:

Proposition 39. The canonical projection maps induce an injective map U — U.

Proof. Take the projective maps j,: U — U/ J,, they induce a map j: U — U. This
map in injective because if j(x) = 0 then x € (), cn+ Jn. But since J, C A" Uy, then
Mnen* In C Npen* 1" Up. It is a well-known fact that (), cn+ 2" Uy, = {0}. L]

Moreover, since J, C h"U;, we have a map i U — Uy,. Since we do not know
if this map is injective, we consider U := i(U) the image in Uj,. It is also an Hopf
algebra.

nn—1)
2

Remark 40. Y 72 ¢ E"® F® ¢ URU.

We will need a lemma to compute some commutation rules.
Lemma 41. We have

HQH HQH

(E®l)xqg 2 =q 2 x(EQ1)x(1®K)

and
RH HQH

(FP@1)xqg 3" =¢ 3" x(FP@1)x (10 K™).

Proof. Notice that since

n

= Z(Zf’ln!)Hn ®H”,

N

EH" =(H +2)"E and g¢q

then

(E®@ ) xqg 3" =g 2 w(E@ ) =¢ 3" x (1@ K)x (E® 1).

The same can be done for F®. n
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Let us now construct the universal invariant QY% (KX) by hand, seeing it as the
(1, 1)-tangle with coupons.
We can picture it as a 1-1 tangle with (2, 2) coupons for R-matrix, i.e.,

Kt XK

and also with (1, 1) coupons for the pivotal element:
-1
=@ A=

The rest of the tangle remains unchanged.

By replacing the R-matrix with its formula, we get sums of diagrams with
(1, 1)-coupons E”, F™ K and (2,2)-coupons ¢ a5H ,q~ —H5 (that we can decom-
pose into sum of (1, 1)-coupons if seen as exponentials). To compute the universal
invariant, start from the top of the tangle and multiply (to the right) every coupons
encountered.

Now, let us see that we can separate the universal invariant into two pieces. The
example of the trefoil knot will illustrate the process all along. The first step is to rep-
resent the knot with R-matrices (2,2)-coupons and K +1 (1,1)-coupons for the pivotal
elements, as illustrated in Figure 4b. Now, we write R as a sum, so the (2, 2)-coupons
labeled by R become the composition of (2,2)-coupons labeled by quH and
(1, 1)-coupons labeled by E™ or F™ (see Figure 4c).

We now slide down — following the orientation — the (1, 1)-coupons E", F®

and K", taking first (at any step) the closest to the bottom (see Figure 5a). During this
process, the only non-trivial commutations that appear are between E” ® 1 or 1 ® E”
or FM @ 1orl® F™ and quJ or q_Hiﬂ. By Lemma 41, this only add some
(1, 1) coupons labeled by K*" (see Figure 5b).

We are only left with coupons labeled by qw and q_&ﬁH, you can see Fig-

ure 6a for the example of the trefoil knot. These are exponentials and we can see them

as the sum ()"
H®H
i - Z( 2ny) ) ® H",

the (2, 2)-coupons now become a sum of (1, 1)-coupons as shown for the trefoil knot
in Figure 6b. Now, take one of the (1, 1)-coupon labeled by H" and slide it towards
the second (1, 1)-coupon labeled by H” (see Figure 6b). Since one is only left with
coupons labeled by powers of H, everything commutes and we get coupons H 2" (as

shown in Figure 6¢), summing them over n gives us (1, 1)-coupons labeled by ¢+ =~
(see Figure 6d).
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. . H®H . . .
Now, since we control the quadratic partg~— 2 and since the sum in the R-matrix

converge in U by construction, we thus have the following proposition:

Proposition 42. [f K a knot and D a diagram of a 1-1 tangle T whose closure is K,
then

2 ~
V(¥ = ¢/ 5 Q¥(D),
where Qﬂ(D) el cC Uy, and [ is the writhe of the diagram.

-
—

X
X

=

(a) The trefoil knot. (b) The universal invariant.

ni,n2,n3

(¢) R-matrices seen has sums.

