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Constructing modular categories from orbifold data

Vincentas Mulevičius and Ingo Runkel

Abstract. The notion of an orbifold datum A in a modular fusion category C was introduced
as part of a generalised orbifold construction for Reshetikhin–Turaev TQFTs by Carqueville,
Runkel, and Schaumann in 2018. In this paper, given a simple orbifold datum A in C , we intro-
duce a ribbon category CA and show that it is again a modular fusion category. The definition
of CA is motivated by properties of Wilson lines in the generalised orbifold. We analyse two
examples in detail: (i) when A is given by a simple commutative�-separable Frobenius algebra
A in C ; (ii) when A is an orbifold datum in C D Vect, built from a spherical fusion category � .
We show that, in case (i), CA is ribbon-equivalent to the category of local modules of A, and, in
case (ii), to the Drinfeld centre of � . The category CA thus unifies these two constructions into
a single algebraic setting.
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1. Introduction

A modular fusion category (MFC) is a semisimple modular tensor category, that is,
a fusion category which is equipped with a braiding and a ribbon twist, such that the
braiding satisfies a non-degeneracy condition. Modular fusion categories are import-
ant ingredients in several constructions in mathematics and mathematical physics,
such as link and three-manifold invariants, two-dimensional conformal field theory,
and topological phases of matter.
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Three “intrinsic” ways to produce examples of MFCs are:

1. if � is a spherical fusion category, one can construct its Drinfeld centre Z.�/,
which is a modular fusion category (see [20, Theorem 1.2]);

2. if C is an MFC and ifA2C is a commutative simple special Frobenius algebra,
then C loc

A , the category of so-called local A-modules, is again an MFC (see [16,
Theorem 4.5]);

3. if B DLg2G Bg is aG-crossed ribbon category for some finite groupG such
that its neutral component Be is modular, then BG , its G-equivariantisation,
also known as the gauging by G, is an MFC (see [17, Theorem 10.4] and [8,
Proposition 4.56]).

In [4] it was found that all three cases produce examples of “orbifold data” in an
MFC C , which means that they define so-called generalised orbifolds of Reshetikhin–
Turaev 3d TQFTs.

Below, we briefly recall the definition of an orbifold datum A in C and summarise
how it produces a new MFC CA. This is the main result of this paper. We then motivate
the algebraic construction of CA from 3d TQFT and from the generalised orbifold
construction.

1.1. Algebraic results

Let C be an MFC over an algebraically closed field k. An orbifold datum in C is a
tuple A D .A; T; ˛; N̨ ;  ; �/, where

A: a �-separable symmetric Frobenius algebra in C (�-separable means that � ı
� D idA, where � is the product and � the coproduct of A),

T : an A-AA-bimodule in C , where we abbreviate A˝ A by AA,

˛: an A-AAA bimodule map T ˝A;2 T ! T ˝A;1 T , where the additional index
indicates over which tensor factor of A˝ A the tensor product is taken,

N̨ : up to normalisation the inverse of ˛,

 ; �: normalisation factors  2 EndAA.A/� and � 2 k�.

These are subject to further conditions [3,4] which we recall in Section 2.3. The three
examples above give rise to orbifold data as follows [4].1

1We follow the conventions in [3,4]. As a consequence the constructions below only depend
on �2 rather than �. Hence, we will only give the value of �2 in the examples below.
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1. In this case, C D Vect, the category of finite-dimensional k-vector spaces. Let
	 be a set of representatives of isomorphism classes of simple objects in � .
Then

A D
M
i2	

End� .i/; T D
M
i;j;l2	

�.l; i ˝ j /;

˛, N̨ are defined via the associator of � , and

 .idi / D .dim i/1=2 � idi ; �2 D Dim.�/�1

(see Section 4.2).

2. Here, C is again an arbitrary MFC and we set

T D A; ˛ D N̨ D � ı �;

and
 D idA; �2 D 1

(see Section 4.1).

3. Here C DBe , the neutral component of B, which was assumed to be an MFC.
Choose a simple object mg 2 Bg for each g 2 G. Then one can take

A D
M
g2G

m�g ˝mg ; T D
M
g;h2G

m�gh ˝mg ˝mh;

and
 jm�g˝mg D .dimmg/

�1=2 id; �2 D 1=jGj
(see [4, Section 5]). Note that since the tensor product respects the G-grading,
one indeed has A; T 2 C .

Fix an orbifold datum A in C . We now turn to the main construction in this paper,
that of the category CA. Its objects are tuples .M; �1; �2; �1; �2/, where M is an
A-A-bimodule, �i WM ˝A T ! T ˝A;i M for i D 1; 2 are A-AA-bimodule maps,
and �i is – up to normalisation – inverse to �i . The �i , �i satisfy conditions listed in
Section 3.1. Morphisms in CA are bimodule maps compatible with the �i and �i .

We endow CA with the structure of a ribbon category (see Section 3.1). For
example, the tensor product of two objects .M; � ’s/ and .N; � ’s/ has as underlying
bimodule simply M ˝A N . We call the orbifold datum A simple if the tensor unit
1CA WD A is a simple object in CA. We stress that A can be simple in CA even if it is
not simple as a bimodule over itself. We show (Theorem 18):

Theorem 1. For C an MFC and A a simple orbifold datum in C , CA is also an MFC.
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Recall that the dimension of an MFC is defined as the sum over the squares of
the quantum dimensions of simple objects. The dimension of CA can be directly
expressed in terms of the constituents of the orbifold datum A. Namely, we show
that trC  

4 is non-zero and that

Dim CA D Dim C

�8 � .trC  4/2
: (1.1)

Let us also illustrate this in the first two examples. For example 1., Dim C D 1, �2 D
Dim.�/�1 and trC  

4 D Dim.�/ and so Dim CA D .Dim �/2. For example 2. we
have �2 D 1 and trC  

4 D dim.A/, so that Dim CA D Dim C= dim.A/2. Both results
are to be expected in light of the following theorem (Theorems 19 and 20).

Theorem 2. For the orbifold datum in example 1. we have the equivalence of ribbon
categories CA Š Z.�/, and for that in example 2. we have CA Š C loc

A .

This provides a unified proof of the modularity of Z.�/ and of C loc
A . In the third

example, the evident conjecture is that CA Š BG , but we do not treat this here.
Indeed, in this case �2 D 1=jGj, trC  

4 D jGj and the dimension formula (1.1) gives
Dim CA D Dim.Be/ jGj2, as expected. Further support is given in part 2 of the next
remark.

Remark 3. 1. Examples 2. and 3. can also be obtained by a construction using Hopf
monads developed in [6], but example 1 is in general not covered by that construction.

2. In [18] an enriched version of the Drinfeld centre was introduced.2 Let C ,
D be fusion categories and let C be in addition braided. Let F W C ! Z.D/ be a
braided functor. In the case that C is an MFC, as we consider here, the enriched centre
is F.C/0, i.e., the commutant of the image of C in Z.D/. The constructions 1–3
mentioned in the beginning are all instances of enriched centres. For case 1, this is
trivial, and for, cases 2 and 3, this is established by the following factorisations of
Drinfeld centres

Z.CA/ Š C rev � C loc
A ; Z.B/ Š .Be/

rev � BG ; (1.2)

where .�/rev refers to the category with inverse braiding and twist, see [7, Corol-
lary 3.30] and [5, Theorem 2]. It is therefore expected that CA is an enriched Drinfeld
centre in general. Conjecturally, the relevant category D which satisfies Z.D/ Š
C rev � CA is defined similarly to CA, but objects now are triples .M; �1; �1/ which

2We are grateful to David Penneys and David Reutter for bringing the enriched centre to
our attention and for explaining the relation to CA.
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correspondingly satisfy fewer conditions, cf. Remark 10. In particular, D itself is no
longer braided. This is elaborated in a separate paper [21].

Note that proving this equivalence would give as a corollary that C and CA are
Witt equivalent [7].

1.2. Motivation from three-dimensional TQFT

Given an MFC C , the Reshetikhin–Turaev construction [23, 24] provides a 3d TQFT
ZRT

C
, i.e., a symmetric monoidal functor

ZRT
C W bBord3.C/! Vectk: (1.3)

The source category is that of three-dimensional bordisms with embedded C -coloured
ribbon graphs, and the hat denotes a certain extension needed to absorb a glueing
anomaly, see [24] for details.

One can extend ZRT
C

to a larger bordism category bBorddef
3 .C/ of stratified bor-

disms [2], where the various strata are labelled by algebraic data in C : 3-strata are
unlabelled, or, equivalently, all labelled by the MFC C ; 2-strata, also known as sur-
face defects, are labelled by �-separable symmetric Frobenius algebras in C , see [2,
14, 15]; 1-strata are labelled by (bi)modules over an appropriate tensor product of
these algebras and 0-strata by the corresponding intertwiners, see [2] for details.

Starting from such a TQFT on stratified manifolds one can introduce the gener-
alised orbifold construction [3, 4]. The idea is to carry out a state sum construction
internal to the given TQFT. Roughly speaking, given an orbifold datum A one picks
a simplicial decomposition of a bordism, passes to the Poincaré dual cell decomposi-
tion, and decorates each 2-stratum byA, each 1-stratum by T and each 0-stratum by ˛
or N̨ , depending on orientations. Finally, in each 2-cell one inserts and in each 3-cell
one inserts �2. The conditions on A ensure that the value of ZRT

C
on such a stratified

bordism is independent of the choice of simplicial decomposition. It is shown in [4]
that one obtains a new 3d TQFT, called the generalised orbifold,

Z
orb;A
C
W bBord3 ! Vectk; (1.4)

which, at least at this point, is only defined on bordisms without embedded ribbon
graphs.

The name “generalised orbifold” derives from the observation that example 3 is
an actual orbifold by G, but that the same construction also covers examples 1 and 2.
This is similar to the use of the term “generalised symmetries” in [6].

Two natural questions are now whether Zorb;A
C

is equivalent to a Reshetikhin–
Turaev type TQFT ZRT

C 0 for some other MFC C 0, and, if so, how to obtain C 0 from C

and A. The second question was the motivation to undertake the research presented
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Figure 1.1. (a) Line defects in a surface defect are labelled by bimodulesM . (b) T -crossings �1,
�2 into adjacent surface defects. (c) Example of a compatibility condition between the T -cross-
ings �i and ˛. (d) Example of the T -crossing for the tensor product M ˝A N of Wilson line
defects. (e) Braiding of two Wilson line defects via a surface defect bubble. The various inser-
tions of  and � are result from the orbifold construction and can be ignored at first.
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here. Indeed, we conjecture that C 0 D CA, and will return to this question in a future
publication.

The idea to extract C 0 is to investigate how to describe ribbon graphs – or in
other words Wilson lines and their junctions – in the generalised orbifold TQFT. We
will think of such ribbon graphs as line defects embedded in the 2-strata of orbifold
stratification. By [2], such line defects are given by A-A-bimodules (Figure 1.1 (a)).
The line defects need to be able to cross T -labelled 1-strata into adjacent 2-strata.
Such junctions are described precisely by the data �i , �i (Figure 1.1 (b)). To achieve
independence of the initial simplicial decomposition, one has to be able to slide line
defects across junction points of T -defects in various ways, for example as in Fig-
ure 1.1 (c). The tensor product is given by placing two line defects parallel to each
other, and the T -crossings are described in this way, too (Figure 1.1 (d)). Finally, the
braiding is obtained by inserting a bubble on a 2-stratum and using this to make one
line-defect pass over another (Figure 1.1 (e)).

In the main text we will not use the connection between the algebraic definition
of CA and line defects in the generalised orbifold TQFT, but the entire construction
was found by exploiting this relation.

This paper is organised as follows. In Section 2 we recall some basic definitions
and facts about algebras and modules, and then give the definition of an orbifold
datum A. Section 3 contains the definition of the category CA and of its ribbon struc-
ture, as well as our main theorem that CA is a modular fusion category. In Section 4
we present two examples in detail: local modules and the Drinfeld centre. Some use-
ful identities to work with the category CA and a variant of the monadicity theorem
are collected in Appendix A.

