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A categorification of cyclotomic rings

Robert Laugwitz and You Qi

Abstract. For any natural number n � 2, we construct a triangulated monoidal category whose
Grothendieck ring is isomorphic to the ring of cyclotomic integers On. This construction
provides an affirmative resolution to a problem raised by Khovanov in 2005.

1. Introduction

1.1. Backround

The seminal paper of Louis Crane and Igor B. Frenkel [6] proposes that one should
lift three-dimensional topological quantum field theories defined at a primitive n-th
root of unity to four-dimensional theories. The lifting process is usually referred to,
in mathematics, as categorification. One aim is to replace algebras appearing in the
construction of the three-dimensional topological quantum field theories by categor-
ies, such that the original algebras can be recovered by passing to the Grothendieck
group. However, a foundational obstacle to the program is the lack of a monoidal cat-
egory that categorifies the cyclotomic ring of integers On at a primitive n-th root of
unity.

As an initial breakthrough, Khovanov [16] observed that, when n D p is a prime
number, the graded Hopf algebra Hp D kŒd�=.dp/ (deg.d/ D 1) over a field k of
characteristic p may be utilised to categorify Op . The basic idea is as follows. Inside
the category of graded Hp-modules, the projective modules, which coincide with the
injectives since Hp is graded Frobenius ([20]), have their graded Euler characteristic
equal to a multiple of that of the rank-one free module

ŒHp� D 1C v C � � � C v
p�1 D p̂.v/: (1.1)

Here ˆn.q/ stands for the n-th cyclotomic polynomial. Systematically killing pro-
jective-injective objects fromHp-modules results in a triangulated monoidal category
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Hp-gmod whose Grothendieck ring is isomorphic to

K0.Hp-gmod/ D
ZŒv; v�1�

. p̂.v//
Š Op : (1.2)

The tensor triangulated categoryHp-gmod bears significant similarities with the usual
homotopy category of abelian groups, and is thus also referred to as the homotopy

category of p-complexes.
The study of Hp-gmod and algebra objects in these categories has been further

developed in [24]. The theory has since been applied to categorify various root-of-
unity forms of quantum groups. We refer the reader to [25] for a brief summary and
special phenomena at a p-th root of unity.

1.2. Outline of the construction

In this paper, we construct a triangulated monoidal category On whose Grothendieck
group is isomorphic to the ring of cyclotomic integers On. We work in any charac-
teristic, including characteristic zero, as long as the ground field contains a primitive
N -th root of unity, where N D n2=m and m is the radical of n, the product of the
distinct prime factors of n. The construction is motivated from pioneering works of
Kapranov [15] and Sarkaria [27] on n-complexes. When n D pa is a prime power,
our work is equivalent to a graded version of p-complexes. With this approach, we
remove the restriction on n being a prime number.

Let us outline the construction. When n D pa is a prime power, one sees that
pcomplexes, up to homotopy, categorify Opa when the p-differential has degree
pa�1. The characteristic zero lift of the Hopf algebra kŒd�=.dp/, which controls Ka-
pranov–Sarkaria’s p-complexes, is a Hopf algebra object in the braided monoidal
category of q-graded vector spaces, where q is a primitive p2a�1-th root of unity.

Now, suppose n � 2 is a general integer. Let nD pa1

1 : : :p
at
t be the prime decom-

position of n and fix q, a primitive N -th root of unity. By the one-factor case, it is
natural to consider the Hopf algebra object Hn, in q-graded vector spaces, generated
by commuting differentials d1; : : : ;dt subject to dpi

i D 0, i D 1; : : : ; t . The algebraHn

is graded Frobenius, and thus has associated with it a well-behaved tensor triangulated
stable categoryHn-gmod. However, the Grothendieck ring ofHn-gmod is defined by
setting the character of the free module Hn equal to zero. The last relation is usually
larger than the cyclotomic relation ˆn.v/ D 0 which we would like to impose.

To obtain the correct relations in the Grothendieck ring, we use the element-
ary fact that ˆn.v/ occurs as the greatest common divisor of some prime power
cyclotomic relations (Lemma 5.13). On the categorical level, the ideal generated
by the greatest common divisor is categorified by a “categorical ideal,” i.e., a thick
triangulated subcategory I inside Hn-gmod which is closed under tensor product
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actions by Hn-gmod. Verdier localization at the categorical ideal I yields the desired
category On, whose Grothendieck ring is defined by the desired relations and is iso-
morphic to On.

Before moving on, let us also point out some connection to previous work. Fur-
thering Kapranov and Sakaria, there is a significant amount of study on n-complexes
in the literature. See, for instance, the lectures notes of Dubois-Violette [9] and the
references therein. In [5], Bichon considers a Hopf algebra A.q/ D kŒx�=.xn/ Ì kZ

for which there is a monoidal equivalence between the category of n-complexes and
A.q/-comod. One may similarly define a Z=nZ-graded version of Bichon’s Hopf
algebra, which resembles the classical Taft algebra. Recently, Mirmohades [23] has
introduced a tensor triangulated category arising from a suitable quotient of a tensor
product of two Taft algebras. This category categorifies a primitive root of unity whose
order is the product of two distinct odd primes. Our current work and [5, 23] are both
unified under the frame of hopfological algebra [24].

