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The FKB invariant is the 3d index

Stavros Garoufalidis and Roland van der Veen

Abstract. We identify the q-series associated to an 1-efficient ideal triangulation of a cusped

hyperbolic 3-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte–

Gaiotto–Gukov. This implies the topological invariance of the q-series of Frohman and Kania-

Bartoszynska for cusped hyperbolic 3-manifolds. Conversely, we identify the tetrahedron index

of Dimofte–Gaiotto–Gukov as a limit of quantum 6j -symbols.

1. Introduction

In their seminal paper, Turaev and Viro [16] defined topological invariants of triangu-

lated 3-manifolds using state sums whose building blocks are the quantum 6j -sym-

bols at roots of unity. An extension of the Turaev–Viro invariants to ideally triangu-

lated 3-manifolds was given by Turaev [14, 15] and Benedetti and Petronio [1].

In [4] Frohman and Kania-Bartoszynska (abbreviated by FKB) aimed to construct

topological invariants of ideally triangulated 3-manifolds away from roots of unity,

and with this goal in mind, they studied some limits of quantum 6j -symbols and

associated analytic functions to suitable ideal triangulations. Their results apply to

compact, oriented 3-manifolds with arbitrary boundary, but for simplicity, through-

out our paper, we will assume that M is a compact, oriented 3-manifold with torus

boundary components. In that case, FKB assigned to an 1-efficient ideal triangulation

T of such a 3-manifold M a formal power series I FKB
T

.q/ 2 ZŒŒq�� which turns out

to be analytic in the open unit disk jqj < 1 and which is a generating series of suit-

able closed oriented surfaces carried by the spine associated to T . FKB did not prove

that their building block satisfies the 2–3 Pachner moves of 1-efficient triangulations,

although this, together with the conjectured topological invariance, is implicit in their

work.

In a different direction, in [2, 3] Dimofte, Gaiotto, and Gukov (abbreviated DGG)

studied the index of a superconformal N D 2 gauge theory via a 3d–3d correspond-

ence. Using as a building block an explicit formula for the partition function I� of an
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ideal tetrahedron, they associated an invariant IT .m; e/.q/ 2 ZŒŒq1=2�� to a suitable

ideal triangulation T of a 3-manifold M where the tuples of integers .m; e/ para-

metrize H1.@M; Z/, once one chooses a pair of meridian-longitude at each boundary

component of M . The construction of DGG is predicted by physics to be a topological

invariant, and indeed DGG proved that their invariant is unchanged under suitable 2–3

Pachner moves.

It turns out that the ideal triangulations with a well-defined 3D-index are exactly

those that satisfy a combinatorial PL condition known as an index structure (see [5,

Section 2.1]), and, equivalently, those that are 1-efficient (see [7, Theorem 1.2]), i.e.,

those that do not contain any normal 2-spheres or non-peripheral normal torii, see Jaco

and Rubinstein [10], Kang and Rubinstein [11] and also [7, Section 1.1]. Moreover,

in [7], it was shown that the 3D-index of an 1-efficient triangulation gives rise to an

invariant of a cusped hyperbolic 3-manifold M (with nonempty boundary).

Thus, 1-efficient ideal triangulations is a common feature of the work of FKB and

DGG. A second common feature is the presence of (generalized) normal surfaces,

that is surfaces that intersect each tetrahedron in polygonal disks [6, Definition 10.3].

On the one hand, the FKB invariant is a generating series of suitable surfaces carried

by the spine of an ideal triangulation T , see [4, Section 2]. On the other hand, it was

shown in [6] that the 3D-index can be written as the generating series of general-

ized spun normal surfaces, (these are surfaces that intersect each ideal tetrahedron in

polygonal disks) where the latter are encoded by their quadrilateral coordinates.

Although generalized normal surfaces and spinal surfaces play an important role

in the invariants of this paper, no drawing of them is given in this paper. One reason

for this intentional omission is that these surfaces are uniquely encoded by triples of

natural numbers at each tetrahedron such that the minimum of each triple is zero. In

other words, a generalized normal surface is allowed to have at most two quad types in

each tetrahedron described in detail in [6, Section 10]. What’s more, the FKB invariant

and the 3D-index are generating series of triples of natural numbers that satisfy the

above-stated minimum condition.

