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Web calculus and tilting modules in type C2

Elijah Bodish

Abstract. Using Kuperberg’s web calculus (1996), and following Elias and Libedinsky, we

describe a “light leaves” algorithm to construct a basis of morphisms between arbitrary tensor

products of fundamental representations for sp4 (and the associated quantum group). Our argu-

ment has very little dependence on the base field. As a result, we prove that when Œ2�q ¤ 0, the

Karoubi envelope of the C2 web category is equivalent to the category of tilting modules for the

divided powers quantum group U A
q .sp4/.
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1. Introduction

Let g be a complex semisimple Lie algebra and let Rep.g/ denote the category

of finite-dimensional modules for g. By Weyl’s theorem on complete reducibility

Rep.g/ is a semisimple category, so as an abelian category Rep.g/ is determined by

the number of its simple objects. Since isomorphism classes of finite-dimensional irre-

ducible g-modules are in bijection with the countably infinite set of dominant integral

weights XC, Rep.g/ Š Rep.g0/ as abelian categories, for any two semisimple Lie

algebras.

A Lie algebra acts on the tensor product of two representations, so Rep.g/ is

a monoidal category. Viewing Rep.g/ as a monoidal semisimple category, we cap-

ture much more information about g (the amount of information can be made precise
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through Tannaka–Krein duality). One then may ask for a presentation by generators

and relations of the monoidal category .Rep.g/;˝/. A modern point of view on this

problem is to find a combinatorial replacement for Rep.g/ and then use planar dia-

grammatics to describe the combinatorial replacement by generators and relations.

By combinatorial replacement, we mean a full subcategory of Rep.g/ monoidally

generated by finitely many objects, such that all objects in Rep.g/ are direct sums of

summands of objects in the subcategory. We will focus on the combinatorial replace-

ment Fund.g/, which is the full subcategory of Rep.g/ monoidally generated by the

irreducible modules V.$/ of highest weight $ for all fundamental weights $ . Note

that Fund.g/ is not an additive category.

We use the terminology g-webs to refer to a diagrammatic category equivalent

to Fund.g/. The history of g-webs begins with the Temperley–Lieb algebra [28, 34]

for sl2 and Kuperberg’s “rank two spiders” [19] for sl3, sp4 Š so5, and g2. D. Kim

gave a conjectural presentation for sl4-webs [18], and then Morrison gave a con-

jectural description of sln-webs [22]. Proving that the diagrammatic category was

equivalent to Fund.sln/ turned out to be difficult, but was eventually carried out by

Cautis, Kamnitzer, and Morrison using skew Howe duality [6]. Recently, a conjectural

description of sp6-webs has appeared in a preprint by Rose and Tatham [26].

The Lie algebras g for which there are g-web categories which are known to be

equivalent to Fund.g/ are

g 2 ¹sln; gln; sp4 Š so5; g2º:

Each of these g-web categories has a q-deformed integral form, which we denote by

Dg, over ZŒq; q�1� (or some localization). On the representation theory side, we have

Lusztig’s divided powers form of the quantum group, denoted U Z
q .g/. This algebra

has modules V Z.$/, which are lattices inside V.$/, for each fundamental weight.

One should keep in mind that these lattices may not be irreducible after scalar exten-

sion to a field. The full subcategory monoidally generated by the modules V Z.$/

will be denoted Fund.U Z
q .g//.

Let k be a field and let q 2 k�. We can specialize the integral versions of both the

diagrammatic category and the combinatorial replacement category to k. It is natural

to ask if these two categories are equivalent [3, Section 5A.4]. Taking all sums of sum-

mands of objects in Fund.k˝ U Z
q .g//, one obtains the category of tilting modules

Tilt.k˝ U Z
q .g//. So, a positive answer to this question means we have found gener-

ators and relations for the monoidal category of tilting modules.

For g D gln, an answer to this question appears in a paper of Elias [8]. Using

ideas from Libedinsky’s work [20] on constructing bases for maps between Soergel

bimodules, Elias constructs a set of diagrams, denoted LL and referred to as double

ladders, in the ZŒq; q�1-linear category Dgln
. There are two main arguments in [8].
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First, a diagrammatic argument shows that LL spans the category over ZŒq; q�1�.

Second, Elias describes a functor � WDgln
! Fund.U Z

q .gln// and proves that �.LL/

is linearly independent. After observing that the ranks of homomorphism spaces in

Fund.k˝U Z
q .gln// are equal to #LL (see [7]), it follows that the diagrams k˝LL

are a basis for k˝Dgln
and the functor k˝ � is an equivalence.

Kuperberg proved [19] there is a monoidal equivalence

k˝Dsp4
! Fund.k˝ Uq.sp4//;

when k D C.q/and when k D C and q D 1. Our goal is to prove this equivalence

with as few restrictions on k and q as possible.

The present work is completely indebted to Elias’s approach, and the basis we

construct for Kuperberg’s Dsp4
webs is the analogue of Elias’s light ladder basis for

sln-webs in [8]. However, our arguments take less effort, since we can use Kuper-

berg’s result [19] that non-elliptic webs span Dsp4
over ZŒq; q�1�, and are a basis

for Dsp4
over C, when q D 1. Most of our work is to carefully construct an explicit

functor „WDsp4
! U Z

q .sp4/-mod.

The following theorem is the main result of the paper.

Theorem 1.1. If k is a field and q 2 k� is such that q C q�1 ¤ 0, then the functor

„Wk˝Dsp4
! Fund.k˝ U Z

q .sp4//:

is a monoidal equivalence, and therefore induces a monoidal equivalence between the
Karoubi envelope of k˝Dsp4

and the category Tilt.k˝ U Z
q .sp4//.

Remark 1.2. The reader who is already well acquainted with [19] may wonder why

we are talking about type C2 and sp4, instead of type B2 and so5. This certainly

makes no difference classically, since sp4.C/ Š so5.C/. For the purposes of this

paper there is no difference over other fields either. Under our hypothesis that

q C q�1 ¤ 0 (note that this includes the possibility that q D 1 and k is not char-

acteristic two), there is an isomorphism k˝U Z
q .sp4/Š k˝U Z

q .so5/, as well as an

equivalence between k˝Dsp4
and the base change from ZŒq; q�1� to k of Kuper-

berg’s B2 spider category.

We chose C2 over B2 hoping it would prevent confusion, since the defining rela-

tions in Dsp4
are slightly different than the relations in Kuperberg’s B2 spider.

Remark 1.3. If we take k to be an algebraically closed field of characteristic p and

let q D 1, then Tilt.k˝ U Z
q .sp4// is equivalent to the category of tilting modules

for the reductive algebraic group Sp4.k/ [15, Section H.6]. Very little is known about

tilting modules for reductive groups in characteristic p > 0, and our results apply in

this setting as well for all p > 2.
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Remark 1.4. If qC q�1D 0, then the fundamental representationk˝V Z.$2/ is not

tilting. So, if one is interested in tilting objects the category Fund.g/ is not the correct

category to study. Also, the category Dsp4
is not defined when q C q�1 D 0, because

some relations have coefficients with q C q�1 in the denominator. One could clear

denominators in the relations and obtain a category which is defined when qCq�1D0.

However, we do not know what this diagrammatic category would describe.

The following result is a consequence of our main theorem, and is new even if

k D C and q D 1 or if k D C.q/.

Theorem 1.5. Let k be a field and let q 2 k� so that qC q�1 ¤ 0. The double ladder
diagrams defined in Section 2.5 form a basis for the morphism spaces in k˝Dsp4

.

Remark 1.6. As already mentioned, Kuperberg’s B2 web category is spanned by

the same non-elliptic diagrams over ZŒq; q�1�. The work of Sikora and Westbury [30]

proves that these diagrams are linearly independent whenever qC q�1 ¤ 0. Although

their techniques are quite different than ours and certainly are worth studying, their

result is a consequence of ours.

Suppose that one could show that either double ladder diagrams span or are lin-

early independent. Since the number of double ladders is equal to the number of

non-elliptic webs, the result from [30] would imply that the double ladder diagrams

are a basis.

However, it is not possible to obtain our main theorem with just their result. Even

though their paper and some basic representation theory implies the dimensions of

homomorphism spaces in k ˝ Dsp4
and Fund.k ˝ U Z

q .sp4// are equal, it is not

enough to deduce that k˝„ is an equivalence. The difficulty is best illustrated via

analogy: the lattice Z becomes a one-dimensional vector space after base change to

any field, but the map Z
x 7!2x
����! Z is not an isomorphism after tensoring with a field

of characteristic two. We really need to know that the map k˝„ is an isomorphism

and to do this we must explicitly construct and analyze the functor „.

Remark 1.7. It remains an open problem to adapt the arguments in [8] to prove

that double ladder diagrams span Dsp4
without using Kuperberg’s results about non-

elliptic webs. The first steps in this adaptation would be to rewrite every composition

of elementary light ladder diagrams of the form L� ı .id˝L�/ as a linear combination

of double ladder diagrams. This is an easy exercise which may convince the reader

that such an adaptation is possible. The second step is to prove that any diagram of

the form .id˝L� ˝ id/ ı N ı .id˝D.L�/ ˝ id/, where N is an arbitrary neutral

diagram, is a linear combination of double ladder diagrams. The case when N is the

identity is another easy exercise, and considering the case of arbitrary N may help

convince the reader that writing a complete adaptation of [8] would be non-trivial.
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Remark 1.8. It is work in progress of Victor Ostrik and Noah Snyder to find the

precise relationship between Kuperberg’s G2 webs and tilting modules.

1.1. Potential applications

Let kDC and let q D e�i=`. Soergel conjectured [31] and then proved [32] a formula

for the character of a tilting module for k˝U Z
q .g/ when ` > h, where h is the Coxeter

number of g.

In (5.4), we will prove that the category Dsp4
is a strictly object adapted cel-

lular category [10]. Thus, the discussion in [12, Section 11.5] allows one to adapt

the algorithm in [16] from the context of Soergel bimodules to sp4-webs. Using this

algorithm, which we outline in Section 5.2, one can compute tilting characters for the

quantum group at a root of unity as long as ` � 3 (the ` D 2 case is ruled out by the

assumption in our theorem that q C q�1 ¤ 0). The Coxeter number of sp4 is h D 4.

This means that when `D 3, Soergel’s conjecture for tilting characters does not apply

but the diagrammatic category k˝Dsp4
does still describe tilting modules.

There may be a conjecture for the characters of tilting modules of quantum groups

that includes `� h, along the lines of [11, Section 8.1] and [25, Theorem 1.6]. Ideally,

the conjecture would relate tilting characters for the quantum group at a root of unity

to singular, antispherical Kazhdan–Lusztig polynomials. One could use sp4 webs to

check such a conjecture for small weights.

There are other open questions related to tilting modules when ` is large enough

for the diagrammatic category to be equivalent to the category of tilting modules, but

` is still less than the Coxeter number. For example, what is the semisimplification of

the category of tilting modules for such `? The solution to this problem when ` > h is

very well known, and provides a wealth of examples of finite tensor categories. When

` > h satisfies certain congruence conditions based on the root system of g (for sp4

the condition is ` is even) the semisimplification of the category of tilting modules is

a modular category [27] which gives rise to a Reshetikhin–Turaev 3-manifold invari-

ant [35]. Theorem (1.1) implies that Dsp4
can be used to aid in the calculation of

these three manifold invariants.

By interpreting gln-webs in terms of Schur algebras, Brundan, Entova-Aizenbud,

Etingof, and Ostrik [5] use results of Donkin to reprove that

k˝Dgln
Š k˝ Fund.U Z

q .gln//

for any field when q D 1. The main result of [5] is that when qD 1 and char k < h, the

semisimplification of Tilt.k˝ Uq.gln// is a semisimple monoidal category, which

may have infinitely many objects, and is related to Kazhdan–Lusztig cells the affine

Hecke algebra.
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When Soergel’s results on tilting characters of the quantum group are known to

hold, Ostrik proved [23] that there is a bijection between cells in the antispherical

module for the Langlands dual affine Hecke algebra and thick monoidal ideals in the

category of tilting modules Tilt.k˝ U Z
q .g//. On the other hand, a deep theorem of

Lusztig [21] is that there is also a bijection between cells in the antispherical mod-

ule for affine Weyl group and orbits in the nilpotent cone of G. Note that the bijection

between nilpotent orbits and thick monoidal ideals no longer appears to involve Lang-

lands duality.

The maximal thick monoidal ideal in the category of tilting modules corresponds

to the “highest” cell in the antispherical module which in turn corresponds to the

regular nilpotent orbit. This maximal ideal coincides with the ideal of negligible

morphisms, denoted by N , and therefore the quotient is what is referred to as the

semisimplification of the category of tilting modules. Since Soergel’s methods of

proof do not apply when ` < h, it follows that Ostrik’s results also do not apply.

There may still be a non-trivial negligible ideal, but it might be that the objects in it

now correspond to a different cell in the antispherical module and correspondingly a

different nilpotent orbit.

