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Homological mirror symmetry for invertible polynomials

in two variables

Matthew Habermann

Abstract. In this paper, we give a proof of homological mirror symmetry for two variable

invertible polynomials, where the symmetry group on the B-side is taken to be maximal. The

proof involves an explicit gluing construction of the Milnor fibres, and, as an application, we

prove derived equivalences between certain nodal stacky curves, some of whose irreducible

components have non-trivial generic stabiliser.

1. Introduction

Consider an n � n matrix A with non-negative integer entries aij . From this, we can

define a polynomial w 2 CŒx1; : : : ; xn� given by

w.x1; : : : ; xn/ D
n

X

iD1

n
Y

j D1

x
aij

j :

In what follows w will always be quasi-homogeneous, and so we can associate to it a

weight system .d0; d1; : : : ; dnI h/, where

w.td1x1; : : : ; tdnxn/ D thw.x1; : : : ; xn/;

and d0 WD h � d1 � � � � � dn. In [4], the authors define the transpose of w, denoted by

{w, to be the polynomial associated to AT ,

{w. Lx1; : : : ; Lxn/ D
n

X

iD1

n
Y

j D1

Lx
aji

j ;

and we call this the Berglund–Hübsch transpose. One can associate a weight sys-

tem for {w, denoted by . Ld0; Ld1; : : : ; LdnI Lh/, in the same way. We call a polynomial w

invertible if the matrix A is invertible over Q, and if both w and {w define isolated

singularities at the origin (cf. Definition 2.1).
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Recall that for f 2 CŒx1; : : : ; xn� and g 2 CŒy1; : : : ; ym�, their Thom–Sebastiani

sum is defined as

f � g D f ˝ 1 C 1 ˝ g 2 CŒx1; : : : ; xn; y1; : : : ; ym�: (1)

A corollary of Kreuzer–Skarke’s classification of quasi-homogeneous polynomials,

[22], is that any invertible polynomial can be decoupled into the Thom–Sebastiani

sum of atomic polynomials of the following three types:

• Fermat: w D x
p1

1 ,

• loop: w D x
p1

1 x2 C x
p2

2 x3 C � � � C x
pn
n x1,

• chain: w D x
p1

1 x2 C x
p2

2 x3 C � � � C x
pn
n .

The Thom–Sebastiani sums of polynomials of Fermat type are also called Brieskorn–

Pham.

To any invertible polynomial, one can associate its maximal symmetry group

�w WD ¹.t1; : : : ; tnC1/ 2 .C�/nC1 j w.t1x1; : : : ; tnxn/ D tnC1w.x1; : : : ; xn/º: (2)

Since the tnC1 variable is uniquely determined by the other ti , we will think of �w

as a subgroup of .C�/n. It is a finite extension of C�, and is the group of diag-

onal transformations of An which keep w semi-invariant with respect to the character

.t1; : : : ; tnC1/ 7! tnC1. Homological Berglund–Hübsch mirror symmetry predicts:

Conjecture 1. For any invertible polynomial, w, there is a quasi-equivalence

mf.An; �w; w/ ' F .{w/

of pre-triangulated A1-categories over C.

In the above, mf.An;�w;w/ is the category of �w-equivariant matrix factorisations

of w, and F .{w/ is the Fukaya–Seidel category associated to a Morsification of {w, as

defined in [36]. Conjecture 1 goes back to [40] and [41], and there have recently

been many results in the direction of establishing it. It has been proven in several

cases – in particular, for Brieskorn–Pham polynomials in any number of variables

in [10], and for Thom–Sebastiani sums of polynomials of type A and D in [11].

Conjecture 1 is also established for all invertible polynomials in two variables in [13].

For each class of invertible polynomial, recent work of Kravets ([20]) establishes

a full, strong, exceptional collection for mf.An; �w; w/ with n � 3. In the case of

chain polynomials in any number of variables, Hirano and Ouchi ([15]) show that the

category mf.An; �w; w/ has a tilting object, and a full, strong, exceptional collection

whose length is the Milnor number of {w. For further discussion and background on

Conjecture 1, see [7], and references therein.
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There is also an extension of Conjecture 1 ([8, 21, 40]), where rather than consid-

ering the maximal symmetry group, one considers certain subgroups of finite index.

Correspondingly, one must then consider an “orbifold Fukaya–Seidel” category,

which incorporates a dual group in its data. Recently, this generalised conjecture

which takes into account a symmetry group on the A-side was established in the

Z=2-graded case for two variable invertible polynomials in [6].

The main focus of this paper is homological mirror symmetry where the (comple-

tion of the) Milnor fibre of {w ,

{V{w WD {w�1.1/ (3)

is taken as the A-model. On the B-side, one extends the action of �w to AnC1 in a nat-

ural way, as described in Section 2 for the case of n D 2. The Lekili–Ueda conjecture

predicts:

Conjecture 2 ([29, Conjecture 1.4]). For any pair of invertible polynomials w, {w ,
there is a quasi-equivalence

W. {V{w/ ' mf.AnC1; �w; w C x0x1 : : : xn/

of pre-triangulated A1-categories over C.

In the above, W. {V{w / is the wrapped Fukaya category of the Milnor fibre of {w .

This category is completed with respect to cones and direct summands, as stated in

Section 1.3. Recently, Conjecture 2 was established for simple singularities in any

dimension in [30], and has subsequently been established in the Z=2-graded case

in [12].

There is a trichotomy of cases depending on whether the weight d0 is positive,

negative, or zero. In the log general type case of d0 > 0, there is a quasi-equivalence

mf.AnC1; �w; w C x0x1 : : : xn/ ' coh Zw; (4)

where

Zw WD
��

Spec CŒx0; x1; : : : ; xn�=.w C x0x1 : : : xn/ n .0/
�

=�w

�

: (5)

This equivalence is a generalisation of [31, Theorem 3.11], where it was proven in the

context of triangulated categories, and where C� ' �w. The generalisation to the case

where �w is a finite extension of C� is straightforward, and the extension to the setting

of dg-categories was studied in [5, 18, 38]. The main focus of this paper is the case of

curves, for which the only invertible polynomial which is not of log general type is

x2 C y2. This, however, corresponds to the well-understood HMS statement for C�.

We will therefore restrict ourselves to the log general type case for the remainder of

the paper.
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Recall that, since Zw is a proper stack, the subcategory perf Zw � coh Zw con-

sists precisely of Ext-finite objects, meaning that one has X 2 perf Zw if and only if
L

i2Z
Exti .X; Y / is finite-dimensional for every object Y 2 coh Zw. On the sym-

plectic side of the correspondence, it is clear that compact Lagrangians can have

morphisms in only finitely many degrees with any other Lagrangian, but it is not

known that this is necessarily not true for non-compact Lagrangians. This is reason-

able to expect, however, and is certainly true in every known case. Therefore, in the

log general type case, one expects that Conjecture 2 implies

F . {V{w/ ' perf Zw: (6)

Establishing this quasi-equivalence in the case of curves is the main result of this

paper.

Theorem 1.1. Let w be an invertible polynomial in two variables, and {w its trans-
pose. Then there is a quasi-equivalence

F . {V{w/ ' perf Zw

of Z-graded pre-triangulated A1-categories over C, where F . {V{w/ and perf Zw are
as in Section 1.3.

Remark 1.2. It should be reiterated that, although there is a trichotomy of cases

depending on the weight d0, all but one invertible polynomials in two variables are

of log general type, and this exception is well understood. We are therefore free to

state Theorem 1.1 in the context of invertible polynomials of log general type without

making any assumptions on d0.

The first instances of the quasi-equivalence in (6) were established for the case of

w D x2 C y3 in [24], and the cases of w D x3y C y2, w D x3 C y3, and w D x4 C y2

in [26]. It was also established in [29] for w D
Pn

iD1 xnC1
i , and w D x2

1 C
Pn

iD2 x2n
i ,

both for n > 1.

In [28], the authors use mirror symmetry arguments to deduce derived equival-

ences between rings of certain nodal stacky curves. We elaborate on these argu-

ments in order to identify which Milnor fibres are graded symplectomorphic, and this

enables us to deduce derived equivalences between nodal stacky curves with different

numbers of irreducible components, some of which have non-trivial generic stabiliser.

Corollary 1.3. For each n � 1, q � 2, let wloop D xn.q�1/C1y C yqx and wchain D

xnqC1y C yq , each with maximal symmetry group. We then have a quasi-equivalence

perf Zwloop
' perf Zwchain

of pre-triangulated A1-categories over C. For n � 1 and p > 2 or n � q D 2, let
w0

chain D xpy C yn.p�1/ and wBP D xp C ynp, each with maximal symmetry group.
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We then have a quasi-equivalence

perf Zw0
chain

' perf ZwBP

of pre-triangulated A1-categories over C.

This is obtained by first proving that the Milnor fibres corresponding to the rel-

evant Berglund–Hübsch transposes are graded symplectomorphic. This implies that

their Fukaya categories are quasi-equivalent, which by Theorem 1.1 proves that the

derived categories of perfect complexes of their mirrors are too. This corollary also

appears as a special case of [9, Corollary 5.15], although was obtained there by a

variation of GIT argument ([3, 14]).

1.1. Strategy of proof

Our strategy follows that of [29], where one reduces the proof of Theorem 1.1 to a

deformation theory argument. For the case at hand, this approach is predicated on the

proof of Conjecture 1 for curves given in [13].

On the A-side of the correspondence, we have that there is a restriction functor

F .{w/ ! F . {V{w /;

S! 7! @S! DW S; (7)

where we equip the vanishing cycle @S! with the induced (non-trivial) spin structure.

Suppose that .S!
i /

L�
iD1 is a collection of thimbles which generates F .{w/, where L� is

the Milnor number of {w , and that �! is the full subcategory of F .{w/ whose objects

are .S!
i /

L�
iD1. Denote its A1-endomorphism algebra by

A
! WD

L�
M

i;j

homF .{w/.S
!
i ; S!

j /; (8)

and its cohomology algebra A! WD H �.A!/. Correspondingly, let � be the collec-

tion .Si /
L�
iD1 of vanishing cycles equipped with the non-trivial spin structure, con-

sidered as a full subcategory of the compact Fukaya category of the Milnor fibre,

and A its A1-endomorphism algebra. Poincaré duality tells us that we can identify

H �.A/ with

A WD A! ˚ .A!/_Œ1 � n� (9)

as a vector space. In our case, we will deduce in Section 5 that the algebra structure

on A is induced purely from the A!-bimodule structure of .A!/_Œ1 � n�. Namely,

we have

.a; f / � .b; g/ D .ab; ag C f b/: (10)
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This is known as a trivial extension algebra of degree n � 1. By the argument of [37,

Lemma 5.4], when the weight Ld0 ¤ 0, � split generates the compact Fukaya category

of the Milnor fibre. Therefore, in order to characterise this category, it is sufficient to

identify the A1-structure on A which is given by A, up to gauge transformation (also

known as “formal diffeomorphism”).

On the algebro-geometric side of the correspondence, one can consider the Jacobi

algebra,

Jacw D CŒx1; : : : ; xn�=.@1w; : : : ; @nw/: (11)

Since the singularity is isolated, this algebra has dimension � < 1, the Milnor num-

ber of w. Let Jw be the set of exponents for a basis of this algebra, and consider the

semi-universal unfoldings of w,

zw WD w C
X

j2Jw

ujx
j1

1 : : : xjn
n : (12)

Such unfoldings are universal in the sense that every other unfolding of w is induced

from zw by a change of coordinates; however, this change of coordinates is not unique.

These semi-universal unfoldings are parametrised by � complex parameters, and we

set

U WD Spec CŒu1; : : : ; u��: (13)

We can therefore consider zw as a map

zwW An � U ! A1; (14)

and define

wu WD zwjAn�¹uº: (15)

To such a polynomial wu, we associate a stack Vu, defined in the case of two variables

in (26). In the case where the weight d0 > 0, we want to compactify Vu to a Calabi–

Yau hypersurface in a quotient of weighted projective space by a finite group, although

this is not possible for every u 2 U . As previously mentioned, we extend the action

of �w to AnC1 in a prescribed way, and define UC � U to be the subspace such that

wu can be quasi-homogenised to Wu 2 CŒx0; x1; : : : ; xn� with respect to this action.

Following [29], one then defines

Yu WD
�

.W�1
u .0/ n .0//=�w

�

(16)

for each u 2 UC. It goes back to the work of Pinkham ([32]), that the fact that w

is quasi-homogeneous forces there to be a C�-action on UC. We therefore have that
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Yu ' Yv if and only if v D t � u for some t 2 C�. By construction, the dualising sheaf

of this stack is trivial and it is a compactification of Vu.

