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Seifert hypersurfaces of 2-knots and Chern–Simons functional

Masaki Taniguchi

Abstract. For a given smooth 2-knot in S4, we relate the existence of a smooth Seifert hyper-

surface of a certain class to the existence of irreducible SU.2/-representations of its knot group.

For example, we see that any smooth 2-knot having the Poincaré homology 3-sphere as a Seifert

hypersurface has at least four irreducible SU.2/-representations of its knot group. This result is

false in the topological category. The proof uses a quantitative formulation of instanton Floer

homology. Using similar techniques, we also obtain similar results about codimension-1 embed-

dings of homology 3-spheres into closed definite 4-manifolds and a fixed point type theorem

for instanton Floer homology.
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1. Introduction

1.1. Chern–Simons functional for oriented 2-knots

A 2-knot is a smooth embedding from S2 into S4. The classification problem of iso-

topy classes of 2-knots has been studied since the introduction of the subject by Artin

in 1925 ([2]). There are several diagrammatic approaches to the study of 2-knots

including motion pictures ([18]), surface knot diagrams ([37]), and chart diagrams

([26]), as well as invariants of 2-knots, including (twisted) Alexander polynomials

([1]) and quandle cocycle invariants ([26]). We focus, instead, on Seifert hypersur-

faces of 2-knots.

Definition 1.1. Let K be an oriented 2-knot in S4. We call a closed oriented con-

nected 3-manifold Y a (smooth) Seifert hypersurface of K if there exists a smooth

embedding f W Y n B3 ! S4 such that f j@.Y nB3/ D K as oriented manifolds, where

B3 is a small open 3-ball.

We consider the following problem: what are the Seifert hypersurfaces for a given

2-knot? For a given 1-dimensional knot k in S3, topological types of Seifert surfaces

are determined by the Seifert genus g.k/ of k. In [36], Ozsváth and Szabó proved

that the Seifert genus of a 1-knot can be computed from its knot Floer homology.

However, in the case of 2-knots, the detection of topological types of Seifert hyper-

surfaces remains an open problem even for the unknot. One difficulty comes from

the difference between smooth and topological Seifert hypersurfaces. For example,

the Poincaré homology 3-sphere is a Seifert hypersurface of the unknot in the topo-

logical category but not in the smooth category. Our main result relates the existence

of smooth Seifert hypersurfaces of a certain class to the existence of irreducible

SU.2/-representations of its knot group. The main result is proved by using a quant-

itative formulation of instanton Floer homology. In order to state our main result, we

introduce maps1

csK;j WR.K; j / WD Hom.Gj .K/; SU.2//= SU.2/ ! .0; 1�;

where the group Gj .K/ is the kernel of the composite homomorphism

 j WG.K/ WD �1.S
4 nK/

Ab
�! H1.S

4 nKI Z/ Š Z
mod j
���! Z=jZ (1)

and the action of SU.2/ on Hom.Gj .K/; SU.2// is given by the conjugation. The

map csK;j is an analog of the Chern–Simons functional; see Definition 5.1. The set

1The invariants ¹csK;j º can be defined for every oriented null-homologous 2-knot K

embedded into a fixed closed oriented 4-manifold X . See Remark 5.6.
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Im csK;j � .0; 1� is finite and is an invariant of the pair .K; j /. First, we provide

several fundamental properties of ¹csK;j WR.K; j / ! .0; 1�ºj2Z>0
containing a rela-

tionship to the Chern–Simons functionals of Seifert hypersurfaces:

Proposition 1.2. The functionals ¹csK;j WR.K; j / ! .0; 1�ºj2Z>0
satisfy the follow-

ing conditions.

(1) Let Y be a Seifert hypersurface of a given oriented 2-knotK. Then,

Im csK;j � Im csY

holds for any j 2 Z>0, where Im csY is given by

Im csY WD ¹csY .�/W � is a flat SU.2/-connection on Y º \ .0; 1�

and csY is the SU.2/-Chern–Simons functional for Y . Moreover, if Y is a

Seifert 3-manifold, then

Im csK;j � Q \ .0; 1�:

(2) For any j 2 Z>0,

Im csK1;j [ Im csK2;j � Im csK1#K2;j :

(3) For all positive integers m and j ,

Im csK;j � Im csK;mj :

(4) The relation between Im csK;j and Im cs�K;j is given by

Im csK;j D ¹1 � r W r 2 Im cs�K;j \.0; 1/º [ ¹1º:

If K is reversible (i.e., K is isotopic to �K), then 1 � r 2 Im csK;j for any

r 2 Im csK;j \.0; 1/.

(5) If Im csK;j \.0; 1/ is non-empty for j 2 Z>0, there exist 2#.Im csK;j \.0; 1//

SU.2/-irreducible representations of Gj .K/.

We first calculate Im csK;j for ribbon 2-knots. Here, a ribbon 2-knot means a

2-knot obtained as the boundary of the union of disjoint embedded 3-disks in R4 with

some number of disjoint 3-dimensional 1-handles attached. (For more details, see [46]

and [26, Section 5.6].) Property (1) in Proposition 1.2 implies the following.

Corollary 1.3. If K is a ribbon 2-knot, then Im csK;j D Im csU;j D ¹1º for any j 2

Z>0, where U is the 2-unknot.

Next, we give calculations of ¹csK;j ºj2Z>0
for a certain class of twisted spun

knots.
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Proposition 1.4. Let T .p; q/ be the .p; q/-torus knot, M.p; q; r/ the Montesinos

knot of type .p; q; r/ for a pairwise relative prime tuple .p; q; r/ of positive integers,

and k.p=q/ any 2-bridge knot such that †2.k.p=q// D L.p; q/, where †2.k/ is the

double branched cover of k � S3.

(1) For any m 2 Z>0 and j 2 Z>0,

Im csK.T.p;q/;m/;j D Im cs†.p;q;m/;

where K.k;m/ is the m-twisted spun knot of the knot k. For the definition of

m-twisted spun knot, see [26, Section 6.1].

(2) For any j 2 Z>0,

Im csK.M.p;q;r/;2/;j D Im cs†.p;q;r/ :

(3) If p is odd and satisfies the condition

°

s 2 ¹2; : : : ; p � 2ºW
s2 � 1

p
2 Z

±

D ;;

then, for any j 2 Z>0,

Im csK.k.p=q/;2/;j D
°

�
n2r

p
mod 1W 0 � n �

lp

2

m±

;

where r is any integer satisfying qr � �1 modp and d�e is the ceiling func-

tion.

In [16], Fintushel and Stern gave an algorithm to compute Im cs†.p;q;r/ when

†.p; q; r/ is a homology 3-sphere. We give explicit calculations of Im csK;j for sev-

eral 2-knots in Yoshikawa’s table in [48] and twisted spun 2-knots of 31.

Example 1.5. We calculate Im csK;j for 81, 101 and 102, in Yoshikawa’s table ([48])

and k-twisted spun 2-knots of 31.

• The 2-knots 81 and 101 are spun 2-knots K.31; 0/ and K.41; 0/. It is known that

spun knots K.k; 0/ are ribbon.2 Therefore, Im cs81;j D Im cs101;j D ¹1º for any

j 2 Z>0.

• The 2-knot 102 is the 2-twisted spun knotK.31; 2/ of 31. The 2-knotK.31; 2/ has

†.2; 2; 3/ D L.3; 1/ as a Seifert hypersurface so we have Im cs102;j D ¹2
3
; 1º for

any j 2 Z>0 ([30]).

2It is known that K.k; 0/ admits a surface diagram without triple intersections. For further

details, see [41]. Such a 2-knot is known to be ribbon ([26, Section 4.5]).
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• Since 31 D T .2; 3/, �K.31; 6k � 1/ has �†.2; 3; 6k � 1/ as a Seifert hypersur-

face for each k 2 Z>0. Thus,

Im cs�K.31;6k�1/

D
°12.3k2 � k C 3l2/C 1

24.6k � 1/
mod 1W l 2 ¹k; : : : ; 5k � 1º \ 2Z

±

[ ¹1º:

For example, Im cs�K.31;5/ D ¹1=120; 49=120; 1º.

In order to state the main theorem, we also need two kinds of Floer theoretic

invariants.

(i) In [11], Daemi introduced a sequence of invariants �Y .k/ 2 Œ0;1� of an

oriented homology 3-sphere Y parametrized by k 2 Z. In [35], Nozaki,

Sato, and the author introduced similar invariants rs.Y / 2 .0;1� of ori-

ented homology 3-spheres parametrized by s 2 Œ�1; 0�. These invariants

are defined by using a quantitative formulation of instanton Floer homology.

(ii) For an oriented homology 3-sphere Y , s 2 Œ�1; 0� and k 2 Z>0, we intro-

duce invariants

lsY ; l
k
Y 2 Z>0 [ ¹1º and lY 2 Z>0 [ ¹1º

which satisfy the inequality

max
s2Œ�1;0�;k2Z>0

¹lsY ; l
k
Y º � lY :

If Y is a Seifert homology 3-sphere, lY coincides with 2j�.Y /j, where �.Y /

is the Casson invariant of Y .

In terms of rs.Y /, �Y .k/, l
s
Y and lkY , our main result3 is as follows.

Theorem 1.6. Let Y be an oriented homology 3-sphere andK an oriented 2-knot.

(1) Suppose that lsY < 1 and rs.Y / < 1 for some s 2 Œ�1; 0�. If Y is a Seifert

hypersurface of K, then

rs.Y / � brs.Y /c 2
[

1�j�ls
Y

Im csK;j ;

where4

bxc WD

´

max¹n 2 ZW n � xº if x … Z;

x � 1 if x 2 Z:

3Theorem 1.6 can be generalized to any oriented 2-knot K embedded into a fixed closed

negative definite 4-manifold X with 0 D ŒK� 2 H2.X I Z/.
4Note that our convention of b�c is different from the usual floor function.
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(2) Suppose that lkY < 1 and ��Y .k/ < 1 for some k 2 Z>0. If Y is a Seifert

hypersurface of K, then

��Y .k/ � b��Y .k/c 2
[

1�j�lk
Y

Im csK;j :

We also prove a sufficient condition for lY < 1.

Theorem 1.7. If the Chern–Simons functional of Y is Morse–Bott,5 then lY < 1.

For example, the Chern–Simons functionals of finite connected sums of Seifert

homology 3-spheres are Morse–Bott. A sufficient condition for rs.Y / < 1 and

��Y .1/ < 1 is given by h.Y / < 0. (See [11, 35]), where h.Y / is the Frøyshov

invariant of Y ([20]). Theorem 1.6 gives a relation between Seifert hypersurfaces and

SU.2/-representations of Gj .K/ in the following sense.

Theorem 1.8. Let Y be an oriented homology 3-sphere and K an oriented 2-knot.

Suppose Y is a Seifert hypersurface of K.

(1) If rs.Y / < 1 and lsY < 1 for some s 2 Œ�1; 0� and Y is a Seifert hyper-

surface of K, then there exists a positive integer l with l � lsY such that there

exists an irreducible representation

�WGl.K/ ! SU.2/:

In particular, If lsY D 1 and rs.Y / <1 for some s 2 Œ�1; 0�, then there exists

an irreducible representation �WG.K/ ! SU.2/.

(2) If ��Y .k/ <1 and lkY <1 for some k 2 Z>0 and Y is a Seifert hypersurface

of K, then there exists a positive integer l with l � lkY such that there exists

an irreducible representation

�WGl.K/ ! SU.2/:

In particular, if ��Y .k/ <1 and lkY D 1 for some k 2 Z>0, then there exists

an irreducible representation �WG.K/ ! SU.2/.

As a corollary, we have the following result:

Corollary 1.9. Let n be a positive integer. Then the knot group of any 2-knot having

†.2; 3; 6n � 1/ as a Seifert hypersurface has at least two irreducible SU.2/-rep-

resentations. Moreover, when n D 1, the knot group admits at least four irreducible

SU.2/-representations.

5For the definition of the Morse–Bott property, see Section 3.1.
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Freedman [19] proved that, for any homology 3-sphere Y , there is a locally flat

topological embedding from Y into S4. This means that Y can be realized as a Seifert

hypersurface of the unknot when we admit locally flat topological embeddings in the

definition of Seifert hypersurfaces. Thus, Corollary 1.9 is false for topological Seifert

hypersurfaces.

1.2. Embeddings of 3-manifolds into negative definite 4-manifolds

Existence of embeddings is a fundamental problem in differential topology. It is well

known that every orientable closed 3-manifold can be embedded in S5. However, the

following problem is quite difficult in general.

Problem 1.10. For a given 4-manifold X and c 2 H3.X I Z/, which 3-manifold Y

can be embedded in X with ŒY � D c 2 H3.X I Z/?

This problem has been studied in several situations ([13, 22, 24, 25, 28]). For

example, if p is an integer with jpj > 1, then L.p; q/ cannot be embedded into

S4 ([23]). As another example, by Donaldson’s Theorem A (see [14]), the Poincaré

homology 3-sphere cannot be smoothly embedded into S4. However, by Freedman’s

result ([19]), it does admit locally flat embedding into S4. Thus, we see that the

smooth and locally flat topological embedding problems are different. Our main result

relates the existence of embeddings of homology 3-spheres Y of a certain type into a

definite 4-manifoldX to the existence of irreducible representations�1.X/! SU.2/.

In order to state our main result, we recall from [44] the maps

cs
j
X;cWR.Xj;c/ WD Hom.�1.Xj;c/; SU.2//= SU.2/ ! .0; 1�

defined for an oriented closed connected 4-manifold X and a class c 2 H3.X I Z/

having certain properties (see Section 2) with parameter j 2 Z>0, where ¹Xj;cº is

the j -fold cyclic covering space of X corresponding to c. The functional cs
j
X;c is an

analog of the Chern–Simons functional. For the precise definition, see (7).

Theorem 1.11. Let Y be an oriented homology 3-sphere andX be a closed connected

oriented negative definite 4-manifold. Suppose that there exists a smooth embedding

from Y to X with 0 ¤ ŒY � 2 H3.X I Z/.

(1) If rs.Y / < 1 and lsY < 1 for some s 2 Œ�1; 0�, then

rs.Y / � brs.Y /c 2
[

1�j�ls
Y

Im cs
j

X;ŒY �
:

(2) If ��Y .k/ < 1 and lkY < 1 for some k 2 Z>0, then

��Y .k/ � b��Y .k/c 2
[

1�j�lk
Y

Im cs
j

X;ŒY �
:
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If ŒY � D 0, then

1 D rs.Y / D rs.�Y / D ��Y .k/ D �Y .k/

for any s 2 Œ�1; 0� and k 2 Z>0.

The proposition below provides fundamental properties of ¹cs
j
X;cºj2Z>0

.

Proposition 1.12. Let Y be an oriented closed connected 3-manifold and X a closed

connected oriented 4-manifold.

(1) If there exists an embedding from Y to X with 0 ¤ ŒY � 2 H3.X I Z/ then

Im cs
j

X;ŒY �
� Im csY

for any j .

(2) If Im cs
j
X;c \.0; 1/ ¤ ; for j 2 Z>0, then there exist 2#.Im cs

j
X;c \.0; 1//

irreducible SU.2/-representations of �1.Xj;c/.

(3) If R.Xj;c/ is connected, then Im cs
j
X;c D ¹1º.

Since †.2; 3; 5/ satisfies a nice Floer theoretic condition (see Theorem 9.14),

we can detect Im csX;c from the critical values of the Chern–Simons functional of

†.2; 3; 5/ when X contains †.2; 3; 5/ as a smooth submanifold.

Theorem 1.13. SupposeX is a negative definite 4-manifold containing†.2; 3; 5/ as

a smooth submanifold. Then

Im cs
j

X;Œ�†.2;3;5/�
D

° 1

120
;
49

120
; 1

±

� .0; 1�

for any j 2 Z>0. In particular, �1.X/ admits at least four irreducible SU.2/-repres-

entations.

Note that †.2; 3; 5/ � S1 satisfies the assumption of Theorem 1.13 and that there

are exactly four irreducible SU.2/-representations on †.2; 3; 5/ � S1. Moreover, we

prove the following existence result for SU.2/-representations:

Theorem 1.14. There is an S2-component C in the SU.2/-representation space

R.†.2; 3; 5; 7// of †.2; 3; 5; 7/ satisfying the following property: for any a closed

definite 4-manifold X containing †.2; 3; 5; 7/ as a smooth submanifold, all elements

in C extend as SU.2/-representations of X . Therefore, �1.X/ admits an uncountable

family of irreducible SU.2/-representations. In particular, this implies the knot group

of any 2-knot having†.2;3; 5; 7/ as a Seifert hypersurface has an uncountable family

of irreducible SU.2/-representations.
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Lastly, we state a non-existence result for embeddings of Seifert homology

3-spheres.

Theorem 1.15. Let Y be a Seifert homology 3-sphere of a type †.a1; : : : ; an/. Sup-

pose the Frøyshov invariant h.Y / of Y is non-zero. Then Y cannot be smoothly

embedded in any negative definite 4-manifold X such that the SU.2/-representation

space R.Xj;c/ of Xj;c is connected for all j .

If �1.X/ is a free group or isomorphic to Zl for some l 2 Z>0, then R.X/ is

connected. Moreover, if

R.a1; : : : ; an/ D
2

a
� 3C nC

n
X

iD1

2

ai

ai�1
X

kD1

cot
�a�k

ai

�

cot
��k

ai

�

sin2
��k

ai

�

> 0;

then h.†.a1; : : : ; an// > 0. (See [11].)

1.3. Fixed point theorems for SU.2/-representation spaces

Since instanton Floer homology is modeled on the infinite-dimensional Morse homo-

logy of the Chern–Simons functional of 3-manifolds, it is interesting to ask whether

or not there is a Lefschetz type fixed point theorem for instanton Floer homology.

Ruberman and Saveliev showed the following theorem.

Theorem 1.16 (Ruberman and Saveliev [39]). Let h be an orientation preserving self-

diffeomorphism on Y with some non-degenerate condition described in [39, (3.7)].

Then

�FO.Xh.Y // D
1

2
L.h�; I.Y //;

whereXh.Y / is the mapping torus of hWY ! Y , �FO.X/ is the Furuta–Ohta invariant

introduced in [21] and L.h�; I�.Y // is the Lefschetz number of h�W I�.Y / ! I�.Y /

introduced in [39].

Theorem 1.16 implies the following fixed point theorem for instanton Floer homo-

logy.

Corollary 1.17 (Ruberman and Saveliev [39]). Under the same assumption of The-

orem 1.16, if L.h�; I.Y // ¤ 0, then h�WR�.Y / ! R�.Y / has a fixed point, where

R�.Y / is the set of conjugacy classes of irreducible SU.2/-representations6 of �1.Y /.

We prove a similar fixed point theorem by applying Theorem 1.11 to mapping tori

of diffeomorphisms.

6In general, �FO.Xh.Y // can be defined for any orientation preserving diffeomorphism.

Moreover, if �FO.Xh.Y // ¤ 0, then h�WR�.Y / ! R�.Y / has a fixed point.
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Theorem 1.18. Let Y be an oriented homology 3-sphere and h an orientation pre-

serving self-diffeomorphism of Y .

(1) If rs.Y / < 1 and lsY < 1 for some s 2 Œ�1; 0�, then there exist a positive

number l � lsY such that .h�/l WR�.Y / ! R�.Y / has a fixed point.