When g D sp4 and ` D 3, we still have a non-trivial semisimplification (this is

not the case when `D 2) and now the “highest” cell is replaced by the unique reduced

expression cell. The unique reduced expression cell corresponds via Lusztig’s bijec-

tion to the sub regular nilpotent orbit Osubreg. The group Sp4.C/ acts on this orbit by

conjugation. Now, fix a point u2Osubreg in the orbit. The stabilizer of u is an algebraic

group with maximal reductive quotient, denoted Gu, a two component disconnected

group with a one-dimensional torus for the identity component. As an abstract group

Gu is an extension of Z=2 by C�. We conjecture that Gu is a split but non-trivial

extension.

Motivated by these observations, we expect the following. LetkDC and let q 2C

be a primitive 2`-th root of unity for ` D 3 or 4. There is an equivalence of monoidal

categories Tilt.k˝U Z
q .sp4//=N ! Rep.C� Ì Z=2/. In order to prove this we will

certainly need to use the results of this paper, as well as develop something like webs

for the group C� Ì Z=2. Other work in progress of the author which stems from

the results in this paper is adapting Elias’s clasp conjectures [8] to sp4 webs. Work

in progress of Ben Elias and Geordie Williamson uses Dsp4
to extend the quantum

algebraic Satake equivalence [9] to type B2=C2.

1.2. Structure of the paper

In Section 2 we discuss how to decompose tensor products of representations for sp4.

Then use the plethysm patterns to describe an algorithm for light ladder diagrams.

Finally, we define the double ladder diagrams. In Section 3 we define an evaluation
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functor from the diagrammatic category to the representation theoretic category. After

reviewing some of the theory of tilting modules for quantum groups/reductive algeb-

raic groups, we interpret the image of the evaluation functor as an integral form of the

category of tilting modules. Then we argue that the main theorem follows from lin-

ear independence of the image of the double ladder diagrams. In Section 4 we argue

that the double ladder diagrams are linearly independent. Then we deduce that Dk

sp4

is an object adapted cellular category, and describe an algorithm to compute tilting

characters.

2. Light ladders in type C2

2.1. C2-webs

We use the convention that the quantum integers in ZŒq; q�1� are defined as

Œn�q D
qn � q�n

q � q�1
for n 2 Z: (2.1)

Let A D ZŒq; q�1; Œ2��1
q �, the ring ZŒq; q�1� localized at Œ2�q.

Definition 2.1. Let D be the A-linear monoidal category defined by generators and

relations. The generating objects are 1 and 2, the generating morphisms are the fol-

lowing diagrams:

; ; ; ; ; : (2.2)

The relations are the following local relations on diagrams:

D D ; (2.3)

D D ; (2.4)

D D : (2.5)
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Remark 2.2. Our convention is that diagrams are read as morphisms from the bottom

boundary to the top boundary. Composition of morphisms is vertical stacking. The

monoidal structure on objects is concatenation of words and the monoidal unit is

the empty word. The monoidal product on morphisms is horizontal concatenation of

diagrams, and the identity morphism of the empty word is the empty diagram.

Notation 2.3. The defining relations in D imply the following equalities of morph-

isms in HomD.12; 1/:

D D : (2.6)

We will denote any one of these morphisms by the following trivalent vertex diagram

in HomD.12; 1/:

; (2.7)

There are similar equalities for every possible vertical and horizontal reflection,

and we will write the corresponding trivalent morphisms as follows:

; ; : (2.8)

Thanks to this notation, we may now view morphisms in D as A-linear combinations

of isotopy classes trivalent graphs; see, e.g., Figure 1.

Figure 1. The identity morphism of 1211 and a morphism from 12111 to 1122.
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Definition 2.4. The A-linear monoidal category Dsp4
is the quotient of D by the

following local relations:

D �
Œ6�qŒ2�q

Œ3�q
; (2.9)

D
Œ6�qŒ5�q

Œ3�qŒ2�q
; (2.10)

D 0; (2.11)

D �Œ2�q ; (2.12)

D 0; (2.13)

D
1

Œ2�q
C �

1

Œ2�q
: (2.14)

Notation 2.5. When k is an A-algebra, we can base change the category Dsp4
to

k, denoted k˝Dsp4
. The category k˝Dsp4

has the same objects as Dsp4
and we

apply k˝A .�/ to homomorphism spaces. We may also write Dk

sp4
WD k˝Dsp4

for short.

Remark 2.6. The coefficients in the circle relations are written as fractions but are

actually elements of A, as can be observed in the following quantum number calcu-

lations:

Œ5�q � Œ1�q D
.Œ5�q � Œ1�q/Œ3�q

Œ3�q

D
Œ7�q C Œ5�q C Œ3�q � Œ3�q

Œ3�q

D
Œ6�qŒ2�q

Œ3�q
: (2.15)
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and

Œ7�q � Œ5�q C Œ3�q D
Œ8�q C Œ2�q

Œ2�q

D
Œ10�q C Œ8�q C Œ6�q C Œ4�q C Œ2�q

Œ3�qŒ2�q

D
Œ6�qŒ5�q

Œ3�qŒ2�q
: (2.16)

Remark 2.7. The category Dsp4
is almost the B2 spider category in [19]. But we

replaced q with q2 and rescaled the trivalent vertex by Œ2�
�1=2
q . The trivalent vertex

in Dsp4
may seem less natural since the relations now require us to insist Œ2�q is

invertible, but when we connect the diagrammatic category to representation theory

the rescaled trivalent vertex in Dsp4
will be more natural.

2.2. Decomposing tensor products in Rep.sp4.C//

We now recall some basic facts about sp4.C/ and its representation theory. Some of

this is worked out in detail in [13, Lecture 16]. Then we will record some formula’s

describing the decomposition of certain tensor products in Rep.sp4/.

Let X D Z"1 ˚ Z"2 be the weight lattice for sp4.C/. The weights $1 D "1 and

$2 D "1 C "2 are called the fundamental weights, and XC D Z�0$1 ˚ Z�0$2 is

the set of dominant weights.

Let Fund.sp4.C// be the full monoidal subcategory of Rep.sp4.C// generated

by V.$1/ and V.$2/. The decomposition

V.$1/˝ V.$1/ Š V.2$1/˚ V.$2/˚ V.0/: (2.17)

implies there is a one-dimensional space of maps between V.$1/ ˝ V.$1/ and

V.$2/. We will later prove that there is a choice for this map so that sending the

trivalent vertex to the chosen map gives a well-defined monoidal functor from

C ˝Dsp4
to Fund.sp4.C//. We will then show that this functor is full and faith-

ful.

For now we will take the equivalence on faith, and use it to guide our intuition

for constructing a basis for Hom spaces in Dsp4
. Let � and � be dominant integral

weights. There is a direct sum decomposition

V.�/˝ V.�/ Š
M

�2X.�;�/�wt.V.�//

V.�C �/; (2.18)

where wt.V .�// is the multiset of weights in V.�/ and X.�; �/ is a submultiset. Our

goal is to determine the set X.�; �/.
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To simplify notation, we may write V.a; b/ in place of V.a$1 C b$2/. The fol-

lowing formulas are easy to work out using classical theory. For example, one can

use [24, Theorem 2.1]:

V.a; b/˝ V.1; 0/

Š

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

V.1; 0/ if a D b D 0;

V .aC 1; 0/˚ V.a � 1; 1/˚ V.a � 1; 0/ if a � 1; b D 0;

V .1; b/˚ V.1; b � 1/ if a D 0; b � 1;

V .aC 1; b/˚ V.a � 1; b C 1/

˚V.a � 1; b/˚ V.aC 1; b � 1/; if a � 1; b � 1I

(2.19a)

V.a; b/˝ V.0; 1/

Š

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

V.0; 1/ if a D b D 0;

V .0; b C 1/˚ V.2; b � 1/˚ V.0; b � 1/ if a D 0; b � 1;

V .1; 1/˚ V.1; 0/ if a D 1; b D 0;

V .1; b C 1/˚ V.1; b/˚ V.3; b � 1/˚ V.1; b � 1/ if a D 1; b � 1;

V .a; 1/˚ V.a; 0/˚ V.a � 2; 1/ if a � 2; b D 0;

V .a; b C 1/˚ V.aC 2; b � 1/

˚V.a; b � 1/˚ V.a; b/˚ V.a � 2; b C 1/ if a � 2; b � 1:

(2.19b)

Notation 2.8. We will write V.1/D V.$1/D V.1; 0/ and V.2/D V.$2/D V.0; 1/

as well as wt 1 D $1 and wt 2 D $2. Also, for a sequence
x
w D .w1; : : : ; wn/,

wi 2 ¹1; 2º we will write V.
x
w/ D V.w1/˝ � � � ˝ V.wn/, wt

x
w D wt w1 C wt w2 C

� � � C wt wn, and
x
w�k D .w1; w2; : : : ; wk/.

Definition 2.9. Let
x
w D .w1; : : : ; wn/ with wi 2 ¹1; 2º. A sequence .�1; : : : ; �n/

where �i 2 wt.V .wi// is a dominant weight subsequence of
x
w if

(1) �1 is dominant;

(2) V.�1 C � � � C �i�1 C �i / is a summand of V.�1 C � � � C �i�1/˝ V.wi /.

We write E.
x
w/ for the set of all dominant weight subsequences of

x
w and

E.
x
w; �/ WD ¹.�1; : : : ; �n/ 2 E.

x
w/W�1 C � � � C �n D �º (2.20)

for all � 2 XC.

Lemma 2.10. Let
x
w D .w1; : : : ; wn/, wi 2 ¹1; 2º, then

V.
x
w/ Š

M

.�1;:::;�n/2E.
x
w/

V.�1 C � � � C �n/: (2.21)
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If we denote the multiplicity of V.�/ as a summand of V.
x
w/ by ŒV .

x
w/ W V.�/�, then

ŒV .
x
w/ W V.�/� D #E.

x
w; �/: (2.22)

Proof. If we begin with V.;/D C and tensor with V.w1/, then there is only one irre-

ducible summand. This summand corresponds to the dominant weight in wt V.w1/,

which we record as �1. Then we tensor V.w1/ by V.w2/ and note that V.w1/ ˝

V.w2/ contains V.�1/ ˝ V.w2/ as a summand. Choose a summand of V.�1/ ˝

V.w2/. The chosen summand is isomorphic to V.�1 C �2/ for some weight �2 2

wt V.w2/, and we record this choice of summand by the weight �2 2 wt V.w2/. Next,

we tensor V.w1/ ˝ V.w2/ by V.w3/, observe that V.w1/ ˝ V.w2/ ˝ V.w3/ con-

tains a summand isomorphic to V.�1C �2/˝ V.w3/, and choose a summand of this

summand. The chosen summand is isomorphic to V.�1 C �2 C �3/ and we record

the choice by the weight �3 2 wt V.w3/. Iterating this procedure, we end up with a

sequence of weights .�1; : : : ;�n/, which is a dominant weight subsequence of
x
w, and

a summand in V.
x
w/ isomorphic to V.�1 C � � � C �n/. Furthermore, all summands of

V.
x
w/ can be realized uniquely as the end result of the process we just described.

Lemma 2.11. Let
N
u D .u1; : : : ; un/ be a sequence with ui 2 ¹1; 2º, then

dim Homsp4.C/.V .
x
w/; V .

N
u// D

X

�2XC

ŒV .
x
w/ W V.�/�ŒV .

N
u/ W V.�/�: (2.23)

Proof. Thanks to Lemma (2.10), this is consequence of Schur’s lemma.

2.3. Motivating the light ladder algorithm

We outline a well-known construction of a basis of homomorphism spaces in the

category Fund.sp4.C//.

Suppose that .�1; : : : ; �m/ 2 E.
x
w; �/. For i D 1; : : : ; m there is a projection map

P.�1;:::;�i /WV.w1/˝ � � � ˝ V.wi /! V.�1 C � � � C �i /:

The map P.�1;:::;�i / is the projection

P.�1;:::;�i�1/WV.w1/˝ � � � ˝ V.wi�1/! V.�1 C � � � C �i�1/

postcomposed with the projection

p�i
WV.�1 C � � � C �i�1/˝ V.wi /! V.�1 C � � � C �i /:

Let .�1; : : : ; �n/ 2 E.
N
v; �/. Now, for i D 1; : : : ; n there are inclusion maps

I .�1;:::;�i /WV.�1 C � � � C �i/! V.u1/˝ � � � ˝ V.ui/:
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Composing the projection with the inclusion we get a map

I .�1;:::;�n/ ı P.�1;:::;�m/WV.
x
w/! V.

N
u/;

factoring through V.�/.

Since ŒV .�/ W V.
x
w/� D E.

x
w; �/ and ŒV .�/ W V.

N
u/� D E.

N
u; �/, the maps

[

�2XC

.�1;:::;�m/2E.
x
w;�/

.�1;:::;�n/2E.
N
u;�/

¹I .�1;:::;�n/ ı P.�1;:::;�m/º (2.24)

form a basis in Homsp4.C/.V .
x
w/; V .

N
u//.

The maps P.�1;:::;�n/ are built inductively out of the p�i
’s in a way that is analog-

ous to how we will define light ladder diagrams in terms of elementary light ladder

diagrams. The inclusion map I .�1;:::;�n/W V.�/! V.
N
u/ is analogous to what we will

call upside down light ladder diagrams. We will define double ladder diagrams as the

composition of a light ladder diagram and an upside down light ladder diagram, in

analogy with the I ı P ’s. Then our work will be to argue that double ladder diagrams

are a basis.