Given these coincidences, it is not surprising that the invariants of ideal triangula-

tions of [4] and [2, 3] coincide.

Theorem 1.1. If T is an 1-efficient triangulation, then for all elements .m; e/ 2

H1.@M; Z/ we have

I FKB
T

.m; e/.q/ D IT .m; e/.q/: (1)

It follows that I FKB is a topological invariant of cusped hyperbolic 3-manifolds.

Theorem 1.1 follows from the fact that both invariants can be expressed as gen-

erating series of surfaces with matching local weights (see Proposition 1.3 below).



The FKB invariant is the 3d index 527

Recall that the tetrahedron index is given by [3]

I�.m; e/.q/ D
X

n

.�1/n q
1
2

n.nC1/�.nC
1
2

e/m

.qI q/n.qI q/nCe

(2)

where, for a natural number n, we define .qIq/n D
Qn

j D1.1 � qj / and the summation

in (2) is over the integers n � max¹0;�eº. Although the tetrahedron index is a function

of a pair of integers, it can be presented as a function of three variables a; b; c 2 Z [6,

(8)] by

J�.a; b; c/ D .�q
1
2 /�bI�.b � c; a � b/

D .�q
1
2 /�cI�.c � a; b � c/

D .�q
1
2 /�aI�.a � b; c � a/: (3)

Then J�.a; b; c/ is invariant under all permutations of its arguments a; b; c and satis-

fies the translation property

J�.a; b; c/ D .�q
1
2 /sJ�.a C s; b C s; c C s/ for all s 2 Z: (4)

The leading term of J�.a; b; c/ is given by .�q
1
2 /�.a;b;c/ (see [6, (8)]) where

�.a; b; c/ D a�b� C a�c� C b�c� � min¹a; b; cº (5)

where a� D a � min¹a; b; cº, b� D b � min¹a; b; cº and c� D c � min¹a; b; cº.

Consider the function

J FKB
� .a; b; c/ D .qI q/1

X

n

.�1/n q
1
2 n.3nC1/Cn.aCbCc/C 1

2 .abCbcCca/

.qI q/nCa.qI q/nCb.qI q/nCc

(6)

for integers a;b and c, where the summation is over the integers (with the understand-

ing that .qIq/mD 1 when m< 0), or alternatively over the integers n � �min¹a;b;cº.

FKB identify the above function as a limit of quantum 6j -symbols. It turns out that

the limit is equivalent to the stabilization of the coefficients of the quantum 6j -sym-

bols, and the latter follows from degree estimates. To state our result, consider the

building blocks ‚ and Tet (functions of three and six integer variables, respectively)

whose definition is given explicitly in (10b) and (10c) of Section 2.1. Denote by z‚

and fTet the shifted versions defined in Section 3.1. Then we have the following.

Proposition 1.2. We have

lim
N !1

z‚.a C 2N; b C 2N; c C 2N / D
1

1 � q

1

.qI q/2
1

(7)
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and

lim
N !1

fTet

�
a C 2N b C 2N e C 2N

d C 2N c C 2N f C 2N

�

D .�q�
1
2 /�.S�

1
;S�

2
;S�

3
/ 1

.1 � q/.qI q/4
1

J FKB
� .S�

1 ; S�
2 ; S�

3 / (8)

where Si are given in (11), S� D min¹S1; S2; S3º and S�
i D Si � S�.

Observe that the quantum 6j -symbols depend on six parameters (one per edge of

the tetrahedron) while its limit given by (8) depends only on three parameters (one for

each quadrilateral of the tetrahedron), and a further symmetry reduces the dependence

to two parameters (obtained by ignoring one of the three quadrilateral types of the

tetrahedron).

The next proposition identifies the tetrahedron index of [2,3] as a limit of quantum

6j -symbols.

Proposition 1.3. For integers a; b and c we have

J FKB
� .a; b; c/ D J�.a; b; c/: (9)

2. A review of [16] and [4]

2.1. The building blocks

In this section we review the construction of the Turaev–Viro invariant and the results

of [4]. Those invariants use some building blocks whose definition we recall now.