1.3. Summary of contents

We now briefly describe the structure of the paper and summarise the contents of each
section.

In Section 2, we review the construction of stable module categories in the par-
ticular case of finite-dimensional Hopf algebras. The Frobenius structure and the
existence of an inner hom space allows an explicit identification of morphism spaces
in the stable module categories.

In Section 3, we introduce the main object of study, a finite-dimensional braided
Hopf algebraHn, depending on a given natural number n. The categoryHn-gmod has
a tensor product depending on a certain root of unity q. The braided Hopf algebraHn

is primitively generated by certain commuting pk-differentials dk , for k D 1; : : : ; t .
Using the Radford–Majid biproduct (or bosonization, see [22,26]) of the differentials
by the group algebra of a finite cyclic group, one obtains a related Hopf algebra,
for which graded Hn-modules correspond to rational graded modules. We also point
out that Hn-gmod has the structure of a spherical monoidal category in the sense of
Barrett and Westbury [3].

Next, we proceed, in Section 4, to define a tensor triangulated ideal I (Defini-
tion 4.12) in the (stable) module category of Hn. Upon factoring out the ideal by
localization, we show, in Section 5, that the quotient category has the desired Grothen-
dieck ring On (Theorem 5.15). The reason to introduce this ideal is as follows. On the
Grothendieck ring level, we would like the objects of the ideal to have characters sat-
isfying cyclotomic relations dividing qn � 1 that are of lower order than the primitive
conditionˆn.q/D 0. Systematically killing these objects by taking a Verdier quotient
in the stable category Hn-gmod gives the lower order relations in the Grothendieck
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ring. An example of such an object in the ideal is an n-complex which is freely gen-
erated by all but one of the differentials while the remaining differential acts by zero.
This objects has self-extensions and it is thus natural to require a filtration condition
on the modules on the abelian level giving a triangulated tensor ideal Ik . The bulk of
the work in Section 4 is devoted to showing that after passing to the stable category
of Hn-modules, the ideals Ik are orthogonal so that their sum I is indeed closed
under tensor product, extensions and direct summands. Now, the standard machinery
of Verdier localization (quotient) can be used to obtain a triangulated quotient cat-
egory On with a tensor product structure. Finally, in Theorem 5.15, we prove that the
Grothendieck ring of On is isomorphic to On.

1.4. Comparison and further directions

To conclude this introduction, let us make some comparison between our construction
and the works [5, 23], as well as indicate some further directions.

We employ multiple nilpotent differentials d1; : : : ; dt depending on the prime
factors of n, in contrast to [23], thus getting rid of the restriction on n having to be
the product of two odd primes. In contrast to [23] we only employ a single Z-grading
rather than a bigrading. This requires us to use a filtration condition on modules in the
ideal Ik .

A negative result from [5, Proposition 5] is the non-existence of a quasi-triangular
structure on the Hopf algebra A.q/ describing n-complexes. In our setup, we show
that instead of a quasi-triangular structure, there exist weak replacements given by
functorial isomorphisms V ˝q W Š W ˝q�1 V . For n D 2, these satisfy the axioms
of a braiding, but for other values of n no analogue of the braiding axioms could be
identified. We plan to explore this structure in subsequent works.

For further investigation, we would like to construct module categories over On,
developing triangulated analogues parallel to the abelian theory of [11]. We will also
seek interesting algebra objects in On, in a similar way as done in [10, 17] over the
homotopy category of p-complexes. The Grothendieck groups of such algebra objects
would then give rise to interesting modules over On. It would also be an interesting
problem to combine the recent categorification of fractional integers due to Khovanov
and Tian [18] in order to categorify the algebra On

�
1
n

�
, over which the extended

3-dimensional Witten–Reshetikhin–Turaev TQFT lives.
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2. The stable category

2.1. Notation

We start by fixing some conventions concerning Z-graded vector spaces over a ground
field k. Let us denote the category of finite-dimensional Z-graded vector spaces by
gvec.

Let M D
L

i2Z
M i and N D

L
j 2Z

N j be Z-graded vector spaces over k. We
set M ˝k N , or simply M ˝ N , to be the graded vector space

M ˝N WD
M

k2Z

.M ˝N/k; .M ˝N/k WD
M

iCj Dk

M i ˝N j :

For any integer k 2Z, we denote byM ¹kº the graded vector spaceM with its grading
shifted down by k: .M ¹kº/i D M iCk : The morphisms space Hom0

k
.M;N / consists

of homogeneous k-linear maps from M to N :

Hom0
k
.M;N / WD ¹f WM ! N j f .M i / � N iº:

Writing Homi
k
.M;N / WD Hom0

k
.M;N ¹iº/ D ¹f WM ! N j f .M j / � N iCj º, we

set the graded hom space to be

Hom�
k
.M;N / WD

M

i2Z

Homi
k
.M;N /:

If no confusion can be caused, we will simplify Hom�
k
.M;N / to Hom�.M;N /. A spe-

cial case is the graded dualM� D Hom�.M;k/.
Given three Z-graded vector spaces M , L and K, the following easily proven

tensor-hom adjunction will be used. There are isomorphisms of graded vector spaces,
natural in M;L;K:

ˆWHom�.M ˝ L;K/
�
! Hom�.L;Hom�.M;K//; ˆ.f /.l/.m/ WD f .m˝ l/;

(2.1)
where f 2 Hom�.M ˝ L;K/, m 2M and l 2 L are arbitrary elements.