For each u 2 UC, there is a functor

mf.An; �w; w/ ! coh Yu (17)

which is to be expounded upon in Section 2 for the case of curves. In any case where

mf.An; �w; w/ has a tilting object, E , denote by �u the image of E by (17). It is then

a theorem of Lekili and Ueda ([29, Theorem 4.1]) that �u split-generates perf Yu. Let

Au be the minimal A1-endomorphism algebra of �u. Then, by the work of Ueda

in [42], we have that Au WD H �.Au/ is also given by the degree n � 1 trivial exten-

sion algebra of the endomorphism algebra of E , and is, in particular, independent of u.

In the case where Conjecture 1 is solved by exactly matching generators, as in [13],

we have that, at the level of cohomology, the endomorphism algebra of the generat-

ors on both the A- and the B-sides are given by the same algebra, which we denote

by A. In light of this, establishing the equivalence (6) boils down to identifying the

A1-structure given by the chain level endomorphism algebra on the B-side which

matches with that of the A-side. With this perspective, homological mirror symmetry

for invertible polynomials turns into a deformation theory problem.

Recall that for a graded algebra, A, the Hochschild cochain complex has a bigrad-

ing. Namely, we consider CCrCs.A; A/s to be the space of maps A˝r ! AŒs�. In

general, if �� is a minimal A1-structure on A, then deformations which keep �k

for 1 � k � m fixed are controlled by
L

i>m�2 HH2.A/�i (see, for example, [37,

Section 3a]). In particular, the deformations of A to a minimal A1-model with pre-

scribed �2 are controlled by HH2.A/<0 D
L

i>1 HH2.A/�i . Furthermore, note that

HH2.A/0 is the first order deformations of the algebra structure on A. It is natural to

consider the functor which takes an algebra to the set of gauge equivalence classes of

A1-structures on that algebra. It is a theorem of Polishchuk ([33, Corollary 3.2.5])

that if HH1.A/<0 D 0, then this functor is represented by an affine scheme, U1.A/.

Moreover, if dim HH2.A/<0 < 1, then [33, Corollary 3.2.6] shows that this scheme

is of finite type. This functor was first studied in the context of homological mirror

symmetry in [25]. There is a natural C�-action on U1.A/ given by sending ¹�kº1
kD1

to ¹tk�2�kº1
kD1

, and this is denoted by A 7! t�A. Note that the formal A1-structure

is the fixed point of this action. For each t ¤ 0, we have that A and t�
A are quasi-

isomorphic, although not through a gauge transformation ([37, Section 3]).

Now, for each u 2 UC, we have that Au defines an A1-structure on A with �2

given as in (10). Therefore, it defines a point in U1.A/, and so we get a map

UC ! U1.A/: (18)

If we can show that (18) is an isomorphism, then we know that every A1-structure

on A is realised as the A1-endomorphism algebra of �u for some u 2 UC. In the
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case that the pair .w; �/ is untwisted (see Definition 4.1), we have by a theorem of

Lekili and Ueda ([29, Theorem 1.6]) that there is a C�-equivariant isomorphism of

affine varieties UC
�
�! U1.A/ which sends the origin to the formal A1-structure. By

removing the fixed point of the action on both sides, we have that this isomorphism

descends to an isomorphism

�

UC n .0/
�

=C� �
�!

�

U1.A/ n .0/
�

=C� DW M1.A/: (19)

Therefore, in the case where w is untwisted, we have that, up to scaling, there is some

u 2 UC for which (6) holds.

We end this section by briefly remarking that the moduli of A1-structures argu-

ment employed in this paper fits into a broader framework which has proven to be

a fruitful approach to HMS, and whose scope is more wide-reaching than that of

invertible polynomials. In [23, 24], the authors establish HMS for the once punctured

torus by studying the moduli space of A1-structures on the degree one trivial exten-

sion algebra of the A2 quiver. Interestingly, it was proven that M1.A/ ' xM1;1, the

moduli space of elliptic curves. Further connection was made to the moduli theory of

curves in [27], where the authors show the moduli space of A1-structures on a par-

ticular algebra coincides with the modular compactification of genus 1 curves with

n marked points, as constructed in [39]. This then leads them to prove homological

mirror symmetry for the n-punctured torus in [25].

1.2. Structure of paper

In Section 2, we recall some basic facts about invertible polynomials in two vari-

ables, as well as compute UC in the relevant cases. In Section 3, we study the sym-

plectic topology of the Milnor fibre. In Section 4, we compute the relevant Hochschild

cohomology for invertible polynomials in two variables. In Section 5, we recall some

facts about generators and formality for Fukaya categories and the proper algebraic

stacks under consideration. Section 6 is then a proof of Theorem 1.1 and Corollary 1.3.

1.3. Conventions

Throughout this paper all Fukaya categories will be completed with respect to cones

and direct summands. We will also denote the bounded derived category of coher-

ent sheaves, its full subcategory consisting of perfect complexes, and the unbounded

derived category of quasi-coherent sheaves on an algebraic stack X by cohX , perf X ,

and Qcoh X , respectively. For a dg-category A, we will also denote the unbounded

derived category of right dg-modules as Mod A. All coefficient groups will be taken

to be Z unless stated otherwise. By Zn we mean Z=nZ, and by Z.2/ we mean the

local ring of rational numbers with odd denominator.
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2. Invertible polynomials in two variables

In this paper, we will focus on invertible polynomials in two variables, as well as

their unfoldings and quasi-homogenisations. As such, we will restrict ourselves to

this case in the rest of the paper, and consider the variables x; y; z. The purpose

of this section is to give a self-contained overview of the required background on

invertible polynomials in two variables, and then to calculate the relevant spaces of

semi-universal unfoldings.

As in the introduction, let A D
�

i1 j1

i2 j2

�

be a matrix with non-negative integer

coefficients such that det A ¤ 0, and

w.x; y/ D xi1yj1 C xi2yj2

the corresponding polynomial, with weight system .d0; d1; d2I h/. Denote its

Berglund–Hübsch transpose by {w, with corresponding weight system . Ld0; Ld1; Ld2I Lh/.

We will always assume that gcd.d1; d2; h/ D gcd. Ld1; Ld2; Lh/ D 1. Note that d0 > 0 if

and only if Ld0 > 0.

Definition 2.1. Let A be a 2 � 2 matrix with non-negative integer coefficients. Let w

and {w be as above. We call w an invertible polynomial if A is invertible over Q, and

w and {w both have isolated singularities at the origin.

In what follows, we will always assume that p and q are always at least 2. For

Brieskorn–Pham and chain polynomials, this is necessary for the origin to be a critical

point of both w and {w. In the loop case, if one of p or q is 1, then one can see that w

and {w are equivalent to x2 C y2 and Lx2 C Ly2 by a change of variables.

The maximal symmetry group is defined as in (2), and to each ti we associate a

character given by

.t1; t2; t3/ 7! ti : (20)

The group of characters for �w is given by

y�w WD .Z�1 ˚ Z�2 ˚ Z�3/=.ik�1 C jk�2 � �3/k2¹1;2º: (21)

Let �w WD �3, so that the elements of �w are the diagonal transformations of A2 which

keep w semi-invariant with respect to �w,

w.t1x; t2y/ D �w.t1; t2/w.x; y/:

The subgroup ker �w of �w are those elements which keep w invariant, and this is

called the maximal diagonal symmetry group. There is an injective map

�W C� ! �w; t 7! .td1 ; td2 /; (22)
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and this fits into the short exact sequence

1 ! C� �
�! �w ! ker �w=hjwi ! 1; (23)

where jw generates the cyclic group im.�/ \ ker �w, and is called the grading ele-

ment. Let � � �w be a subgroup of finite index containing �.C�/, and for each � we

denote � WD �wj� . The statements of Theorem 1.1 and Corollary 1.3 require � D �w,

since this avoids the problem of needing “orbifold Fukaya(–Seidel) categories,” as

described in the introduction. Nevertheless, we will use � when what we say is valid

for any � � �w, and �w when we specifically mean the maximal symmetry group.

The Jacobi algebra of w with Milnor number � is given in (11). Let Jw be as in the

introduction, and semi-universal unfoldings of w be as in (12). Let U and wu be are as

in (13) and (15), respectively. As already noted, Pinkham ([32]) observed that w being

quasi-homogeneous means that the space U comes with a natural C�-action on it.

Namely, the action on uij is given by t � uij D th�d1i�d2j uij . For a fixed u 2 U , define
xRu WD CŒx; y�=.wu/, and observe that by scaling x; y, one can identify xRu ' xRt �u
for t 2 C�. The origin is the only fixed point of this action.

For a fixed � � �w, we would like to quasi-homogenise wu. In order to do this,

however, we will need to extend the action of � to A3. The action on the z variable is

chosen by setting

�0.t1; t2/ D �.t1; t2/t�1
1 t�1

2 : (24)

This is done precisely so that x_ ^ y_ ^ z_ is isomorphic to � as a �-module. With

this weight, we want to restrict ourselves to the subspace UC � U for which wu is

quasi-homogenisable, and has only positive powers of z. We define UC to be the

subset of uij in U which can be non-zero only if there exists a positive integer wij

such that

�wij �1 D t
wij �i

1 t
wij �j

2 ; (25)

and consider Wu to be the quasi-homogenisation of wu for each u 2 UC. Let JC � Jw

be the subset satisfying this condition.

For a fixed u 2 UC, we set Ru WD CŒx; y; z�=.Wu/. By an abuse of notation, we

will also denote the pullback of w to A3 by w. We have that Yu is defined as in (16),

and each Yu is the compactification of

Vu WD
��

Spec xRu n .0/
�ı

ker �0

�

; (26)

and the divisor at infinity Xu D Yu n Vu is isomorphic to X D Œ.Spec xR0 n .0//=��

for each u 2 UC. The condition d0 > 0 ensures that each Yu is a proper stack.
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These Wu fit together to form a family

WC WD w.x; y/ C
X

.i;j /2JC

uij xiyj zwij W A3 � UC ! A1

such that Wu WD WCjA3�¹uº. Following [29], we can then define

Y WD
��

W�1
C .0/ n .0 � UC/

�

=�
�

;

and this gives us a family

�Y W Y ! UC

of stacks over UC such that ��1
Y

.u/ D Yu for each u 2 UC. Note that since each fibre

is the compactification of Vu by X , and Vu ' Vt �u for t 2 C�, we have that the fibres

above points in the same C�-orbit of UC are isomorphic. Furthermore, the relative

dualising sheaf of this family is �-equivariantly trivial, by construction, and since

d0 > 0, this trivialisation is unique up to scaling.

The map Ru ! Ru=.z/ ' xR0 induces a pushforward functor

mf.A2; �; w/ ! mf.A3; �; Wu/ (27)

obtained by considering the 2-periodic free resolution of an xR0-module, and replacing

each free xR0 module with the Ru-free resolution

0 ! Ru.�Ez/
z
�! Ru ! xR0 ! 0:

This is explained in detail, and in far greater generality, in [42, Section 3].

For the quotient stack Yu, since the dualising sheaf of Yu is trivial for each u 2 UC,

we have the Orlov equivalence

mf.A3; �; Wu/ ' coh Yu: (28)

The composition of (27) and Orlov equivalence gives the functor (17).

2.1. Unfoldings of loop polynomials

In the case of a two variable loop polynomial w D xpy C yqx, we have � D pq, and

.d1; d2I h/ D
�q � 1

d
;

p � 1

d
I
pq � 1

d

�

; (29)

where d WD gcd.p � 1; q � 1/. Without loss of generality, we can assume that p � q.