Remark 2.12. The projection and inclusion maps we discuss here are not the image

of the light ladder diagrams under a functor Dsp4
! Fund.sp4.C//. There are at

least two reasons for this. The first being that the object V.�/ is not in the category

Fund.sp4.C//, so we have to construct light ladder maps not from V.
x
w/ to V.�/, but

from V.
x
w/ to V.

N
x/ where wt

N
x D �.

The second reason is that we want to construct a basis for the diagrammatic cat-

egory which descends to a basis in Fund for fields other than C. Over other fields

the representation theory is no longer semisimple so V.�/ may not be a summand of

V.
x
w/. There will still be the same number of maps from V.

x
w/ to a suitable version

of V.�/ but they may not be inclusions and projections.

2.4. Light ladder algorithm

Now, we define some morphisms in the diagrammatic category.

Definition 2.13. An elementary light ladder diagram is one of the following diagrams

in Dsp4
. We will say that L� is the elementary light ladder diagram of weight �:

L.�1;0/D ; L.1;�1/D ; L.�1;1/D ; L.1;0/D I (2.25)
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L.0;�1/D ; L.�2;1/D ; L.0;0/D ; L.2;�1/D ; L.0;1/D :

(2.26)

Remark 2.14. If L�W
N
u�!

x
w, for � 2 ¹1;2º, then � 2wt V.�/ and wt

x
wDwt

N
uC�.

Definition 2.15. A neutral diagram is any diagram which is the horizontal and/or

vertical composition of identity maps and the following basic neutral diagrams:

N 21
12 D ; N 12

21 D : (2.27)

An example of a neutral diagram appears in Figure 2.

Figure 2. A neutral diagram from 112221 to 221211.

Definition 2.16. Fix an object
x
w D .w1; : : : ; wn/ in Dsp4

, a dominant weight sub-

sequence E� D .�1; : : : ; �n/ 2 E.
x
w/, and an object

N
v D .v1; : : : ; vm/ in Dsp4

such

that wt
N
v D �1 C � � � C �n. We will describe an algorithm, which we will refer to as

the light ladder algorithm, to construct a diagram in Dsp4
with source

x
w and target

N
v.

This diagram will be denoted LLN
v

x
w; E�

and we will call it a light ladder diagram.

We define the diagrams inductively, starting by defining LL;
;;.;/

to be the empty

diagram. Suppose we have constructed LLN
u

x
w�n�1;.�1;:::;�n�1/

, where

wt.
N
u/ D �1 C � � � C �n�1:

Then we define

LLN
v

x
w;.�1;:::;�n/

D N N
v

‹ ı .id˝L�n
/ ı .N ‹

N
u ˝ id/ ı .LLN

u

x
w�n�1;.�1;:::;�n�1/

˝ idwn
/;

(2.28)

where N ‹
‹

is a neutral diagram with appropriate source (subscript) and target (super-

script). The graphical interpretation of this algorithm is summarized in Figure 3.



Web calculus and tilting modules in type C2 421

N N
v

‹

id˝L�n

N ‹

N
u

LLN
u

x
w�n�1;.�1;:::;�n�1/

N
u

‹

‹

x
w�n�1 wn

N
v

Figure 3. A schematic for the inductive definition of a light ladder diagram LL
x
w;.�1;:::;�n/.

To further aid the readers understanding of the light ladder construction we give

an example and some clarifying comments.

Example 2.17. A light ladder diagram LL11
21212;..0;1/;.1;�1/;.0;1/;.�1;0/;.2;�1//

:

: (2.29)
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Our convention of rectangles and trapezoids is to indicate whether a diagram is a

neutral diagram or a diagram of the form id˝ elementary light ladder diagram. We

omitted the first and third steps corresponding to � D .0; 1/.

The elementary light ladder diagrams have fixed source and target. As a result one

can construct LLN
u

x
w�n�1;.�1;:::;�n�1/

, then see that V.�n/ is a summand of V.�1 C

� � � C �n�1/˝ V.wn/, but still not guarantee there is an object
N
y in Dsp4

such that

N
ywn is the source of id˝L�n

. An example of this problem appears in Figure 4.

Figure 4. An example of what can go wrong without neutral diagrams.

Basic neutral diagrams encode isomorphisms 12! 21 and 21! 12, while arbit-

rary neutral diagrams encode isomorphisms
x
w !

x
w0.

Remark 2.18. The reason we use basic neutral diagrams instead of the braiding is

the latter is a non-trivial linear combination of diagrams in Dsp4
, while the former is

a single diagram in Dsp4
.

Lemma 2.19. Given two sequences
x
w and

x
w0 such that wt

x
w D wt

x
w0, there is a

neutral diagram connecting
x
w to

x
w0.

Proof. Suppose that wt
x
wD a$1C b$2Dwt

x
w0. Connect both

x
w and

x
w0 via colored

neutral diagrams to the standard sequence 1˝a ˝ 2˝b and then compose the neutral

diagram from
x
w to the standard sequence with the vertical flip of the neutral diagram

from the standard diagram to
x
w0.

The following lemma uses this observation to fix the problem, in the light ladder

algorithm, of elementary diagrams having fixed source and target. We illustrate the

solution provided by this lemma in Figure 5.

Lemma 2.20. Let .�1; : : : ; �n/ 2 E.
x
w/ (in particular, V.�n/ is a summand of

V.�1 C � � � C �n�1/˝ V.wn/). Suppose we have constructed LLN
u

x
w�n�1;.�1;:::;�n�1/

.

There is an object
N
y in Dsp4

and a neutral map N N
y

x
w�n�1

such that
N
y ˝ wn is the

source of id˝L�n
.
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Proof. We will argue this for the elementary diagram L.1;�1/, so �n D .1;�1/ and

wn D 1. The arguments for the rest of the cases follow the same pattern. From the

tensor product decomposition formulas (2.19) we see that V.1;�1/ being a sum-

mand of V.�1 C � � � C �n�1/ implies that, if �1 C � � � C �n�1 D a$1 C b$2, then

b � 1. Thus, in the sequence
N
u D .u1; : : : ; uk/ there is some k such that uk D 2. By

Lemma (2.19) there is a neutral diagram from the sequence
N
u to a sequence which

ends in 2. The target of this neutral diagram will be an object
N
y such that

N
y ˝ 1 is the

source of id˝L.1;�1/.

Figure 5. Using a neutral map to fix the problem.

Comparing the tensor product decompositions in (2.19) with the elementary light

ladder diagrams, it is evident that dominant weight subsequences always produce a

light ladder diagram. Neutral diagrams from one word to another are not unique. The

choice of neutral diagram could result in several different light ladder diagrams for a

given dominant weight subsequence.

Remark 2.21. For any
x
w and

N
u such that wt

x
w D wt

N
u, there is a distinguished choice

of neutral diagram corresponding to the minimal coset representative in the symmet-

ric group realizing the shuffle from one sequence to the other. However, we do not

require that we choose particular elements as our neutral diagrams in the light ladder

algorithm.

2.5. Double ladders

We define a contravariant endofunctor D on the category Dsp4
by requiring that D

fixes objects and turns diagrams upside down. Note that D2 D idDsp4
, so D is a

duality on the category.
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Definition 2.22. Let LLN
v

x
w; E�

be a light ladder diagram. The associated upside down
light ladder diagram is defined to be

D.LLN
v

x
w; E�

/: (2.30)

In terms of graphical calculus, this is reflecting a light ladder diagram through the

horizontal axis, see for example Figure 6.

D.LL121
112121;..1;0/;.1;0/;.�2;1/;.1;0/;.2;�1/;.�1;1//

/ D

Figure 6. An upside down light ladder diagram.

For each dominant weight � fix a word
N
x� in the alphabet ¹1; 2º corresponding

to a sequence of fundamental weights which sum to �. For all words
x
w and for each

dominant weight subsequence E� 2E.
x
w;�/, we choose one light ladder diagram from

x
w to

N
x�. If

x
w D

N
x� and each �i is dominant, then we choose the identity diagram.

From now on, we denote this chosen light ladder diagram by L
x
w; E�.

Remark 2.23. The choice of LL
N
x�;E�
D id

N
x�

when the �i are all dominant is not

essential for our arguments, but does ensure our construction is aligned with other

conventions. For example, this is required in the definition of an object adapted cellu-

lar category in [10].

Definition 2.24. If
x
w and

N
u are fixed words in ¹1;2º and � is a dominant weight, then

for E� 2 E.
x
w; �/ and E� 2 E.

N
u; �/ we obtain a double ladder diagram (associated to

our choices of
N
x�’s and our choices of light ladder diagrams)

LLN
u;E�

x
w; E�
D D.LL

N
u;E�/ ı LL

x
w; E�: (2.31)

Remark 2.25. One reason for fixing an
N
x� for all � is so the composition on the

right-hand side of (2.31) is well defined. To emphasize that a double ladder diagram

factors through the object in the middle, we find it is useful to think of double ladder

diagrams as a composition of two trapezoids, as appears in Figure 7.
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LLN
u;E�

x
w; E�
D

LL
x
w; E�

D.LL
N
u;E�/

Figure 7. A schematic for a double ladder diagram.

Remark 2.26. Note that light ladder diagrams ending in
N
x� are double ladder dia-

grams, where the upside-down light ladder happens to be the identity diagram.

Definition 2.27. We define the set of all double ladder diagrams from
x
w to
N
u factoring

through � (associated to our choice of
N
x�’s and light ladder diagrams) to be

LLN
u

x
w.�/ D ¹LLN

u;E�

x
w; E�
W E� 2 E.

x
w; �/; E� 2 E.

N
u; �/º; (2.32)

and define the set of all double ladder diagrams from
x
w to

N
u (associated to our choice

of
N
x�’s and light ladder diagrams) to be

LLN
u

x
w D

[

�2XC

LLN
u

x
w .�/: (2.33)

Remark 2.28. Anytime we write LLN
u;E�

x
w; E�

or LLN
u

x
w , we have already fixed choices of

N
x�’s and choices of light ladder diagrams. The notation does not account for these

choices, but we will not be comparing double ladders for different choices so the

notation should not lead to confusion.

2.6. Relating non-elliptic webs to double ladders

Our next goal is to define an evaluation functor from Dsp4
to the category Fund.sp4/,

and then to prove that the functor is an equivalence. That the functor is an equival-

ence will follow from showing that double ladder diagrams span the category Dsp4
,

and map to a set of linearly independent morphisms in Fund.sp4/. This approach

is modeled on the work on type A webs in [8], where most of the work goes into

showing that double ladder diagrams span the diagrammatic category. Checking lin-

ear independence is comparatively easy once you know the functor explicitly. But

for Dsp4
, the extra work to show double ladders span can be circumvented by boot-

strapping known results about B2 webs which we recall below.
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Kuperberg’s paper [19, pp. 14–15] introduces a tetravalent vertex in the B2 web

category which can be used to remove all internal double edges. Let B be the set of

B2 diagrams with no internal double edges and with no faces having one, two, or

three adjacent edges. These diagrams are called non-elliptic in [19]. There are local

relations in the B2 category (now including the tetravalent vertex) which can be used

to reduce triangular faces, bigons, monogons, and circles to sums of diagrams with

fewer crossings (i.e., B is the set of irreducible webs with respect to the relations).

It follows that the set B spans the B2 category over ZŒq; q�1�. Let B
x
w be the set of

diagrams in B with
x
w on the boundary. One of the main results of [19] is that

#B
x
w D dim V.

x
w/sp4.C/: (2.34)

Notation 2.29. If we work in the A-linear category Dsp4
, there is an analogous

90 degree rotation invariant morphism, which we will call the tetravalent vertex, in

EndDsp4
.11/.

WD �
1

Œ2�q
: (2.35)

There is an augmented graphical calculus in which the generating diagrams are the

cups, caps, and trivalent vertices in the definition of Dsp4
along with the tetravalent

vertex (2.35). For the remainder of this section when we say a diagram in Dsp4
, we

mean a diagram in the augmented graphical calculus.

Since Œ2�q is invertible in our ground ring, we can use this tetravalent vertex to

remove all internal green labeled edges in any diagram in Dsp4
. The tetravalent vertex

satisfies the following relations in Dsp4
:

D
Œ6�q

Œ3�q
; (2.36)

D �Œ2�q ; (2.37)

D �Œ2�q �
Œ4�q

Œ2�q
; (2.38)

D C C C Œ2�q ; (2.39)
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D C ; (2.40)

D : (2.41)

Remark 2.30. Due to the identity Œ2n�q=Œn�q D ŒnC 1�q � Œn � 1�q, the coefficients

in these relations all lie in the ring ZŒq; q�1�.

Definition 2.31. A face of a diagram in Dsp4
is a simply connected component of

the complement of the diagram, which does not touch the boundary.

Definition 2.32. A non-elliptic diagram in Dsp4
is a diagram such that all faces have

more than three sides (i.e., a diagram with no triangular faces, bigons, monogons, or

circles).