Note that the normalization of the building blocks is not standard in the literature, and

we will use the standard definitions of the building blocks that can be found in [12]

and also in [13]. Recall the quantum integer Œn� and the quantum factorial Œn�Š of a

natural number n are defined by

Œn� D
qn=2 � q�n=2

q1=2 � q�1=2
; Œn�Š D

nY

kD1

Œk�Š

with the convention that Œ0�Š D 1. Let

�
a

a1; a2; : : : ; ar

�
D

Œa�Š

Œa1�Š : : : Œar �Š

denote the multinomial coefficient of natural numbers ai such that a1 C � � � C ar D

a. We say that a triple .a; b; c/ of natural numbers is admissible if a C b C c is

even and the triangle inequalities hold. In the formulas below, we use the following
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Figure 1. The Unknot, the ‚ graph and the tetrahedron.

basic trivalent graphs U; ‚; Tet colored by one, three and six natural numbers (one

in each edge of the corresponding graph) such that the colors at every vertex form an

admissible triple shown in Figure 1.

Let us define the following functions:

U.a/ D .�1/aŒa C 1�; (10a)

‚.a; b; c/ D .�1/
aCbCc

2

ha C b C c

2
C 1

i�
aCbCc

2
�aCbCc

2
; a�bCc

2
; aCb�c

2

�
; (10b)

Tet

�
a b e

d c f

�

D

S�X

kDT C

.�1/kŒk C 1�

�
k

S1 � k; S2 � k; S3 � k; k � T1; k � T2; k � T3; k � T4

�
;

(10c)

where

S1 D
1

2
.a C d C b C c/; (11a)

S2 D
1

2
.a C d C e C f /; (11b)

S3 D
1

2
.b C c C e C f /; (11c)

T1 D
1

2
.a C b C e/; (12a)

T2 D
1

2
.a C c C f /; (12b)

T3 D
1

2
.c C d C e/; (12c)

T4 D
1

2
.b C d C f /; (12d)
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and

S� D min¹S1; S2; S3º; (13a)

T C D max¹T1; T2; T3; T4º: (13b)

2.2. The Turaev–Viro invariant

Suppose M is a 3-manifold as in our introduction, T is an ideal triangulation of M

and X is the corresponding simple spine of T , i.e., the dual 2-skeleton of T . Let

V.X/, E.X/, and F.X/ denote the vertices, edges, and faces of X .

An admissible coloring cW F.X/ ! N of X is an assignment of natural numbers

at each face of X such that at each edge of X the sum of the three colors are even,

and they satisfy the triangle inequality. An admissible coloring c determines a 6-tuple

.av; bv; cc; dv; ev; fv/ of integers at each vertex v of X , a 3-tuple .ae; be; ce/ of

integers at each edge e of X and an integer uf at each face f of X .

If r is a natural number, a coloring c is r-admissible if the sum of the colors at each

edge is � 2.r � 2/. Let �r denote a primitive r th root of unity. Turaev and Viro [16]

define an invariant

TVX .�r / D ev�r

X

c

Y

v2V.X/

Tet

�
av bv ev

dv cv fv

� Y

e2E.X/

‚.ae; be; ce/�1
Y

f 2F .X/

U.uf / (14)

where ev�r
denotes the evaluation of a rational function of q at q D �r , and the sum

is over the set of r-admissible colorings Turaev and Viro prove that the above state-

sum is a topological invariant of M , i.e., independent of the ideal triangulation T .

An extension of the above invariant TV.X;
/.�r/ can be defined by fixing an element


 2 H1.@M; Z/, which determines a spine X.
/ (called an augmented spine in [4,

Section 2.2]).

2.3. The FKB invariant

In [4] it was observed that an admissible coloring c of X gives rise to a surface †.c/

of M carried by X . These surfaces which follow the spine and resolve the singular-

ities were called spinal surfaces in [4] and they are carried by the branched surface

X . Spinal surfaces can be encoded by their weight coordinates, as is natural in nor-

mal surface theory, and their Haken sum can be defined in such a way that the sum

of their weights is the weight of their sum. Thus, the weight coordinates of spinal

surfaces generate a monoid �.X/. There is a natural increasing filtration on �.X/

where �.X/N denotes the (finite set of) surfaces with maximum weight at each face

at most N . The idea of [4] is to use the same building blocks where now q is a complex
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number inside the unit disk, and consider the sum

TV
.N /
X .q/ D

X

†2�.X/N

Y

v2V.F /

Tet

�
av bv ev

dv cv fv

� Y

e2E.X/

‚.ae; be; ce/�1
Y

f 2F .X/

U.uf /: (15)

Alas, TV
.N /
X .q/ is not a topological invariant (see below). However, the following is

true.