One has that

Jacw D span¹1; x; : : : ; xp�1º ˝ span¹1; y; : : : ; yq�1º; (30)
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and

�w D
®

.t1; t2/ 2 .C�/2 j t
p
1 t2 D t

q
2 t1

¯ �
�! C� � �d ;

.t1; t2/ 7! .tn
1 tm

2 ; t
p�1

d

1 t
� q�1

d

2 /; (31)

where m; n is a fixed solution to

m.p � 1/ C n.q � 1/ D d: (32)

The image of the injective homomorphism

�W C� ! �w;

t 7! .t
q�1

d ; t
p�1

d /;

is an index d subgroup of �w; however, we will only be interested in the maximal

symmetry group, i.e., � D �w. A semi-universal unfolding is given by

zw.x; y/ D xpy C yqx C
X

0�i�p�1

0�j �q�1

uij xi yj : (33)

By definition, UC is the subspace of U containing elements such that there exists a

positive integer wij such that

.t
p
1 t2/wij �1 D t

wij �i

1 t
wij �j

2 :

There are three possibilities for UC:

Case I. For q > 2 the only solution to this is i D j D wij D 1, and so

UC D Spec CŒu11� D A1:

Case II. p > q D 2, we have i D j D wij D 1, as well as j D 0, i D 1, and wij D 2,

and so

UC D Spec CŒu1;0; u1;1� D A2:

Case III. When p D q D 2, we have i D j D wij D 1, j D 0, i D 1, wij D 2, j D 1,

i D 0, wij D 2, as well as i D j D 0, wij D 3, and so

UC D Spec CŒu0;0; u1;0; u0;1; u1;1� D A4:
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2.2. Unfoldings of chain polynomials

In the case of a two variable chain polynomial w D xpy C yq , we have � D pq �

q C 1, and

.d1; d2I h/ D
�q � 1

d
;

p

d
I

pq

d

�

; (34)

where d WD gcd.p; q � 1/.

Remark 2.1. It should be stressed that this is the Milnor number on the B-side. In the

loop and Brieskorn–Pham cases the matrices defining the polynomials are symmetric,

and the Milnor numbers of both sides will be the same, but this is not the case for

chain polynomials.

One has that

Jacw D span¹1; x; : : : ; xp�2º ˝ span¹1; y; : : : ; yq�1º ˚ span¹xp�1º; (35)

and

�w D ¹.t1; t2/ 2 .C�/2 j t
p
1 t2 D t

q
2 º

�
�! C� � �d ;

.t1; t2/ 7! .tn
1 tm

2 ; t
p
d

1 t
� q�1

d

2 /; (36)

where m; n is a fixed solution to

mp C n.q � 1/ D d: (37)

The image of the injective homomorphism

�W C� ! �w;

t 7! .t
q�1

d ; t
p
d /;

is an index d subgroup of �w, but again we will only be interested in the maximal

symmetry group. A semi-universal unfolding is given by

zw.x; y/ D xpy C yq C
X

0�i�p�2

0�j �q�1

uij xi yj C up�1;0xp�1: (38)

By definition, UC is the subspace of U containing elements such that there exists a

positive integer wij such that

.t
p
1 t2/wij �1 D t

wij �i

1 t
wij �j

2 :
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For chain polynomials, there are five different cases of UC to consider.

Case I. When p; q > 2, the only solution is i D j D wij D 1, and

UC D Spec CŒu1;1� D A1:

Case II. When p D 2; q > 2 the only solution is i D 0, j D 1, wij D 2, and so

UC D Spec CŒu0;1� D A1:

Case III. When q D 2; p > 3, we have i D j D wij D 1, as well as j D 0, i D 2,

and wij D 2, and so

UC D Spec CŒu1;1; u2;0� D A2:

Case IV. When p D 3; q D 2, we have i D j D wij D 1; j D 0; i D 2; wij D 2; and

i D j D 0; wij D 3, so

UC D Spec CŒu0;0; u1;1; u2;0� D A3:

Case V. When p D q D 2, we have j D 0, i D 1, wij D 3, as well as i D j D 0,

wij D 4, and i D 0; j D 1; and wij D 2, and so

UC D Spec CŒu0;0; u1;0; u0;1� D A3:

2.3. Unfoldings of Brieskorn–Pham polynomials

In the case of a two variable Brieskorn–Pham polynomial w D xp C yq , we have

� D .p � 1/.q � 1/, and

.d1; d2I h/ D
� q

d
;

p

d
I

pq

d

�

; (39)

where d WD gcd.p; q/. One has that

Jacw D span¹1; x; : : : ; xp�2º ˝ span¹1; y; : : : ; yq�2º; (40)

and

�w D ¹.t1; t2/ 2 .C�/2 j t
p
1 D t

q
2 º

�
�! C� � �d ;

.t1; t2/ 7! .tn
1 tm

2 ; t
p
d

1 t
� q

d

2 /; (41)

where m; n is a fixed solution to

mp C nq D d: (42)
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The image of the injective homomorphism

�W C� ! �w;

t 7! .t
q
d ; t

p
d /;

is an index d subgroup of �w, but as in the loop and chain cases, we are only interested

in the maximal symmetry group. A semi-universal unfolding is given by

zw.x; y/ D xp C yq C
X

0�i�p�2

0�j �q�2

uij xi yj : (43)

By definition, UC is the subspace of U containing elements such that there exists a

positive integer wij such that

.t
p
1 /wij �1 D t

wij �i

1 t
wij �j

2 :

For Brieskorn–Pham polynomials, we have the following five cases.

Case I. When p � q > 3, the only solution is i D j D wij D 1, and so

UC D Spec CŒu1;1� D A1:

Case II. When p D 3 and q D 2, we have i D 1, j D 0 and wij D 4, as well as

i D j D 0 and wij D 6, and so

UC D Spec CŒu0;0; u1;0� D A2:

Case III. When p D q D 3, we have i D j D wij D 1, as well as i D j D 0, wij D 3,

and so

UC D Spec CŒu0;0; u1;1� D A2:

Case IV. When p D 4, q D 2, we have j D 0, i D 2, wij D 2, and i D j D 0, wij D 4,

and so

UC D Spec CŒu0;0; u2;0� D A2:

Case V. When p > 4 and q D 2, we have i D wij D 2 and j D 0, and so

UC D Spec CŒu2;0� D A1:
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3. Symplectic topology of the Milnor fibre

Let † be a smooth, compact, orientated surface of genus g > 0 with b > 0 connected

boundary components @† D
Fb

iD1 @i †. The surface to have in mind is the Milnor

fibre of an invertible polynomial, {V{w. Note that by an abuse of notation, we will not

distinguish between the Milnor fibre and its completion, since what we mean will be

clear from context.

3.1. Graded symplectomorphisms

In this section, we recall some facts about graded symplectic surfaces with the goal of

providing a self-contained summary of Lemma 3.1. This provides criteria to ascertain

when two graded symplectic surfaces are graded symplectomorphic, and is the key

step in establishing Corollary 1.3.

For a 2n-dimensional symplectic manifold, .X; !/, there is a natural Lagrangian

Grassmannian bundle LGr.TX/ ! X , whose fibre at x 2 X is the Grassmannian of

Lagrangian n�planes in TxX . Recall ([34,36]) that we say .X; !/ is Z-gradeable if it

admits a lift to eLGr.TX/, the fibrewise universal cover of the Lagrangian Grassman-

nian bundle. This is possible if and only if 2c1.X/ D 0 in H 2.X/, and this implies

that K˝2
X , the square of the canonical bundle, is trivial. If X is gradeable, then a grad-

ing is given by a choice of homotopy class of trivialisation of K˝2
X . For a trivialising

section ‚ 2 �.X; K˝2
X /, one has a map

˛X W LGr.TX/ ! S1; Lx 7! arg.‚jLx
/:

Given a compact, exact Lagrangian submanifold, L, this defines a section of LGr.TX/

by considering the tangent space to L at each point. We say that L is gradeable with

respect to a grading on X if there exists a function ˛#
X W L ! R such that

exp.2�i˛#
X.x// D ˛X .TxL/:

This is possible if and only if the Maslov class of L vanishes, where the Maslov class

is defined by the homotopy class of the map L ! LGr.TX/
˛X
��! S1.

As explained in [36, Section 13(c)], on a (real) 2-dimensional surface, †, grad-

ings correspond to trivialisations of the real projectivised tangent bundle, PR.T †/ '

LGr.T †/. Recall that a line field is a section of PR.T †/. Supposing that a grading

of † is chosen such that ˛† is as above, then one can define a line field on the sur-

face given by � D ˛�1
† .1/. Conversely, a nowhere vanishing line field gives rise to

a map ˛† by recording the anticlockwise angle between the line field and any other

line in the tangent plane. In this way, line fields correspond naturally to gradings on a

surface, †.
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Given a line field, �, which grades †, and a Lagrangian, L, represented by an

embedded curve 
 W S1 ! †, the map which corresponds to the Maslov class is given

by recording the anticlockwise angle from �x to TxL at each point x 2 L. The Maslov

class vanishes, and hence L is gradeable with respect to �, if and only if the sections


�� and 
�TL are homotopic in 
�PR.T †/. A grading of L is a choice of homotopy

between them.

We denote the space of line fields by G.†/ WD �0.�.†; PR.T †///, and this has

the natural structure of a torsor over the group of homotopy classes of maps † ! S1,

which we identify with H 1.†/. With this in mind, consider the trivial circle fibration

S1 �
�! PR.T †/

p
�! †; (44)

which induces the exact sequence

0 ! H 1.†/
p�

��! H 1.PR.T †//
��

�! H 1.S1/ ! 0: (45)

Note that the orientation of † induces an orientation on each tangent fibre, and so

the map � is unique up to homotopy. For each line field, we can associate an ele-

ment Œ�� 2 H 1.PR.T †// by considering the Poincaré–Lefschetz dual of Œ�.†/� 2

H2.PR.T †/; @PR.T †//. These are precisely the elements such that one has

��.Œ��/.ŒS1�/ D 1, and this is the content of [28, Lemma 1.1.2].

As already mentioned, for an embedded curve 
 W S1 ! †, there is a correspond-

ing section of the Lagrangian Grassmannian, Q
 W S1 ! PR.T †/. This is given by

.
; ŒT 
�/, where ŒT 
� is the projectivisation of the tangent space to the curve 
 .

Definition 3.1. Given a line field, �, on †, and an immersed curve 
 W S1 ! †, we

define the winding number of 
 with respect to � as

w�.
/ WD hŒ��; Œ Q
�i; (46)

where h�; �iW H 1.PR.T †// � H1.PR.T †// ! Z is the natural pairing.

This pairing only depends on the homotopy class of �, as well as the regular

homotopy class of 
 . Recall that, for the case of surfaces, the Maslov number of a

Lagrangian is precisely its winding number with respect to the line field used to grade

the surface. Therefore, a Lagrangian is gradeable with respect to a line field if and

only if its winding number with respect to this line field vanishes. Since we will be

considering the Milnor fibre of a Lefschetz fibration, we must consider the grading

on the Milnor fibre which is induced by the restriction of the unique grading of C2

to †. This is crucial so that the functor (7) is graded, and therefore that (9) holds.

The Lagrangian thimbles are contractible, and therefore gradeable, so each vanishing

cycle is also gradeable with respect to the grading on the Milnor fibre induced from the
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restriction of the grading of C2. With this, we have that the grading on the Milnor fibre

is given by a line field ` such that w`.
i/ D 0 for each vanishing cycle 
i W S1 ! †.

Since the vanishing cycles form a basis of H1.†/, the fact that the winding number

around each Lagrangian is zero implies that the homotopy class of ` is unique.

For any symplectomorphism �W †1 ! †2 and �2 2 G.†2/, one can consider the

line field on †1 given by

��.�2/.x/ WD
�

.Tx�/�1.�2 ı �.x//
�

for all x 2 †1: (47)

If one has .†1I �1/ and .†2I �2/, where �1 and �2 are line fields used to grade

the surfaces †1 and †2, respectively, we say that a symplectomorphism �W †1 !

†2 is graded if ���2 is homotopic to �1. If one takes †1 D †2, then we define

Symp.†I @†/ to be the space of symplectomorphisms of † which fix @† pointwise.

One can then define the pure symplectic mapping class group of † as

M.†I @†/ WD �0.Symp.†I @†//; (48)

and observe that this group acts on G.†/ as in (47). The decomposition of G.†/ into

M.†I @†/-orbits is given in [28, Theorem 1.2.4], and this allows one to deduce [28,

Corollary 1.2.6], which appears as Lemma 3.1, below. In what follows we briefly

recall the relevant invariants, as well as techniques for their computation, in order to

be able to state, and later utilise, Lemma 3.1.

For a given line field �, consider

w�.@i †/; for i 2 ¹1; : : : ; bº;

the winding numbers around the boundary components. For two line fields to be

homotopic, it is necessary for the winding numbers around each boundary component

to agree, although this is definitely not sufficient. In particular, one can have two line

fields which agree on the boundary, but which differ along interior non-separating

curves.