Definition 2.33. An internal 2 edge of a diagram in Dsp4
is a 2 edge in the diagram

which does not connect to the boundary. Examples of how a having a face or being

non-elliptic interacts with internal 2 edges appear in Figures 8–10.

Figure 8. An example of a non-elliptic web with internal 2 edges in Dsp4
. This diagram is a

light ladder for the dominant weight sequence ..1; 0/; .�1; 1/; .1; 0//.

Figure 9. An example of an elliptic web with internal 2 edges in Dsp4
. The only face is the

interior of the 2 circle.

Figure 10. An example of a non-elliptic web with no internal 2 edges in Dsp4
. There is only

one face and it has five sides.
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Definition 2.34. The set D is the collection of all non-elliptic diagrams in Dsp4
with

no internal 2 edges, and the set D N
u

x
w is the set of diagrams in D \ HomDsp4

.
x
w;
N
u/.

Lemma 2.35. The set D spans Dsp4
over A.

Proof. Let D be an arbitrary diagram in Dsp4
. We will argue that D is a linear com-

bination of non-elliptic webs with no internal 2 edges. If a 2 edge does not connect to

a trivalent vertex, then you can use the bigon relation to introduce one. Thus, every 2

edge either connects to the boundary of D, or connects two trivalent vertices. Using

the tetravalent vertex to remove all pairs of trivalent vertices, we can rewrite D as a

linear combination of diagrams with no internal 2 edges. Thus, we may assume that

D is a diagram with no internal 2 edges. Using the defining relations in Dsp4
along

with the tetravalent relations, we can remove all faces with less than four edges.

Remark 2.36. In order to introduce a trivalent vertex, we used the bigon relation

backwards, which required Œ2��1
q 2 A.

Lemma 2.37. Let k be a field and let q 2 k� be such that q C q�1 ¤ 0. Then

dim Homk˝Dsp4
.
x
w;
N
u/ � dim Homsp4.C/.V .

x
w/; V .

N
u//: (2.42)

Proof. There is an obvious bijection between the set B and the set D. The result then

follows from (2.34).

Remark 2.38. We sketch a more direct argument to deduce the inequality (2.42). The

dimension of the sp4.C/ invariants in V.1/˝2n is known to be equal to the number

of matchings of 2n points on the boundary of a disc such that there is no 6-point star

in the matching [33] and [19, Section 8.4]. One can argue that the local condition of

being non-elliptic implies the global condition of having no six point star. Then, not-

ing that non-elliptic diagrams have a unique representative up to isotopy (there are no

potential Reidemeister moves), it follows that there is a bijection between non-elliptic

diagrams and matchings without a 6-point star. This proves that the inequality (2.42)

holds when
x
w D 1˝a and

N
u D 1˝b for some a; b 2 Z�0. Since 2 is a direct summand

of 11 it follows that (2.42) holds for any words
x
w and

N
u in the alphabet ¹1; 2º.

We have defined a set LLN
u

x
w of double ladders in Dsp4

. It follows from the con-

struction of LLN
u

x
w and (2.23) that

#LLN
u

x
w D

X

�2XC

#E.
x
w; �/#E.

N
u; �/ D dim Homsp4.C/.V .

x
w/; V .

N
u//: (2.43)

We want to show linear independence of the set of double ladders, or equivalently

that the inequality of dimensions in (2.42) is in fact an equality, for a general choice
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of base ring k. To this end we will define an evaluation functor from the diagram-

matic category Dk

sp4
to the representation theoretic category Fund.k˝ U A

q .sp4//,

and interpret the image of the evaluation functor in terms of tilting modules. If we

can show that the image of the double ladder diagrams under the evaluation functor

is a linearly independent set, then (2.37) will imply that the double ladder diagrams

must be linearly independent in Dsp4
. This implies that the inequality in (2.42) is an

equality, and it follows that the evaluation functor maps bases to bases, so is fully

faithful.

Remark 2.39. Since D spans D
k

sp4
and is in a non-canonical bijection with the set

of double ladder diagrams (for fixed choices of
N
x� and fixed choices of light ladders),

linear independence of the double ladder diagrams over k implies that both sets are

bases.

Note that double ladders have many internal 2 label edges while the diagrams in

D will have none. On the other hand, sometimes the double ladder diagrams will be

non-elliptic webs with no internal 2 edges. A good exercise for the reader is to rewrite

the diagram in Figure 10 as a double ladder diagram. A hint is that a double ladder

diagram in HomDsp4
.2˝5;;/ will just be a light ladder diagram LL;

2˝5;‹
.

3. The evaluation functor and tilting modules

3.1. Defining the evaluation functor on objects

We are now going to be more precise about what category of representations associ-

ated to sp4 we are considering. The discussion below is well known, but we reproduce

it here to help the reader follow certain calculations which come later.

Our main reference for quantum groups is Jantzen’s book [14]. Recall that sp4.C/

gives rise to a root system ˆ and a Weyl group W . We choose simple roots �D ¹˛s D

"1 � "2; ˛t D 2"2º. There is a unique W invariant symmetric form .�;�/ on the root

lattice Zˆ such that the short roots pair with themselves to be 2. This is the form

."i ; "j / D ıij , restricted to the root lattice. For ˛ 2 ˆ we define the coroot ˛_ D

2˛=.˛; ˛/, in particular ˛_
s D ˛s and ˛_

t D ˛t=2 and the Cartan matrix ..˛_
i ; j̨ // is

�

˛_
s .˛s/ ˛_

s .˛t/

˛_
t .˛s/ ˛_

t .˛t/

�

D

�

2 �2

�1 2

�

:

Define the algebra Uq.sp4/ as the Q.q/ algebra given by generators

Fs; Ft ; K˙1
s ; K˙1

t Es; Et

and relations
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• KsK�1
s D 1 D KsK�1

s ; KtK
�1
t D 1 D K�1

t Kt ; KsKt D Kt Ks ,

• KtEt D q4EtKt ; KtEs D q�2EsKt ,

• KsEt D q�2EtKs; KsEs D q2EsKs ,

• KtFt D q�4Ft Kt ; KtFs D q2FsKt ,

• KsFt D q2FtKs; KsFs D q�2FsKs ,

• EtFs D FsEt ; EsFt D FtEs ,

• EtFt D Ft Et C
Kt �K�1

t

q2 � q�2
,

• EsFs D FsEs C
Ks �K�1

s

q � q�1
,

• E2
t Es �

Œ4�q

Œ2�q
Et EsEt CEsE2

t D 0,

• E3
s Et � Œ3�qE2

s EtEs C Œ3�qEsEt E
2
s �EsE3

t .

Our convention is Œn�q WD
qn � q�n

q � q�1
and Œn�qŠ D Œn�qŒn � 1�q : : : Œ2�qŒ1�q.

Recall that A D ZŒq; q�1; Œ2��1
q �. Let U A

q .sp4/ be the unital A-subalgebra of

Uq.sp4/ spanned by K˙1
s ; K˙1

t , and the divided powers

E.n/
s D

En
s

Œn�qŠ
; F .n/

s D
F n

s

Œn�qŠ
; E

.n/
t D

Et

Œn�q2Š
; F

.n/
t D

Ft

Œn�q2Š

for all n 2 Z�1. So, U A
q .sp4/ is Lusztig’s divided powers quantum group [2].

Let V A.$1/ denote the free A module with basis

v.1;0/; v.�1;1/; v.1;�1/; v.�1;0/; (3.1)

and action of U A
q .sp4/ given by

v.�1;0/

EsD1

����!
 ���

FsD1

v.1;�1/

Et D1

����!
 ���

Ft D1

v.�1;1/

EsD1

����!
 ���

FsD1

v.1;0/: (3.2)

Also, let V A.$2/ denote the free A module with basis

v.0;1/; v.2;�1/; v.0;0/; v.�2;1/; v.0;�1/; (3.3)

and action of U A
q .sp4/ given by

v.0;�1/

Et D1

����!
 ���

Ft D1

v.�2;1/

EsD1

������!
 ������

Fs D Œ2�q

v.0;0/

EsDŒ2�q

�����!
 �����

FsD1

v.2;�1/

Et D1

����!
 ���

Ft D1

v.0;1/: (3.4)

The elements K˛ act on the basis vectors by

Ks � v.i;j / D qi v.i;j / and Kt � v.i;j / D q2j v.i;j /: (3.5)
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Our convention is that whenever we do not indicate the action of E˛ or F˛ they

act by zero. The action of higher divided powers on these modules can be extrapolated

from the given data. For example, F
.2/
s v.�2;1/ D v.�2;1/.

Remark 3.1. Why are we using A instead of ZŒq; q�1�? When Œ2�q D 0, the Weyl

module k˝ V A.$2/ is not irreducible and the correct choice of combinatorial cat-

egory seems to be the ZŒq1=2; q�1=2�-linear monoidal category generated by Vq and

ƒ2.Vq/. The module ƒ2.Vq/ has the ZŒq1=2; q�1=2�-basis

v.0;1/; v.2;�1/; X0; Y0; v.�2;1/; v.0;�1/; (3.6)

and action of U A
q .sp4/ given by

v.0;�1/

Et D1

����!
 ���

Ft D1

v.�2;1/

Es
��!
 �

Fs

X0 ˚ Y0

Es
��!
 �

Fs

v.2;�1/

Et D1

����!
 ���

Ft D1

v.0;1/; (3.7)

where

Es � Y0 D q�1=2v.2;�1/; Es �X0 D q1=2v.2;�1/;

Es � v.�2;1/ D q1=2X0 C q�1=2Y0I

Fs � Y0 D q�1=2v.�2;1/; Fs �X0 D q1=2v.�2;1/;

Fs � v.2;�1/ D q1=2X0 C q�1=2Y0: (3.8)

The module V A.$2/ can be defined over ZŒq1=2; q�1=2�. There is a map from

V A.$2/ into ƒ2.Vq/, such that v.0;0/ 7! q1=2X0C q�1=2Y0. Moreover, the cokernel

of this inclusion map will be isomorphic to the trivial module. Thus, ƒ2.Vq/ is filtered

by Weyl modules, and the filtration splits when Œ2�q ¤ 0. If Œ2�q D 0, then ƒ2.Vq/ is

indecomposable with socle and head isomorphic to the trivial module, and middle

subquotient isomorphic to the irreducible module of highest weight $2.

The algebra Uq.sp4/ is a Hopf algebra with structure maps .�; S; "/ defined on

generators by

�.E˛/ D E˛ ˝ 1CK˛ ˝E˛; �.F˛/

D F˛ ˝K�1
˛ C 1˝ F˛; �.K˛/

D K˛ ˝K˛;

S.E˛/ D �K�1
˛ E˛; S.F˛/ D �F˛K˛; S.K˛/ D K�1

˛ ;

".E˛/ D 0; ".F˛/ D 0; ".K˛/ D 1:

Furthermore, the algebra U A
q .sp4/ is a sub-Hopf-algebra of Uq.sp4/, see [2]. There-

fore, U A
q .sp4/ will act on the tensor product of representations through the cop-

roduct �.
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Using the antipode S , we can define an action of U A
q .sp4/ on

V A.$1/� D HomA.V A.$1/; A/ (3.9)

by

�q4v�
.1;0/

EsD1

����!
 ���

FsD1

q3v�
.�1;1/

Et D1

����!
 ���

Ft D1

� qv�
.1;�1/

EsD1

����!
 ���

FsD1

v�
.�1;0/; (3.10)

and on

V A.$2/� D HomA.V A.$2/; A/ (3.11)

by

q6v�
.0;�1/

Et D1

����!
 ���

Ft D1

� q4v�
.�2;1/

EsD1

������!
 ������

Fs D Œ2�q

q2Œ2�qv�
.0;0/

EsDŒ2�q

�����!
 �����

FsD1

� q2v�
.2;�1/

Et D1

����!
 ���

Ft D1

v�
.0;1/:

(3.12)

Comparing (3.2) and (3.10) we see there is an isomorphism of U A
q .sp4/ modules

'1WV
A.$1/! V A.$1/� (3.13)

such that basis elements in (3.2) are sent to the basis elements in (3.10). By compar-

ing (3.4) and (3.12) we similarly obtain an isomorphism

'2WV
A.$2/! V A.$2/� (3.14)

sending basis elements in (3.4) to the basis elements in (3.12).

In (3.4) we will define a monoidal functor from Dsp4
to U A

q .sp4/-mod. The

functor will send 1 to V A.$1/ and 2 to V A.$2/. The dual modules V A.$1/� and

V A.$2/� will not be in the image of the functor „. However, the maps '1 and '2

are fixed isomorphisms of these dual modules with modules which are in the image

of the functor.

3.2. Caps and cups

Lemma 3.2. If V is any finite rank A lattice with basis ei , define maps

A
u
�! V ˝ HomA.V; A/

c
�! A; (3.15)

A
u0

�! HomA.V; A/˝ V
c0

�! A; (3.16)

where u.1/ D
P

ei ˝ e�
i , u0.1/ D

P

e�
i ˝ ei , c.v ˝ f / D f .v/, and c0.f ˝ v/ D

f .v/. Then

.idV ˝c0/ ı .u˝ idV / D idV D .c ˝ idV / ı .idV ˝u0/ (3.17)

and

.idV � ˝c/ ı .u0 ˝ idV �/ D idV � D .c0 ˝ idV �/ ı .idV � ˝u/: (3.18)
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Proof. We will show that

.idV ˝c0/ ı .u˝ idV / D idV

the arguments to establish the other three equalities in (3.17) and (3.18) are similar.

