
Quantum Topol. 13 (2022), 55–135

DOI 10.4171/QT/160

© 2022 European Mathematical Society

Published by EMS Press

This work is licensed under a CC BY 4.0 license

Holonomy invariants of links

and nonabelian Reidemeister torsion

Calvin McPhail-Snyder

Abstract. We show that the reduced SL2.C/-twisted Burau representation can be obtained

from the quantum group Uq.sl2/ for q D i a fourth root of unity and that representations of

Uq.sl2/ satisfy a type of Schur–Weyl duality with the Burau representation. As a consequence,

the SL2.C/-twisted Reidemeister torsion of links can be obtained as a quantum invariant. Our

construction is closely related to the quantum holonomy invariant of Blanchet–Geer–Patureau-

Mirand–Reshetikhin, and we interpret their invariant as a twisted Conway potential.
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1. Introduction

Let X be a space and G a Lie group. We can capture geometric information about X

by equipping it with a representation �W �1.X/ ! G, considered up to conjugation.

(This data is equivalently described by a G-local system on X or a gauge class of flat

g-connections.) In this paper we consider the case of X D S3 nL a link complement
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and G D SL2.C/. We call the pair .L; �/ of the link L and representation �W �L !
SL2.C/ a SL2.C/-link, where �L WD �1.S

3 n L/ is the fundamental group of the

complement.

To extend the representation of links as braid closures to this context, we use the

idea of a colored braid. Express the link L as the closure of a braid ˇ on n strands.

Topologically, we can think of ˇ as an element of the mapping class group of an

n-punctured discDn. Because �1.Dn/ is a free group, we can equip the discDn with

a representation �W�1.Dn/! SL2.C/ by picking colors gi 2 SL2.C/, with gi giving

the holonomy of a path going around the i -th puncture.

The braid ˇ acts on the colors by mapping � to the representation �ˇ�1. IfL is the

closure of ˇ, the representation � extends to a representation of the complement of L

exactly when � D �ˇ�1. This perspective is one way to obtain invariants of G-links.

The braid group (as the mapping class group of Dn) acts on the �-twisted homology

ofDn. In particular, its action on H1.DnI�/ is the twisted Burau representation, which

can be used to define the twisted Reidemeister torsion of .L; �/.

In this paper, we connect this story to the representation theory of the quantum

group U D Uq.sl2/ at q D i a fourth root of unity. When q is a root of unity U

acquires a large central subalgebra Z0 � U. Previous work [16,17,29] has shown that

the variety of SL2.C/-representations of Dn is birationally equivalent to Spec Z
˝n
0 .

1.1. Schur–Weyl duality for the Burau representation

We briefly describe this correspondence in order to state our first main result. For

more details, see Section 2. By work of R. Kashaev and N. Reshetikhin [16] and

C. Blanchet and N. Geer, B. Patureau-Mirand, and N. Reshetikhin [6, Section 6],

generic (in our terminology, admissible) representations �W �1.Dn/ ! SL2.C/ cor-

respond to closed points of Spec Z
˝n
0 , that is homomorphisms Z

˝n
0 ! C. Any such

homomorphism is of the form �1 ˝ � � � ˝ �n, where �i W Z0 ! C. The braid group

acts on � (via homeomorphisms of Dn) and on �1 ˝ � � � ˝ �n (via an automorphism
{R related to conjugation by the R-matrix) and these actions are compatible with this

correspondence.

Our first major result is the extension of this relationship to Burau representations.

We summarize as follows.

Theorem 1. Let �W�1.Dn/! SL2.C/ be a representation and ˇ a braid on n strands

that is nonsingular and admissible, and let �0 D �ˇ�1 be the image of the represent-

ation under the action of ˇ on Dn. Then, for each n � 2,
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(1) there exists a subspace Hn � UŒ��1�˝n and a family of injective linear maps

'� such that the diagram commutes:

H1.DnI �/lf H1.DnI �/lf

Hn=Ker.�1 ˝ � � � ˝ �n/ Hn=Ker.�0
1 ˝ � � � ˝ �0

n/

B.ˇ/

'� '�0

A.ˇ/

(2) the subspace Hn generates a Clifford algebra Cn inside U˝n which super-

commutes with �.U/, the image of U in U
˝n under the coproduct.

In this theorem, B.ˇ/ is the Burau representation, the braid action on homo-

logy coming from the braid action on Dn by homeomorphisms (Section 3.1), while

A.ˇ/ is the braid action on U˝n coming from the braiding {R on U (Section 2.4).

We are specifically interested in the locally-finite (Borel–Moore) homology, denoted

H1.DnI �/lf above.

We say that � is nonsingular if the holonomy �.xi/ around a puncture never has

1 as an eigenvalue. This is a geometrically natural condition: it ensures that the tor-

sion is nonzero (Proposition 3.9) and that the Casimir element � 2 U acts invertibly

(Proposition 2.15).

The condition that �, ˇ, and �0 be admissible is related to the fact that the rep-

resentation variety is only birationally equivalent to Spec Z
˝n
0 (see Section 2.2 for

details).

Because of (2), we interpret Theorem 1 as a Schur–Weyl duality between Ui .sl2/

and the reduced SL2.C/-twisted Burau representation. This extends a similar result

for Uq.gl.1j1// and abelian SL2.C/-representations due to N. Reshetikhin, C. Strop-

pel, and B. Webster [23].

Usually Schur–Weyl duality is interpreted as a statement about modules, as in

Corollary 7.17. However, constructing the right modules for this to hold is somewhat

delicate: we need aG-graded version of the quantum double. For this reason we delay

it to Section 6 and Section 7. These issues are discussed in more detail in Section 4.3.

1.2. Gauge invariance

In general, we are only interested in the representation �W�1.S
3 nL/! SL2.C/ up to

conjugation.1 We call conjugation � 7! g�g�1 a gauge transformation and say that �

1Changing the basepoint of S3 n L or changing basis in the space on which SL2.C/ acts

should not change the geometry of S3 nL, which is what � is capturing. Similarly, if we obtain

� as the holonomy of a flat connection it only defined up to conjugation.
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and g�g�1 are gauge equivalent. A well-behaved invariant F of SL2.C/-links should

be gauge invariant, in the sense that

F.L; �/ D F.L; g�g�1/

for any g 2 SL2.C/. (This terminology comes from thinking of � as the holonomy of

a flat sl2 connection.) The quantum holonomy invariant of Blanchet–Geer–Patureau-

Mirand–Reshetikhin [6] is gauge-invariant, as is the torsion.

Gauge-invariance lets us deal with the admissibility hypothesis in Theorem 1: by

Proposition 2.12, every SL2.C/-link is gauge-equivalent to a link with admissible

representation. We can therefore conjugate away from the singular, inadmissible rep-

resentations that do not admit a description in the coordinates coming from Ui .sl2/.

1.3. The nonabelian torsion is a quantum invariant

As a consequence of the duality of Theorem 1 we show that the SL2.C/-twisted

torsion of a link can be obtained as a quantum holonomy invariant. To say what this

means, we first recall one definition of quantum invariant.

For H a quasitriangular Hopf algebra and V an H -module, the Reshetikhin–

Turaev construction [24] produces a functor

F W B ! H -Mod

where we think of the disjoint union of the braid groups B D B1 [ B2 [ � � � as a

category with objects 1;2; : : : . The construction also gives a family of quantum traces

trqW EndH .V
˝n/ ! C. If a link L is the closure of a braid ˇ, then the scalar

F .L/ WD trq.F .ˇ//

is an invariant of L (ignoring technicalities like orientations, framings, etc.)

A quantum holonomy invariant of G-links is obtained from a G-graded version

of this construction, namely a functor

F W B.G/ ! H -Mod;

where B.G/ is the G-colored braid groupoid, a variant of the braid group that keeps

track of the representations �1.Dn/ ! G. Similarly, H needs to be appropriately

G-graded; in our case, this will come from the central subalgebra Z0 of Ui.sl2/.

If ˇ is a colored braid whose closure is the link .L; �/, then the quantum trace

trq.F .ˇ// will again be an invariant of .L; �/. Actually, this is not quite true: in

general, trq.F .ˇ//might depend on the writhe of ˇ, that is the framing of its closure.

C. Blanchet, N. Geer, B. Patureau-Mirand, and N. Reshetikhin [6] constructed a

nontrivial family of holonomy invariants forG D SL2.C/ by using the representation
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theory of U�.sl2/ for � a root of unity. We denote the � D i case of their invariant

by F . In Section 6, we define a quantum holonomy invariant T which is roughly the

“norm-square” or “quantum double” of F , up to a change in normalization. To define

F and T we need to make an extra choice of square roots � D ¹�i º of the eigenvalues

of the meridians of L.

Theorem 2. Let .L; �/ be an SL2.C/-link and � an admissible representation with

det.1 � �.x// ¤ 0 for every meridian x of L. Choose square roots � D ¹�i º of the

eigenvalues of the meridian of each componentLi of L. Then

T .L; �;�/ D �.L; �/;

where �.L; �/ is the SL2.C/-twisted Reidemeister torsion of S3 n L.

This theorem is a direct consequence of Schur–Weyl duality for the Burau repres-

entation (Theorem 1) and the definition of T . Up to sign �.L; �/ does not depend on

the extra choices � or on the framing of L, so neither does T .L; �;�/.

There are two technical hypotheses in Theorem 2: the colored link L must admit

a presentation as the closure of an admissible braid (see Section 2) and �.x/ cannot

have 1 as an eigenvalue for any meridian x of L. The first, which is related to the fact

that SL2.C/
� is only birationally equivalent to SL2.C/, is not particularly important,

because every .L; �/ is gauge-equivalent (conjugate) to one with an admissible braid

presentation. The second condition is expected, because the torsion can be ill-defined

when det.1 � �.x// D 0 for meridians x of L.

1.4. The relationship between F and T

In Section 6.1 we define xF as a dual version of F , and it is immediate from the

definition that
xF .L; �;�/ D F .xL; �;�/;

where xL is the mirror image of the link L.

We would like to say that T .L; �;�/ D F .L; �;�/ xF .L; �;�/, but unfortunately

this is not true. For technical reasons detailed in Section 5.3, theR-matrix of quantum

sl2 only defines a projective braid action on Ui -modules. To define link invariants we

need to lift this to a genuine representation, but doing so is a rather difficult technical

problem.

C. Blanchet, N. Geer, B. Patureau-Mirand, and N. Reshetikhin [6] partially solve

this problem and show that the scalar ambiguity can at least be reduced to a fourth

root of unity (in the case � D i we consider in this paper). However, to obtain the

relationship with the torsion, we need to use a different normalization. This change in
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normalization can be captured by an invariant we denote K which (Proposition 6.25)

satisfies

F .L; �;�/ xF .L; �;�/K.L; �/ D T .L; �;�/ (1)

up to a power of i . We can think of K as an anomaly, and it comes from a scalar

representation

KW B.SL2.C// ! GL1.C/

as opposed to F and T , which we can think of as taking values in GLN .C/ forN >1.

We do not have a good characterization of K other than (1). However, since it is

already rather difficult to compute the value of F (other than numerically) an inde-

pendent definition of K is not particularly useful. We expect (Remark 6.26) that the

results of [19] will clarify this situation and allow us to choose a new normalization

F
0 of F that resolves some of these issues. We discuss these issues in more detail in

Section 6.4.

1.5. Future directions

The results of this paper are mostly algebraic, not topological: we show how to repro-

duce a known invariant, the torsion, in terms of quantum groups. However, we hope

that future work in this direction could relate geometric invariants like the torsion

with quantum invariants like the colored Jones polynomial, with potentially signific-

ant topological consequences.

Many conjectures in this direction (such as the volume conjecture) concern the

asymptotic behavior of quantum invariants as m ! 1, where m is the order of the

root of unity. It would be quite useful in this context to extend our results to other

roots of unity than i .

Conjecture 1. Let � be a primitive 4m-th root of 1. There is a Schur–Weyl duality akin

to Theorem 1 between U�.sl2/ and the m-th twisted Lawrence–Krammer–Bigelow

representation.

The twisted Burau representation of Theorem 1 comes from the braid action on

the twisted homology of the punctured disc Dn. It is generalized by the Lawrence–

Krammer–Bigelow representations [2, 18], which replace Dn with the configuration

space of m points in Dn. The case m D 1 recovers the Burau representation, and the

m D 1 case of our conjecture is Theorem 1.

1.6. Torsions of links

The untwisted Reidemeister torsion �.L/ of a link complement S3 n L (which is

essentially the Alexander polynomial of L) is defined using the representation



Holonomy invariants of links and nonabelian Reidemeister torsion 61

�W �L ! GL1.Q.t// sending each meridian x of �L to t . More generally one can

send all meridians in component i to a variable ti , which gives the multivariate Alex-

ander polynomial.

The torsion is defined using the �-twisted homology of S3 n L and still makes

sense for � a representation into any matrix group GLn.k/ for k a field. (For the

torsion to be nonzero � needs to be sufficiently far from the trivial representation.)

When the image of � is nonabelian, �.L; �/ is usually called the twisted torsion. We

prefer to call the two cases abelian and nonabelian torsion, since a twisted chain

complex occurs in both. Recently, there has been considerable interest in nonabelian

torsions of links; one overview is [11].

It is known [23] that the abelian torsion can also be obtained from the quantum

group Uq.gl.1j1// and in an essentially equivalent way from a certain quotient of

Ui.sl2/ (see [21]); see [28] for a comparison of these approaches. Our work extends

this construction to the case of nonabelian SL2.C/ torsions.

1.7. The Conway potential as a square root of the torsion

We explain the interpretation of r as a nonabelian Conway potential. The classical

Reidemeister torsion �.L/ is only defined up to an overall power of t . It is possible

to refine the torsion to a rational function r.L; t1=2/ of t1=2, the Conway potential,

which is defined up to an overall sign. In fact, for a knotK, the invariant r is always

of the form

r.K; t1=2/ D �L.t/

t1=2 � t�1=2

where �K.t/ is the Alexander polynomial of K, normalized so that it is symmetric

under t ! t�1. Up to the denominator (which arises naturally in the definition of r)

we can think of r as a symmetrized version of�. A similar formula holds [25, Corol-

lary 19.6] for links, with a slightly different denominator.

One way to construct the Conway potential r is as follows: Instead of sending

each meridian to t , consider the representation ˛ into SL2.Q.t// sending the meridi-

ans to
�

t 0

0 t�1

�

:

Then the Reidemeister torsion �.L; ˛/ is defined up to ˙ det ˛ D ˙1. Furthermore,

(up to some constants depending on the whether L is a knot) it always factors as a

product

�.L; ˛/ D r.L; t1=2/r.L;�t1=2/:

Theorem 2 says that the invariant F .L; �;�/ is analogous for the nonabelian case,

with the choice of square roots � generalizing the choice of square root t1=2.
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Another perspective [25, Section 19] on the Conway potential is that it is a sign-

refined version of the torsion, because for an oriented link L the sign of r.L; t1=2/

is fixed, unlike the sign2 of �.L; ˛/. Our extension F .L; �;�/ does not satisfy this

property, since even with an orientation of L it is only defined up to a fourth root of

unity. We expect that future work [19] will allow us to choose a definite phase of F

and fix this deficiency.

1.8. The quantum double and holonomy invariants

Theorem 2 involves two related functors3

F W yB.SL2.C//
� ! C and T W yB.SL2.C//

� ! D:

We explain the notation and how to interpret T as the quantum double of F .

In the above expression, yB.SL2.C/
�/ is a variant of the SL2.C/-colored braid

groupoid B.SL2.C// (see Section 2.2 and Definition 5.8), while C is the category of

weight modules for the quantum group U D Ui.sl2/. Here a U-weight module is one

on which the center of U (in particular, the central subalgebra Z0) acts diagonalizably.

In particular, for any simple U-weight module V the action of Z0 is given by

a character �W Z0 ! C, that is a point of Spec Z0. Since Spec Z0 is birationally

equivalent to SL2.C/, the category C of weight modules is SL2.C/-graded. (More

accurately, it is SL2.C/
�-graded, where SL2.C/

� Š SpecZ0 is the Poisson dual group

of SL2.C/ in Definition 2.7.)

The new ingredient above is the category D , the double of C . Concretely, D is

the category of U ˝ Ucop-weight modules that are locally homogeneous: modulesW

such that for any central z 2 U and w 2 W ,

.z ˝ 1/ � w D .1˝ S.z// � w;

where S is the antipode of U.

Because the antipode defines the inverse of the algebraic group Spec Z0, we can

informally say that a locally homogeneous module is one that has degree g for U ˝ 1

and g�1 for 1 ˝ U
cop. A typical locally homogeneous module is (a direct sum of)

modules of the form V ˝C V
�, where V is a simple U-module. Later we will denote

these modules by V � V �.

2Picking an orientation of L gives an orientation on its meridians, so one can distinguish

between t and t�1, hence fix the sign of t1=2 � t�1=2. See also Remark 2.3.
3Strictly speaking there is a scalar ambiguity in F , so the codomain should really be C=hii.

See Proposition 5.10.
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We think of D as the tensor product C � xC , where xC is a “mirror” version of C

associated to Ucop. This is a special case of the Deligne tensor product of categories,

hence the notation �. Similarly, we think of T D F � xF as the tensor product of two

group(oid) representations.

1.9. Quantum doubles and the G -center

For the reader familiar with algebraic TQFT, the following discussion may help motiv-

ate the previous section. The invariant F of SL2.C/-links in S3 constructed from C is

a surgery or Reshetikhin–Turaev invariant of link complements. This theory is anom-

alous because the representations involved are projective.4 However, in the doubled

theory D , the anomalies from C and xC cancel, and the corresponding invariant T is

defined unambiguously.

One could think of the invariant from D as being the state-sum or Turaev–Viro

invariant associated to C . For the non-graded case, it is well known that the state-sum

theory on a fusion category C agrees with the surgery theory on the Drinfeld center

Z.C/. For more details, see the book [26] by Turaev and the series of papers [3–5]

by Balsam and Kirillov, Jr. If C is modular (in particular, if it has a braiding), then

there is an equivalence of categories C � xC � Z.C/ (see [20]), so we can compute

the value of the state-sum theory from C by using the surgery theory from C � xC .

In the G-graded case, V. Turaev and A. Virelizier [27] define notions of state-sum

and surgery homotopy quantum field theory (a.k.a. G-graded TQFT) and show that

the state-sum theory from C is equivalent to the surgery theory from ZG.C/, where

ZG.C/ is a graded version of the Drinfeld center of C .

Conjecture 2. As in the non-graded case, there is an equivalence5

ZSL2.C/�.C/ Š D;

so that we can interpret our surgery invariant from D as the state-sum invariant

from C .