Recall that for a closed, orientated Riemann surface, x†, a theorem of Atiyah in [1]

proves the existence of a quadratic form 'W �.x†/ ! Z2, where �.x†/ is the space of

spin structures on x†, ' does not depend on the complex structure of x†, and the asso-

ciated bilinear form on H 1.x†I Z2/ is the cup product. Note that �.x†/ is a torsor over

H 1.x†I Z2/, and ' being a quadratic form on �.x†/ means that it is a quadratic form

on H 1.x†I Z2/ for any choice of basepoint. Moreover, the associated bilinear form

does not depend on the basepoint. He also proves that there are precisely two orbits of

the mapping class group of x† on �.x†/, and these are distinguished by the invariant ',

which is known as the Atiyah invariant. In [19], Johnson gives a topological interpret-

ation of the Atiyah invariant by proving that it is the Arf invariant of the corresponding

quadratic form on H1.x†; Z2/.
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The Arf invariant is well studied in topology, and we briefly recount some basic

facts about it, as well as some computation techniques. Let . xV; .� � �// be a vector

space over Z2 with a non-degenerate bilinear form, and NqW xV ! Z2 a quadratic form

satisfying

Nq.a C b/ D Nq.a/ C Nq.b/ C .a � b/: (49)

It is well known that the Gauß sum

GS. Nq/ D
X

x2 xV
.�1/ Nq.x/ D ˙2

dim xV
2 ; (50)

and the sign is the Arf invariant of the quadratic form, i.e.,

GS. Nq/ D .�1/Arf. Nq/2
dim xV

2 ; (51)

Arf. Nq/ 2 Z2.

To compute the Arf invariant, one can just compute the Gauß sum, although,

except in particularly nice circumstances, this can become computationally intractable

quite quickly. One can also find a base change to a symplectic basis where the formula

simplifies, although we will not do this. Instead, consider the basis ¹e1; : : : ; e2nº of
xV , and the matrix defined by

fi i D

´

2 if Nq.ei / D 1;

0 if Nq.ei / D 0;

fij D

´

1 if ei � ej D 1;

0 if ei � ej D 0;

where i ¤ j . Such a matrix defines an even quadratic form on a Z.2/ module, V ,

whose mod 2 reduction gives the bilinear pairing on xV . The precise module structure

of V is not important, since det f is well defined mod 8, and this value only depends

on Nq. One then has

Arf. Nq/ D

´

0 if det f D ˙1 mod 8;

1 if det f D ˙3 mod 8:

The standard reference for further discussion of these facts is [16, Chapter 9].

Returning to the case at hand, recall that a non-vanishing vector field induces a

spin structure on any compact Riemann surface with boundary. If the winding num-

ber around each boundary component with respect to this vector field is 2 mod 4, then

this spin structure extends to the closed Riemann surface obtained by capping off the
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boundary components with discs, x†. Any vector field also yields a line field by con-

sidering the projectivisation, and each embedded curve has an even winding number

with respect to this line field. Conversely, it is shown in [28, Lemma 1.1.4] that if each

embedded curve has even winding number with respect to a line field, then this line

field arises as the projectivisation of a vector field. In light of this, in the case when

two line fields have matching winding numbers around boundary components, arise

from the projectivisation of vector fields, and where these vector fields define spin

structures which extend to x†, one must check that the corresponding Atiyah invari-

ants of these spin structures agree.

A useful fact is that, by the Poincaré–Hopf index theorem, (see, for example, [17,

Chapter 3]) for any compact S � †, we have

b
X

i

w�.@i.S// D 2�.S/; (52)

where �.S/ is the Euler characteristic. It is therefore clear that the winding number

does not descend to a homomorphism from H1.†/. What is true, however, is that one

can consider for each line field � the following homomorphism, given by the mod 2

reduction of the winding number:

Œw��.2/W H1.†I Z2/ ! Z2:

From this, we can define the following invariant.

Definition 3.2. We define the Z2-valued invariant

� W G.†/ ! Z2;

� 7!

´

0 if Œw��.2/ D 0;

1 otherwise:

In the case when �.�/ D 0, and so � is the projectivisation of a vector field, v, we

need to check when the spin structure on † defined by v extends to a spin structure

on x†, and if it does, calculate the corresponding Atiyah invariant.

For a line field (not necessarily coming from the projectivisation of a vector field),

�, the existence of a quadratic form

q�W H1.†I Z4/ ! Z4

defined by

q�

�

m
X

iD1

˛i

�

D
m

X

iD1

w�.˛i / C 2m 2 Z4;
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where ˛i are simple closed curves, and whose associated bilinear form is twice

the intersection pairing on H1.†I Z4/ is established in [28, Proposition 1.2.2]. It is

proven in [28, Lemma 1.2.3] that for g.†/ � 2, two line fields, �; � , lie in the same

M.†I @†/-orbit if the winding numbers agree on each boundary component, and

q� D q� . In the case when � and � come from the projectivisation of vector fields, but

the corresponding spin structures do not extend to x†, or when the two line fields do

not arise as the projectivisation of vector fields, it is enough to show that �.�/ D �.�/,

and that the winding numbers on the boundary components agree. In the case where

� and � are line fields such that �.�/ D �.�/ D 0, and

w�.@i .†// D w� .@i .†// 2 2 C 4Z for each i 2 ¹1; : : : ; bº; (53)

we must compare the corresponding Atiyah invariants.

Recall that the inclusion @†
i

,�! † induces a map

i�W Zb
2 ' H1.@†I Z2/ ! H1.†I Z2/ ' Z

2gCb�1
2 : (54)

The kernel of the intersection pairing on H1.†I Z2/ is spanned by the image of i�,

and the cokernel is naturally identified with H1.x†I Z2/, where x† is as above. The

intersection form on H1.†I Z2/ descends to a non-degenerate intersection form on

H1.x†I Z2/.

By the fact that �.�/ D �.�/ D 0, we have that the function

q=2W H1.†I Z2/ ! Z2 (55)

is well defined, where q is either q� or q� . By (53), we have that q=2.@i†/ � 0 mod 2

for each i 2 ¹1; : : : ; bº. Since the kernel of the intersection pairing on H1.†I Z2/ is

spanned by the boundary curves, q=2 descends to a non-singular quadratic form

NqW H1.x†I Z2/ ! Z2

such that

Nq.˛ C ˇ/ D Nq.˛/ C Nq.ˇ/ C .˛ � ˇ/; (56)

and Arf. Nq/ gives the last invariant required to ascertain whether two line fields are in

the same M.†I @†/-orbit in the case where g.†/ � 2. In the case when g D 1, we

define

zA.�/ WD gcd¹w�.˛/; w�.ˇ/; w�.@1†/ C 2; : : : ; w�.@b†/ C 2º; (57)

where both ˛ and ˇ are non-separating curves which project to a basis of

H1.†I Z2/= im.i�/.
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Putting this all together, [28, Theorem 1.2.4] gives criteria for two line fields to be

in the same mapping class group orbit. Using this, the authors give criteria for there

to exist a graded symplectomorphism between two different surfaces.

Lemma 3.1 ([28, Corollary 1.2.6]). Let .†1I �1/ and .†2I �2/ be two graded sur-
faces, each of genus g with b boundary components. There exists a symplectomorph-
ism �W †1 ! †2 such that ��.�2/ is homotopic to �1 if and only if

w�1
.@i†1/ D w�2

.@i †2/;

for each i 2 ¹1; : : : ; bº, and

• if g D 1, then zA.�1/ D zA.�2/;

• if g � 2, then �.�1/ D �.�2/ and, if the Arf invariant is defined, then Arf. Nq�1
/ D

Arf. Nq�2
/.

3.2. Gluing cylinders

In this section we describe a general construction of graded surfaces by gluing cyl-

inders. This allows us to reduce the computation of topological invariants of these

surfaces to the combinatorics of how they are glued. We then provide explicit descrip-

tions of the Milnor fibres of invertible polynomials in two variables, as well as the

corresponding computations of the topological invariants.

Let A.`; r Im/ denote m disjoint cylinders placed in a column, each with r marked

points on the right boundary component, and ` marked points on the left. Considering

each cylinder as a rectangle with top and bottom identified, for each k 2 ¹1; : : : ; mº,

counting top-to-bottom in the column, we label the marked points on the right (resp.

left) boundary component of the kth cylinder as pC
r.k�1/

; : : : ;pC
rk�1

(resp. p�
`.k�1/

; : : : ;

p�
`k�1

). The reasoning for the labelling is that we would like to keep track of where

the marked points are on each individual cylinder, as well as where each marked point

is on the right (resp. left) side of the column of cylinders with respect to the total

ordering pC
0 ; : : : ; pC

mi ri �1 (resp. p�
0 ; : : : ; p�

mi `i �1
).

Given a collection of cylinders

A.`1; r1I m1/; A.`2; r2I m2/; : : : ; A.`n; rnI mn/;

such that ri mi D `iC1miC1, where i is counted mod n, and corresponding permuta-

tions �i 2 Smi ri
, we can glue these cylinders together in the following way. For each

i 2 ¹1; : : : ; nº and j 2 ¹0; : : : ; mi ri � 1º, we glue a small segment of the boundary

component pC
j in A.`i ; ri I mi / to p�

�i .j /
in A.`iC1; riC1I miC1/ by attaching a strip.

See Figure 1 for an example.
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Figure 1. A genus 5 surface with 4 boundary components constructed by gluing A.2; 4I 2/ to

A.4; 2I 2/ via the permutations �1 D
�

1 2 3 4 5 6 7 8
1 3 5 7 2 4 6 8

�

and �2 D
�

1 2 3 4
3 1 4 2

�

.

For each i 2 ¹1; : : : ; nº, the number of boundary components arising from gluing

the i th and .i C 1/st columns can be computed as follows. Consider the permutations

�ri
D .0; ri � 1; ri � 2; : : : ; 1/.ri ; 2ri � 1; 2ri � 2; : : : ; ri C 1/ : : :

�

.mi � 1/ri ; mi ri � 1; : : : ; .mi � 1/ri C 1
�

and

�`i
D .0; 1; : : : ; `iC1 � 1/.`iC1; : : : ; 2`iC1 � 1/ : : :

�

.miC1 � 1/`iC1; : : : ; miC1`iC1 � 1
�

:

The number of boundary components between the i th and .i C 1/st columns will then

be given by the number of cycles in the decomposition of ��1
i �`iC1

�i�ri
2 Smi ri

.

Note that if mi D miC1 then we simply get the commutator.

To compute the homology groups of †, one can construct a ribbon graph

�.`1; : : : ; `nI r1; : : : ; rnI m1; : : : ; mnI �1; : : : ; �n/ � †; (58)

onto which the surface deformation retracts. To do this, let there be a topological disc

D2 for each of the cylinders. For each disc, attach a strip which has one end on the top,

and the other end on the bottom. Then, attach a strip which connects two discs if there

is a strip which connects the corresponding cylinders. These strips must be attached in

such a way as to respect the cyclic ordering given by the gluing permutation. One can

then deformation retract this onto a ribbon graph, whose cyclic ordering at the nodes
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is induced from the ordering of the strips on each cylinder. If there is no ambiguity,

we will refer to this graph as �.†/.

Since the embedding of �.†/ into † induces an isomorphism on homology, the

homology groups of † can be easily computed. Namely, since the graph is connected,

we have H0.†/ D Z. Since �.†/ D V � E D rkH0.†/ � rkH1.†/ D �
Pn

iD1 ri mi ,

we have H1.†/ D Z˚.1��/. A basis for the first homology of the graph is given by

an integral cycle basis, and so the basis of the first homology for † is given by loops

which retract onto these cycles.

Although there is no natural choice of grading on a surface glued in this way, in

what follows we will only consider the case where the line field used to grade the

surface is horizontal on each cylinder and parallel to the boundary components on

attaching strips.

3.2.1. Loop polynomials. In the case of loop polynomials {w D Lxp Ly C Lyq Lx, we have

that n D 3 in the above construction, and we glue the cylinders

A.p � 1; 1I q � 1/; A.q � 1; p � 1I 1/; A.1; q � 1I p � 1/;

where �1 and �2 are the identity elements in Sq�1 and Sp�1, respectively, and �3 2

S.p�1/.q�1/ is given by

.q � 1/.k3 � 1/ C i 7! .p � 1/
�

.�i / mod q � 1
�

C .p � 1 � k3/; (59)

where in this case i 2 ¹0; : : : ; q � 2º and k3 2 ¹1; : : : ;p � 1º. Call the resulting surface

†loop.p; q/.