Let v 2 V . Since ei is a basis for V we can write v D
P

vi ei for some vi 2 A.

Thus,

.idV ˝c0/ ı .u˝ idV /.v/ D .idV ˝c0/
�

X

ei ˝ e�
i ˝ v

�

D
X

ei � e
�
i .v/ D

X

vi ei D v:

Lemma 3.3. Fix an isomorphism 'W V ! V � and write cap D c0 ı .' ˝ id/ and
cup D .id˝'�1/ ı u. Then

.idV ˝ cap/ ı .cup˝ idV / D idV D .cap˝ idV / ı .idV ˝ cup/: (3.19)

Proof. Using ' ı '�1 D id D '�1 ı ', (3.19) follows easily from (3.17) and (3.18).

The A-linear maps

A
cupi WD.id ˝'�1

i
/ıui

�������������! V A.$i/˝ V A.$i/
capi WDc0

i
ı.'i ˝id/

�����������!A; for i D 1;2; (3.20)

are actually maps of U A
q .sp4/ modules, where A is the trivial module. The functor

„ will send the cups and caps from the diagrammatic category to the maps cupi and

capi

The module V A.$1/ has basis

¹v.1;0/; v.�1;1/ D Fsv.1;0/; v.1;�1/ D Ft Fsv.1;0/; v.�1;0/ D FsFtFsv.1;0/º; (3.21)

and the module V A.$2/ has basis

¹v.0;1/; v.2;�1/ D Ftv.0;1/; v.0;0/ D FsFtv.0;1/; v.�2;1/

D F .2/
s Ftv.0;1/; v.0;�1/ D FtF

.2/
s Ftv.0;1/º: (3.22)

With respect to these bases, we can write cup1WA! V A.$1/˝ V A.$1/ as

1 7! � q�4v.1;0/ ˝ v.�1;0/ C q�3v.�1;1/ ˝ v.1;�1/

� q�1v.1;�1/ ˝ v.�1;1/ C v.�1;0/ ˝ v.1;0/; (3.23)

and cup2WA! V A.$2/˝ V A.$2/ as

1 7! q�6v.0;1/ ˝ v.0;�1/ � q�4v.2;�1/ ˝ v.�2;1/ C
q�2

Œ2�q
v.0;0/ ˝ v.0;0/

� q�2v.�2;1/ ˝ v.2;�1/ C v.0;�1/ ˝ v.0;1/: (3.24)
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To record the maps capi in our basis we use the matrices

cap1.vi ˝ vj / D

v.�1;0/ v.1;�1/ v.�1;1/ v.1;0/
0

B

B

@

1

C

C

A

v.�1;0/ 0 0 0 �q4

v.1;�1/ 0 0 q3 0

v.�1;1/ 0 �q 0 0

v.1;0/ 1 0 0 0

(3.25)

and

cap2.vi ˝ vj / D

v.0;�1/ v.�2;1/ v.0;0/ v.2;�1/ v.0;1/
0

B

B

B

B

@

1

C

C

C

C

A

v.0;�1/ 0 0 0 0 q6

v.�2;1/ 0 0 0 �q4 0

v.0;0/ 0 0 q2Œ2�q 0 0

v.2;�1/ 0 �q2 0 0 0

v.0;1/ 1 0 0 0 0

:

(3.26)

Example 3.4. We give two calculations to clarify how we arrived at these formulas:

cap2.v.0;0/ ˝ v.0;0// D c0
2 ı .'2 ˝ id/.v.0;0/ ˝ v.0;0//

D c0
2.q2Œ2�qv�

.0;0/ ˝ v.0;0// D q2Œ2�q;

and

cup1.1/ D .id˝'�1
1 / ı u1.1/

D v.�1;0/ ˝ '�1
1 .v�

.�1;0//C v.1;�1/ ˝ '�1
1 .v�

.1;�1//

C v.�1;1/ ˝ '�1
1 .v�

.�1;1//C v.1;0/ ˝ '�1
1 .v.1;0//

D �q�4v.1;0/ ˝ v.�1;0/ C q�3v.�1;1/ ˝ v.1;�1/

� q�1v.1;�1/ ˝ v.�1;1/ C v.�1;0/ ˝ v.1;0/:

The maps cupi and capi in U A
q .sp4/-mod are going to correspond to the colored

cap and cup maps in Dsp4
. In which case, the equation (3.19) corresponds to the

isotopy relations:

D D ; (3.27)

D D : (3.28)
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3.3. Trivalent vertices

Consider the module V A.$1/ ˝ V A.$1/. We observe that the vector q�1v.1;0/ ˝

v.0;1/ � v.0;1/˝ v.1;0/ is annihilated by Es and Et . The action of Ks scales this vector

by 1 and the action of Kt scales the vector by q2. There is an A-linear map

iWV A.$2/! V A.$1/˝ V A.$1/;

v.0;1/ 7! q�1v.1;0/ ˝ v.�1;1/ � v.�1;1/ ˝ v.1;0/;

v.2;�1/ 7! q�1v.1;0/ ˝ v.1;�1/ � v.1;�1/ ˝ v.1;0/;

v.0;0/ 7! q�1v.1;0/ ˝ v.�1;0/ C q�2v.�1;1/ ˝ v.1;�1/;

� v.1;�1/ ˝ v.�1;1/ � q�1v.�1;0/ ˝ v.1;0/;

v.�2;1/ 7! q�1v.�1;1/ ˝ v.�1;0/ � v.�1;0/ ˝ v.�1;1/;

v.0;�1/ 7! q�1v.1;�1/ ˝ v.�1;0/ � v.�1;0/ ˝ v.1;�1/: (3.29)

Using the explicit description of V A.$2/ in (3.4), one checks that i is a map of

U A
q .sp4/-modules by computing the action of the generators of U A

q .sp4/ on the vec-

tors appearing on the right-hand side of (3.29). The morphism i will correspond to

the following diagram:

: (3.30)

One can also easily check the equality of the following two elements of the space

HomU A
q .sp4/.V

A.$1/˝ V A.$1/; V A.$2//:

.id˝ cap1/ ı .id˝ id˝ cap1˝ id/ ı .id˝ i ˝ id˝ id/ ı .cup2˝ id˝ id/ (3.31)

and

.cap1˝ id/ ı .id˝ cap1˝ id˝ id/ ı .id˝ id˝ i ˝ id/ ı .id˝ id˝ cup2/: (3.32)

Then we will unambiguously denote both maps by p. In the graphical calculus this

corresponds to the following:

(3.31)

D

p

D

(3.32)

: (3.33)
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The equality of (3.31) and (3.32) follows from verifying that both maps act on a basis

as follows:

pWV A.$1/˝ V A.$1/! V A.$2/;

v.1;0/ ˝ v.1;0/ 7! 0; v.�1;1/ ˝ v.1;0/ 7! qv.0;1/;

v.1;0/ ˝ v.�1;1/ 7! �v.0;1/; v.�1;1/ ˝ v.�1;1/ 7! 0;

v.1;0/ ˝ v.1;�1/ 7! �v.2;�1/; v.�1;1/ ˝ v.1;�1/ 7!
�1

Œ2�q
v.0;0/;

v.1;0/ ˝ v.�1;0/ 7!
�q

Œ2�q
v.0;0/; v.�1;1/ ˝ v.�1;0/ 7! �v.�2;1/;

v.1;�1/ ˝ v.1;0/ 7! qv.2;�1/; v.�1;0/ ˝ v.1;0/ 7!
q

Œ2�q
v.0;0/;

v.1;�1/ ˝ v.�1;1/ 7!
q2

Œ2�q
v.0;0/; v.�1;0/ ˝ v.�1;1/ 7! qv.�2;1/;

v.1;�1/ ˝ v.1;�1/ 7! 0; v.�1;0/ ˝ v.1;�1/ 7! qv.0;�1/;

v.1;�1/ ˝ v.�1;0/ 7! �v.0;�1/; v.�1;0/ ˝ v.�1;0/ 7! 0: (3.34)

Remark 3.5. We sketch a method to compute (3.31) evaluated on v.�1;1/ ˝ v.1;�1/,

the other calculations follow the same pattern. The cap1’s in the definition of (3.31)

are only non-zero on basis vectors of the form v� ˝ v��. Also, in the formula for

i (3.29) the only basis vector with a tensor of the form v.�1;1/ ˝ v.1;�1/ is v.0;0/.

Therefore, (3.31) acts as

v.�1;1/ ˝ v.1;�1/ 7! .id˝ cap1/ ı .id˝ id˝ cap1˝ id/

�
�q�2

Œ2�q
v.0;0/ ˝ i.v.0;0//˝ v.�1;1/ ˝ v.1;�1/

�

Dq�2 cap1.v.1;�1/ ˝ v.�1;1// cap1.v.�1;1/ ˝ v.1;�1//
q�2

Œ2�q
v.0;0/

Dq�2q3.�q/
q�2

Œ2�q
v.0;0/

D
�1

Œ2�q
v.0;0/: (3.35)

3.4. The definition of the evaluation functor

Theorem 3.6. There is a monoidal functor

„WDsp4
! U A

q .sp4/-mod
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defined on objects by defining „.1/DV A.$1/ and „.2/DV A.$2/ and then extend-
ing monoidally. The functor „ is defined on morphisms by first defining

7! cap1 7! cap2 7! p; (3.36)

7! cup1 7! cup2 7! i; (3.37)

and then extending A-linearly so that horizontal concatenation of diagrams corres-
ponds to tensor product of morphisms in U A

q .sp4/-mod and vertical composition of
diagrams corresponds to composition of morphisms in U A

q .sp4/-mod.

Example 3.7. We illustrate how „ is defined on objects and on morphisms:

„.122/ D V A.122/ D V A.$1/˝ V A.$1/˝ V A.$2/; (3.38)

1

Œ2�q
C �

1

Œ2�q

„
7�!

1

Œ2�q
id˝ id�i ı pC

1

Œ2�q
cup1 ı cap1 : (3.39)

3.5. Checking relations

Since Dsp4
is defined by generators and relations, in order to verify the theorem we

must check that the diagrammatic relations hold in U A
q .sp4/-mod.

Proof of Theorem 3.6. The isotopy relations follow from (3.19) and the equality

of (3.31) and (3.32).

To verify the relation

D �
Œ6�qŒ2�q

Œ3�q
(3.40)

it suffices to show that

cap1 ı cup1.1/ D �
Œ6�qŒ2�q

Œ3�q
: (3.41)

Using (3.23) and (3.25) we find

cap1 ı cup1.1/ D �q�4 � 1C q�3 � .�q/ � q�1 � q3 C 1 � .�q4/

D �.Œ5�q � Œ1�q/: (3.42)

The desired equality (3.41) comes from the quantum number calculation in (2.15).
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One can similarly argue that the relation

D
Œ6�qŒ5�q

Œ3�qŒ2�q
(3.43)

is satisfied. Use (3.24) and (3.26) to compute

cap2 ı cup2.1/ D q�6 C q�2 C 1C q2 C q6 D Œ7�q � Œ5�q C Œ3�q; (3.44)

then use (2.16) to deduce

cap2 ı cup2.1/ D
Œ6�qŒ5�q

Œ3�qŒ2�q
: (3.45)

To check the monogon relation

D 0 (3.46)

and the bigon relation

D �Œ2�q (3.47)

we need to show cap1 ıi D 0 and p ı i D �Œ2�q id respectively. Since the module

V A.$2/ is generated by the highest weight vector v.0;1/ it suffices to show that

cap1 ıi.v.0;1// D 0 and p ı i.v.0;1// D �Œ2�qv.0;1/. The calculations go as follows:

cap1 ıi.v.0;1//
(3.29)
D cap1.q

�1v.1;0/ ˝ v.�1;1/ � v.�1;1/ ˝ v.1;0//

(3.23)
D 0: (3.48)

and

p ı i.v.0;1//
(3.29)
D p.q�1v.1;0/ ˝ v.�1;1/ � v.�1;1/ ˝ v.1;0//

(3.34)
D �q�1v.0;1/ C qv.0;1/

D �Œ2�qv.0;1/: (3.49)

Verifying the trigon relation

D 0 (3.50)
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is left as an exercise (Hint: apply .p˝ p/ ı .id˝ cup1˝ id/ ı i to the vector v.0;1/

and use (3.29) and (3.23) and (3.34)).

Now, we endeavor to check the H D I relation:

D
1

Œ2�q
C �

1

Œ2�q
: (3.51)

Precomposing with id˝ cup1 is an A-linear map

HomU A
q .sp4/.V

A.$1/˝2; V A.$1/˝2/! HomU A
q .sp4/.V

A.$1/; V A.$1/˝3/;

(3.52)

while postcomposing with id˝ id˝ cap1 is an A-linear map in the other direction.