2. Orbifold data

In this section we will recall the definition of an orbifold datum from [4]. To do so, we
first list our conventions for spherical and modular fusion categories and summarise
the definition of Frobenius algebras and their modules in a tensor category.

2.1. Conventions

Let k be an algebraically closed field. For a spherical fusion category � over k, an
object X 2 � and a morphism f WX ! X , denote by tr� f 2 k the trace of f and by
jX j� D tr� idX the categorical dimension ofX . Irr� will always denote a set of repres-
entatives of isomorphism classes of simple objects of � and we will assume that the
tensor unit 1 2 � is in Irr� . The dimension of � is the sum Dim � WDPk2Irr�

.jkj� /2.
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For k 2 Irr� we have jkj� ¤ 0, see [9, Proposition 4.8.4]. If in addition the character-
istic of k is zero, then automatically also Dim � ¤ 0 (see [10, Theorem 2.3]), but in
non-zero characteristic it can happen that Dim � D 0 [10, Section 9.1].

Throughout the entire paper we will extensively use string diagram notation. Dia-
grams are to be read from bottom to top, and a downwards directed strand represents
the dual of an object. The evaluation/coevaluation morphisms of an object X 2 � will
be denoted by

ŒevX WX� ˝X ! 1�D
X X

; ŒcoevX W 1! X ˝X��D XX
;

ŒeevX WX ˝X� ! 1�D
XX
; ŒecoevX W 1! X� ˝X�D X X

:

(2.1)

Labels for objects and morphisms will be omitted whenever they are clear from the
context.

Let C be a braided fusion category. For all X; Y 2 C , the braiding morphisms
cX;Y WX ˝ Y ! Y ˝X , and their inverses will be depicted by

cX;Y D
X Y

; c�1X;Y D
XY

: (2.2)

A braided spherical fusion category C is automatically ribbon (see, e.g., [25,
Lemma 4.5]), with the twist morphism of an object X 2 C built out of braiding and
duality morphisms as

�X WD

X

D

X

; ��1X WD

X

D

X

: (2.3)

A ribbon fusion category is also called premodular. A premodular category C is
called modular if the matrix

si;j WD tr� .cj;i ı ci;j / D
i j

; i; j 2 IrrC ; (2.4)

is invertible.
We fix a modular fusion category C over k. For notational simplicity, C will be

assumed to have strict monoidal and pivotal structures (without loss of generality [19,
22]), and the symbol˝ for the monoidal product will sometimes be omitted.
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2.2. Frobenius algebras and their modules

In this section we briefly recall the notion of Frobenius algebras and their modules in
C , more details can be found, e.g., in [12].

A Frobenius algebra in C is a tuple

A 2 C ; �WA˝ A! A; �W 1! A; �WA! A˝ A; "WA! 1; (2.5)

where .A;�;�/ is an associative unital algebra and .A;�;"/ is a coassociative counital
coalgebra, such that3

D D :

A A A AA A

(2.6)

The unit (resp. counit) will be denoted by

A

;

resp.

A

:

A Frobenius algebra is called symmetric if

D

A A

A A

(2.7a)

and �-separable if

D :

A A

A A

(2.7b)

A (left-)module of a Frobenius algebra A is a module .M 2 C ; �WA˝M !M/

of the underlying algebra. It is simultaneously a comodule with the coaction given by

ŒM
.�ı�/˝idM��������! A˝ A˝M idA˝�����! A˝M�;

3In the online version, A-coloured strands are drawn in green.
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or in graphical notation

WD :

M M

(2.8)

One easily generalises this to right modules and bimodules of a Frobenius algebra.
Let ACA be the category of A-A-bimodules. As usual, it is a tensor category with

the monoidal product M ˝A N of M;N 2 ACA given by

M ˝A N WD cokerŒM ˝ A˝N �M˝idN � idM ˝�N��������������!M ˝N�; (2.9)

where �M and �N are the corresponding right and left actions. By [13, Proposi-
tion 5.24 and Remark 5.25]4 we have

Proposition 4. For A 2 C a �-separable Frobenius algebra, ACA is a finitely semi-
simple5 monoidal category.

If A is a �-separable Frobenius algebra, M ˝A N is isomorphic to the image of
the idempotent

WD :

M N M N

(2.10)

The projection � WM ˝N !M ˝A N has a section � in ACA, and � and � then split
the idempotent in (2.10). The graphical notation we will use is

� D

M N

M˝AN

and � D

M˝AN

M N

: (2.11)

For any object X 2 C , a morphism f WX ! M ˝A N or gWM ˝A N ! X can be
uniquely given by morphisms

Of WX !M ˝N; OgWM ˝N ! X;

4[13] uses a special Frobenius algebra A, which is the same as �-separable, but with the
extra assumption dimC A ¤ 0; for this particular result, this assumption is not necessary.

5By “finitely semisimple” we mean that there are finitely many isomorphism classes of
simple objects, and that each object is isomorphic to a finite direct sum of simple objects.
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such that

D ; D ;Of OgOf Og

X M NX M N

XM N XM N

(2.12)

namely
Of WD � ı f and Og WD g ı �:

By abuse of notation, the overhats like in (2.12) will be omitted in the following.
If A;B 2 C are �-separable Frobenius algebras, so is A˝ B , where we equip it

with product

;

A B BA

(2.13a)

coproduct

;

A B

(2.13b)

unit

;

A B

(2.13c)

and counit

:

A B

(2.13d)

An A˝ B module M is the same as a simultaneous A and B module such that

D :

A B M A B M

1

2

2

1
(2.14)

Here and for the rest of the paper we indicate the action of the first and second tensor
factor by indices 1; 2.
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Let M be a right AB-module and K, L be left A- and B-modules respectively.
We define the following partial tensor products

M ˝1 K WD im ; M ˝2 L WD im ;A B

M K M L

1 2

(2.15)

where the horizontal lines denote the idempotents as in (2.10). Note that M ˝1 K
(resp. M ˝2 L) is a right B-module (resp. right A-module).

We will often encounter A-AA-bimodules and their partial tensor products. In this
case, the left action will be indicated by 0whenever it is necessary to avoid ambiguity.
The two right actions will be distinguished by indices 1, 2, like in (2.14). For an
A-AA-bimodule M , the dual M � is an AA-A-bimodule, M ˝1 M , M ˝2 M are
A-AAA bimodules, M � ˝0M is an AA-AA-bimodule, etc.

2.3. Orbifold data for an MFC

Here we recall the definition of an orbifold datum as given in [4, Definition 3.4]
(where it is called a “special orbifold datum”).

Definition 2.1. An orbifold datum in C is a tuple A D .A; T; ˛; N̨ ;  ; �/, where

• A is a symmetric �-separable Frobenius algebra in C ;

• T is an A-AA bimodule in C ;

• the maps
˛WT ˝2 T ! T ˝1 T; N̨ WT ˝1 T ! T ˝2 T

are A-AAA bimodule morphisms;

• the map
 WA! A

is an invertible A-A-bimodule morphism;

• � 2 k�.

These are subject to the conditions (O1)–(O8) in Figure 2.1, where the following
notation is used:

WD ; WD ; WD 0
 0

 i

 i
  !i

T T T T T T

i ; i=1,2. (2.16)

As mentioned in the introduction, [4] provides three examples of orbifold data.
We will look at two of them in detail in Section 4.
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(O8)2

(O6) (O7)

(O4) (O5)

(O2) (O3)

(O1)

T T T T TT TT

T T T

A A A A

0 12

T T T T T T T T

T T T T T T T T

T T T T TT

12

1 1 2 2

1 2

N̨

˛

˛

˛

˛

˛

˛

N̨ ˛

N̨ ˛

N̨˛

N̨ ˛

N̨˛

D D

D D

D D

D D

D

!21 !22 22
 21

 22  20

 22  21

 2
0  2

2

 2
1  2

2

 2

 20

 2
0  2

0

 20  20

Figure 2.1. Identities an orbifold datum has to satisfy. All these string diagrams are drawn in C ,
but by the comment below (2.12) they induce identities also between the appropriate tensor
products over A in ACA. To manipulate expressions involving orbifold data it is best to first
ignore all the actions of  , which is why we draw them in grey.
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3. The category of Wilson lines

In this section, we give the main definition of this paper and prove our main result,
namely we define the category CA of Wilson lines and show that it is a modular fusion
category.

For the remainder of this section, we fix an MFC C and an orbifold datum A D
.A; T; ˛; N̨ ;  ; �/ in C .

3.1. Definition of CA as linear category

Definition 3.1. Define the category CA to have

• Objects: tuples .M; �1; �2; �1; �2/, where

– M is an A-Aßbimodule;

– �1WM ˝0 T ! T ˝1M , �2WM ˝0 T ! T ˝2M , �1WT ˝1M !M ˝0 T ,
�2WT ˝2M !M ˝0 T are A-AAA-bimodule morphisms, denoted by

�i WD

M T

i
; �i WD

MT

i
; i D 1; 2; (3.1)

such that the identities in (T1)–(T7) in Figure 3.1 are satisfied. (Recall from
the end of Section 2.2 that the notation˝0 refers to the left-A-action on T .)

• Morphisms: A morphism f W .M; �M1 ; �M2 ; �M1 ; �M2 /! .N; �N1 ; �
N
2 ; �

N
1 ; �

N
2 / is an

A-A-bimodule morphism f WM ! N , such that

�Ni ı .f ˝0 idT / D .idT ˝if / ı �Mi ; i D 1; 2;

or, graphically,

D ; i D 1; 2:

M T M T

NT NT

M
i

N
i

f

f

(M)

Note that (T4)–(T5) imply that �i is uniquely determined by �i . We will refer to the
morphisms �1, �2 as T -crossings and to �1, �2 as their pseudo-inverses.
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Example 5. For each �2Z, .A;��1 ; �
�
2 ; �

�
1 ; �

�
2 / is an object of CA, where the T -cross-

ings are

��i WD
 
0

 2
i

i

A T

; ��i WD
 2
0

 
i

i

AT

; i D 1; 2: (3.2)

Moreover, all these objects are isomorphic in CA. Indeed, define a morphism

f W .A; ��1 ; ��2 ; ��1 ; ��2 /! .A; �
�
1 ; �

�
2 ; �

�
1 ; �

�
2 /

to be the bimodule map
f D  ���:

For i D 1; 2 one has

D D

D D ;
 
0

 2
i

i

i

i

A T A T A T

A T A T

f f

f

i

i

 
0

 
2

i  
2

i

 
C

i

 
i

i.e., f is an invertible morphism in CA.

For M 2 ACA, the following notation will be used to handle  -insertions:

WD ; WD ; WD :

M M M M M M

   M
l

 Mr
 M
l

 Mr
!M (3.3)

By abuse of notation, the label M in  M
l

,  Mr , !M will be omitted whenever it is
clear from the context.

Definitions 2.1 and 3.1 imply a large number of additional algebraic identities,
which will be used in computations below. We list several of them in Section A.1.
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M T T M T T M T T M T T

M T T M T T

M T M T MT MT

TM TM T M T M

i

i

i

i

i

i

i

i

i

i

2
2

1

2

2

2

1

1

 20

 20

 20

 20

 20

 20
 2
i

 2
i

 2
0

 2
0

 2
i

 2
i

˛ ˛ ˛ ˛

˛ ˛

(T1) (T2)D D

(T3)D

(T4) (T5)D D i D 1; 2

(T6) (T7)D D i D 1; 2

Figure 3.1. Identities for an object of CA.