We will also require (unbalanced) q-integers. In particular, for a formal variable �,
we define polynomials

Œn�� D
1� �n

1 � �
D 1C � C � � � C �n�1;

�
n

k

�

�

D
Œn��Š

Œk��ŠŒn � k��Š
: (2.2)

Given q 2 k, we set Œn�q to be the value of Œn�� evaluated at � D q. For a Z-graded
vector space M , denote by

dim�.M/ D
X

i2Z

dimk.M
i /�i
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the graded dimension of M . We abbreviate, for f .�/ D
P

i2Z
fi�

i 2 NŒ�; ��1�,

Mf .�/ D
M

i2Z

M ¹iº˚fi :

2.2. Stable module categories

LetH be a Z-graded self-injective algebra over a field k. We denote by H -gmod the
category of finite-dimensional Z-graded modules over H , with morphisms of degree
zero. For ease of notation, we will drop mentioning “graded” in what follows if no
confusion can arise.

Note that, as H is self-injective, a graded H -module is injective if and only
if it is projective. The (graded) stable category of finite-dimensional H -modules,
denoted by H -gmod, is the categorical quotient of the category H -gmod by the
class of (graded) projective-injective objects. More precisely, recall that a degree-zero
morphism is (homogeneous) null-homotopic if it factors through a projective-injective
H -module. For any twoH -modulesM;N 2H -gmod, let us denote the space of null-
homotopic morphisms inH -gmod by I

0
H .M;N /. It is readily seen that, the collection

of I
0
H .M; N /’s ranging over all M;N 2 H -gmod constitute an ideal in H -gmod.

Then H -gmod has the same objects as H -gmod, and the morphism space between
two objectsM;N 2 H -gmod is by definition the quotient

HomH -gmod.M;N / WD
Hom0

H -gmod.M;N /

I
0
H .M;N /

: (2.3)

It is a classical theorem that H -gmod is triangulated, see [12, Theorem 9.4]
and [14]. The shift functor Œ1�WH -gmod! H -gmod is defined as follows. For any
M 2 H -gmod, choose an injective envelope IM for M in H -gmod and let KM be
the cokernel of the embedding map �M :

0!M
�M
��! IM ! KM ! 0:

Then MŒ1� WD KM . The inverse functor Œ�1� can be defined similarly by taking a
projective cover and the corresponding kernel of the canonical epimorphism.

Let us also recall how distinguished triangles are defined in the stable category.
Let f WM ! N be a morphism in H -gmod. Consider the diagram

0 M IM MŒ1� 0

0 N Cf MŒ1� 0

 

!

 

!
�M

 !f

 

!

 !

 

!

((

 

!

 

!
u  

!
v  

!

(2.4)
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where the left-hand square is a push-out. One declares

M
f
! N

u
! Cf

v
!MŒ1� (2.5)

to be a standard distinguished triangle. Then any triangle in H -gmod isomorphic to
a standard one is called a distinguished triangle.

We refer the reader to Happel’s book [13] for more details on this fundamental
construction.

As for graded vector spaces, we set

Homi
H -gmod.M;N / WD HomH -gmod.M;N ¹iº/; I

i
H .M;N / WD I

0
H .M;N ¹iº/;

and collect together

Hom�
H -gmod.M;N / W D

M

i2Z

HomH -gmod.M;N ¹iº/

D
M

i2Z

�Homi
H -gmod.M;N /

I
i
H .M;N /

�
: (2.6)

Notice that this is different from the ext-space, which is denoted

Ext�H -gmod.M;N / WD
M

j 2Z

HomH -gmod.M;N Œj �/: (2.7)

2.3. Stable categories for finite-dimensional Hopf algebras

Now, supposeH is a finite-dimensional graded Hopf algebra over k. Our goal in this
section is to provide a more explicit characterization of the morphism spaces in the
graded stable module category H -gmod. The exposition here is a simplified version
of the constructions in [24, Section 5].