From (3.19) it follows that the two maps are mutually inverse isomorphisms of A-

modules, so we can instead check the following relation:

Œ2�q � Œ2�q D � : (3.53)

From the discussion in remark (2.3) it follows that we need to show

Œ2�q.id˝i/ ı .id˝p/ ı .cup1˝ id/ � Œ2�q.i˝ id/.p˝ id/ ı .id˝ cup1/ (3.54)

is equal to

id˝ cup1� cup1˝ id : (3.55)

Since V A.$1/ is generated by the vector v.1;0/ it suffices to check that (3.54)

and (3.55) send v.1;0/ to the same vector in V A.$1/˝ V A.$1/˝ V A.$1/.

From (3.23), (3.34), and (3.29) it follows that

Œ2�q.id˝i/ ı .id˝p/ ı .cup1˝ id/.v.1;0//

� Œ2�q.i˝ id/.p˝ id/ ı .id˝ cup1/.v.1;0// (3.56)

is equal to

� q�3v.1;0/ ˝ i.v.0;0//C q�2Œ2�qv.�1;1/ ˝ i.v.2;�1// � Œ2�qv.1;�1/ ˝ i.v.0;1//

C q�3Œ2�qi.v.0;1//˝ v.1;�1/ � q�1Œ2�qi.v.2;�1//˝ v.�1;1/ C qi.v.0;0//˝ v.1;0/

(3.57)

Using (3.23), we also find that

id˝ cup1.v.1;0// � cup1˝ id.v.1;0// (3.58)
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is equal to

v.1;0/ ˝
�

� q�4v.1;0/ ˝ v.�1;0/ C q�3v.�1;1/ ˝ v.1;�1/

� q�1v.1;�1/ ˝ v.�1;1/ C v.�1;0/ ˝ v.1;0/

�

�
�

q�4v.1;0/ ˝ v.�1;0/ � q�3v.�1;1/ ˝ v.1;�1/

C q�1v.1;�1/ ˝ v.�1;1/ � v.�1;0/ ˝ v.1;0/

�

˝ v.1;0/: (3.59)

Using (3.29) to show that (3.57) = (3.59) is left as an exercise.

3.6. Background on tilting modules

Let k be a field and let q 2 k� be such that q C q�1 ¤ 0. We will write U k

q .sp4/ D

k ˝ U A
q .sp4/, and U k

q .sp4/-mod for the category of finite-dimensional U k

q .sp4/

modules which are direct sums of their weight spaces and such that K˛ acts on the �

weight space as q.�;˛_/.

Everything we say in this section is well known to experts, but the results are

essential for our arguments so we include some discussion for completeness. Two

excellent references are Jantzen’s book [15] (only the second edition contains the

appendix on representations of quantum groups and the appendix on tilting modules)

and the e-print [4]. To deal with specializations when q is an even root of unity we

will also need some results from [29] and [17].

For each � 2 XC there is a dual Weyl module of highest weight �, denotedrk.�/,

which is defined as an induced module [15, Section H.11]. The dual Weyl modules

are a direct sum of their weight spaces and therefore have formal characters. Recall

that we wrote V.�/ for the irreducible module sp4.C/ module of highest weight �.

We will write ŒV .�/� for the formal character of V.�/ in ZŒX�, the group algebra

of the weight lattice. It is known that a q-analogue of Kempf’s vanishing holds for

any k, see [29]. This implies that dual Weyl modules have formal character ŒV .�/�,

see [2, Theorem 5.12].

The dual Weyl module always has a unique simple submodule with highest weight

�. We will denote this module by Lk.�/. The module Lk.�/ should not be thought

of as a base change of V.�/. In fact, quite often the two modules will have distinct

formal characters.

Since U k

q .sp4/ is a Hopf-algebra, it acts on the dual vector space of any finite-

dimensional representation. Then we define the Weyl module of highest weight � by

V k.�/ D rk.�w0�/�, see [15, Section H.15]. The dual Weyl module V k.�/ has the

same formal character as rk.�/, i.e., ŒV .�/�, and V k.�/ has a unique simple quotient

isomorphic to Lk.�/.

Remark 3.8. In type C2 the longest element w0 acts on the weight lattice as �1.

Therefore, V k.�/ D rk.�/�.
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Definition 3.9. A tilting module is a module which has a (finite) filtration by Weyl

modules, and a (finite) filtration by dual Weyl modules. The category of tilting

modules, denoted Tilt.U k

q .sp4//, is the full subcategory of U k

q .sp4/-mod where the

objects are tilting modules.

Proposition 3.10. The tensor product of two Weyl modules

V k.�1/˝ V k.�2/

has a filtration by Weyl modules.

Proof. That this holds over k follows from [17] where the result is shown to hold

integrally using the theory of crystal bases.

Corollary 3.11. The tensor product of two tilting modules is a tilting module.

Proof. Since .�/� is exact, it follows from proposition (3.10) that the tensor product

of dual Weyl modules

V k.�1/� ˝ V k.�2/�

has a filtration by dual Weyl modules. Thus, the tensor product of two tilting modules

will have a Weyl filtration and a dual Weyl filtration and is therefore a tilting module.

Proposition 3.12. Let �; � 2 XC. Then dimk Exti .V k.�/;rk.�// D ıi;0ı�;� for all
i � 0.

Proof. A standard argument [4, Proof of Claim 3.1] shows that the vanishing of higher

extension groups follows from Kempf’s vanishing [29].

Proposition 3.13. The category Tilt.U k

q .sp4// is closed under direct sums, direct
summands, and tensor products. The isomorphism classes of indecomposable objects
in the category are in bijection with XC. We will write T k.�/ for the indecomposable
tilting module corresponding to the dominant integral weight �. The module T k.�/ is
characterized as the unique indecomposable tilting module with a one-dimensional �

highest weight space.

Proof. [15, Section E.3–E.6].

Lemma 3.14. Weyl modules or dual Weyl modules give a basis for the Grothendieck
group of the category U k

q .sp4/-mod.

Proof. Both V k.�/ and rk.�/ have the same formal character: ŒV .�/�. In particular,

V k.�/ and rk.�/ both have one-dimensional � weight spaces.
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For a tilting module T , we will write .T WV k.�// to denote the filtration multipli-

city. Formal character considerations also imply that .T WV k.�// D .T WV k.�/�/ [15,

Section E.10].

Lemma 3.15. The following are equivalent.

1. The Weyl module V k.�/ is simple.

2. V k.�/ Š rk.�/

3. The Weyl module V k.�/ is a tilting module.

Proof. It is not hard to see (1) implies (2) implies (3) [15, Section E.1]. That (3)

implies (2) follows from Lemma (3.14), along with the equality of formal characters

ŒV k.�/� D Œrk.�/�. To see that (2) implies (1), observe that the composition

Lk.�/! rk.�/
�
�! V k.�/! Lk.�/

is non-zero on the � weight space. So, the composition is a non-zero endomorphism

of a simple module and therefore is an isomorphism. Thus, Lk.�/ is a direct summand

ofrk.�/. Sincerk.�/ has a simple socle, we may conclude thatrk.�/ŠLk.�/.

Lemma 3.16. 1. If X has a filtration by Weyl modules, then, for all � 2 XC,

dim HomUk
q .sp4/.X;rk.�// D .X WV k.�//:

2. If Y has a filtration by dual Weyl modules, then, for all � 2 XC,

dim HomUk
q .sp4/.V

k.�/; Y / D .Y W rk.�//:

Proof. Both claims follow from (3.12) and a long exact sequence argument.

Proposition 3.17. If T and T 0 are tilting modules, then

dim HomUk
q .sp4/.T; T 0/ D

X

�2XC

.T WV k.�//.T 0WV k.�//: (3.60)

Proof. Since T has both Weyl and dual Weyl filtrations, this follows from 3.16 and

the fact that .T 0W rk.�// D .T 0WV k.�//.

3.7. The image of the evaluation functor and tilting modules

We continue with our assumption that k is a field and q 2 k� such that q C q�1 ¤ 0.

Definition 3.18. The category Fund.U k

q .sp4// is the full subcategory of the category

Rep.U k

q .sp4// with objects

V k.
x
w/ D V k.w1/˝ V k.w2/˝ � � � ˝ V k.wn/;

where
x
w D w1w2 : : : wn and wi 2 ¹1; 2º.
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After changing coefficients to k, the functor from Theorem (3.6) becomes

k˝„WDk

sp4
! Fund.U k

q .sp4// (3.61)

We will abuse notation and write „ for k˝„.

Lemma 3.19. The modules V k.
x
w/ are tilting modules.

Proof. From the description of the integral forms of the modules in (3.2) and (3.4), it

is easy to see that V k.$1/ and V k.$2/ are irreducible with highest weight $1 and

$2. They also have the same formal character as ŒV .$1/� and ŒV .$2/� respectively.

So, (3.15) implies that V k.
x
w/ is a tensor products of tilting modules and therefore is

a tilting module.

Remark 3.20. If q C q�1 D 0, then the Weyl module V k.$1/ is still simple and

therefore tilting but the Weyl module V k.$2/ is not. In particular, V k.$2/ has two

Jordan–Hölder factors, a simple socle isomorphic to Lk.0/ and the simple quotient

Lk.$2/.

Lemma 3.21. For all
x
w and

N
u

dimk HomUk
q .sp4/.V

k.
x
w/; V k.

N
u// D dimC Homsp4.C/.V .

x
w/; V .

N
u//: (3.62)

Proof. Suppose that

V.
x
w/ Š

M

�

V.�/m� ; (3.63)

so we have an equality of formal characters ŒV .
x
w/�D

P

m�ŒV .�/�. Since ŒV k.
x
w/�D

ŒV .
x
w/� and ŒV k.�/� D ŒV .�/� it follows that .V k.

x
w/WV k.�// D m�. The claim then

follows from proposition (3.17) and (2.23)

Theorem 3.22. The functor

„WDk

sp4
! Fund.U k

q .sp4//:

is a monoidal equivalence.

Proof. The functor „ is monoidal and essentially surjective, so it suffices to prove „

is full and faithful.

Let
x
w and

N
u be objects in Dsp4

. In the next section we will prove that „.LLN
u

x
w/ is

a linearly independent set of homomorphisms in Fund.U k

q .sp4//.

Since

#LLN
u

x
w D dimC Homsp4.C/.V .

x
w/; V .

N
u// D dimk HomUk

q .sp4/.V
k.
x
w/; V k.

N
u//;

(3.64)
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the linear independence of „.LLN
u

x
w / implies that the functor „ maps LLN

u

x
w to a basis

in Fund.U k

q .sp4//. These observations imply that LLN
u

x
w is a linearly independent set

of homomorphisms in D
k

sp4
. From the inequality in Lemma (2.37) we deduce that

LLN
u

x
w is a basis. So, „ maps a basis to a basis and

HomDsp4
.
x
w;
N
u/

„
�! HomUk

q .sp4/.V
k.
x
w/; V k.

N
u//

is an isomorphism.

Corollary 3.23. The functor „ induces a monoidal equivalence between the Karoubi
envelope of Dk

sp4
and the category Tilt.U k

q .sp4//.

Proof. Tensor products and direct summands of tilting modules are tilting modules.

Therefore, Lemma (3.19) implies that every direct summand of V k.
x
w/ is a tilting

module.

Let � 2XC, so �D a$1C b$2 for a;b 2 Z�0. The module V k.1˝a ˝ 2˝b/ has

a one-dimensional � highest weight space and all other non-zero weight spaces in XC

are less than �. From (3.13) we deduce that V k.1˝a ˝ 2˝b/ must contain T k.�/ as a

direct summand. Therefore, every indecomposable tilting module is a direct summand

of some V k.
x
w/.

4. Double ladders are linearly independent

4.1. Outline of the argument

In this section we will finish the proof of Theorem (3.22) by arguing that the set

„.LLN
u

x
w/ is linearly independent for all words

x
w and

N
u.

The idea of the proof is best illustrated as follows. Suppose we just wanted to

prove that the image of light ladder diagrams from
x
w to ; are linearly independent.

Recall that E.
x
w;0/ is the set of dominant weight subsequences E�D .�1;�2; : : : ;�n/,

such that
P

�i D 0. Assume that for each dominant weight subsequence in E.
x
w; 0/,

we have fixed a choice of light ladder LL E� and a vector v E� 2 V k.
x
w/. Since E� 2

E.
x
w; 0/ is such that

P

�i D 0, the light ladder L E� will map under „ to a homo-

morphism V k.
x
w/! V k.;/ D k. If the following matrix of elements in k

�

„.LL E�/.vE�/
�

E�;E�2E.
x
w;0/

(4.1)

is upper triangular with invertible elements on the diagonal, then a non-trivial linear

dependence among the maps „.LL E�/ will give rise to a non-zero vector in the kernel

of the matrix (4.1).
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In Section 4.2 we will fix a choice of vectors associated to dominant weight

subsequences. Then, since we want to argue double ladder diagrams are linearly inde-

pendent, we must consider the image of the dominant weight subsequence vectors

under both light ladders and upside down light ladders. The inductive construction of

light ladders allows us to reduce these calculations to elementary light ladders, neutral

ladders, and upside down elementary light ladders. In the end, we still deduce linear

independence of double ladder diagrams from an upper triangularity argument.