Figure 4. The example of the trefoil knot.
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nyny—1) npp—1) nz(nz—1)
Eq 9 * 9 * X

ni,nz,n3

nynyj—1) npnp—1) nzmz—1) X
Eq 29 2 q 2 X[ HYA

ni,nz,n3

x E™3

(b) The third step, passing through the (2,2) coupons.

Figure 5. Sliding coupons example with the trefoil knot.

4.2. The completed Verma module

Evg=0, Ewviy =v;, Kuv =q* v,

F® y; = |:n j_ l] {ao—iin}qunti.
q

162

Now, it is time to construct the Verma module on which the universal invariant will
actas Foo(q, A, D). Let V¥ be a R-module freely generated by vectors {vg, vy, . .
and we endow it with a U-module structure

S
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(a) Quadratic part of trefoil universal invari-  (b) Illustration of quadratic simplification:
ant. first step.

(c) Ilustration of quadratic simplification:  (d) Illustration of quadratic simplification:
second step. third step.

Figure 6. Quadratic factorization and simplification for the trefoil knot.

We define the completed Verma module as the RI -module

—~ |
Ve =1
S IV

where I,,V* is the ideal generated by elements of the form A x v, A € [,,, v € V¥,
Since J,.V* C I,V*, we can naturally endow it with a U module structure.
Moreover, since () I, = O then () I, V¥ = 0 and thus V¥ C V¢ as a R-module.
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We denote this representation by p: U— End(I//‘\"); if Ac Uandve VY we will
write

Av = p(A)(v).
Proposition 43. If K is a knot and D is a diagram of a 1-1 tangle T whose closure
is K, then ,
0 s
QUn(K).vo = ¢7 27 QU(D).vo = Fuol(q, A, D)vo.

Hence, in particular, Foo(q, A, D) is independent of the choice of the diagram and we
denote it by Foo(q, A, K).

Proof. The identity comes from the definition of the state diagrams contribution
D(iy,...,in) and the definition of the action of the R-matrices, where ; is the index
of the sum corresponding to the R-matrix at the j-th crossing.

Indeed, recall that

fo2 +o00
Foo(g. A, D) :=q"2 Y D(i1.....iN)

=0
L= Fay + ik .
Z(l_[ gT@=2e)) )Hq [ ; } {o —ak;ixtq
=0 j=1 kepos k q
g~ +bO% 2 ax i) i) H(_1)ikq—w [“k l_+ "k}
k€neg k q
% {O[ — ag; ik}qq(ak+bk)aq_2akbk,

where 7 = (i1,...,in), N is the number of crossings, S the number of \_/J +
and f is the framing of the knot, and

1A<lk Dlar + ix
R.(vp, @ Vay) =¢q 5 g s [ i ] {o —ag:iglq
ik

—(ax +bk)aq2(ﬂk +ig)(bx—ik)

xXdq Ubj—ix ® Vay +ip -

Hence,
H_2 ~
0Yn(X).vo = ¢/ T QU(D).vg = Fx(q, A, D)vo. n

We have a bit better, the action of QU% (X) is in fact scalar.

Proposition 44. The ﬂ-endamorphism of V¥ are scalars, i.e.,

Zay _ Bl
Endg; (V*) = R'Id.
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Proof. Let f € Endﬂ(l//?‘). We get K. f(v;) = f(K.v;) = q* 2 f(v;), thus there
exists A; € RT such that f(vi) = A;v;. Now, since E. f(vi+1) = f(E.vit1) = f(vi),
then A;+1v; = A;v;; hence we define A := A; and we have f = Aldﬁ. n

Remark 45. Since p(Z (ﬂ)) C Endﬂ(ﬁ), there is a well-defined map
£:Z@) - R, x> Ay,

where p(x) = Ay Idﬁ

We set

H2 (a—2i)% o2 —
¢FTv=q 7 v eqtTv

Proposition 46. QUn(X) is in the center of U,.
Proof. See [11, Proposition 8.2]. |
Corollary 47. f(QUr (X)) = Fal(q. A, X).