Recall that a graded Hopf algebraH is equipped with certain homogeneous struc-
tural maps called the counit "WH ! k, the comultiplication �WH ! H ˝H , and
the (invertible) antipode S WH ! H op, satisfying certain compatibility axioms with
the algebra structure of H (see, for instance, [20]). We will use adapted Sweedler’s
notation that

�.h/ WD
X

h

h1 ˝ h2: (2.8)

If M and N are H -modules, then H acts on M ˝ N by, for any x 2M , y 2 N and
h 2 H ,

h � .x ˝ y/ D
X

h

h1x ˝ h2y: (2.9)
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We equipM� D Hom�.M;k/ with the dualH -module structure

.h � f /.x/ WD f .S�1.h/x/; (2.10)

for any f 2M� and x 2M . Notice that the grading on M� is given by

.M�/k D Hom0
k
.M�k;k/:

More generally, letM;N be two gradedH -modules, we define a gradedH -mod-
ule structure on the k-vector space Hom�

k
.M;N / by

.h � f /.x/ D
X

h

h2f .S
�1.h1/x/: (2.11)

It is easily checked that there is an isomorphism of gradedH -modules

Hom�.M;N / ŠM� ˝ N: (2.12)

Furthermore, it is easy to check that the natural adjunction maps

k!M� ˝M; 1 7!
X

i

e�
i ˝ ei ; (2.13)

M ˝M� ! k; x ˝ f 7! f .x/; (2.14)

commute with the H -actions, where ¹ei º is a homogeneous basis for M and ¹e�
i º is

the dual basis.

Remark 2.1. We remark that there is an alternative way to introduce internal homs
for H -gmod, by using Hom�.M;N / Š N ˝M�. In this case, the module structure
is given by

.h � f /.v/ D
X

h

h1f .S.h2/v/:

Note that under this action, M� is left dual to M , whereas in equation (2.12), M�

plays the role of a right dual. With the alternative convention, the modified form of
the tensor-hom adjuction (cf. equation (2.1))

Hom�.M ˝ L;N / Š Hom�.M;Hom�.L;N //

is an isomorphism of H -modules.
The H -invariants discussed in Lemma 2.3 below will be naturally isomorphic for

the two versions of internal homs.
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By a classical result of Larson and Sweedler [20], H is (graded) Frobenius, and,
in particular, it is (graded) self-injective. Letƒ be a fixed non-zero left integral in H ,
i.e., an element in H such that for all h 2 H , one has

hƒ D ".h/ƒ: (2.15)

The element is unique up to a non-zero scalar, and hence a homogeneous element
using that the multiplication on H and " are degree-preserving maps. Denote the
degree ofƒ by deg.ƒ/ WD `. Then for anyH -moduleM , we have a canonical embed-
ding of M into the injective H -moduleM ˝H :

�M WM !M ˝H ¹`º; m 7! m˝ƒ; (2.16)

because of the following result.

Lemma 2.2. Let H be a (graded) Hopf algebra and M a (graded)H -module. Then

there is an isomorphism of tensor products of (graded)H -modules

�M WM ˝H ŠM0 ˝H; m˝ h 7!
X

h

S�1.h1/m˝ h2:

HereM0 stands for the vector spaceM endowed with the trivialH -module structure

hm0 D ".h/m0;

for any h 2 H andm0 2M0. In particular,M ˝H is projective and injective.

Proof. It is an easy exercise to check that the inverse of �M is given by

 M WM0 ˝H !M ˝H; m0 ˝ h 7!
X

h

h1m˝ h2:

For the last statement, the projectivity ofM0˝H is clear. For injectivity, one uses the
well-known fact that a (possibly infinite) direct sum of injective H -modules remains
injective if and only if H is Noetherian.

Despite the fact that the module M ˝H ¹`º is usually larger than the injective
envelope of M , the functoriality of this canonical map in M will allow us to under-
stand the morphism spaces in the stable category more explicitly.

Recall that, for any H -module M , the space MH of H -invariants in M consists
of

MH WD ¹m 2M jhm D ".h/m for all h 2 H º: (2.17)
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Lemma 2.3. The space of H -invariants in Hom�.M;N / coincides with the space of

H -module maps between M and N :

Hom�.M;N /H D Hom�
H .M;N /:

In particular, there is an identification Hom0.M;N /H D Hom0
H .M;N /.

Proof. If f is an H -linear map, it is clear that, for any h 2 H and m 2M ,

.h � f /.m/ D
X

h

h2f .S
�1.h1/m/ D

X

h

f .h2S
�1.h1/m/ D ".h/f .m/;

so that h � f D ".h/f . Here, in the last equality, we have used the fact that, for any
element h 2 H , the identity

P
h S

�1.h2/h1 D ".h/ holds.
On the other hand, if f 2 Homk.M;N /

H , then

h.f .m// D
X

h

h3f .S
�1.h2/h1m/

D
X

h

.h2 � f /.h1m/

D
X

h

".h2/f .h1m/ D f .hm/:

The lemma now follows.

The lemma can be rephrased as saying that the category H -gmod is an enriched

category over itself.

Lemma 2.4. AnH -module homomorphism f WM !N factors through a projective-

injective H -module if and only if there is an H -module map g making the following

diagram commute:

M N

M ˝H ¹`º

 

!�M

 

!
f

 !
g

Proof. It suffices to prove the result when N is projective-injective. In this case, con-
sider the following commutative diagram.