In the context of this conjecture it would be useful to directly relate our construc-

tion of D to the more abstract construction of the G-center ZG.C/. Objects of D are

of the form V � V � for V an object of C , while objects of ZG.C/ are pairs .V; �V /

with �V a half-braiding relative to the identity-graded component C1 of C .

4Usually, the theory for link complements is not anomalous; the anomaly instead appears

for general manifolds resulting from surgery. In the holonomy case, the anomalies show up

earlier, because Ui is no longer quasitriangular.
5Technically speaking C is SL2.C/

�-graded, not SL2.C/-graded (see Section 5.1) so

SL2.C/
� here is correct.
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One difficulty in understanding this relationship is that the category C is not

semisimple, and the non-semisimplicity is concentrated in C1 (see Proposition 5.2).

We expect that an appropriate semisimplification of C1 will allow an application of

the theory of Turaev and Virelizier to the construction of D . (A less serious issue is

that the braid action on the gradings of C is not simply conjugation, as it is in [27].)

In the non-graded case, it is well known that the Drinfeld center corresponds to

the Drinfeld double, in the sense that there is an equivalence of braided categories

Z
�

Rep.H/
�

Š Rep.D.H//

where H is a (not necessarily quasitriangular) Hopf algebra.

Conjecture 3. There is a G-graded version DG of the Drinfeld double construction

such that

D Š Rep
�

DSL2.C/�.Ui.sl2//
�

:

It is likely that this construction is related to the work of M. Zunino [30, 31] on

crossed quantum doubles.

1.10. Overview of the paper

Section 2. We fix conventions on colored braids and discuss the factorization struc-

ture used to relate SL2.C/ and SL2.C/
�-colorings. We also introduce

the algebra U D Ui .sl2/ and its relationship to colored braids.

Section 3. We define the twisted Burau representations and the twisted Reide-

meister torsion.

Section 4. We state and prove Theorem 1 and discuss how to use it to prove The-

orem 2.

Section 5. We summarize the construction [6] of the BGPR invariant F in our

notation.

Section 6. We construct the quantum double T and discuss how it relates to F .

Section 7. We prove a version (Theorem 7.13) of Theorem 1 for modules, which

gives Theorem 2 as a corollary.

Appendix A. We give some results on U-modules (in particular, on the projective

cover of the trivial module) used in Section 7 and Appendix B.

Appendix B. We apply the of the modified traces of N. Geer, J. Kujawa, and B. Pa-

tureau-Mirand [12] to the category C of U-weight modules and its

quantum double D .

Appendix C. We prove Lemma 6.21, which is used in the definition of T .
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Figure 1. The braid �1�
�1
2
�1.

2. Representations of link complements and colored braids

A holonomy invariant of links depends both on the link L and a representation

�W�1.S
3 nL/ �! SL2.C/;

that is a point of the SL2.C/-representation variety

R.L/ D Hom
�

�1.S
3 n L/; SL2.C/

�

:

In this section, we describe some coordinate systems on R.L/, emphasizing those

coming from a presentation of L as a braid closure.6 By doing this, we reduce the

problem to

(1) describing the representation variety R.Dn/ of a punctured disc, then

(2) understanding the action of braids on our description.

This perspective motivates us to define variants of the braid group we call colored

braid groupoids.

In particular, we describe a correspondence between the SL2.C/-representation

variety R.Dn/ of a punctured disc and certain central characters of Ui.sl2/ due to

R. Kashaev and N. Reshetikhin [16]; the correspondence extends to the braid actions

defined by topology and by the R-matrix. Because of the structure of the quantum

group Ui .sl2/ it only gives coordinates on a large (in the sense of Zariski open and

dense) subset of the representation variety. We call representations lying in this open

set admissible, and every representation is conjugate to an admissible one (Proposi-

tion 2.12).

Conventions 2.1. The braid group Bn on n strands has generators �1; : : : ; �n�1, with

�i given by braiding strand i over strand i C 1. Braids are drawn and composed left-

to-right. For example, Figure 1 depicts the braid �1�
�1
2 �1 on 3 strands.

6For the more general case of tangle diagrams, see [6].



C. McPhail-Snyder 66

Figure 2. Wirtinger generators of the trefoil group and the relation at each crossing.

Figure 3. Braid action on the free group.

2.1. Colored braid groupoids

Let L be a link in S3. Given a diagram of L, we obtain the Wirtinger presentation of

the group �L D �1.S
3 n L/. (See Figure 2.) This presentation assigns one generator

xi to each arc (unbroken curve) and one conjugation relation to each crossing. If we

represent L as the closure of a braid ˇ on n strands, we can examine the interaction

between this presentation and the braid group.

Specifically, the Wirtinger presentation gives an action of the braid group Bn on

the free group Fn. We can think of putting free generators x1; : : : ; xn 2 Fn on the n

strands on the left and acting on them by the braid to get words on the right. Con-

cretely, the generators act by

xj � �i D

8

ˆ

ˆ

<

ˆ

ˆ

:

x�1
i xiC1xi j D i;

xi j D i C 1;

xj otherwise,

(2)

as in Figure 3. Here the braid action on the free group Fn is written on the right, to

match left-to-right composition of braids.

It follows that for any braid ˇ with closure L,

�L D hx1; : : : ; xn j xi D xi � ˇi
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gives a presentation of the fundamental group of S3 n L. In particular, a choice of

representation �W�L !G of the complement of the closureL is equivalent to a choice

of group elements �.xi/ such that �.xi/ D �.xi � ˇ/ for each i .

Definition 2.2. A G-colored braid is a braid ˇ on n strands and a tuple .g1; : : : ; gn/

of elements7 ofG. TheG-colored braid groupoid is the category B.G/whose objects

are tuples .g1; : : : ; gn/ and whose morphisms are braids

.g1; : : : ; gn/
ˇ�!

�

�.x1 � ˇ/; : : : ; �.xn � ˇ/
�

where �WFn ! G is defined by �.xi/ D gi . In particular, braid generators act by

.g1; g2/
�1�! .g�1

1 g2g1; g1/

One can think of the union B WD
S

n Bn of the braid groups as a category with

objects ¹1; 2; : : : º, and links can be represented as closures of endomorphisms of B.

Similarly, links with a representation �W �L ! G can be represented as closures of

endomorphisms of B.G/. B.G/ is a monoidal category in the usual way: the product

of objects is their concatenation, and the product of morphisms is obtained by placing

them in parallel. In our conventions, this monoidal product is vertical composition.

Remark 2.3. The presentation of a G-link .L; �/ as the closure of a braid ˇ 2
B.G/ implicitly requires a choice of orientation. There are distinguished meridians

xi around the base of the braid, but choosing between �.xi/ D gi and �.xi / D g�1
i

requires an orientation of the meridian xi .

The usual way to do this is to orient L and use this to obtain an orientation of the

meridian. For example, consider the result that the Conway potential is a sign-refined

version of the Alexander polynomial defined for oriented links.

We will usually leave this choice implicit going forward, but it will come up again

when we discuss the mirrored invariants xF in Section 6.1.

2.2. Factorized groups

To deal with the fact that the central subalgebra Z0 of Ui .sl2/ is not (the algebra of

functions on) SL2.C/ but on its Poisson dual group SL2.C/
� we need to use a slightly

different description of SL2.C/-links.

7More generally, one could define the groupoid of braids colored by any quandle or

biquandle.
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Definition 2.4. A group factorization is a triple .G; xG;G�/ of groups, with G a nor-

mal subgroup of xG, along with maps 'C; '�WG� ! xG such that the map  WG� ! xG

 .a/ D 'C.a/'�.a/�1

restricts to a bijection G� ! G.

Example 2.5. Set xG D GL2.C/,

S WD
²�

� �"
0 ��1

�³

� GL2.C/;

S� WD
²��

1 0

0 �

�

;

�

� "

0 1

��³

� GL2.C/ � GL2.C/;

and let 'C; '�WG� ! xG be the inclusions of the first and second factors, respectively.

Then .S; S�; xG/ is a group factorization, and the map  acts by

 W
��

1 0

0 �

�

;

�

� "

0 1

��

7!
�

� �"
0 ��1

�

:

In general geometrically interesting representations into SL2.C/ are irreducible,

so their image does not lie in the subgroup S � SL2.C/ above. To include these

representations we must consider a slightly more general notion:

Definition 2.6. A generic group factorization is a triple .G; xG;G�/ of groups, with

G a normal subgroup of xG, along with maps 'C; '�WG� ! xG such that the map

 WG� ! xG
 .a/ D 'C.a/'�.a/�1

restricts to a bijection G� ! U , where U is a Zariski open dense subset of G.

That is, instead of requiring  to be a bijection, we simply require it to be a

birational map. Our motivating example is:

Definition 2.7. The Poisson dual group8 of SL2.C/ is

SL2.C/
� WD

²��

� 0

' 1

�

;

�

1 "

0 �

��³

� GL2.C/ � GL2.C/:

SetG D SL2.C/ and xG D GL2.C/� GL2.C/, and let 'C; '�WG� ! xG be the inclu-

sions of the first and second factors. Then the map  acts by

 W
��

� 0

' 1

�

;

�

1 "

0 �

��

7!
�

� �"
' .1 � "'/=�

�

: (3)

8SL2.C/ is a Poisson–Lie group, so its Lie algebra sl2 is a Poisson–Lie bialgebra. There is

a dual Poisson–Lie bialgebra sl�
2 , and its associated Lie group is SL2.C/

�.
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The image of  is the set U of matrices with 1; 1 entry nonzero, which is a Zariski

open dense subset of SL2.C/.

We will show that every link admits a presentation with holonomies lying in U

so that we can use SL2.C/
� colorings instead of SL2.C/ colorings and thus use the

braiding on Ui .sl2/.

We first describe how to use the group factorization to associate a tuple

.g1; : : : ; gn/ 2 SL2.C/ � � � � � SL2.C/

of SL2.C/ elements to a tuple

.a1; : : : ; an/ 2 SL2.C/
� � � � � � SL2.C/

�

of SL2.C/
� elements, in a way respecting the braiding action on the colors. This is a

special case of the biquandle factorization defined in [6].

Write a˙ for '˙.a/. Then  extends to a map on tuples  D . 1; : : : ;  n/ with

 i .a1; : : : ; an/ D .aC
1 � � � aC

i�1/ .ai/.a
C
1 � � � aC

i�1/
�1 (4)

where  .ai/ D aC
i .a

�
i /

�1. The formula is somewhat nicer in terms of the products

gi � � �g1:

. i � � � 1/.a1; : : : ; an/ D aC
1 � � � aC

i .a
�
1 � � � a�

i /
�1; i D 1; : : : ; n:

This is best-understood graphically. For example, the blue path in Figure 4 cor-

responds to the image g2 of the generator x2 of the fundamental group of the twice-

punctured disc. As it crosses the dashed line above the first point from left to right,

it picks up a factor of aC
1 , then aC

2 for the next dashed line. When crossing the line

below, we get a factor for .a�
2 /

�1 because we are crossing right to left, and similarly

for .aC
1 /

�1. We have derived the relation

g2 D  2.a1; a2/ D aC
1 a

C
2 .a

�
2 /

�1.aC
1 /

�1:

We can think of the ai as local coordinates and the gi as global coordinates. As

an explicit example, if

ai D
��

�i 0

'i 1

�

;

�

1 "i

0 �i

��

for i D 1; 2, then the expressions for the images

g1 D  1.a1; a2/ D aC
1 .a

�
1 /

�1;

g2 D  2.a1; a2/ D aC
1 a

C
2 .a

�
2 /

�1.aC
1 /

�1
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aC

2
aC

1

a
2

a
1

g2g2g1

Figure 4. Derivation of g2 D aC

1
aC

2
.a�

2
/�1.aC

1
/�1 (denoted with a blue path) and g2g1 D

aC

1
aC

2
.a�

2
/�1.a�

1
/�1 (denoted with a red path.)

of the Wirtinger generators are somewhat complicated, while the expressions for their

products

g1 D aC
1 .a

�
1 /

�1 D
�

�1 �"1

'1
1�"1'1

�1

�

;

g2g1 D aC
1 a

C
2 .a

�
1 a

�
2 /

�1 D
�

�1�2 �"1�2 � "2

�2'1 C '2
1�."1�2C"2/.�2'1C'2/

�1�2

�

are simpler.

If � W .a1; a2/ ! .a4; a3/ is a generator, the image colors are the unique solutions

to the equations

aC
1 a

C
2 D aC

4 a
C
3 ; a�

1 a
�
2 D a�

4 a
�
3 ; a�

1 a
C
2 D aC

4 a
�
3 (5)

which we can read off by thinking about paths above, below, and between the strands.

For example, a�
1 a

C
2 D aC

4 a
�
3 follows from comparing the red (left) and blue (right)

paths in Figure 5.

Definition 2.8. Let a1; a2 2 SL2.C/
�. When they exist, let a4; a3 be the unique solu-

tions of (5) and set B.a1; a2/ D .a4; a3/. We say that B and SL2.C/
� form a generic

biquandle.

For a general definition, see [6, Section 3]. It is possible for the equations (5) to not

have a solution, so this is only a partially defined or generic biquandle. The general
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a1 a4

a2 a3

Figure 5. Derivation of the biquandle relation a�
1
aC

2
D aC

4
a�

3
in (5).

theory of this is dealt with in [6, Section 5]. We will simply restrict to colorings for

which the map B is defined.

Definition 2.9. B.SL2.C/
�/ is the category whose objects are tuples .a1; : : : ; an/ of

elements of SL2.C/
� and whose morphisms are admissible colored braids between

them, with the action on colors given by the map B . A braid generator � W .a1; a2/ !
B.a1; a2/ is admissible if B.a1; a2/ is defined (i.e., if the equations (5) have a solu-

tion) and a colored braid is admissible if it can be expressed as a product of admissible

generators.

We refer to morphisms of B.SL2.C/
�/ as SL2.C/

�-colored braids. B.SL2.C/
�/

becomes a monoidal category in the usual way, with the product of objects given by

concatenation and the product of braids given by vertical stacking.

Proposition 2.10. The map (4) extends to a functor ‰W B.SL2.C//
� ! B.SL2.C//.

Proof. This is a special case of [6, Theorem 3.9].

Definition 2.11. We say that objects and morphisms of B.SL2.C// are admissible

when they lie in the image of ‰. More concretely, let .g1; : : : ; gn/ be an object of the

SL2.C/-colored braid groupoid, that is a tuple of elements of SL2.C/. We say it is

admissible if for i D 1; : : : ; n the element

gi � � �g1

has a nonzero 1; 1-entry, so that the factorization map is well defined.

Similarly, a braid generator �i W .g1; : : : ; gn/ ! .g1; : : : ; gn/ is admissible if its

source and target are admissible, and a SL2.C/-colored braid ˇ is admissible if it can

be expressed as a product of admissible generators.

The functor‰ is not an equivalence of categories because it is not onto, but it can

be shown to be a generic equivalence, in a sense made precise in [6, Section 5]. In

particular:
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˛.a/

$

a a a

Figure 6. The colored Reidemeister I move. The map ˛ is as in [6, Theorem 6.8].

Proposition 2.12. Every SL2.C/-link L is gauge-equivalent to one which admits a

presentation as the closure of an admissible SL2.C/-colored braid ˇ, hence as the

closure of a SL2.C/
�-colored braid.

Here two SL2.C/-links .L; �/ and .L; �0/ are gauge-equivalent if there exists an

element g 2 SL2.C/ such that �0 D g�g�1.

Proof. L is clearly the closure of some SL2.C/-colored braid ˇW .g1; : : : ; gn/ !
.g1; : : : ; gn/. (It is closure of a braid ˇ, and the representation � makes ˇ a colored

braid.) If .g1; : : : ; gn/ is not admissible, we can conjugate � to obtain an admiss-

ible object. Now, by [6, Theorem 5.5] ˇ can be written as an admissible product of

generators, hence is admissible.

Later, we will construct functors of the form F WB.SL2.C/
�/! C , for C a pivotal

category. This means that we can take traces of endomorphisms of C , and if the

traces are appropriately gauge-invariant, we can use F to obtain invariants of (framed)

SL2.C/-links by the following process:

(1) gauge transform the SL2.C/-link .L; �/ to a link .L; �0/ that is the closure of

an admissible SL2.C/-braid ˇ0;

(2) because ˇ0 is admissible, it can be pulled back along‰ to a SL2.C/
�-braid ˇ;

(3) take the trace of the image of ˇ under F to obtain an invariant of L:

F .L; �/ WD tr F .ˇ/:

For example, the BGPR invariant of Theorem 5.16 and [6] is of this type. As is

usual for the RT construction, the invariants can depend on the framing of our link

L, because the colored Reidemeister I move (Figure 6) may not hold.

2.3. Quantum sl2 at a fourth root of unity

The motivation for defining B.SL2.C/
�/ is its relationship to central characters of

Uq.sl2/ for q a root of unity, which we now describe.
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Definition 2.13. Quantum sl2 is the algebra Uq D Uq.sl2/ over CŒq; q�1� with

generators E;F;K˙1 and relations

KE D q2EK;

KF D q�2FK;

ŒE; F � D .q � q�1/.K �K�1/:

We sometimes use the generator zF D qKF instead of F .

Notice that our conventions are slightly nonstandard (in particular, they differ

from [6].) We want to view Uq as a deformation of the algebra of functions on

SL2.C/
�, not a deformation of the universal enveloping algebra of sl2. For this

reason, we choose ŒE; F � as above instead of the more common form ŒE; F � D
.K �K�1/=.q � q�1/.

Uq is a Hopf algebra, with coproduct

�E D 1˝E C E ˝K; �F D K�1 ˝ F C F ˝ 1; �K D K ˝K;

and antipode

S.E/ D �EK�1; S.F / D �KF; S.K/ D K�1:

The center of U is generated by the Casimir element

z� D EF C q�1K C qK�1:

We will mostly work with the normalization� D q z�.

We consider the case where q is specialized to a primitive fourth root of unity i ,

which is ` D 4; r D 2 in [6]. The relations for U D Ui .sl2/ are then

KE D �EK;
KF D �FK;

ŒE; F � D 2i.K �K�1/:

Specializing to a root of unity causes U to have a large central subalgebra

Z0 WD CŒK2; K�2; E2; F 2�:

The center Z of U is generated by Z0 and the Casimir �, subject to the relation

�2 D .K �K�1/2 �E2F 2:

We can identify the closed points of Spec Z0 with the set of characters, that is

algebra homomorphisms �W Z0 ! C. The characters form a group with multiplic-

ation �1�2.x/ WD .�1 ˝ �2/.�.x//. In fact, this group is SL2.C/
�:
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Proposition 2.14. Let � be a Z0-character and set

�.E2/ D "; �.F 2/ D '=�; �.K2/ D �:

The map sending � to the group element

��

� 0

' 1

�

;

�

1 "

0 �

��

2 SL2.C/
�

is an isomorphism of algebraic groups Spec Z0 ! SL2.C/
�. The inverse ��1 of a

character is the character �S obtained by precomposition with the antipode.