4.3. Connection to Habiro’s work

This section will be dedicated to connect our setup (the ring setup RT and the quantum
algebra setup ‘ll) to Habiro’s algebra setup in [12]. As we will see, we will get
that our ring R is contained in some h-adic ring, and hence that it is an integral
domain. Moreover, we will see how to get back our unified invariant Fo(q, 4, K)
from Habiro’s quantum algebra completions.

Once this is done, we will show that Fo (g, A, K) is in fact the two-variable Jones
polynomial Jx (g%, q) defined by Habiro in [13, Section 7] .

Remark 48. Recall that the variable ¢ in this paper corresponds to the variable v
in[12,13]

4.3.1. Unified invariant from Habiro’s quantum algebra. We define the subalgeb-
ras generated by H.

* In Uy, we set U,? the subalgebra topologically generated by H.

+ In U, we set U° the subalgebra generated by H .

We can complete the algebra into

o YO
U = lim .
<~ ({H +m:n}, m e Z)

We then have the following proposition.
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Proposition 49. U? =~ Q[«][[h]], the h-adic completion of the polynomial ring Q|e],
and U° =~ RI.
Proof. The first statement is the definition of U }? replacing H with formal variable .

The second statement comes from the fact that, replacing K by 4, U® = Z[g*!, A*]
and {H +m;n} = I,. ]

Now, one can use Proposition 6.8 and 6.9 in Habiro’s article [12] and we have:
Proposition 50. We have that RI Q[o][[h]], and thus R is an integral domain.

Moreover, elements in RT can be uniquely expressed. This fact comes from [12,
Corollary 5.5]. Recall that g% := A and let {o;n} = ]_[,'-';é (¢%* — ¢q') we have the
following proposition:

Proposition 51. We have the following isomorphism:

7 . Z[qlA]
K= ey

I

Moreover, any element t € RI can be uniquely written Zzozo twla;n} where t, €
Zlq] + Zlq]A.

Proof. See [12, Corollary 5.5]. |

Remark 52. This means that the unified invariant Fi(¢q, A, K) can be uniquely writ-
ten as a series Y no tn{o; n} where 1, € Z[q] + Z[g]A.

Now, let us present the quantum algebra setup used by Habiro. Our algebra and
completion was done for the sole purpose of getting a nice form for our unified invari-
ant, allowing us to factorize it at each roots of unity. Habiro’s quantum algebra setup
has been studied more in details, and thus have more proprieties.

Let Upap be the Z[g*!]-subalgebra of Uj, generated by elements K*!, e, F[*,
where

Fn
e={1}E and FU'l=_—_,
{n}!
Let J,, be the ideal generated by elements ¢’ { H + m;n — i} for all m € Z We set

7] . . uHab
uHab = 1(&1’1 j,n .

n

Habiro proved that there is an injective map
i ﬁHab — Uh

(see [13, Propositions 6.8 and 6.9]).
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Now, that his algebra setup is stated, let us make the connection with our unified
invariant Foo (g, A, K). To do so, we will build a unified invariant with Habiro’s setup
and prove that it is in fact Foo(gq, 4, K).

First remark that, since the sums in the R-matrix also converge in ﬂHab:

Remark 53. If X a knot and D a diagram of a 1-1 tangle T whose closure is X,
then
U FHZ
0" (K) =q’ 7 Q%(D),

where Qﬂ(D) €i (‘&Hab) C Up, and f is the writhe of the diagram.

We can then define the corresponding Verma module on R’. We can endow V¢
with a Upap-module structure and we denote it by Vi§,:

. a—2i n n +i
evg =0, eviy ={oa—ilvi, Kuv =¢q Vi, Fl ].v,- = [ ; ] Vnti -
q

Moreover, since .Z,.Vﬁ"ab C I, Vi, we can naturally endow V* with a Upgar-module
structure and we denote it by V% p,p.
We denote this representation by

prab: U — End(ﬁHab);
if A € ‘aHab andv € I//EHab we write
A.v = ppan(4) (v).
Then, in a similar fashion, we have that:

Remark 54. If X is a knot and D is a diagram of a 1-1 tangle 7" whose closure is
a2 AT
X, then there exists an element F1%®(g, A, X) € g’ 2 x RT such that

2 ~
QUn(K).vo = ¢/ 5 QU(D).vo = F2(g, A, X)vo.