For the basis of homology, we begin by considering the compact curves in each

cylinder, 
i . Together with these curves, we construct the basis for the first homo-

logy of the surface as follows. On each of the cylinders in the left and right columns,

we take the curves to be approximately horizontal. We must therefore only describe

the behaviour of the curves in the middle cylinder. Consider the curve which goes

from the ..p � 1/.k1 � 1/ C j /th position on the left-hand side boundary to the

..q � 1/.k3 � 1/ C i /th position on the right-hand side boundary. In accordance with

the construction of [13, Section 3], this curve must wind 2�. k3�1
p�1

C .1�k1/ mod q�1
q�1

/

degrees in the cylinder. This winding goes in the downwards direction, since we

are thinking of the argument of the Lx coordinate increasing in this direction. These

curves form a basis of the first homology, since they retract onto a basis for the graph,

�.†loop.p;q//. The line field, `, used to grade the surface is approximately horizontal

on each cylinder, and approximately parallel to the boundary on the connecting strips.

By construction, we have �.`/ D 0. See Figure 2 for the case of {w D Lx4 Ly C Lx Ly3.

There is only one boundary component between the first and second columns, as

well as the second and third. With the line field ` given above, these components have

winding numbers �2.q � 1/ and �2.p � 1/, respectively. To calculate the number of
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Figure 2. Milnor fibre for {w D Lx4 Ly C Lx Ly3. Top and bottom of each cylinder are identified.

Comparing with the basis of Lagrangians in [13, Section 3], the red curve corresponds to V Lx Ly ,

the purple ones to i V Lx Lw , the blue ones to i V Ly Lw , and the green ones to l;mV0.

boundary components arising from gluing the third and first columns, note that in this

case �r3
can be written as

.q � 1/.k3 � 1/ C i 7! .q � 1/.k3 � 1/ C
�

.i � 1/ mod .q � 1/
�

; (60)

and �`1
can be written as

.p � 1/.k1 � 1/ C j 7! .p � 1/.k1 � 1/ C
�

.j C 1/ mod .p � 1/
�

: (61)

With this description, one can see that ��1
3 �`1

�3�r3
2 S.p�1/.q�1/ is given by

.q � 1/.k3 � 1/ C i 7! .q � 1/
�

.k3 � 2/ mod p � 1
�

C
�

.i � 1/ mod q � 1
�

: (62)

As such, the length of a cycle is the least common multiple of .p � 1/ and .q � 1/,

which is
.p�1/.q�1/

gcd.p�1;q�1/
. So, there are gcd.p � 1; q � 1/ boundary components coming

from gluing the third column to the first, each of winding number �2 .p�1/.q�1/
gcd.p�1;q�1/

. We

can then compute the genus from (52), which yields

�2.p � 1/ � 2.q � 2/ � 2.p � 1/.q � 1/ D 2
�

2 � 2gloop � gcd.p � 1; q � 1/ � 2
�

;
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and so the genus is

gloop D
1

2

�

pq � 1 � gcd.p � 1; q � 1/
�

:

By construction, the surface †loop.p;q/ is graded symplectomorphic to the Milnor

fibre of the polynomial {w D Lxp Ly C Lx Lyq . To see this, consider the ribbon graph which

corresponds to the orientable surface {V{w. To construct this graph, first consider a disc

D2 for each of the neck regions of the construction of the Milnor fibre in [13, Sec-

tion 3.1]. Then, attach a thin strip which connects two discs if there is at least one

vanishing cycle which goes between them. The cyclic ordering of the strips at each

disc is determined by the ordering of the vanishing cycles passing through a corres-

ponding neck region. This graph can then be embedded into {V{w in such a way that all

intersections occur on the interior of the discs, and away from the discs, the vanishing

cycles are on the interior of the attaching strips. One can deformation retract this onto

a graph with the induced cyclic ordering at the vertices. Call this graph �. {V{w/, and

observe that it is on-the-nose the same as �.†loop.p; q//, and so the corresponding

surfaces with boundary are symplectomorphic. See Figure 3 for an example of p D 4,

q D 3.

Figure 3. Ribbon graph for �. {V{w/ D �.†loop.4; 3//, where the cyclic ordering of the half-edges

at the nodes is in the anticlockwise direction.

To see that the two surfaces are graded symplectomorphic, consider the corres-

ponding fat graphs in both cases. In this situation one can see that the description of

the line field used to grade †loop.p; q/ agrees with the description of the line field

used to grade {V{w, as in [13, Section 3.7], and this shows that the surfaces are graded

symplectomorphic.
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3.2.2. Chain polynomials. In the case of chain polynomials, we have {w D Lxp C

Lx Lyq , and we will show that the Milnor fibre can be constructed by gluing

A.p � 1; 1I q � 1/; A
�

q � 1; .p � 1/.q � 1/I 1
�

;

where �1 is the identity element in Sq�1, and �2 2 S.p�1/.q�1/ is given by

i 7! .p � 1/.�i mod q � 1/ C p � 2 �
j i

q � 1

k

; (63)

where in this case i 2 ¹0; : : : ; .p � 1/.q � 1/ � 1º. Let us denote the resulting surface

†chain.p; q/.

For the basis of homology, we begin by including the compact curves in each

cylinder, 
i . Together with these curves, we construct a basis for homology as fol-

lows. On the cylinders in the first column, we take the curves to be approximately

horizontal. In the cylinder in the second column, the curve going from the

..p � 1/.k2 � 1/ C j /th position on the left-hand side to the i th position on the right-

hand side winds 2�. .1�k1/ mod p�1
p�1

C i
.p�1/.q�1/

/ degrees, again in the downwards

direction. This is in accordance with the description of the curves as in [13, Sec-

tion 5.2]. Together, these curves form a basis for the first homology, since they retract

onto a basis of the corresponding ribbon graph, �.†chain.p; q//. As in the loop case,

the line field, `, used to grade the surface is approximately horizontal on each cylinder,

and approximately parallel to the boundary on the connecting strips. By construction,

we have �.`/ D 0.

There is only one boundary component which arises from gluing the first and

second columns, and the winding number around this boundary component is

�2.q � 1/. To compute the number of boundary components, and their winding num-

bers, arising from gluing the second column to the first, observe that in this case, �r2
is

just the permutation j 7! j � 1, and �`1
is of the same form as (61). The permutation

��1
2 �`1

�2�r2
2 S.p�1/.q�1/ is given by

i 7! i � q: (64)

Therefore, the length of a cycle in the above permutation is .p�1/.q�1/
gcd.p�1;q/

. From this, we

see that there are gcd.p � 1; q/ boundary components arising from this gluing, and

each boundary component has winding number �2 .p�1/.q�1/
gcd.p�1;q/

. Therefore, there are

1 C gcd.p � 1; q/ boundary components in total, and we conclude from (52) that

gchain D
1

2

�

pq � p C 1 � gcd.p � 1; q/
�

:
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As in the loop case, we claim that the surface constructed above is graded sym-

plectomorphic to {V{w. To see this, we can construct a ribbon graph corresponding to {V{w
as in the case of loop polynomials. This graph also matches �.†chain.p; q// on-the-

nose, and this establishes that †chain.p; q/ and {V{w are symplectomorphic. To see that

they are graded symplectomorphic, observe that in the corresponding fat graphs, the

description of the line field above agrees with the description as in [13, Section 5.3],

and this shows that the surfaces are graded symplectomorphic.

3.2.3. Brieskorn–Pham polynomials. In the case of Brieskorn–Pham polynomials,

we have {w D Lxp C Lyq , where .p;q/ ¤ .2;2/. Consider the surface obtained by gluing

one cylinder to itself with the permutation � 2 S.p�1/.q�1/�1, which is given by

i 7! �i.q � 1/; (65)

where in this case i is a point on the right boundary, and is considered as an element

of ¹0; : : : ; .p � 1/.q � 1/ � 2º. Call this surface †BP.p; q/.

For the basis of homology, we take a compact vertical curve in the cylinder, 
1, as

well as one curve which is approximately parallel to the boundary along each of the

connecting strips. On the interior of the cylinder, we have that the curve beginning in

the j th position on the left-hand side and ending at the i th position on the right-hand

side must wind 2�. iC.�j / mod Œ.p�1/.q�1/�1�
.p�1/.q�1/�1

/ degrees in the downwards direction, in

accordance with the description of the curves in [13, Section 6.2]. Together, these

curves form a basis for the first homology of †BP.p; q/, since they retract onto a

basis of the corresponding ribbon graph, �.†BP.p; q//. As in the previous two cases,

the line field, `, used to grade the surface is approximately horizontal on the cylin-

der, and approximately parallel to the boundary on the connecting strips. Again, by

construction, we have �.`/ D 0.

Let � be the permutation i 7! i � 1, so the number of boundary components is

given by the number of cycles in the decomposition Œ�; � � 2 S.p�1/.q�1/�1. The com-

mutator is given by

i 7! i � p;

and so the length of a cycle will be given by
.p�1/.q�1/�1

gcd.p;q/
. There are therefore

gcd.p; q/ boundary components arising from this gluing, and each has winding num-

ber �2 .p�1/.q�1/�1
gcd.p;q/

. Therefore, we have

gBP D
1

2

�

.p � 1/.q � 1/ C 1 � gcd.p; q/
�

:

As in the previous cases, we deduce that †BP.p; q/ is graded symplectomorphic to

the Milnor fibre.
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3.3. Symplectic cohomology of the Milnor fibre

In this section we utilise the explicit descriptions of the Milnor fibres of invertible

polynomials given above to calculate the module structure of symplectic cohomology

of these surfaces. By combining this with Theorem 3.2 below, we will be able to

deduce the correct mirror curves in the proof of Theorem 1.1.

The symplectic cohomology of surfaces admits a particularly simple description

– namely, for any Riemann surface, †g;b, of genus g > 0 with b > 0 boundary com-

ponents, we have

SH�.†g;b/ ' H �.†g;b/ ˚
b

M

iD1

�

M

k�1

H �.S1/Œk � w�.@i†g;b/�

�

; (66)

where w�.@i †g;b/ is the winding number of the line field � about the boundary com-

ponent @i †g;b. This was first described in the case of one puncture in [35, Example

3.3], and the generalisation to more than one puncture follows by the same argument.

Note that the grading convention in [35] is shifted by one from ours.

In the case of loop polynomials, {w D Lxp Ly C Lyq Lx, we saw in Section 3.2.1 that

the Milnor fibre is a 2 C gcd.p � 1; q � 1/-times punctured surface of genus gloop D
1
2
.pq � 1 � gcd.p � 1; q � 1//. Consider †g;b D {V{w, and let ` be the line field used

to grade the surface as in Section 3.2.1. We then have by (66) and the analysis in

Section 3.2.1, that

SH0. {V{w/ ' C;

SH1. {V{w/ ' C˚pq ;

SH2n.p�1/. {V{w/ ' SH2n.p�1/C1. {V{w/ ' C for n 2 Z>0 such that

q � 1

gcd.p � 1; q � 1/
− n;

SH2n.q�1/. {V{w/ ' SH2n.q�1/C1. {V{w/ ' C for n 2 Z>0 such that

p � 1

gcd.p � 1; q � 1/
− n;

SH
2n .p�1/.q�1/

gcd.p�1;q�1/ . {V{w/ ' SH
2n .p�1/.q�1/

gcd.p�1;q�1/
C1

. {V{w/

' C˚.2Cgcd.p�1;q�1// for n 2 Z>0:

In the case of chain polynomials, {w D Lxp C Lx Lyq , we have that the Milnor fibre is

a .1 C gcd.p � 1; q//�times punctured surface of genus

gchain D
1

2

�

pq � p C 1 � gcd.p � 1; q/
�

:
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Let ` be the line field used to grade the surface, as in Section 3.2.2. We then have

by (66) and the analysis in Section 3.2.2 that

SH0. {V{w/ ' C;

SH1. {V{w/ ' C˚pq�pC1;

SH2n.q�1/. {V{w/ ' SH2n.q�1/C1. {V{w/ ' C for n 2 Z>0 such that

p � 1

gcd.p � 1; q/
− n;

SH
2n .p�1/.q�1/

gcd.p�1;q/ . {V{w/ ' SH
2n .p�1/.q�1/

gcd.p�1;q/
C1

. {V{w/

' C˚.1Cgcd.p�1;q// for n 2 Z>0:

In the case of Brieskorn–Pham polynomials, we have that the Milnor fibre is a

gcd.p;q/-times punctured surface of genus gBP D 1
2
..p � 1/.q � 1/ C 1 � gcd.p;q//.