From now on we identify Z0-characters and the corresponding points of SL2.C/
�.

The image of a character � is the factorization of the matrix

 .�/ WD
�

� �"
' ��1.1 � "'/

�

2 SL2.C/

and we have that this identification is compatible with the factorization of SL2.C/

in terms of SL2.C/
�. Here we have intentionally used the same symbol  for the

defactorization maps SL2.C/
� ! SL2.C/ and Spec Z0 ! SL2.C/.

Remark 2.15. Under this correspondence, the Casimir � corresponds to the trace of

the matrix. Specifically, we have

�.�2/ D � C ��1 � "' � 2 D tr .�/ � 2 D tr

�

� �"
' ��1.1� "'/

�

� 2:

Equivalently, if the eigenvalues of  .�/ are �2 and ��2,

�.�2/ D �2 � 2C ��2 D .�� ��1/2:

In particular, if  .�/ does not have 1 as an eigenvalue, �.�/2 ¤ 0.

2.4. The braiding for U

Unlike Uq, the algebra U D Ui is not quasitriangular. Instead, there is an outer auto-

morphism

RW U ˝ U ! U ˝ UŒ.1CK�2E2 ˝ F 2/�1�

that satisfies the Yang–Baxter equations

.�˝ 1/R.u˝ v/ D R13R23.�.u/˝ v/;

.1˝�/R.u˝ v/ D R13R12.u˝�.v//
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and

."˝ 1/R.u˝ v/ D ".u/v;

.1˝ "/R.u˝ v/ D ".v/u

where� is the coproduct, " the counit, and Rij means the action on the i -th and j -th

tensor factors.

In a quasitriangular Hopf algebra, R comes from conjugation by an element called

the R-matrix. This is not the case for U D Ui , but there is a version of Uq defined

over formal power series in h (with q D eh) which has an R-matrix. The conjugation

action of this element is still well defined in the specialization q D i , giving the outer

automorphism R. For more details, see the paper [16].

It is well known that R gives a braid group action on tensor powers9 of U. We

think of a braid generator � as corresponding to the map {R WD �R. The Yang–Baxter

equations correspond to the braid relation

{R12
{R23

{R12 D {R23
{R12

{R23

which is the Hopf algebra version of the braid relation �1�2�1 D �2�1�2. From now

only we mostly work with {R.

Lemma 2.16. Set

W WD 1CK2F 2 ˝K�2E2 2 Z0 ˝ Z0:

{R is the unique automorphism of U ˝ UŒW �1� satisfying

{R.E ˝ 1/ D K ˝E;

{R.1˝ F / D F ˝K�1;

{R.K ˝ 1/ D 1˝K � iKF ˝ E;

and

{R.�.u// D �.u/;

for every u 2 U. The action of {R on Z0 ˝ Z0ŒW
�1� is given by

{R.K2 ˝ 1/ D .1˝K2/W; {R.1˝K2/ D .K2 ˝ 1/W �1;

{R.E2 ˝ 1/ D K2 ˝E2; {R.1˝E2/ D E2 ˝K2 C E2 ˝ .1�K4W �1/;

{R.1˝ F 2/ D F 2 ˝K�2; {R.F 2 ˝ 1/ D K�2 ˝ F 2 C .1�K�4W �1/˝ F 2:

9Technically we need to take localizations at 1CK�2E2 ˝F 2, so it is somewhat awkward

to state this formally with more than two tensor factors. Instead we prefer to work with quotients

of U at appropriate Z0-characters.
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Proof. See [16, Section 2.2 and Appendix B] and [6, Section 6.2].

The action of {R on the central subalgebra Z0 corresponds to the biquandle (that

is, the braiding) on SL2.C/
� D Spec Z0 discussed in Section 2.2. Similarly, the loc-

alization at W corresponds to the fact that the SL2.C/
� biquandle is only partially

defined. To compare them, we give the action of this biquandle in coordinates:

Lemma 2.17. Let a1; a2; a3; a4 be elements of SL2.C/
� related by the braiding

� W .a1; a2/ ! .a4; a3/

and with components

ai D
��

�i 0

'i 1

�

;

�

1 "i

0 �i

��

:

Then the components of a4 and a3 are given by

�4 D "1'2 C �2; '4 D �1'2;

�3 D �1�2

"1'2 C �2

; "3 D "1

"1'2 C �2

;

and

"4 D "1�
2
2 C "2�2 C ."2

1�2 C "1"2/'2 � "1

�1�2

;

'3 D
�2

2'1 C "1'
2
2 C

�

"1�2'1 � .�2
1 � 1/�2

�

'2

"1'2 C �2

:

Proof. These follow from writing out the biquandle relations (5).

Proposition 2.18. Consider a SL2.C/
�-colored braid generator

� W .�1; �2/ ! .�4; �3/;

thinking of SL2.C/
� elements as Z0-characters. Then the map {R is compatible with

the SL2.C/
� biquandle in the sense that

.�4 ˝ �3/ {R D �1 ˝ �2:

In particular, {R descends to a homomorphism of algebras

{RW U=Ker�1 ˝ U=Ker�2 ! U=Ker�4 ˝ U=Ker�3;

where by U=Ker� we mean the quotient of U by the ideal generated by Ker�.
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Proof. Under the correspondence of Proposition 2.14 we have

�i.K
2/ D �i ; �i .E

2/ D "i and �i.F
2/ D 'i=�i :

We have claimed that

.�1 ˝ �2/.K
2 ˝ 1/ D �1

is equal to

.�4 ˝ �3/..1˝K2/W / D �3 C '4"3:

By using the relations of Lemma 2.17, we see that

�3 C '4"3 D �1�2

"1'2 C �2

C �1'2"1

"1'2 C �2

D �1:

One can check similar relations for the other generators of Z0 ˝ Z0. In this context,

it is slightly more natural to use {R�1 and the equivalent relation

�4 ˝ �3 D .�1 ˝ �2/ {R�1:

The formal inversion of W is not an issue, because

.�4 ˝ �3/.W / D 1C '4"3

�3

D 1C '1"2

�2

is nonzero exactly when the SL2.C/
� colors .�1; �2/ are admissible.

Definition 2.19. Consider the category AlgC of algebras over C and homomorphisms

between them. We define a functor AW B.SL2.C//
� ! AlgC as follows:

• for an object .�1; : : : ; �n/ of B.SL2.C//
�, that is an n-tuple of Z0-characters, set

A.�1; : : : ; �n/ D U=Ker�1 ˝ � � � ˝ U=Ker�n D U
˝n=Ker.�1 � � ��n/I

• for a braid generator �i W .�1; : : : ; �n/ ! .�1; : : : ; �
0
n/, set

A.�i/ D {Ri;iC1W U
˝n=Ker.�1 ˝ � � ��n/ ! U

˝n=Ker.�0
1 � � ��0

n/;

where Ai;iC1 acts on tensor factors i and i C 1, and where the image characters

satisfy

.�0
i ˝ �0

iC1/
{R D �i ˝ �iC1

and �j D �0
j for j ¤ i; i C 1.

Let .L; �/ be an SL2.C/-link. By representing L as the closure of a braid, we

identify L with an endomorphism ˇ of B.SL2.C//. If ˇ is admissible (and we can

always gauge-transform so this is the case) then we can pull it back along ‰ to an
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endomorphism of B.SL2.C/
�/. Finally, we can use A to associate ˇ with an auto-

morphism of U˝n=Ker.�1 ˝ � � � ˝ �n/.

We think of this construction as a (generic) representation of B.SL2.C// in the

algebra U. In the next two sections, we will construct the Burau representations of

B.SL2.C// and show that they are dual to this representation.

3. The Burau representation and torsions

Following A. Conway [9], we define the twisted reduced Burau representation of the

colored braid groupoid, which is obtained via the �-twisted homology

H1.Dn; @DnI �/

of the punctured disc relative to the boundary. To match the braid action on the

quantum group U, we need to take the dual. We achieve this by using the locally-

finite homology

H1.DnI �/lf

and we call the resulting representation the twisted reduced Burau representation, or

simply the Burau representation B. We then explain how to use B to compute the

torsion of a SL2.C/-link .L; �/.

3.1. Twisted homology and the Burau representation

We have chosen to describe a link L in S3 by representing it as the closure of a braid

ˇ. By doing this, we place L inside a solid torus T . We can slice T open across a

meridional disc Dn, which we think of as having n punctures corresponding to the

strands of ˇ.

From this perspective, we can view the algebraic category B.G/ of the previous

section as a model for a topological category Map.Dn; G/. This category has objects

pairs .Dn;�/, whereDn is an n-punctured disc and � is a representation�1.Dn/!G.

The morphisms are

f W .Dn; f
��/ ! .Dn; �/

for f an element of the mapping class group of Dn, where f �� D � ı f is the pull-

back. As �1.Dn/ D Fn is a free group, representations �1.Dn/ ! G are n-tuples of

elements of G, and since the mapping class group of Dn is Bn, it is not hard to see

that Map.Dn; G/ is equivalent to B.G/.

The point of this topological description is that we obtain a colored braid action

on the twisted homology of Dn. We recall the definition below.
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LetX be a finite CW complex with fundamental group � D�1.X/, and let �W� !
GL.V / be a representation, where V is a vector space over C.10 We think of this as a

right representation acting on row vectors, so that V is a right ZŒ��-module.

Let zX be the universal cover of X . The group � D �1.X/ acts on the cells of the

universal cover, and this action commutes with the differentials. We take this to be a

left action, so that the cellular chain complex C�. zX/ of the universal cover becomes

a complex of left ZŒ��-modules.

Definition 3.1. The �-twisted homology H�.X I�/ ofX is the homology of the �-twis-

ted chain complex

C�.X I �/ WD V ˝ZŒ�� C�. zX/:
We have given this definition in terms of a CW complex for X and a choice of

lifts, but it can be shown to not depend on the choice of lifts. In fact, the �-twisted

homology also does not depend on the CW structure. One way to see this is to give a

definition in terms of GL.V /-local systems.

The twisted Burau representation is given by the action of braids on the homo-

logy groups. Because a braid ˇ acts nontrivially on the representations, it should be

understood as a groupoid representation.

Definition 3.2. The twisted Burau representation is the functor

B.GL.V // ! Vect.C/

sending an object � to the vector space H1.DnI �/ and a colored braid ˇW � ! �0 to

the linear map
zBW H1.DnI �/ ! H1.DnI �0/

corresponding to the action of ˇ on Dn. Here Vect.C/ is the category of C-vector

spaces and linear maps.

Any braid ˇ fixes the boundary of Dn, so we can define the boundary-reduced

twisted Burau representation as the action on homology relative to the boundary:

B
@.ˇ/W H1.Dn; @DnI �/ ! H1.Dn; @DnI �0/:

When passing to the reduced representation it is helpful to use a different present-

ation of �1.Dn/. Set yi D xixi�1 � � � x1, so that the braid group on the generators

is

yj � �i D
´

yi�1y
�1
i yiC1 i D j;

yj i ¤ j:

10More generally this works for a module over any commutative ring; this perspective is

important when defining the twisted Alexander polynomial.
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y1y2yn

Figure 7. Alternative generators yi D xi � � �x1 of the fundamental group �1.Dn/ of the n-punc-

tured disc.

As shown in Figure 7, yi is a path going around the first i punctures. Along with

a basis e1; : : : ; ek of V we obtain a basis ¹yi ˝ ej W i D 1; : : : ; n; j D 1; : : : kº for

the twisted homology H1.DnI �/, where we identify yi with its image in homology.

Dropping yn similarly gives us a basis of H1.Dn; @DnI �/.

Proposition 3.3. Choose a basis e1; : : : ; ek of V , so that we can identify GL.V / with

GL.Ck/. With respect to the basis

¹yi ˝ ej W i D 1; : : : n � 1; j D 1; : : : ; kº

of H1.Dn; @DnI �/, the matrices of the boundary-reduced twisted Burau representa-

tion are given on braid generators �i W �0 ! �1 by

ŒB@.�i/� D I.i�2/k ˚

2

6

4

Ik 0 0

Ik ��0.yi�1y
�1
i / �0.yi�1y

�1
i /

0 0 Ik

3

7

5
˚ I.n�i�2/k

D I.i�2/k ˚

2

6

4

Ik 0 0

Ik ��1.yiy
�1
iC1/ �1.yiy

�1
iC1/

0 0 Ik

3

7

5
˚ I.n�i�2/k;

where the matrices act on row vectors from the right.

We have chosen the matrices to act on row vectors so that we obtain a representa-

tion

B
@.ˇ1ˇ2/ D B

@.ˇ1/B
@.ˇ2/

instead of an anti-representation.

Proof. This is a standard result, which can be computed by identifying the action of

the braid group on the twisted chain groups with the action of the Fox derivatives on

the free group Fn D �1.Dn/. For more details, see [8, Example 11.3.7]. Our matrices
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y2 y1

z2 z1

Figure 8. A basis z1; z2 (in red) of the locally finite homology H1.D3/
lf and the dual basis

y1; y2 (in blue) of the homology rel boundary H1.D3; @D3/.

differ slightly from those of [8] because we have picked a different convention for the

action of Bn on Fn.

To see that �0.yi�1y
�1
i / D �1.yiy

�1
iC1/, recall that by definition �0 D �ˇ�1.

To match the braid action on the quantum group we want the dual of this represent-

ation. The most convenient way to do this is to consider locally-finite or Borel–Moore

homology H1.DnI �/lf.
The untwisted form of this homology has a basis spanned by arcs between the

punctures of Dn, and it is dual to H1.Dn; @Dn/ via the obvious intersection pairing.

For example, Figure 8 shows the basis y1; y2 of H1.D3; @D3I C/ associated to the

generators y1; y2 2 �1.D3/ and the dual basis z1; z2 of H1.D3I C/lf.

To extend this to the twisted case, we need to obtain a right ZŒ��-module dual

to V . The dual space V � WD HomC.V;C/ is a right ZŒ��-module via

x � f D v 7! f .v�.x�1//

We write .V _; �_/ for this representation.

Proposition 3.4. There is a �-equivariant nondegenerate pairing

H1.DnI �_/lf ˝ H1.Dn; @DnI �/ ! C:

Proof. This is an easy extension of the result for untwisted homology, using the �-

equivariant pairing between V _ and V given by

x � .f ˝ v/ 7! f
�

�.x�1/�.x/v
�

D f .v/:

Definition 3.5. The reduced twisted Burau representation (from here on the Burau

representation) is the functor sending a braid ˇW �0 ! �1 to the map

B.ˇ/WH lf
1 .DnI �_

0 / ! H
lf
1 .DnI �_

1 /:
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Corollary 3.6. Let e1; : : : ; ek be the basis of V � dual to the basis chosen in Pro-

position 3.3, and similarly let z1; : : : ; zn�1 be the basis dual to y1; : : : ; yn�1. Then

with respect to the basis ¹zi ˝ ej W i D 1; : : : ; n � 1; j D 1; : : : kº of H1.DnI �/lf, the

matrices of the Burau representation B are given on braid generators by

ŒB.�i/� D I.i�2/k ˚

2

6

4

Ik Ik 0

0 ��_
1 .yiy

�1
iC1/ 0

0 �_
1 .yiy

�1
iC1/ I

3

7

5
˚ I.n�i�2/k;

where the matrices �_ are the inverse transposes of those of �.

The above representation is very close to the action (7) on the quantum group but

to get them to match we need to change basis.

Proposition 3.7. Let �i W �0 ! �1 be a colored braid generator. Assume that it is

admissible, so that we can consider �0 and �1 as objects of B.SL2.C/
�/, with

�1 D .b1; : : : ; bn/ and bi D
��

�i 0

'i 1

�

;

�

1 "i

0 �i

��

:

There exists a family of bases of the cohomology H1.DnI �/lf such that the matrix of

B.�i/ is given by

I2.i�2/ ˚

2

6

6

6

6

6

6

6

4

1 0 ��1
i �'i�

�1
i

0 1 0 1

���1
i 'i�

�1
i

�"iC1 ��iC1

1 0 1 0

"iCi �iC1 0 1

3

7

7

7

7

7

7

7

5

˚ I2.n�i�2/: (6)

Later we will denote these bases by v�
j D v�

j .�/ for j D 1; : : : ; n � 1 and � D 1; 2.

The matrix (6) is exactly the image of (7) under the Z0-characters corresponding

to �.