3.2. CA as ribbon category

We equip CA with the following monoidal structure:

• product:

.M; �M1 ; �
M
2 ; �

M
1 ; �

M
2 /˝ .N; �N1 ; �N2 ; �N1 ; �N2 /

WD .M ˝A N; �M;N1 ; �
M;N
2 ; �

M;N
1 ; �

M;N
2 /;
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where the T -crossings are

�
M;N
i WD

TM N

i

i
!i ; �

M;N
i WD

TM N

i

i
!i ; i D 1; 2I (3.4)

• unit: 1CA D .A; �11 ; �12 ; �11 ; �12 / from Example 5 (with the choice �D 1), i.e., with
the T -crossings

WD ; WD ; i D 1; 2Ii i

TA TA T A T A

ii

! 1
i

! 1
i

(3.5)

• associators and unitors: as in ACA.

One checks that �M;N satisfies the conditions (T1)–(T7) of Figure 3.1 of a T -crossing.
For example, to check (T1) for �M;N1 , one first applies (T1) for �M1 and �N1 separately.
This generates two insertions of  20 , one of which combines with !1 in (3.4) into the
two insertions of !1 required for the two copies of �M;N1 . Note that (T1) would fail
without the !i in (3.4).

The remaining conditions for CA to be a monoidal category follow from those
in ACA.

Definition 3.2. We call an orbifold datum A in C simple if dim EndCA

�
1CA

� D 1.

From now on, we will omit the T -crossings when referring to an object of CA. If
M is an object of CA, so is the dual bimodule M �, where the T -crossings are

WD ; WD i D 1; 2i

TM TM T M T M

i
i i

(3.6)

(note that  M
�

l
D . Mr /

� and  M
�

r D . M
l
/�). M � is a left and right dual of M

simultaneously, with evaluation/coevaluation morphisms given by

ŒevM WM � ˝AM ! A� WD
A

M M
 l

 1
r
; (3.7a)

ŒcoevM WA!M ˝AM �� WD
MM

A

 r

 1
l

; (3.7b)
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ŒeevM WM ˝AM � ! A� WD
MM

A

 r

 1
l

; (3.7c)

ŒecoevM WA!M � ˝AM� WD
M M

A

 l
 1
r : (3.7d)

The various insertions of  l and  r are necessary to make the dualities into morph-
isms in CA. The four zig-zag identities follow from those in ACA, the  -insertions
cancel each other in each case. The above duality morphisms equip CA with pivotal
structure (for that it is enough to check that the identities in [1, Lemma 2.12] hold).

For a pair of objects M;N 2 CA, define the morphisms

cM;N WM ˝A N ! N ˝AM

and
c�1M;N WN ˝AM !M ˝A N

in ACA as follows:

2 2cM;N WD ; c 1
M;N WD :

M N MN

MN M N

1 2

2 1

2 1

1 2

T T

 
0

 
0

 
0

 
0

!2

!2

!2

!2
(3.8)

That the notation c�1M;N is indeed justified is part of the claim in Proposition 7 below.

Lemma 6. For all M;N 2 CA, the following identities hold:

D ; D :

TM N TM N TMN TMN

TN M TN M TNM TNM

2

1

2

1

1

2

1

2

cM;N c 1
M;N

 
0

 
0

 
0

 
0 2

0
 2
0

 2
l

 2
l

 2
l

 2
l

(3.9)
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Proof. Using also the identities in Section A.1 (and which are denoted by a prime,
e.g., (T160)) for the first equality one has6

2

22

22

22(O6)D (T4)D
(T1)

(T3)D (T160)D

(T140)D (T6)D

(O6)D (O8)D :

TM N TM N

TMN
TM N
TMN

TM N
TMN

TM N

TMN

TM N
TMN

TM N

TMN

TM N TM N

TMN TMN
TMN

T T

T T

T

T

T

1

2

1

2

1

2

1

2

1

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

2

2

2

1

2

1

2

1

2

1

2

1

2

1

2

cM;N

N̨

˛

N̨

˛

N̨

˛

N̨

˛

N̨

˛

N̨

˛

 2
0

 
0  

0

 
0

 
0

 
0

 
0

 
0  

0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 2
0

 2
2

 2
2

 2
2  2

2

 2
2  2

2

 2
2  2

2

 2
2

 2
2

 2
2

 2
2

 2
1

 2
1  2

1

 2
1  2

1

 2
1

 2
l

 2
l

 2
l

 2
l

 2
l

 2
l

 2
l

!2

!2

!2

!2

!2

!2

!2

!2

2

 2
2

!2

Similarly, one can show the second identity.

6As already mentioned in Figure 2.1, in this and the following computations it is helpful to
ignore the �- and  -insertions at first and only verify that these also work out as a second step.
To make this easier, all  ’s are shown in grey in string diagrams.
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Proposition 7. ¹cM;N ºM;N2CA defines a braiding on CA.

Proof. One must check that for M;N 2 CA, cM;N and c�1M;N are natural in M , N ,
satisfy the hexagon identities, are inverses of each other and that the identity (M)
holds. This can be done by repeatedly applying (O1)–(O8), (T1)–(T7), and (M); we
only show one of the hexagon identities for cM;N . Using Lemma 6 one gets

2 2

22D (3.9)D

(T5)D D

D :

cM;N cM;N

cM;L

cM;NL

M N L

M N˝L

MN˝L

M MN L N˝L

M MN L N˝L

M N L M N L

MN L
MN L MN L

1

2

1

2

1

2

1
2

1

2

1

2

1

2

1

1

1

2
1

2 1

2

T T

!2

!2

!2

!2

!2

!2

!2

!2

 2
0

 2
0

 2
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

 
0

T

 2
l

 2
l

 2
l

Proposition 8. CA is spherical.

Proof. One needs to check that for all M 2 CA and f 2 EndCA , the left and right
traces of f are equal, i.e.,

eevM ı .f ˝ idM�/ ı coevM D evM ı.idM� ˝f / ı ecoevM :
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We have

2

2

2

2

2

2

2

(3.7)D (O8)D

(T5)D
(M)

(T6)D

D D

D D

D D ;

. /

. /

coevM

evM

coevM

T

Mf Mf M

f

M

f

M

f

M

f Mf

M

f
M

f

M f M f

T T

T T

T

T

A A A

A A A

A A

A A

A A

A A

A A

A A

A A

A A

1

2

2

2

2

2

1

1

1

1

1

2

2

2

2

2

2

2

2

 2
l

 2r

 2r

 4

!2
1

 2
1

 2
1

 2
2  2r

 2

 2
1

 2
1

 2
1

 2
1

!2 !2

!2

 2

 2  2

 2
1

 2
1

 2
1

 2  2

 2
l

 2
l

 2
r

!2

evM

where in step .�/ one uses that C is ribbon to flip the rightmost part of the M -ribbon
around the back of the circular T -ribbon (recall that all string diagrams in this section
are drawn in C ). For step .��/ one basically runs the first four steps in reverse order.
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Remark 9. 1. For M;N 2 CA let

�0WM ˝A N ˝0 T ! N ˝AM ˝0 T

be the morphism on the left-hand side of the first identity in Lemma 6 and denote

� WD .idN ˝A idM ˝0. 22 ı  21 /// ı�0 � �2 (3.10)

Then one has cM;N D trC ;T �, where trC ;T denotes the partial trace with respect to T ,
taken in C .

2. In what follows we show that CA is multifusion (see [9] for the definition; a
multifusion category with simple tensor unit is fusion). Proposition 8 then implies that
CA is ribbon (see Section 2.1). The twist of an object M 2 CA is obtained as in (2.3),
or, explicitly,

2
M

(2.3)WD
(3.7)

(3.8)D :cM;M

 2
l

 2r

 2r

!2

!2

M M

M M

M

2

1

2

1

(3.11)

3.3. Semisimplicity

We will show the semisimplicity of CA by exploiting a sequence of adjunctions. These
will involve some auxiliary categories D1, D2, which we now define.

Definition 3.3. Define the categories Di , i D 1; 2 as follows:

• objects of Di are triples .M; �i ; �i /, where M 2 ACA and

�i WM ˝0 T ! T ˝i M

is a T -crossing with pseudo-inverse �i , i.e., it satisfies the conditions in (T1)
and (T4)–(T7) of Figure 3.1 (for i D 1) and (T3)–(T7) (for i D 2);

• morphisms of Di are bimodule morphisms, satisfying the identity (M) (for the
given value of i only).

Remark 10. The categories D1, D2 can be interpreted in the orbifold TQFT setting
briefly outlined in Section 1.2. Namely, they describe Wilson lines that live on an
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interface between the TQFT described by C and the TQFT given by the orbifold
datum A. D1, D2 are also candidates for the category D alluded to in Remark 3. This
is further elaborated in [21].

We will now define four functors:

ACA D1

D2 CA

 !H1

 ! H2  ! H21

 !H12

(3.12)

Namely, for any bimodule M 2 ACA, define two bimodules H1.M/ and H2.M/

together with T -crossings �H1.M/
1 , �H2.M/

2 and their pseudo-inverses by

H1.M/ WD im

MT

1

2

1

2

T

; H2.M/ WD im

TMT

2

1

2

1

; (3.13)

�
H1.M/
1 WD

T H1.M/

TH1.M/

M

TT

!1 N̨

˛

; �
H2.M/
2 WD

T H2.M/

TH2.M/

M

TT

!2 ˛

N̨
; (3.14)

�
H1.M/
1 WD

TH1.M/

T H1.M/

M

TT

!1N̨

˛

; �
H2.M/
2 WD

TH2.M/

T H2.M/

M

TT

!2
˛

N̨
: (3.15)

It is easy to check that H1.M/, H2.M/ are objects of D1 and D2, respectively.
Next, forK 2D2 defineH12.K/ to have the same underlying bimodule asH1.K/,

and set
�
H12.K/
1 D �H1.K/1 ; �

H12.K/
1 D �H1.K/1 : (3.16)
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(a) (b)

M

T

M
T T

T
T

T

TT

Figure 3.2. Stratifications corresponding to (a) H12 ıH2.M/ and (b) H21 ıH1.M/.

The T -crossings �2 are defined as follows:

�
H12.K/
2 WD

H12.K/

K

T

H12.K/ T

2 TT

N̨

˛
!2

!2

; �
H12.K/
2 WD

K

H12.K/ T

H12.K/T

2 TT

N̨

˛
!2

!2

: (3.17)

For H21 one proceeds analogously. Given L 2 D1, H21.L/ has the same bimodule
as H2.L/, the T -crossings �2 agree with those of H2, while the T -crossings �1 are
given by

�
H21.L/
1 WD

N̨

˛

L

TT

!1

!1

1

T H21.L/

TH21.L/

; �
H21.L/
1 WD

N̨

˛

L

TT

!1

!1

1

TH21.L/

T H21.L/

: (3.18)

One verifies that this makes H12.K/, H21.L/ into objects of CA.
On a morphism f each functor acts as � ı .idT ˝f ˝ idT �/ ı �, with � , � the

corresponding projection and embedding.

Remark 11. Let M 2 ACA. As Wilson lines in the orbifold TQFT from Section 1.2,
H12 ıH2.M/ and H21 ıH1.M/ correspond to the stratifications in Figure 3.2. For
this reason, we call these functors “pipe functors.”
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As explained in Section A.2, for any pair of k-linear categories A, B, a biad-
junction between functors X WA! B, Y WB ! A is called separable, if the natural
transformation

" ı Q�W IdB ) IdB

is invertible (here Q�W IdB)XY is the unit of the adjunction Y 7��X and "WXY ) IdB

is the counit of the adjunction X 7��Y ). Suppose now that the category A is finitely
semisimple, B is idempotent complete, and that there exists a separable biadjunction
between A and B. Then it is shown in Proposition 27 that B is finitely semisimple as
well.

Consider the following commuting square of forgetful functors:

ACA D1

D2 CA

 !U1

 !U2
 !U12

 !U21 : (3.19)

We have:

Proposition 12. The pairs

.H1; U1/; .H12; U12/; .H2; U2/; .H21; U21/

are pairs of biadjoint functors and in each case the biadjunction is separable.

Proof. We show this for .H1; U1/ only, the proofs for other cases are similar. The
biadjunction is given by maps

D1.H1M;N/!ACA.M;U1N/

'M;N W

N

TT M

f 7!