Let ` be the line field used to grade the surface, as in Section 3.2.3. Then, by (66) and

the analysis in Section 3.2.3, we have

SH0. {V{w/ ' C

SH1. {V{w/ ' C˚.p�1/.q�1/

SH
2n .p�1/.q�1/�1

gcd.p;q/ . {V{w/ ' SH
2n .p�1/.q�1/�1

gcd.p;q/
C1

. {V{w/ ' C˚ gcd.p;q/ for n 2 Z>0:

As previously mentioned, the comparison of the symplectic cohomology of the Mil-

nor fibre and the Hochschild cohomology of the Fukaya category of the Milnor fibre

will be crucial in our mirror symmetry argument. To this end, we have the following

theorem of Lekili and Ueda:

Theorem 3.2 ([29, Corollary 6.6]). Let {w be the transpose of an invertible polynomial
in two variables such that Ld0 > 0. Then

SH�. {V{w/ ' HH�.F . {V{w//:

Note that assuming Ld0 > 0 is crucial, as can be seen if one considers {w D Lx2 C Ly2.

3.4. Graded symplectomorphisms between Milnor fibres

It is a natural question to ask which Milnor fibres are graded symplectomorphic,

and in this section we utilise Lemma 3.1 to determine this. Since the genera, num-

ber of boundary components, and winding numbers around boundary components of

the Milnor fibres were calculated above, it is easy to check when these match. This

gives the potential graded symplectomorphisms, although one must also check that

the corresponding Arf invariants agree whenever they are defined. We use the method
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described in Section 3.1 to compute the Arf invariant when necessary. By establishing

which Milnor fibres are graded symplectomorphic, Corollary 1.3 follows immediately

once Theorem 1.1 is proven.

Observe that for, each q � 2 and n � 1, we have that {wloop D Lx.q�1/nC1 Ly C Lyq Lx,

and {wchain D LxqnC1 C Lyq Lx have the same genus, number of boundary components,

and winding numbers along each boundary component. In the case of q odd, this is

enough to give a graded symplectomorphism by Lemma 3.1, since � D 0 in both

cases, and �2.q � 1/ � 0 mod 4. In the case where q and n are both even, we again

have that the Milnor fibres are graded symplectomorphic. In the case where q is even

and n is odd, it remains to check that the relevant Arf invariants agree.

For a graded symplectomorphism between the Milnor fibres of a chain and Bries-

korn–Pham polynomial, we have that {w0
chain D Lxp C Lyn.p�1/ Lx and {wBP D Lxp C Lynp

for each p � 2 and n � 1 have the same genus, number of boundary components,

and winding numbers along each boundary component. In the case where n is even

and p is odd, we have that �2.n.p � 1/ � 1/ � 0 mod 4, and so Lemma 3.1 gives

us a graded symplectomorphism between the Milnor fibres. Similarly, for p D 2 and

n odd, Lemma 3.1 yields a graded symplectomorphism between Milnor fibres. In all

other cases, we must check the relevant Arf invariants.

The only possibility for a graded symplectomorphism between the Milnor fibres

of a loop and Brieskorn–Pham polynomial is that both are symplectomorphic to a

Milnor fibre of a chain polynomial. For such a graded symplectomorphism to exist,

we require {wloop D Lxq Ly C Lyq Lx, {wchain D LxqC1 C Lyq Lx, and {wBP D LxqC1 C LyqC1. It

should be noted that the potential graded symplectomorphisms discussed above are

the only such possibilities.

3.4.1. Graded symplectomorphisms between the Milnor fibres of loop and chain

polynomials. In the case of loop polynomials of the form {wloop D Lx.q�1/nC1 Ly C Lyq Lx,

we have that there are q C 1 boundary components. Recall the basis of the first homo-

logy of the Milnor fibre given in [13, Section 3]. An elementary calculation shows that

if we remove the Lagrangian V
loop

Lx Ly , as well as the Lagrangians ¹i V
loop

Lx Lw ºi2¹0;:::;q�2º,
then the restriction of the intersection form is non-degenerate.

In the case of chain polynomials of the form {wchain D LxqnC1 C Lyq Lx, we consider

the basis of Lagrangians for the first homology group of the Milnor fibre as given

in [13, Section 5]. By removing the Lagrangian V chain
Lx Ly , as well as the Lagrangians

¹i V chain
Lx Lw ºi2¹0;:::;q�2º, the restriction of the intersection form to the remaining Lag-

rangians is non-degenerate.

Let Un be the n � n matrix given by

.Un/i;j D

´

1 if i � j;

0 otherwise.
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Then we have that fchain D Uq�1 ˝ Uqn C .Uq�1 ˝ Uqn/T . On the other hand, floop

is the block matrix given by
0

@

2 Idn.q�1/ Idn.q�1/ ::: Idn.q�1/

Idn.q�1/

::: Uq�1˝Un.q�1/C.Uq�1˝Un.q�1//T

Idn.q�1/

1

A:

In both cases, one can explicitly compute that the determinant is nq C 1, and so, in

particular, we have Arf. Nqchain/ D Arf. Nqloop/. Therefore, by Lemma 3.1, the surfaces

are graded symplectomorphic, and their respective compact Fukaya categories are

quasi-equivalent.

3.4.2. Graded symplectomorphisms between Milnor fibres of chain and Bries-

korn–Pham polynomials. In the case of chain polynomials of the form {w0
chain D

Lxp C Lyn.p�1/ Lx, and Brieskorn–Pham polynomials of the form {wBP D Lxp C Lynp, we

have that the there are p boundary components. In the chain case, we remove V chain
Lx Ly ,

as well as the Lagrangians ¹i V chain
Lx Lw ºi2¹0;:::;p�3º from the collection of Lagrangians

which form a basis of the first homology of the Milnor fibre, and the restriction of the

intersection form to the remaining Lagrangians is non-degenerate. In the Brieskorn–

Pham case, if we remove the Lagrangians ¹l;np�2V BP
0 ºl2¹0;:::;p�2º from the collection

of Lagrangians which form a basis of the first homology group of the Milnor fibre,

as described in [13, Section 6], then the restriction of the intersection form to the

remaining Lagrangians is likewise non-degenerate.

In the case of chain polynomials, we have that fchain0 is given by removing the top

and left p � 2 rows and columns from
0

@

2 Idn.p�1/�1 Idn.p�1/�1 ::: Idn.p�1/�1

Idn.p�1/�1

::: Up�1˝Un.p�1/�1C.Up�1˝Un.p�1/�1/T

Idn.p�1/�1

1

A:

In the case of Brieskorn–Pham polynomials, we have that fBP D Up�1 ˝ Unp�2 C

.Up�1 ˝ Unp�2/T .

In both cases, we have that

det fchain0 D det fBP D

´

p if p is odd;

np � 1 if p is even:

We therefore have by Lemma 3.1 that the Milnor fibres are graded symplectomorphic.

4. Hochschild cohomology via matrix factorisations

In this section, we make the necessary Hochschild cohomology computations which

will later enable us to deduce the existence of an affine scheme of finite type which
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represents the moduli functor of A1-structures on the graded algebras we are inter-

ested in. This is the main computational component of the paper, and we include the

entire calculation for completeness, although a computation of HHn.Y / for n � 2

would have sufficed.

Suppose once more that we are in the setting of Section 2, and we have that w is

an invertible polynomial in two variables such that d0 > 0, � is a subgroup of �w of

finite index containing �.C�/, and Wu the quasi-homogenisation of a semi-universal

unfolding corresponding to u 2 UC. Denote V D ¹x;y; zº, S WD Sym V D CŒx;y; z�,

and so Ru D S=.Wu/, and Wu 2 .S ˝ �/� (recall � D �wj� ). Equation (28) implies

that

HH�.Yu/ ' HH�.A3; �; Wu/: (67)

This vastly simplifies the calculation at hand, since a theorem of Ballard, Favero, and

Katzarkov ([2, Theorem 1.2]) reduces the computation of the Hochschild cohomology

of the category of �-equivariant matrix factorisations of Wu to studying the cohomo-

logy of certain Koszul complexes, which in nice cases reduces to studying the Jacobi

algebra of Wu. To this end, consider an element 
 2 ker �, and V
 the subspace of V

of 
 -invariant elements. Let S
 WD Sym V
 , and N
 the complement of V
 in V , so

that V ' V
 ˚ N
 as a �-module. Denote by W
 the restriction of Wu to Spec S
 ,

and consider the Koszul complex

C �.dW
 / WD ¹� � � ! ^2V _

 ˝ �˝.�2/ ˝ S
 ! V _


 ˝ �_ ˝ S
 ! S
º; (68)

where S
 sits in cohomological degree 0, and the differential is the contraction with

dW
 2 .V
 ˝ � ˝ S
 /� : (69)

Denote by H i .dW
 / the i th cohomology group of the Koszul complex. The zeroth

cohomology of (68) is isomorphic to the Jacobi algebra of W
 , and if W
 has an

isolated critical point at the origin, then C �.dW
 / is a resolution. Our main tool for

computing Hochschild cohomology is the following theorem:

Theorem 4.1 ([2]). Let w be an invertible polynomial in two variables, � be a sub-
group of �w of finite index containing �.C�/ acting on A3 D Spec S , and Wu 2 S

be a non-zero element of degree �. Assume that the singular locus of the zero set
Z.�Wu/�Wu

of the Thom–Sebastiani sum �Wu � Wu is contained in the product of
the zero sets ZWu

� ZWu
. Then HHt .A3; �; Wu/ is isomorphic to

�

M


2ker �;l�0

t�dim N
 D2u

H �2l.dW
 / ˝ �˝.uCl/ ˝ ^dim N
 N _



˚
M


2ker �;l�0

t�dim N
 D2uC1

H �2l�1.dW
 / ˝ �˝.uClC1/ ˝ ^dim N
 N _



��

: (70)
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In the case where the �-action on V satisfies dim.S ˝ �/� < 1 for any � 2 y� ,

one then has

dim HHt .A3; �; W/ < 1 (71)

for every t 2 Z. To see this, note that the complex C �.dW
 / is always bounded, and

the group ker� is finite. Therefore, each direct summand of (70) is finite-dimensional,

and there are only finitely many u contributing to a fixed t .

Theorem 4.1 is a minor modification of [2, Theorem 1.2], where the difference

is in the convention for the Koszul complex. In our case, when there is an additional

C�-action on V , then (70) is equivariant with respect to it. In particular, in the case

of u D 0 2 UC, we have that there is an additional C�-action on V given by t �

.x; y; z/ D .x; y; tz/, and this induces an additional C�-action on HH�.Y0/. Denote

by HH�.Y0/<0 the negative weight part of this action. We refer the reader to [2] for a

proof of Theorem 4.1.

Definition 4.1. We will say that the pair .w;�/ is untwisted if HH2.Y0/<0 comes only

from the summand .Jacw ˝ CŒz� ˝ �/� corresponding to u D 1 and 
 D 1 2 ker �

in (70).

It should be emphasised that being (un)twisted is a property of a pair .w; �/,

rather than its category of matrix factorisations. Indeed, we will see below that the

polynomial w D x3y C y2 is twisted and w D x2y C y2x is not, although Corol-

lary 1.3 shows that the Hochschild cohomology of their respective categories of matrix

factorisations are isomorphic. A pair .w; �/ being untwisted ensures that all of the

deformations corresponding to HH2.Y0/<0 come from semi-universal unfoldings of

the polynomial w. This is a key step in the proof of [29, Theorem 1.6], a special

case of which appears as Theorem 6.1. By an abuse of notation, we will refer to a

polynomial w as being (un)twisted to mean that the pair .w; �w/ is (un)twisted.

4.1. Loop polynomials

Consider W0 D xpy C yqx with the only restriction that p; q � 2. Without loss of

generality, we can consider p � q. This has weights as in (29), where we again set

d WD gcd.p � 1; q � 1/. As explained in Section 2, we extend the action of �w '

C� � �d to A3 as in (24) so that we now have

�w D ¹.t0; t1; t2/ 2 .C�/3 j t
p
1 t2 D t

q
2 t1 D t0t1t2º: (72)

The group of characters is given by

y�w WD Hom.�w; C�/ ' Z ˚ Z=dZ; (73)
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and we take m; n to be the same fixed solution to (32) as in Section 2.1. We write

each character .t0; t1; t2/ 7! t
mi� .q�1/j

d

2 t
niC .p�1/j

d

1 , where .i; j / 2 Z ˚ Z=dZ, as �i;j .

One has that span¹z_º ' � .p�1/.q�1/
d

;0
, span¹x_º ' � .q�1/

d
;m

, span¹y_º ' � .p�1/
d

;�n
,

� ' � pq�1
d

;m�n
, and ker � ' �pq�1.