Proof. For a groupoid representation F WG ! Vect.C/, choosing bases means choos-

ing a basis of the vector space F .�/ for each object � of G, which gives matrices

ŒF .g/� for each morphism gW �0 ! �1 of C . Changing the bases transforms the mat-

rix of g as

ŒF .g/� 7! Q�0
ŒF .g/�Q�1

�1

where we now have two different change-of-basis matrices on each side. (Recall that

our matrices are acting on row vectors, so the domain �0 goes on the left.) The pro-

position follows from the correct choice of Q�0
.
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Recall �1 D .b1; : : : ; bn/ and similarly write �0 D .a1; : : : ; an/. To avoid cumber-

some notation, we temporarily write a˙
i and b˙

i for the transposes of the components

of the elements of SL2.C/
�, for example

bj D .bC
j ; b

�
j / D

��

�j 'j

0 1

�

;

�

1 0

"j �j

��

:

Setting

pi .a/ WD aC
i � � � aC

1 ; mi .a/ WD a�
i � � � a�

i ;

we have

�_
1 .yi/ D pi .b/

�1mi .b/;

�_
0 .yi/ D pi .a/

�1mi.a/;

and in particular

�_
1 .yiC1y

�1
i / D piC1.b/

�1b�
iC1pi .b/;

�_
0 .yiy

�1
i�1/ D pi .a/

�1a�
i pi�1.a/;

so the non-identity block of the matrix of Corollary 3.6 is

2

6

4

I2 I2 0

0 ��_
0 .yiy

�1
i�1/ 0

0 �_.yiC1y
�1
i / I2

3

7

5
D

2

6

4

I2 I2 0

0 �pi .a/
�1a�

i pi�1.a/ 0

0 piC1.b/
�1b�

iC1pi .b/ I2

3

7

5
:

We want to change basis by the matrices

Qa D

2

6

4

p1.a/
: : :

pn�1.a/

3

7

5
:

Because pj .a/ D pj .b/ for all j ¤ i , we see the identity blocks of the matrix of

Corollary 3.6 are unchanged, while the nontrivial block becomes

2

6

4

pi�1.a/ 0 0

0 pi .a/ 0

0 0 piC1.a/

3

7

5

2

6

4

I2 I2 0

0 �pi .a/
�1a�

i pi�1.a/ 0

0 piC1.b/
�1b�

iC1pi .b/ I2

3

7

5

�

2

6

4

pi�1.b/
�1 0 0

0 pi .b/
�1 0

0 0 piC1.b/
�1

3

7

5
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D

2

6

4

pi�1.a/ pi�1.a/ 0

0 �a�
i pi�1.a/ 0

0 piC1.a/piC1.b/
�1b�

iC1pi .b/ piC1.a/

3

7

5

�

2

6

4

pi�1.b/
�1 0 0

0 pi .b/
�1 0

0 0 piC1.b/
�1

3

7

5

D

2

6

4

pi�1.a/pi�1.b/
�1 pi�1.a/pi.b/

�1

0 �a�
i pi�1.a/pi.b/

�1

0 piC1.a/piC1.b/
�1b�

iC1pi .b/pi.b/
�1

0

0

piC1.a/piC1.b/
�1

3

7

5

D

2

6

4

pi�1.b/pi�1.b/
�1 pi�1.b/pi�1.b/

�1.bC
i /

�1

0 �a�
i pi�1.a/pi�1.a/

�1.bC
i /

�1

0 piC1.b/piC1.b/
�1b�

iC1pi .b/pi .b/
�1

0

0

piC1.b/piC1.b/
�1

3

7

5

D

2

6

4

I2 .bC
i /

�1 0

0 �a�
i .b

C
i /

�1 0

0 b�
iC1 I2

3

7

5
:

Again, the cancellations follow from the fact that pj .a/ D pj .b/ for all j ¤ i . We

have immediately that

.bC
i /

�1 D
�

��1
i �'i�

�1
i

0 1

�

and b�
iC1 D

�

1 0

"iC1 �iC1

�

;

so it remains only to check that �a�
i .b

C
i /

�1 gives the correct 2 � 2 matrix. Writing

a�
i D

�

1 0

Q"i Q�i

�

and .bC
i /

�1 D
�

��1
i �'i�

�1
i

0 1

�

;

we have

a�
i .b

C
i /

�1 D
�

��1
i �'i�

�1
i

Q"i�
�1
i Q�i � Q"i'i�

�1
i

�

:

To simplify the bottom row we need the identities

Q"i D �i"iC1;

Q�i D �iC1 C 'i"iC1
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which follow from the identities

{R.E2 ˝ 1/ D K2 ˝E2;

{R.K2 ˝ 1/ D 1˝K2 CK2F 2 ˝E2

from Lemma 2.16. Then we see that

a�
i .b

C
i /

�1 D
�

��1
i �'i�

�1
i

Q"i�
�1
i Q�i � Q"i'i�

�1
i

�

D
�

��1
i �'i�

�1
i

"iC1 Q�i � "iC1'i

�

D
�

��1
i �'i�

�1
i

"iC1 �iC1

�

as claimed.

3.2. Torsions

When the complex C�.S
3 n LI �/ is acyclic, that is when each space H�.S

3 n LI �/
is trivial, we can still extract an invariant called the torsion. Details on the classical

case of untwisted/abelian torsions are found in the book [25]. Twisted torsions and the

related twisted Alexander polynomial are discussed in the article [9] and thesis [8], as

well as the survey article [11].

We sketch the definition of the torsion. Acyclicity is equivalent to exactness of the

sequence

� � � ! Ci

@i�! Ci�1 ! � � �

in which case we get isomorphisms Ker@i D Im@i�1. If we choose a basis of each Ci ,

we can use the above isomorphisms to change these bases. The alternating product

of determinants of the basis-change matrices gives an invariant of the acyclic com-

plex C�. In general this torsion can depend on the choice of basis for each chain

space, but for link complements it does not.

Given a presentation of L as the closure of a braid ˇ we get a presentation of

�L D hy1; : : : ; yn j yi D yi � ˇi, which in turn gives a CW structure on S3 n L; the

2-cells are obtained by the relations yi D yi � ˇ. Link complements are aspherical, so

we do not need to add any higher-dimensional cells.

Definition 3.8. Let �W�1.S
3 nL/! GLk.C/ be a representation such that the �-twis-

ted chain complex C �.S3 nLI�/ is acyclic, in which case we say the GLk.C/-linkL

is acyclic. Then the �-twisted torsion �.L;�/ is the torsion of the �-twisted homology

C �.S3 nLI �/.

Usually when � has abelian image this is called the Reidemeister torsion. When

the image of � is nonabelian it is called the twisted torsion. We prefer to instead refer

to these cases as abelian and nonabelian torsions. The torsion can be computed using

the Burau representation:
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Proposition 3.9. Let .L; �/ be a GLk.C/-link, and let ˇ be a braid whose closure is

L. View ˇW .g1; : : : ; gn/ ! .g1; : : : gn/ as a morphism of the colored braid groupoid

B.GLk.C//, and suppose that

det.1 � gn � � �g1/ ¤ 0;

that is, that the holonomy gn � � �g1 of a path around all the punctures of Dn does not

have 1 as an eigenvalue. Then

(1) the twisted homology H�.S
3 n L; �/ is acyclic, so the torsion �.L; �/ is a

complex number defined up to ˙ det�;

(2) we can compute the torsion as

�.L; �/ D det.1� B
@.ˇ//

det.1� gn � � �g1/
D det.1� B.ˇ//

det.1� .gn � � �g1/�1/
I

(3) if .L; �/ is an SL2.C/-link such that det.1 � �.xi// ¤ 0 for every meridian

xi , then such a braid ˇ always exists.

Proof. (1) and (2) are standard results in the theory of torsions. The idea is that we use

the basis corresponding to y1; : : : ; yn�1 for H1.DnI �/ and to yn for H0.DnI �/, and

these bases give nondegenerate matrix � -chains [25, Section 2.1] for the complex, so

they compute the torsion. More details can be found in [9, Theorem 3.15]; that paper

discusses twisted Alexander polynomials, which correspond with the torsion when

the variables ti are all 1. Finally, we can use B and locally-finite homology instead of

B
@ and ordinary homology to compute the torsion because these are dual.

The only novel (to our knowledge) claim is (3). The proof is due to B. Patureau-

Mirand [22]. Represent .L; �/ as the closure of a SL2.C/-braid ˇ on n strands which

is an endomorphism of the color tuple .g1; : : : ; gn/, and write hn D gn � � �g1 for the

total holonomy. Consider the colored braids

ˇW .g1; : : : ; gn/ ! .g1; : : : ; gn/;

ˇ�nW .g1; : : : ; gn; gn/ ! .g1; : : : ; gn; gn/;

ˇ�n�nC1W .g1; : : : ; gn; gn; gn/ ! .g1; : : : ; gn; gn; gn/:

Their closures are all .L; �/, and they have total holonomies

hn; gnhn; g2
nhn

respectively. Because these matrices all lie in SL2.C/, we have

tr.g2
nhn/C tr.hn/ D tr.gn/ tr.gnhn/:
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Recall that an element g 2 SL2.C/ has 1 as an eigenvalue if and only if tr g D 2.

Since trgn ¤ 2, at least one of tr.g2
nhn/; tr.gnhn/; or trhn has trace not equal to 2. We

conclude that at least one braid with closure .L; �/ has nontrivial total holonomy.

Taking the closure of a braid relates the complex C �.DnI�/ to C �.S3 n LI�/ by

adding a term in dimension 2, so it is reasonable to expect a relationship between the

torsion and the Burau representation. Notice that when the image of � lies in SLn the

torsion is defined up to an overall sign.

4. Schur–Weyl duality for Ui .sl2/

In this section we prove our first major result, Theorem 1, which gives a Schur–

Weyl duality between the (reduced twisted) Burau representation B and the algebra

Ui.sl2/.

First, we explain what we mean by “Schur–Weyl duality.” Consider a Hopf algebra

H and a simple H -module V with structure map �WH ! EndC.V /. The algebra H

acts on V ˝n via the map �˝n ı�nWH ! H˝n ! EndC.V
˝n/.

We want to understand the decomposition of the tensor product module V ˝n into

simple factors. One way is to find a subalgebraB �H˝n that commutes with�n.H/,

the image ofH under the iterated coproduct. IfB is large enough, then we can use the

double centralizer theorem to understand the decomposition of V ˝n. In this section,

we address this problem in the caseH D Ui.sl2/, with a few modifications.

To get a satisfactory answer, we want think of Ui.sl/2 as a superalgebra and find

a subalgebra Cn (a Clifford algebra generated by a space Hn) that supercommutes

with �n.Ui.sl2//. In addition, to match the SL2.C/-colored braid groupoid and its

Burau representation, we consider tensor products of the form

U=Ker�1 ˝ � � � ˝ U=Ker�n

where �i W Z0 ! C are Z0-characters, equivalently points of SL2.C/
�. Since the

Burau representation is a braid group representation, we also describe the braiding

on Ui.sl2/ and its action on our subalgebra.

4.1. U as a superalgebra

Definition 4.1. A superalgebra is a Z=2-graded algebra. We call the degree 0 and 1

the even and odd parts, respectively, and write jxj for the degree of x. We say that x

and y supercommute if

xy � .�1/jxjjyjyx D 0:
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Example 4.2. Let V be a module over a commutative ring Z and � a symmetric

Z-valued bilinear form on V . The Clifford algebra generated by V is the quotient of

the tensor algebra on V by the relations

vw Cwv D �.v; w/

for v; w 2 V . By considering the image of V to be odd the Clifford algebra becomes

a superalgebra.

Recall the notation zF D iKF . We can regard U as the algebra generated by

K˙1; E; zF with relations

¹E;Kº D ¹ zF;Kº D 0; ŒE; zF � D i

2
K�;

where ¹A;Bº WD AB C BA is the anticommutator and

� D K �K�1.1C E zF /:

Proposition 4.3. U is a superalgebra with grading

jEj D j zF j D 0; jKj D j�j D 1:

The choice that E and iKF (instead of iKE and F ) are even is for compatibility

with the map {R. More generally, our choice of grading here is motivated by The-

orem 1, is rather ad hoc, and seems very special to the case q D i . At q a 4m-th root

of unity we expect a Z=m-grading instead.

4.2. Schur–Weyl duality

We are now equipped to prove Theorem 1.

Definition 4.4. For j D 1; : : : ; n, consider the elements

˛1
j WD K1 � � �Kj �1Ej�

�1
j ;

˛2
j WD K1 � � �Kj �1

zFj�
�1
j

of UŒ��1�, where zF D KF , and set

ˇ�
j D ˛�

j � ˛�
j C1:

We write Hn � .UŒ��1�/˝n for the .Z0Œ�
�2�/˝n-span of the ˇ�

j . Similarly, we write

Cn for the subalgebra generated by Hn.

Lemma 4.5. Cn is a Clifford algebra over the ring .Z0Œ�
�2�/˝n.



Holonomy invariants of links and nonabelian Reidemeister torsion 89

Proof. The ˛�
j satisfy anticommutation relations

¹˛1
j ; ˛

1
kº D 2ıjkK

2
1 � � �K2

j �1E
2
j �

�2
j ;

¹˛2
j ; ˛

2
kº D 2ıjkK

2
1 � � �K2

j �1K
2
j F

2
j �

�2
j ;

¹˛1
j ; ˛

2
kº D 2iıjkK

2
1 � � �K2

j �1.1�K�2
j /��2

j :

In particular, their anticommutators lie in .Z0Œ�
�2�/˝n, so the same holds for anti-

commutators of elements of Hn.

Lemma 4.6. The braiding automorphism acts by

{R.˛1
1/ D ˛1

2;

{R.˛1
2/ D K2

2˛
1
1 C .1 �K2

2 /˛
1
2 � E2

2 .˛
2
1 � ˛2

2/;

{R.˛2
1/ D .1�K�2

1 /˛1
2 CK�2

1 ˛2
2 C F 2

1 .˛
1
1 � ˛1

2/;

{R.˛2
2/ D ˛1

2

so that the matrix of {Ri;iC1 acting on Hn is given by

I2.i�2/ ˚

2

6

6

6

6

6

6

6

4

1 0 K�2
i �F 2

i

0 1 0 1

�K�2
i F 2

i

�E2
iC1 �K2

iC1

1 0 1 0

E2
iC1 K2

iC1 0 1

3

7

7

7

7

7

7

7

5

˚ I2.n�1/�2.iC1/ (7)

with the matrix action given by right multiplication on row vectors with respect to the

basis ¹ˇ2
1; ˇ

1
1; : : : ; ˇ

2
n�1; ˇ

1
n�1º of Hn.

Proof. This is straightforward to verify.

Definition 4.7. We say that a Z0-character � is nonsingular if �.�2/ ¤ 0, equi-

valently if  .�/ 2 SL2.C/ does not have 1 as an eigenvalue. (See Remark 2.15.)

Similarly, we say an object .�1; : : : ; �n/ of B.SL2.C/
�/ is nonsingular if each �i is,

and a braid ˇW � ! �0 is nonsingular if � and �0 are.

In particular, for any nonsingular character � the localization .U=Ker �/Œ��1�

makes sense.

Definition 4.8. Recall the basis v�
j of H1.DnI�/lf constructed in Proposition 3.7. For

each nonsingular object � D .�1; : : : ; �n/ of B.SL2.C/
�/, define a linear map

'�W H1.DnI �/lf ! Hn=Ker�1 ˝ � � � ˝ �n;

v�
j 7! ˇ�

j :
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Theorem 1 (Schur–Weyl duality for the Burau representation). Let ˇW � ! �0 be a

nonsingular SL2.C/
�-colored braid. Write .�1; : : : ; �n/ for the Z0-characters cor-

responding to �, and similarly for �0. Then, for n � 2,

(1) the diagram commutes:

H1.DnI �/lf H1.DnI �/lf

Hn=Ker.�1 ˝ � � � ˝ �n/ Hn=Ker.�0
1 ˝ � � � ˝ �0

n/

B.ˇ/

'� '�0

A.ˇ/

(2) the subspace Hn generates a Clifford algebra Cn inside U
˝n which super-

commutes with �.U/, the image of U in U
˝n under the coproduct.

Proof. The proof of (1) is essentially done: the last ingredient is the observation that

the image of the matrix (7) under �0
1 ˝ � � � ˝ �0

n is exactly the matrix (6).

It remains to prove (2). We showed in Lemma 4.5 that the image of Hn generates

a Clifford algebra. We therefore think of the elements ˇ�
j as being odd, so to check

that they supercommute, we must show that

¹�K;ˇ�
kº D 0; Œ�E; ˇ�

k�D 0;

¹��;ˇ�
kº D 0; Œ� zF; ˇ�

k�D 0;

where ¹A;Bº WD AB C BA and ŒA; B� WD AB � BA. To check this, we can use the

anticommutation relations

¹˛1
j ; ˛

1
kº D 2ıjkK

2
1 � � �K2

j �1E
2
j �

�2
j ;

¹˛2
j ; ˛

2
kº D 2ıjkK

2
1 � � �K2

j �1K
2
j F

2
j �

�2
j ;

¹˛1
j ; ˛

2
kº D 2iıjkK

2
1 � � �K2

j �1.1 �K�2
j /��2

j ;

the fact that ˇ�
j WD ˛�

j � ˛�
j C1, and the identity

� D K �K�1.1C E zF /:

4.3. How to apply Schur–Weyl duality

The motivation for Theorem 1 is to prove Theorem 2. The strategy is as follows:

suppose we have a family X� of U-modules parametrized by points � of SL2.C/
�

(that is, by Z0-characters).11 The choice of modules X� leads directly to a quantum

11In our examples we need extra data, specifically an extension of � to a character Z D
Z0Œ�� ! C. This corresponds to the extra choice � appearing in Definition 5.14 and The-

orem 5.16.
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holonomy invariant of links, although there are somewhat subtle normalization issues

that arise in the holonomy case, as discussed in Section 5.3.

The value of the invariant on a link with n strands is related to the braid action on

tensor products of the form X�1
� � �X�n

. To understand them, use semisimplicity12 to

write

X�1
˝ � � � ˝X�n

Š
M

i

Mi ˝C Yi

where the Yi are distinct simple U-modules and the Mi are the corresponding mul-

tiplicity spaces. If we choose the X� appropriately, in particular so that Cn acts

faithfully, we can identify the spacesWi with the supercommutant Cn of�.U/, hence

(via Theorem 1) with the Burau representation.13 This leads directly to a proof that

the torsion is a quantum invariant.

Picking the correct familyX� is somewhat difficult, however. The simple modules

V.�/ of Section 5.2 used in the definition of the BGPR invariant are too small, in the

sense that Cn does not act faithfully. This problem leads us to introduce the quantum

double (norm-square) T in Section 6. This construction also solves the normalization

issues alluded to before.

For clarity, we first describe the BGPR functor F , summarizing the material of [6,

Section 6] in our notation. We then (Section 6) give the construction of T and its

relation to F , then finally (Section 7) prove that T computes the torsion.

5. The BGPR holonomy invariant

Theorem 2 refers two holonomy invariants, denoted F and T . F is the holonomy

invariant constructed by Blanchet, Geer, Patureau-Mirand, and Reshetikhin [6], so we

call it the BGPR invariant, while T is the “quantum double” or “norm-square” of F .

(There is also a third holonomy invariant K , which should be understood as a change

in normalization of F : see Section 6.4.) Since T is built using F we first recall the

construction of F from [6].

5.1. Weight modules for U

Definition 5.1. A U-weight module is a U-module V on which the central subal-

gebra Z0 acts diagonalizably. Let � be a Z0-character, i.e., an algebra homomorphism

12While the representation theory of Ui is not semisimple, restricting to nonsingular char-

acters avoids the non-semisimple part. See Theorem 5.2.
13It turns out that there are only two such Yi , which correspond to the even and odd parts

of Cn.
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Z0 ! C. We say a representation V of U has character � if

Z � v D �.Z/ � v

for everyZ 2 Z0 and v 2 V . Equivalently, a U-module has character � if and only if

the structure map factors through U=Ker�.

We write C for the category of finite-dimensional weight modules, and C� for the

subcategory of weight modules with character �.

Every simple weight module has a character by definition, and in general any

finite-dimensional weight module V decomposes as a direct sum

V D
M

�

V�

where V� is the submodule on which Z0 acts by �. More generally,

C D
M

�2SL2.C/�

C�

is a SL2.C/
�-graded category.

Theorem 5.2. Let � be a nonsingular Z0-character. Then

(1) C� is semisimple,

(2) the simple objects of C� are all 2-dimensional and projective, and

(3) isomorphism classes of simple objects are parametrized by the Casimir �,

which acts by a square root of tr .�/� 2.