(2) If ��Y .k/ < 1 and lkY < 1 for some k 2 Z>0, then there exist a positive

number l � lkY such that .h�/l WR�.Y / ! R�.Y / has a fixed point.

Combining this with Theorem 1.14, we obtain the following result.

Theorem 1.19. There exists an S2-component C of R�.†.2; 3; 5; 7// satisfying the

following condition: for any orientation preserving diffeomorphism h on†.2;3;5;7/,

the fixed point set of

h�WR�.†.2; 3; 5; 7// ! R�.†.2; 3; 5; 7//

contains C .

This paper is organized as follows. In Section 2, we review the invariants ¹cs
j
X;cº,

¹rs.Y /º and ¹�Y .k/º appearing in the theorems in Section 1. In Section 3, we define

¹lsY º, ¹lkY º and lY and show several properties of these invariants. In Section 4, we

establish formal properties of the invariants ¹cs
j
X;cº including a connected sum for-

mula, the behavior of ¹cs
j
X;cº for j , and a surgery formula. In Section 5, we introduce

a family of invariants ¹csK;j º of 2-knots and using the results of Section 4, we show

Proposition 1.2. In Section 6, we give sufficient conditions (Theorem 1.7) for finite-

ness of lsY , lkY and lY . In Section 7, using a technique of instanton Floer theory,

we show the existence of flat connections on 4-manifolds under assumptions of the

existence of embeddings and prove Theorems 1.6 and 1.11. In Section 8, we prove

Theorem 1.14. In Section 9, we prove Theorems 1.13 and 1.8. In this section, we also

compare ¹csK;j º with other 2-knot invariants which can be used to obstruct a certain

class of Seifert hypersurfaces.

2. Preliminaries

2.1. Chern–Simons functional ¹cs
j

X;c
ºj 2Z>0

We follow [44]. Let X be a closed connected oriented 4-manifold. We fix a class

c 2 H3.X I Z/ Š H 1.X I Z/ Š ŒX; BZ�. The class c determines a covering space

pc W zXc ! X

up to isomorphism. If c is not equal to 0, then zXc is connected. We impose the fol-

lowing condition on c:
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Assumption 2.1. The class c can be represented by a connected oriented 3-mani-

fold Y . (For example, 2Œ¹1º � S3� in H3.S
1 � S3I Z/ cannot be represented by a

connected oriented 3-manifold.)

Suppose that c is not equal to 0. We fix a smooth classifying map � WX ! S1 of

pc and a lift Q� W zXc ! R. Let zR.X/ be the set of SU.2/-connections on X � SU.2/

modulo null-homotopic SU.2/-gauge transformations. For a 2 zR.X/, define

csX;c.a/ WD �
1

8�2

Z

zXc

Tr.FAa ^ FAa /;

where Aa is a smooth SU.2/-connection on zXc � SU.2/ such that

AajQ��1.�1;�1� D p�
c ajQ��1.�1;�1� and AajQ��1Œ1;1/ D 0:

The function csX;cW zR.X/ ! R does not depend on the choices of additional data � ,

Q� ,Aa, representative of a and isomorphism class of zXc . If c D 0, then we define csX;c

to be the zero map. Note that

�0.Map.X; SU.2/// Š ŒX; SU.2/�;

where ŒX; SU.2/� is the set of homotopy classes of maps from X to SU.2/. Fix an

oriented closed 3-manifold Y embedded inX such that ŒY �D c 2H3.X IZ/. If ŒY � is

not zero in H3.X I Z/, then X n Y is connected. Here, we suppose that Y is connec-

ted. In this case, every 0-dimensional framed submanifold in Y [Id �Y bounds some

1-dimensional framed submanifold in X . By the Pontryagin construction, we see that

every continuous map Y ! SU.2/ can be extended to a continuous mapX ! SU.2/.

Since c is not zero, thenX n Y is connected. LetW0 be the connected compact cobor-

dism from Y to itself obtained by cutting X open along Y . We will use the following

notations.

i. The manifoldWi is a copy of W0 for i 2 Z.

ii. We denote @.Wi / by Y iC [ Y i� where Y iC(resp. Y i�) is equal to Y (resp. �Y )

as oriented manifolds.

iii. For .m; n/ 2 .Z [ ¹�1º/ � .Z [ ¹1º/ with m < n, we set

W Œm; n� WD
a

m�i�n

Wi=¹Y
j
� � Y

jC1
C j 2 ¹m; : : : ; nºº: (2)
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Note that W Œ�1;1� ! X is isomorphic to zXc ! X as Z-covering spaces. Using

the identification, we have

cs
j
X;c.a/ D �

1

8�2

Z

W Œ�1;1�

Tr.FAa ^ FAa / (3)

D cs.i�Y a/� cs.i�Y 0/ D cs.i�Y a/ (4)

for every element a 2 zR.Xj;c/. Formula (3) gives the following:

Proposition 2.2. For any element g 2 �0.Map.X; SU.2///,

csX;c.g
�a/ D deg.gjY /C csX;c.a/: (5)

By (5), we obtain a map

csX;cWR.X/ WD zR.X/=�0.Map.X; SU.2/// ! R=Z Š .0; 1�:

We call csX;c the Chern–Simons functional for .X; c/. If we consider a C1-topo-

logy on R.X/, csX;c is a continuous map. Note that R.X/ is compact, Im csX;c has a

minimal value.

Lemma 2.3. Suppose we have another pair .X 0; c0/ of a closed oriented 4-manifold

X 0 with c0 2 H3.X
0I Z/ and an orientation preserving diffeomorphism f WX ! X 0

satisfying f �c D c0. Then

csX 0;c0.a/ D csX;c.f
�a/

holds.

Proof. This follows from functoriality of integration and Z-covering spaces.

If c is not zero, the class c determines a homomorphism �c WH1.X I Z/ ! Z. This

gives us a surjective homomorphism

�j WD �c ı AbW�1.X/ ! Im �c ı Ab D icZ Š Z ! Z=jZ (6)

for some ic 2 Z>0. For each j 2 Z>0, we denote by

pj WXj;c ! X

the covering space corresponding to Ker�j . Note that the closed 4-manifold obtained

by identifying the boundary components of W Œ0; j � 1� is diffeomorphic to Xj;c . We

also have a Z-covering space

pcj Wp�
j

zXc ! Xj;c

for each j 2 Z>0. This corresponds to the class p�
j c 2 H 1.Xj;cI Z/ Š ŒXj;c; S

1�.
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Definition 2.4. Fix a pair .X; c/ consisting of an oriented closed 4-manifold X and a

class c 2 H3.X I Z/ satisfying Assumption 2.1. Suppose c ¤ 0. Corresponding to the

.Xj;c; p
�
j c/, we have a family of maps

¹cs
j
X;c WD csXj;c ;p�

j
cWR.Xj;c/ ! .0; 1�ºj2Z>0

: (7)

When c D 0, we set cs
j
X;c D 1 for all j .

To compare ¹cs
j
X;cºj2Z>0

with the critical values of the Chern–Simons functional

of oriented 3-manifolds, we will use the following definition.

Definition 2.5. For an oriented closed 3-manifold Y , we define

ƒY D ¹csY .a/ 2 RW a is an SU.2/-flat connection on Y º (8)

and

ƒ�
Y D ¹csY .a/ 2 ƒW a is an irreducible SU.2/-flat connection on Y º; (9)

where csY is the Chern–Simons functional of Y .

Proposition 2.6 (Proposition 1.12, 1). For any oriented connected 4-manifold, 0 ¤

c 2 H3.X I Z/ with Assumption 2.1 and j 2 Z>0,

Im cs
j
X;c � .ƒY \ .0; 1�/:

If Y is a Seifert 3-manifold, then Im cs
j
X;c � Q \ .0; 1�.

Proof of Proposition 2.6. Suppose that Y is an oriented connected codimension 1

submanifold of X with ŒY � D c. If c is not zero, then X n Y is connected. Let W0

be the compact cobordism from Y to itself given by X n Y . Then, identifying bound-

aries of W Œ0; j �, gives us Xj;c as in (2). Fix an element a 2 zR.Xj;c/ such that

cs
j
X;c.a/ � 1:

Note that W Œ�1;1� ! Xj;c is isomorphic to pcj Wp�
j

zXc ! Xj;c . Then

cs
j
X;c.a/ D �

1

8�2

Z

W Œ�1;1�

Tr.FAa ^ FAa / (10)

D csY .i
�
Y a/� csY .i

�
Y 0/ D csY .i

�
Y a/: (11)

This gives the conclusion. If Y is a Seifert 3-manifold, it is shown in [3] thatƒY � Q.

Therefore, we have Im cs
j
X;c � Q \ .0; 1�.
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Proposition 2.7. The maps cs
j
X;c are locally constant with respect to the C1-topo-

logy. In particular, for any j 2 Z>0 and a pair .X; c/ satisfying Assumption 2.1,

Im cs
j
X;c is a finite set.

Proof. Fix a closed oriented connected 3-manifold Y such that ŒY � D c 2 H3.X I Z/.

Using (11), we have cs
j
X;c.a/D csY .ajY / for any j 2 Z>0. If �t is a path of SU.2/-flat

connections, then cs
j
X;c.�t / D csY .�t jY / D csY .�0jY / since csY is locally constant.

By compactness of R.Xj;c/, Im cs
j
X;c is a finite set.

The following gives us a sufficient condition for triviality of ¹cs
j
X;cºj2Z>0

.

Proposition 2.8. If X is connected and �1.Xj;c/ is isomorphic to Zl or free for j 2

Z>0, then

Im cs
j
X;c D ¹1º:

In particular, Im csS1�S3;c D Im csT 4;c D Im csT 2�S2;c D Im cs#mS1�S3;c D ¹1º for

any class c and m 2 Z>0.

Proof. Since

R.Xj;c/ D Hom.�1.Xj;c/; SU.2//= SU.2/;

if �1.Xj;c/ is isomorphic to Zl or free, thenR.Xj;c/ is connected. By Proposition 2.7,

cs
j
X;c.a/ D cs

j
X;c.0/ D 0.

The 4-manifolds below give non-trivial examples of ¹cs
j
X;cº.

Example 2.9. Let Y be an oriented closed connected 3-manifold. Then

Im cs
j

Y�S1;ŒY �
D ƒY \ .0; 1�

for any j 2 Z>0. This is a consequence of (11).

Lemma 2.10. For any positive integer m,

Im cs
j
X;c � Im cs

mj
X;c

for any j;m 2 Z>0.

Proof. Note that Xmj;c is the total space of a Z=mZ covering space pm;j WXmj;c !

Xj;c . Choose � 2 zR�.Xj;c/ such that cs
j
X;c.�/ < 1. We put �0 WD p�

m;j�. Then, one

can check that

csXj;c ;c.�/ D cs.mj /cX;p�
j
c.�

0/:

This completes the proof.
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Although there are many non-trivial examples of cs
j
X;c , we could not find the

example of a pair .X; c/ whose cs
j
X;c is not constant with respect to j .

Question 2.11. Is there a 4-manifoldX with a class c2H3.X IZ/ such that ¹Im cs
j
X;cº

is not constant with respect to j ?

The following tell us that non-triviality of Im cs
j
X;c implies the existence of irre-

ducible SU.2/-representations of �1.Xj;c/.

Lemma 2.12. There exist 2#.Im cs
j
X;c \.0; 1// irreducible SU.2/-representations of

�1.Xj;c/.

Proof. The subspace of reducible SU.2/-representations is connected. Thus, for a

reducible representation �, one has cs
j
X;c.�/ D 1 by Proposition 2.7. Therefore,

for every element r 2 Im cs
j
X;c \.0; 1/, we have an irreducible representation

�W�1.Xj;c/! SU.2/ such that cs
j
X;c.�/D r . Fix an oriented connected 3-manifold Y

representing the class c 2H3.X IZ/. As in the construction above, we can reconstruct

Xj;c by gluing

W Œ0; j � 1� WD W0 [Y W1 [Y � � � [Y Wj�1

along the boundaries. We regard � as an irreducible connection Q� onW Œ0; j � 1�. The

restrictions of Q� on the boundaries Y C
0 and Y �

j of W Œ0; j � are isomorphic. Moreover,

by the definition of cs
j
X;c , we have equalities

cs
j
X;c.�/ D csY . Q�j

Y
C
0

/ D � csY . Q�jY�
j
/ 2 .0; 1/:

This implies that Q�j
Y

C
0

is an irreducible connection on Y C
0 .

There is a sign ambiguity when gluing Q� along Y C
0 [ Y C

j . We denote the two

resulting glued connections by �C and ��. One of �C and �� is isomorphic to �. We

see that �C and �� are not gauge equivalent: suppose there is a gauge transformation

g on Xj;c such that g��C D ��. Then by restricting g��C and �� to W Œ0; j � 1�, we

obtain

g� Q� D g��CjW Œ0;j�1� D ��jW Œ0;j�1� D Q�:

Since Q� is irreducible, we conclude that g D ˙1. We take a based loop l � Xj;c such

that l � ŒY � D 1. Then the holonomies of the connections �Cjl and ��jl obtained by

the pull-back satisfy

Hol�Cjl D � Hol��jl 2 SU.2/

by construction of the �˙. This contradicts the assumption that �C D g��C D ��.

This completes the proof.
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2.2. Holonomy perturbations

Our main tool of this paper is instanton Floer theory. We refer the reader to [15,

17] for the construction of instanton Floer homology. In instanton Floer theory, we

consider perturbations of the Chern–Simons functional. First, we review the set P .Y /

of perturbations used in ordinary Floer theory. Let Fd be the set of d embeddings of

S1 � D2 into Y for d 2 Z>0. Fix m � 2, we denote by Cmad .SU.2/;R/ the set of

adjoint invariant real valued Cm-functions. The set of perturbations is

P .Y / WD
[

d2Z>0

Fd � Cmad .SU.2/;R/d :

In this paper, we treat a slightly larger class P �.Y / of perturbations than P .Y /. The

class P �.Y / was used in [42] to calculate the instanton homologies of Seifert homo-

logy 3-spheres.

Definition 2.13. We define the set of perturbations7 by

P �.Y / WD
[

d2Z>0

Fd � Cmad .SU.2/;R/d � Cm.Rd ;R/:

We fix a volume form d� onD2 such that supp d�� intD2 and
R

D2 d�D 1. For

a triple � D .f; h; q/ 2 P �.Y /, we define the perturbed Chern–Simons functional by

csY;� D csY Ch� W zB�.Y / ! R;

where

• zB�.Y / is the quotient set

.A�.Y / WD ¹irreducible SU.2/-connections on Y � SU.2/º/=Map0.Y; SU.2//;

where Map0.Y; SU.2// is the set of smooth maps whose mapping degrees are

zero,

• csY is the Chern–Simons functional given by

csY .a/ WD �
1

8�2

Z

Y

Tr
�

a ^ daC
2

3
a ^ a ^ a

�

7We regard P .Y / as a subset of P �.Y / via

.f; h/ 7!
�

f; h; .xi /1�i�d 7!
X

1�i�d

xi

�

:
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• and

h� .a/ WD q

�� Z

x2D2

hi Holfi .s;x/.a/

�

1�i�d

�

:

We often use an L2
k

-completion and a Banach manifold structure on zB�.Y / for a

fixed k > 2. Note that the map csY;� descends to a map

csY;� W B�.Y / WD A�.Y /=Map.Y; SU.2// ! R=Z:

We now write down the formal gradient vector field of csY;� . Fix a Riemann metric

gY on Y . Then, identifying su.2/ with its dual by the Killing form, we can regard

the derivative h0
i as a map h0

i W SU.2/ ! su.2/. The holonomy of the loops ¹fi .s; x/W

s 2 S1º gives us a section Holfi .s;x/.a/ of the bundle AutPY over Imfi . The bundle

map induced by h0
i W Aut PY ! ad PY , then gives us a section h0

i .Holfi .s;x/.a// of

adPY over Im fi . We now describe the gradient-flow equation of csY;� with respect

to the L2-metric:

@

@t
at D � gradat csY;�

D �gY

�

F.at /C

m
X

iD1

@iq.hi .Hol.at /fi .s;x///1�i�m
h0
i .Hol.at /fi .s;x//.fi/�pr�

2d�
�

;

(12)

where pr2 is the projection pr2WS
1 �D2 ! D2 and �gY is the Hodge star operator

with respect to gY . (For the calculation of the gradient, see [5].) We denote pr�
2 d�

by �. We set
zR.Y /� WD ¹a 2 zB.Y /W grada csY;� D 0º;

and
zR�.Y /� WD zR.Y /� \ zB�.Y /:

When we consider a smooth manifold structure on zR�.Y /� , we use an L2
k

-topology8

for some k > 2. The solutions of (12) correspond to connectionsA over Y � R which

satisfy the equation

FC.A/C �.A/C D 0; (13)

where

8These topologies on R�.Y /� do not depend on the choice of k > 2 if � is a smooth

perturbation.
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• the 2-form �.A/ is given by

m
X

iD1

@iq.hi .Hol.at /fi .t;x;s///1�i�m
h0
i .Hol.A/ Qfi .t;x;s/

/˝ . Qfi /�.pr�
1 �/;

• the map pr1 is the projection map from .S1 �D2/ � R to S1 �D2,

• FC.A/ D 1
2
.1C �F.A// where � is the Hodge star operator with respect to the

product metric on Y � R, and similarly for �.A/C, and

• Qfi WS
1 �D2 � R ! Y � R is the embedding given by fi � id for each i .

We define k�k D k.f; h; q/k WD kq ı hkCm . We also define non-degenerate and

regular perturbations for elements in P �.Y / in the same way as in the case of P .Y /.

(See [44] for further details.) For an oriented homology 3-sphere Y and a fixed metric

gY on Y , there exist a positive integer d , a collection of embeddings f 2 Fd and a

Baire subset Q of Cmad .SU.2/;R/d � Cm.Rd ;R/ such that .f; u/ is non-degenerate

and regular for u 2 Q.

For a 4-manifold W with cylindrical ends, we also use a large class of perturba-

tions. Let Fd .W / be the set of d embeddings from S1 �D3 to W for any d 2 Z>0.

Fix a volume form d� onD3 such that supp d� � intD3 and
R

D3 d� D 1. We define

P �.W / WD
[

d2Z>0

Fd .W / � Cmad .SU.2/;R/d � Cm.Rd ;R/:

For � D .g; h; q/ 2 P �.W /, we have the perturbed ASD equation with respect to �

defined by

FC.A/C
�

m
X

iD1

@iq.hi .Hol.at /fi .t;x;s///
dhi Holgi .t;x/.A/˝ .gi/� pr�

2 d�
�C

D 0;

(14)

where pr2 is the projection pr2WS
1 �D3 ! D3. We will often write the part

m
X

iD1

@iq.hi .Hol.at /fi .t;x;s///
dhi Holgi .t;x/.A/˝ .gi/� pr�

2 d�

by �.A/.

2.3. Moduli spaces of perturbed ASD equations

In this section, we review the construction of the cobordism map in instanton Floer

theory. In this paper, we only use the moduli space of solutions to ASD equations on
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manifolds of the form Y � R andW �, whereW is a negative definite cobordism from

Y to itself and W � is defined by

Y � R�0 [Y W [Y Y � R�0: (15)

We assume thatH1.W IR/D 0. Fix a regular non-degenerate perturbation�2P �.Y /.