Letus V¥ = V¥ @g Q[a][[h]]. We define the h-adic completed Verma module

o

o _ h
V _Linhnvot
n h

I//;" is the QJ«][[/]]-module topologically generated by vectors {vg, v1, ...}, and we
endow it with a Uy -module structure:

Evg=0, Ewiy1=v, Huv = (-2, Fuv=[a—ilgvis1.
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We can also use another useful topological basis {wg, w1, . ..} such that w; = [ot;i]4v;
and get hence

Ewg=0, Ewiy =[a—ilqw;,, Huw, = (a¢—-2)w;, Fw; =wiqi.

Using Rl c Qla][[h]], we have that V¥ C 17,13‘ as U-modules and that V%, C 17;?‘
as Upyap-modules.

Proposition 55. ve I//h\“ as U-modules and I//T"Hab - ‘//hE as ‘aHab-moduleS.
Proof. We have a well-defined U-modules map

i:I//E—>I7hB‘, v; > Vg,
since I, V* C h"V}* and the action of U coincide on the topological basis. Moreover,

o

Lyve

Va
G —_—
{(; ak’nvn)keN* IVe

g1 = Ug modlkV"‘}

Ve = {(”_k)keN* €

R .
Qkn € T (@%.n)neN have finite support,
k

Ak+1,n = Ak mOdlk}-

Note that a, := (agn)ken* € ﬁi by definition.
If u = (Ug)ken* = (O, @knVn)ken* € V¥ is such that i (u) = O then, using
J:RT — Qa][[A]l,
jlay) =0 foralln € N.

Hence, by injectivity,
ap, =0 foralln € N.

Thus, u = 0 and the map i is injective.
We proceed in the same fashion with i: V%, — V2, v; > w;. [

It follows that F® (g, A, K) = Feo(q, A, K) as elements of Q[e][[A]]. Since
RT c Q[a][[A]] then FH(g, A, K) = Foo(q. A, X) as elements of R

4.3.2. The unified invariant and the two-variable colored Jones invariant are the
same. In [13, Section 7], Habiro define a two-variable colored Jones invariant unify-
ing the colored Jones polynomials.

Remark 56. Recall that the notation v (resp. ¢) in [13] correspond to the notation g
(resp. g2) in this article.
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This two-variables colored Jones invariant is defined as the universal invariant of
a long knot seen in a completion ring

imZlg.q .07/ e —4).
k —k<i<k
where ¢ is defined, using the Casimir element C = {1}>FE + gK + ¢~ 'K~!, by
C*=t+t'+2
The Casimir element is in the center of U and
Cvo = ("' + ¢ Hvo.

We thus have the identification
f = 6]2(“4_1).

Let us come back to the unified invariant. For a O-framed knot X, we have
0V (X) € Z(Usiw)-
We also have, using [13, Theorem 9.1 and Section 9.2],
Z(Upyap) — U°.
Since U° =~ R! , we have the following equality in RI:
J(QUH(K)) = Foolq. 4% K).

where f:Z (ﬂHab) — ﬁi the scalar action of central elements on I//‘\"Hab.
In other words, the two-variables colored Jones invariant J x (¢, qz) defined in [13,
Section 7] verifies
Tx(@* @D . ¢%) = Foo(q.q%. X)

as elements in R?.

4.4. About the colored Jones polynomials

The colored Jones polynomials and the study of C (1, 4, KX). Knowing that the
unified invariant comes from the universal invariant, we can use this fact to recover
the colored Jones polynomials. When we evaluate A = g% at ¢" in Foo(q, 4, K),
we obtain the n-colored Jones polynomial, denoted by J, (¢, K) (with normalization
Jn (g, unknot) = 1). Moreover, we can use this fact to compute Coo(1, 4, K) as the
inverse of the Alexander polynomial, simplifying the factorization in Proposition 27.

The following lemma and proposition are a reformulation of the proof that the uni-
versal invariant contains the colored Jones polynomials as found in [13, Section 7.1].
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Lemma 57. If we denote by V,, the (n + 1)-dimensional highest weight module of U
and V" the Verma module of highest weight q" and highest weight vector vy, then
Vi, = Uvg C V.