Proof. This is a special case of [6, Theorem 6.2]. The idea is to use a certain Hamilto-

nian flow (the quantum coadjoint action of Kac–de Concini–Procesi) on Spec Z0 to

reduce to the case �.E2/ D �.F 2/ D 0.

In particular, the character ".K2/ D 1, ".E2/ D ".F 2/ D 0 corresponding to the

identity matrix is singular. The category C" is the category of modules of the small

quantum group, which is not semisimple.

5.2. Simple weight modules

We discuss the modules of Proposition 5.2 in more detail.

Definition 5.3. Let � be a Z0-character corresponding to the SL2.C/
� element a,

and let � be a complex number with .� � ��1/2 D �.�2/ D tr .�/ � 2. Since �2

is an eigenvalue of  .�/ (Remark 2.15), we call � a fractional eigenvalue for �.
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The character � is nonsingular if and only if � ¤ ˙1. In this case, we write

V.�; �/ D V.a; �/ D V. O�/

for the simple module of dimension 2 with character � on which the Casimir � acts

by the scalar � � ��1. Here O� is the extension of � to Z given by O�.�/ D � � ��1.

Example 5.4. Let � be a nonsingular character and � a factional eigenvalue, and let

V.�; �/ be the corresponding irreducible 2-dimensional U-module. It is not hard to

see that we can always choose an eigenvector j 0i of K such that j 0i; j 1i WD Ej 0i is

a basis of V.�; �/.

First consider the case where "' ¤ 0; this is generically true, since non-triangular

matrices are dense in SL2.C/. Then with respect to the basis j 0i; j 1i, the generators

act by

�.K/ D
�p

� 0

0 �p
�

�

; �.E/ D
�

0 "

1 0

�

;

�.F / D
�

0 �i.! C p
� � p

�
�1
/

�i.! � p
� C p

�
�1
/=" 0

�

;

where ! D � � ��1 and
p
� is an arbitrarily chosen square root of �. We can think

of j 0i and j 1i as a weight basis. Since E and F act invertibly V.�; !/ is sometimes

called a cyclic module.

The case "' D 0 is simpler. Then one (or both) ofE;F act nilpotently, so V.�;�/

is said to be semi-cyclic (or nilpotent.) Suppose in particular that ' D 0 (the case "D 0

is similar) and choose an eigenvector j 0i ofK with F j 0i D 0. Then the action of the

generators is given by

�.K/ D
�

� 0

0 ��

�

; �.E/ D
�

0 "

1 0

�

; �.F / D
�

0 �2i.�� ��1/

0 0

�

:

Proposition 5.5. Let �i be nonsingular characters with fractional eigenvalues �i . If

the product character �1 � � ��n is nonsingular, then

n
O

iD1

V.�i ; �i / Š V.�1 � � ��n; �/
˚2n�2 ˚ V.�1 � � ��n;��/˚2n�2

where � is a fractional eigenvalue for the product character.

Proof. This is easy to check for n D 2, and the general case follows by induction.

We think of the left-hand side as representing a colored braid on n strands with col-

ors .�1; : : : ; �n/, so a path wrapping around the entire braid has holonomy �1 � � ��n.
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The proposition says that the corresponding tensor product of irreducible repres-

entations decomposes in to an equal number of summands of each module with

Z0-character �1 � � ��n.

5.3. The braiding for modules

The automorphism {R acts on the algebras U, but to construct a holonomy invariant

we want a braiding on U-modules. Such a braiding is a family of maps intertwining
{R in the following sense:

Definition 5.6. Let �1; �2 be nonsingular Z0-characters such that

.�4; �3/ D B.�1; �2/

exists (equivalently, such that the SL2.C/
�-colored braid � W .�1; �2/ ! .�4; �3/ is

admissible.) For each i , let X�i
be a module with character �i . We say a map

cWX�1
˝X�2

! X�4
˝X�3

of U-modules is a holonomy braiding if for every u 2 U ˝ U and x 2 X�1
˝ X�2

,

we have

c.u � x/ D {R.u/ � c.x/

Since {R preserves the coproduct, a holonomy braiding is automatically a map

of U-modules. Because the modules V.�; �/ are simple, the choice of a holonomy

braiding is essentially unique:

Proposition 5.7. Let �i ; i D 1; : : : ; 4 be characters as in Definition 5.6, and choose

Casimir values �1; �2 for �1; �2. Then there is a nonzero holonomy braiding

cWV.�1; �1/˝ V.�2; �2/ ! V.�4; �2/˝ V.�3; �1/

unique up to an overall scalar.

Proof. We first explain why �1 is a fractional eigenvalue for �3. Observe that, by (5),

the matrix  .�3/ is conjugate to  .�1/, so it has the same eigenvalues. In parallel,

we have the fact that
{R.�˝ 1/ D 1˝�:

A similar argument shows that �2 is a fractional eigenvalue for �4.

The remainder of the proof follows the discussion proceeding [6, Theorem 6.2].

Write O�i for the Z-character extending �i by O�i .�/ D �i � ��1
i , setting �3 D

�1; �4 D �2. For each i , the algebra

U=Ker O�i
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is isomorphic to the C-endomorphism algebra Mat2.C/ of V. O�i/ D V.�i ; �i /. In

particular, the automorphism {R induces an automorphism of matrix algebras

Mat2.C/˝ Mat2.C/ ! Mat2.C/˝ Mat2.C/;

equivalently, an automorphism of matrix algebras

{RW Mat4.C/ ! Mat4.C/:

By linear algebra, any such automorphism is inner, given by {R.X/D cXc�1 for some

invertible matrix c, which is unique up to an overall scalar. The matrix c gives the

holonomy braiding with respect to the bases of V.�i ;�i / implicit in the isomorphisms

U=Ker O�i Š Mat2.C/.

The holonomy braidings fit together into a representation of the colored braid

groupoid into C , although at the moment only a projective one. To state this precisely,

we need a variant of B.SL2.C/
�/ that keeps track of the fractional eigenvalues.

Definition 5.8. An extended Z0-character14 is a Z0-character � and a fractional

eigenvalue�, that is a complex number with .����1/2 D �.�2/� 2. The biquandle

B on Z0-characters of Definition 2.8 extends to extended characters via

B..�1; �1/; .�2; �2// D ..�4; �2/; .�3; �1//

that is, by permuting the fractional eigenvalues. This is well defined because

{R.1˝�/ D �˝ 1 and {R.�˝ 1/ D 1˝�;

as discussed in the proof of Proposition 5.7.

The extended SL2.C/
�-colored braid groupoid is the category yB.SL2.C/

�/ with

objects tuples of extended Z0-characters and morphisms admissible braids between

them, with the action on extended characters given by the biquandle B .

Proposition 5.9. The holonomy braidings c of Proposition 5.7 give a projective func-

tor
zF W yB.SL2.C/

�/ ! C

defined by

zF ..�1; �1/; : : : ; .�n; �n// D V.�1; �1/˝ � � � ˝ V.�n; �n/

14From an algebraic perspective, it would be slightly simpler to say that an extended char-

acter is an extension of �W Z0 ! C to a homomorphism �W Z ! C. Such an extension is the

same as a choice of scalar ! satisfying !2 D �.�2/. To connect with the geometric situation

we prefer to emphasize the fractional eigenvalue �, which has ! D � � ��1.
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and, if � W ..�1; �1/; .�2; �2// ! ..�4; �4/; .�3; �3// is a braid generator,

zF .�/ D cWV.�1; �1/˝ V.�2; �2/ ! V.�4; �4/˝ V.�3; �3/:

Here by a projective functor we mean that the image maps are considered only

up to multiplication by an arbitrary nonzero scalar. More formally, we could say the

codomain is the category C=C� where two morphisms are equal if f D zg for some

z 2 C n ¹0º.

Proof. The map {R satisfies the colored braid relations of B.SL2.C/
�/. Because the

maps c�1;�2
are defined uniquely to intertwine {R they must as well.

The projective functor zF yields link invariants in C that are defined up to multi-

plication by an element of C n ¹0º. These are not very useful, so we want to remove

or at least reduce the scalar indeterminacy in the holonomy braidings c�1;�2
However,

this is a rather subtle problem, because we really need to choose a family of scalars

parametrized by pairs of elements of SL2.C/
�.

C. Blanchet, N. Geer, B. Patureau-Mirand, and N. Reshetikhin [6] show that the

scalar ambiguity can at least be reduced to a power of i :

Proposition 5.10. The holonomy braidings can be chosen to satisfy the relations of
yB.SL2.C/

�/ up to a fourth root of unity, thus defining a functor

F W yB.SL2.C/
�/ ! C=hii:

Here by C=hii we mean the category that is the same as C , except that two morph-

isms f; gWV ! V 0 are considered equal if f D ikg for some k.

Proof. This is a special case of [6, Theorem 6.2]. The idea is to choose a consistent

family of bases for the modules V.�;�/, then scale the holonomy braidings c�1;�2
so

that their matrices with respect to these bases have determinant 1. To do this we must

divide by .det c/1=4, which gives the indicated ambiguity.

Remark 5.11. This method of defining the holonomy braiding is rather ad hoc and

does not give a completely unambiguous solution. Later we show that there is a natural

way to normalize the quantum double T of F , but this still leaves the problem of

understanding F on its own. We expect that future work [19] will clarify the situation.

5.4. Modified traces

If .L; �/ is the closure of an endomorphism ˇ of yB.SL2.C/
�/, then the quantum

trace of F .ˇ/ will be an invariant of .L; �/. However, because the category C is
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not semisimple, the quantum dimensions of the modules V.�; �/ are all zero, so link

invariants constructed in this way will also be uniformly zero.

To fix this, we use the theory of modified traces. We first recall the construction

of the usual quantum trace on C .

Proposition 5.12. C is a pivotal category with pivotK�1 2 U. That is, for an object

V of C with basis ¹vj º and dual basis ¹vj º the coevaluation (creation, birth) and

evaluation (annihilation, death) morphisms are given by

coevV W C ! V ˝ V �; 1 7!
P

j vj ˝ vj ;

coevV W C ! V � ˝ V; 1 7!
P

j vj ˝Kvj ;

evV WV ˝ V � ! C; v ˝ f 7! f .K�1v/;

evV WV � ˝ V ! C; f ˝ v 7! f .v/;

so that for any morphism f WV ! V , the quantum trace is the complex number

tr f WD evV .f ˝ idV �/ coevV

where we identify linear maps C ! C with elements of C. The quantum dimension

of V is tr.idV /. Furthermore, C is spherical: the right trace above agrees with the left

trace

evV .idV � ˝f / coevV :

Proof. This works because the square of the antipode of U is given by conjugation

with the grouplike elementK�1. It is not hard to check directly that the left and right

traces agree.

We explain the basic idea of modified traces before giving a formal definition. Let

f WV1 ˝ � � � ˝ Vn ! V1 ˝ � � � ˝ Vn be an endomorphism of C . We can take the partial

quantum trace on the right-hand tensor factors V2 ˝ � � � ˝ Vn to obtain a map

ptrr
q.f /WV1 ! V1

If V is irreducible, ptrr
q.f /D x idV1

for some scalar x, so we say that f has modified

trace

t.f / WD xd.V1/

where d.V1/ is the renormalized dimension of V1.

Of course, the trace will depend on the choice of renormalized dimensions. In the

case V1 D � � � D Vn, such as when defining the abelian Conway potential, the choice

of renormalized dimension only affects the normalization of the invariant. However,

when the modules can differ, the numbers d.V / must be chosen carefully to insure

that we obtain a link invariant.
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Theorem 5.13. Let Proj be the subcategory of C of projective modules. Proj admits a

nontrivial modified trace t, unique up to an overall scalar. That is, for every projective

object V of C there is a linear map

tV W EndC.V / ! C;

these maps are cyclic in the sense that for any f WV ! W and gWW ! V we have

tV .gf / D tW .fg/;

and they agree with the partial quantum traces in the sense that if V 2 Proj andW is

any object of C , then for any f 2 EndC.V ˝W /, we have

tV ˝W .f / D tV .ptrr
W .f //

where trr
W is the partial quantum trace on W .

This trace corresponds to the renormalized dimensions

d.V . O�// WD t.idV.�;�// D 1

�� ��1

on simple modules.

We usually omit the subscript on t, and we have chosen a different normaliza-

tion of the dimensions than in [6] which is more natural for q D i . Notice that the

renormalized dimensions are gauge-invariant because the fractional eigenvalues are.

Proof. See [6, Section 6.3] and [13]. The paper [12] gives a general construction of

modified traces, which we summarize in Appendix B.

5.5. Construction of the invariant

To match the extra data in yB.SL2.C/
�/, we need to make some extra choices on our

SL2.C/-links.

Definition 5.14. Let .L; �/ be an SL2.C/ link with components L1; : : : ; Lk , and let

xi 2 �1.S
3 n L/ represent a meridian of the i -th component Li . Any other choice

of meridian is conjugate to xi , so the eigenvalues of �.xi/ depend only on L and �.

A fractional eigenvalue for Li is a complex number �i such that �2
i is an eigenvalue

of �.xi/.

Let � D ¹�i º be a choice of fractional eigenvalue for each component of Li . We

call .L; �;�/ an extended SL2.C/-link, and say that it is admissible if (forgetting

the �) it is the closure of an admissible SL2.C/-braid.
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Proposition 5.15. Any extended SL2.C/-link is gauge-equivalent to an admissible

link.

Proof. Gauge transformations do not affect the fractional eigenvalues �, so we can

apply Proposition 2.12.

Theorem 5.16. Let .L; �/ be a framed SL2.C/-link that is nonsingular, in the sense

that �.x/ does not have 1 as an eigenvalue for any meridian x ofL. Choose fractional

eigenvalues � for L. Then L is gauge-equivalent to a link .L; �0/ that can be written

as the closure of a braid ˇ in yB.SL2.C/
�/, and the complex number

F .L; �;�/ WD t.F .ˇ//

is a invariant of .L; �;�/, depending only on the conjugacy class of � and defined

up to a fourth root of unity. We call F .L; �;�/ the Blanchet–Geer–Patureau-Mirand–

Reshetikhin holonomy invariant, or the BGPR invariant.

Proof. The details of this construction are given in [6], and this result is a special case

of [6, Corollary 6.11]. We summarize some of the key points.

• Because F is a functor with domain yB.SL2.C/
�/, we get invariance under Reide-

meister II and III moves.

• Since we think of L as a framed link, we do not need to check the Reidemeister I

move. We do need to check that left and right twists agree, which is [6, The-

orem 6.8].

• Gauge invariance is nontrivial to check, but is a consequence of the fact that we

chose simple modules V.�; �/ [6, Theorem 5.10].

Remark 5.17. The dependence on the framing is somewhat unsatisfactory. We expect

that future work [19] will explicitly compute the framing dependence and allow us to

eliminate it.

By Theorem 2, F .L; �; �/ (with a slightly different normalization: see Sec-

tion 6.4) is a sort of square root of the nonabelian torsion �.L; �/. As discussed in

Section 1.7, this leads us to interpret it as a nonabelian Conway potential. We can

immediately see that it gives the usual Conway potential in the abelian case.

Corollary 5.18. Let L be any link in S3, and consider the representation � of its

complement defined by

�.x/ D
�

t 0

0 t�1

�

;
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where x is any meridian of L. Then F .L; �; t1=2/ is the Conway potential of L, i.e.,

F .L; �; t1=2/ D �L.t/

t1=2 � t�1=2

where �L.t/ is the Alexander polynomial of L, normalized so that it is symmetric

under t ! t�1.

Proof. By [6, Theorem 4.11], for abelian representations as above the BGPR invariant

at a 2r-th root of unity gives the r-th ADO invariant (originally defined in [1]). The

present case is r D 2, so the ADO invariant is the Conway potential.

Alternately, we can directly compare this simple case of our construction to the

construction of the Conway potential in [28].

6. The graded quantum double

For a number of reasons, particularly the indeterminacy of the braiding, the BGPR

functor F is difficult to work with directly. Instead we use a functor T construc-

ted from F by a G-graded version of the quantum double. We will define T as an

“external” tensor product of F and its mirror image xF .

The point of the somewhat elaborate definition of T is that we can directly relate

the braiding given by T on modules to the braiding A on the algebra U, which allows

us to apply Theorem 1 to compute the invariants coming from T and thereby prove

Theorem 2.

6.1. The mirror image xF of F

We will define (up to scalars) T WD F � xF , so we must first define xF .

Definition 6.1. Write U
cop for the quantum group Ui.sl2/ with the opposite cop-

roduct. As for U, a weight module V is U
cop-module on which the center Z acts

diagonalizably. We write xC for the category of finite-dimensional Ucop-weight mod-

ules.

We say that an object V of xC has character � if for any z 2 Z0 and v 2 V ,

z � v D �.S.z//v;

where S is the antipode of U.

Example 6.2. The duals

V.�; �/� WD HomC.V .�; �/;C/; .x � f /.v/ D f .S.x/ � v/

of the simple U-modules V.�; �/ of Section 5.2 are objects of xC with character �.
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Remark 6.3. The character �S is the inverse of � in the group Spec Z0. We

have chosen to invert the gradings on xC so that it is SL2.C/
�-graded, not

.SL2.C/
�/op-graded. This will be more convenient for when we take tensor products

in section 6.2, although it makes the mirror image functor (Definition 6.8) slightly

more complicated.

Proposition 6.4. There exists a modified trace t on the projective objects of xC which

assigns

d.V .�; �/�/ D 1

�� ��1
:

Proof. This is an easy corollary of Theorem 5.13 given the general theory described

in Appendix B.

Recall that the holonomy braidings (Definition 5.6) for C are maps intertwining
{R D �R. This leads to a braiding because

{R� D �; equivalently R� D �op:

Dually, can think of R
�1 as intertwining �op and� D .�op/op,

R
�1�op D �;

so to get maps commuting with �op we look for those that intertwine the automorph-

ism
{xR WD �R

�1 D � {R�1�

of U
cop ˝ U

cop. More generally, a holonomy braiding for xC should be a family of

linear maps intertwining {xR.

Lemma 6.5. Consider a colored braid generator

� W .�1; �2/ ! .�4; �3/

where �1; : : : ; �4 are Z0-characters, so that

.�4 ˝ �3/ {R D �1 ˝ �2:

Then

.��1
4 ˝ ��1

3 / {xR D .��1
1 ˝ ��1

2 /

where ��1
i D �i ı S is the inverse character.

Proof. We can check this via direct computations on the central generators using the

relations of Lemma 2.16.
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Proposition 6.6. Let �1; �2 be Z0-characters such that � W .�1; �2/ ! .�4; �3/ is

well defined, and let �1 and �2 be fractional eigenvalues for �1 and �2, respectively.