M N

M ˝H ¹`º N ˝H ¹`º

 

!
f

 !�M  ! �N

 

!
f ˝IdH
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Since bothN andN ˝H ŠH dim�.N / are injective, and �N D IdN ˝ƒ is an embed-
ding, there is an H -module splitting map g0WN ˝H ¹`º ! N such that g0 ı �N D

IdN . Now, the lemma follows by taking g D g0 ı .f ˝ IdH /.

Lemma 2.5. A degree-zeroH -module map f WM !N factors through the canonical

injective map �M WM ! M ˝H ¹`º if and only if there is k-linear map gWM ! N

of degree �` such that

f .m/ D .ƒ � g/.m/ D
X

ƒ

ƒ2g.S
�1.ƒ1/m/

for any m 2M .

Proof. If f D ƒ � g for some k-linear gWM ! N , we will extend g to an H -linear
map

OgWM ˝H ! N; Og.m˝ h/ WD .h � g/.m/ D
X

h

h2g.S
�1.h1/m/:

It will then follow by construction that f D Og ı �M . Indeed, we check that Og is H -
linear. For any x; h 2 H andm 2M , we have that

Og.x � .m˝ h// D
X

x

Og.x1m˝ x2h/ D
X

x;h

.x2h/2g.S
�1..x2h/1/x1m/

D
X

x;h

x3h2g.S
�1.h1/S

�1.x2/x1m/ D
X

x;h

x2h2g.S
�1.h1/".x1/m/

D
X

h

xh2g.S
�1.h1/m/ D x Og.m˝ h/:

Here in the fourth equality, we have used the fact that, for any element x 2H , it holds
that

P
x S

�1.x2/x1 D ".x/.
Conversely, if f factors as a composition of H -linear maps

f WM
�M
��!M ˝H

Og
! N;

so that f .m/D Og.m˝ƒ/ for anym 2M , we then define a k-linear map gWM ! N

by g.m/ WD Og.m˝ 1/. It remains to verify that ƒ � g D f . To do this, we compute,
for any m 2M ,

.ƒ � g/.m/ D
X

ƒ

ƒ2g.S
�1.ƒ1/m/ D

X

ƒ

ƒ2 Og.S
�1.ƒ1/m˝ 1/

D
X

ƒ

Og.ƒ2.S
�1.ƒ1/m˝ 1// D

X

ƒ

Og.ƒ2S
�1.ƒ1/m˝ƒ3/

D
X

ƒ

Og.".ƒ1/m˝ƒ2/ D Og.m˝ƒ/ D Og ı �M .m/ D f .m/:

The result follows.
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Theorem 2.6. Let H be a finite-dimensional graded Hopf algebra with a non-zero

left integralƒ 2 H . For any H -modulesM , N , there is a canonical isomorphism

Hom�
H -gmod.M;N / D

Hom�.M;N /H

ƒ � Hom��`.M;N /
;

which is natural in both M and N .

Proof. It suffices to show the statement in degree zero. By Lemma 2.3, the numerator
in the equality above coincides with the space of H -intertwining maps. Combining
Lemma 2.4 and Lemma 2.5, one sees that the space of maps between two H -mod-
ules that factor through projective-injective modules coincides with I

�
H .M; N / Š

ƒ � Hom��`.M;N /. The theorem follows.

The theorem implies that the stable category H -gmod for a finite-dimensional
Hopf algebra is equipped with an internal Hom, which is no other than the space of
graded vector space homomorphisms Hom�.M;N /.

Corollary 2.7. The graded tensor-hom adjunction holds inH -gmod. That is, for any

M , N and L in H -gmod, there is an isomorphism of graded vector spaces

Hom�
H -gmod.M ˝ L;N / Š Hom�

H -gmod.L;Hom�.M;N //:

In particular, there is an isomorphism of ungraded vector spaces

HomH -gmod.M;N / Š HomH -gmod.k;Hom�.M;N //

functorial in M and N .

Proof. This follows from taking the canonical isomorphism ofH -modules (upgraded
from the vector space version (2.1))

ˆWHom�.M ˝ L;N /
�
! Hom�.L;Hom�.M;N //; ˆ.f /.l/.m/ WD f .m˝ l/;

and applying the theorem to both sides.
The second equation is then established by taking L D k and taking degree zero

parts on both sides in the first equation.

Remark 2.8. We will be applying the results in this section to a slightly more general
situation than graded Hopf algebras in what follows. In particular, we will be studying
graded vector spaces with a non-trivial braiding, and H being a Hopf algebra object
in this braided category. The results of this section hold without any changes as long
as H is also a Frobenius algebra object.
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3. The Hopf algebra Hn and its bosonization

3.1. Braided vector spaces

The category gvec of finite-dimensional Z-graded vector spaces is naturally a sym-
metric monoidal category with the symmetric braiding �.v ˝ w/ D w ˝ v. For the
purpose of this paper, we will consider a non-symmetric braiding on this category.