M

N
1

f
T

!2  2

! 1

� �22;

'�1M;N W

N

TT M

1

g
 2

!

7!

M

N

g;

D1.K;H1L/!ACA.U1K;L/

�
K;L
W

TT L

K

f
7!

L

K
1

f

T

!2  2

! 1

� �2;

��1
K;L
W

TT L

K

1

g

 2
!

7!

L

K

g;

for all M;L 2 ACA, N;K 2 D1. As an example, we will check that 'M;N and '�1M;N
are indeed inverses of each other. Let f 2 D1.H1M;N/, g 2 ACA.M;U1N/. Then

'M;N ı '�1M;N .g/ D g
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follows by applying (T5) and (O8) to remove the T -loop while the other composition
needs the following more elaborate computation:

' 1
M;N ı 'M;N .f / D

(O4)D

(T140)D
(T4)

deformD

(3.15)D (O3)D

(O3)D (O8)D f:

2 2

2 2

2

2

2

TT M TT M

N N

TT M

N

TT M

N

TT M

N

TT M

N

TT M

N

1

1

1

1

1

1

2

2

T
f f

f

f f

f

T

N̨ ˛
˛

N̨N̨˛

N̨˛

N̨

˛

N̨

˛

 2
 2  2

 2

 2

 2

 2

 2

 2

 2  2

 2

!2 !2

!2

!2

 2
1

 2
2

 2
2

 2
2

 2
2

 2
2

 2
2

 2
1

!1

 2
0

 2
0

 2
0

 2
2

 1

 1

 2
0

Similarly, �
K;L

and ��1
K;L

are inverses of each other. One also checks that '�1M;N .g/,
��1
K;L

.g/ are morphisms in D1.
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As always, the counit "WH1U1) IdD1 is given by

¹"N D '�1U1N;N .idU1N /ºN2D1

and the unit Q�W IdD1 ) H1U1 by

¹f�N D ��1
N;U1N

.idU1N /ºN2D1 :

For all N 2 D1 one has

"N ı f�N D
M

T

1

1

 2

 2

!

!

(T4)D

M

T
 2

 2
2

 2
1

(O8)D

M

� ��2;

i.e., "N ı f�N is invertible and hence the biadjunction is separable.

Remark 13. Note that the diagram in (3.19) commutes with identity natural iso-
morphism,

U WD U1 ı U21 D U2 ı U12WCA ! ACA;

as each path sends an object in CA to its underlying bimodule. By Proposition 12,
bothH21 ıH1 andH12 ıH2 are biadjoint to U , and hence in particular naturally iso-
morphic. Thus, the diagram in (3.12) commutes as well. In view of the stratifications
in Figure 3.2 this is not surprising, and an explicit natural isomorphism can be build
from ˛ and N̨ . Below we will work exclusively with the composition

P WD H12 ıH2WACA ! CA; (3.20)

where “P ” stands for “pipe functor.”

Proposition 14. The categories D1, D2 and CA are finitely semisimple.

Proof. From Proposition 4 we already know that ACA is finitely semisimple. There-
fore, by Proposition 12 and the argument preceding it, it is enough to show that D1,
D2 and CA are idempotent complete. We show this for D1 only, since the other cases
are analogous. Let pWM !M be an idempotent in D1. Then it is also an idempotent
in ACA and hence has a retract .S; e; r/ in ACA. Equip S with the morphisms:

�S1 WD

TS

T S

r

e

M
1 ; �S1 WD

TS

ST

r

e

M
1 : (3.21)
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They satisfy the axioms of T -crossings, e.g.,

D D D

D D D ;
. /

T TS T TS T TS T TS

T TS T TS T TS

T T S T T S T T S T T S

T T S T T S T T S

 2
0

 2
0

S
 2
0  2

0

 2
0

1 111 1
1

1

1 11 1

M

M M

M
M

M

˛ ˛ ˛ ˛

˛ ˛ ˛

1

e

r

e

r

e

r

p

e

rp

e

re
r

where in step .�/ we used that p is a morphism in D1. The argument that e and r are
morphisms in D1 is similar. .S; e; r/ is therefore a retract in D1.

Combining Propositions 8 and 14 with Remark 9, we get:

Corollary 15. CA is a ribbon multifusion category.

3.4. Modularity

In this section we will in addition assume that A is a simple orbifold datum (see
Definition 3.2), so that by Corollary 15, CA is a ribbon fusion category. We will show
that CA is in fact modular.

Let
IndAWC ! ACA; X 7! A˝X ˝ A

be the induced bimodule functor. It is biadjoint to the forgetful functorUAAWACA! C

(e.g., apply the adjunction for left modules in [13, Propositions 4.10 and 4.11] to the
algebra A˝ Aop).

We will use the pipe functor

P D H12 ıH2WACA ! CA;

which is biadjoint to the forgetful functor U WCA!ACA, cf. Remark 13. It will prove
useful to note that, e.g., forM 2ACA, the braiding of P.M/ with any object N 2 CA
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can be simplified as follows:

cPM;N D

P.M/ N

P.M/N

T T

T T

M

1

1

1

1

 l

 r

!

!

!

; (3.22a)

c�1N;PM D

P.M/ N

P.M/N

T T

T T

M

2

2

 l

 r

! : (3.22b)

Let M; N 2 CA and f WM ! N be a morphism in ACA. Define the averaged
morphism Nf WM ! N to be the A-A-bimodule morphism

Nf WD

2

1

1

2

N

M

T

T

f

!2

!2 2
1

 2
2 � �4: (3.23)

One can check that Nf is a morphism in CA. Moreover, if f 2 CA, then f D Nf ,
i.e., averaging is an idempotent on the morphism spaces of ACA, projecting onto the
morphism spaces of CA.

Recall the notations jX jC , trC f , IrrC , and Dim C introduced in Section 2.1. For
the remainder of the section, a thick loop (red in the online version) in a string diagram
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D will mean then sum
P
k2IrrC

jkjCDk , where Dk denotes the string diagram in
which the red loop is labelled by k 2 IrrC .

Lemma 16. (cf. [16, Lemma 4.6]) A premodular category E is modular if and only
if, for all i 2 IrrE ,

i

D c � ıi;1 �

i

(3.24)

for some c ¤ 0. Moreover, in this case one necessarily has c D Dim E .

A useful corollary of Lemma 16 is the following identity, which holds for any
modular fusion category C and an object X 2 C :

X

D Dim C �
X
˛

X

N̨
˛

; (3.25)

where ˛ and N̨ run over a basis of C.1;X/ and its dual (with respect to the composition
pairing C.1; X/˝k C.X; 1/! C.1; 1/ Š k).

Lemma 17. Let A be a simple orbifold datum in C . ForM 2CA and f 2 EndCA.M/

one has
trCA f � trC  

4 D trC .!
2
M ı f /: (3.26)

In particular, jM jCA � trC  
4 D trC !

2
M .

Proof. From expressions (3.7) one gets

A

A

f M

 2r

 2
l

.�/D trCA f �

A

A

H) f

A

M

 2r

 2

D trCA f
A

 4 ;

where in .�/ we used that A is simple in CA.

Theorem 18. Let A be a simple orbifold datum in C . Then

i. CA is a modular fusion category;

ii. trC  
4 ¤ 0 and Dim CA D Dim C

�8�.trC  4/2 .



Constructing modular categories from orbifold data 489

Proof. Let i 2 C , � 2ACA,� 2 CA be simple objects. One has the following decom-
positions (the label over the isomorphism sign indicates the category it holds in)

�
CŠ
M
k2IrrC

k ˝ C.k; �/; (3.27a)

�
ACAŠ

M
�2Irr

ACA

� ˝ACA.�;�/; (3.27b)

AiA
ACAŠ

M
�2Irr

ACA

� ˝ C.i; �/; (3.27c)

P.�/
CAŠ

M
ƒ2IrrCA

ƒ˝ACA.�;ƒ/: (3.27d)

Here, the forgetful functors U WCA ! ACA and UAAWACA ! C are not written out.
The isomorphisms in the second row follow from the biadjunctions IndA a UAA and
P a U , respectively. For a simple � 2 ACA and f 2 EndAA.�/, let hf i 2 k be such
that f D hf i � id�. For a fixed simple� 2 CA, let L� 2 EndCA.�/ be the morphism
as on the left-hand side of (3.24) (now understood as a string diagram in CA). Use
Lemma 17 and the decompositions above to obtain the equalities (in this computation,
all string diagrams are written in CA)

L� � trC  
4 D

X
ƒ2IrrCA

jƒjCA � trC  
4

ƒ

(3.26)D
X

ƒ2IrrCA

trC !
2
ƒ ƒ

(3.27b)D
X
ƒ;�

trC !
2
� � dimACA.�;ƒ/

ƒ

(3.27d)D
X

�2Irr
ACA

trC !
2
�

D
X

�2Irr
ACA

j�jC � h!2� i D
X

�2Irr
ACA

j�jCP.!2/

(3.27a)D
X
�;k

jkjC � dim C.k; �/P.!
2/

(3.27c)D
X
k2IrrC

jkjC
P.AkA/

P.!2
AkA

/ : (3.28)
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Next, use the expressions (3.7) for (co-)evaluation maps and (3.22) for braidings to
compute (in the following the string diagrams are again in C ):

trC .!
2
� ı L� � trC  

4/

(3.28)D
X
k2IrrC

jkjC  2
2  2

2 !2 !2

!

!

!

!

1

1

1

1

2

2

T
T

T
T

k

deformD

!

!

! !

!2 !2

 2
2

 2
21

1

2

1

1

2
T

T
T

T

(3.25)D Dim C
X
˛

!

!

1

1

1

1

2

2

T
T

T
T

N̨

˛

!2

!2

!

 2
2

 2
2

 l

 l

.�/D Dim C

�4

X
˛

N̨

˛

1

2
T

T !

 l

 l

 2
2
 2
1

.��/D Dim C

�4

X
˛

N̨

˛

1

2

1

2
T

T !

 l

 l

 2
2
 2
1
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(3.5)D Dim C

�4

X
˛

N̨

˛

1

2
T

T

1

2

 2
2
 2
1

!

!

!

2

D Dim C

�8

X
˛

�4

N̨!

! 1˛

1

2

T

T
1

2

 2
2

 2
1

!2

!2
:

(3.29)

Step .��/ is best checked in reverse: the A-strings can be removed using the inter-
twining properties of �i and �-separability. Step .�/ consists of two computations,
each of which combines two of the four T -loops into one. We will only show the first:

2

(O5)D (T160)D
(T6)

deformD

(T2)D
(T5)

(O7)D (O8)D :

T

T

N̨ ˛

N̨ ˛ N̨ ˛

N̨ ˛

1

2

2

2 2

2

1

1

2

2

1

1

2

1

1

2

1

1

2

T

T

T

T

T

T

T

T

T

T T

!2

!2

!2

!2

!

!2

!2

!2

!2

!2
 2
1

 2
1

 2
1  2

2

 2
2

 2
2

 2
2

 2
1

 2
1

 2
1

 2
2

 2
0

 2
0

 2
0

The last term in (3.29) contains the average of a morphism as defined in (3.23) which
projects onto CA.A;�/. The sum over ˛ therefore computes the trace of this projec-
tion and one has

trC .!
2
� ı L� � trC  

4/ D Dim C

�8
� dim CA.A;�/

D Dim C

�8
� ıA;�: (3.30)

It follows that trC  
4 ¤ 0, as the right-hand side is non-zero for A D �. This proves

the first claim in part (ii) of the theorem.
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Recall from Section 2.1 that since CA is fusion, j�jCA ¤ 0 for all simple�. Using
this, we finally get

L� D trCA L� � trC  
4

j�jCA � trC  4
� id� (3.26)D trC .!

2
� ı L�/

j�jCA � trC  4
� id�

(3.30)D Dim C

j�jCA � �8 � .trC  4/2
� ıA;� � id� :

Lemma 16 now implies part (i) and the remaining claim in part (ii).