Theorem 2.1 ([4]). Fix a 1-efficient ideal triangulation T of a 3-manifold M with

torus boundary components and let X be the dual spine. Then, the following limit

exists

I FKB
T

.q/ WD lim
N !1

2

N
TV

.N /
X .q/ 2 ZŒŒq��: (16)

Remark 2.2. The limit in (16) is a correction of [4, Theorem 5.1 (ii)] where with the

notation of [4], one has k D 0; : : : ; N=2.

The existence of the above limit is only the beginning of a stability of the coeffi-

cients of the sequence TV
.N /
X .q/ in the sense of asymptotic expansions of sequences

in the Laurent polynomial ring Z..q
1
2 // discussed in [8]. In examples, it appears that

the sequence TV
.N /
X .q/ stabilizes to a quasi-linear function, i.e., that we have

lim
N

TV
.N /
X .q/ �

N

2
I FKB

T
.q/ D I FKB

.0/;T .q/ C I FKB
.1/;T .q/ �

´
0; N even,

1; N odd,
(17)

where I FKB
T

.q/; I FKB
.0/;T

.q/ and 2I FKB
.1/;T

.q/ 2 ZŒŒq1=2��. However, both I FKB
.0/;T

.q/ and

I FKB
.1/;T

.q/ depend on the triangulation. For example, for the standard ideal triangu-

lation of the figure eight knot complement T41;2 with two tetrahedra (and isometry

signature cPcbbbiht) we have

I FKB
T41;2

.q/ D 1 � 2q � 3q2 C 2q3 C 8q4 C 18q5 C � � � ;

I FKB
.0/;T41;2

.q/ D 1 C 4q2 C 4q3 � 6q4 � 36q5 C � � � ;

2I FKB
.1/;T41;2

.q/ D �1 C 2q C 3q2 � 2q3 � 8q4 � 18q5 C � � � ;

whereas for the geometric triangulation T41;3 of the figure eight knot complement

with three tetrahedra (and isometry signature dLQbcccdegj) we have

I FKB
T41;3

.q/ D I FKB
T41;2

.q/

as expected but

I FKB
.0/;T41;3

.q/ D 1 C 4q2 C 4q3 � 6q4 � 36q5 C � � � ;

2I FKB
.1/;T41;3

.q/ D 1 C 2q C 2q2 C 8q3 � 12q4 � 72q5 C � � � :
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The next result of [4] identifies the above limit with a generating series of the

monoid of spinal surfaces, modulo the boundary torii. Such surfaces were called

unpeelable in [4]. Define the weight E1.†/ of a spinal surface † to be

E1.†/ D .�q
1
2 /��.†/

Y

f

1

1 � q

Y

v

S1

�
av bv ev

dv cv fv

�
; (18)

where if C1 � C2 � C3 are the sums of opposite edge weights of the tetrahedron,

˛ D
C1 � C3

2
; ˇ D

C1 � C2

2
;

and

S1

�
a b e

d c f

�
D .1 � q/.qI q/1

1X

nD0

.�1/n q
3
2

n2C.˛CˇC
1
2

/nC
1
2

˛ˇ

.qI q/n.qI q/nC˛.qI q/nCˇ

D .1 � q/J FKB
� .S�

1 ; S�
2 ; S�

3 /; (19)

where S1 � S2 � S3, thus S�
3 D 0 and ˛ D S1 � S3 D C1�C3

2
and ˇ D S2 � S3 D

C1�C2

2
. It follows that for a spinal surface † we have

E1.†/ D .�q
1
2 /��.†/J FKB

� .†/ (20)

where ˛ D S�
1 and ˇ D S�

2 and

J FKB
� .†/ D

tY

j D1

J FKB
� .aj ; bj ; cj / (21)

and .a1; b1; c1; : : : ; at ; bt ; ct / are the quad coordinates of † and t is the number of

tetrahedra of T . Note that † is unpeelable if and only if min¹aj ; bj ; cj º D 0 for all

j D 1; : : : ; t .