For two irreducible critical points a, b 2 zR�.Y /� , we will define moduli spaces

MY .a; b/� and M.a;W �; �/�W .

Fix a positive integer q � 3. LetAa;b be an SU.2/-connection on Y � R satisfying

Aa;bjY�.�1;1� Dp�a andAa;bjY�Œ1;1/ Dp�b where p is the projection Y � R ! Y .

We then define

MY .a; b/� WD ¹Aa;b C cW c 2 �1.Y � R/˝ su.2/L2q satisfying (13)º=G .a; b/;

(16)

where G .a; b/ is given by

G .a; b/ WD ¹g 2 Aut.PY�R/ � End.C2/L2
qC1;loc

W rAa;b .g/ 2 L2qº:

The action of G .a; b/ on ¹Aa;b C cW c 2 �1.Y � R/ ˝ su.2/L2q satisfying (13)º is

given by pull-backs of connections. The space R acts on MY .a; b/� by translation.

We denote by � the product SU.2/-connection on Y . We also have moduli spaces

MY .a; �/� defined by similar way as MY .a; b/� but we use a weighted norm to

define MY .a; �/� . (See [35].)

Next, for two irreducible critical points a, b 2 zR.Y /� , let Aa;b be an SU.2/-con-

nection onW � satisfying Aa;bjY�.�1;1� D p�a and Aa;bjY�Œ1;1/ D p�b where p is

the projection Y � R ! Y . We define

M.a;W �; b/� WD ¹Aa;b C cW c 2 �1.W �/˝ su.2/L2q satisfying (14)º=G .a; b/;

(17)

where G .a; b/ is given by the same formula as in the case of Y � R.

2.4. Invariants ¹rs.Y /ºs2Œ�1;0� and Daemi’s invariants ¹�Y .k/ºk2Z

In this section, we review of two families of .0;1�-valued homology cobordism

invariants ¹rs.Y /ºs2Œ�1;0� and ¹�Y .k/ºk2Z of homology 3-spheres. To define

¹rs.Y /ºs2Œ�1;0�, we use Z-graded filtered instanton Floer homology whose filtration

comes from the Chern–Simons functional. On the other hand, Daemi used

Z=8Z-graded instanton homology with some local coefficient coming from Chern–

Simons functional to define ¹�Y .k/ºk2Z. For more details on ¹rs.Y /º and ¹�Y .k/º,

see [11, 35].
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2.4.1. Invariants ¹rs.Y /ºs2Œ�1;0�. For an oriented homology 3-sphere Y , we review

the definition of ¹rs.Y /ºs2Œ�1;0�. This invariant was defined in [35] to analyze the

structure of the homology cobordism group of homology 3-spheres. For r and s in

Œ�1;1/ satisfying �1 � s � 0 � r < 1 such that r is a regular value of csY , we

have a filtered instanton Floer cohomology I 1
Œs;r�

.Y /. In this paper, we use the class of

perturbations P �.Y / instead of P .Y / used in [35].

Definition 2.14. Let Y be an oriented homology 3-sphere and gY be a Riemannian

metric on Y . For " > 0, we define a class of perturbations P �
" .Y; g/ as a subset of

P �.Y / consisting of elements which satisfy

(1) jh�.a/j < " for all a 2 zB.Y / and

(2) k gradg h� .a/kL4 <
"
2
; k gradg h�.a/kL2 <

"
2

for all a 2 zB.Y /.

We choose a suitable small " by the following argument. Let ¹R˛º be the connec-

ted components of R�.Y /. Let U˛ be a neighborhood of R˛ in B.Y / with respect to

the C1-topology such that U˛ \ Uˇ D ; if ˛ ¤ ˇ and ¹U˛º is a covering of R�.Y /.

We take all lifts of U˛ with respect to

prW zBY ! BY :

Since Map.Y; SU.2//=Map0.Y; SU.2// is isomorphic to Z, we denote all lifts by

¹U i˛ºi2Z. In addition, we assume the following conditions on U i˛ .

• If a 2 U i˛ , then j cs.a/ � cs.R˛/j < min¹d.r;ƒY /
8

; d.s;ƒY /
8

º, where d.r; ƒY / is

given by

d.r;ƒY / WD min¹jr � aj 2 R>0W a 2 ƒY º:

• U i˛ has no reducible connections.

Note that, for any element � 2 zR.Y /, we have unique ˛ and i 2 Z such that � 2 U i˛.

By the Uhlenbeck compactness theorem, we can take a sufficiently small real

number "1.Y; g; ¹U˛º/ > 0 satisfying the following condition:

�

.a 2 B�.Y / and kF.a/kL2 � "1.Y; g; ¹U˛º/
�

H) a 2 U˛ for some ˛: (18)

Definition 2.15. Now, we take the supremum value

"1.Y; g; r; s/ WD
1

2
sup
¹U˛º

"1.Y; g; ¹U˛º/;

where ¹U˛º runs over all coverings of ¹R˛º given as above method. We define

".Y; r; s; g/ WD

8

ˆ

<

ˆ

:

min
°

"1.Y; g/;
d.s;ƒY /

8
;
d.r;ƒY /

8
;
�Y

32

±

if s 2 RY ,

min
°

"1.Y; g/;
d.r;ƒY /

8
;
�Y

32

±

if s 2 ƒY ;
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where �Y WD min¹ja � bjW a; b 2 ƒY with a ¤ bº. We then define

P �.Y; g; r; s/ WD P �
".Y;g;r;s/.Y; g/:

We also use the notation �Y WD min¹ja � bjW a; b 2 ƒY with a ¤ bº. Then we

define a class of perturbations which we will use later. For a non-degenerate perturb-

ation � 2 P �.Y /, we consider a map

indW zR.Y /� ! Z (19)

called the Floer index in order to construct Z-gradings on Floer’s chain complexes.

Fix two elements r; s 2 Œ�1;1/ satisfying �1 � s � 0 � r <1 and r 2ƒ�
Y . For a

metric g on Y , a non-degenerate regular perturbation � 2 P .Y; r; s; g/, the (co)chains

of the filtered instanton Floer (co)homologies are defined by

CI
Œs;r�
i .Y; �/

WD

8

ˆ

<

ˆ

:

Z
°

Œa� 2 zR�.Y /� W ind.a/ D i; s < csY;�.a/ < r
±

if s 2 RY ,

Z
°

Œa� 2 zR�.Y /� W ind.a/ D i; s �
�Y

2
< csY;�.a/ < r

±

if s 2 ƒY ,

and

CIiŒs;r�.Y; �/ WD Hom.CI
Œs;r�
i .Y; �/;Z/;

where �Y WD min¹ja � bjW a ¤ b; a; b 2 ƒY º. The (co)boundary maps

@Œs;r�W CI
Œs;r�
i .Y; �/ ! CI

Œs;r�
i�1 .Y; �/ .resp. ır W CIiŒs;r�.Y / ! CIiC1

Œs;r�
.Y //

are given by the restriction of Floer’s usual differential

@.a/ WD
X

b2 zR�.Y /� W ind.b/Di�1

#.MY .a; b/�=R/b

(resp. ıŒs;r� WD .@Œs;r�/�). For further details of @, see [15, Section 5.2].

There is a cohomology class �
Œs;r�
Y 2 I 1

Œs;r�
.Y / defined by

�
Œs;r�
Y .Œa�/ WD #.MY .a; �/�=R/: (20)

As in the discussion in [15, Section 3.3.1], one can see that I
Œs;r�
� .Y / and �

Œs;r�
Y 2

I 1
Œs;r�

.Y / do not depend on the choice of � 2 P �.Y; g; r; s/. Therefore, I
Œs;r�
� .Y / and

�
Œs;r�
Y 2 I 1

Œs;r�
.Y / are equivalent to the original definitions in [35].

Definition 2.16 ([35, Definition 3.1]). We define

rs.Y / WD sup¹r 2 R�0W 0 D �
Œs;r�
Y 2 I 1Œs;r�.Y /º:
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In this paper, we will use the following property of the class �
Œs;r�
Y . Let W be a

negative definite cobordism such that @W D Y0 [ .�Y1/ satisfying H1.W I R/ D 0.

Let I.W /W I 1
Œs;r�

.Y0/ ! I 1
Œs;r�

.Y1/ be the cobordism map introduced in [35].

Proposition 2.17 ([35, Lemma 2.12]). Suppose that H�.W I R/ Š H�.S
3I R/. For

two real numbers r; s 2 R satisfying s � 0 � r and r is regular value of csY ,

I.W /.�
Œs;r�
Y1

/ D c.W /�
Œs;r�
Y0

;

where c.W / D #H1.W I Z/.

Theorem 2.18 ([35, Theorem 1.1]). The invariants ¹rs.Y /ºs2Œ�1;0� satisfy the fol-

lowing conditions.

• For s, s1, s2 2 Œ�1; 0� with s D s1 C s2,

rs.Y1#Y2/ � min¹rs1.Y1/C s2; rs2.Y2/C s1º (21)

holds.

• If there exists a negative definite cobordism W with @W D Y1 q �Y2, then the

inequality

rs.Y2/ � rs.Y1/ (22)

holds for any s 2 Œ�1; 0�.

2.4.2. Daemi’s invariants ¹�Y .k/ºk2Z. Let ƒ be the Novikov ring

ƒ WD
°

1
X

iD1

ai�
ri W ai 2 Q; ri 2 R; lim

i!1
ri D 1

±

;

where � is a formal variable. We have an evaluating function mdegWƒ ! R defined

by

mdeg
�

1
X

iD1

ai�
ri

�

WD min
i2Z>0

¹ri W ai ¤ 0º:

Fix a non-degenerate regular perturbation � and orientations of the determinant line

bundles La in [35, Section 2]. Note that the Floer index (19) descends to a map

indWR.Y /� ! Z=8Z:

Then define a Z=8Z-graded chain complex Cƒ� .Y / overƒ by

Cƒi .Y / WD Ci .Y /˝ƒ D ƒ¹Œa� 2 R�.Y /� W ind.a/ D i mod 8º
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with the differential

dƒ.Œa�/ WD
X

ind.a/�ind.b/�1.mod 8/

A2MY .Œa�;Œb�/�

#.MY .Œa�; Œb�/�=R/ � �E.A/Œb�;

where ind is the function (19),

E.A/ WD
1

8�2

Z

Y�R

Tr..F.A/C �.A// ^ .F.A/C �.A///

andMY .Œa�; Œb�/� denotesMY .a; b/� for some representatives a and b of Œa� and Œb�

satisfying ind.a/� ind.b/ D 1. Extend the function mdeg to Cƒ� by

mdeg
�

X

1�k�n

�k Œak�
�

D min
1�k�n

¹mdeg.�k/º:

In addition, we define two maps:

i. The map D1WC
ƒ
1 .Y / ! ƒ is given by

D1.Œa�/ D .#MY .Œa�; Œ� �/�=R/ � �E.A/;

where A 2 MY .Œa�; Œ� �/� and MY .Œa�; Œ� �/� denotesMY .a; � i/� for some

lifts a and � i of Œa� and Œ� � satisfying ind.a/� ind.� i/ D 1.

ii. The map U WCƒ� .Y / ! Cƒ��4.Y / is defined by

U.Œa�/ WD
X

Œb�2 zR.Y /�
ind.Œb�/�ind.Œa�/D4

�
1

2
#N.a; b/Œb� � �E.A/;

where the space N Y .a; b/ is the codimension 4-submanifold of MY .a; b/

given by

N.a; b/ WD ¹ŒA� 2 MY .a; b/W s1.r.ŒA�// and

s2.r.ŒA�// are linearly dependentº

and A is an element inN.a;b/. Here r WMY .a; b/! B�.Y � .�1;1// is the

restriction map and s1 and s2 are generic sections of the bundle E ˝ C !

B�.Y � .�1; 1//. The SO.3/-bundle E is given by a basepoint fibration of

B�.Y � .�1; 1//.

Now, in our conventions, ��Y .k/ is given by

��Y .k/ D lim
j�j!0

inf
˛2Cƒ� .Y /;d

ƒ.˛/D0

D1U
j .˛/D0.1�j<k�1/

D1U
k�1.˛/¤0

¹mdeg.D1U
k.˛//� mdeg.˛/º (23)
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for k 2 Z>0. In [11], Daemi also introduced �Y .k/ for any negative k 2 Z. The

invariants ¹�Y .k/ºk2Z�0
use information of D2 and U . However, in this paper, we

only use the positive part ¹�Y .k/ºk2Z>0
.

Theorem 2.19 ([11]). The sequence of invariants ¹�Y .k/ºk2Z>0
has the following

properties:

(i) if there exists a negative definite cobordismW with @W D Y1 q �Y2, then

the inequality

�Y1.k/ � �Y2.k/ (24)

holds for any k 2 Z>0;

(ii) the invariant �Y .k/ < 1 for k 2 Z>0 if and only if k � 2h.Y /.

2.5. Relations between ¹rs.Y /º and ¹�Y .k/º

It is natural to ask if there is a relation between ¹rs.Y /ºs2Œ�1;0� and ¹�Y .k/ºk2Z>0
.

In [35], the following equality is showed.

Theorem 2.20 ([35]). For any oriented homology 3-sphere Y ,

r�1.Y / D ��Y .1/:

Therefore, ¹rs.Y /ºs2Œ�1;0� and ¹�Y .k/ºk2Z>0
satisfy the following inequalities:

r0.Y / � � � � � rs.Y / � � � � � r�1.Y / D ��Y .1/ � � � � � ��Y .k/:

It is also natural to ask if there is an oriented homology 3-sphere Y such that

¹rs.Y /º and ¹��Y .k/º do not coincide. In [35], we proved that

¹�†.2; 3; 6k C 1/#†.2; 3; 5/ºk2Z>0

gives examples whose ¹rs.Y /º and ��Y .k/ do not coincide. In this case, ¹rs.Y /º is

not a constant with respect to s. Our connected sum formula implies

r0.�†.2; 3; 6k C 1/#†.2; 3; 5// D
1

24.6k C 1/
:

On the other hand, since h.�†.2; 3; 6k C 1/#†.2; 3; 5// D 0;

�†.2;3;6kC1/#.�†.2;3;5//.1/ D 1:
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There is also an example of Y such that �Y .k/ is not constant with respect to k:

in [11], Daemi calculated

�†.2;3;5/.k/ D

8

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

:

1

120
if k D 1;

49

120
if k D 2;

1 if k � 3:

For �†.2; 3; 5/, we have rs.�†.2; 3; 5// D �†.2;3;5/.1/ for any s 2 Œ�1; 0�.

Remark 2.21. In [12], we will give a generalization JY .k; s/ of both of rs.Y / and

�Y .k/. A theorem similar to Theorem 1.8 can be proven for JY .k; s/.

3. The invariants l s
Y

, lk
Y

, and lY

3.1. Perturbations and invariants l s
Y

, lk
Y

, and lY

Let Y be an oriented homology 3-sphere and gY a Riemann metric on Y , and fix a

perturbation � 2 P �
Y . Suppose that R�

�.Y / is a submanifold of B�.Y / as the zero set

of the gradient vector field of csY;� . For any point a 2 R�
� .Y /, we have the operator

Hessa.csY;�/ D �da C Hessa h� W Kerd�
a ! Kerd�

a ;

where Ker d�
a is a model of TaB�.Y / and d�

a W�1Y ˝ su.2/ ! �0Y ˝ su.2/. Note

that

Hessa.csY;�/W Kerd�
a ! Kerd�

a

is a self adjoint elliptic operator.

Definition 3.1. We call � a Morse–Bott perturbation if

Hessa.csY;�/W .TaR.Y //
?
L2 \ Kerd�

a ! .TaR.Y //
?
L2 \ Kerd�

a (25)

is invertible for any a 2 R�
�.Y /.

If csY;� is Morse–Bott for a perturbation � with h� D 0, then we call csY Morse–

Bott. In this paper, we set

H 1
a .�/ WD Ker Hessa.csY;�/jKerd�

a
:

If h D 0, then we write H 1
a . If we use this notation, csY;� is Morse–Bott if and only

if H 1
a .�/ D TaR

�
�.Y / for each a 2 R�

�.Y /. (In general, TaR
�
�.Y / � H 1

a .�/ holds.)

Note that the condition H 1
a D TaR

�.Y / does not depend on the choice of metric.

Next, we define the notion of Morse–Bott perturbation at level r .
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Definition 3.2. We say csY;� is Morse–Bott at the level r if

Hessa.csY;�/W .TaR.Y //
?
L2 \ Kerd�

a ! .TaR.Y //
?
L2 \ Kerd�

a (26)

is invertible for any a 2 R�
�.Y / \ cs�1

Y;�.r/.

If csY is Morse–Bott at the level r , one can show csY is Morse–Bott at the level

r Cm for any m 2 Z. Set ƒY WD Im csY j zR.Y /. If 0 is a Morse–Bott perturbation for

any element r 2 ƒY , then csY is Morse–Bott.

Lemma 3.3. If the Chern–Simons functionals for Y1 and Y2 are Morse–Bott, then the

Chern–Simons functional for Y1#Y2 is also Morse–Bott.

Proof. Note that

R�.Y1#Y2/ D R�.Y1/ �R�.Y2/ � SO.3/q R�.Y1/qR�.Y2/:

There are three patterns a1 �h a2 (h 2 SO.3/), a1 � � and � � a2 of elements in

R�.Y1#Y2/, where Œa1� 2 R�.Y1/ and Œa2� 2 R�.Y2/. Suppose that

H 1
Œa1�
.Y1/ D TŒa1�R

�.Y1/ and H 1
Œa2�
.Y2/ D TŒa2�R

�.Y2/:

It is sufficient to prove

dimH 1
a#
.Y1#Y2/ D dimTa#

R�.Y1#Y2/ for any a# 2 R�.Y1#Y2/.

Fix critical points a1 2 R�.Y1/, a2 2 R�.Y2/ and a# 2 R�.Y1#Y2/. The Mayer–

Vietoris sequence of the local coefficient cohomology implies the existence of the

following exact sequence:

0 ! H 0
a1
.Y 0
1/˚H 0

a2
.Y 0
2/ ! H 0.S2/ ! H 1

a#
.Y1#Y2/ ! H 1

a1
.Y 0
1/˚H 1

a2
.Y 0
2/ ! 0

where Y 0
i is a punctured Yi for i D 1 and 2. The other sequence implies

H 0
ai
.Yi/ ! H 0

ai
.Y 0
i /˚ R3 ! H 0

� .S
2/ ! H 1

ai
.Yi / ! H 1

ai
.Y 0
i / ! 0

is also exact for i D 1 and 2. If both of ai are irreducible, then

H 1
a#
.Y1#Y2/ Š H 1

a1
.Y1/˚H 1

a2
.Y2/˚ R3:

If a1 is irreducible and a2 D � , then

H 1
a#
.Y1#Y2/ Š H 1

a1
.Y1/˚H 1

a2
.Y2/:

This proves the desired result.
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Corollary 3.4. Let Y be a finite connected sum of Seifert homology 3-spheres. Then

the Chern–Simons functional of Y is Morse–Bott.

Proof. It is shown in [16] that the Chern–Simons functional of any Seifert homology

3-sphere is Morse–Bott. Lemma 3.3 then gives the conclusion.

Here, we will introduce the invariant lY . For any Riemann metric gY on Y , there

exists a sequence of non-degenerate regular perturbations ¹�nº such that k�nk ! 0.