4. Examples

In this section we look into examples 1. and 2. in the introduction, that is, the cases
of an orbifold datum obtained from a commutative simple �-separable Frobenius
algebra, and from a spherical fusion category.

4.1. Local modules

Let A 2 C be a commutative �-separable Frobenius algebra. We call an A-module
M local (or dyslectic) if

D :

AM AM

(4.1)

The category of local modules will be denoted by C loc
A (see [11] for more details and

further references on local modules).
Note that, since A is commutative, for any A-module M the morphisms on both

sides of (4.1) define right A-actions onM , which yields two bimodulesMC andM�.
Local modules are precisely those for which one has MC DM�. One uses the tensor
product of bimodules to equip C loc

A with tensor product and duals. Furthermore, C

induces the braiding and the twists on C loc
A . It was proven in [16] that if A is haploid

(i.e., dim C.1; A/ D 1, cf. [13]), then C loc
A is in fact a modular fusion category.

For the remainder of the section, let A be a haploid �-separable commutative
Frobenius algebra in a modular fusion category C . Then it is automatically symmetric
(see [12, Corollary 3.10]), and as shown in [4, Section 3.4], it gives an orbifold datum

A D .A; T D A; ˛ D N̨ D � ı �;  D idA; �2 D 1/; (4.2)

where one uses commutativity of AD T to treat it as A-AA-bimodule. The rest of the
section is dedicated to proving the following:
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Theorem 19. Let A be a haploid �-separable commutative Frobenius algebra in C ,
and let A be the orbifold datum in (4.2). Then A is simple and one has

CA Š C loc
A

as k-linear ribbon categories.

Proof. Define a functor
F WC loc

A ! CA

as follows. Given a local module M , equip it with the canonical bimodule structure
and define the T -crossings to be

D WD :

AM

A M

AM

A M

AM

A M

1 2
(4.3)

All of the axioms then hold and are easy to check, e.g.,

D D

D D :
. /D

1

1 1

˛

˛

A AM A AM A AM

A AM A AM A AM

In .�/ one uses the fact that the right action of M comes from (4.1). A morphism in
CA is precisely an A-module morphism, i.e., F is fully faithful. Since A is simple as
a left module over itself (because A is haploid), this shows that the orbifold datum A

is simple.
It is easy to check that F preserves tensor products, braidings and twists, hence it

only remains to check that it is an equivalence. We show that F is essentially surject-
ive.
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Let .M; �1; �2; �1; �2/ 2 CA. Since �1, �2 are A-AA-bimodule morphisms, one has

D D ; D D :1 21 21 2

A AM

A M A M A M A M

A AM A AM A AM A AM A AM

A M A M

(4.4)

For example, in the first equality for �1 we think of the right A action as the action
of the first tensor factor of A ˝ A and in the second equality as the action of the
second tensor factor. Since M Š A˝AM ŠM ˝A A, the T -crossings �1, �2 can be
recovered from the following invertible A-module morphisms b�1; b�2WM !M :

b�i WD i

A

M

A

M

; i D 1; 2: (4.5)

We can then relate the left and right action on M as follows:

(4.4)D D D H) D :1 1 1 1

AM AM AM AM AM AM

Similarly, the identities for �2 in (4.4) imply

D :

AM AM

Hence,M is a local module with the canonical bimodule structure. It remains to show
that the T -crossings are as in (4.3). Using the identity of (T1) one has

D () D :

A AM A AM M

1
1

1

1

1

1
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Examining both sides of the last equality gives

• on the left-hand side:

M

1

D

M

1

D

M

1

D b�1I

• on right-hand side:

M

1

1 D

M

1

1 D

M

1

1

D b�1 ı b�1:

Hence, one has b�1 D b�1 ı b�1 and since it is invertible, b�1 D idM , which in turn implies
that �1 is precisely as in (4.3). The identity (T3) implies the same for �2.

Combining the above result with Theorem 18 gives an independent proof that C loc
A

is modular. For the orbifold datum (4.2) one has trC  
4 D jAjC and �2 D 1, so that

the second part of Theorem 18 yields

Dim C loc
A D

Dim C

jAj2
C

: (4.6)

Both modularity and the above dimension formula are already known from [16].

4.2. Drinfeld centre

In this section, fix a spherical fusion category � with Dim � ¤ 0 (this condition is
only relevant if char k ¤ 0 see Section 2.1). We will not assume � to be strict; its
associator and unitors will be denoted by

aX;Y;Z W .XY /Z ! X.YZ/; lX W 1X ! X; rX WX1! X;

for all X; Y;Z 2 � .
Recall that the Drinfeld centre Z.�/ consists of pairs .X; 
/, where X 2 � and


 WX ˝�) �˝X
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is a natural transformation, satisfying the hexagon identity, i.e.,

idU ˝
V / ı aUXV ı .
U ˝ idV / D aU;V;X ı 
UV ı aX;U;V

for all U;V 2 � . A morphism f W .X; 
/! .Y; ı/ is a morphism f WX ! Y in � , such
that

.idU ˝f / ı 
U D ıU ı .f ˝ idU /

for all U 2 � .
Z.�/ is a ribbon category with monoidal product

.X; 
/˝ .Y; ı/ WD .X ˝ Y; �XY /; (4.7)

where, for all U 2 � ,

�XYU WD �.XY /U aX;Y;U�����! X.Y U /
idX ˝ı����! X.UY /

a�1
X;U;Y�����! .XU /Y


U˝idY�����! .UX/Y
aU;X;Y�����! U.XY /

�
: (4.8)

The braiding and the twist are given by�
c.X;
/;.Y;ı/W .X ˝ Y; �XY /! .Y ˝X;�YX /�
WD .X ˝ Y 
Y��! Y ˝X/; (4.9a)

and

�.X;
/ WD
�
X

r�1
X��! X1

idX ˝ coevX�������! X.XX�/
a�1
X;X;X�������! .XX/X�


X˝idX�������! .XX/X�
aX;X;X�������! X.XX�/

idX ˝eevX������! X1
rX�! X

�
: (4.9b)

Let us recall from [4, Section 4] how one can associate to � an orbifold datum A�

in the trivial modular fusion category Vectk of finite-dimensional k-vector spaces.7

For brevity, denote
	 WD Irr� and jX j WD jX j�

(recall the conventions in Section 2.1). For each i 2 	, fix square roots ji j1=2 and
define the natural transformation

 W Id� ! Id�

7Our conventions here differ from those in [4]. For example, instead of T DLi;j;l �.l; ij /

as in (4.11), in [4] the bimodule
L
i;j;l �.ij; l/ is used. The convention used here is better

suited for the equivalence proof.
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by taking for each X 2 �

 X WD
X
i;�

ji j1=2.X ��! i
N��! X/: (4.10)

Here, i in the sum ranges over 	, � over a basis of �.X; i/, and N� is the corresponding
element of the dual basis of �.i; X/ with respect to the composition pairing

�.i; X/˝k �.X; i/! �.i; i/ Š k:

Now, define A� D .A; T; ˛; N̨ ;  ; �/ with

A D
M
i2	

�.i; i/ Š
M
i2	

k; (4.11a)

T D
M
l;i;j2	

�.l; ij /; (4.11b)

˛W
M

l;a;i;j;k

�.l; ia/˝k �.a; jk/„ ƒ‚ …
ŠLl;i;j;k �.l; i.jk//

!
M

l;b;i;j;k

�.l; bk/˝k �.b; ij /„ ƒ‚ …
ŠLl;i;j;k �.l; .ij /k/

;

.l
f�! i.jk// 7! �

l
f�! i.jk/

a�1
i;j;k����! .ij /k

 �2
ij
˝idk������! .ij /k

�
;

(4.11c)

N̨ W
M

l;b;i;j;k

�.l; bk/˝k �.b; ij /„ ƒ‚ …
ŠLl;i;j;k �.l; .ij /k/

!
M

l;a;i;j;k

�.l; ia/˝k �.a; jk/„ ƒ‚ …
ŠLl;i;j;k �.l; i.jk//

;

.l
g�! .ij /k/ 7! �

l
g�! .ij /k

ai;j;k����! i.jk/
idi ˝ �2jk������! i.jk/

�
;

(4.11d)

 W .i f�! i/ 7! .i
f�! i

 i�! i/; (4.11e)

�2 D 1

Dim �
D
�X
i2	

ji j2
��1

: (4.11f)

Here, we abuse notation by denoting the morphism  WA! A in the orbifold datum
and the natural transformation  W Id� ) id� from (4.10) with the same symbol. The
left action of Œf Wk! k� 2 A on ŒmW l ! ij � 2 T , i; j; k; l 2 	 is precomposition and
the first (resp. second) right action is postcomposition with .f ˝ idj / (resp. .idi˝f /)
(if the composition is undefined, the corresponding action is by 0). The isomorphisms
in the definitions of ˛, N̨ given by composition. For example, in the source object of ˛,
the explicit form of the isomorphism is

f ˝k g 7! .idi ˝g/ ı f:
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Our goal is to prove the following:

Theorem 20. Let � be a spherical fusion category, A� the orbifold datum as in (4.11)
and C D Vectk. Then A� is simple and CA� Š Z.�/ as k-linear ribbon categories.

Together with Theorem 18, this gives an alternative proof that Z.�/ is modular.
Furthermore, for the orbifold datum (4.11) one has trC  

4 D Dim � , so the second
part of Theorem 18 yields

Dim Z.�/ D .Dim �/2: (4.12)

Modularity and the dimension of Z.�/ are of course already known from [20].

The proof of Theorem 20 is somewhat lengthy and technical and is organised as
follows. In Section 4.2.1 we define an auxiliary category A.�/ which is proved to be
equivalent to the centre Z.�/ as a linear category. Then in Sections 4.2.2 and 4.2.3
we show that CA� Š A.�/ as linear categories, and that the orbifold datum A� is
simple. Composing the two equivalences gives a linear equivalence F WZ.�/! CA� .
In Section 4.2.4 we equip F with a monoidal structure and show that it preserves
braidings and twists.

4.2.1. Auxiliary category A.�/ and equivalence to Z.�/.

Definition 4.1. Define the category A.�/ as follows.

• Objects: triples .X; tX ; bX /, where X 2 � and

tX WX ˝ .�˝�/) .X ˝�/˝�
and

bX WX ˝ .�˝�/) �˝ .X ˝�/

are natural transformations between endofunctors of � � � such that the following
diagrams commute for all U; V;W 2 � :

X.U.V W //

.XU /.V W /

..XU /V /W

X..UV /W / .X.UV //W

 

!
tX
U;VW

 

!
a�1
XU;V;W

 

!idX ˝a�1U;V;W

 !
tX
UV;W

 

!

tX
U;V
˝idW

(4.13)
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X.U.V W //

U.X.V W // U..XV /W /

.U.XV //W

X..UV /W / .X.UV //W

 

!bX
U;VW

 !
idU ˝tXV;W

 

!

a�1
U;XV;W

 

!idX ˝a�1U;V;W

 !
tX
UV;W

 

!

bX
U;V
˝idW

(4.14a)

X.U.V W //

U.X.V W // U.V.XW //

.UV /.XW /

X..UV /W /

 

!bX
U;VW

 !
idU ˝bXV;W

 

!

a�1
U;V;XW

 

!idX ˝a�1U;V;W  

!
bX
UV;W

(4.14b)

• Morphisms: 'W .X; tX ; bX /! .Y; tY ; bY / is a natural transformation

'WX ˝�) Y ˝�

such that the following diagrams commute for all U; V 2 � :

X.UV /

Y.UV /

.Y U /V

.XU /V

 !'UV  !t
Y
U;V

 !
tX
U;V

 !
'U˝idV

(4.15a)

X.UV /

Y.UV /

U.Y V /

U.XV /

 !'UV  !b
Y
U;V

 !
bX
U;V

 !
idU ˝'V

(4.15b)
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Proposition 21. Consider the functor EWZ.�/! A.�/, acting

• on objects: E.X; 
/ WD .X; tX ; bX /, where, for all U; V 2 � ,

tXU;V WD
�
X.UV /

a�1
X;U;V�����! .XU /V

�
; (4.16a)

bXU;V WD
�
X.UV /

a�1
X;U;V�����! .XU /V


U˝idV�����! .UX/V
aU;X;V�����! U.XV /

�I
(4.16b)

• on morphisms:

E
�
.X; 
/

f�! .Y; ı/
� WD ¹X ˝ U f˝idU����! Y ˝ U ºU2� :

is a linear equivalence.