Theorem 2.3 ([4]). Under the assumptions of Theorem 2.1, the limit coincides with

the generating series of closed unpeelable surfaces carried by the spine of T

I FKB
T

.q/ D
X

†W unpeelable

E1.†/: (22)

It is possible to extend Theorems 2.1 and 2.3 using an element 
 2 H1.@M; Z/.

Consider the augmented spine X.
/. Then one can define TV
.N /
X .
/.q/ and the cor-

responding limit I FKB
T

.
/.q/ exists and is identified with the generating series of

unpeelable surfaces † with boundary 
 .
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3. Proofs

3.1. Stabilization of the building blocks

We prove some stabilization properties of the building blocks of quantum spin net-

works, using elementary degree estimates, in the spirit of [8], where the stabilization

of the coefficients of the colored Jones polynomial of an alternating knot was proven,

giving rise to a sequence of q-series, the first of which is known as the tail of the

colored Jones polynomial.

We begin by expressing the building blocks of Section 2.1 in terms of the quantum

factorial .qI q/n where .qxI q/n D
Qn

j D1.1 � qj x/ for n a nonnegative integer. We

have

Œn� D q�
n�1

2
1 � qn

1 � q
; Œn�Š D q�

n.n�1/
4

.qI q/n

.1 � q/n
;

�
a

a1; a2; : : : ; ar

�
D

Œa�Š

Œa1�Š : : : Œar �Š
D q

� 1
4

.a2�
Pr

j D1 a2
j

/ .qI q/a

.qI q/a1
: : : .qI q/ar

; (23)

and

.Tet/

�
a b e

d c f

�
D

S�X

kDT C

.�1/k 1 � qk

1 � q
q

ı.Tet/
�

a b e
d c f

�

�
.qI q/kQ3

iD1.qI q/Si �k

Q4
j D1.qI q/k�Tj

(24)

where ı.Tet/
�

a b e
d c f

�
is defined in Lemma 3.1 below and Si and Tj are given in (11)

and (12).

Since .qI q/n 2 ZŒq� is a polynomial with constant term 1, it follows that one

has 1=.qI q/n 2 Q.q/ \ ZŒŒq��. The building blocks are rational functions of q with

denominators products of cyclotomic polynomials, hence they are well-defined ele-

ments of the Laurent polynomial ring Z..q//. If f .q/ 2 Z..q// we will denote by

lt.f /qı.f / the monomial with the lowest power of q appearing in the Laurent expan-

sion of f .q/, and we will denote Qf .q/ D lt.f /�1q�ı.f /f .q/ the shifted series, which,

when lt.f / D ˙1, is an element of 1 C qZŒŒq��.

Note that our notation differs slightly from [9, Section 2], where we studied the

leading terms of the building blocks with the aim of computing the degree of the

colored Jones polynomial.

The next lemma is elementary (see [9, Lemma 2.4]).

Lemma 3.1. For all admissible colorings we have

lt.U/.a/ D .�1/a; lt.‚/.a; b; c/ D .�1/
aCbCc

2 ; lt.Tet/

�
a b e

d c f

�
D .�1/T C

;
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and

ı.U/.a/ D
a

2
;

ı.‚/.a; b; c/ D �
1

8
.a2 C b2 C c2/ C

1

4
.ab C ac C bc/ C

1

4
.a C b C c/;

ı.Tet/

�
a b c

d e f

�
D

1

4

�
�.T C/2 C

X

i

.Si � T C/2 C
X

j

.T C � Tj /2
�

�
T C

2
;

where Sj and Ti are given in (11) and (12).

We have all the ingredients to give a proof of Proposition 1.2.

Proof of Proposition 1.2. The first identity follows from the fact that

z‚.a; b; c/ D
1 � q

aCbCc
2

C1

1 � q

.qI q/ aCbCc
2

.qI q/ �aCbCc
2

.qI q/ a�bCc
2

.qI q/ aCb�c
2

and the fact that

lim
N !1

q�C�N D 0; lim
N !1

.qI q/�0C�N D .qI q/1 (25)

for integers �, �0 and � with � > 0.