Proof. Tt comes down to F@tD 40 = {n;n+ 1}vy41 =0 X vy4q1 = 0. [ ]

Proposition 58. If V7 is the Verma of highest weight q",

fn?

QYn(K).vo = g 2 q"" Ju (g%, K)vo.

Moreover, if we denote by Z[g*!] Habiro’s ring completion of Z[g*'] by ideals
({n}!), we have some well-defined evaluation maps

Jn: Rl = ZlgT', q¢% — ¢".
This allows us to state the following corollary.

n2
Corollary 59. F(q,q", K) = quqf”Jn(qz, XK).

Hence, Foo(q, A, K) plays a double role in this dance: evaluating its first vari-
able ¢ at a root of unity {»,, gives us the r-th ADO polynomial multiplied by this
Coo (7, A, K) element; but if one evaluates the second variable A at ¢g", one gets the
n-th colored Jones polynomial.

We will use this double role to study the factorization of ADO polynomials.
Indeed, the Melvin—Morton—Rozansky conjecture (MMR) proved by Bar-Natan and
Garoufalidis in [2] makes the junction between the inverse of the Alexander polyno-
mial and the colored Jones polynomials. We will use the A-adic version that we state
below in Theorem 60 (see [7, Theorem 2]).

We denote by A () the Alexander polynomial of the knot K, with normalisation
Aunknot([) = 1and AJ((]) = 1.

Theorem 60 (Bar-Natan, Garoufalidis). For K a knot, we have the following equality

in Q[[A]]: |

Agc(eh)

For the sake of simplicity, let us assume that the knot X is O-framed so f = 0.
Note that, since Foo(q,q", K) = J(¢%, K) € Z[g*"'] and Z[¢*'] C Q[[}]], we have a
map Q[[h]] = Q[[A]], h — % that sends Foo(q,q", K) — Faso(q'/",q, X) as elements
of Q[[]]. But now Fao(q'/", q, X) converges to Foo(1, ¢, X) in the sense stated
in [7, below Theorem 2], namely:

lim J, (") =
n—0o0

lim Foo(q'". ¢, K) = Fso(l,q, X)
n—>oo
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< lim coeff(Foo(q'/™, q. X), k™)
n—oo

= coeff(Fx(1,q9,K),h™) forallm e N,

where, for any analytic function f,

dm
coeff(f(h),h™) = ﬁdh_mf(h) o’
By Theorem 60,
1
Foo(l,q, X) = Ax@) in Q[[A]].

On the other hand, if we denote by Z[Ai”—l]{\l}f‘ the ring completion of Z[AT]
by ideals (4 — A™1)"), then Foo(1, A, K) = Cso(1, A, K) in Z[A*']114 Indeed,
setting ¢ = 1 in Definition 20 and looking at the definition of Co (1, A, K) in Pro-
position 27,’0113&me(1, A, K) = Cx(1, A, XK).

Since Z[AT){U4 — QI[A]], A — e” (see [12, Proposition 6.1] and [10, Corol-
lary 4.1]), then we have the following proposition:

Proposition 61. [f K is O-framed, Coo(1, A, K) = —AK1(A2)'

By the discussion in the paragraph preceding Proposition 31, we have:

Corollary 62. If X is O-framed, then Coo(r, A, X) = m

This allows us to state a factorization theorem:

Theorem 63 (factorization). For a knot K and an integer r € N*, we have the fol-

lowing factorization in RrI :

A" x ADO, (4, X)

Foo(é‘Zry A, JC) = AJ((AZV) s

where [ is the framing of the knot.

Corollary 64. As an immediate consequence, [13, Conjecture 7.5 and subsequent
paragraph] are verified. In other word,

Ag(—1)
Ay (t?)