We define two quantities

l.Y; g/ WD min
®

sup
n2Z>0

#R�
�n
.Y /W ¹�nº is non-deg regular; k�nk ! 0

¯

2 Z�0 [ ¹1º

and

l.Y; g; r; i / WD min
®

sup
n2Z>0

#¹a 2 zR�
�n
.Y /W j cs�n.a/� r j < �Y ; ind.a/ D iºW

¹�nº is non-deg regular; k�nk ! 0
¯

2 Z�0 [ ¹1º

for a given r 2 ƒY , where �Y D 1
2

min¹ja � bjWa; b 2 ƒY º. We now give two invari-

ants for homology 3-spheres.

Definition 3.5. We define invariants lY and lY;r;i by

lY WD min¹l.Y; gY /W gY is a Riemann metricº 2 Z>0 [ ¹1º

and

lY;r;i WD min¹l.Y; gY ; r; i /W gY is a Riemann metricº 2 Z>0 [ ¹1º

for given r 2 ƒ�
Y and i 2 Z.

Note that lY D l�Y and lY;r;i D l�Y;�r;�i�3 by definition. We combine lY;r;i , rs.Y /

and �Y .k/ and define lsY and lkY .

Definition 3.6. We set

lsY WD

´

1 if rs.Y / D 1;

lY;rs.Y /;1 if rs.Y / < 1;

and

lkY WD

8

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

:

1 if �Y .k/ D 1;
X

m2Z

lY;�Y .k/;1C8m if �Y .k/ < 1 and k 2 2Z C 1;

X

m2Z

lY;�Y .k/;5C8m if �Y .k/ < 1 and k 2 2Z;

for s 2 Œ�1; 0� and k 2 Z>0.
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Lemma 3.7. For any homology 3-sphere Y , lsY � 1 and lkY � 1.

Proof. Suppose r D rs.Y / < 1 for s 2 Œ�1; 0�. By the definition of rs.Y /, for a

sequence ¹rnºn2Z>0
such that rn > r , limn!1 rn D r and rn 2 R n ƒY , we have

0¤ �
Œs;rn�
Y 2 I 1

Œs;rn�
.Y /. If r 0 < r , then 0D �

Œs;r 0�
Y 2 I 1

Œs;r 0�
.Y /. Then, for any Riemann

metric gY on Y and any sequence of perturbations ¹�nºn2Z>0
with k�nk ! 0, there

is a sequence ¹cnºn2Z>0
of critical points of csY;�n such that MY .cn; �/�n ¤ ;,

ind.cn/ D 1 for all n and

lim
n!1

csY .cn/ D rs.Y /:

Therefore, lsY � 1. Next we see lkY � 1. Suppose r D�Y .k/ <1 for k 2 Z>0. Suppose

that k is odd and lkY D 0. The assumption lkY D 0 implies that there exist a Riemann

metric gY on Y and a sequence of perturbations ¹�nºn2Z>0
with k�nk ! 0 such that

; D
[

m2Z

¹a 2 zR�
�n
.Y /W j cs�n.a/� �Y .k/j < �Y ; ind.a/ D 1C 8mº: (27)

Then, for g and ¹�nºn2Z>0
,

�Y .k/ D lim
n!1

inf
˛2Cƒ� .Y;�n/;d

ƒ.˛/D0

D1U
j .˛/D0.1�j<k�1/

D1U
k�1.˛/¤0

¹mdeg.D1U
k.˛//� mdeg.˛/º:

This implies there is a sequence ¹˛nºn2Z>0
of elements in Cƒ1 .Y; �n/ such that

lim
n!1

�

mdeg.D1U
k.˛n// � mdeg.˛n/

�

D �Y .k/: (28)

We write ˛n D
P

i2Z>0
qni Œc

n
i ��

sn
i , where qni 2 Q, Œcni � 2 R�.Y /�n and sni 2 R with

limi!1 sni D 1. Then, by taking suitable lift cnin of Œcnin � for each n, (28) implies

lim
n!1

csY .c
n
in
/ D �Y .k/:

This contradicts (27). The proof for k 2 2Z is the same.

The following proposition provides a relation between lY and lY;r;i :

Proposition 3.8. We write ¹a1; : : : ; anº D .0; 1�\ƒ�
Y . Then, we have

X

1�i�n
j2Z

lY;ai ;j D lY :

Proof. For any metric gY , there exists ">0 such that any perturbation � with k�k<",

we have
[

1�i�n

j2Z

¹a 2 zR�
� .Y /W j cs� .a/� ai j < �Y ; j D ind.a/º Š R�

�.Y /:

This implies the conclusion.
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We will see a connected sum formula of lY and lY;r;i under some assumptions in

Section 6.

3.2. Calculation of lY

In this section, we give several ways to calculate lY or lY;r;i .

Lemma 3.9 (Morse inequality for cs). For an oriented homology 3-sphere Y , the

inequality lY �
P7
iD0 Rank Ii .Y / holds.

Proof. By the definition of instanton homology, we have

#R�
�.Y / �

7
X

iD0

Rank Ii .Y /

for every non-degenerate regular perturbation. This completes the proof.

The following lemma give explicit calculations:

Lemma 3.10. For a Seifert homology 3-sphere of type †.p; q; r/,

l†.p;q;r/ D 2j�.†.p; q; r//j;

where �.Y / is the Casson invariant of Y .

Proof. For a Seifert homology 3-sphere †.p; q; r/, it is shown in [16] that cs†.p;q;r/

is non-degenerate and Floer indices of all of its critical points are even. Therefore,

�n D .;; 0; 0/ gives a sequence of non-degenerate regular perturbations. This implies

the conclusion.

We give calculations of lY for the degenerate case†.a1; : : : ; an/ in Theorem 6.5.

Lemma 3.11. For an oriented homology 3-sphere Y and r 2 ƒY ,

lY;r;i � Rank I
ŒrC�Y ;r��Y �
i .Y /

holds, where �Y D 1
2

min¹ja � bjW a; b 2 ƒY º.

Proof. Take a Riemann metric gY and a sequence ¹�nº of non-degenerate regular

perturbations such that

l.Y; g; r; i / D sup
n2Z>0

#¹a 2 zR�
�n
.Y /W j cs�n.a/� r j < �Y ; ind.a/ D iº

and k�nk ! 0. Then the chain complex of I
ŒrC�Y ;r��Y �
i .Y / is generated by the ele-

ments ¹a 2 zR�
�n
.Y /W r C �Y < cs�n.a/ < r � �Y º. By the definition of lY;r;i , we

have

l.Y; g; r; i / � Rank I
ŒrC�Y ;r��Y �
i .Y /:
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4. Some remarks for ¹cs
j

X;c
ºj 2Z>0

In this section, we give several properties of ¹cs
j
X;cºj2Z>0

including the connected

sum formula and the surgery formula.

4.1. Connected sum formula

First we show a connected sum formula for ¹cs
j
X;cºj2Z>0

. Let X1 and X2 be ori-

ented closed 4-manifolds with fixed classes c1 2 H 1.X1I Z/ and c2 2 H 1.X2I Z/.

Fix embeddings li W S
1 � D3 ! Xi with ci .li .S

1 � �// D 1. For a diffeomorphism

 W@.Im l1/! @.Im l2/, one can define a connected sumX1# X2 ofX1 andX2 along

 by

X1# X2 WD .X1 n int Im l1/[ .X2 n int Im l2/:

The class c1 determines a class c# 2H1.X1# X2I Z/. We write the j -covering space

corresponding to

�1.Xi/
Ab
�! H1.Xi I Z/ ! Z=jZ

by p
j
i W .Xi/j;c ! Xi for i D 1 and i D 2. We fix lifts Qli W S

1 � D3 ! .Xi/j;c of

li WS
1 �D3 ! Xi for i D 1, 2.

Proposition 4.1 (connected sum formula). Im csX1;c1 [ Im csX2;c2 � Im csX1# X2;c#
:

Proof. Choose � 2 zR�..X1/j;c1/ such that cs
j
X1;c1

.�/< 1. We can see that jc#
X1# X2

is obtained by gluing of .X1/j;c1 n Im zl1 and .X2/j;c2 n Im zl2 along S1 � S2. The

restriction of � to @.Im zl1/ determines an element of Hom.Z; SU.2//=SU.2/. Then

the flat connection �j
@.Im zl1/D@.Im zl2/

can be extended whole of .X2/j;c2 n Im zl2 using

a homomorphism

�1..X2/j;c2 n Im zl2/ ! H1..X2/j;c2 n Im zl2I Z/ ! Z � SU.2/:

We denote this extension of �j
@.Im zl1/D@.Im zl2/

by Q�. By construction, we have

cs
j
X1;c1

.�/ D cs
j
X1# X2;c#

. Q�/:

This completes the proof.

4.2. Mapping tori

Let Xh.Y / be the mapping torus of a fixed orientation preserving diffeomorphism

hW Y ! Y on an oriented 3-manifold Y and P D Y � SU.2/. The map h gives an

action h�WR�.Y / ! R�.Y /. We put

Rh.Y / WD ¹� 2 R�.Y /W h�� D �º:
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For the mapping torus, we have a convenient formula for csX;Œc�.

Proposition 4.2. Suppose c D ŒY � 2 H3.Xh.Y /I Z/. Then

Im cs
j

Xh.Y /;ŒY �
D Im csX

hj
.Y /;ŒY � D ¹csY .a/ 2 .0; 1�W a 2 R.h

j /.Y /º

holds for any j 2 Z>0.

Proof. In [39], it is shown that the inclusion i W Y ! Xh.Y / induces a two-to-one

correspondence

i�WR�.Xh.Y // ! Rh.Y /: (29)

We have the following commutative diagram:

R�.Xh.Y // .0; 1�

Rh.Y / .0; 1�

csXh.Y /;ŒY �

i�
Y Id

csY

This completes the proof.

4.3. Surgery along S 1 � D3

In order to prove Theorem 1.11, we need a surgery formula for cs
j
X;c . Let X be a

closed connected oriented 4-manifold with 0¤ c 2H3.X IZ/ and 0¤ d 2H1.X IZ/

satisfying c � d D 0. Let l WS1 �D3 ! X be an embedding such that Œl jS1�¹0º� D d

and Y be a closed connected oriented 3-submanifold of X such that ŒY � D c and

Y \ l D ;. We define the 4-manifold Xl obtained by surgery along l by

Xl WD X n int.Im l/[S1�S2 D
2 � S2: (30)

We have two inclusion maps i1WX n Im l ! X and i2WX n Im l ! Xl . Set c0 WD

i�1 .PD.c// 2 H 1.X n Im l; Z/. Then we can take 0 ¤ c� 2 H 1.Xl I Z/ such that

i�2 .c
0/ D c�.

Proposition 4.3. For any j 2 Z>0

Im cs
j
Xl ;c

� � Im cs
j
X;c :

Proof. Suppose that � 2 zR�..Xl/j;c�/ such that cs
j
Xl ;c

�.�/ < 1. Note that .Xl/j;c� has

a decomposition

W Œ0; j � 1� D W0 [Y W1 [Y � � � [Y Wj�1;
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whereWi is a copy ofW0 D Xl n Y . Since Y and Im l are disjoint, Wi can be written

as
�

Xl n .Y [D2 � S2/
�

[D2 � S2:

We denote by V0 � W0 the submanifold corresponding to D2 � S2. We define

W�Œ0; j � 1� WD .W0 n intV0/ [Y .W1 n intV1/ [Y � � � [Y .Wj n intVj /;

where .Wi ; Vi / is a copy of .W0; V0/ for i 2 Z>0. The flat connection � determines

flat connections �j and �
j
� on W Œ0; j � 1� and W�Œ0; j � 1� via pull-back. Note that,

by identifying the boundaries ofW0 n intV0 [S1�S2 S
1 �D3, we recoverX . Here we

see that the flat connection �
j
�jW0nintV0 extends to a flat connectionW0 n intV0 [S1�S2

S1 � D3. To see this, we consider the restriction .�
j
�/j@.V0/DS1�S2 . Since the flat

connection .�
j
�/j@.V0/ extends to V0, the holonomies for all loops in @V0 DS1 �S2 are

zero. Thus, .�
j
�/j@.V0/DS1�S2 is isomorphic to trivial flat connection. This fact allows

us to extend the flat connection �
j
�jW0nintV0 to a flat connection onW0 n intV0 [S1�S2

S1 �D3 trivially. Therefore, the connection �
j
� extends to a connection on

.W0 n intV0 [S1�S2 S
1 �D3/ [Y � � � [Y .Wj n intVj [S1�S2 S

1 �D3/: (31)

Identifying the boundaries of (31) gives a construction of Xj;c . Therefore, the exten-

sion on (31) gives a connection �0
j on Xj;c. By the construction of �0

j , we conclude

cs
j
X;c.�

0/ D csXl ;c�.�/:

This completes the proof.

4.4. Calculations

We give explicit calculations for several mapping tori of Seifert manifolds. Regarding

†.p; q; r/ as ¹.x; y; z/ 2 C3W xp C yq C zr D 0º \ S5, we define

� W†.p; q; r/ ! †.p; q; r/;

�W†.p; q; r/ ! †.p; q; r/

by

� W .x; y; z/ 7! .x; y; e
2�i
r z/; (32)

�W .x; y; z/ 7! . Nx; Ny; Nz/: (33)

This gives the following calculations:
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Proposition 4.4. Let .p; q; r/ be a relatively prime triple of positive integers. For any

j 2 Z>0,

Im csX� .†.p;q;r//;Œ†.p;q;r/� D ƒ†.p;q;r/ \ .0; 1�;

Im csX�.†.p;q;r//;Œ†.p;q;r/� D ƒ†.p;q;r/ \ .0; 1�:

Proof. By applying Proposition 4.2, we have

Im csX
�j
;ŒY � D ¹cs.a/ 2 .0; 1�W a 2 R�.Y /.� j /�a D aº D ƒY \ .0; 1�:

It is shown in [10, 43] that

��WR�.†.p; q; r// ! R�.†.p; q; r//

and

��WR�.†.p; q; r// ! R�.†.p; q; r//

are equal to the identity. This completes the proof.

This property of ��WR�.†.p;q; r//!R�.†.p;q; r// is shown for any homology

3-sphere of type †.a1; : : : ; an/. Therefore, Proposition 4.4 can be proved for such

Seifert homology 3-spheres.

5. Invariants of 2-knots

In this section, by the use of csX;c , we will introduce an invariant of oriented 2-knots.

5.1. Invariants ¹csK;j ºj 2Z>0

Let K be an oriented 2-knot in S4. It is known that the normal bundle �K of K is

always trivial. Moreover, trivializations of �K are unique up to isotopy. Therefore,

we fix such a tubular neighborhood �K W S2 � D2 ! S4. Then we have an oriented

homology S1 � S3 defined by

X.K/ WD D3 � S1 [�K S
4 n �K :

Note that an orientation of S4 gives an orientation of X.K/. If we have a Seifert

hypersurface YK of K, then we can regard YK as a generator of H3.X.K/I Z/ by the

following discussion. First we regard YK n B."/ as a submanifold in S4 n �K . Then

we cap off YK n B3 in X.F /. The orientation of K determines a generator Œ1K� of

H3.X.K/I Z/ such that Œ� � S1� � ŒYK � D 1. Note that the class ŒYK� 2 H3.X.K/I Z/
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satisfies Assumption 2.1. The class Œ1K� gives an isomorphism class of Z-covering

space

pK W zX.K/ ! X.K/: (34)

We denote by .X.K//j;1K the total space of the Z=jZ covering space corresponding

to the kernel of the composite homomorphism�1.X.K//! Z ! Z=jZ for j 2 Z>0.

The map (34) gives a covering map

p
j
K W zX.K/ ! .X.K//j;1K

for each j 2 Z>0.

Definition 5.1. For an oriented knotK and j 2 Z>0, we define

csK;j WD cs
j

X.K/;1K
WR.X.K/j;1K/ ! .0; 1�:

Example 5.2. For the unknot U , X.K/ Š S1 � S3. Therefore, Im csU;j D ¹1º for

any j 2 Z.

The lemma below is an easy consequence of Van Kampen’s theorem.

Lemma 5.3. For any 2-knotK,

�1.S
4 nK/ Š �1.X.K//:

Moreover, Ker j Š Ker�j , where  j and  j are introduced in (1) and (6). In par-

ticular, Gj .K/ Š �1.X.K/j;1K/.

Via Lemma 5.3, we regard csK;j as maps fromR.K;j / to .0; 1�. When j D 1, we

write csK instead of csK;1. By Lemma 2.3, we see that Im csK;j is an isotopy invariant

for each j 2 Z>0. If we have a Seifert hypersurface Y , then we have the following

formula:

Proposition 5.4 (Proposition 1.2 (1)). For any oriented 2-knotK and j 2 Z>0,

Im csK;j � .0; 1�\ƒY ;

where ƒY D Im cs j zR.Y /.

Proof. This is an immediate corollary of Proposition 2.6.

Lemma 5.5 (Proposition 1.2 (3)). For any positive integerm,

Im csK;j � Im csK;mj

for any j 2 Z>0.
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Proof. This is a corollary of Lemma 2.10.

Remark 5.6. We can generalise ¹csK;j ºj2Z>0
to functionals ¹cs.K;X/;j ºj2Z>0

for

any 2-knot K embedded into any closed oriented 4-manifold X with 0 D ŒK� 2

H2.X I Z/. Moreover, Proposition 5.4 and Lemma 5.5 hold for ¹csK;j ºj2Z>0
.

5.2. Connected sum formula

Let K1 andK2 be 2-knots. We denote by K1#K2 the connected sum of K1 andK2.

Proposition 5.7 (Proposition 1.2 (2)). Im csK1;j [ Im csK2;j � Im csK1#K2;j .

Proof. Since X.K1#K2/j;1K1#K2
is obtained the connected sum of X.K1/j;1K1 and

X.K2/j;1K2 along some embeddedS1 �D3, this is also a corollary of Proposition 4.1.

5.3. Calculation for csK;j

First, we give simplest examples.

Proposition 5.8. For any ribbon 2-knotK, Im csK;j D ¹1º holds.

Proof. In [46], it is shown that the ribbon 2-knots have the finite connected sums

of S1 � S2’s as Seifert hypersurfaces. By Proposition 5.4, Im csK;j 2 .0; 1� \ ƒY

for any j 2 Z>0. If Y is a finite connected sum of S1 � S2’s, then the space of

SU.2/-representation of Y is connected. This implies ƒY D Z. This completes the

proof.

Next, we give non-trivial calculations for twisted spun knots. Let k be an ori-

ented knot in S3. We denote by K.k; m/ the m-twisted spun knot of k. In [49],

Zeeman showedm-fold branched covering space †m.k/ gives a Seifert hypersurface

of K.k;m/. When m ¤ 0, K.k;m/ is a fibered 2-knot with fiber †m.k/. Moreover,

the monodromy is given by the covering transformation of †m.k/. Now, we give a

proof of Proposition 1.4.

Proposition 5.9 (Proposition 1.4). Let T .p; q/ be the .p; q/-torus knot and let

M.p;q; r/ be the Montesinos knot of type .p; q; r/ for a pairwise relative prime tuple

.p; q; r/ of positive integers. Let k.p=q/ be a 2-bridge knot such that †2.k.p=q// D

L.p; q/, where †2.k/ is the double branched cover of k � S3.