For the second identity, the sum over k (with T C � k � S�) in (24) achieves the

minimum q-degree uniquely at k D T C. After changing variables to k D S� � ` it

follows that

fTet

�
a b c

d e f

�
D

1

1 � q

S��T CX

`D0

.�1/`.1 � qS��`/q
1
2

`.3`C1/C`.S�
1

CS�
2

CS�
3

/

�
.qI q/S��`Q

i .qI q/S�
i

C`

Q
j .qI q/T �

j
�`

;

where S�
i D Si � S� and T �

j D S� � Tj . It follows that for all natural numbers N ,

we have

fTet

�
a C 2N b C 2N c C 2N

d C 2N e C 2N f C 2N

�

D
1

1 � q

N CS��T CX

`D0

.�1/`.1 � q4N CS��`/q
1
2

`.3`C1/C`.S�
1

CS�
2

CS�
3

/

�
.qI q/4N CS��`Q

i .qI q/S�
i

C`

Q
j .qI q/N CT �

j
�`

: (26)
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Equation (25) applied to each fixed ` implies that

lim
N !1

fTet

�
a C 2N b C 2N c C 2N

d C 2N e C 2N f C 2N

�

D
1

1 � q

1X

`D0

.�1/`q
1
2 `.3`C1/C`.S�

1
CS�

2
CS�

3
/ .qI q/1Q

i .qI q/S�
i

C`

Q
j .qI q/1

(27)

and this concludes the proof.

3.2. The tetrahedron index as a limit of q-6j -symbols

In this section we give a proof of Proposition 1.3. Observe that J FKB
� .a; b; c/ is

symmetric under all permutations of .a; b; c/. Moreover, we claim that it satisfies

the translation property (4). Indeed, using the definition of J FKB
� as a sum over the

integers (6), it follows that

J FKB
� .a C s; b C s; c C s/

D .qI q/1

X

n

.�1/n Q

.qI q/nCaCs.qI q/nCbCs.qI q/nCcCs

D .�q
1
2 /s.qI q/1

X

m

.�1/m q
1
2 m.3mC1/Cm.aCbCc/C 1

2 .abCacCbc/

.qI q/mCa.qI q/mCb.qI q/mCc

where

Q WD q
1
2

n.3nC1/Cn.aCsCbCsCcCs/C 1
2

..aCs/.bCs/C.bCs/.cCs/C.cCs/.aCs//

and in the first equality we shifted variables to n C s D m.

Since both sides of (9) satisfy the translation property (4) and are symmetric in

.a; b; c/, to prove the said equation, it suffices to assume that a � b � c D 0. We will

use the following identities

.qxI q/1 D

1X

nD0

.�1/n q
n.nC1/

2 xn

.qI q/n

; (28)

1

.qI q/m.qI q/n

D
X

r;s;t�0
rCsDm;sCtDn

qrt

.qI q/r.qI q/s.qI q/t

; (29)
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whose proofs may be found, for example, in [17, (7) and (13) of Section D]. We have

.qI q/1

1X

kD0

.�1/k q
3
2

k2C.aCbC
1
2

/k

.qI q/k.qI q/kCa.qI q/kCb

D
X

k

.�1/k q
3
2

k2C.aCbC 1
2

/k

.qI q/k.qI q/kCa

.qkCbC1I q/1

D
X

k;`

.�1/kC` q
3
2

k2C.aCbC 1
2

/kC
`.`C1/

2

.qI q/k.qI q/kCa.qI q/`

q.kCb/`

D
X

n

X

kCaC`DnCa
nDkC`

.�1/n qk.kCa/q
1
2 n2C

n
2 Cbn

.qI q/k.qI q/`.qI q/kCa

D
X

n

.�1/n q
1
2

n2C n
2

Cbn

.qI q/n.qI q/nCa

D q�
1
2 abI�.�b; a/:

It follows that I FKB.a; b; 0/ D I�.�b; a/ D J�.b; a; 0/ D J�.a; b; 0/, which con-

cludes the proof of the proposition.