We have that Jacw is given as in (30). Since we are in the situation of an affine

cone over an isolated hypersurface singularity, [29, Section 3.1] shows that we must

have l D 0 in (70). Furthermore, there are no contributions when u < �1, and the

only possible contribution for u D �1 comes from when N
 D span¹x;yº, or z … V
 .

When 
 2 ker � is the identity element, we have V
 D V , N
 D 0, and W
 D w. For

every u 2 Z�0, the elements

xi yj zk 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xi yj zkC1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i D u mod .p � 1/, j D u mod .q � 1/, and k D u C b u
q�1

c C b u
p�1

c, contrib-

ute C.k/ to HH2u.Y0/ and HH2uC1.Y0/, respectively. In addition, in the case where

u � 0 mod .p � 1/, the elements

xp�1yj zk�1 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xp�1yj zk 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i; j; and k are as above, contribute C.k � 1/ to HH2u.Y0/ and HH2uC1.Y0/,

respectively. In the case where u � 0 mod .q � 1/, we also have the elements

xi yq�1zk�1 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xiyq�1zk 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i; j; and k are again as above, contribute C.k � 1/ to HH2u.Y0/ and

HH2uC1.Y0/, respectively. In the case when u � 0 mod .p�1/.q�1/
d

, we also have the

elements

xp�1yq�1zk�2 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xp�1yq�1zk�1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i; j; and k are again as above, and these contribute C.k � 2/ to HH2u.Y0/ and

HH2uC1.Y0/, respectively.

When V
 D 0, N
 D V , W
 D 0, we have the summand

.�_ ˝ ^3N _

 /� ' C � x_ ^ y_ ^ z_
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contributes C.�1/ to HH2uCdim N
 .Y0/ D HH1.Y0/, and there are pq � d � 1 such 
 .

In the case when V
 D span¹zº, N
 D span¹x; yº, W
 D 0, we that for each

n 2 Z�0, the summands

C � z
.nC1/.pq�1/

d
�1 ˝ x_ ^ y_ ' .JacW


˝�˝ .nC1/.p�1/.q�1/
d

�1 ˝ ^2N _

 /� ;

C � z_ ˝ z
n.pq�1/

d ˝ x_ ^ y_ ' .JacW

˝�˝ n.p�1/.q�1/

d
�1 ˝ ^2N _


 /� ;

contribute C. .nC1/.pq�1/
d

� 1/ to HH
2.nC1/.p�1/.q�1/

d .Y0/ and C. n.pq�1/
d

� 1/ to

HH
2n.p�1/.q�1/

d
C1.Y0/. There are d � 1 such contributions.

Putting this all together, we have that the Hochschild cohomology of Y0 satisfies

HHsCt .Y0/t ' HHsCtC2 .p�1/.q�1/
d .Y0/

s� pq�1
d

(74)

for s > 0, and that for 0 � n � 2 .p�1/.q�1/
d

C 1, HHn.Y0/ is given by

HH0.Y0/ ' C.0/;

HH1.Y0/ ' C.0/ ˚ C.�1/˚pq;

HH2r .Y0/ ' C

�

r C
j r

q � 1

k

C
j r

p � 1

k�

for .p � 1/; .q � 1/ − r;

HH2rC1.Y0/ ' HH2r.Y0/ for .p � 1/; .q � 1/ − r;

HH2r.q�1/.Y0/ ' C

�

r.q � 1/ C
jr.q � 1/

p � 1

k

C r
�

˚ C
�

r.q � 1/ C
jr.q � 1/

p � 1

k

C r � 1
�

for 1 � r <
p � 1

d
;

HH2r.q�1/C1.Y0/ ' HH2r.q�1/.Y0/ for 1 � r <
p � 1

d
;

HH2r.p�1/.Y0/ ' C
�

r.p � 1/ C
jr.p � 1/

q � 1

k

C r
�

˚ C

�

r.p � 1/ C
jr.p � 1/

q � 1

k

C r � 1
�

for 1 � r <
q � 1

d
;

HH2r.p�1/C1.Y0/ ' HH2r.p�1/.Y0/;

HH2 .p�1/.q�1/
d .Y0/ ' HH2 .p�1/.q�1/

d
C1.Y0/

' C
�pq � 1

d

�

˚ C
�pq � 1

d
� 1

�˚1Cd

˚ C
�pq � 1

d
� 2

�

:

Note that this is untwisted in every case.
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4.2. Chain polynomials

Consider the case W0 D xpy C yq , where p; q � 2. This has weights as in (34), and

we again take d WD gcd.p; q � 1/. We have �w ' C� � �d as in (36), and extend the

action to A3 as in (24) so that we now have

�w D ¹.t0; t1; t2/ 2 .C�/3 j t
p
1 t2 D t

q
2 D t0t1t2º: (75)

The group of characters is given by

y�w D Hom.�w; C�/ ' Z ˚ Z=dZ; (76)

and we take m;n to be the same fixed solution to (37) as in Section 2.2. We write each

character .t0; t1; t2/ 7! t
niC pj

d

1 t
mi� .q�1/j

d

2 as �i;j , where .i; j / 2 Z ˚ Z=dZ. One then

has span¹z_º ' � .p�1/.q�1/
d

;0
, span¹x_º ' � q�1

d
;m

, span¹y_º ' � p
d

;�n, � ' � pq
d

;m�n,

ker � ' �pq .

We have that Jacw is given as in (35). As in the loop case, we have l D 0 and

u � �1 in (70), where u D �1 only if N
 D span¹x; yº, or z … V
 . In the case where


 2 ker � is the identity, we have V
 D V , N
 D 0, and W
 D w. For each u 2 Z�0,

we have that the elements

xi yj zk 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xi yj zkC1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where j D u mod .q � 1/, i D upq�jp
q�1

mod .p � 1/, and k D upq�i.q�1/�jp
.p�1/.q�1/

, con-

tribute C.k/ to HH2u.Y0/ and HH2uC1.Y0/, respectively. In addition, when u �

0 mod .q � 1/, we have contributions from the elements

xi 0

yq�1zk0

2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xi 0

yq�1zk0C1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i 0 D upq�.q�1/p
q�1

mod .p � 1/ and k0 D upq�i 0.q�1/�.q�1/p
.p�1/.q�1/

, and these contrib-

ute C.k0/ to HH2u.Y0/ and HH2uC1.Y0/, respectively.

In the case where u � 0 mod .p�1/.q�1/
gcd.p�1;q/

, we also have

xp�1zk 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xp�1zkC1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where k D upq
.p�1/.q�1/

� 1. These contribute to C.k/ to HH2u.Y0/ and HH2uC1.Y0/,

respectively.
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For the elements 
 2 ker � such that V
 D 0, N
 D V , and W
 D 0, we have that

the only contribution is from the summand

.�_ ˝ ^3N _

 /� ' C � x_ ^ y_ ^ z_;

which contributes C.�1/ to HH2uCdim N
 .Y0/ D HH1.Y0/, and there are pq � p �

gcd.p � 1; q/ C 1 such 
 .

In the case where V
 D span¹yº, there cannot be a contribution. There are p � 1

such elements of ker � which fix y and nothing else.

In the case where V
 D span¹zº, N
 D span¹x; yº, we have for each n 2 Z�0,

there are contributions from the summands

C � z
.nC1/pq

gcd.p�1;q/
�1 ˝ x_ ^ y_ ' .JacW


˝�
.nC1/.p�1/.q�1/

gcd.p�1;q/
�1 ˝ ^2N _


 /� ;

C � z_ ˝ z
npq

gcd.p�1;q/ ˝ x_ ^ y_ ' .z_ ˝ JacW

˝�

n.p�1/.q�1/
gcd.p�1;q/

�1 ˝ ^2N _

 /� I

these contribute C. .nC1/pq
gcd.p�1;q/

� 1/ to HH
2.nC1/.p�1/.q�1/

gcd.p�1;q/ .Y0/ and C. npq
gcd.p�1;q/

� 1/

to HH
2 n.p�1/.q�1/

gcd.p�1;q/
C1

.Y0/. There are gcd.p � 1; q/ � 1 such terms. In total, we have

that

HHsCt .Y0/t ' HH
sCtC2 .p�1/.q�1/

gcd.p�1;q/ .Y0/t� pq
gcd.p�1;q/

(77)

for s > 0, and for 0 � n � 2 .p�1/.q�1/
gcd.p�1;q/

C 1, HHn.Y0/ is given by

HH0.Y0/ ' C.0/;

HH1.Y0/ ' C.0/ ˚ C.�1/˚.p.q�1/C1/;

HH2r .Y0/ ' C
�j rp

p � 1

k�

for .q � 1/ − r;

HH2rC1.Y0/ ' HH2r.Y0/ for .q � 1/ − r;

HH2r.q�1/.Y0/ ' C
�jrp.q � 1/

p � 1

k�

˚ C
�jp.rq � 1/

p � 1

k�

;

for 1 � r <
p � 1

gcd.p � 1; q/
;

HH2r.q�1/C1.Y0/ ' HH2r.q�1/.Y0/ for 1 � r <
p � 1

gcd.p � 1; q/
;

HH
2 .p�1/.q�1/

gcd.p�1;q/ .Y0/ ' C
� pq

gcd.p � 1; q/

�

˚ C
� pq

gcd.p � 1; q/
� 1

�˚ gcd.p�1;q/

˚ C
� pq

gcd.p � 1; q/
� 2

�

;

HH
2 .p�1/.q�1/

gcd.p�1;q/
C1

.Y0/ ' HH
2 .p�1/.q�1/

gcd.p�1;q/ .Y0/:

This is twisted for the .p; q/ D .3; 2/, but is otherwise untwisted.
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4.3. Brieskorn–Pham polynomials

Consider W0 D xp C yq , and without loss of generality, that p � q � 2. We are

excluding the case of p D q D 2, since d0 D 0 in this case. This has weights as

in (39), where we again set d WD gcd.p; q/. We have �w ' C� � �d , as in (41), and

extend the action to A3 as in (24), so that we now have

�w D ¹.t0; t1; t2/ 2 .C�/3 j t
p
1 D t

q
2 D t0t1t2º: (78)

The group of characters is given by

y�w WD Hom.�w; C�/ ' Z ˚ Z=dZ; (79)

and we again take m;n to be the same fixed solution to (42) as in Section 2.3. We write

each character .t0; t1; t2/ 7! t
mi� qj

d

2 t
niC pj

d

1 , where .i; j / 2 Z ˚ Z=dZ, as �i;j . One

has that span¹z_º ' � .p�1/.q�1/�1
d

;d�mCn
, span¹x_º ' � q

d
;m, span¹y_º ' � p

d
;�n,

� ' � pq
d

;0, and ker � ' � pq
d

� �d .

We have that Jacw is given as in (40). As in the loop and chain cases, we have

l D 0 and u � �1 in (70), where u D �1 only if N
 D span¹x; yº, or z … V
 . When


 2 ker � is the identity, we have that for 0 � u � .p�1/.q�1/�1
d

, the elements

xi yj zk 2 .Jacw ˝CŒz� ˝ �˝u/� ;

z_ ˝ xi yj zkC1 2 .z_ ˝ Jacw ˝CŒz� ˝ �˝u/� ;

where i; j; k are solutions to

i � k D �mp; j � k D �nq; k D u C m C n;

0 � i � p � 2; 0 � j � q � 2;
(80)

contribute C.k/ to HH2u.Y0/, and HH2uC1.Y0/. In the case where u D .p�1/.q�1/�1
d

,

we have that there are precisely two solutions to (80), otherwise the solution is unique.

For the elements 
 2 ker � such that V
 D 0, N
 D V , and W
 D 0, we have that

the only contribution is from the summand

.�_ ˝ ^3N _

 /� ' C � x_ ^ y_ ^ z_;

and this contributes C.�1/ to HH2uCdim N
 .Y0/ D HH1.Y0/. There are

.p � 1/.q � 1/ � gcd.p; q/ C 1

such 
 .