(1) For any m 2 Z>0 and j 2 Z>0,

Im cs
j

K.T .p;q/;m/
D Im cs†.p;q;m/;

whereK.k;m/ is the m-twisted spun knot of the knot k.
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(2) For any j 2 Z>0,

Im cs
j

K.M.p;q;r/;2/
D Im cs†.p;q;r/ :

(3) Here we also suppose that p is odd and satisfies the condition:

°

s 2 ¹2; : : : ; p � 2ºW
s2 � 1

p
2 Z

±

D ;:

For any j 2 Z>0,

Im cs
j

K.k.p=q/;2/
D

°

�
n2r

p
mod 1W 1 � n �

lp

2

m±

[ ¹1º;

where r is any integer satisfying qr � �1 modp.

Proof of Proposition 1.4. It is known that the m-fold branched cover of T .p; q/

(resp. the double branched cover of M.p; q; r/) is †.p; q; m/ (resp. †.p; q; r/),

see [6]. Moreover, the covering transformations are given by � and � in (32) and (33).

As mentioned in the proof of Proposition 4.4, � and � induce bijection between

R�.†.p; q; m/ n B/ and R�.†.p; q; r/ n B/, where B are small open balls. On the

other hand, ifm> 0,K.T .p;q/;m/ is a fibered knot whose fiber is†.p;q;m/ and the

monodromy is given by � . Similarly, K.M.p; q; r/; 2/ is also a fibered knot whose

fiber is †.p; q; r/ and the monodromy is given by �. Next, we prove the statement

for a rational knot. It is known that the double branched cover of k.p=q/ is given by

L.p; q/. The condition

°

s 2 ¹2; : : : ; p � 2ºW
s2 � 1

p
2 Z

±

D ;:

implies that every order 2-diffeomorphism on L.p; q/ n B induces maps Id or  p�1

on �1.L.p; q/ n B/ Š Z=pZ, where B are small open balls and  p�1 is given by

1 7! p � 1. Therefore, every order 2-diffeomorphism h on L.p; q/ n B satisfies

h� D 1WR�.L.p; q// ! R�.L.p; q//. In [31], Kirk and Klassen showed

°

�
n2r

p
mod 1W 1 � n �

lp

2

m±

[ ¹1º D ƒL.p;q/ \ .0; 1�;

where r is any integer satisfying qr � �1 modp. This completes the proof.

In [16], for a Seifert homology 3-sphere of type †.a1; : : : ; an/, Fintushel and

Stern gave an algorithm to computeƒY .
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6. Morse type perturbation

In this section, we will prove the following theorem:

Theorem 6.1. Let r be an element ofƒ�
Y . Suppose that the Chern–Simons functional

of Y is Morse–Bott at the level r . Then

lY;r;i < 1

for any i 2 Z. In particular, if cs is Morse–Bott, then

lY < 1:

The lemma below is key to proving Theorem 6.1. The proof uses the essentially

the same technique as in the proof of [42, Theorem 5.11] and in [4].

Lemma 6.2. Suppose that the Chern–Simons functional of Y is Morse–Bott at the

level r 2 R=Z. We set Cr WD R�.Y /\ cs�1.r/. Let gr WCr ! R be a Morse function.

Then there exists a smooth family of perturbations ¹�"º parametrized by " 2 .0; "0/

for some "0 > 0 and a small neighborhood of U of Cr such that the critical points

of cs�" jU correspond to Crit.gr/, �" is non-degenerate on U for any " 2 .0; "0/,

lim
"!0

k�"k ! 0 and supph � U . Moreover, there is an embedding

LW Crit.gr/ � Œ0; "0/ ! B�.Y /

such that Im LjCrit.gr /�¹"º coincides with the critical point set of cs�" jU and that

ImLjCrit.gr /�¹0º D Crit.gr/. Here, we consider the L2
k

-topology on B�.Y / for a fixed

k > 2.

We define a nice class of perturbations called Morse–Bott type perturbations. We

can take orientation preserving diffeomorphisms f ri WS1 �D2 ! Y (1� i �N ) such

that the smooth map  W B�.Y / ! RN defined by

 .ŒA�/ WD

�Z

D2

Tr.Hol.A/f r
i
.�;x/d�/

�

1�i�N

gives a diffeomorphism from Cr to its image ([15]). We fix a closed tubular neighbor-

hood pr WNr !  .Cr/ of  .Cr/ and a Euclidean metric on Nr . Fix a smooth bump

function �r W RN ! R such that �r .v/ D 1 if jvj < 1, �.v/ D 0 if jvj > 2 and �r

depends only on j.x; t/j, where j � j is a metric on Nr . We consider the pull-back

p�.gr ı  �1/WNr ! R.
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Definition 6.3 (Morse–Bott type perturbation). Now, we define hW B�.Y / ! R by

the composition of  WB�.Y / ! RN and the function qW RN ! R given by

qr.x/ WD

´

�r.x/gr ı  �1 ı p.x/ if x 2 Nr ;

0 if x … Nr :

We call a pair �r.g/ WD ..f ri /; .hi D Tr/; qr/ 2 P �.Y / a Morse–Bott type perturba-

tion at Cr . When csY is Morse–Bott, depending on the choice of gWR�.Y / ! R, we

can define Morse–Bott perturbations �.g/ 2 P �.Y / in the same way.

Now, we give a proof of Lemma 6.2.

Proof of Lemma 6.2. We take a Morse–Bott type perturbation �r .g/ for Cr . Put

csY;�t WD csY Cth�r .g/W B�.Y / ! R:

For a fixed element x 2 B�.Y /, we consider an essentially self-adjoint elliptic oper-

ator

Hessx.csY / D �dx W Kerd�
x \L2k.�

1
Y ˝ su.2// ! Kerd�

x \ L2k�1.�
1
Y ˝ su.2//:

The formal tangent bundle T kB�.Y / of B�.Y / is defined as the quotient bundle of

A�.Y / �
[

x2A�.Y /

�

Kerd�
x \ L2k.�

1
Y ˝ su.2//

�

by the action of G .Y /. Then, the operator Hessx.cs/ defines a bundle map

Hessx.cs/W T kB�.Y / ! T k�1B�.Y /:

We define "0 > 0 by

"0 WD min
®

j�jW� is a non-zero eigenvalue of

Hessx.cs/W Kerd�
x \ L2.�1Y ˝ su.2// ! Kerd�

x \L2.�1Y ˝ su.2//;

x 2 Cr
¯

:

We take an open neighborhood U of Cr in B�.Y / such that
°1

2
"0

±

\ ¹j�jW� is an eigenvalue of

Hessx.cs/W Kerd�
x \ L2.�1Y ˝ su.2// ! Kerd�

x \L2.�1Y ˝ su.2//;

x 2 U º D ;:

Then,

Lk0 WD
[

x2U

°

L2-eigenspaces of Hessx.cs/ whose eigenvalues � satisfy j�j <
1

2
"0

±

! U
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gives a finite rank subbundle of T kU WD T kB�.Y /jU . This gives a decomposition

T kU D Lk0 ˚ Lk1 . We have the following section:

grad1WU � .�"; "/ ! Lk�1
1 ; .c; t/ 7! prLk�1

1
gradx.csY;�t /:

For a point .c; t/ 2 U � .�"; "/ and a small neighborhood Vx; of x, by taking a

trivialization, we can regard the section grad1 as a smooth map

grad0
1WVx � .�"; "/ ! .Lk�1

1 /x :

Since csY is Morse–Bott function, d grad0
1 jVx�¹0º is surjective for x 2 Cr . Therefore,

if jt j is sufficiently small, d grad0
1 jVx�¹tº is sujective. Thus grad�1

1 .0/ is a smooth

submanifold and diffeomorphic to Cr � .�"; "/ for a small " > 0. We take such a

diffeomorphismH WCr � .�"; "/ ! grad�1
1 .0/. Then, the critical points of csY;�t can

be seen as the zero set of the following map:

grad WD grad0 ıH WCr � .�"; "/ ! Lk�1
0 :

For x 2 Cr and its neighborhood Vx in Cr , we regard grad as a smooth map

grad0 D trivialization ı grad1 ıH WVx � .�"; "/ ! .Lk�1
1 /x:

We have the following Taylor expansion of grad0 with respect to t at t D 0: for x D

.c; t/ 2 Cr � .�"; "/,

grad0.c; t/ D grad0
.c;0/ Ct

d

dt
.grad0

.c;t//jtD0 CO.t2/

D t
d

dt
.pr.L1/x gradx.csY;�t / ıH.c; t//jtD0 CO.t2/

D t
d

dt
.pr.L1/x gradx.t�r.x/gr ı  �1 ı p ı  .x/// ıH.c; t//jtD0

CO.t2/

D t pr.L1/x gradx.gr ı  �1 ı p ı  / ı dtH.c; t//CO.t2/:

Now, we have a C 2 section grad�WCr � .�"; "/ ! L1 given by

grad�.c; t/ WD

´

1=t grad0.c; t/ if t ¤ 0;

prL1 gradx.gr ı  �1 ı p ı  / ı dtH.c; t// if t D 0:

Then grad�.c; t/ is transverse when t D 0. Therefore, for t sufficiently small,

grad� jCr�¹tº is transverse. One can see that the zero set of grad�.c; 0/ corresponds

to the set

®

c 2 Cr W prL1 gradx.gr ı  �1 ı p ı  / ı dtH.c; 0/ D 0
¯

Š Crit.gr/ � Cr :
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We construct an embedding LW Crit.gr/ � Œ0; "0/ ! B�.Y /. Note that for " suffi-

ciently small, grad�W Cr � .�"; "/ ! L1 is transverse to the zero section. By the

implicit function theorem, one can see that .grad� jCr�.�";"//
�1.0/ is a compact

1-dimensional manifold. If we take " sufficiently small, then

.grad� jCr�¹0º/
�1.0/ ! .grad� jCr�.�";"//

�1.0/ ! .�"; "/

gives a fiber bundle.

Note that .grad� jCr�¹0º/
�1.0/ is a finite set and .grad� jCr�.�";"//

�1.0/ is a

union of 1-dimensional open intervals. As a trivialization of the above bundle on

Œ0; "/, we have a diffeomorphism

L0W .grad� jCr�¹0º/
�1.0/ � Œ0; "/ !

[

t2Œ0;"/

.grad� jCr�¹tº/
�1.0/:

Therefore, the set of critical points of .csCth�r .g//jU corresponds to Crit.gr/ for

small t > 0. The embedding L is given by the composition of L0 and the following

map:

[

t2Œ0;"/

.grad� jCr�¹tº/
�1.0/

inclusion
�����! Cr � Œ0; "/

prCr
���! Cr ! B�.Y /:

One can easily see that .csY Cth�r .g//jU is non-degenerate at x 2 U if and only if

grad� jU�¹tº is transverse to the zero section. Since grad� jU�¹0º is transverse to the

zero section and transversality is an open condition, grad� jU�¹tº is transverse to the

zero section for sufficiently small t > 0.

Using Lemma 6.2 and some technique of [40], we will show the following lemma:

Lemma 6.4. Suppose that the Chern–Simons functional of Y is Morse–Bott at the

level r 2ƒ�. There exists a family of perturbations �n D .f;hn; qn/ 2 P �.Y;g/ such

that k�nk ! 0, the perturbations �n are non-degenerate and regular and

sup #¹a 2 zR�
�n
.Y /W r � �Y < csY;�n.a/ < r C �Y º < 1;

where �Y D 1
2

min¹ja � bjW a; b 2 ƒ�
Y ; a ¤ bº. In particular,

X

i2Z

lY;r;i < 1:

Proof. We regard r as an element of R=Z via mapping R to R=Z. Suppose that Cr D

R�.Y /\ cs�1
Y .r/ is a submanifold in B�.Y /. We take a Morse function gr WCr ! R.

Then, by taking a Morse–Bott perturbation �r .g/, we obtain a sequence of perturba-

tion ¹�t ºt2.0;"0/ D ¹.f; h; "q/º such that

csY;�t W B�.Y / ! R=Z

satisfying the conclusion of Lemma 6.2.
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Next, we perturb the other part R�.Y / n cs�1.r/. By the argument to construct

perturbations as in [15, Section 5.5.1], one can take a sequence of perturbations

¹� 0
nºn2Z>0

D ¹.g; hn; qn/ºn2Z>0

supported in a small neighborhood ofR�.Y / n cs�1
Y .r/ such that cs�0

n
is non-degener-

ate for each n and limn!1 k� 0
nk ! 0. Then, � 00

n WD .f [ g;h0
n C h;q0

n C 1
n
q/ satisfies

the following conditions: for a large n > 0,

#¹a 2 zR�
�n
.Y /W r � �Y < csY;�n.a/ < r C �Y º D # Crit.g/;

where �Y D 1
2

min¹ja� bjWa;b 2ƒY º. Using the technique of [40, Section 8], one can

add a small perturbation ¹��
n º D ¹.f; h�

n C hn; q
�
n C qn/º such that the perturbation

��
n is non-degenerate and regular for each n 2 Z>0 and the critical point sets of cs�n

and cs��
n

coincide. This completes the proof.

Theorem 6.5. For a Seifert homology 3-sphere of type †.a1; : : : ; an/,

l†.a1;:::;an/ D 2j�.†.a1; : : : ; an//j:

Proof. Saveliev showed that R�.†.a1; : : : ; an// has a perfect Morse function whose

critical points have odd Floer indices in [43]. By the use of a Morse-type perturbation

as in Lemma 6.2, one can see that there is no differential for such perturbations. This

completes the proof.

The following theorem provides a connected sum formula of lY under suitable

assumptions:

Theorem 6.6 (connected sum formula of lY ). Suppose that Y1 and Y2 are Seifert

homology 3-spheres, then

lY1#Y2 � 4lY1lY2 C lY1 C lY2 :

Proof. The critical submanifold of csY1#Y2 in B�.Y1#Y2/ is given by

R�.Y1#Y2/ D R�.Y1/qR�.Y2/q R�.Y1/ �R�.Y2/ � SO.3/:

Since Y1 and Y2 are Seifert homology 3-spheres, the Chern–Simons functionals of Y1

and Y2 have Morse–Bott type perturbations such that the critical points correspond

to Crit.f1/ and Crit.f2/, where f1WR
�.Y1/ ! R and f2WR

�.Y2/ ! R are perfect

Morse function such that lY1 D # Crit.f1/ and lY2 D # Crit.f2/. Note that SO.3/ has

a Morse function s whose critical point set is the four point set. Then R�.Y1#Y2/

has a Morse function such that the number of critical points is 4lY1lY2 C lY1 C lY2 .

Thus, one can take Morse–Bott type perturbations whose critical points correspond to

4lY1lY2 C lY1 C lY2 points. This completes the proof.
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The connected sum formula below is useful to calculate lsY and lkY .

Theorem 6.7. Let r be an element in ƒY1#Y2 . Suppose that Y1 and Y2 are Seifert

homology 3-spheres. Then

lY1#Y2;r;i � 4
X

rDr1Cr2
iDi1Ci2

lY1;r1;i1lY2;r2;i2 C lY1;r;i C lY2;r;i :

Proof. We decompose the set

R�.Y1#Y2/ \ ¹aW ind.a/ D i; csY1#Y2.a/ D rº

as the union of
a

rDr1Cr2
iDi1Ci2

®

a 2 R�.Y1/W ind.a/ D i1; csY1.a/ D r1
¯

�
®

a 2 R�.Y2/W ind.a/ D i2; csY2.a/ D r2
¯

� SO.3/

and

®

a 2 R�.Y1/W ind.a/ D i; csY1.a/ D r
¯

q
®

a 2 R�.Y2/W ind.a/ D i; csY2.a/ D r
¯

:

Then, the same proof as for Theorem 6.6 can be used to prove the desired result.

We will calculate lY , lsY and lkY for a certain class of homology 3-spheres in Sec-

tion 9.

7. Convergence theorem and proof of main theorems

7.1. Convergence theorem

In this section, we fix an oriented homology 3-sphere Y embedded in an oriented

negative definite 4-manifold X . In this section, we assume that H1.X I R/ Š R and

0 ¤ ŒY � D c 2 H3.X I Z/. Let W0 be the oriented compact 4-manifold with @W0 D

Y [ .�Y / obtained by taking the closure of X n Y . For a positive integer l , the man-

ifold W Œ0; l� is the compact oriented 4-manifold obtained from X defined in (2) and

W �Œ0; l � is the cylindrical end 4-manifold written by .W Œ0; l�/� in (15). Here we

recall @Wi D Y C
i [ Y �

i . Fix a small collar neighborhood of Y C
i in W �Œ0; l � denoted

by

Y C
i � I � W �Œ0; l � (35)

and a Riemann metric gY on Y . We also fix a Riemann metric gW �Œ0;l� on W �Œ0; l �

such that the restrictions of gW �Œ0;l� to Y � .�1; 0�, Y � Œ0;1/ and Y C
j � I for

j 2 ¹0; : : : ; lsY º equal gY � dt2.

In this setting, we will show the following existence theorem:
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Theorem 7.1. (1) Suppose rs.Y / < 1 for some s 2 Œ�1; 0�. Then, for any l 2

Z�0, a sequence of non-degenerate regular perturbations ¹�nº with

k�nk ! 0 and a sequence of perturbations ¹�n
W �Œ0;l�1�

º of ASD equations

on W �Œ0; l � compatible with ¹�nº on Y � R�0 and Y � R�0, there exist

sequences of critical points ¹anºn2Z>0
and ¹bnºn2Z>0

of cs�n such that

M.an; W
�Œ0; l � 1�; bn/ ¤ ;; lim

n!1
cs�n.an/ D rs.Y /;

and cs�n.an/ � cs�n.bn/ ! 0 as n ! 1.

(2) Suppose that ��Y .k/ < 1 for some k 2 Z>0. Then, for any l 2 Z�0,

a sequence of non-degenerate regular perturbations ¹�nº with k�nk ! 0 and

a sequence of perturbations ¹�n
W �Œ0;l�1�

º of ASD equations onW �Œ0; l � com-

patible with ¹�nº on Y � R�0 and Y � R�0, there exist sequences of critical

points ¹anºn2Z>0
and ¹bnºn2Z>0

of cs�n such that

M.an; W
�Œ0; l � 1�; bn/ ¤ ;; lim

n!1
cs�n.an/ D ��Y .k/;

and cs�n.an/ � cs�n.bn/ ! 0 as n ! 1.

Remark 7.2. Daemi [11] and Nozaki, Sato, and the author [35] proved similar exist-

ence results for solutions of perturbed ASD-equations. The author expects that The-

orem 7.1 can be proved for JY .k; s/ which will be defined in [12] for positive k 2 Z.

Proof of Theorem 7.1. The proof consists of two parts.