4.2. Subsequence basis

Recall that the modules V k.1/ (3.21) and V k.2/ (3.22) both have a fixed basis of

weight vectors v� for � 2 wt V k.1/ [ wt V k.2/.

Definition 4.1. Fix
x
w D .w1; : : : ; wn/, a word in the alphabet ¹1; 2º, and let

S.
x
w/ WD ¹.�1; : : : ; �n/W �i 2 wt V k.wi /º: (4.2)

We set

v
x
w;C WD vw1

˝ vw2
˝ � � � ˝ vwn

(4.3)

where v1Dv.1;0/ and v2Dv.0;1/. Also, for any sequence of weights E�D.�1; : : : ; �n/2

S.
x
w/, we define

v
x
w;E� WD v�1

˝ � � � ˝ v�n
2 V k.

x
w/: (4.4)

The subsequence basis of V k.
x
w/ is the set

¹vE� W E� 2 S.
x
w/º: (4.5)

Lemma 4.2. The subsequence basis of V k.
x
w/ is a basis of V k.

x
w/.

Proof. This is clear.

Definition 4.3. Let � 2 XC. The � weight space of V k.
x
w/, denoted V k.

x
w/Œ��, is the

k-span of the subsequence basis vectors vE� such that
P

�i D �.

Note that E.
x
w/ � S.

x
w/. In particular, for each E� 2 E.

x
w/ we get a subsequence

basis vector v
x
w;E� . In the special case that the dominant weight subsequence is such

that �i D wt wi for all i , then v
x
w;E� D v

x
w;C. Also, there is a partition of the set of

dominant weight subsequences of
x
w:

E.
x
w/ D

[

�2XC

E.
x
w; �/; (4.6)

where E� 2 E.
x
w/ is in E.

x
w; �/ whenever

P

�i D � or equivalently v
x
w;E� 2 V k.

x
w/Œ��.
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Definition 4.4. Recall that our choice of simple roots was � D ¹˛s ; ˛tº. There is a

partial order on the set of weights defined by � � � if � �� 2 Z�0 ��. If we restrict

this partial order to the set wt V A.1/ [ wt V A.2/, the resulting order is

.�1; 0/ < .1;�1/ < .�1; 1/ < .1; 0/; (4.7)

.0;�1/ < .�2; 1/ < .0; 0/ < .2;�1/ < .0; 1/: (4.8)

The lexicographic order gives a total order on the set S.
x
w/. We will transport this

total order to give a total order on the subsequence basis.

Example 4.5. In the image of E.2121; .2; 0//! V k.2121/Œ.2; 0/� we have

v..0;1/;.1;0/;.2;�1/;.�1;0// > v..0;1/;.1;0/;.0;�1/;.1;0// > v..0;1/;.1;�1/;.0;0/;.1;0//:

Lemma 4.6. If wt
x
w ƒ �, then V k.

x
w/Œ�� D 0.

Proof. If E� 2 S.
x
w/ is such that �i 2 wt V k.wi /, then

P

�i � wt
x
w. The subsequence

basis spans V k.
x
w/, so whenever V k.

x
w/Œ�� ¤ 0, we must have � � wt

x
w.

4.3. The evaluation functor and elementary diagrams

Notation 4.7. In the remainder of the section, we will use the same notation for dia-

grammatic morphisms and their image under the functor „. But instead of saying

diagram we will say map, for example the image of a light ladder diagram under „

will be referred to as a light ladder map.

To further simplify some of the statements below, our convention is that
x
w and

N
u

are words in the alphabet ¹1; 2º and � represents an invertible element of k.

Recall that for each weight � 2 wt V k.1/[ wt V k.2/ there is an elementary light

ladder diagram. The images of the elementary light ladder diagrams under the evalu-

ation functor are the following elementary light ladder maps:

L.1;0/ D idW V k.1/ ! V k.1/;

L.�1;1/ D pW V k.11/ ! V k.2/;

L.1;�1/ D .id˝ cap1/ ı .i ˝ id/W V k.21/ ! V k.1/;

L.�1;0/ D cap1W V
k.11/ ! k;

L.0;1/ D idW V k.2/ ! V k.2/;

L.2;�1/ D .id˝ cap2˝ id/ ı .i ˝ i/W V k.22/ ! V k.11/;

L.0;0/ D .cap1˝ id/ ı .id˝i/W V k.12/ ! V k.1/;

L.�2;1/ D p ı .id˝ cap1˝ id/ ı .id˝ id˝i/W V k.112/! V k.2/;

L.0;�1/ D cap2W V
k.22/ ! k:



Web calculus and tilting modules in type C2 447

There are two simple neutral diagrams, and their images under the evaluation functor

are the simple neutral maps:

N 21
12 D .p˝ id/ ı .id˝i/WV k.12/! V k.21/;

N 12
21 D .id˝p/ ı .i ˝ id/WV k.21/! V k.12/:

Lemma 4.8. If f WV k.
x
w/!V k.

N
u/ is a morphism which is in the image of the functor

„, then f WV k.
x
w/Œ��! V k.

N
u/Œ��, for all � 2 X .

Proof. It is well known that every U k

q .sp4/ module homomorphism between finite-

dimensional modules will preserve weight spaces. But we could also deduce this from

observing that the maps id, i, and the cap and cup maps all preserve weight spaces

and that any map in the image of „ is a linear combination of vertical and horizontal

compositions of these basic maps.

Recall that to construct light ladder diagrams and double ladder diagrams we need

to fix a word
N
x� in 1 and 2 for all � 2 XC, and we need to make choices of neutral

diagrams in the algorithmic construction. We now fix an
N
x� for all � 2 XC and fix

a light ladder diagram LL
x
w;.�1;:::;�m/ for all

x
w and all .�1; : : : ; �m/ 2 E.

x
w/. This

allows us to construct double ladder diagrams. The double ladder maps are the image

of these double ladder diagrams under the evaluation functor.

Remark 4.9. The form of the arguments below do not depend on our choice of light

ladder maps.

4.4. Pairing vectors and neutral maps

Lemma 4.10. If N W V k.
x
w/ ! V k.

N
u/ is a neutral map, then N.v

x
w;C/ D � � v

N
u;C.

Furthermore, if .�1; : : : ; �n/ is a sequence of weights such that �i 2 wt V k.wi /,
and N.v

x
w;.�1;:::;�n// has a non-zero coefficient for v

N
u;C after being written in the

subsequence basis, then v
x
w;.�1;:::;�n/ D v

x
w;C.

Proof. Neutral maps are vertical and horizontal compositions of identity maps, and

the basic neutral maps N 21
12 and N 21

12 . The lemma will follow from verifying its valid-

ity for the two basic neutral maps.

The following maps factor through V k.1/:

I 21
12 WD D.L.1;�1// ı L.0;0/ and I 12

21 WD D.L.0;0// ı L.1;�1/: (4.9)

Since V k.1/ contains no vectors of weight $1 C$2, it follows that

I 21
12 .v.1;0/ ˝ v.0;1// D 0 and I 12

21 .v.0;1/ ˝ v.1;0// D 0: (4.10)
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It is easy to use the diagrammatic relations to compute that the maps

b21
12 D qN 21

12 C q�1I 21
12 (4.11)

and

b12
21 D q�1N 12

21 C qI 12
21 (4.12)

are mutual inverses.

Both b21
12 and b12

21 are isomorphisms so they restrict to isomorphisms of weight

spaces. Since the $1C$2 weight spaces of V k.12/ and V k.21/ are one-dimensional,

it follows that N 21
12 sends the vector v.1;0/ ˝ v.0;1/ to a non-zero scalar multiple of

v.0;1/ ˝ v.1;0/ and N 21
12 sends v.0;1/ ˝ v.1;0/ to a non-zero multiple of v.1;0/ ˝ v.0;1/.

Furthermore, the only subsequence basis vector which N 21
12 sends to a non-zero mul-

tiple of v.0;1/ ˝ v.1;0/ is v.1;0/ ˝ v.0;1/, and the only subsequence basis vector which

N 12
21 sends to a non-zero multiple of v.1;0/ ˝ v.0;1/ is v.0;1/ ˝ v.1;0/.

4.5. Pairing vectors and light ladders

Lemma 4.11. Let � 2 ¹1; 2º and � 2 wt V k.�/. Then the map

id˝L�WV
k.
x
w/˝ V k.�/! V k.

N
u/;

is such that for all � 2 wt.V k.�//,

id˝L�.v
x
w;C ˝ v�/ D

´

0 if � > �;

� � v
N
u;C if � D �:

(4.13)

Proof. It suffices to check the claim for L� and not all id˝L�. The claim is obvious

for L.1;0/ and L.0;1/. For the rest of the cases, the claim follows from the calculation

in Section 4.8. Note that in the L� step of the calculation, the first non-zero entry is

v� 7! � � v
N
u;C.

Let E�D .�1; : : : ;�n/ 2E.
x
w;�/. The light ladder map LL

x
w; E�WV

k.
x
w/! V k.

N
x�/

restricts to a map

LL
x
w; E�WV

k.
x
w/Œ��! V k.

N
x�/Œ��: (4.14)

Moreover, V k.
N
x�/Œ��D k � v

N
x�;C. There is also a totally ordered set of linearly inde-

pendent vectors in V k.
x
w/Œ��, namely v

x
w;E� for all E� D .�1; : : : ; �n/ 2 E.

x
w; �/.

Proposition 4.12. One has

LL
x
w; E�.v

x
w;E�/ D

´

0 if E� > E�;

� � v
N
x�;C if E� D E�:

(4.15)

Proof. By the inductive definition of the light ladder map LL
x
w; E� and of the vector

v
x
w;E� , this proposition follows from repeated use of Lemmas (4.11) and (4.10).
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4.6. Pairing vectors and upside down light ladders

In the results of Section 4.5 we found the lexicographic order on sequences of weights

was adapted to light ladders. There is another order on weights which is convenient

for upside down light ladders.

Definition 4.13. Fix
x
w and let E� D .�1; : : : ; �n/ and E� D .�1; : : : ; �n/ be sequences

of weights such that �i ; �i 2 wt V k.wi /. Define a total order <D on weight sequences

by setting E� <D E� if .�n; : : : ; �1/ < .�n; : : : ; �1/ in the lexicographic order. We may

also transport this order to give a total order on the subsequence basis.

Lemma 4.14. Let � 2 ¹1; 2º and � 2 wt V k.�/. Then the map

id˝D.L�/WV k.
x
w/! V k.

N
u/˝ V k.�/

is such that

id˝D.L�/.v
x
w;C/ D � � v

N
u;C ˝ v� C

X

cE� � v
N
u;E� ˝ v� ; cE� 2 k; (4.16)

where v
N
u;E� ˝ v� is a subsequence basis vector, v� > v�, and v

N
u;E� < v

N
u;C.

Proof. It suffices to check the claim for D.L�/ and not all id˝D.L�/. The claim is

obvious for D.L.1;0// and D.L.0;1//. The rest of the cases follow from the calculation

in Section 4.9. Note that the first line in the D.L�/ calculation is

v
x
w;C 7! � � v

N
u;C ˝ v�;

while the remaining terms are of the form v
N
u;E� ˝ v� where � > �.

Let E� D .�1; : : : ; �n/ 2 E.
x
w; �/. The associated upside down light ladder map

D.LL
x
w; E�/WV k.

N
x�/! V k.

x
w/ restricts to a map

D.LL
x
w; E�/WV k.

N
x�/Œ��! V k.

x
w/Œ��: (4.17)

Proposition 4.15. One has

D.LL
x
w; E�/.v

N
x�;C/ D � � v

x
w; E� C

X

cE� � v
x
w;E� ; cE� 2 k; (4.18)

where v
x
w; E� <D v

x
w;E� .

Proof. By the inductive definition of the light ladder map LL
x
w;.�1;:::;�n/, this pro-

position follows from repeated use of Lemmas (4.14) and (4.10).
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4.7. Proof of linear independence

Theorem 4.16. The set
LLN

u

x
w D

[

�2XC

LLN
u

x
w.�/ (4.19)

is a linearly independent subset of HomUk
q .sp4/.V

k.
x
w/; V k.

N
u//.

Proof. Let
X

�

X

E�2E.
x
w;�/

E�2E.
N
u;�/

�cE�
E�
� LLN

u;E�

x
w; E�
D 0; �cE�

E�
2 k (4.20)

be a non-trivial linear relation. There is at least one �0 2 XC with �0cE�
E�
¤ 0 such

that if �cE�
E�
¤ 0 then � … �0. Lemma (4.6) implies that for all � ¤ �0 with �cE�

E�
¤ 0,

V k.
N
x�/Œ�0�D 0. If v0 2 V k.

x
w/Œ�0�, then since light ladder maps preserve the weight

of a vector (4.8)

0 D
X

�

X

E�;E�

�cE�
E�
� LLN

u;E�

x
w; E�

.v0/ D
X

E�;E�

�0cE�
E�
�LLN

u;E�

x
w; E�

.v0/: (4.21)

Note that for E� 2 E.
x
w; �0/, v

x
w; E� 2 V k.

x
w/Œ�0�.