Jx(t,—1) =

where t = q2©@tV: or. in terms of unified invariant,

Ax (q*)

Fooll ) = S ety
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Proof. Recall that ADO, (g%, K) = Ax(q>¥). Atr = 2, using the identification ¢ =
q*@*+D we have the following:

Jxc(t,—1) = Fooli, g%, K)
_ ADOs (¢, X)
Agc(q**)
_ Ax (@)
Ay (q*)
_ Ax(=1)
S Ax(t?)
The colored Jones polynomials determine the ADO polynomials. One may ask
what is the relationship between ADO invariants and the colored Jones polynomials.
Does one family of polynomial determines completely the other? For the sake of
simplicity the knot X is supposed O-framed in this paragraph.
This is the case for {ADO, (4, K)}ren* — {Jn(q?, K)}nen*, knowing the ADO
polynomials allows to find the colored Jones polynomials. This result was stated in [5,

Corollary 15]. With our setup, we can get back this result as follows.

Remark 65. Notice that

ADO, (£ K)
Ag (1)

Since Jp is a polynomial knowing an infinite number of value of it determines

it. Given the family of polynomials {ADO, (4, KX)},en* we then know each value of
Jn at any root of unity hence we know J entirely.

Foo(G2r 800 K) = IN(5r. K) = = ADO, (Y., X).

But we can also have the other way around:
{Jn (612, K)tnen+ — {ADO; (4, K)}ren*.

Knowing only the colored Jones polynomials recover the ADO polynomials. We will
prove it by seeing that the colored Jones polynomials determines the unified invariant
Fsol(q, A, X).

Forall k € N, let

Jie: Qla[[h]] — Q[[A]l,  « =k,
the evaluation map.
Proposition 66. Ny ker( fr) = {0}

Proof. Letx € \;en ker(fx), we write x = ), g, (a)h" where g, (o) € Q[e]. Then,
foreach k € N, we have that g, (k) = 0 for all n. Since g, are polynomials that vanish
at an infinite number of point, they are 0. Hence, () < ker(fx) = {0}. [
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Let
S/ Qle][[r]] — HQ[UZ]], x = (fi(x))ken-
keN
ker(f) = (gen ker(fx) = {0}, hence f is injective.
Remark 67. For any knot K, f(Feo(q, A, K)) = {Jn(q?, K)}nen*.
Proposition 68. For any knot X, Foo(q, A, K) = f 7 ({Jn(g?, K)}nen*).

Setting
P ~ 1
R R! (evr x ()
g —>1_[ e X > eV,xFCr(x) N
reN*
we get the following theorem:

Theorem 69. The map

h=go fT:Im(flz) — [ R

reN*

is such that, for every knot X,
{ADO, (4, K)}ren+ = h({Jn(qzv K) fnen=).

Application 1: the unified invariant and the ADO invariants are g-holonomic.
The fact that the colored Jones polynomials are g-holonomic was proved in [6]. Let
us state what it means and then let us prove that the unified invariant and the ADO
polynomials verify the same holonomic rule. For the sake of simplicity we will work
with O-framed knot.

Let

0:Zlg=" 1N — Z[gF' N and  E:Z[gF'N - Z[gFN

be such that

(QN)m) =" f(n), (Ef)(m) = f(n+1).

Note that these operators can be extended to operators on Q[[A]]N".

Let us denote by Jo(¢2, K) = {J,(q%, K)}nen* the colored Jones function. Now,
from [6, Theorem 1], for any knot X there exists a polynomial ax (Q, E, g?) such
that a5 (Q, E, q?)Je(q?, K) = 0. We say that J4(g2, K) is g-holonomic.

We define similar operators on Q[c][[/]] and show that the same polynomial o x,
taken in terms of those new operators, annihilates F(q, g%, K).

Let

0:Qle]([?]] — QIe][[A]] and  E:Q[a][[A]] - Qle][[]]



S. Willetts

be such that if we take
x(@) = :ka (@)h* € Qa][[]]
o
with x (@) € Q[a], then
O(x(@) = ¢**x(@), E(x(@)=x(@+1),
where

+oo
x(e+1) =) xpla+ Di*.
k=0

Remark 70. Here, Q is just the multiplication of any element with ¢2*

Notice that, if one take the injective map

S-Qle[lh)] — QIUANN",  x(@) > (x(K))xen

previously defined, then

foO=Qof, foE=Eof

174

Hence, f oax (0, E,q%) = ax(0.E,q?) o f.Since ayx (0, E,q*)Juo(q%, K)=0
and [ (Foo(q.q%. J))=Jo(q% X), we obtain f 0 ay(0.E.q?)(Foo(q.q%. X)) =0.