(1) Put rs.Y / D r . Take a sequence of positive ¹"nº such that "n ! 0 and �n 2

P �.Y; s; r C "n; g/ for each n. We consider the cobordism map

CWŒ0; l �W CI1Œs;rC"n�
.Y / ! CI1Œs;rC"n�

.Y /

given by counting the moduli spacesM.a;W �Œ0; l �; b/. In [35], we showed the counts

of the following oriented 0-dimensional compact manifolds:

[

b2 zR�.Y /�n
ind.b/D0;cs�n .b/<rC"n

MY .a; b/�n=R �M.b;W �Œ0; l �; �/;

MY1.a; �/�n=R �M.�;W �Œ0; l �; �/;

�
[

c2 zR�.Y2/�2
ind.b/D1;cs�2 .c/<rC"n

M.a;W �Œ0; l �; c/�M.c; �/�n=R
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are zero for each generator of a 2 C
Œs;rC"n�
1 .Y /. This implies that

nŒs;rC"n�@Œs;rC"n�.a/C c.W /�
Œs;rC"n�
Y .a/ D �

Œs;rC"n�
Y CWŒs;rC"n�.a/ (36)

for any a 2 CI
Œs;rC"n�
1 .Y / for some c.W / > 0. By the choice of r , for an element

a 2 CIŒs;r��Y �.Y / with @Œs;r��Y �.a/ D 0, the equation

�
Œs;r��Y �
Y .a/ D 0

holds. However, since Œ�
Œs;rC"n�
Y � ¤ 0 for any n, we have a sequence ¹�nº of elements

in CI
Œr��;rC"n�
1 .Y / such that @Œs;rC"n�.�n/ D 0 and �

Œs;rC"n�
Y .�n/ ¤ 0. Then we put

a D �n and obtain the following equations:

c.W /�
Œs;rC"n�
Y .�n/ D �

Œs;rC"n�
Y .CWŒs;rC"n�.�n// (37)

for each n.

Since the left-hand side of (37) is non-zero, �
Œs;rC"n�
Y CWŒs;rC"n�.�n/ is also

non-zero. Since CWŒs;rC"n�.�n/ is a cycle, if we write

�n D
X

i

sni a
n
i and CWŒs;rC"n�.�n/ D

X

j

rnj b
n
j

(sni ; r
n
j 2 Q), then there exist i0 and j0 such that r C "n > cs�n.b

n
j0
/ > r � �Y and

M.ani0 ; W
�Œ0; l � 1�; bnj0/ ¤ ;:

Put an WD ani0 and bn WD bnj0 . By the choices of ¹anºn2Z>0
and ¹bnºn2Z>0

, we conclude

that

lim
n!1

csY;�n.an/ D lim
n!1

csY;�n.bn/ D rs.Y /:

(2) Fix 1 � l � lkY . We will also use the formula essentially showed in [20]. There

exists a sequence ¹bj º of rational numbers such that

DY
1 U

k�1
Y CWŒ0; l �.a/ D c.W Œ0; l�/.DY

1 U
k�1
Y .a//C

X

1�j<k�1

bjD
Y
1 U

j
Y .a/; (38)

where UY and DY
1 (resp. UY and DY

1 ) are U -map and D1 map for Y (resp. for Y )

and

CWŒ0; l �WCƒi .Y / ! Cƒi .Y /

is a cobordism a map as in the same in [11]. We take a sequence ¹�nº � Cƒ� .Y / such

that

dƒ.�n/ D 0; D1U
j .�n/ D 0.1 � j < k � 1/; D1U

k�1.�n/ ¤ 0;
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and

��Y .k/ D lim
j�nj!0

mdeg.D1U
k�1.�n//� mdeg.�n/: (39)

By combining (38) and (39), we have

DY
1 U

k�1
Y CWŒ0; l �.�n/ D c.W Œ0; l�/.DY

1 U
k�1
Y .�n//:

Thus,

mdeg.DY
1 U

k�1
Y CWŒ0; l �.�n// D mdeg.DY

1 U
k�1
Y .�n//:

Note that the elements ¹CWŒ0; l �.�n/ºn2Z>0
also satisfy the following three equations

dƒ.c/ D 0; D1U
j .c/ D 0 .1 � j < k � 1/; D1U

k�1.c/ ¤ 0:

This implies

��Y .k/ � mdeg.DY
1 U

k�1
Y CWŒ0; l �.�n//� mdeg.CWŒ0; l �.�n//:

Since

mdeg.�n/ � mdeg.CWŒ0; l �.�n//C ın

is proved in [11], where ¹ınº is a sequence of positive number with ın ! 0, we have

lim
n!1

mdeg.DY
1 U

k�1
Y CWŒ0; l �.�n//� mdeg.CWŒ0; l �.�n// D �Y .k/:

This implies that

lim
n!1

.mdeg.CWŒ0; l �.an// � mdeg.an// D 0: (40)

We write �n by
X

1�i�N

mn.i/�r
n
i ani

and

CWŒ0; l �.�n/ D
X

i;j

M.bnj ; W
�Œ0; l �; ani /m

n.i/�
rn
i

�E.bn
j
;an
i
/
bnj :

This implies for some i0; j0 2 Z>0,

M.bnj0 ; W
�Œ0; l �; ani0/ ¤ ;

and (40) implies limn!1 E.bnj0 ;a
n
i0
/! 0. Put an WD ani0 and bn WD bnj0 . By the choices

of ¹anºn2Z>0
and ¹bnºn2Z>0

, we conclude that

lim
n!1

csY;�n.an/ D lim
n!1

csY;�n.bn/ D ��Y .k/:
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The following theorem is a key theorem to prove Theorem 1.11. In the proof of

the next theorem, we use the finiteness of lsY or lkY .

Theorem 7.3. (1) Suppose that lsY < 1, rs.Y / < 1 for some s 2 Œ�1; 0�.

Then, there exist a positive integer l � lsY and a flat connection A1 on

W Œ0; l � 1� such thatA1 is an irreducible flat connection onW Œ0; l � 1� with

equal boundary flat connections and csl
X;ŒY �

.A1/ D rs.Y / when we regard

A1 as a connection on Xl;ŒY �.

(2) Suppose that lkY < 1, �Y .k/ < 1 for some k 2 Z>0. Then, there exist a

positive integer l � lY and a flat connection A1 on W Œ0; l � 1� such that

A1 is an irreducible flat connection on W Œ0; l � 1� with equal boundary flat

connections and csl
X;ŒY �

.A1/ D �Y .k/ when we regard A1 as a connection

on Xl;ŒY �.

Proof. The proof is comprised of two parts.

(1) Suppose that ¹�nºn2Z>0
and gY are a sequence of non-degenerate regular

holonomy perturbations of csY and a Riemann metric on Y such that

lsY D # sup
n2Z>0

®

Œa� 2 zR�
�n
.Y /; ind.Œa�/ D 1;

rs.Y / � �Y < cs�n.Œa�/ < rs.Y /C �Y
¯

: (41)

Let ¹�n
W �Œ0;ls

Y
�1�

ºn2Z>0
be a sequence of regular perturbations of the ASD-equations

on W �Œ0; lsY � 1� such that the perturbed equation of �n
W �Œ0;ls

Y
�1�

coincides with

FC.A/C�C
n .A/D 0 on Y � .�1; 0�, Y � Œ0;1/ and Y C

j � I for j 2 ¹0; : : : ; lsY º for

any n. Here, we apply Theorem 7.1 (1). Then there exist sequences of critical points

¹anºn2Z>0
and ¹bnºn2Z>0

of cs�n such that

M.an; W
�Œ0; lsY � 1�; bn/ ¤ ;; lim

n!1
cs�n.an/ D rs.Y /;

and

cs�n.an/ � cs�n.bn/ ! 0 as n ! 1.

Take an element An 2 M.an; W
�Œ0; lsY � 1�; bn/ for every n 2 Z>0. The conditions

cs�n.an/ � cs�n.bn/ ! 0, k�nk ! 0, and k�n
W �Œ0;ls

Y
�1�

k ! 0 as n ! 1 imply

kF.An/C �nW �Œ0;ls
Y

�1�.A/kL2.W �Œ0;ls
Y

�1�/ ! 0: (42)

This implies that the connection An is close to some critical point of csY;�n near

Y C
j � I . On the other hand, we have gauge transformations ¹g

j
nº on Y C

j � I and

critical points ¹c
j
nº of csY;�n such that

k.gjn/
�Anj

Y
C

j
�I

� p�cjnkC l � c.kF.AnjYC

j
�I
/k
L2.Y

C

j
�I/

C k�nk/; (43)
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where the constant c depends only on the metric gY and l , which we take to be a

positive integer greater 2, and pW Y C
j � I ! Y is the projection. Since csY;�n is non-

degenerate, c
j
n in (43) is unique up to gauge transformations. Note that if n is large,

then

cjn 2
®

Œa� 2 zR�
�n
.Y /; ind.Œa�/ D 1; rs.Y / � �Y < cs�n.Œa�/ < rs.Y /C �Y

¯

:

By (41), we can use the Pigeonhole principle. Then, for each n, there exist jn and j 0
n

such that c
jn
n Š c

j 0
n
n as connections on Y . Moreover, such patterns of choices of jn and

j 0
n are finite. By changing gauge transformations g

j
n , we assume c

jn
n D c

j 0
n
n Thus, after

taking a subsequence of ¹Anºn2Z>0
, we can assume that jn and j 0

n do not depend on

the choices of n. By summarizing the above discussion, we obtained integers 0 � j

and j 0 � lsY , gauge transformations g
j
n and g

j 0

n on Y C
j � I and Y C

j 0 � I , and critical

points ¹cnº of csY;�n such that

k.gjn/
�Anj

Y
C

j
�I

� p�cnkC l � c.kF.AnjYC

j
�I
/k
L2.Y

C

j
�I/

C k�nk/; (44)

k.gj
0

n /
�Anj

Y
C

j 0 �I
� p�cnkC l � c.kF.AnjYC

j 0 �I
/k
L2.Y

C

j
�I/

C k�nk/ (45)

hold. After taking a subsequence of ¹cnº and pull-back by gauge transformations ¹hnº,

we can assume that ¹h�
ncnº is C1-convergent to c1. Then

¹h�
n.g

j
n/

�Anj
Y

C

j
�I

º and ¹h�
n.g

j 0

n /
�Anj

Y
C

j 0 �I
º

are convergent sequences on Y C
j � I and Y C

j 0 � I .

We can extend gauge transformations g
j
n ı hn and g

j 0

n ı hn to gauge transform-

ations ¹gnº onW �Œ0; lsY � 1� such that ¹g�
nAnº converges to ¹g�

nAnº on all of Y � R.

We set limn!1 g�
nAn D A1. The limit A1 has the following properties: there are

j; j 0 � lsY such thatA1 is an SU.2/-irreducible flat connection onW �Œ0; lsY � 1�with

A1j
Y

C
j

Š A1j
Y

C

j 0
and

csY .Aj
Y

C
j

/ D rs.Y / (46)

for any j . Suppose j < j 0. Then A1jW Œj;j 0� satisfies the conclusion. By (46), we

conclude that

r D lim
n!1

csY .an/ D cs
W Œj;j 0�;ŒY

C

j
�
.A1/ D cs

j 0�jC1

X;ŒY �
.A1/;

where W Œj; j 0� is the oriented closed 4-manifold obtained by identifying the bound-

aries Y C
j and Y �

j 0 of W Œj; j 0�.
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Here, since A1 is a connection on W Œj; j 0� such that A1j
Y

C
j

Š A1jY�
j 0

, we

regard A1 as a connection on W Œj; j 0�. Moreover, W Œj; j 0� can be identified with

Xj 0�jC1;ŒY �. This completes the proof.

(2) The second proof is essentially the same as the first. Suppose ¹�nºn2Z>0
and

gY are a sequence of non-degenerate regular holonomy perturbations of csY and

Riemann metric on Y such that

lkY D # sup
n2Z>0

´

Œa� 2 R�
� .Y /W ind.Œa�/ �

´

1 if k is odd

5 if k is even
mod 8;

j��Y .k/ � cs�n.Œa�/j < �Y

µ

and ¹�n
W �Œ0;lk

Y
�1�

ºn2Z>0
be a sequence of regular perturbations of ASD-equations on

W �Œ0; lkY � 1� such that the perturbed equation of �n
W �Œ0;lk

Y
�1�

coincide withFC.A/C

�C
n .A/ D 0 on Y � .�1; 0�, Y � Œ0;1/ and Y C

j � I for j 2 ¹0; : : : ; lkY º for any n.

Then we can do the same discussion as in the first proof.

7.2. Proof of main theorems

In this section, we prove several theorems in Section 1.

7.2.1. Proof of Theorem 1.11. In this section, we will give a proof of Theorem 1.11.

Theorem 7.4 (Theorem 1.11). Let Y be an oriented homology 3-sphere and X be an

oriented negative definite 4-manifold. Suppose there exists an embedding from Y to

X with 0 ¤ ŒY � 2 H3.X I Z/.

(1) If lsY < 1 and rs.Y / < 1 for some s 2 Œ�1; 0�,

rs.Y / � brs.Y /c 2
[

1�j�ls
Y

Im csjŒY �X;ŒY � :

(2) If lkY < 1 and ��Y .k/ < 1 for some k 2 Z>0,

��Y .k/ � b��Y .k/c 2
[

1�j�lk
Y

Im csjŒY �X;ŒY � :

If ŒY � D 0, then

rs.Y / D rs.�Y / D �Y .k/ D ��Y .k/ D 1

for any s and k.
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The proof of Theorem 1.11 is decomposed into two cases: ŒY � ¤ 0 and ŒY � D 0.

The first case gives an extension of the main theorem in [44]. However, the proof is not

the same. In [44], the author used ASD moduli spaces for 4-manifolds with periodic

ends to prove the main result. However, in this paper, we only use ASD moduli spaces

for 4-manifolds with cylindrical ends. The essential part of the proof is contained in

the proof of Theorem 7.1.

Proof of Theorem 1.11. First, we assume ŒY � ¤ 0. Suppose that Y is a homology

3-sphere Y embedded in a negative definite 4-manifoldX with 0 ¤ ŒY � 2 H3.X I Z/.

We assume that X is connected. Put

c WD PD.ŒY �/ 2 H 1.X I Z/ D Hom.H1.X I Z/;Z/:

By the following discussion, we may assume that H1.X I R/ Š R to prove The-

orem 1.11. Suppose RankH1.X I R/ � 2. We have an exact sequence:

0 !
M

RankH1.X IZ/

Z ˚ torsion Š Ker c ! H1.X I Z/
c
�! Z:

We take a generator d1 2 H1.X I Z/ of the free part of Ker c. Then d1 � ŒY � D 0. We

also have the following exact sequence:

H1.X n Y I Z/ ! H1.X I Z/ ! H1.Y � I I @.Y � I /I Z/ Š H 3.Y I Z/ Š Z:

The mapH1.X I Z/!H1.Y � I; @.Y � I /I Z/ŠH 3.Y I Z/Š Z corresponds to the

pairing of c. As d1 2 Ker c, the class d1 is represented by a closed oriented manifold

l 01 � X n Y . If ŒY � ¤ 0, X n Y is connected. Therefore, by considering the connected

sum, we can assume l 01 is connected. We extend l 01 to a framed loop l1WS
1 �D3 ! X

such that Im l \ Y D ;. Then by considering surgery along l1, we obtain an oriented

connected 4-manifold Xl1 . It is shown in [27] that the 4-manifold Xl1 obtained by

surgery along l1 has the same intersection form as X so Xl1 is also negative definite.

By Proposition 4.3, there exists a class 0 ¤ c1 2 H 1.Xl1 I Z/ such that

Im cs
j

Xl1 ;PD.c1/
� Im cs

j

X;ŒY �
:

Note that b1.X/ D b1.Xl1/ � 1. By induction, there exists a sequence of negative

definite 4-manifolds ¹Xlj º and classes ¹cj º for 1 � j � Rank Ker c such that

Im cs
j

XlN ;PD.cN /
� � � � � Im cs

j

Xl1 ;PD.c1/
� Im cs

j

X;ŒY �

for any j , where lj are embeddings S1 � D3 ! Xlj�1
satisfying ŒlS1�¹0º� D cj .

This implies that we can suppose that H1.XlN I R/ D R. Here we put W0 WD X n Y

and suppose H�.W0I R/ Š H�.S
3I R/. Suppose that rs.Y / < 1 and lsY < 1 for
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s 2 Œ�1; 0� (resp. �Y .k/ < 1 and lkY < 1). Theorem 7.3 implies that there exist

an integer j � lsY (resp. j � lkY ) and a representation �W �1.W Œ0; j � 1�/ ! SU.2/

satisfying the following conditions:

• the restrictions of � to the components of @.W Œ0; j � 1�/ D Y C
0 q Y �

j�1 coincide

via the identification Y C
0 ! Y �

j�1;

• cs
j
X;c.�/ D rs.Y /.

This implies that rs.Y / 2 Im cs
j
X;c(resp. �Y .k/ 2 Im cs

j
X;c).

If ŒY �D 0, sinceX is connected,X is decomposed into two parts:X1 [Y X2 DX .

Since X is negative definite, X1 and X2 are negative definite 4-manifolds. Therefore,

both Y and �Y bound a negative definite 4-manifold. By using (22) and (24), we have

1 D ��Y .k/ D �Y .k/ D rs.Y / D rs.�Y /.

In [44], the author constructed an obstruction class to the existence of embeddings

by developing gauge theory for 4-manifolds with periodic ends. The main theorem

of [44] is as follows.

Theorem 7.5 ([44]). Let Y be an oriented homology 3-sphere and X an oriented

homologyS1 �S3. Suppose that the Chern–Simons functional of Y is non-degenerate

and there exists an embedding from Y to X such that ŒY � generatesH3.X I Z/. Then

0 D �
Œ�1;r�
Y 2 I 1Œ�1;r�.Y / for 0 � r � min

1�j�2#R.Y /C3
min¹r 2 Im cs

j

X;ŒY �
º,

where R.Y / is the quotient set of Hom.�1.Y /; SU.2// by the conjugation of SU.2/.

Now, we prove Theorem 7.5 without using any gauge theory on 4-manifolds with

periodic ends.

Theorem 7.6. Theorem 1.11 implies Theorem 7.5.

Proof. The inequality

r0.Y / � r�1.Y / (47)

was proved in [35]. Moreover, when the Chern–Simons functional of Y is non-degen-

erate, by a similar discussion given in [40, Theorem 8.4], we can take a sequence of

non-degenerate regular perturbations ¹�nº such that

• k�nk ! 0,

• �n is zero near a neighborhood of R.Y /, and

• R�n.Y / D R.Y / for any n.
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This proves

lY � #R.Y /: (48)

Inequalities (47) and (48) imply that Theorem 1.11 recovers Theorem 7.5.

Theorem 1.6 is a corollary of Theorem 1.11.

Theorem 7.7 (Theorem 1.6). Let Y be an oriented homology 3-sphere and K an

oriented 2-knot. The invariants ¹csK;j ºj2Z>0
satisfy the following properties.

• Suppose that lsY is finite and rs.Y / < 1 for some s 2 Œ�1; 0�. If Y is a Seifert

hypersurface ofK, then

rs.Y / � brs.Y /c 2
[

1�j�ls
Y

Im csK;j

holds.

• Suppose that lkY is finite and ��Y .k/ < 1 for some k 2 Z>0. If Y is a Seifert

hypersurface ofK, then

��Y .k/ � b��Y .k/c 2
[

1�j�lk
Y

Im csK;j

holds.

Proof of Theorem 1.6. The Seifert hypersurface Y determines a codimension 1-sub-

manifold of X.K/ with 1K D ŒY � 2 H3.X.K/I Z/. Since lsY < 1, we can apply

Theorem 1.11. Then, we obtain

rs.Y / 2
[

1�j�ls
Y

Im cs
j

X.K/;1K
D

[

1�j�ls
Y

Im csK;j :

This completes the proof. The proof of the second statement is the same.