Then there is a linear map

NcWV.�1; �1/
� ˝ V.�2; �2/

� ! V.�4; �2/
� ˝ V.�3; �1/

�

intertwining {xR in the sense that for any x 2 Ucop ˝ Ucop,

Nc.x � v/ D {xR.x/ � Nc.v/:

The map Nc is unique up to an overall scalar.

Proof. The previous lemma shows that the characters transform correctly under the

braiding. The proof then goes exactly as for Proposition 5.7.

We will choose the normalization of Nc to match c in the mirror image, so first we

need to explain how to take mirror images of colored braids.

Definition 6.7. For a linkL, the mirror xL ofL is the image ofL under an orientation-

reversing homeomorphism r W S3 ! S3. For an SL2.C/-link .L; �/, the mirror is

defined to be .xL; N�/, where N� WD �r� is obtained by pulling back from �xL to �L

along r .

Definition 6.8. The mirror image functor MW B.SL2.C/
�/ ! B.SL2.C/

�/ is given

by

M.�1; : : : ; �n/ D .��1
n ; : : : ; ��1

1 /

on objects. It is defined on braid generators � W .�1; �2/ ! .�4; �3/ by

M.�/ D ��1W .��1
2 ; ��1

1 / ! .��1
3 ; ��1

4 /

with the obvious extension to all morphisms.

We emphasize that M is covariant. We can extend M to yB.SL2.C/
�/ by pre-

serving the fractional eigenvalues, so that

M
�

.�1; �1/; .�2; �2/
�

D
�

.��1
2 ; �2/; .�

�1
1 ; �1/

�

:

Proposition 6.9. If .L; �;�/ is a nonsingular SL2.C/-link with fractional eigenval-

ues � expressed as the closure of endomorphism ˇ of yB.SL2.C/
�/, then its mirror

image .xL; N�;�/ is the closure of M.ˇ/.
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Lemma 6.10. Let

� W .�1; �2/ ! .�4; �3/

be a colored braid generator, write �.x ˝ y/ D y ˝ x for the flip map, and choose a

family of U-module isomorphisms

f�;�WV.�; �/� Š V.��1; �/:

Then, abbreviating fi D f�i ;�i
,

.f �1
4 ˝ f �1

3 /�F .M.�//�.f1 ˝ f2/ (8)

gives a family of holonomy braidings in the sense of Proposition 6.6 which satisfy the

colored braid relations up to a power of i .

Proof. Because M.�/ is a negative braiding,

F .M.�//WV.��1
2 ; �2/˝ V.��1

1 ; �1/ ! V.��1
3 ; �3/˝ V.��1

4 ; �4/

is a map intertwining {R�1 D .�R/�1 D R�1� . It follows that

�F .M.�//� WV.��1
1 ; �1/˝ V.��1

2 ; �2/ ! V.��1
4 ; �4/˝ V.��1

3 ; �3/

is a map intertwining � {R�1� D �R
�1 D {xR. After composing with the isomorph-

isms fi , we see that (8) is satisfies the relations of Proposition 6.6.

Because the braidings F .�/ satisfy the colored braid relations up to a power of i ,

the braidings (8) must as well.

Theorem 6.11. There is a functor xF W yB.SL2.C/
�/ ! xC=hii defined on objects by

xF
�

.�1; �1/; : : : ; .�n; �n/
�

D
n

O

j D1

V.�j ; �j /
�

and on braid generators � W .�1; �2/ ! .�4; �3/ by

xF .�/ D .f �1
4 ˝ f �1

3 /�F .M.�//�.f1 ˝ f2/

as in Lemma 6.10.

If .L; �;�/ is a nonsingular SL2.C/-link with fractional eigenvalues � expressed

as the closure of an admissible endomorphism ˇ of yB.SL2.C/
�/, then

xF .L; �;�/ WD t. xF .ˇ//

is an invariant of the framed extended SL2.C/-link .L; �;�/ defined up to a fourth

root of unity and unchanged by gauge transformations. Furthermore,

F .L; �;�/ D xF .xL; N�;�/:
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Our definition of xF depends on the family of isomorphisms f�;�, but by the last

part of the theorem this choice does not affect the value of xF on links. In addition, the

proof of Proposition 5.10 requires choosing bases of the V.�; �/, hence isomorph-

isms f�;�.

Proof. Using Lemma 6.10 all but the last statement can be proved just as in Propos-

ition 5.10 and Theorem 5.16. It remains only to check the final claim about mirror

images.

Consider the extended flip map

�W
´

V1 ˝ � � � ˝ Vn ! Vn ˝ � � � ˝ V1;

v1 ˝ � � � ˝ vn 7! vn ˝ � � � ˝ v1

which has

F .ˇ/ D .f1 ˝ � � � ˝ fn/� xF .M.ˇ//�.f �1
1 ˝ f �1

n /:

By Proposition 6.4 the renormalized dimensions of V.�; �/ and V.�; �/� agree, so

F .L; �;�/ D t.F .ˇ//

D t
�

.f1 ˝ � � � ˝ fn/� xF .M.ˇ//�.f �1
1 ˝ f �1

n /
�

D t. xF .M.ˇ//

D xF .xL; N�;�/:

6.2. Internal and external tensor products

The category C of finite-dimensional weight modules is a monoidal category: given

two objects V and W , we can take their tensor product V ˝ W , which becomes a

U-module via the coproduct of U. Because it stays inside C , we call this an internal

tensor product and denote it by ˝.

To construct T , we want to consider an external tensor product that takes two

categories or functors and produces another, larger category or functor. To distinguish

this from the internal tensor product, we denote it by �.

Definition 6.12. Let H1 and H2 be Hopf algebras over C, and write Hi -Mod for

the category of (finite-dimensional) H -modules. The tensor product of H1-Mod and

H2-Mod is the category

H1-Mod�H2-Mod WD .H1 ˝C H2/-Mod

of finite-dimensional H1 ˝C H2-modules. If V1 and V2 are modules for H1 and H2

respectively, then we write

V1 � V2 WD V1 ˝C V2

for the corresponding .H1 ˝C H2/-module, an object of H1-Mod�H2-Mod.
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Now, suppose f1WV1 ! W1 is a morphism of H1-Mod, and similarly for the map

f2WV2 ! W2. Then we define their external tensor product

f1 � f2WV1 � V2 ! W1 �W2

by

.f1 � f2/.v1 � v2/ D f1.v1/� f2.v2/

for all v1 2 V1, v2 2 V2.

This is a special case of the Deligne tensor product [10, Section 1.11] of cat-

egories, which is one reason we use the notation �. Since we only are interested in

subcategories of U-Mod, we do not need the construction in full generality.

Remark 6.13. Notice that ˝ and � commute15 in the sense that

.V1 ˝W1/� .V2 ˝W2/ D .V1 � V2/˝ .W1 �W2/:

Here the tensor products ˝ on the left are the internal tensor products of H1-Mod and

H2-Mod, respectively, while on the right the symbol ˝ represents the internal tensor

product of .H1 ˝C H2/-Mod.

Depending on the context, both sides of the above equation can be useful. For

example, it is much easier to describe an external tensor product of two maps using

the left-hand side.

Definition 6.14. Let H1 and H2 be Hopf algebras as above. Suppose we have func-

tors

Fi W B.SL2.C/
�/ ! Hi -Mod; i D 1; 2;

from a colored braid groupoid to the category modules of a Hopf algebra.16 The

external tensor product of F1 and F2 is the functor

F1 � F2W B.SL2.C/
�/ ! .H1 ˝C H2/-Mod

defined by

.F1 � F2/.�1; : : : ; �n/ D .F1.�1; : : : ; �n//� .F2.�1; : : : ; �n//

on objects and by

.F1 � F2/.ˇ/ D F1.ˇ/� F2.ˇ/

on morphisms.17

15Formally speaking, this equality should be a natural isomorphism.
16

F is an example of such a functor, at least after composing with some forgetful functors.
17Since B.SL2.C/

�/ is a groupoid, it is natural to use the grouplike coproduct ˇ ! ˇ � ˇ

as we have here.
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Remark 6.15. Assume that the Fi are monoidal in the sense that for � 2 SL2.C/

there are objects Fi .�/ of Hi -Mod with

Fi .�1; : : : ; �n/ D Fi .�1/˝ � � � ˝ Fi .�n/:

For example, F and xF are of this type. As noted in Remark 6.13, we can think of the

image of .�1; : : : ; �n/ under their tensor product in two equivalent ways:

n
O

j D1

F1.�j /� F2.�j / D .F1 � F2/.�1; : : : ; �n/ D
�

n
O

j D1

F1.�j /
�

�

�

n
O

j D1

F2.�j /
�

:

The left-hand side of the equation is more useful when trying to understand tensor

products in H1-Mod�H2-Mod, while the right-hand side is more useful when defin-

ing the image of morphisms under F1 � F2.

6.3. The double T

We will define T WD F � xF , up to some scalar factors discussed in Section 6.4. In

connection with the definition of modified traces, we emphasize the subcategory D

of C � xC containing the image of T .

Definition 6.16. Let W be an object of C � xC ; in more detail, this means W is a

finite-dimensional .U ˝C Ucop/-module on which Z ˝C Z acts diagonalizably. We

say W is locally homogeneous if for every z 2 Z and w 2 W ,

.z ˝ 1/ � w D .1˝ S.z// � w:

We define D to be the subcategory of C � xC of locally homogeneous modules. An

objectW of D has degree � 2 SL2.C/
� if

.z ˝ 1/ � w D .1˝ S.z// � w D �.z/w

for every z 2 Z0 and w 2 W .

Example 6.17. Let � be a Z0-character and � a fractional eigenvalue for �. Then

W.�;�/ WD V.�; �/� V.�; �/�

is a simple projective object of D of degree �.

Definition 6.18. Let �i be characters with fractional eigenvalues �i related via the

braidings as

� W . O�1; O�2/ ! . O�4; O�3/;
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where we abbreviate O�i D .�i ; �i /. A holonomy braiding for the modulesW.�i / is a

linear map

C WW. O�1/˝W. O�2/ ! W. O�4/˝W. O�3/

intertwining {R �
{xR in the sense that

C.x � w/ D . {R �
{xR/.x/ � C.w/

for every w 2 W. O�1/˝W. O�2/ and x 2 .U ˝ U
cop/˝ .U ˝ U

cop/. By {R �
{xR we

mean the automorphism of .U ˝ U
cop/˝ .U ˝ U

cop/ that acts by {R on tensor factors

1 and 3 and by {xR on tensor factors 2 and 4. (See Remark 6.15.)

Proposition 6.19. Such a holonomy braiding exists and is unique up to an overall

scalar.

Proof. The argument goes exactly as in Propositions 5.7 and 6.6, but now for simple

.U ˝ Ucop/-modules.

Example 6.20. Let c be the holonomy braiding for the modules V. O�/ from The-

orem 5.16, and let Nc be the holonomy braiding for the modules V. O�/� from The-

orem 6.11. Then setting

C D c � Nc

gives a holonomy braiding for the modulesW. O�/, defined up to a fourth root of unity.

This holonomy braiding corresponds to the external tensor product of functors

F � xF W yB.SL2.C/
�/ ! D � C � xC :

The external tensor product F � xF is almost our desired functor T , but it has the

wrong normalization. We want to define T in a slightly different way.

Lemma 6.21. By Proposition 6.19, there exists a projective functor

zT W yB.SL2.C/
�/ ! D

defined on objects by

zT . O�1; : : : ; �n/ D W. O�1/˝ � � � ˝W. O�n/;

where O�i D .�i ; �i / is a Z0-character along with a choice of fractional eigenvalue.

There is a family

v0. O�1; : : : ; O�n/ 2 zT . O�1; : : : ; O�n/ D
n

O

j D1

W. O�j /
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of vectors which are braiding-invariant in the sense that for every admissible braid

ˇW . O�1; : : : ; O�n/ ! . O�0
1; : : : ; O�0

n/,

zT .ˇ/.v0. O�1; : : : ; O�n// D ˛v0. O�0
1; : : : ; O�0

n/

for some nonzero scalar ˛.

The proof of this lemma is a technical computation involving .U ˝C Ucop/-

modules, so we delay it to Appendix C. We expect an explicit computation of the

braidings [19] will clarify the proof of this lemma and extend it to all roots of unity.

Corollary 6.22. The projective functor zT lifts to a functor

T W yB.SL2.C/
�/ ! D

with no scalar ambiguity.

Proof. We can normalize T by the condition that

T .ˇ/.v0. O�1; : : : ; O�n// D v0. O�0
1; : : : ; O�0

n/:

Because the holonomy braiding is unique up to an overall scalar this uniquely char-

acterizes T .

Once we know that there are appropriate renormalized traces for C we can define

the holonomy invariant corresponding to T .

Theorem 6.23. Let Proj.D/ be the subcategory of projective U ˝ U
cop-modules in

D . Proj.D/ admits a nontrivial modified trace with renormalized dimensions

d.V .�; �/� V.�; �/�/ D 1

.�� ��1/2
;

d.V .�; �/� V.�;��/�/ D � 1

.�� ��1/2
;

which is compatible with the traces on C and xC . That is, letX be a projective object of

C and xX a projective object of xC . Then for any endomorphisms f WX !X , gW xX ˝ xX ,

t.f � g/ D t.f /t.g/

with f � g the obvious endomorphism of X � xX .

Proof. This theorem is easy to prove using the techniques of [12]. For completeness

we include the proof in Appendix B.
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Theorem 6.24. Let .L; �;�/ be a nonsingular framed SL2.C/-link with fractional

eigenvalues �. If necessary, gauge transform so that L is the closure of an admissible

braid ˇ in yB.SL2.C/
�/. Then the renormalized trace

T .L; �;�/ WD t.T .ˇ//

of ˇ defines an invariant of .L; �;�/ with no scalar ambiguity and unchanged by

gauge transformations.

Proof. The proof goes exactly as before, with one exception. Showing directly that

T is gauge-invariant requires a slight extension of the methods of [6] that were used

for F . We do not include the details and instead prove that T is gauge-invariant by

showing that it agrees with the torsion, which is known to be gauge-invariant.

We can now state our second main result:

Theorem 2. Let .L;�;�/ be a nonsingular SL2.C/-link with a choice � of fractional

eigenvalues. If �.L; �/ is the SL2.C/-twisted Reidemeister torsion of S3 n L, then

T .L; �;�/ D �.L; �/:

Since the sign of � is not defined, this equation holds up to sign.

The proof is given in Section 7. As a corollary, we see that (up to sign) T .L;�;�/

does not depend on the framing of L or the choice of �.

6.4. The relationship between F � xF and T

To understand the factor K appearing in (1) and Proposition 6.25, it helps to recall a

similar situation for groups. Suppose Qt is a projective group representation, that is a

homomorphism Qt WG ! GL.V /=C�, where C� is the multiplicative group of nonzero

complex numbers. A lift of Qt is a map t WG ! GL.V / such that the diagram

GL.V /

G GL.V /=C�

�t

Qt

commutes. If t1 and t2 are two lifts, it follows that there is a map kWG ! C� with

t1 D k � t2:

We can think of k as the change in normalization between t1 and t2.
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The situation is similar for F � xF and T , which are lifts of the projective functor
zT of Proposition 6.19. Instead of group representations into GL.V /, we have functors

from groupoids into Vect.C/, and the commutative diagrams are

Vect.C/

yB.SL2.C/
�/ Vect.C/=C�

�
T

zT

and

Vect.C/=hii

yB.SL2.C/
�/ Vect.C/=C�

�
F � xF

zT

There is also a slight complication in that F � xF is only a lift up to powers of i , so

its image lies in C� modulo the subgroup hii of powers of i .

Thinking of the group C�=hii as a groupoid with a single object, we see as before

that there is a functor KW yB.SL2.C/
�/ ! C�=hii with

T D K � F � xF :

We think of K as an anomaly, as it comes from an invertible theory.18

The functor K gives a holonomy invariant of links (defined up to fourth roots of

unity) by evaluating on colored braids, as usual.19 We conclude that:

Proposition 6.25. There is a holonomy invariant K.L; �;�/ such that

T .L; �;�/ D K.L; �;�/F .L; �;�/ xF .L; �;�/

up to fourth roots of unity.

The proposition completely characterizes K , but gives no information about how

to compute it, other than separately computing F � xF and T and taking their ratio.

On the other hand, it is fairly difficult to compute F � xF because there is no explicit

formula for the braiding or its determinant. An explicit formula for K is therefore not

particularly useful either. We hope to clarify this situation in future work.

Remark 6.26. In [19], the author and Reshetikhin explicitly compute the matrix

coefficients of the braiding for F , xF , and T . We expect that this computation will

yield a different normalization F 0 of F which will satisfy F 0
� F 0 D T , or at least

K
0 � F

0
� F 0 D T for some K

0 with an explicit description.

18That is, it is an invertible element in the monoid of functors yB.SL2.C/
�/ ! Vect.C/ with

product �.
19Here we construct a trace by interpreting endomorphisms of C�=hii as scalars in the obvi-

ous way, equivalently by assigning the trivial U� -module C (modified) quantum dimension 1.



Holonomy invariants of links and nonabelian Reidemeister torsion 111

Remark 6.27. For any biquandle X there is a groupoid B.X/ of braids colored by

X generalizing B.SL2.C/
�/. We expect that functors LW B.X/ ! A for an abelian

group A (such as K) can be identified with biquandle 2-cocycles [15] on X with

values in A.

Such a functor L is determined by its values on colored braid generators, and a

biquandle 2-cochain is essentially an A-valued function on colored braid generators.

We can identify the colored Reidemeister III relation for functors with the 2-cocycle

condition for cochains.

7. Nonabelian torsion is a quantum invariant

In this section we apply the duality of Theorem 1 to prove Theorem 2.

7.1. Graded multiplicity spaces for D

To prove Theorem 2, we want to understand the decomposition of

T . O�1; : : : ; O�n/ D W. O�1/˝ � � � ˝W. O�n/

into simple summands. To guarantee that such a decomposition exists, we need the

product character �1 � � ��n to lie in the semisimple part of D .

Definition 7.1. Let a D . O�1; : : : ; O�n/ be a tuple of nonsingular extended characters,

that is an object of yB.SL2.C/
�/. We say a has nonsingular total holonomy if �1 � � ��n

is nonsingular, that is if  .�1 � � ��n/ does not have 1 as an eigenvalue.

Notice that by Proposition 3.9 this condition is also necessary to compute the

torsion using the reduced Burau representation B. By the same proposition we can

always modify a colored braid via stabilization moves so that is has nonsingular total

holonomy.

From now on, let a D . O�1; : : : ; O�n/ be a tuple of nonsingular extended characters

with nonsingular total holonomy. Write �D �1; : : : ; �n for the product character, and

choose a fractional eigenvalue � for �.