Proof. It is easy to see that E.X; 
/ is indeed an object in A.�/ and that E.f / is
a morphism in A.�/. In the remainder of the proof we show that E is essentially
surjective and fully faithful.

As a preparation, given an object .X; t; b/ 2 A.�/ 2 A.�/ we derive some prop-
erties of t and b. For V;W 2 � , consider the following diagram, whose ingredients
we proceed to explain:

X.1.V W //

.X1/.V W /

..X1/V /W

X..1V /W / .X.1V //W

X.V W /

X.V W /

.XV /W

X.V W / .XV /W

 !t1;VW  

!
a�1
X1;V;W

 !idX ˝a�11;V;W  !
t1V;W

 ! t1;V˝idW

 

!dt1;VW
 

!

a�1
X;V;W

 

!
id

 !
tV;W

 

!

dt1;V˝idW

�

�

�

� �

(4.17)
We abbreviate tX by t , and we use the following notation for all U 2 � :

bt1;U WD
�
XU

idX ˝l�1U������! X.1U/
t1;U���! .X1/U

rX˝idU�����! XU
�
; (4.18a)

btU;1 WD
�
XU

idX ˝r�1U������! X.U 1/
tU;1��! .XU /1

rXU���! XU
�
; (4.18b)

bb1;U WD
�
XU

idX ˝l�1U������! X.1U/
b1;U���! 1.XU /

lXU���! XU
�
; (4.18c)

bbU;1 WD
�
XU

idX ˝r�1U������! X.U 1/
bU;1���! U.X1/

idU ˝rX�����! UX
�
: (4.18d)

This notation will be used in the remainder of this section, too.
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By taking U D 1 in (4.13), the inner pentagon in (4.17) commutes and all squares
commute by definition of bt1;U , by naturality or by monoidal coherence, and hence the
outer pentagon commutes as well. Leaving out the identity edge, we get the following
commutative diagram for all V;W 2 � :

X.V W /

X.V W /

.XV /W

.XV /W

 !dt1;VW  !a
�1
X;V;W

 !
tV;W

 !dt1;V˝idW

(4.19)

Similarly, by taking V D 1 andW D 1 in (4.13) one in the end gets the following two
commuting diagrams:

X.UW / .XU /W

.XU /W

 !tU;W

 

!tU;W

 

! dtU;1˝idW
for all U;W 2 � (4.20a)

and

X.UV / .XU /V

X.UV /

 !tU;V

 

!dtUV;1  
!

tU;V for all U; V 2 � : (4.20b)

These diagrams imply that for all U 2 � one has btU;1 D idU .
Repeating the above procedure of setting individual objects to 1 also for two dia-

grams in (4.14) yields three more conditions. Namely, for all U; V; W 2 � one has
bb1;U D idU and the following diagrams commute:

X.UW /

U.XW / U.XW /

.UX/W

.XU /W

 !bU;W

 !
idU ˝ dt1;W

 !a�1U;X;W

 

!tU;W

 !dbU;1˝idW

(4.21a)

X.UV / U.XV /

U.VX/.UV /X

 !bU;V

 ! idU ˝dbV;1
 !

a�1
U;V;X

 ! dbUV;1 (4.21b)
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Let

�U WD .XU
bt1;U���! XU/ and 
U WD .XU

��1
U��! XU

bbU;1���! UX/

for all U 2 � : We claim that 
 is a half-braiding for X and that � is an isomorphism
.X; t; b/! E.X; 
/ in A.�/.

We start by showing that � is indeed a morphism in A.�/. First note that (4.19)
now reads

tU;V D
�
X.UV /

�UV���! X.UV /
a�1
X;U;V�����! .XU /V

��1
U
˝idV������! .XU /V

�
: (4.22)

Together with the definition of E.X; 
/ in (4.16) we see that this is precisely the first
condition in (4.15). Plugging (4.22) into the first diagram in (4.21) results in

bU;V D
�
X.UV /

�UV���! X.UV /
a�1
X;U;V�����! .XU /V


U˝idV�����! .UX/V

aU;X;V�����! U.XV /
idU ˝��1V������! U.XV /

�
: (4.23)

This is precisely the second condition in (4.15).
Checking that 
 satisfies the hexagon condition is now a direct consequence of

plugging (4.23) into the second diagram in (4.21). Altogether, this shows that E is
essentially surjective.

To get that E is fully faithful, let 'WE.X; 
/! E.Y; ı/ be a morphism in A.�/.
Setting U D 1 in the first condition in (4.15) yields that for all V 2 � one has

'V D b'1 ˝ idV ;

where b'1 WD .X
r�1
X��! X1

'1�! Y 1
rY�! Y /: (4.24)

Setting V D 1 in the second condition in (4.15) shows that b'1 commutes with the
half-braidings 
 and ı. Altogether, ' is in the image of E.

4.2.2. The functor D from A.�/ to CA� . In this section we define a functor

DWA.�/! CA� :

We start by defining D on objects. Let .X; t; b/ 2 A.�/ and denote the components
of D.X; t; b/ by

D.X; t; b/ DW .M; �1; �2; �1; �2/: (4.25)

We will go through the definition of the constituents step by step, starting with the
A-A-bimodule M .
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For n� 1, anA˝n-module is an 	�n-graded vector space and a morphism between
modules is a grade-preserving linear map. In particular, an A-A-bimoduleM is a vec-
tor space with a decomposition

M D
M
i;j2	

Mij ;

where for Mij only the �.i; i/-�.j; j / action is non-trivial. For the bimodule M
in (4.25) we set

M D
M
i;j2	

Mij with Mij D �.i; Xj /; (4.26)

with action of �.i; i/ (from the left) and �.j; j / (from the right) given by pre- and
post-composition, respectively.

Next we turn to defining �i and �i . We will need two ingredients. The first are
certain A-AA-bimodule isomorphisms �x , x D 0; 1; 2, which are defined as

M ˝0 T D
M

l;i;j;a2	

�.l; Xa/˝k �.a; ij /
�0�!

M
l;i;j2	

�.l; X.ij //;

.l
f�! Xa/˝k .a

g�! ij / 7�! �
l
.idX ˝g/ıf��������! X.ij /

�
; (4.27a)

T ˝1M D
M

l;i;j;a2	

�.l; aj /˝k �.a;Xi/
�1�!

M
l;i;j2	

�.l; .Xi/j /;

.l
f�! aj /˝k .a

g�! Xi/ 7�! �
l
.g˝idj /ıf�������! .Xi/j

�
; (4.27b)

T ˝2M D
M

l;i;j;a2	

�.l; ia/˝k �.a;Xj /
�2�!

M
l;i;j2	

�.l; i.Xj //;

.l
f�! ia/˝k .a

g�! Xj / 7�! �
l
.idi ˝g/ıf�������! i.Xj /

�
: (4.27c)

To describe the second ingredient, it will be useful to relate linear maps between
morphism spaces in � to actual morphisms in � as described in the following remark.

Remark 22. Let
T n
B W � � � � � � � ! �

be the functor which takes the n-fold tensor product with a given bracketing B . Con-
sider the 	�.nC1/-graded vector space

VB WD
M

l;i1;:::;in

�.l; T n
B .i1; : : : ; in//:

For two bracketings B , B 0, one has a linear isomorphism®
natural transformations T n

B ) T n
B0
¯ ��! ®

graded linear maps VB ! VB0
¯
;
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given by post-composition. That is, it takes a natural transformation ' to the graded
linear map�

l
f�! T n

B .i1; : : : ; in/
� 7! �

l
f�! T n

B .i1; : : : ; in/
'i1;:::;in�����! T n

B0.i1; : : : ; in/
�
: (4.28)

This is easily generalised for functors obtained from T n
B by fixing some of the argu-

ments.

Recall the natural transformations t , b that form part of the object .X; t; b/ on
which we are defining the functor D. The second ingredient needed to define �i , �i
are four families of morphisms .� 0i /UV , .�i 0/UV in � which are natural in U; V 2 � :�

X.UV /
.� 0
1
/UV�����! .XU /V

�
WD �X.UV / tUV���!.XU /V  �2

XU
˝idV�������!.XU /V �; (4.29a)�

X.UV /
.� 0
2
/UV�����! U.XV /

�
WD �X.UV / bUV���!U.XV / idU ˝ �2XV�������!U.XV /�; (4.29b)�

.XU /V
.�1
0/UV�����! X.UV /

�
WD �.XU /V t�1

UV���!X.UV / idX ˝ �2UV�������!X.UV /�; (4.29c)�
U.XV /

.�2
0/UV�����! X.UV /

�
WD �U.XV / b�1UV���!X.UV / idX ˝ �2UV�������!X.UV /�: (4.29d)

Combining these two ingredients, we define �i , �i in (4.25) to be

�1 WD
�
M ˝0 T

�0�! �.l; X.ij //
.� 0
1
/ij ı.�/�������! �.l; .Xi/j /

��1
1��! T ˝1M

�
; (4.30a)

�2 WD
�
M ˝0 T

�0�! �.l; X.ij //
.� 0
2
/ij ı.�/�������! �.l; i.Xj //

��1
2��! T ˝2M

�
; (4.30b)

�1 WD
�
T ˝1M

�1�! �.l; .Xi/j /
.�1
0/ij ı.�/�������! �.l; X.ij //

��1
0��!M ˝0 T

�
; (4.30c)

�2 WD
�
T ˝2M

�2�! �.l; i.Xj //
.�2
0/ij ı.�/�������! �.l; X.ij //

��1
0��!M ˝0 T

�
: (4.30d)

The verification that these morphisms satisfy the conditions in (T1)–(T7) will be part
of the proof of Proposition 23 below.

The action of D on a morphism 'W .X; tX ; bX /! .Y; tY ; bY / in A.�/ is

D.'/ WD
�
D.X; tX ; bX / D

M
i;j2	

�.i; Xj /
'j ı.�/�����!

M
i;j2	

�.i; Yj / D D.Y; tY ; bY /
�
:

(4.31)
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Proposition 23. The functor DWA.�/! CA� is well defined and a linear equival-
ence.

Proof. The proof that D.X; t; b/ is indeed an object in CA� is a little tedious and
will be given in Section 4.2.3 below. For now we assume that this has been done and
continue with the remaining points.

To see thatD.'/WD.X; tX ; bX /!D.Y; tY ; bY / is a morphism in CA� we have to
verify the identities in (M). We will demonstrate this for �1 as an example. Denote the
underlying A-A-bimodules of D.X; tX ; bX / and D.Y; tY ; bY / as M and N , respect-
ively, and consider the following diagram:

M ˝0 TT ˝1M

N ˝0 TT ˝1 N

˚ .l; X.ij // ˚ .l; .Xi/j / ˚ .l; .Xi/j /

˚ .l; Y.ij // ˚ .l; .Y i/j / ˚ .l; .Y i/j /

 !˚.tX
ij
/  !˚. 2

Xi
˝id/

 !˚.tY
ij
/

 !˚. 2
Yi

˝id/

 !˚.'ij /  !˚.'i˝id/

 !˚.'i˝id/

 

!0

 

!0

 

! 1

 

!

1

 !
M
1

 !
N
1

 

!