7.2.2. Proof of Theorem 1.8 . In this section, we prove Theorem 1.8.

Theorem 7.8 (Theorem 1.8). Let Y be an oriented homology 3-sphere and K an

oriented 2-knot.

(1) If rs.Y / < 1, lsY < 1 for some s 2 Œ�1; 0� and Y is a Seifert hypersur-

face of K, then there exists a positive integer l � lsY such that there exists an

irreducible representation

�WGl.K/ ! SU.2/:
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(2) If ��Y .k/ < 1, lkY < 1 for some k 2 Z>0 and Y is a Seifert hypersurface

of K, then there exists a positive integer l(� lkY ) such that there exists an

irreducible representation

�WGl.K/ ! SU.2/:

Proof of Theorem 1.8. The proofs of (1) and (2) are the same. We show (1). The-

orem 1.6 implies

rs.Y / 2 Im csK;j \.0; 1/ (49)

for given s 2 Œ�1; 0� and some j.� lY /. We combine (49) and Lemma 2.12 and

obtain the conclusion.

8. Extendability of SU.2/-representations

Theorem 1.11 shows existence of finite irreducible SU.2/-representations. In this

section, we provide a method to prove the existence of infinitely many irreducible

SU.2/-representations.

Definition 8.1. Let .X; Y / be a pair consisting of a closed 4-manifold X and a

codimension-1 smooth submanifold Y of X and let �W �1.Y / ! SU.2/ be a rep-

resentation. If � is extended to a representation Q�W�1.X/ ! SU.2/, then we call � an

extendable representation for .X; Y /.

By using our method, one can give a partial answer to the following question:

Question 8.2. For a given pair .X; Y /, which SU.2/-representations of �1.Y / are

extendable for .X; Y /?

The easiest examples are .X D Y � S1; Y /. In this case, all representations are

extendable. For example, Theorem 1.13 proves that if X is negative definite and Y D

�†.2; 3; 5/, then all SU.2/-representations of �1.Y / are extendable. The goal of this

section is to prove the following theorem:

Theorem 8.3. Let Y be an oriented homology 3-sphere and let �W �1.Y / ! SU.2/

be an SU.2/-representation of �1.Y /.

• Suppose csY .�/ D rs.Y / < 1 and lsY < 1 for some s 2 Œ�1; 0�, the Chern–

Simons functional of Y is Morse–Bott at the level rs.Y /, and for each com-

ponent
S

˛ C˛ D cs�1
Y .rs.Y // \ R�.Y /, we assume there exist Morse functions

g˛WC˛ ! R such that

¹p 2 C˛ W indg˛.p/C ind.C˛/ D 1; d.g˛/p D 0º D ;
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if � … C˛ and

1 D #¹p 2 C˛0 W indg˛0 .p/C ind.C˛0/ D 1; d.g˛0/p D 0º;

where C˛0 is the component which contains � and ind.C˛/ is the Morse–Bott

index of C˛ . Let X be a closed negative definite 4-manifold containing Y as a

submanifold. Then � is extendable for the pair .X; Y /. Moreover, all SU.2/-rep-

resentations which lie the same component of � are extendable for .X; Y /.

• Suppose csY .�/ D ��Y .k/ < 1 and lkY < 1 for some k 2 Z>0, the Chern–

Simons functional of Y is Morse–Bott at the level ��Y .k/, and for each com-

ponent
S

˛ C˛ D cs�1
Y .��Y .k//\R�.Y /, we assume there exist Morse functions

g˛WC˛ ! R such that

´

p 2 C˛W indg˛ .p/C ind.C˛/ D

´

1 if k is odd

5 if k is even
mod 8;

d.g˛/p D 0

µ

D ;

if � … C˛ and

1 D #

´

p 2 C˛0 W indg˛0 .p/C ind.C˛0/ D

´

1 if k is odd

5 if k is even
mod 8;

d.g˛0/p D 0

µ

;

where C˛0 is the component which contains � and ind.C˛/ is the Morse–Bott

index of C˛ . Let X be a closed negative definite 4-manifold containing Y as a

submanifold. Then � is extendable for the pair .X; Y /. Moreover, all SU.2/-rep-

resentations which lie the same component of � are extendable for .X; Y /.

Proof. Put r D rs.Y /D csY .�/. Since rs.Y / <1, by Theorem 1.11 we can suppose

0 ¤ ŒY � 2 H3.X I Z/. First, we can assume the class ŒY � generates H3.X I R/ Š R

by the same argument as in the proof of Theorem 7.1. Put g0 WD
`

g˛W
`

C˛ D

cs�1
Y .r/ \ R�.Y / ! R. We fix another Morse function gW cs�1

Y .r/ \ R�.Y / ! R

obtained by deforming the Morse function g0 satisfying the following conditions:

• the point � 2 C˛ is a critical point of g whose Morse index is 1 � ind.C˛0/,

• ¹p 2 C˛ W indgC˛ .p/C ind.C˛/ D 1; d.gC˛ /p D 0º D ; if ˛ ¤ ˛0 and

• 1 D #¹p 2 C˛0 W indgC˛0
.p/C ind.gC˛0 / D 1; d.gC˛0 /p D 0º.
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By using Lemma 6.2, we take a Morse–Bott type perturbation �".g/ for " 2 .0; "0/.

We take a sequence of non-generate regular perturbations ¹�nº such that

cs�1=n.g/ jU D cs�n jU and k�nk ! 0;

where U is a neighborhood of cs�1
Y .r/ \ R�.Y / in B�.Y /. By Lemma 6.2, we can

see ¹�nº satisfies the following conditions:

• there is a correspondence

LnW ¹the critical point set of gW cs�1
Y .r/\ R�.Y / ! Rº

! ¹critical point set of cs�n jU º

for each n such that limn!1Ln.a/ D a,

• #¹a 2 zR�
�n
.Y /W ind.a/ D 1; j cs�n.a/� r j < 1

2
�Y º D 1, and

• ¹�º D ¹pW the critical point set of gW limn!1Ln.p/ 2 C˛0º.

Thus, we conclude that lsY D 1. Then we apply Theorem 7.3 and obtain an irreducible

flat connection A1 on W Œ0; 0� such that

cs1X;ŒY �.A1/ D rs.Y /:

Moreover, by the proof of Theorem 7.3, we can see that

A1j
Y

C
0

Š A1jY�
0

Š �:

Thus, A1 gives an extension of �. Moreover, for another point �0 which lies in the

same component of �, we can take another Morse function g with the following con-

ditions:

• the point �0 2 C˛ is a critical point of g whose Morse index is 1 � ind.C˛0/,

• ¹p 2 C˛ W indgC˛ .p/C ind.C˛/ D 1; d.gC˛ /p D 0º D ; if ˛ ¤ ˛0 and

• 1 D #¹p 2 C˛0 W indgC˛0
.p/C ind.gC˛0 / D 1; d.gC˛0 /p D 0º

by modifying g0. Then, by the same discussion, we have an extension A1 of �0.

We give a sufficient condition for the assumptions of Theorem 8.3 to hold.

Corollary 8.4. Let Y be an oriented homology 3-sphere and let �W�1.Y / ! SU.2/

be an SU.2/-representation of �1.Y /.

(1) Let l be a positive integer. Suppose csY .�/D rs.Y / <1 and lsY D 1 for some

s 2 Œ�1; 0�, the Chern–Simons functional of Y is Morse–Bott at the level

rs.Y /,H�.cs�1
Y .rs.Y //\R�.Y /IZ/� 1 for any � and cs�1

Y .rs.Y //\R�.Y /

has a perfect Morse function. Let X be a closed negative definite 4-manifold

containing Y as a submanifold. Then � is extendable for the pair .X; Y /.



Seifert hypersurfaces of 2-knots and Chern–Simons functional 389

Moreover, all SU.2/-representations which lie the same component of � are

extendable for .X; Y /.

(2) Let l be a positive integer. Suppose csY .�/ D ��Y .k/ < 1 and lkY D 1 for

some k 2 Z>0, the Chern–Simons functional of Y is Morse–Bott at the level

��Y .k/,

H�

�

cs�1
Y .��Y .k//\ R�.Y /I Z

�

� 1

for any � and cs�1
Y .rs.Y //\ R�.Y / has a perfect Morse function.Let X be a

closed negative definite 4-manifold containing Y as a submanifold. Then � is

extendable for the pair .X;Y /. Moreover, all SU.2/-representations which lie

the same component of � are extendable for .X; Y /.

Proof. We check that the assumptions of Theorem 8.3 are satisfied. By assumption,

we have a Morse function gW cs�1
Y .rs.Y //\R�.Y / ! R such that the differentials of

the Morse complex with respect to g are zero. Since

H�.cs�1
Y .rs.Y // \R�.Y /I Z/ � 1;

we have

#¹p 2 cs�1
Y .rs.Y // \R�.Y /W ind.p/ D �; dgp D 0º � 1 for all � 2 Z�0:

Note that cs�1
Y .rs.Y // \ R�.Y / is connected. Then we use a Morse–Bott type per-

turbation �".g/ for " 2 .0; "0/ given in Lemma 6.2 to define filtered instanton chain

complexes CIŒs;r�� .Y / given in Section 2.4.1. Since the value of rs.Y / depends only

on the index-1-critical points of csY;�".g/ in cs�1
Y .rs.Y // \R�.Y /, we have

#
®

p 2 cs�1
Y .rs.Y //\ R�.Y /W indg.p/C indcsY

�

cs�1
Y .rs.Y //\ R�.Y /

�

D 1;

p 2 C˛; dgp D 0
¯

� 1:

We suppose that g has � as a critical point satisfying indg.p/C indcsY .C˛/D 1. Thus,

the assumptions of 1 of Theorem 8.3 are satisfied. A similar argument proves 2.

9. Examples and applications

In this section, we give several examples of computations of lY , lsY and lkY and applic-

ations of main theorems in Section 1.

9.1. Calculations of lY , l s
Y

, and lk
Y

In this section, we give several computations of lY , lsY and lkY .
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9.1.1. Seifert homology 3-spheres. In this section, we discuss the invariants lsY , lkY
and lY for Seifert homology 3-spheres of type†.a1; : : : ; an/. In [16], the R-invariant

of †.a1; : : : ; an/:

R.a1; : : : ; an/ D
2

a
� 3C nC

n
X

iD1

2

ai

ai�1
X

kD1

cot
�a�k

ai

�

cot
��k

ai

�

sin2
��k

ai

�

(50)

is introduced, where a D a1 � � � an. In [16], Fintushel and Stern gave an algorithm to

calculate SU.2/-representation spaces R.†.a1; : : : ; an//. Fix a sequence of integers

b; b1; : : : ; bn 2 Z such that

a
X

1�k�n

bk

ak
D 1C ab:

We call .b; .a1; b1/; : : : ; .an; bn// a Seifert invariant. For a such sequence, the funda-

mental group of †.a1; : : : ; an/ is given by

�1.†.a1; : : : ; an// D ¹x1; : : : ; xn; hW Œxi ; h� D 1; x
ai
i D h�bi ; x1 � � � xn D 1º:

Note that if �W �1.†.a1; : : : ; an// ! SU.2/ is an irreducible representation, then

�.h/ D ˙1. Suppose that a1 is even. We choose ¹biº so that bj is even for j ¤ 1.

The number li is even if and only if �.h/bi D 1. Then connected components of the

SU.2/-representations � of �1.†.a1; : : : ; an//, imposing some technical conditions,

are parametrized by the rotation numbers .l1; : : : ; ln/ given by

g�1
i �.xi/gi D

�

e�ili =ai 0

0 e��ili=ai

�

for some gi 2 SU.2/ .1 � i � n/

and 0 � li � ai . For this parametrization, the value of the Chern–Simons functional

is then given by

cs.�.l1; : : : ; ln// D
�

n
X

iD1

ali=ai

�2

=4a mod 1: (51)

Moreover, the Floer index9 ind.�.l1;:::;ln// is given by

ind.�.l1;:::;ln// D
2e2

a
C 3 �m

C

m
X

iD1

2

ai

ai�1
X

kD1

cot
�a�k

ai

�

cot
��k

ai

�

sin2
��ek

ai

�

mod 8:

9When the Chern–Simons functional of an oriented homology 3-sphere Y is Morse–Bott,

we can also define a Morse-index. (See [16].)
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Example 9.1. Suppose that n D 3. Since R.2; 3; 6k � 1/ D 1, it is proved in [11,

Theorem 6] and [35, Corollary 1.4] that

�†.2;3;6k�1/.1/ D rs.�†.2; 3; 6k � 1// D
1

24.6k � 1/

for any s 2 Œ�1; 0�. Since �.†.2; 3; 6k � 1// D k,

l†.2;3;6k�1/ D 2k

by Theorem 6.5. Moreover, it is shown in [16] that the Chern–Simons functional of

†.2; 3; 6k � 1/ is Morse. Then .l1; l2; l3/ determines a representation if and only if

jl1=a1 � l2=a2j < l3=a3 < 1 � j1 � .l1=a1 � l2=a2/j:

Here, we choose a1 D 2, a2 D 3, a3 D 6k � 1. Then, the space of the representations

are parametrized by

R�.†.2; 3; 6k � 1// D
®

.1; 2; l3/W l3 2 ¹k; k C 1; : : : ; 5k � 1º \ 2Z
¯

: (52)

Then the Chern–Simons functional is given by

cs.�.1;2;l3// D
12.3k2 � k C 3l23 /C 1

24.6k � 1/
mod 1:

If k is odd, �.1;2;5k�1/ has the unique minimal value 1
6.6k�1/

of cs in .0; 1� and if k is

even, �.1;2;k/ has the unique minimal value 1
6.6k�1/

of cs in .0; 1�. Therefore, we can

conclude that

l1†.2;3;6k�1/ D ls†.2;3;6k�1/ D 1

for any s 2 Œ�1; 0�. In the case of k D 1, we can also see that l2
†.2;3;5/

D 1.

Example 9.2. Suppose n D 4, a1 D 2, a2 D 3, a3 D 5 and a4 D 7. One can check

that R.2; 3; 5; 7/ D 1. It is shown that

�†.2;3;5;7/.1/ D rs.�†.2; 3; 5; 7// D
1

840

for any s 2 Œ�1; 0�. The space R�.†.2; 3; 5; 7// has six S2-components and 16

points. We put critical values of the Chern–Simons functional for �†.2; 3; 5; 7/ in

Table 1 which are given in [16, 42]. In Table 1, the Floer indices for Morse–Bott

components with dimension greater than 0 are described as bold numbers. Table 1

implies that �.�†.2; 3; 5; 7// D rs.�†.2; 3; 5; 7// for any s 2 Œ�1; 0�.

Next, we consider the finite connected sums of Seifert homology 3-spheres.
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.l1; l2; l3; l4/ cs ind .l1; l2; l3; l4/ cs ind

.1; 0; 2; 2/ 681=840 7 .0; 2; 4; 2/ 184=840 3

.1; 0; 2; 4/ 561=840 5 .2; 2; 2; 2/ 436=840 5

.1; 0; 2; 6/ 81=840 1 .2; 2; 2; 4/ 316=840 3

.1; 0; 4; 4/ 729=840 7 .2; 2; 4; 4/ 484=840 5

.1; 2; 0; 2/ 625=840 7 .2; 2; 4; 6/ 4=840 1

.1; 2; 0; 4/ 505=840 5 .1; 2; 2; 2/ 121=840 1

.1; 2; 2; 0/ 721=840 7 .1; 2; 2; 4/ 1=840 7

.1; 2; 4; 0/ 49=840 1 .1; 2; 2; 6/ 361=840 3

.0; 2; 2; 2/ 16=840 1 .1; 2; 4; 2/ 289=840 3

.0; 2; 2; 4/ 736=840 7 .1; 2; 4; 4/ 169=840 1

.0; 2; 2; 6/ 256=840 3 .1; 2; 4; 6/ 529=840 5

Table 1. Critical values of �†.2; 3; 5; 7/. The usual instanton group of �†.2; 3; 5; 7/ is iso-

morphic to Z28 and the Casson invariant is 14. This implies that l�†.2;3;5;7/ D 28. On the

other hand, for s 2 Œ�1; 0�, ls
�†.2;3;5;7/

D 1. Moreover, if we let Y be the connected sum

#n.�†.2; 3; 5; 7// for a positive n, then the connected sum formula of r0.Y / implies that

r0.Y / D 1
840

. Thus, we can also see that l0
Y

D 1.

Example 9.3. Fix k 2 Z>0. Let Y be the linear combination

n†.2; 3; 6k � 1/#.#6.6k�1/<a1���anm.a1;:::;an/†.a1; : : : ; an//;

where n < 0, k 2 Z>0 andm.a1;:::;an/ is a sequence of integer parametrized by the list

.a1; : : : ; an/ with

a1 � � � an < 24.6k � 1/:

Then Theorem 2.18 (21) implies

1

24.6k � 1/
D r0.n†.2; 3; 6k � 1//

� min
®

r0.Y /; r0.#6.6k�1/<a1���anm.a1;:::;an/†.a1; : : : ; an//
¯

:

By the condition 6.6k � 1/ < a1 � � � an and formula (51), we conclude that

1

24.6k � 1/
D r0.Y /:

Moreover, we can see that

# cs�1
Y

� 1

24.6k � 1/

�

D 1:
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Therefore,

l0Y D 1:

Because of the choice of .a1; : : : ; an/, we have

1

24.6k � 1/
D r0.Y /:

9.1.2. A hyperbolic homology 3-sphere. In [35], Nozaki, Sato, and the author tried

to calculate rs.Y / for the hyperbolic 3-manifold obtained along 1=2-surgery along

the mirror image of 52.

Example 9.4. Let Y be S3
1=2
.5�
2/. The Casson invariant of Y is 4. In [35], it is checked

that all critical points of cs of Y are non-degenerate and there are eight SU.2/-repres-

entations. Moreover, approximate critical values of cs are given in [35, Table 2]. We

put the minimal value of cs of S3
1=2
.5�
2/ in .0; 1� by t0. Then, rs.Y / D ��Y .1/ D t0

for any s 2 Œ�1; 0�. Since # cs�1.t0/ D 1, we can conclude that

lsY D l1Y D 1

for any s 2 Œ�1; 0�. The manifold S3
1=2
.5�
2/ also satisfies �.S3

1=2
.5�
2//D rs.S

3
1=2
.5�
2//

for any s 2 Œ�1; 0�.

9.2. Applications

In this section, we give several applications of the main theorems Proposition 1.2,

Theorem 1.6, Theorem 1.8, Theorem 1.11 and Theorem 1.15.

9.2.1. Ribbon 2-knots. The class of ribbon 2-knots is one of the fundamental classes

of 2-knots. There are several studies of the properties of ribbon 2-knots [29, 45–47].

For example, it is shown in [45] that the knot group G.K/ is torsion free for any

ribbon 2-knotK. In [29], Kawauchi gave a characterization of Alexander modules of

ribbon 2-knots. Moreover, every ribbon 2-knot has a finite connected sum of copies

of S1 � S2 ([46]) as a Seifert hypersurface. However, the classification problem for

ribbon 2-knots is open. There several invariants which obstruct the ribbon property of

2-knots. Ruberman ([38]) introduced the Gromov norm jKj 2 Œ0;1/ of 2-knotsK by

using the Gromov norm of Seifert hypersurfaces. This invariant satisfies the inequality

jKj � jY j

for any Seifert hypersurface Y of K, where jY j is the Gromov norm of Y . If K is a

ribbon 2-knot, then jKj D 0. Moreover, the following gauge theoretic invariants can

be useful in obstructing the ribbon property of 2-knots:
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(1) Mrowka, Ruberman, and Saveliev ([34]) constructed a version of Seiberg–

Witten invariant �MRS.X/ for homology S1 � S3’s. Then one define

�MRS.K/ WD �MRS.X.K//:

Moreover, if K is ribbon, then �MRS.K/ D 0 ([33]).