Let E�0 be the largest E�, in the lexicographic order, such that �0cE�
E�
¤ 0. Taking

v0 D v
x
w; E�0

in (4.21) results in

0 D
X

E�;E�

�0cE�
E�
� LLN

u;E�

x
w; E�

.v
x
w; E�0

/ D
X

E�;E�

�0cE�
E�
�D.LL

N
u;E�/ ı LL

x
w; E�.v

x
w; E�0

/: (4.22)

Proposition (4.12) implies

0 D
X

E�

�0cE�
E�0
�D.LL

N
u;E�/ ı LL

x
w; E�0

.v
x
w; E�0

/ D
X

E�

�0cE�
E�0

� �D.LL
N
u;E�/.v

N
x�;C/:

(4.23)

Let E�0 be the smallest E�, in the <D order, such that �0cE�
E�0
¤ 0. Proposition (4.15)

implies

0 D �c
E�0

E�0
� �D.LL

N
u; E�0

/.v
N
x�;C/C

X

E�0<D E�

�0cE�
E�0

� �D.LL
N
u;E�/.v

N
x�;C/

D �0c
E�0

E�0
� � v

N
u; E�0
C “higher terms,” (4.24)

where “higher terms” is a linear combination of subsequence basis vectors all of

which are greater than v
N
u; E�0

in the <D order. Since the subsequence basis vectors

are linearly independent, we must have �0c
E�0

E�0
� D 0, which is a contradiction.
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4.8. Elementary light ladder calculations

One has

L.�1;1/.v.1;0/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

v.1;0/ 7! 0;

v.�1;1/ 7! �v.0;1/;

v.1;�1/ 7! �v.2;�1/;

v.�1;0/ 7!
�q

Œ2�q
v.0;0/I

(4.25)

L.1;�1/.v.0;1/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

v.1;0/ 7!; 0

v.�1;1/ 7! 0;

v.1;�1/ 7! �v.1;0/;

v.�1;0/ 7! �v.�1;1/I

(4.26)

L.�1;0/.v.1;0/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

v.1;0/ 7! 0;

v.�1;1/ 7! 0;

v.1;�1/ 7! 0;

v.�1;0/ 7! 1I

(4.27)

L.2;�1/.v.0;1/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v.0;1/ 7! 0;

v.2;�1/ 7! v.1;0/ ˝ v.1;0/;

v.0;0/ 7! v.1;0/ ˝ v.�1;1/ C q�1v.�1;1/ ˝ v.1;0/;

v.�2;1/ 7! v.�1;1/ ˝ v.�1;1/;

v.0;�1/ 7! �v.1;0/ ˝ v.�1;0/ C v.�1;1/ ˝ v.1;�1/I

(4.28)

L.0;0/.v.1;0/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v.0;1/ 7! 0;

v.2;�1/ 7! 0;

v.0;0/ 7! �q�1v.1;0/;

v.�2;1/ 7! �v.�1;1/;

v.0;�1/ 7! �v.1;�1/I

(4.29)

L.�2;1/.v.1;0/ ˝ v.1;0/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v.0;1/ 7! 0;

v.2;�1/ 7! 0;

v.0;0/ 7! 0;

v.�2;1/ 7! v.0;1/;

v.0;�1/ 7! v.2;�1/I

(4.30)
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L.0;�1/.v.0;1/ ˝ .�//W

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

v.0;1/ 7! 0;

v.2;�1/ 7! 0;

v.0;0/ 7! 0;

v.�2;1/ 7! 0;

v.0;�1/ 7! 1:

(4.31)

4.9. Upside down elementary light ladder calculations

One has

D.L.�1;1//W v.0;1/ 7! q�1v.1;0/ ˝ v.�1;1/

� v.�1;1/ ˝ v.1;0/; (4.32)

D.L.1;�1//W v.1;0/ 7! � q�3v.0;1/ ˝ v.1;�1/

C q�1v.2;�1/ ˝ v.�1;1/

�
q

Œ2�q
v.0;0/ ˝ v.1;0/; (4.33)

D.L.�1;0//W 1 7! � q�4v.1;0/ ˝ v.�1;0/

C q�3v.�1;1/ ˝ v.1;�1/

� q�1v.1;�1/ ˝ v.�1;1/

C v.�1;0/ ˝ v.1;0/; (4.34)

D.L.2;�1//W v.1;0/ ˝ v.1;0/ 7! � q�2v.0;1/ ˝ v.2;�1/

C v.2;�1/ ˝ v.0;1/; (4.35)

D.L.0;0//W v.1;0/ 7!
�q�3

Œ2�q
v.1;0/ ˝ v.0;0/

C q�2v.�1;1/ ˝ v.2;�1/

� v.1;�1/ ˝ v.0;1/; (4.36)

D.L.�2;1//W v.0;1/ 7! � q�4v.1;0/ ˝ v.1;0/ ˝ v.�2;1/

C
q�2

Œ2�q
v.1;0/ ˝ v.�1;1/ ˝ v.0;0/

C
q�3

Œ2�q
v.�1;1/ ˝ v.1;0/ ˝ v.0;0/

� q�2v.�1;1/ ˝ v.�1;1/ ˝ v.2;�1/

� q�1v.1;0/ ˝ v.�1;0/ ˝ v.0;1/

C v.�1;1/ ˝ v.1;�1/ ˝ v.0;1/; (4.37)
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D.L.0;�1//W 1 7! q�6v.0;1/ ˝ v.0;�1/ � q�4v.2;�1/ ˝ v.�2;1/

C
q�2

Œ2�q
v.0;0/ ˝ v.0;0/

� q�2v.�2;1/ ˝ v.2;�1/

C v.0;�1/ ˝ v.0;1/: (4.38)

5. Characters of tilting modules

5.1. Object adapted cellular category structure

We refer to [10, Definition 2.4] for the definition of a strictly object adapted cellular

category or SOACC.

Let k be a field and let q 2 k
� such that q C q�1 ¤ 0. In this section we will

show that D
k

sp4
is an SOACC. It follows that the endomorphism algebras in D

k

sp4

are cellular algebras. Since we proved that D
k

sp4
is equivalent to Fund.U k

q .sp4//, the

result about cellular algebras also follows from [3] and the result about Dk

sp4
being

an SOACC follows from [1, Proposition 2.4]. For more discussion about the relation

between our work and [3] we recommend [8, p. 6] (but replace sln webs with Dsp4
).

For each � 2 XC, choose an object
N
x� in D

k

sp4
such that wt

N
x� D �. The set

ƒ D ¹
N
x�º�2XC

is in bijection with XC, and we define a partial order on ƒ by setting

N
x� �

N
x� whenever � � �, i.e., � � � 2 Z�0ˆC.

For any object
x
w in D

k

sp4
and for all E� 2 E.

x
w; �/ we fix a light ladder dia-

gram LL E� WD LL
x
w;E� 2 Hom

D
k
sp4

.
x
w;
N
x�/ and an upside down light ladder diagram

D.LLE�/ WD D.LL
x
w;E�/ 2 Hom

D
k
sp4

.
N
x�;
x
w/.

If
N
x� D x1x2 : : : xn where xi 2 ¹1; 2º, then the set E.

N
x�; �/ contains a single

element, E� D .wt x1; wt x2 : : : wt xn/. Recall that in our definition of double ladder

diagrams we choose LLE�
D id

N
x�
D D.LLE�

/.

For E� 2 E.
x
w; �/ and E� 2 E.

N
u; �/ we set

LL�
E�;E�
WD D.LLE�/ ı LL E� 2 Hom

D
k
sp4

.
x
w;
N
u/: (5.1)

It follows from our main theorem that ¹LL�
E�;E�
º�2XC

forms a basis for Hom
D

k
sp4

.
x
w;
N
u/.

Remark 5.1. In the definition of an SOACC, one fixes the data of two sets, E.
x
w; �/

and M.
x
w;�/, which are in a fixed bijection. We are choosing to ignore the set M.

x
w;�/.

Definition 5.2. Fix � 2XC. Let .Dk

sp4
/<� be the k-linear subcategory whose morph-

isms are spanned by LL
�

E�;E�
with � < �.
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Lemma 5.3. Let f 2 Hom
D

k
sp4

.
x
w;
N
u/ and let E� 2 E.

N
u; �/. Then

LL E� ı f �
X

E�2E.
x
w;�/

� � LLE� mod.Dk

sp4
/<�; (5.2)

where � represents an element of k.

Proof. Writing LL E� ı f in the double ladder basis, we find that

LL E� ı f D
X

�2XC

E�2E.
x
w;�/

E�2E.
N
x�;�/

� � LL
�

E�;E�

�
X

E�2E.
x
w;�/

E�2E.
N
x�;�/

� � LL�
E�;E�

mod.Dk

sp4
/<�

�
X

E�2E.
x
w;�/

� � LLE� mod.Dk

sp4
/<� (5.3)

The second equality follows from the observation that if � 2 XC and E.
N
x�; �/ ¤ ;,

then �� �. The third equality follows from recalling that E.
N
x�; �/D ¹E�º and LLE�

D

id
N
x�

.

Corollary 5.4. The category D
k

sp4
with fixed choices of

N
x� and light ladder diagrams

is an SOACC.

5.2. Tilting character algorithm

We will describe a way to compute the filtration multiplicities .T k.�/; V k.�// for all

�;� 2XC using the light ladder diagrams in D
k

sp4
. The ideas in this section are stand-

ard, and we follow [12, 16]. The reader may also wish to consult [3, Appendix 4B]

and compare our discussion with the theory of cell modules for cellular algebras.

Lemma 5.5. The indecomposable tilting module T k.�/ has a local endomorphism
ring, and if J is the Jacobson radical of the ring EndUk

q .sp4/.T
k.�//, then

EndUk
q .sp4/.T

k.�//=J
�
�! k � id; (5.4)

where ' C J D c' idCJ 7! c' id.

Proof. Restriction to T k.�/Œ�� is a k-linear ring homomorphism

EndUk
q .sp4/.T

k.�//! Endk.T k.�/Œ��/ D k � id : (5.5)
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Since id acts on the � weight space as multiplication by 1, this ring homomorphisms

is surjective. Also, T k.�/ is indecomposable so its endomorphism ring is local, and

therefore the kernel of the ring homomorphism in (5.5) is J .

Lemma 5.6. Let
x
w be an object in Dk

sp4
such that wt

x
w D �. Then

V k.
x
w/ D T k.�/˚

M

�<�

T k.�/r
x
w;� (5.6)

and r
x
w;� is the rank of the pairing

�
x
w;�WHomUk

q .sp4/.V
k.
x
w/; T k.�// �HomUk

q .sp4/.T
k.�/; V k.

x
w//! k � id;

.f; g/ 7! cf ıg � id :

Proof. The claim about the decomposition of V k.
x
w/ follows from character con-

siderations. The second claim about computing multiplicities using the rank of the

composition pairing is standard [12, Lemma 11.65].

Remark 5.7. The pairing �
x
w;wt

x
w will always have rank 1.

Lemma 5.8. The light ladder diagrams ¹LLE�ºE�2E.
x
w;�/ form a basis for

Hom
D

k
sp4

.
x
w;
N
x�/=.Dk

sp4
/<�;

and the upside down light ladder diagrams ¹D.LLE�/ºE�2E.
x
w;�/ form a basis for

Hom
D

k
sp4

.
N
x�;
x
w/=.Dk

sp4
/<�:

For all pairs E�; E� 2 E.
x
w; �/ there is a scalar cE�

E�
2 k such that

LLE� ıD.LL E�/ D cE�
E�

id
N
x�
C.Dk

sp4
/<�;

which is computed as the coefficient of the identity in the double ladder basis. The
rank of the matrix .cE�

E�
/ E�;E�2E.

x
w;�/ is equal to the rank of the pairing �

x
w;�.

Proof. Since Dk

sp4
is an object adapted cellular category, this follows from the dis-

cussion in [12, Appendix 11.5].

Proposition 5.9. The character of the indecomposable tilting module with highest
weight � 2 XC is

ŒT k.�/� D ŒV k.�/�C
X

�<�

#E.
N
x�; �/ŒV k.�/��

X

�<�

rkk.cE�
E�
/ E�;E�2E.

N
x�;�/ŒT

k.�/�:

(5.7)
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Proof. Since .V k.
N
x�/W V k.�// D #E.

N
x�; �/, the claim follows from Lemma (5.6)

and Lemma (5.8).

Remark 5.10. Since the sums on the right-hand side of (5.7) are indexed over � < �,

and the partially ordered set .XC; </ has the descending chain condition, one can

determine ŒT k.�/� by computing #E.
N
x�; �/ and r

N
x�;� for all 0 � � � � � �.

Remark 5.11. Calculations of tilting module characters can be made completely

within the diagrammatic category D
k

sp4
. The quantity #E.

N
x�; �/ is equal to the num-

ber of light ladder diagrams from
N
x� to

N
x�, and r

N
x�;� is equal to the rank of the matrix

.cE�
E�
/ E�;E�2E.

x
w;�/. Moreover, these matrices can be computed in Dsp4

. If M � A is a

maximal ideal and k D A=M , then the rank of the mod M reduction of the matrix

.cE�
E�
/ E�;E�2E.

x
w;�/ is equal to .V k.

x
w/W T k.�//.
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