D
.
'
/
˝
0

id

 

!

id
˝
1
D
.
'
/

(0.1)
(4.32)

Here, all direct sums run over i; j; l 2 	. The notation .�/� stands for post-composi-
tion with the corresponding morphism. The left innermost square commutes by (4.15),
and the right innermost square commutes by naturality of  . The top and bottom
squares are just the definition of �1 in (4.29) and (4.30). That the rightmost square
commutes is immediate from the definition of �1 in (4.27), while for the leftmost
square one needs to invoke in addition the naturality of '.

So, far we have shown that the functor D is well defined. We now check that it is
essentially surjective and fully faithful.

Let .M; �1; �2; �1; �2/ be an arbitrary object in CA� . As above, we decompose

M D
M
i;j2	

Mij ;

where for Mij only the �.i; i/-�.j; j / action is non-trivial. Since �1 is an A-AA-
bimodule isomorphism M ˝0 T ��! T ˝1M , we have a graded linear isomorphism

�1W
M

i;j;l;a2	

Mla ˝k �.a; ij /
��!

M
i;j;l;b2	

�.l; bj /˝k Mbi ; (4.33)
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Specialising to i D 1 gives linear isomorphisms, for all l; j 2 	,M
a2	

Mla ˝k �.a; 1j /„ ƒ‚ …
ŠMlj

��!
M
b2	

�.l; bj /˝k Mb1; (4.34)

Setting X DL
b2	 b ˝Mb1 2 � , we see that this implies M ŠL

l;j �.l; Xj / as
A-A-bimodules. We may thus assume without loss of generality that in fact M DL
l;j �.l; Xj / for some X 2 � .
Define t; b by inverting the first two defining relations in each of (4.29) and (4.30)

(this is possible by Remark 22). We need to verify that t; b satisfy the conditions
in (4.13) and (4.14).

Consider the condition in (T1) satisfied by �1. Along the same lines as was done
in (4.32), one can translate the condidion in (T1) into an equality of two graded linear
maps

L
�.l;X.i.jk///!L

�.l; ..Xi/j /k/. Both of these maps are given by post-
composition, resulting in a commuting diagram of morphisms in � , for all i; j; k:

X.i.jk//

.Xi/.jk/

..Xi/j /k

k//ji.X./k/ji..X

.Xi/.jk/ ..Xi/j /k

k/j/iX../k/ji..X

X..ij /k/ .X.ij //k

 

!ti;jk
 

! 2
Xi

˝idjk

 

!
a 1
Xi;j;k

 

!
 2
.Xi/j

˝idk

 

!

idX ˝a 1
ijk

 

! idX
˝.
 

2
ij

˝id k
/

 !id
X

˝.
 
2
ij

˝id k
/
 !t .i

j
/;
k

 ! 
2

X
.i
j
/

˝id k

 

!

tij˝idk

 

!

. 2
Xi

˝idj /˝idk

(4.35)
Since t , a and  are natural transformations, one can cancel all arrows with  , which
then yields precisely the diagram (4.13). Similarly, (T2)–(T3) give the two diagrams
in (4.14).

It remains to show that D is fully faithful. Faithfulness is clear from (4.31). For
fullness, let f WD.X; tX ; bX /!D.Y; tY ; bY / be a morphism in CA� . By Remark 22,
f is given by post-composition with a natural transformation 'WX ˝ � ) Y ˝ �.
The identities (M) impose that the two diagrams in (4.15) commute. Thus, ' is a
morphism in A.�/ and f D D.'/.
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Corollary 24. The orbifold datum A� is simple.

Proof. By Proposition 23, the functor DWA.�/! CA� is a linear equivalence. Since
CA� is semisimple (Proposition 14), so is A.�/. Any object of the form .1� ; t; b/

is simple in A.�/, as 1� is simple in � . For an appropriate choice of t; b we have
D.1� ; t; b/Š 1C

A�
, the tensor unit of CA� . Using once more thatD is an equivalence,

we conclude that 1C
A�

is simple in CA� .

4.2.3. Conditions on T -crossings. Here we complete the proof of Proposition 23 by
showing that D.X; t; b/ from (4.25) satisfies the conditions in (T1)–(T7).

For (T1), the computation is the same as in the proof of the essential surjectiv-
ity of D, just in the opposite direction, i.e., one starts by writing (4.13) as (4.35).
Analogously, (4.14) produces (T2)–(T3).

Conditions (T4) and (T5) are straightforward to check from the definitions (4.29)
and (4.30).

Since (T6) and (T7) involve duals, it is helpful to express the (vector space) dual
bimodule M � of

M D
M
l;a

�.l; Xa/

in terms of the bimodule
M_ WD

M
l;a

�.l; X�a/:

Given a basis ¹�º of �.l;Xa/, we get the basis ¹��º of the dual vector space �.l;Xa/�

and the basis ¹ N�º of �.Xa; l/, which is dual to ¹�º with respect to the composition
pairing. Let us fix an isomorphism

M � !M_

as follows:

�WM � !M_;

�� 7! jajjl j
�
a
��! 1a

coevX ˝ id������! .XX�/a
��! X.X�a/

N��! Xl
�
: (4.36)

Using �, one can translate the evaluation and coevaluation maps from vector space
duals to the new duals M_. For example,

coevM WD .A!M ˝AM �
id˝����!M ˝AM_/; (4.37a)

ecoevM WD .A!M � ˝AM
�˝id���!M_ ˝AM/; (4.37b)
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where the unlabelled arrow is the canonical coevaluation in vector spaces. Explicitly,
this gives the A-A-bimodule maps

evM WM_ ˝AM ! A;

X a

l

˝k

X k

a

7! ıl;k

l

a

X

k

; (4.38a)

coevM WA!M ˝AM_;

idl 7!
X
a;�

X a

l

˝k

 
jaj
jl j

X

N

l

a

!
; (4.38b)

eevM WM ˝AM_ ! A;

X a

l

˝k

X k

a

7! ıl;k
jl j
jaj a

l

k

X ; (4.38c)

ecoevM WA!M_ ˝AM;

idl 7!
X
a;�

 
jl j
jaj N

X a

l

!
˝k

X l

a

: (4.38d)

The choice (4.36) makes the expression for evM simpler but the other three duality
maps still contain the dimension factors. Using isomorphisms given by composition
similar to those in (4.27), one can also write these maps as (by abuse of notation we
keep the same names for the maps)

evM W �.l; X�.Xl//! �.l; l/;

� 7! �
l
��! X�.Xl/

a�1
X�;X;l�����! .X�X/l

evX ˝ idl������! 1l
ll�! l

�
; (4.39a)

coevM W �.l; l/! �.l; X.X�l//;
� 7! �

l
��! l

l�1
l��! 1l

coevX���! .XX�/l
aX;X�;l�����! X.X�l/

�
; (4.39b)eevM W �.l; X.X�l//! �.l; l/;

� 7! �
l
��! X.X�l/

idX ˝ �2X�l�������! X.X�l/
a�1
X;X�;l�����! .XX�/l

eevX˝idl�����! 1l
ll�! l

 2
l��! l

�
; (4.39c)

ecoevM W �.l; l/! �.l; X�.Xl//;
� 7! �

l
��! l

l�1
l��! 1l

fcoevX���! .X�X/l
aX�;X;l�����! X�.Xl/

idX�  �2Xl������! X�.Xl/
idX� ˝.idX ˝ 2l /�����������! X�.Xl/

�
: (4.39d)
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For example, to get the expression for coevM one uses the identity

XX l

l

D
X
a;�

jaj
jl j

l

XX l

a

N
: (4.40)

Note that these are dualities in ACA. To obtain the dualities in CA� some extra
 -insertions are needed, see (3.7).

Given this reformulation of the duality morphisms, the verification (T6)–(T7)
works along the same lines as (T1)–(T3).

4.2.4. Ribbon structure of the composed functor. Denoting the composed functor
by F WD D ıE, we obtain the following corollary to Propositions 21 and 23.

Corollary 25. Consider the functor F WZ.�/! CA� , acting

• on objects:
F.X; 
/ WD

� M
k;l2	

�.l; Xk/; �1; �2; �1; �2

�
;

where for all i; j; l 2	 the T -crossings and their pseudo-inverses are (we omit writing
out the isomorphisms �i from (4.27) explicitly)

�1W �.l; X.ij //! �.l; .Xi/j /;

� 7! �
l
��! X.ij /

a�1
X;i;j����! .Xi/j

 �2
Xi
˝idj������! .Xi/j

�
;

�2W �.l; X.ij //! �.l; i.Xj //;

� 7! �
l
��! X.ij /

a�1
X;i;j����! .Xi/j


i˝idj����! .iX/j
ai;X;j����! i.Xj /

idi ˝ �2Xj������! i.Xj /
�
;

�1W �.l; .Xi/j /! �.l; X.ij //;

� 7! �
l
��! .Xi/j

aX;i;j����! X.ij /
idX ˝ �2ij������! X.ij /

�
;

�2W �.l; X.ij //! �.l; i.Xj //;

� 7! �
l
��! i.Xj /

a�1
i;X;j����! .iX/j


�1
i
˝idj������! .Xi/j

aX;i;j����! X.ij /
idX ˝ �2ij������! X.ij /

�I
• on morphisms:

F.Œ.X; 
/
f�! .Y; ı/�/ WD

�
�.l; Xk/! �.l; Y k/ for all k; l 2 	;

Œl
g�! Xk� 7! Œl

g�! Xk
f˝idk����! Yk�

�
is a linear equivalence.
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Recall that a monoidal structure consists of an isomorphism

F0 W 1C
A�

��! F.1Z.�//; (4.41)

in CA� as well as a collection of isomorphisms

F2..X; 
/; .Y; ı//WF.X; 
/˝C
A�
F.Y; ı/! F.X ˝� Y; �

XY /; (4.42)

in CA� , natural in .X; 
/; .Y; ı/ 2 Z.�/, satisfying the usual compatibility conditions
(see, e.g., [25, Section 1.4]). We set

F0W
M
i2	

�.i; i/!
M
i2	

�.i; 1i/; .i
f�! i/ 7! .i

f�! i
 �1
i���! i

l�1
i��! 1i/: (4.43)

As in Section 4.2.2 we get the isomorphisms

F.X; 
/˝C
A�
F.Y; ı/ Š

M
l;r2	

�.l; X.Y r//; (4.44a)

F.X ˝ Y; �XY / Š
M
l;r2	

�.l; .XY /r/: (4.44b)

For all l; r 2 	, set

F2..X; 
/; .Y; ı//W�
l
f�! X.Y r/

� 7! �
l
f�! X.Y r/

idX ˝ Yr������! X.Y r/
a�1
X;Y;r����! .XY /r

�
: (4.45)

One can check that they are indeed morphisms in CA� and satisfy the compatibilities.
F D .F; F0; F2/ is therefore a monoidal equivalence.

Recall, that F is a braided functor if

F2..Y; ı/; .X; 
// ı cF.X;
/;F .Y;ı/ D F.c.X;
/;.Y;ı// ı F2..X; 
/; .Y; ı//: (4.46)

ForM DLl;r2	 �.l;Xr/,N DLl;r2	 �.l;Y r/with T -crossings �Mi , �Ni , i D 1;2,
let us calculate the braiding morphism cM;N 2 CA� explicitly.

Recall that the braiding in CA� is obtained by taking the partial trace of the morph-
ism � defined in (3.10). It amounts to a family of linear maps �.l; X.Y.ij /// !
�.l; Y.X.ij ///, i; j; l 2 	, which are post-compositions with

Bij WD 1

Dim �
� �X.Y.ij // idX ˝ Y.ij/��������! X.Y.ij //

idX ˝.� 01Y /ij���������! X..Y i/j /

.� 0
2

X
/Yi;j�������! .Y i/.Xj /

 2
Y i
˝ 2

Xj�������! .Y i/.Xj /

.idY ˝ 2i /˝.idX ˝ 2j /���������������! .Y i/.Xj /
.� 0
1

Y
/i;Xj������! Y.i.Xj //

idY ˝.� 02X /ij���������! Y.X.ij //
idY ˝ X.ij/��������! Y.X.ij //

�
:
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We now need to trace the above morphism over T , for which we need the dual T �.
Similar to Section 4.2.3 it is useful to work with T _ WDL

i;j;r2	 �.ij; r/ instead.
Given a basis ¹˛º of �.r; ij /, the basis ¹˛�º of the dual vector space �.r; ij /� and the
composition-dual basis ¹ N̨ º of �.ij; r/, we fix the isomorphism T � ! T _, ˛� 7! N̨ .
Using this isomorphism, the relevant evaluation and coevaluation maps are

.eevT WT ˝1;2 T _ ! A/ D
 M
i;j2	

�.l; ij / ˝k �.ij; r/! �.l; l/

f ˝k g 7! ık;r g ı f

!
;

.coevT WA! T ˝1;2 T _/ D
0@�.l; l/!