By Proposition 5.5, we have

n
O

iD1

V. O�/Š V.�;�/˚2n�2 ˚ V.�;��/˚2n�2 DX0 ˝C V.�;�/˚X1 ˝C V.�;��/

where X0 and X1 are multiplicity spaces. Similarly, we have

n
O

iD1

V. O�/� Š xX0 ˝C V.�; �/
� ˚ xX1 ˝C V.�;��/�

for multiplicity spaces xX0 and xX1.
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Definition 7.2. For "i 2 Z=2, set

W"1"2
.�; �/ WD V.�; .�1/"1�/� V.�; .�1/"2�/�:

In terms of our previous notation,W00.�; �/ D W.�;�/.

It is not hard to see (using Theorem 5.2) that every simple object of D with char-

acter � is one of the modulesW"1"2
.�; �/.

Proposition 7.3. (1) The module T . O�1; : : : ; O�n/ decomposes as

T . O�1; : : : ; O�n/ D
n

O

iD1

W. O�i / Š
M

"1;"22Z=2

.X"1
˝ xX"2

/˝W"1"2
.�; �/:

(2) The renormalized dimension of W"1"2
.�; �/ is

d.W"1"2
.�; �// D .�1/"1C"2

.� � ��1/2
:

(3) Let f 2 EndD .T . O�1; : : : ; O�n// be an endomorphism. Then there are linear

maps g"1"2
2 EndC.X"1

˝ xX"2
/ with

f D
M

"1;"22Z=2

g"1"2
˝ idW"1"2

.�;�/;

and the renormalized trace of f is given by

t.f / D
X

"1;"22Z=2

.�1/"1C"2

.�� ��1/2
tr g"1"2

:

Proof. (1) As discussed before the proof, this follows from Proposition 5.5.

(2) The dimensions of the modulesW"1"2
.�; �/ are computed in Theorem 6.23.

(3) Because the W"1"2
.�; �/ are simple we can apply Schur’s Lemma.

The second claim about the trace follows from (2).

Part (3) says that the trace of an endomorphism of T . O�1; : : : ; O�n/ can be computed

as a Z=2-graded trace on the multiplicity space.

Definition 7.4. A super vector space is a Z=2-graded vector space Y D Y0 ˚ Y1.

We call Y0 and Y1 the even and odd parts, respectively. A morphism f D f0 ˚ f1 of

super vector spaces preserves the grading, and we define the supertrace by

str f WD tr f0 � tr f1:

Example 7.5. If W is an ordinary vector space, then the exterior algebra
V

W

becomes a super vector space by setting the image ofW in
V

W to be odd. A Clifford

algebra on W becomes a super vector space in the same way.
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Definition 7.6. The multiplicity superspace of T . O�1; : : : ; O�n/ is the super vector

space

Y D Y. O�1; : : : ; O�n/

with even part

Y0 WD X0 ˝ xX0 ˚X1 ˝ xX1

and odd part

Y1 WD X0 ˝ xX1 ˚X1 ˝ xX0:

We see that the problem of computing the modified trace t.T .ˇ// of a braid can

be reduced to understanding the action of T .ˇ/ on the multiplicity superspace Y .

To solve this problem, we identify Y with the exterior algebra
V

H1.Dn; �/
lf of the

twisted homology, then apply Theorem 1 to compute the braid action on Y in terms

of the Burau representation B.

We describe a slightly wrong way to do this, then explain how to fix it.

Incorrect proof. As in the previous section, let a D . O�1; : : : ; O�n/ be a tuple of nonsin-

gular extended characters with nonsingular total holonomy.

Recall the vectors v.a/ 2 T .a/ that are invariant under the braiding. We can show

that � � v.a/ D .� � ��1/v.a/, so v.a/ lies in the even part of Y . In Theorem 1 we

described a subspace Hn � U
˝n that supercommutes with�.U/. If x1; : : : ; xk 2 Hn,

then the vector

x1 � � � xk � v.a/

will lie in Y.�1/k , because the xi anticommute with the element �.�/ whose action

gives the grading. We can show that the action of Hn is faithful, so that the vectors

ˇ
�1

j1
� � �ˇ�k

jk
� v.a/

give a basis of a subspace of the multiplicity superspace Y . By dimension counting

they give a basis of all of Y . Finally, by Theorem 1 we can identify the ˇ�
j with a basis

of H1.Dn; �/
lf, so we can similarly identify Y with the Clifford algebra Cn generated

by Hn.

7.2. Schur–Weyl duality for T

The problem with the previous discussion is that v.a/ lies not in a U-module, but in

a U ˝ U
cop-module. To fix this, we need to introduce mirrored versions xHn of the

operators Hn.
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Definition 7.7. For j D 1; : : : ; n, set

N̨1
j WD Ej�

�1
j Kj C1 � � �Kn;

N̨2
j WD zFj�

�1
j Kj C1 � � �Kn;

and

Ň�
j WD ˛�

j � ˛�
j C1:

We write xHn for the .Z0Œ�
�2�/-span of the ˇ�

j and xCn for the algebra generated

by xHn.

Lemma 7.8. xCn is the Clifford algebra on xHn and it supercommutes with the image

of U under the opposite coproduct:

¹�opK; Ň�
kº D 0; Œ�opE; Ň�

k�D 0;

Œ�op zF; Ň�
k�D 0; ¹�op�; Ň�

kº D 0:

Proof. This follows from the relations

¹ N̨1
j ; N̨1

kº D 2ıjkE
2
j �

�2
j K2

j C1 � � �K2
n;

¹ N̨2
j ; N̨2

kº D 2ıjkK
2
j F

2
j �

�2
j K2

j C1 � � �K2
n;

¹ N̨1
j ; N̨2

kº D 2iıjk.1�K�2
j /��2

j K2
j C1 � � �K2

n;

and then from the same argument as in the proof of Theorem 1.

Lemma 7.9. The braiding automorphism
{xR for U

cop acts by

{xR. N̨1
1/ D N̨1

2;

{xR. N̨1
2/ D K�2

2 N̨1
1 C .1 �K�2

2 / N̨1
2 CK�2

2 E2
2 . N̨2

1 � N̨ 2
2/;

{xR. N̨2
1/ D .K2

1 � 1/ N̨1
1 CK2

1 N̨2
2 CK2

1F
2
1 . N̨1

1 � N̨ 1
2/;

{xR. N̨2
2/ D N̨2

1;

so the matrix of
{xRi;iC1 acting on xHn is

I2.i�2/ ˚

2

6

6

6

6

6

6

6

4

1 0 K2
i �K2

i F
2
i

0 1 0 1

�K2
i K2

i F
2
i

�K�2
iC1E

2
iC1 �K�2

iC1

1 0 1 0

K�2
iC1E

2
iC1 K�2

iC1 0 1

3

7

7

7

7

7

7

7

5

˚ I2.n�1/�2.iC1/: (9)
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Recall the functor A (Definition 2.19) constructed from the automorphism {R. The

mirror version xA is constructed in the same way from {xR, and we have shown that it

also satisfies a Schur–Weyl duality:

Lemma 7.10. Let ˇW � ! �0 be an admissible braid in SL2.C/, and let � and �0 cor-

respond to characters �i and �0
i , respectively. Define linear maps N'�W H1.DnI �/ !

xHn by

N'�.v
�
j / D Ň�

j :

Then the following diagram commutes:

H1.DnI �/lf H1.DnI �/lf

xHn=Ker.��1
1 ˝ � � � ˝ ��1

n / xHn=Ker..�0
1/

�1 ˝ � � � ˝ .�0
n/

�1/

B.ˇ/

'� '�0

xA.ˇ/

Proof. This is proved exactly the same way as Theorem 1 but using the computations

above. A key observation is that the matrix (9) is sent to the matrix (6) under the map

.�0
1/

�1 ˝ � � � ˝ .�0
n/

�1 D .�0
1 ı S/˝ � � � ˝ .�0

n ı S/.

Now, that we have proved Schur–Weyl duality twice (the first time was The-

orem 1) we are prepared to prove it one final time.

Definition 7.11. Set

�
j WD ˛�

j � 1C�K � N̨�
j ;

��
j WD ˇ�

j � 1C�K � Ň�
j D �

j � �
j C1:

Write Hn for the .Z0Œ�
�2�˝ Z0Œ�

�2�/˝n-span of the ��
j and Cn for the algebra

generated by Hn. As before, Cn is a Clifford algebra.

Remark 7.12. Here byX � Y we mean an element of U ˝ U
cop, the algebra under-

lying D , and we write expressions like

X � Y ˝Z �W

for operators in .U ˝ Ucop/˝2 to emphasize the different tensor factors. The multiple

tensor products here can be hard to parse, so we give an example. If

˛ D X1 ˝ X2; N̨ D Y1 ˝ Y2;

by ˛ � 1C�K � N̨ we mean

.X1 � 1/˝ .X2 � 1/C .K � Y1/˝ .K � Y2/:
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Theorem 7.13. Let ˇW � ! �0 be an admissible braid in SL2.C/, and let � and �0

correspond to characters �i and �0
i , respectively. Define linear maps

ˆ�W H1.DnI �/lf ! Hn

by

ˆ�.v
�
j / D ��

j :

Then the diagram

H1.DnI �/lf H1.DnI �/lf

Hn=� Hn=�
0

B.ˇ/

ˆ� ˆ�0

A� xA.ˇ/

commutes, where

Hn=� WD Hn=Ker..�1 � ��1
1 /˝ � � � ˝ .�n � ��1

n //

and similarly for �0.

Proof. It suffices to check braid generators. By the definition of the holonomy braid-

ing, we have

T .�i/.�
�
k � v0.a// D . {Ri;iC1 �

{xRi;iC1/.�
�
k / � T .�i/.v0.a//

D . {Ri;iC1 �
{xRi;iC1/.�

�
k / � v0.a

0/

where we have used the invariance of the family v0.�/ in the second equality. Since

. {Ri;iC1 �
{xRi;iC1/.�

�
k / D {Ri;iC1.ˇ

�
k/� {R�

i;iC1.1/C {Ri;iC1.�K/�
{xRi;iC1. Ň�

k/

D {Ri;iC1.ˇ
�
k/� 1C�K �

{xRi;iC1. Ň�
k/

the result follows from Theorem 1 and Lemma 7.10.

7.3. Schur–Weyl duality for D

We still are not quite ready to use Theorem 1 to compute the multiplicity superspaces.

The problem is that Cn does not quite commute with the superalgebra U ˝ U
cop,

regardless of whether we take the ordinary or super tensor product. Fortunately, this

is not necessary, because we do not need to compute the detailed multiplicity spaces

X"1
˝ xX"2

, only the spaces Y0 and Y1. To accomplish this it suffices to consider a

weaker sort of supercommutativity.
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Let W be a U ˝ U
cop-module. It becomes a U-module via the action (w 2 W )

K � w D .K �K/ � w;
E � w D .E �K C 1�E/ � w;
F � w D .F � 1CK�1

� F / � w;

that is by embedding U into U ˝ U
cop via the coproduct.

Proposition 7.14. As a U-module,W"1"2
.�;�/ Š P"1C"2

, where P0 and P1 are the

modules of Definitions A.2 and A.4.

Proof. Apply Proposition A.5.

In particular, to compute the spaces Y". O�1; : : : ; O�n/ it suffices to understand them

as U-modules instead of U ˝ U
cop-modules.

Lemma 7.15. Let aD . O�1; : : : ; O�n/ be a tuple of nonsingular extended Z0-characters

with nonsingular total holonomy. Write �a for the structure map

�aW .U � U/˝n ! EndC.T .a//:

Then

(1) �a.Cn/ is an exterior algebra on 2.n� 1/ generators,

(2) Cn acts faithfully on T .a/, and

(3) thinking of T .a/ as a U-module, �a.Cn/ super-commutes with U.

Proof. (1) We show that the anticommutators

�a.¹�
j ; 

�
k º/

vanish, so that the image is an exterior algebra on the 2n independent generators

�a.
�
k
/, k D 1; : : : ; n, � D 1; 2. Since Cn is generated by the ��

k
D �

k
� �

kC1
we get

the desired result.

Observe that, because ¹˛�
k
; �Kº D 0,

¹�
j ; 

�
k º D ¹˛�

j ; ˛
�
kº � 1C�K2

� ¹ N̨�
j ; N̨�

kº:

By using the anticommutator computations of Lemmas 4.5 and 7.8 we can show dir-

ectly that these vanish. For example, the above expression vanishes unless j D k. We

give the case � D � D 1 in detail; the remaining others follow similarly.

Observe that

¹˛1
j ; ˛

1
j º � 1C�K2

� ¹ N̨1
j ; N̨1

j º
D 2K2

1 � � �K2
j �1E

2
j �

�2
j � 1C 2K1 � � �K2

n �E2
j �

�2
j K2

j C1 � � �K2
n :
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Write O�j .K
2/ D �j , O�j .E

2/ D "j , O�j .�
2/ D !2

j , so that

�a.K
2
j � 1/D �j ; �a.1�K2

j /D ��1
j ;

�a.E
2
j � 1/D "j ; �a.1�E2

j /D �"j ��1
j ;

�a.�
2
j � 1/D !2

j ; �a.1��2
j /D !2

j ;

using the fact that the representations in the second half of the � product (correspond-

ing to xF ) use the inverse characters. Hence,

�a.2K
2
1 � � �K2

j �1E
2
j �

�2
j � 1C 2K1 � � �K2

n �E2
j �

�2
j K2

j C1 � � �K2
n/

D 2

!2
j

�

�1 � � � �j �1"j C �1 � � � �n.�"j ��1
j /��1

j C1 � � � ��1
n

�

D 0

as claimed.

(2) It is enough to show that the operators �a.
�
k
/ all act independently. Since up

to a scalar 1
k
; 2

k
only act on the k-th ˝-factor of the product

T .a/ D
n

O

j D1

V. O�j /� V. O�j /
�

it is enough to check that 1
k

and 2
k

act independently. It is not hard to compute

explicitly that the vectors

�a.
1
k / � v0. O�1; : : : ; O�n/ and �a.

2
k / � v0. O�1; : : : ; O�n/

are independent, where v0 is the invariant vector of Lemma 6.21, and (2) follows.

(3) We can check directly that

Œ�E ��opK C 1��opE; ��
k �

D Œ�E ��opK C 1��opE;ˇ�
k � 1C�K � Ň�

k�

D Œ�E; ˇ�
k�� 1C�K � Œ�opE; Ň�

k�

D 0:

The other generatorsK; zF follow similarly.

Corollary 7.16. The Z=2-graded multiplicity space Y.a/ of T .a/ is isomorphic as a

vector space to Cn.

Proof. This is simply an application of (a super version) of the double centralizer

theorem. By (3) of Lemma 7.15, �a induces an inclusion Cn ! Y.a/, and by (2)

this inclusion is injective. But both spaces have dimension 22n�2 over C, so it is an

isomorphism.
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We can describe a basis for Y.a/ explicitly. Let v0.a/ be the invariant vector of

Lemma 6.21. By Lemma 7.15 and its corollary, a basis for the multiplicity space Y.a/

consists of the vectors

.�1

k1
1

� � � �1

k1
s1

�2

k2
1

� � � �2

k2
s2

/ � v0.a/

where 1 < k�
1 < � � � < k�

s�
and s� D 0; : : : ; n � 1 for � D 1; 2.

By Corollary 7.16 and Theorem 7.13, we get

Corollary 7.17 (Schur–Weyl duality for modules). Let aD .�1; : : : ; �n/ be a tuple of

nonsingular extended characters with nonsingular total holonomy, and let ˇW a ! a0

be an admissible braid, where a0 D .�0
1; : : : ; �

0
n/. Write �; �0 for the corresponding

representations of �1.Dn/.

The linear maps ˆa of Theorem 7.13 extend to super vector space isomorphisms

^

ˆ�W
^

H1.DnI �/lf ! Cn=Ker� ! Y.a/

where we consider the exterior algebra as a super vector space in the usual way,20

and this identification is compatible with the braiding in the sense that the diagram

V

H1.DnI �/lf
V

H1.DnI �0/lf

Y.a/ Y.a0/

V

B.ˇ/

V

ˆ�

V

ˆ�0

T .ˇ/

commutes.

7.4. Conclusion of the proof

We can now prove Theorem 2. First, recall a fact about exterior powers:

Proposition 7.18. LetW be a vector space of dimensionN and AWW ! W a linear

map. Write
V

A for the induced map
V

W !
V

W on the exterior algebra of W .

Then,

str
�

^

A
�

D .�1/N det.1 �A/:

Proof. Recall that

det.�� A/ D
N

X

kD0

�N �k.�1/N �k tr
�

^k
A

�

;

20As in Example 7.5, v1 ^ � � � ^ vk lies in degree k mod 2.
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so in particular

det.1� A/ D .�1/N
N

X

kD0

.�1/k tr
�

^k
A

�

D .�1/N str
�

^

A
�

:

Proof of Theorem 2. Let .L; �;�/ be a nonsingular SL2.C/-link with a choice � of

fractional eigenvalues. By Proposition 3.9 we can represent .L;�/ as the closure of an

SL2.C/-braid ˇ0 with nonsingular total holonomy, and by Proposition 2.12 we can

pull ˇ0 back to a nonsingular braid ˇW a ! a in yB.SL2.C/
�/, possibly after a gauge

transformation. By definition,

T .L; �;�/ D t.T .ˇ//:

Choose a fractional eigenvalue � for the total holonomy  .a/ of a. By Corol-

lary 7.17 the intertwiner T .ˇ/ factors through the multiplicity superspace Y.a/ of

T .a/ as
V

B.ˇ/, so by Propositions 7.3 and 7.18 we have

t.T .ˇ// D str.
V

B.ˇ//

.�� ��1/2
D det.1� B.ˇ//

.�� ��1/2
:

The total holonomy  .a/ has eigenvalues �2 and ��2, so

det.1�  .a// D .1 � �2/.1� ��2/ D ��2 � ��2 C 2 D �.�� ��1/2:

Therefore

t.T .ˇ// D det.1 � xB.ˇ//
.� � ��1/2

D �det.1� xB.ˇ//
det.1�  .a//

D ��.L; �/

by Proposition 3.9. Since �.L; �/ is only defined up to sign, �.L; �/ D t.T .ˇ// D
T .L; �;�/ as claimed.

A. Unit-graded representations

In Section 7 and Appendix B we consider certain modules corresponding to singular

characters. This section gives some of their properties.