The injectivity of f gives the following theorem.

Theorem 71. For any O-framed knot X, a3 (0. E,¢*)(Fso(q,q%, X)) = 0.

Let us look at what happens at roots of unity. To do so we must restrict ourselves

to a ring allowing evaluation at roots of umty such as Ijl Since Q(I ) C I, and
E (1n) C I, we can restrict the operators Q and E to R?, for the sake of simplicity

we will still write them 0: R — R and E: RT — RI.
Now, let r € N* and let

— ~

E:R! - R!

0:

Xy
=
~
o
=
o

be such that if we take

x(a) = Zxk(oz){roz}k € iéf

k=0

with xg (o) € Z[{5,, A] (recall that {5, := A), then

O(x(@) = &7 x(@), E(x() = x(a+ 1),
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where -~
xe+1) = xpla+ DD ra).

k=0
Since ev, oQ = Q oev, and ev, oE = Eo ev,, the same formula holds:
ax (0. E.83,)(Foo(§2r. £5,. X)) = 0.
By Theorem 63,

ADO: (85, X)) _,
Ax (&) '

Remark 72. We have the following identities:

Q(ADO,(CS‘,,JC)> _ 2qADO,(85,. K)
Ax(E57%) Ax(&57%)
_ 0(ADO, ({8, 50))
A (557

ax(0.E.3)(

and

E(ADO,(CS‘,,JC)> _ E(ADO,(£5,. X))
Ax(3ey / E(Ax(39)
_ E(ADO, (£%,, X))
Agc (530

2r(a+1
(because 7@ T = ¢2ra)

Hence, o
a5c(0, B, ,)(ADO, (§3,. X)) _
A (557%)

which proves the following theorem:

07

Theorem 73. For any 0-framed knot X,
ax (0, E, 3,)(ADO, ({3, X)) = 0.

Remark 74. In the upcoming article [3], Brown, Dimofte, Garoufalidis, and Geer
proved that the ADO invariant of links are g-holonomic (Theorem 4.3), which gen-
eralise Theorem 73. Their Theorem 4.4 actually gives a converse statement of The-
orem 73: any polynomial annihilating the ADO family will also annihilate the colored
Jones. This proves that the ADO and colored Jones family are annihilated by the same
polynomials.
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Application 2: the unified invariant is the loop expansion of the colored Jones
function. Let us first introduce the loop expansion of the colored (see in [7, Sec-
tion 2]). We can write the colored Jones polynomials as an expansion (see [19] for
more details):

+o00
P (eZnh)
2h _ k k
Jn(e™, K) = ];:0: Ax(eznh)2k+1

where Pi(X) € Q[X, X1].
Hence, we get an element
too Pk (ezah)

Jl@® K = Y e
iy Axc(e2)

1 € Qle]([]]

that is such that f(Jy(¢2, X)) = Je(¢?, K). This means that it evaluates into the
colored Jones at « = n, we call it loop expansion of the colored Jones function.

Proposition 75. For any knot J, we have the following identity in Q[c][[h]]:
Ja(q®, K) = Fo(q, 4%, X).
Proof. The fact that f is injective proves the proposition. ]

Remark 76. Putting everything together, the results of this section imply that the
unified invariant F(q, A, K) is an integral version of the colored Jones function,
built in a ring allowing evaluations at roots of unity. The integrality and the existence
of evaluation maps allow us to recover the ADO polynomials, the fact that the com-
pletion ring is a subring of an A-adic ring allows us to connect it to other notions of
colored Jones function/invariants.

Another approach, described by Gukov and Manolescu in [9], would be to see the
unified invariant as a power series in ¢, A (as opposed to a quantum factorial expansion
as we have here). This would be another integral version of it. Indeed, because it
verifies Proposition 75 and Theorem 71, the unified invariant F(gq, A4, K) except
being a power series, also verifies [9, Conjectures 1.5 and 1.6]. Thus, if Fx(q, A4, K)
could be written as a power series, it would fully verify the conjectures. This is the
case for positive braid knots, as show by Park in [18]. This means that for a positive
braid knot, the unified invariant and the GM power series coincide.