3.3. Proof of Theorem 1.1

Fix a 1-efficient ideal triangulation T with spine X . Recall the generalized normal

surfaces of [7] and [6, Section 10]. Each generalized normal surface S has weight

I.S/ given by [6, (25)]

I.S/ D .�q
1
2 /��.†/

tY

j D1

J�.aj ; bj ; cj / (30)

where .a1; b1; c1; : : : ; at ; bt ; ct / are the quad coordinates of † and t is the number of

tetrahedra of T .

Lemma 3.2. There is a bijection between the closed generalized normal surfaces

of T and the closed unpeelable spinal surfaces of X . If S is a generalized normal

surface and † is the corresponding unpeelable surface, then

I.S/ D E1.†/: (31)

Proof. Using the notation of [6, Section 7], the closed generalized normal surfaces

of T are given by Q0.T ; Z/=T D .E C T /=T where E and T are the subspaces

of integer solutions to the normal surface equations generated by the edges and the
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tetrahedra of T , respectively. Every element of Q0.T ; Z/ is encoded by a vector

.a1; b1; c1; : : : ; at ; bt ; ct / 2 Z3t of quadrilateral coordinates where t is the num-

ber of tetrahedra of T . Moreover, the tetrahedral solution to the gluing equations

corresponding to the `-th tetrahedron is the 3t vector of integers with coordinates

.aj ;bj ; cj / D ıj;`.1;1;1/ where ıj;` D 1 if j D ` and 0 otherwise. Thus, every general-

ized normal surface S 2 .E C T /=T has coordinate vector .a1;b1; c1; : : : ;at ;bt ; ct / 2

N3t satisfying min¹aj ; bj ; cj º D 0 for all j D 1; : : : ; t . And conversely, every such

vector corresponds to a unique generalized normal surface. On the other hand, every

unpeelable closed surface is uniquely described by its quad coordinate vector .a1; b1;

c1; : : : ;at ;bt ; ct / 2 N3t satisfying min¹aj ;bj ; cj º D 0 for all j D 1; : : : ; t , and all such

vectors give rise to unpeelable surfaces. This concludes the first part of the lemma.

The second part, i.e., equation (31) follows from equations (20) and (21) and Propos-

ition 1.3.

When .m; e/ D 0, Theorem 1.1 follows from Theorem 2.3, Lemma 3.2 and the

fact that the 3D-index is given by [6, Corollary 8.2]

IT .0; 0/.q/ D
X

S

I.S/ (32)

where the sum is over the set of generalized normal surfaces. When 
 2 H1.@M; Z/,

one uses the obvious extension of Lemma 3.2 along with the extension of Theorem 2.3

combined with [6, Definition 8.1]. This concludes the proof of the theorem.

Acknowledgments. The second author wishes to thank the International Mathemat-

ics Center at SUSTech University, Shenzhen for their hospitality. The authors wish to

thank Banff for inviting them at the conference on Modular Forms and Quantum Knot

Invariants in March 2018 where the results were conceived.

References

[1] R. Benedetti and C. Petronio, On Roberts’ proof of the Turaev–Walker theorem. J. Knot

Theory Ramifications 5 (1996), no. 4, 427–439 Zbl 0890.57029 MR 1406714

[2] T. Dimofte, D. Gaiotto, and S. Gukov, 3-manifolds and 3d indices. Adv. Theor. Math. Phys.

17 (2013), no. 5, 975–1076 Zbl 1297.81149 MR 3262519

[3] T. Dimofte, D. Gaiotto, and S. Gukov, Gauge theories labelled by three-manifolds. Comm.

Math. Phys. 325 (2014), no. 2, 367–419 Zbl 1292.57012 MR 3148093

[4] C. Frohman and J. Kania-Bartoszynska, The quantum content of the normal surfaces in a

three-manifold. J. Knot Theory Ramifications 17 (2008), no. 8, 1005–1033

Zbl 1181.57012 MR 2439773

[5] S. Garoufalidis, The 3D index of an ideal triangulation and angle structures. Ramanu-

jan J. 40 (2016), no. 3, 573–604 Zbl 1410.57016 MR 3522084

https://zbmath.org/?q=an:0890.57029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1406714
https://zbmath.org/?q=an:1297.81149&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3262519
https://zbmath.org/?q=an:1292.57012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3148093
https://zbmath.org/?q=an:1181.57012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2439773
https://zbmath.org/?q=an:1410.57016&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3522084