Fix a natural number N � 2 and let k be a field of any characteristic which con-
tains a primitive N -th root of unity q. Given two graded vector spaces V; W , define
the Z-linear map ‰V;W WV ˝W ! W ˝ V determined by

‰V;W .v ˝w/ D q
deg.v/ deg.w/w ˝ v; (3.1)

where v; w are homogeneous elements. It follows that ‰ defines a braiding on the
category of Z-graded vector spaces. We denote the braided monoidal category thus
obtained by gvecq (in contrast to the symmetric monoidal category gvec).

Via a form of Tannakian reconstruction, the category gvec is equivalent to the
category of finite-dimensional comodules over the group algebra kC , whereC D hKi
is the free abelian group generated byK. The Hopf algebra kC can be equipped with
a dual R-matrix RWkC ˝ kC ! k defined by

R.Ki ˝Kj / D qij ;

see, e.g., [22, Example 2.2.5]. We denote the category of finite-dimensionalC -comod-
ules with braiding obtained from R by C -comodq . Hence, there is an equivalence of
braided monoidal categories

kC -comodq ' gvecq:

3.2. Graded rational modules

LetH be a Hopf algebra object in gvecq . We want to study the category ofH -modules
in gvecq in terms of graded modules over a k-Hopf algebra. For this, we first pass
from gvecq to a braided category of modules over the group algebra of a finite cyclic
group.

Let CN denote the finite group C=.KN / and let �N WC ! CN be the canonical
quotient homomorphism of groups. Then there is an induced Hopf algebra morphism
kC ! kCN , which, in turn, produces a functor of monoidal categories

.�n/�WkC -comod! kCN -comod; .V; ı/ 7! .V; .�N ˝ IdV /ı/;

where ı denotes the left coaction on V . The dual R-matrix R on kC induces a dual
R-matrix on kCN so that .�N /� becomes a functor of braided monoidal categories

.�N /�WkC -comodq ! kCN -comodq:
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For the next result, note that N must be invertible in k since, as the polyno-
mial f .x/ D xN � 1 does not have multiple roots in k, its formal derivative equals
NxN �1 ¤ 0.

Proposition 3.1. There is an equivalence of braided monoidal categories

kCN -comodq ' kCN -modq :

Here, the latter is the braided monoidal category of kCN -modules with braiding given

by the R-matrix

R D
1

N

X

i;j

q�ijKi ˝Kj : (3.2)

Proof. Denote by kŒCN � the algebra of k-linear functions CN ! k. This is a Hopf
algebra, dual to the group algebra kCN . Consider the basis ¹ıi j 0 � i � N � 1º for
kŒCN �, where ıi .K

j /D ıi;j ; we also denote ık D ıl if k D l mod N . The relations,
and structural morphisms �, ", and S of the Hopf algebra structure for kŒCN �, are
given by

ıiıj D ıi;j ıi ; 1 D

N �1X

iD0

ıi ; �.ıi / D
X

aCbDi

ıa ˝ ıb; ".ıi / D ıi;0; S.ıi / D ı�i :

(3.3)

An explicit Hopf algebra pairing . ; /WkŒCN �˝kCN ! k is given by .ıi ;K
j /D ıi;j .

This non-degenerate Hopf algebra pairing defines, as kŒCN � is finite-dimensional and
(co)commutative, an equivalence of monoidal categories

kCN -comod ' kŒCN �-mod;

where for a homogeneous element v of degree i we define the action ıj � v D ıi;jv.
Under the pairing . ; /, the dual R-matrix R.Ki ;Kj /D qij for the group algebra

kCN induces on kŒCN � the universal R-matrix

R D
X

i;j

qij ıi ˝ ıj : (3.4)

Denoting the obtained braided monoidal category of kŒCN �-module by kŒCN �-modq ,
we obtain an equivalence of braided monoidal categories

kCN -comodq ' kŒCN �-modq:

Note also that, since the polynomial f .x/ D xN � 1 splits over k, kŒCN � is
isomorphic to kCN as a Hopf algebra, although not canonically. An isomorphism
kCN ! kŒCN � is given by sending K to the group like element

P
i q

iıi . Since ıi ,
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i D 0; : : : ;N are mutually orthogonal idempotents, one has
�P

i q
iıi

�k
D

P
i q

ikıi .
The inverse is given by sending ıj to 1

N

P
i q

�ijKi . The above isomorphism of Hopf
algebras kCN Š kŒCN � makes kCN a quasi-triangular Hopf algebra with universal
R-matrix given as in equation (3.2). Indeed, we compute that applying the above iso-
morphism to the universal R-matrix of kCN from equation (3.2) gives

1

N

X

i;j

q�ij
X

a;b

qiaCjbıa ˝ ıb D
1

N

X

i;j;a;b

qabq�.a�i/.b�j /ıa ˝ ıb

D
1

N

X

a;b

qabıa ˝ ıb

X

i;j

q�.a�i/.b�j /

D
X

a;b

qabıa ˝ ıb;

which is the universalR-matrix of kŒCN � from equation (3.4). See [22, Example 2.1.6]
for a direct proof of this quasi-triangular Hopf algebra structure.