When V
 D span¹xº or V
 D span¹yº, there is no contribution. There are q � 1

and p � 1 such elements in ker �, respectively.
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When V
 D span¹zº, N
 D span¹x; yº, W
 D 0 for n � 0 we have that the sum-

mands

C � z
.nC1/pq

d
�1 ˝ x_ ^ y_ ' .JacW


˝�
.nC1/.p�1/.q�1/

d
�1 ˝ ^2N _


 /� ;

C � z_ ˝ z
npq

d ˝ x_ ^ y_ ' .z_ ˝ JacW

˝�

n.p�1/.q�1/
d

�1 ˝ ^2N _

 /� ;

contribute the term C. .nC1/pq
d

� 1/ and C. npq
d

� 1/ to HH
2.nC1/..p�1/.q�1/�1/

d .Y0/

and HH
2n..p�1/.q�1/�1/

d
C1.Y0/, respectively. There are gcd.p; q/ � 1 such terms. Put-

ting this all together, we get that

HHsCt .Y0/t ' HHsCtC2 .p�1/.q�1/�1
d .Y0/t� pq

d
(81)

for s > 0, and that for 0 � n � 2.p�1/.q�1/�1
d

C 1, we have that HHn.Y0/ is given by

HH0.Y0/ ' C.0/;

HH1.Y0/ ' C.0/ ˚ C.�1/˚.p�1/.q�1/;

HH2r .Y0/ ' HH2rC1.Y0/ ' C.k/;

for r <
.p � 1/.q � 1/ � 1

gcd.p; q/
and k the unique solution to (80);

HH
2 .p�1/.q�1/�1

gcd.p;q/ .Y0/

' C

� pq

gcd.p; q/
� 2

�

˚ C

� pq

gcd.p; q/
� 1

�˚ gcd.p;q/�1

˚ C

� pq

gcd.p; q/

�

;

HH
2 .p�1/.q�1/�1

gcd.p;q/ .Y0/ ' HH
2 .p�1/.q�1/�1

gcd.p;q/
C1

.Y0/:

Note that this is twisted in the case p D q D 3, and p D 4; q D 2, but is otherwise

untwisted.

4.4. Unfoldings of invertible polynomials

Of course, Theorem 4.1 can also be used to compute the Hochschild cohomology of

the category of matrix factorisations of an unfolded polynomial. For the polynomials

where dim UC > 1, we will need Hochschild cohomology calculations of unfolded

polynomials in order to be able to isolate the correct mirror. Towards this end we will

need to (at least partially) calculate HH2.Yu/ in these cases.

Lemma 4.2. Let w an untwisted invertible polynomial in two variables such that
dim UC > 1. Then,

• for w D xpy C y2x and p > 2, we have HH2.Yu/ D 0 unless u1;0 D 0, u1;1 ¤ 0

in (33);
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• for w D x2y C xy2, we have dimHH2.Yu/ < 3 unless u1;1 ¤ 0 and u0;0 D u1;0 D

u0;1 D 0 in (33);

• for w D xpy C y2 and p > 3, we have HH2.Yu/ D 0 unless u1;1 ¤ 0 and u2;0 D 0

in (38);

• for w D x2y C y2, we have dimHH2.Yu/ < 2 unless u0;1 ¤ 0 and u0;0 D u1;0 D 0

in (38).

Proof. In each of the cases we consider, the sequence .@xWu; @yWu/ is a regular

sequence in S . Therefore, the cohomology of the Koszul complex, (68), will be con-

centrated in degrees 0 and �1, and the only contributions to HH2.Yu/ can come from

.JacWu
˝�/� and .JacWu

˝x_ ^ y_/� . Note that if the latter term contributes to

HH2.Yu/, then the polynomial is twisted, and we will not consider it.

The two loop polynomials we must consider are w D xpy C y2x for p > 2 and

w D x2y C y2x. In the former case, the unfolding is given by Wu D xpy C y2x C

u1;1xyz C u1;0xz2. For a contribution to HH2.Yu/, there must be an element of

JacWu
which is proportional to �. Note that if u1;1 D0, then dim.JacWu

˝�/� D0.

On the other hand, we have that dim.JacWu
˝�/� D 0 if u1;0 ¤ 0. In the case w D

x2y C y2x, we have that dim.JacWu
˝�/� < 3 unless u1;1 ¤ 0, and the other coef-

ficients are zero.

The only chain polynomials which need to be considered are w D xpy C y2 for

p > 3 and w D x2y C y2. In the former case, note that if u1;1 D 0, or u1;1; u2;0 ¤ 0,

then HH2.Yu/ D 0. In the latter case, note that dim HH2.Yu/ < 2 unless u0;1 ¤ 0 and

the other coefficients are zero.

5. Generators and formality

In this section we recall and implement the results of various authors to establish the

required generation statements for the compact Fukaya category of the Milnor fibre,

and also the category of perfect complexes on Yu for any u 2 UC, as outlined in

Section 1.1.

As in the previous sections, let {V{w be the Milnor fibre of the transpose of an

invertible polynomial in two variables such that d0 > 0. Let ¹Si º
L�
iD1 be a distinguished

basis of vanishing cycles, and let � be the full subcategory of F . {V{w/ whose objects

are ¹Si º
L�
iD1. As in Section 1.1, denote by A the total A1-endomorphism algebra of � ,

A WD

L�
M

i;j

hom
F . {V{w/

.Si ; Sj /: (82)
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Let TL 2 Symp.†I @†/ be the Dehn twist around a Lagrangian L in a surface with

boundary .†I @†/, as in [36, Section 16c]. By [34, Theorem 4.17; Comment 4.18(c)],

we have that

.TS1
ı � � � ı TS L�

/
Lh D Œ2 Ld0�: (83)

Since Ld0 > 0, the argument of [37, Lemma 5.4] then shows that � split-generates

F . {V{w/, and so

F . {V{w/ ' perf � : (84)

On the B-side, let wW A2 ! A be an invertible polynomial in two variables such that

d0 > 0. In each case, we aim to associate UC to the moduli space of A1-structures

on a fixed quiver algebra. In order to do this, for each u 2 UC we must find generators

�u of perf Yu such that

(i) the isomorphism class of the cohomology level endomorphism algebra

End.�u/ does not depend on u 2 UC, and

(ii) the generator �0 at 0 2 UC admits a C�-equivariant structure such that

the cohomological grading on End.�u/ is proportional to the weight of the

C�-action.

If we find generators which satisfy condition (i), then we can think of deformations

of Y in terms of deformations of the A1-structures on the cohomology level endo-

morphism algebra. Condition (ii) will be necessary to deduce that end.�0/ is formal.

Recall ([13, Theorem 2]) that mf.A2; �w; w/ has a tilting object, E , for any two

variable invertible polynomial w. For each u 2 UC, let �u be the image of E under

the pushforward functor

mf.A2; �; w/ ! mf.A3; �; Wu/ ' coh Yu:

It is then a consequence of [29, Theorem 4.1] that �u split-generates perf Yu.

Let Au be the minimal model of the dg-endomorphism algebra of �u, end.�u/.

As discussed in One has a quasi-equivalence

Qcoh Yu ' Mod Au; (85)

and therefore, by the Morita invariance of Hochschild cohomology, an isomorphism

HH�.Yu/ ' HH�.Au/: (86)

The cohomology algebra Au WD H �.Au/ is independent of u, and by [42, The-

orem 1.1], is isomorphic as a vector space to (9). On both the A-, and B-sides, the
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algebra structure is given as in (10), since A! is a quiver algebra of a quiver with no

cycles, and so HH2.A!; .A!/_Œ�1�/ D .HH1.A!//_ D 0.

By exploiting the additional C�-action, one can prove a general statement for the

formality of A0. This is done by first showing that the cohomological grading on

End�.�0/ is proportional (equal in the case of curves) to the weight of the C�-action.

This follows from the fact that the dualising sheaf of Y0 is trivial as an OY0
-module,

but has weight one with respect to the additional C�-action. Since C� is reductive, the

chain homotopy to take end.�0/ to a minimal A1-structure can be made C�-equivari-

ant. Since �d lowers the cohomological degree by 2, the only map which can be

non-zero is �2.

Theorem 5.1 ([29, Theorem 4.2]). A0 is formal.

In particular, this means that

HH�.Y0/ ' HH�.A/; (87)

and so the computations in Section 4 imply that the moduli space of A1-structures

on A is represented by an affine scheme of finite type. Furthermore, combining equa-

tion (87) with Theorem 3.2, and the calculations in Section 3.3 gives us that the

A1-structure on A, the endomorphism algebra of the generators of F . {V{w/, is not
formal.

6. Homological mirror symmetry for invertible polynomials in two

variables

In this section, we bring together the previous sections of the paper to establish The-

orem 1.1 and Corollary 1.3. As noted above, the computations of Section 4 together

with (87) mean that the moduli space of A1-structures on A is represented by an

affine scheme of finite type, U1.A/, for any untwisted invertible polynomial w. As

explained in Section 1.1, we would like to identify U1.A/ with the space UC corres-

ponding to w by showing that the map (18) is an isomorphism. To this end, we utilise

the following special case of [29, Theorem 1.6]:

Theorem 6.1. Let w be an untwisted invertible polynomial in two variables such that
d0 > 0, and � be a subgroup of �w containing �.C�/ as a subgroup of finite index.
Let A! be the endomorphism algebra of a tilting object in mf.A2; �; w/, and let
A be the degree 1 trivial extension algebra of A!. Then there is a C�-equivariant
isomorphism UC

�
�! U1.A/ which sends 0 2 UC to the formal A1-structure on A.

This isomorphism descends to the quotient by the C�-action, and so we get an

isomorphism
�

UC n .0/
�

=C� �
�! M1.A/. It should be reiterated that the polynomial
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being untwisted is a crucial assumption, as can be seen by considering, for example,

w D x3y C y2. In this case, we have that HH2.Y0/<0 D C.3/ ˚ C.2/˚2 ˚ C.1/, but

UC D A3.

Proof of Theorem 1.1. In each case, we know that the A1-structure on F . {V{w/ is not

formal, and so is represented by a point in M1.A/. By Theorem 6.1, this, in turn,

represents the A1-structure corresponding to the dg-enhancement of the derived cat-

egory of perfect sheaves on a semi-universal unfolding of w. In the cases where

dim UC D 1, we have that M1.A/ is a single point, and so the semi-universal unfold-

ing (up to scaling) corresponding to this point must be the mirror. Note that in the

cases w D x2y C yq for q > 2 and w D xp C y2 for p > 4, we have

CŒx; y; z�=.x2y C yq C yz2/ ' CŒx; y; z�=.x2y C yq C xyz/;

CŒx; y; z�=.xp C y2 C x2z2/ ' CŒx; y; z�=.xp C y2 C xzy/

by completing the square.

In the case where dim UC > 1, we must exclude the points in M1.A/ other than

the claimed mirror. In the case w D xpy C y2 for p > 3, we have by Lemma 4.2 that

dim HH2.Yu/ D 0 < dim SH2. {V{w/ unless u D .0; 1/. By Theorem 3.2, we must there-

fore have that the mirror is identified with Yu for u D .0; 1/ 2 UC. A similar argument

in the cases w D x2y C y2x and w D xpy C xy2 for p > 2 leads to identifying the

mirrors as Yu for u D .0; 0; 0; 1/ and u D .0; 1/, respectively.

In the case of x2y C y2, we have that if u ¤ .0; 0; 1/, then dim HH2.Yu/ < 2 D

dim SH2. {V{w/ by Lemma 4.2, and so the mirror is identified with Yu for u D .0; 0; 1/.

Again, by completing the square, we have

CŒx; y; z�=.x2y C y2 C yz2/ ' CŒx; y; z�=.x2y C y2 C xyz/:

In the case of w D x3 C y2, we follow the same argument as in [23]. Namely, we

have that if Yu is an elliptic curve, then HH�.Yu/ exists in only finitely many degrees

by the Hochschild–Kostant–Rosenberg theorem. Since the symplectic cohomology

of the Milnor fibre is non-trivial in arbitrarily large degree, by Theorem 3.2, we have

that the mirror cannot be smooth. We therefore have that the mirror must be the nodal

cubic Wu D x3 C y2 C xz4 C
3
p

2z6p
3

, and we have

CŒx; y; z�=.Wu/ ' CŒx; y; z�=.x3 C y2 C xyz/

by a change of variables.

In the cases where the polynomial is twisted, this result has already been estab-

lished in [26] by different means. Our construction of the Milnor fibres agrees with

the surfaces constructed in [26], and the mirrors established there are precisely the

mirrors we claim.
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The only invertible polynomial where d0 6> 0 is w D x2 C y2, for which d0 D 0.

This, however, corresponds to the mirror symmetry statement for C�, which is already

well established. Therefore, Theorem 1.1 is true in this case, too.

Proof of Corollary 1.3. By observing that the results of Section 3.4 show that the rel-

evant compact Fukaya categories are quasi-equivalent, Theorem 1.1 establishes that

the derived categories of perfect complexes of their mirrors are, too.
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