(2) Levine and Ruberman ([32]) defined a Z-valued invariant Qd.X; y/ of homo-

logy S1 � S3 by considering some variant of d -invariant of cross sections. Using
Qd.X; y/, Levine and Ruberman defined invariants of 2-knots Qd.K/, Qd.�K/, Qd. xK/

and Qd.� xK/. They show that

Qd.K/ D Qd.�K/ D Qd. xK/ D Qd.� xK/ D 0

if K is ribbon.

Remark 9.5. Furuta and Ohta ([21]) also constructed a Casson type invariant �FO.X/

of homologyS1 �S3’s satisfying the conditionH�. zX IQ/ŠH�.S
3IQ/. Such homo-

logy S1 � S3’s are called ZŒZ� homology S1 � S3. It is conjectured that �FO.X/ D

��MRS.X/ for any ZŒZ� homology S1 � S3X . In [33], this conjecture is checked

for a certain class of mapping tori. One can also define �FO.K/ for 2-knots K satis-

fying the condition �K.t/ D 1. By construction, if �FO.K/ ¤ 0, then G.K/ has an

SU.2/-irreducible representation.

Our invariants ¹Im csK;j ºk2Z>0
are also useful for obstructing the ribbon property

of 2-knots.

Corollary 9.6. Let K be an oriented 2-knot and Y a Seifert hypersurface of K.

(1) If Y is an oriented homology 3-sphere, lsY < 1, rs.Y / < 1 and rs.Y / … Z

for some s 2 Œ�1; 0�, then K is not ribbon.

(2) If Y is an oriented homology 3-sphere, lkY < 1, ��Y .k/ <1 and ��Y .k/ …

Z for some k 2 Z>0, then K is not ribbon.

Proof. We only prove (1) since (2) is similar. Suppose such a Seifert hypersurface Y

of K exists. Then Theorem 1.6 implies that

1 ¤ rs.Y / � brs.Y /c 2 Im csK;j0

for some j0 2 Z>0. If K is a ribbon 2-knot, then Im csK;j D ¹1º for any j by Corol-

lary 1.3. This contradicts to rs.Y / � brs.Y /c 2 Im csK;j0 \.0; 1/ ¤ ;.

Remark 9.7. Note that if K admits a homology 3-sphere as a Seifert hypersurface,

then �K.t/ D 1.
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The following corollary seems difficult to show using jKj, �MRS.K/, �FO.K/

and Qd.K/:

Corollary 9.8. Let k be a positive integer. Any 2-knotK having

.�†.2; 3; 6k C 5//#†.2; 3; 5/

as a Seifert hypersurface is not ribbon.

Proof. By Example 9.3,

r0..�†.2; 3; 6k C 5//#†.2; 3; 5// < 1 and l0.�†.2;3;6kC5//#†.2;3;5/ D 1:

Therefore, Corollary 9.6 tells us that such a knotK cannot be a ribbon.

9.2.2. Rigidity of ¹Im csK;j ºj 2Z>0
. The invariant Qd.K/ is determined by the

d -invariant of a Seifert hypersurface. We will see that similar properties hold for

Im csK;j of a certain class of 2-knots. We give a sufficient condition on Seifert hyper-

surfaces to determine Im csK;j .

Theorem 9.9. Suppose that an oriented homology 3-sphere Y is a Seifert hypersur-

face of a given oriented 2-knotK and there exist k1; : : : ; km 2 Z>0 and s1; : : : ; sn 2

Œ�1; 0� such that
[

k1;:::;km;
s1;:::;sn

.rs.Y / [ ��Y .k// D ƒY \ .0; 1/

and l
si
Y D l

li
Y D 1 for any i . Then

Im csK;j D ƒY \ .0; 1/

for any j 2 Z>0. In particular, for any Seifert hypersurface Y 0 and r 2 ƒY \ .0; 1/,

there exists an SU.2/-representation �r on Y 0 such that csY 0.�r/ D r .

Proof. By Proposition 1.2 and Theorem 1.6,

ƒY \ .0; 1� D
[

k1;:::;km
s1;:::;sn

.rs.Y / [ ��Y .k// � Im csK;1 � ƒY \ .0; 1�:

This implies that Im csK;1 D ƒY \ .0; 1�. We use Proposition 1.2 again and obtain

ƒY \ .0; 1� D Im csK;1 � Im csK;j � ƒY \ .0; 1�:

This completes the proof.



M. Taniguchi 396

Corollary 9.10. For any 2-knot having �†.2; 3; 5/ as a Seifert hypersurface,

Im csK;j D
° 1

120
;
49

120
; 1

±

for any j 2 Z>0. For such a 2-knotK and its Seifert hypersurface Y 0, Y 0 has at least

two SU.2/-representations of �1.Y
0/.

Proof. We check that �†.2; 3; 5/ satisfy the assumption of Theorem 9.9. In [11],

Daemi proved

�†.2;3;5/.1/ D
1

120
and �†.2;3;5/.2/ D

49

120
:

Note thatƒ�†.2;3;5/ \ .0; 1� D ¹ 1
120
; 49
120
; 1º and the two elements in R�.†.2; 3; 5//

are non-degenerate. Therefore, l1
†.2;3;5/

D l2
†.2;3;5/

D 1.

9.2.3. Seifert hypersurfaces of 2-knots. In this section, we treat the following prob-

lem: what are the Seifert hypersurfaces for a given 2-knot? Solving this problem has

two parts. The first part is the construction of Seifert hypersurfaces of a given oriented

2-knot. For twisted spun 2-knots, Zeeman ([49]) constructed Seifert hypersurfaces. In

general, for a given 2-knot, there are several formulations of diagrams of them con-

taining the motion picture, the ch-diagram and the surface diagram ([26]). For such

diagrams, there are several ways to construct Seifert hypersurfaces ([7,8]). The second

part is to obstruct the existence of a certain class of 3-manifolds as Seifert hypersur-

faces.

Theorem 9.11. Let .p;q/ be a relative prime pair. Let k.p=q/ be a 2-bridge knot such

that †2.k.p=q// D L.p; q/, where †2.k/ is the double branched cover of k � S3.

(1) For an oriented 3-manifold Y , if the twisted spun knot K.k.p=q/; 2/ has Y

as a Seifert hypersurface, then

°

�
n2r

p
mod 1W 0 � n �

lp

2

m±

� ƒY \ .0; 1�;

where r is any integer satisfying qr � �1 modp.

(2) If Y is an oriented homology 3-sphere and rs.Y / < 1, lsY D 1 for some

s 2 Œ�1; 0� and

rs.Y / � brs.Y /c …
°

�
n2r

p
mod 1W 0 � n �

lp

2

m±

;

then K.k.p=q/; 2/ does not have Y as a Seifert hypersurface, where r is any

integer satisfying qr � �1 modp.
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(3) If Y is an oriented homology 3-sphere, ��Y .k/ < 1,

��Y .k/ � b��Y .k/c …
°

�
n2r

p
mod 1W 0 � n �

lp

2

m±

;

and lkY D 1 for some k 2 Z>0, thenK.k.p=q/; 2/ does not have Y as a Seifert

hypersurface, where r is any integer satisfying qr � �1 modp.

Proof. This is a corollary of Proposition 1.4, Proposition 1.2 and Theorem 1.6.

As a corollary, we have the following result:

Corollary 9.12. Let .p; q/ be a relative prime pair. Let k.p=q/ be a 2-bridge knot

such that†2.k.p=q//DL.p;q/, where†2.k/ is the double branched cover of k�S3.

Then any oriented homology 3-sphere given in Example 9.3 with 6n � 1 > p cannot

be a Seifert hypersurface ofK.k.p=q/; 2/.

Proof. This is a corollary of Example 9.3 and Theorem 9.11.

9.2.4. Embedding from homology 3-spheres into 4-manifolds. In this section,

we treat the existence problem of embeddings from 3-manifolds into 4-manifolds.

This problem has been studied in several situations [13, 22, 24, 25, 28]). Here, we

develop a gauge theoretic method and focus on a certain class of homology 3-spheres

and negative definite 4-manifolds. We give a relationship between existence of embed-

dings and SU.2/-representations of fundamental groups. First, we prove Theorem 1.13.

Theorem 9.13 (Theorem 1.13). SupposeX is a negative definite 4-manifold contain-

ing †.2; 3; 5/ as a submanifold. Then

Im csX;Œ�†.2;3;5/� D
° 1

120
;
49

120
; 1

±

� .0; 1�:

In particular, there exist at least four irreducible SU.2/-representations of �1.X/.

To prove Theorem 1.13, we will show the following theorem:

Theorem 9.14. Let X be a negative definite 4-manifold. Suppose that an oriented

homology 3-sphere Y is embedded in X and there exists k1; : : : ; km 2 Z>0 and

s1; : : : ; sn 2 Œ�1; 0� such that

[

k1;:::;km;
s1;:::;sn

.rs.Y / [ ��Y .k// D ƒY \ .0; 1/

and l
si
Y D l

li
Y D 1 for any i . Then

Im cs
j

X;ŒY �
D ƒY \ .0; 1/
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for any j 2 Z>0. In particular, for any other embedding Y 0 � X and r 2 ƒY \ .0; 1/

with ŒY 0�D ŒY �, there exists an SU.2/-representation �r on Y 0 such that csY 0.�r/D r .

Proof. By Theorem 1.11 and Proposition 1.12,

ƒY \ .0; 1� D
[

k1;:::;km
s1;:::;sn

.rs.Y / [ ��Y .k// � Im cs1X;ŒY � � ƒY \ .0; 1�:

This implies that Im cs1
X;ŒY �

D ƒY \ .0; 1�. We use Lemma 2.10 and obtain

ƒY \ .0; 1� D Im cs1X;ŒY � � Im cs
j

X;ŒY �
� ƒY \ .0; 1�:

This completes the proof.

Here we give a proof of Theorem 1.13.

Proof of Theorem 1.13. We check that �†.2; 3; 5/ satisfies the assumption of The-

orem 9.14. The proof is written in Corollary 9.10.

Theorem 9.15 (Theorem 1.15). Let Y be a Seifert homology 3-sphere of type †.a1;

: : : ; an/ with10

ƒ�
†.a1;:::;an/

\ Z D ;:

Suppose the Frøyshov invariant h.Y / of Y is non-zero. Then Y cannot be embedded in

any negative definite 4-manifoldX such that the SU.2/-representation spaceR.Xj;c/

of Xj;c is connected for any j .

Proof of Theorem 1.15. It is shown that �†.a1;:::;an/.1/ <1 if h.†.a1; : : : ; an// > 0

in [11]. Since the SU.2/-Chern–Simons functional of Y D †.a1; : : : ; an/ is Morse–

Bott, lY < 1. By Theorem 1.11, there exists l � lY such that

r�1.Y / � br�1.Y /c D �Y .1/� b�Y .1/c 2 Im cslX;Œ†.a1;:::;an/� :

Here, �Y .1/ 2 ƒ�
Y and the formula (51) implies that 1 ¤ �Y .1/ � b�Y .1/c 2 .0; 1�.

This implies that

Im cslX;Œ†.a1;:::;an/� \.0; 1/ ¤ ;:

Suppose that R.Xj;c/ is connected. Then, since cs
j
X;c is locally constant, we see that

Im cs
j
X;c D ¹1º.

As a corollary of Corollary 8.4, we can show that several SU.2/-representations

on some classes of Seifert homology 3-spheres are extendable.

10This condition can be seen as a combinatorial condition via (51).
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Corollary 9.16. Let .X; Y / be a couple consisting of a closed connected negat-

ive definite 4-manifold X and an oriented codimension-1-submanifold Y of X with

H�.Y IZ/ŠH�.S
3IZ/ and �W�1.Y /! SU.2/ be an SU.2/-representation of �1.Y /.

• Suppose k is odd and n is a positive integer. If Y D �†.2; 3; 6k � 1/ and �

is a representation corresponding to �.1;2;5k�1/ in (52), then � is extendable for

.X; Y /.

• Suppose k is even n is a positive integer. If Y D �†.2; 3; 6k � 1/ and � is a

representation corresponding to �.1;2;k/ in (52), then � is extendable for .X; Y /.

• If Y D �†.2; 3; 5; 7/ and � is any representation corresponding to .1; 1; 2; 4/,

then � is extendable for .X; Y /.

Proof. The following calculations have been checked in Section 9:

• if k is odd, then ls
�†.2;3;6k�1/

D 1,

csY .�.1;2;5k�1/#�# � � � #�/ D
1

24.6k � 1/
D rs.�†.2; 3; 6k � 1//;

and cs�1. 1
24.6k�1/

/ is the one point;

• if k is even, then ls
�†.2;3;6k�1/

D 1,

csY .�.1;2;k/#� � � � #�/ D
1

24.6k � 1/
D rs.�†.2; 3; 6k � 1//;

and cs�1. 1
24.6k�1/

/ is the one point;

• ls
�†.2;3;5;7/

D 1,

csY .�.1;1;2;4/#�# � � � #�/ D
1

840
D rs.�†.2; 3; 5; 7//;

and cs�1
Y .

1
840
/ \ zR�.Y / Š S2. Of course, S2 has a perfect Morse function.

Therefore, in each case, we can apply Corollary 8.4.

In the case of Y D �†.2; 3; 5; 7/, the SU.2/-representations corresponding to

.1; 1; 2; 4/ are parametrized by S2. Therefore, one can prove Theorem 1.14.

Theorem 9.17 (Theorem 1.14). Let X be a closed definite 4-manifold X containing

†.2; 3; 5; 7/ as a submanifold. Then there is an S2-componentC inR�.†.2; 3; 5; 7//

such that all elements in C can be extended to X . In particular, there exists an

uncountable family of irreducible SU.2/-representations of �1.X/.

On the other hand, there are several homology 3-spheres Y such that no irredu-

cible representation of Y is extendable for .S4; Y /.
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Example 9.18. Let Y be an oriented homology 3-sphere embedded into S4. Then no

irreducible representation is extendable for .S4; Y /. For example, if p is odd and k is

a positive integer, it is shown in [9] that †.p; pk C 1; pk C 2/ can be embedded in

to S4. Thus, every irreducible SU.2/-representation of †.p; pk C 1; pk C 2/ is not

extendable for .S4; Y /.

9.2.5. Fixed point theorems. We first prove Theorem 1.18.

Theorem 9.19 (Theorem 1.18). Let Y be an oriented homology 3-sphere and let h

be an orientation preserving self-diffeomorphism of Y .

(1) If rs.Y / < 1 and lsY < 1 for some s 2 Œ�1; 0�, then there exists a positive

number l � lsY such that

.h�/l WR�.Y / ! R�.Y /

has a fixed point.

(2) If ��Y .k/ < 1 and lkY < 1 for some k 2 Z>0, then there exists a positive

number l � lkY such that

.h�/l WR�.Y / ! R�.Y /

has a fixed point.

Proof of Theorem 1.18. We only prove (1) since (2) is similar. We apply Theorem 1.11

for the mapping torus Xh.Y / of hW Y ! Y . Then we obtain the inclusion

rs.Y / 2
[

1�j�ls
Y

Im cs
j

Xh.Y /;ŒY �
:

Therefore, there exists some l 2 ¹1; : : : ; lsY º such that R�.Xh.Y /l;ŒY �/ is non-empty.

Note that Xh.Y /l;ŒY � is diffeomorphic to Xhl .Y / so we can identify R�.Xh.Y /l;ŒY �/

with R�.Xhl .Y //. Since R�.Xh.Y /l;ŒY �/ is non-empty, we obtain an element of

R�.Xhl .Y //. This gives a fixed point of .hl/�.

Corollary 9.20. Fix a Seifert homology 3-sphere†.a1; : : : ; an/ with

R.a1; : : : ; an/ > 0 and ƒ�
�†.a1;:::;an/

\ Z D ;:

Let Y be an oriented homology 3-sphere such that

min¹aC bW a 2 ƒ�
�†.a1;:::;an/

[ Z; b 2 ƒ�
Y ; aC b � 0º >

1

4a1 � � � an
(53)

and

ƒ�
Y \ Z D ;: (54)
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Then, for any orientation preserving diffeomorphism h on �†.a1; : : : ; an/#Y , there

exists some l 2 Z>0 such that

.hl/�WR�.�†.a1; : : : ; an/#Y / ! R�.�†.a1; : : : ; an/#Y /

has a fixed point.

Proof. It is proved in [35, Corollary 1.4] that for a Seifert homology 3-sphere †.a1;

: : : ; an/ satisfying R.a1; : : : ; an/ > 0, one has r0.�†.a1; : : : ; an// D 1
4a1���an

. In

particular, 1
4a1:::an

2 ƒ�
�†.a1;:::;an/

. Set M WD �†.a1; : : : ; an/#Y . First, we use the

connected sum formula for r0:

1

4a1 � � � an
D r0.�†.a1; : : : ; an// � min¹r0.M/; r0.�Y /º: (55)

Since r0 is contained in the set of critical values of irreducible SU.2/-flat connections,

r0.M/ 2 ¹aC bW a 2 ƒ�†.a1;:::;an/; b 2 ƒY ; aC b > 0º: (56)

Here we used csY1#Y2.�1#�2/ D csY1.�1/ C csY2.�2/ for oriented 3-manifolds Y1

and Y2 and SU.2/-representations �1 and �2. On the other hand, by formula (51) for

critical values of cs�†.a1;:::;an/ andƒ�
�†.a1;:::;an/

\ Z D ;, we see

min¹aW a 2 ƒ�
�†.a1;:::;an/

\ R�0º D
1

4a1 � � � an
: (57)

If r0.M/ D a C b � 1
4a1���an

(we used (55) and (56)) for a 2 ƒ�
�†.a1;:::;an/

[ Z ,

b 2 ƒ�
Y [ Z, then b D 0 by our assumption (53). Then (57) implies a D 1

4a1���an
.

Moreover, by the condition (54), we have

cs�1
M

� 1

4a1 � � � an

�

D
°

�#��Y 2 zR.M/W cs�†.a1;:::;an/.�/ D
1

4a1 � � � an
;

� 2 zR.�†.a1; : : : ; an//
±

;

where ��Y is the product connection on �Y . Thus the Chern–Simons functional of

M is Morse–Bott at the level r0.M/ D 1
4a1���an

. By using Theorem 6.1, we conclude

l0M is finite. One can then apply Theorem 1.18 to complete the proof.

At the end of this section, we prove Theorem 1.19.

Theorem 9.21 (Theorem 1.19). For any orientation preserving diffeomorphism h on

†.2; 3; 5; 7/, the fixed point set of

h�WR�.†.2; 3; 5; 7// ! R�.†.2; 3; 5; 7//

is uncountable.
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Proof of Theorem 1.19. Theorem 1.14 implies that, for any orientation preserving

diffeomorphism h, Xh.Y / has an uncountable family of irreducible SU.2/-repres-

entations. Thus (29) implies the conclusion.
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