S. Garoufalidis and R. van der Veen 538

[6] S. Garoufalidis, C. D. Hodgson, N. R. Hoffman, and J. H. Rubinstein, The 3D-index and

normal surfaces. Illinois J. Math. 60 (2016), no. 1, 289–352 Zbl 1378.57030

MR 3665182

[7] S. Garoufalidis, C. D. Hodgson, J. H. Rubinstein, and H. Segerman, 1-efficient triangu-

lations and the index of a cusped hyperbolic 3-manifold. Geom. Topol. 19 (2015), no. 5,

2619–2689 Zbl 1330.57029 MR 3416111

[8] S. Garoufalidis and T. T. Q. Lê, Nahm sums, stability and the colored Jones polynomial.

Res. Math. Sci. 2 (2015), article id. 1 Zbl 1334.57021 MR 3375651

[9] S. Garoufalidis and R. van der Veen, Quadratic integer programming and the slope con-

jecture. New York J. Math. 22 (2016), 907–932 Zbl 1361.57009 MR 3548130

[10] W. Jaco and J. H. Rubinstein, 0-efficient triangulations of 3-manifolds. J. Differential

Geom. 65 (2003), no. 1, 61–168 Zbl 1068.57023 MR 2057531

[11] E. Kang and J. H. Rubinstein, Ideal triangulations of 3-manifolds. II. Taut and angle struc-

tures. Algebr. Geom. Topol. 5 (2005), 1505–1533 Zbl 1096.57018 MR 2186107

[12] L. H. Kauffman and S. L. Lins, Temperley-Lieb recoupling theory and invariants of 3-

manifolds. Ann. Math. Stud. 134, Princeton University Press, Princeton, N.J., 1994

Zbl 0821.57003 MR 1280463

[13] G. Masbaum and P. Vogel, 3-valent graphs and the Kauffman bracket. Pacific J. Math. 164

(1994), no. 2, 361–381 Zbl 0838.57007 MR 1272656

[14] V. G. Turaev, Quantum invariants of 3-manifolds and a glimpse of shadow topology.

C. R. Acad. Sci. Paris Sér. I Math. 313 (1991), no. 6, 395–398 Zbl 0752.57009

MR 1126421

[15] V. G. Turaev, Shadow links and face models of statistical mechanics. J. Differential Geom.

36 (1992), no. 1, 35–74 Zbl 0773.57012 MR 1168981

[16] V. G. Turaev and O. Y. Viro, State sum invariants of 3-manifolds and quantum 6j -symbols.

Topology 31 (1992), no. 4, 865–902 Zbl 0779.57009 MR 1191386

[17] D. Zagier, The dilogarithm function. In Frontiers in number theory, physics, and geo-

metry. II, pp. 3–65, Springer, Berlin, 2007 Zbl 1176.11026 MR 2290758

Received 30 November 2020.

Stavros Garoufalidis

International Center for Mathematics, Department of Mathematics,

Southern University of Science and Technology, Shenzhen, China;

stavros@mpim-bonn.mpg.de

Roland van der Veen

Bernoulli Institute, University of Groningen, P.O. Box 407, 9700 AK Groningen,

The Netherlands; r.i.van.der.veen@rug.nl

https://zbmath.org/?q=an:1378.57030&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3665182
https://zbmath.org/?q=an:1330.57029&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3416111
https://zbmath.org/?q=an:1334.57021&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3375651
https://zbmath.org/?q=an:1361.57009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=3548130
https://zbmath.org/?q=an:1068.57023&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2057531
https://zbmath.org/?q=an:1096.57018&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2186107
https://zbmath.org/?q=an:0821.57003&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1280463
https://zbmath.org/?q=an:0838.57007&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1272656
https://zbmath.org/?q=an:0752.57009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1126421
https://zbmath.org/?q=an:0773.57012&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1168981
https://zbmath.org/?q=an:0779.57009&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=1191386
https://zbmath.org/?q=an:1176.11026&format=complete
https://mathscinet.ams.org/mathscinet-getitem?mr=2290758
mailto:stavros@mpim-bonn.mpg.de
mailto:r.i.van.der.veen@rug.nl