Example A.1. As usual for the category of representations of a Hopf algebra, the

tensor unit 1 is the vector space C, with the action of U given by the counit:

".K/ D 1; ".E/ D ".F / D 0:

This module is irreducible, with Z0-character " D "jZ0
. The corresponding element

of SL2.C/
� is the identity element, which we expect, since for a module V with

character �, the character of 1 ˝ V Š V should be " � � D �.
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Because C is not semisimple, 1 is not a projective U-module. It is not hard to

describe its projective cover, however.

Definition A.2. P0 is the 4-dimensional U-module described by

K 7!

0

B

B

B

@

1

�1
�1

1

1

C

C

C

A

; E 7!

0

B

B

B

@

0 0 0 0

1 0 0 0

0 0 0 0

0 0 1 0

1

C

C

C

A

; F 7!

0

B

B

B

@

0 0 0 0

0 0 0 0

�i 0 0 0

0 �i 0 0

1

C

C

C

A

;

P0 has Z0-character the counit ", thought of as an algebra homomorphism Z0 ! C.

Note that P0 is indecomposable, but not irreducible, and that � does not act diagon-

alizably on P0.

The action of the generators of U on P0 is best described diagrammatically. There

is a basis x; y1; y2; z of P0 with

K � x D x; K � z D z; K � yi D �yi ;

and with the action of E and F given by the diagram

x

y1 y2

z

E F

F E

where missing arrows mean action by 0, e.g., E � y1 D 0.

Proposition A.3. (1) For any nonsingular Z0-character � with fractional eigen-

value �,

V.�; �/˝ V.�; �/� Š P0:

(2) P0 is the projective cover (dually, the injective hull) of the tensor unit 1.

(3) The vector spaces HomU.P0; 1/ and HomU.1; P0/ are 1-dimensional. The

isomorphism in (1) takes evV to a basis of HomU.P0;1/ and coevV to a basis

of21 HomU.1; P0/.

21Here ev and coev are part of the pivotal structure on the category of U-weight modules.

See Proposition 5.12 for details.
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Proof. Recall the basis j 0i; j 1i of V.�; �/ given in Example 5.4, and let h0 j; h1 j
be the dual basis of V.�; �/�. We consider the case " ¤ 0; the other cases follow by

similar reasoning. Let ˛ be a square root ˛2 D � of �, and set ! D � � ��1. Then

the generators act on the dual space by

��.K/ D
�

˛�1 0

0 �˛�1

�

; ��.E/ D
�

0 �˛�1

"˛�1 0

�

;

��.F / D
�

0 i˛.! � ˛ C ˛�1/="

�i˛.! C ˛ � ˛�1/ 0

�

:

Define a linear map f WP0 ! V.�; �/˝ V.�; �/� by

f .x/ D j 0ih0 j � j 1ih1 j;

f .y1/ D 2˛�1."j 0ih1 j C j 1ih0 j/;

f .y2/ D 2i
�

.˛ � ˛�1 C !/j 0ih1 j C "�1.˛ � ˛�1 � !/j 1ih0 j
�

;

f .z/ D �4i!
˛

�

j 0ih0 j C j 1ih1 j
�

;

where we write j j ihk j D j j i ˝ hk j. It is not hard to check that f is an isomorphism

of U-modules, which proves (1).

For (2), first observe that V.�; �/ is projective by Theorem 5.2. Because C is

pivotal, V.�; �/� is also projective, so the tensor product V.�; �/˝ V.�; �/� Š P0

is projective (and injective) as well.

To show that P0 is the injective hull of 1, we must show that the submodule N

spanned by z is essential, i.e., that for any other submodule M of P0, N \M D 0

impliesM D 0. This is clear from the diagram describing P0: ifM contains x, y1, or

y2, then it must contain z, so it has a nonzero intersection with N .

It remains to prove (3). It is not hard to see that P0 is indecomposable, so by (2) it

satisfies the hypotheses of [12, Lemma 5.1]. It follows that the spaces HomU.P0; 1/

and HomU.1; P0/ are 1-dimensional, as 1 is both the head and the tail of P0. By (1),

evV .1/ D j 0ih0 j � j 1ih1 j D f .x/

and similarly

coevV f .x/ D coevV f .y1/ D coevV f .y2/ D 0 and coevV f .z/ D �4i
˛

¤ 0;

so evV and coevV give bases as claimed.

Finally, we consider two more modules with character ".
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Definition A.4. The parity module … is the 1-dimensional U-representation with

action

K 7! �1; E 7! 0; F 7! 0:

Its projective cover is

P1 WD …˝ P0:

It is easy to describe P1: the action of U is the same, except that the sign of K is

switched. The name “parity module” is because of the following proposition:

Proposition A.5. For any admissible Z0-character � with fractional eigenvalue �,

…˝ V.�; �/ Š V.�; �/˝… Š V.�;��/:

Similarly, we have

V.�; �/˝ V.�;��/� Š P1:

Proof. V.�; �/˝ V.�;��/� Š V.�; �/˝ V.�; �/� ˝… Š P0 ˝… Š P1:

B. Construction of modified traces

We apply the methods of Geer, Kujawa, and Patureau-Mirand [12] to construct the

modified traces of Section 5.4. It is simple to derive our results from their general

framework, but we include the details for logical completeness. The approach of [12]

is rather abstract, and few concrete examples have appeared in the literature, so this

appendix may also be helpful as a guide to applying their techniques to quantum

topology.

In this appendix we frequently state results for a pivotal C-linear category C,

by which mean a pivotal category whose hom spaces are vector spaces over C and

whose tensor product is C-bilinear. C , xC , and D (or more generally the category of

representations of a pivotal Hopf C-algebra) are all examples of such categories.

More specific results of [12] place extra conditions on C (local finiteness) and on

certain distinguished objects (absolute decomposability, end-nilpotency, etc.) which

are satisfied for finite-dimensional representations of an algebra over an algebraic-

ally closed field, perhaps with some diagonalizability assumptions. All our examples

satisfy these hypotheses.

B.1. Projective objects, ideals, and traces

Definition B.1. Let C be a category. We say an object P of C is projective if for any

epimorphism pWX ! Y and any map f WP ! Y , there is a lift gWP ! X such that
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the diagram commutes:

X

P Y

p
g

f

We say I is injective if I is a projective object in C
op, i.e., if I satisfies the opposite

of the above diagram. We write Proj.C/ for the class of projective objects of C.

Definition B.2. Let C be a pivotal C-category. A right (left) ideal I is a full subcat-

egory of C that is:

(1) closed under right (left) tensor products: if V is an object of I and W is any

object of C, then V ˝W (W ˝ V ) is an object of I ;

(2) closed under retracts: if V is an object of I , W is any object of C, and there

are morphisms f; g with

W V W
f

idW

g

commuting, thenW is an object of I .

An ideal of C is a full subcategory which is both a left and right ideal.

Proposition B.3. Let C be a pivotal category. The projective and injective objects

coincide and Proj.C/ is an ideal.

Proof. See [14, Lemma 17].

Definition B.4. LetW be an object of a pivotal C-category C. The right partial trace

is the map

trr
W W HomC.V ˝W;X ˝W / ! HomC.V;X/

defined by

trr
W .g/ D .idX ˝ evW /.g ˝ idW �/.idV ˝ coevW /

where evW W 1 ! W ˝W � and coevW WW ˝W � ! 1 are the maps coming from the

pivotal structure of C and 1 is the tensor unit of C. (See Proposition 5.12.)

Now, let I be a right ideal in C. A (right) modified trace (or m-trace) on I is a

family of C-linear functions

¹tV W HomC.V; V / ! CºV 2I

for every object V of I that are
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(1) compatible with partial traces: if V 2 I and W 2 C, then for any morphism

f 2 HomC.V ˝W;V ˝W /,

tV ˝W .f / D tV .tr
r
W .f //I

(2) cyclic: if U; V 2 I , then for any morphisms f WV ! U , gWU ! V , we have

tV .gf / D tU .fg/:

We can similarly define left partial traces and left modified traces. The pivotal

structure on C means that a right modified trace on an ideal will also give a left

modified trace.

With the usual graphical notation for pivotal categories, we can draw the right

partial trace of a map f WV ˝W ! X ˝W as

V
f

W

X

Here we are breaking convention by writing the diagram left-to-right instead of ver-

tically.22

B.2. Construction of modified traces

Let C be a pivotal C-category with tensor unit 1. Consider the projective cover23

P ! 1, and assume that P is finite-dimensional. Then P is indecomposable and

projective and the space HomC.P; 1/ is 1-dimensional over C. Because C is pivotal,

P is also injective and HomC.1; P / is similarly 1-dimensional.

The choice of P and a basis of each space are the data necessary to define a

modified trace on Proj.C/, which we call a trace tuple. Our definition is a special

case ([12, Section 5.3]) of the more general trace tuples of [12], setting ˛ D ˇ D 1.

These more general traces can be defined for larger ideals than Proj.C/.

Definition B.5. Let C be a pivotal C-category with tensor unit 1, and let P ! 1

be a finite-dimensional cover. .P; �; �/ is a trace tuple if P is indecomposable and

projective, � is a basis of HomC.1; P /, and � is a basis of HomC.P; 1/.

22When drawing string diagrams in this manner, we interpret the “right” in right trace to

mean “on the right as seen by f .”
23If C is semisimple, then 1 is projective and we recover the usual trace in a pivotal category.
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Example B.6. Let C D C , the category of finite-dimensional U-weight modules, and

let P0 be the projective cover of 1 defined in Appendix A. Let V be any of the irredu-

cible 2-dimensional modules of Section 5.2. Then .P0; coevV ; evV / is a trace tuple.

BecauseP is indecomposable, projective and finite-dimensional, any endomorph-

ism f 2 EndC.P / decomposes f D aC n as an automorphism plus a nilpotent part.

Because C is algebraically closed, a is a scalar, and we write hf i D a 2 C.

If g 2 HomC.1; P /; h 2 HomC.P; 1/ are any morphisms, we can similarly define

hgi�; hhi� 2 C by

g D hgi��; h D hhi��:

Lemma B.7. Let .P; �; �/ be a trace tuple. Then for any f 2 EndC.P /,

(1) �f D hf i�� ,

(2) f � D hf i��,

(3) hf i D hf �i� D h�f i� .

Proof. We have f D hf i idP Cn for some nilpotent n. The first statement follows

from �nD 0. Since � is a basis for HomC.P;1/, we have �nD �� for some � 2 C.

But nk D 0 for some k, so �k D 0 H) � D 0 because C is an integral domain. The

second statement follows from a similar argument, and the third from the first two.

Lemma B.8. Let .P; �;�/ be a trace tuple for C and V a projective object. Then there

are maps �V WP ˝ V ! V , �V WV ! P ˝ V such that the diagrams commute:

P ˝ V

V V Š 1 ˝ V

�V

�˝idV

�˝idV

P ˝ V

V V Š 1 ˝ V

�˝idV
�V

idV

Proof. V is projective and � ˝ idV WP ˝ V ! 1 ˝ V ! V is an epimorphism, so a

lift �V exists. The dual argument works for �V .

Theorem B.9. Let .P; �; �/ be a trace tuple for C and choose maps as in Lemma B.8.

Then there exists a right modified trace on Proj.C/ defined for f 2 HomC.V; V / by

tV .f / D htrr
V .�V f /i� D htrr

V .�V f /i� :

This is a special case of [12, Theorem 4.4].

Proof. In the diagrams in this proof, we identify

EndC.P /=J Š HomC.1; P / Š HomC.P; 1/ Š C
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via the maps h�i, h�i�, and h�i� . Here J is the ideal of nilpotent elements of the

space EndC.P /, so when we draw a diagram representing a morphism P ! P we

really mean its image in this quotient.

�V and �V exist by Lemma B.8, but are not unique. We show that the trace does

not depend on the choice of either. In graphical notation, trr
V .�V f / can be written as

P
f V

Since �V .�˝ idV / D idV , we can rewrite this morphism as

P
f VV

where � has no left-hand arrows because it is a map 1 ! P . By Lemma B.7, the above

diagram is equal to

P
f VV

But since .� ˝ idV /�V D idV , this is equal to trr
V .f �V /:

P
fV

It follows that

htrr
V .�V f /i� D htrr

V .�V f /i�
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as claimed.

To check the compatibility with the partial trace, let f WV ˝W !V ˝W . Choose

�V with .� ˝ idV /�V D idV , and notice that we can set �V ˝W D �V ˝ idW . Then

tV ˝W .f / is

W

V

f V

P

which is clearly equal to tV .tr
r
W .f //.

Finally, we show cyclicity. Suppose f WV ! W and gWW ! V . Then tV .gf / is

equal to

D

f g
g

V fV

by the cyclicity of the usual trace. But by inserting .� ˝ idW /�W D idW and then

applying Lemma B.7 as before, we can rewrite this as

f WV

D

g

f WV
g
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By absorbing � into �V , we see that this is equal to

D tW .fg/:
fg W

It can be shown that the modified trace on Proj.C/ is essentially unique; choosing

different � or � will simply change t by an overall scalar. The paper [12] proves

this and a number of other useful results about these modified traces, such as non-

degeneracy and compatibility with the left-hand version of the construction.

B.3. Application to U

Recall the projective U-module P0 defined in Appendix A with basis x; y1; y2; z. As

before, we can describe the action of E and F via the diagram

x

y1 y2

z

E F

F E

Write �W1 !P0 for the linear map sending 12 C to z, and �WP0 ! 1 for the projection

onto the subspace spanned by x. It is not hard to see that these are morphisms of U-

modules.

Proposition B.10. .P0; 2�; �/ is a trace tuple defining the modified trace of The-

orem 5.13.

Proof. It is clear from Proposition A.3 that it is a trace tuple, so it suffices to check

that it gives the same renormalized dimensions as in Theorem 5.13. Let V D V.�;!/

be an irreducible 2-dimensional module. It is not difficult to find a U-module map �V

with

P0 ˝ V

V V Š 1 ˝ V

�˝idV
�V

idV

Then we can check that

trr
V .�v idV / D 2

!
�
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and since we chose 2� in our trace tuple the renormalized dimension of V is !�1 as

claimed.

We conclude by the constructing the modified traces for D .

Proof of Theorem 6.23. The modified trace on D is constructed using the trace tuple

.P0 � P0; 4�� �; � � �/

obtained as the product of the tuples for C and xC . (Recall that P �
0 Š P0.) We show

that this trace is compatible with the traces on the factors, in the sense that if V; xV are

objects and f WV ! V , gW xV ! xV are morphisms in C and xC , respectively, then

t.f � g/ D t.f /t.g/

The computation of the renormalized dimensions for D follows immediately.

Choose lifts �V ; � xV as usual. Then the diagram

.P0 � P0/˝ .V � xV /

V � xV V � xV

.���/˝.idV � id xV
/

�V �� xV

id
V � xV

commutes, so �V � � xV is a lift for V � xV . But then we can use the compatibility of

the pivotal structures to write

t.f � g/ D htrr

V � xV
..�V � � xV /.f � g//i���

D htrr
V .�V f /� trr

xV
.� xV g/i���

D htrr
V .�V f /i�htrr

xV
.� xV g/i�

D t.f /t.g/:

C. Proof of Lemma 6.21

The idea is to consider the U ˝C U
cop-modules W. O�i/ appearing in the image of T

as U-modules. Then, writing ˝ for the product of U-modules,

V. O�i /˝ V. O�i/
� Š P0

where P0 is the module of Definition A.2. W. O�i / is not the same as P0, but we can

still exploit this similarity to simplify our computations.
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P0 is an indecomposable but reducible module, and can be characterized as the

injective hull of the tensor unit; the inclusion is the coevaluation map

coevVi
W 1 ! V. O�i /˝ V. O�i/

� Š P0

whose image is (a constant times) the vector

z WD j 0i ˝ h0 j C j 1i ˝ h1 j;

writing j 0i; j 1i for the usual basis of V. O�i/ (see Section 5.2) and h0 j; h1 j for the dual

basis of V. O�i /
�.

The choice of inclusion map above fixes a canonical U-module isomorphism

P0 ! V. O�/˝ V. O�/ for every nonsingular O�. Forgetting the U-module structure, we

have a family of vector space isomorphisms

f O�WP0 ! V. O�/� V. O�/�

and we define the invariant vectors by

v0. O�1; : : : ; O�n/ WD .f O�1
˝ � � � ˝ f O�n

/.z ˝ � � � ˝ z/:

We now need to prove that they are invariant.

It is enough to prove invariance in the case of a braid generator

� WW. O�1/˝W. O�2/ ! W. O�4/˝W. O�3/

where the O�i are extended Z0-characters related as usual by the braiding

� W . O�1; O�2/ ! . O�4; O�3/:

We need to show that

.c � Nc/.v0. O�1; O�2// D ˛v0. O�4; O�3/

for some nonzero ˛, where c, Nc are holonomy braidings for V. O�1/ ˝ V. O�2/ and

V. O�1/
� x̋V. O�2/

�, respectively, and by c � Nc we mean the operator acting on the

tensor product

V. O�1/� V. O�1/
� ˝ V. O�2/� V. O�2/

�

by c in factors 1; 3 and by Nc in factors 2; 4.

In this computation, for elements X; Y 2 U we write X � Y to distinguish ele-

ments of U � U
cop WD U ˝C U

cop from elements of U ˝ U. The two tensor products

commute, in the sense that

.X ˝ Y /� .Z ˝W / D X � Z ˝ Y �W:
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Now, consider the operators

0 D K �K ˝K �K � 1;
1 D K �K�1 ˝ 1� 1 �K2

� 1˝ 1� 1;

2 D E �K ˝ 1�K C 1�E ˝ 1�K;

3 D 1�K�1 ˝ 1� F � 1�K�1 ˝ F �K�1:

It is not hard to check that the kernel of these operators acting on W. O�1/˝W. O�2/ is

spanned by v0. O�1; O�2/. Hence, by the definition of holonomy braiding

0 D .c � Nc/.k � v0. O�1; O�2// D . {R �
{xR/.k/ � .c � Nc/.v0. O�1; O�2//

for k D 0; 1; 2; 3.

It is immediate from the defining relations of the braiding operators {R and {xR that

the images  0
k

D . {R �
{xR/.k/ are

 0
0 DK �K ˝K �K � 1;

 0
1 D .1˝K � iKF ˝E/� .1˝K�1 � iF ˝K�1E/

� .K2 CK2F 2 ˝E2/� .1˝ 1/;

 0
2 DK �K ˝E �K C 1� 1˝ 1�E;

 0
3 D 1� F ˝ 1� 1 � F �K�1 ˝K�1

�K�1:

We can compute that the kernel of the operators  0
k

acting on W. O�4/ ˝ W. O�3/

is spanned by v0. O�4; O�3/. Therefore, .c � Nc/.v0. O�1; O�2// must be proportional to

v0. O�4; O�3/ as claimed.
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