5. Some computations

This section will be dedicated to compute the unified invariant Fi(¢q, 4, K) on some
examples. We will also explicitly compute C (1, 4, K) and see that it is equal to the
inverse of the Alexander polynomial.
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To do so we will use state diagrams and compute the unified invariant from it. You
can also use them to compute the ADO polynomials (see [16, Section 4]). Recall that
q% = A.

0

(a) The trefoil knot. (b) The figure eight knot.

Figure 7. Examples of state diagrams to compute the invariants.

The trefoil knot. We denote by 3 the trefoil knot. We have
302 5 iG—=D . Y
Foolq. A31) =q 72 Y ¢*7%q 2 fazileq ™,

4

Coo(1,4,31) = ¢*) g~ e}
i

1
=q"
l—gq 3“{05}41
q3a

A31 (qza) .

The figure eight knot. We denote by 4, the figure eight knot. We have

Foolq, A, 41) = ZqZ(i—j)qiaq—ja(_l)jqi(iz—l) |:l -ij-]] (o —J: i}qq(i+j)"‘
i,J q

Cpii _dU=D e o
x g2 g= (@ j}qq (l+1)0tq211

N s i+ iG=) _jG=D . .
= Zq2(l J)q(l J)a(_l)l[ . i| g2 q T {aii+jlg
i,j /g
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Coo(l, A,41) = Zq(l—l)a(_l)l (l —-f]—‘]){a};_}_]
i,j

N ) .
= ZZqNaq—zia(_l)j (l -;J){oz}f]v

N i=0
N o
S Y vl ()
N i=0
= ZC[N“{O[}CIIV(I _ q—Za)N
N

= Z{a}zzv

N
1

1 —{a}7
1
A41 (q20c) '
The cinquefoil knot. We denote by 5; the cinquefoil knot. We have
Foo(q. A.5,) = q% an—z(i—j+k)q—5(i—j+k)aq2i(k—j)q2k(i—j)q"("T—”q#
i,jk

k(k=1) . .o . .
xXq 2 Aasifgla—k+ jijlgla—i+ jik}g

L
k—jl,l k1)

Coo(l, 4,51) = g2 3 g5 +hagyi+i+k (k f j) (z - Jk+ k)

i,j.k

= qazq—s(i—j+k)a{a}i+,-+k( i—j+k )
q

i,k Jok—jii—]
; N
= —5Na N+2j
=q” q {a} ( . )
%:,Zk @ \jk—jN—k

— g% —5Na N ; N
=q %:q SN fa) %{:{a};] (j,k e k)
= qazq—SNtx{a}é\/(z_‘_ {a}z)N

N

1
1—g=*{a}g 2+ {a}})

o

=49
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qSOc

B A51(q2a)'
The three twist knot. We denote by 5, the three twist knot. We have
542 N e i (i (i iy —il=D
Foo(q7A752) =g 2 Zq2(z k) aq(51+5] 3k)aq 21]q 2(j k)(l-‘r])q 5
i,j.k

U= —k(k=1)
2

Xq q 2 (—1)i+j+k{0‘§i}q{0‘—iij}q{“—j +k;k}q
J i+j}
X . . 9,
[] _k:|q|: J q

Coo(1. A.5,) = q_aZq(5i+5j—3k)a(_1)i+j+k{a};+j+k (j ik) (z —lj—])
isjk

:qaZq(5i+5j—3k)a(_1)i+j+k{a}i1+j+k( i+ )

= k,j—k,i
N
=g @ (SN—=3k)a(_1\N+k,\N+k
DY (1N () (,w._k’N_i)
Js

= ¢ M DMy Y g D g
N

Jk
y N
k,j—k N —i

=qY N (D) @ - ¢}V
N

= q_“ 1

1+ ¢>*{a}y (2 — g73*{aly)
_ q—Stx
 As, (%)
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(a) The Cinquefoil Knot.

i /o

(b) The three twist Knot.

Figure 8. Examples of state diagrams to compute the invariants.
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