M
i;j2	

�.l; ij /˝k �.ij; l/

idl 7!
X
i;j;˛

˛ ˝k N̨

1A:
All in all, we get the braiding to be the map

�.l; X.Y r//! �.l; Y.Xr//;

X Y r

a
7!

X
i;j;˛

Bij

X Y r

X Y

r
a

i j

i j

N̨

˛

: (4.47)

ForM D F.X; 
/, N D F.Y; ı/, the T -crossings are as given in Corollary 25. Using
these expressions, the braiding (4.47) and the monoidal structure (4.45), one con-
cludes that the left-hand side of (4.46) is a family of linear maps

�.l; X.Y r//! �.l; .YX/r/; i; j; l 2 	;

obtained from post-composition with morphisms X.Y r/! .YX/r , which in graph-
ical calculus are as shown in Figure 4.1.

In the last equality there we usedX
i;j

ji j � jj j �N r
ij D

X
i;j

ji j � jj �j �N j�
ir�

D
X
i

ji j � ji j � jr j D Dim � � jr j: (4.48)

Substituting the braiding of Z.�/ as defined in (4.9), one immediately finds the
right-hand side of (4.46) to be given by post-composition with the morphism in the
last diagram of Figure 4.1. The condition (4.46) then holds and hence F is a braided
equivalence.

Finally, recall that the twist ofM 2 CA� is given by the morphism in (3.11). Using
the calculation in Figure 4.1 and the expressions (4.39) for (co-)evaluation maps one
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1

Dim �

X
i;j;˛

Y X r

YX r

˛

˛

 Xr

 X.ij/

 2
ij

1
i

 2
i.Xj/

 2
Y i

 2
Xj

 2
Xj

i

Y

 2
Y i

 Y.ij/

i j

D 1

Dim �

X
i;j;˛

Y X r

YX r

N̨

˛

 Yr

i

Y

1
i

i j

� ji j � jj jjr j

D 1

Dim �

X
i;j;˛

Y X r

YX r

N̨

˛

Y

 Yr

i j

� ji j � jj jjr j

D 1

Dim �

X
i;j

Y X r

YX r

 Yr

Y

� ji j � jj j �N
r
ij

jr j D

Y X r

YX r

 Yr

Y

Figure 4.1. Left hand side of (4.46). Here, in the first equality one uses the natural transforma-
tion property of  and the half-braidings, in the third we abbreviate N r

ij
D dim �.r; ij /.
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computes that the twist �F.X;
/ is a family of maps �.l; Xk/! �.l; Xk/, obtained
from post-composition with

D (4.9)D ;

kX kX kX

kX kX kX

X
X

 2
k

 2
X k

 2
X k

 2
k

(4.49)

which is the same morphism as F.�.X;g//. F is therefore an equivalence of ribbon
fusion categories and with that the proof of Theorem 20 is complete.

A. Appendix

A.1. Useful identities for orbifold data and Wilson lines

Since ˛WT ˝2 T ! T ˝1 T and N̨ WT ˝1 T ! T ˝2 T areA-AAA-bimodule morph-
isms, one has

D D ; D D ;N̨ N̨˛˛˛ N̨
1 2

12

T T T T T T T T T T T T

(A.1)

D ; D :

N̨˛

N̨˛

1

1

2 1

2

1

2

1

2

12

2

T TA A A A T TA A A A T TA A A A T TA A A A

(A.2)

In particular, one can commute the  -insertions with ˛, N̨ as follows:

D D D˛ ˛ ˛ ˛

 1  0

 0 2

T T T T T T T T

; (A.3)



V. Mulevičius and I. Runkel 514

D D D
 2  0

 0 1

T T T T T T T T

;N̨ N̨ N̨ N̨ (A.4)

D

T T T T

 0

 0

˛ ˛
; D

T T T T

 1

 1

˛ ˛
; D

T T T T

 1

 2

˛ ˛
; D

T T T T

 2

 2

˛ ˛
; (A.5)

DN̨ N̨

 0

 0

T T T T

; DN̨ N̨

 1

 1

T T T T

; DN̨ N̨

 2

 1

T T T T

; DN̨ N̨

 2

 2

T T T T

: (A.6)

Similarly, T -crossings, being A-AA-bimodule morphisms �i WM ˝0 T ! T ˝i M ,
�i WT ˝i M !M ˝0 T , i D 1; 2, commute with  -insertions in the following way:

D

M T M T

MT MT

 r

 0

i i ; D

M T M T

MT MT

i i

 l i

; D

M T M T

MT MT

i i

 l

 0

; D

M T M T

MT MT

i i

 r

 i

; (A.7)

D

MT MT

M T M T

Ni i

 l i

; D

MT MT

M T M T

Ni Ni
 0 r

; D

MT MT

M T M T

Ni Ni

 0

 l

; D

MT MT

M T M T

Ni Ni

 r

 i

: (A.8)

The following identities are dual versions of (O6) and (O7):

 2
1

N̨

˛

T T

D

 2
0

T T

; (O90)
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 2
0

N̨

˛

TT

D

 2
1

TT

1 2

: (O100)

Finally, one can show that Figure 3.1 (T1)–(T3) imply

1

T T M

˛ D

1
1

T T M

 2
0

˛ ; (T80)

12

T T M

 2
0

˛ D

1
2

T T M

 2
0

˛ ; (T90)

2 2

T T M

 2
0

˛ D
2

T T M

˛ ; (T100)

1

T TM

N̨ D
1 1

T TM

 2
0

N̨ ; (T110)

2 1

T TM

 2
0

N̨ D
1 2

T TM

 2
0

N̨ ; (T120)

2
2

T TM

 2
0

N̨ D
2

T TM

N̨ ; (T130)
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1

T T M

N̨ D
1 1

T T M

 2
0

N̨ ; (T140)

2 1

T T M

 2
0

N̨ D
1 2

T T M

 2
0

N̨ ; (T150)

2 2

T T M

 2
0

N̨ D
2

T T M

N̨ : (T160)

A.2. Monadicity for separable biadjunctions

We will use string diagrams for 2-categories, as reviewed in [14, Section 6.1].
Let A, B be categories, and let

X WA! B

and
Y WB ! A

be biadjoint functors with units and counits denoted by

; ; :

B AB B

;
A A

A A B B

IdA IdBX XY Y

IdAIdB XX YY

" Q" Q (A.9)

Furthermore, we will assume that this biadjunction is separable, i.e., the natural trans-
formation

B B

IdB

 WD

B B

AX Y

IdB

Q

"

: (A.10)
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is invertible. The endofunctor T WD .YX WA!A/ becomes a�-separable Frobenius
algebra in the strict monoidal category End A via the structure morphisms

TT

A A

T

A

WD

XY XY

XY

A A

A

B

" ;

T

A A WD
XY

A A
B ; (A.11a)

TT

A A

T

A

WD

XY XY

XY

A A

A

B

Q
 1

;

T

A A

"

WD
XY

A A

B

Q"
 

: (A.11b)

Let AT be the category of T -modules in A. Its objects are pairs

.U 2 A; .�WT .U /! U//

and a morphism .U; �/! .U 0; �0/ is a morphism .f WU ! U 0/ 2 A, such that the
following diagrams commute:

T T .U / T .U /

T .U / T

 !�U

 ! T.�/  ! �

 !�

U T .U /

U

 

!id

 !�U

 ! �
T .U / T .U 0/

U U 0

 !T.f /

 ! �  ! �0

 !f

(A.12)

Let ? be the category with only one object and only the identity morphism. In what
follows, it is going to be useful to identify any category A with the category of func-
tors ?! A and natural transformations in the obvious way. The conditions (A.12)
can then be written graphically as

T UT

U

A

A

A

? D

T U

U

T

A

AA ? ; (A.13a)

U

U

A

?? D

U

U

A ?; (A.13b)
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U 0

T U

f

A

A
? D

U 0

T U

f

0

A

A

?: (A.13c)

Define the functor
yY WB ! AT

to be the same as Y , except that the image is equipped with the following T -action:

yY .R/

yY .R/

T

?

A

A WD

RY Y

RY

?

A

A
B

X

"
: (A.14)

Definition A.1. Let A be a category.

• An idempotent .pWU ! U/ 2 A is called split if it has a retract, i.e., a triplet
.S; e; r/ where S 2 A, eW S ! U , r WU ! S , such that e is mono, r ı e D idS ,
e ı r D p.

• A is called idempotent complete if every idempotent is split.

Proposition 26. If B is idempotent complete, then yY is an equivalence.

Proof. We will give an inverse

yX WAT ! B:

Let M 2 AT . Define the morphism

.pM WX.M/! X.M// 2 B

as follows:

pM WD

MX

MX

?

T

Y

A

A

B

id

Q  1

: (A.15)
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One quickly checks that it is an idempotent. Set yX.M/ D im p. To prove that it is
indeed an inverse, one computes

yX yY .R/ D im yX yY .R/ D im

X Y R

X Y R

B  1

A

A

"

Q

?; (A.16a)

yY yX.M/ D im ?

Q  1

id

MXY

MXY

T

Y

A

A

B

A : (A.16b)

The morphisms in pairs

?

R

yX yY .R/

X Y
"

A

B

; ?

yX yY .R/

R

 1

Q
X Y

A

B

and

?

Y yX.M/

M

id

X

T

A

B

A
; ?

M

Y yX.M/

id
Y

X

X

T

B

A

A

Q

are then inverses of each other.

Now, let A,X , Y (and hence also yX , yY ) in addition be k-linear additive categories
and functors.
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Proposition 27. Suppose A is idempotent complete and finitely semisimple.5 Then so
is AT.

Proof. We first show idempotent completeness of AT. Given an idempotent pWM !
M in AT and a retract eWS !M , r WM ! S in A with p D e ı r , one can equip S
with a T -action as follows,

�S D �T .S/ T.e/���! T .M/
�M��!M

r�! S
�
: (A.17)

With respect to this action, e and r are morphisms in AT, so that .S; e; r/ becomes a
retract in AT .

Next, we show semisimplicity of AT. LetM;N 2AT and let �WM !N be mono
in AT. Since A is semisimple, there is Q� WN !M in A, such that Q� ı �D idM . Define

� WD

N

M

T

T

?
Q

A A
: (A.18)

One checks that � WN !M is a morphism in AT and

� ı � D

M

M

T

T

?
Q

A A D

M

M

T

T

?

Q
A A

D

M

M

T

T

?A A D idM :

It follows that N ' M ˚ X for X D ker.� ı �/, and so all subobjects are direct
summands. The kernel exists as it is the image of the idempotent idN �� ı � .
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For finiteness we show that every T -module M 2 AT is a submodule of an
induced T -module, i.e., a one of the form

Ind.U / WD .? U�! A
T�! A/

for some object U 2 A. Indeed, pick U DM and the morphisms

‡ WM ! Ind.M/ and …W Ind.M/!M

defined as follows:

‡ WD

M

MT

?

A

A

; … WD

MT

M

?

A

A

: (A.19)

One can check that ‡ and … are module morphisms and that … ı ‡ D idM , hence
M is indeed a submodule of Ind.M/. Every simple T -module is then a submodule of
Ind.V / where V 2 A is simple and since there are finitely many of those, AT must
have finitely many simple objects.
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