The convolution inverse R�� is given by

R�� D .S ˝ Id/R D
1

N

X

i;j

qijKi ˝Kj : (3.5)

In any braided monoidal category B, we can form the braided tensor product
D1 ˝D2 of two algebra objects D1;D2 in B. The productmD1˝D2

is given by

mD1˝D2
D .mD1

˝mD2
/.IdD1

˝‰D2;D1
˝ IdD2

/:

Tensor products of coalgebra objects are defined similarly. We can also define bial-
gebra (or Hopf algebra objects) in B. These are sometimes called braided Hopf

algebras, see, e.g., [22, Definition 9.4.5]. The crucial point is that a bialgebra B in
B is both an algebra and coalgebra in B such that � and " are morphisms of algeb-
ras, i.e.,

�B ımB D .mB ˝mB/ ı .IdB ˝‰B;B ˝ IdB/ ı .�B ˝�B/; (3.6a)

�B ı 1B D 1B ˝ 1B ; " ım D "˝ "; 1 ı " D Id : (3.6b)

Let H be a braided Hopf algebra in gvecq . Then the image of H under the com-
posite functor

P WC -comodq ! CN -comodq

�
! kCN -modq;

is a braided Hopf algebra in kCN -modq . By slight abuse of notation, this image is
also denoted by H . We may now consider the Radford–Majid biproduct ([26], also
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called the bosonization [22, Theorem 9.4.12])H Ì kCN . By construction, there is an
equivalence of categories

H Ì kCN -mod Š H -mod .kCN -gmodq/;

where the latter denotes the category of modules over H within the braided mon-
oidal category kCN -modq . That is, the morphisms of the H -module structure are all
morphisms in this category, cf. [22, Section 9.4]. The monoidal functor P therefore
restricts to a monoidal functor

PH WH -mod.gvecq/! H Ì kCN -mod:

Note that, in addition,H is a graded k-algebra, and the bosonizationH Ì kCN is
a graded Hopf algebra, where degK D 0. Thus, we can consider graded modules over
H Ì kCN , and the essential image of the functor PH is contained inH Ì kCN -gmod.

Definition 3.2. A gradedH Ì kCN -module V D
L

i2Z
V i is a rational graded mod-

ule if for any v 2 V i , K � v D qiv.
We denote the category of rational graded H Ì kCN -modules, together with

morphisms of gradedH Ì kCN -modules, by H Ì kCN -rmod.

Working with rational graded modules we obtain a characterization of the braided
monoidal categoryH -gmod .kC -gmodq/ in terms of modules over the finite-dimen-
sional Hopf algebraH Ì kCN :

Proposition 3.3. An H Ì kCN -module V is in the essential image of the monoidal

functor PH if and only if V is a rational graded module.

Proof. Let V be an H Ì kCN -module in the essential image of PH . Then, in partic-
ular, V is a gradedH Ì kCN -module. For a vector v 2 V i we have that

K � v D
�X

i

qiıi

�
� v D qiv:

Hence, V is a rational graded module. Conversely, letW be a rational graded module
over H Ì kCN . Then W is graded, and hence a kC -comodule. Using that H ,!

H Ì kCN is a graded subalgebra, W becomes a graded H -module, denoted by W 0.
We have to show that PH .W

0/ and W are isomorphic as gradedH Ì kCN -modules.
By construction, they are the same gradedH -modules, and for a vectorw 2PH .W

0i /,
K � w D qi � w. As W is rational graded, the same formula describes the CN -action
onW . It follows that PH .W

0/ andW are also isomorphic as H Ì kCN -modules.

It follows that, as a full subcategory ofH Ì kCN -gmod,H -gmod is closed under
tensor products and extension. As all rational CN -modules are graded modules, all
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constructions from Section 2.1 can be applied to rational graded CN -modules. In
particular, the internal graded hom Hom�.M; N / of two rational graded modules is
itself a rational graded module.

Notation 3.4. This section shows that the category H -gmod of graded H -modules
has a tensor product which can either be computed using the coproduct within gvecq

or, equivalently, the coproduct of the bosonization by Proposition 3.3. In Section 4,
we will simply denote the resulting monoidal category by H -gmod.

3.3. A braided Hopf algebra

We first fix some notation and assumptions. Let n � 2 be a positive integer, and fac-
torise nD pa1

1 : : :p
at
t as a product of distinct prime powers. Denote bymD p1 : : :pt

the radical of n and define N WD n2=m. Set nk WD n=pk , mk WD m=pk .
We assume the ground field k contains a primitive N -th root of unity q. Then we

denote � WD qn=m, which is a primitive n-th root of unity, and �k WD �
mk D qnk .

Definition 3.5. Let Hn be the k-algebra

Hn WD
kŒd1; : : : ; dt �

.dp1

1 ; : : : ; dpt

t /
;

which is graded by setting deg.dk/ D nk for all 1 � k � t .

Lemma 3.6. The algebraHn is Frobenius with a non-degenerate trace pairing given

on basis elements by

Tr.da1

1 : : :dat
t / D

´
1 if .a1; : : : ; at / D .p1 � 1; : : : ; pt � 1/;

0 otherwise.

Define the comultiplication map �WHn ! Hn ˝Hn on generators by

�.dk/ WD dk ˝ 1C 1˝ dk ; (3.7)

and set the counit and antipode maps to be

"WHn ! k; ".dk/ D 0; (3.8)

S WHn ! H op
n ; S.dk/ D �dk; (3.9)

for all 1 � k � t .

Lemma 3.7. The above definitions of �, ", and S uniquely extend to give Hn the

structure of a primitively generated Hopf algebra object in the braided category gvecq

of q-vector spaces.
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Proof. It is well known that the free k-algebra khd1; : : : ; dt i extends to give the
structure of a primitively generated braided Hopf algebra in the braided category of q-
vector spaces in a unique way. The conditions from equation (3.6) inductively imply
that

�.da
k/ D

aX

iD0

�
a

i

�

�
nk
k

di
k ˝ da�i

k (3.10)

".da
k/ D ıa;0; S.da

k/ D .�1/
a�

a.a�1/nk=2

k
da

k: (3.11)

It hence remains to check that the ideal generated by Œdk ; dl � for l ¤ k and dpk

k
is a

Hopf ideal. This follows as the generators are primitive elements:

�.Œdk; dl �/ D Œdk; dl �˝ 1C 1˝ Œdk; dl �;

�.dk/
pk D .dk ˝ 1C 1˝ dk/

pk D

pkX

iD0

�
pk

i

�

�
nk
k

di
k ˝ dpk�i

k
D dpk

k
˝ 1C 1˝ dpk

k
:

Here, we have used that �nk

l
D �ml nk D qnknl D 1, and that �nk

k
D �mknk D qn2

k is
a primitive pk-th root of unity.

Remark 3.8. The braided Hopf algebraHn can be constructed as the Nichols algebra
over the Yetter–Drinfeld module V D Spank¹d1; : : : ; dtº over the group CN (see,
e.g., [2] for this construction). TheCN -coaction ı on V is given by ı.dk/DK

nk ˝ dk ,
and the CN -action is given byK � dk D �kdk . The Yetter–Drinfeld braiding ‰V of V
determines the relations in the Nichols algebra B.V / D Hn. Note that, for distinct
indices k; l D 1; : : : ; t ,

‰.dk ˝ dl / D �
nk

l
dl ˝ dk D dl ˝ dk

as pl divides nk . This implies that in the Nichols algebraHn the relations Œdk;dl �D 0

hold. Further, ‰.dk ˝ dk/ D �
nk

k
dk ˝ dk . Using that �nk

k
is a primitive pk-th root

of unity in k, this computation of the braiding implies that in the Nichols algebra,
dpk

k
D 0. These are the only relations (cf. [2, Theorem 4.3]). This construction as a

Nichols algebra proves that Hn is a braided Hopf algebra in kCN -gmodq which is
generated by primitive elements.

This construction of Hn further implies that Hn is self-dual as a braided Hopf
algebra. That is, there is a non-degenerate Hopf pairing h-; -iWHn ˝Hn! k, defined
on generators by hdk ; dl i D ık;l in the category gvecq (see [21, Proposition 1.2.3]).

By construction,Hn is a commutative algebra. Note that, even though‰�.dk/ D

�.dk/ for all generators, Hn is not braided cocommutative in gvecq . This follows
using [28, Corollary 5], since ‰2

Hn;Hn
¤ Id˝ Id.
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Remark 3.9. The elementƒ WD dp1�1
1 : : :dpt �1

t has the property that

hƒ D ".h/ƒ for all h 2 Hn:

That is, ƒ is an integral element for the braided Hopf algebra Hn (as in [4, Defini-
tion 3.1]), cf. also Lemma 3.12 below. Note that

Tr.h/ D hh;ƒi for all h 2 Hn; (3.12)

with respect to the integral and trace map from Lemma 3.6. We denote the degree of
the integralƒ by

` WD deg.ƒ/ D
tX

kD1

nk.pk � 1/ D

tX

kD1

.n � nk/: (3.13)

Remark 3.10. Another way to view the braided Hopf algebra Hn is as a braided
tensor product

Hn Š u
C

�
n1
1

.sl2/˝ � � � ˝ u
C

�
nt
t

.sl2/

of positive parts uC

�
nk
k

.sl2/ Š kŒdk�=.d
pk

k
/ of the small quantum group at pk-th root

of unity �nk

k
. This follows using [1, Lemma 4.2].

3.4. The bosonization of Hn

In order to study modules over Hn in terms of rational graded modules, we con-
sider the bosonization Hn Ì kCN . Using Section 3.2, Hn is a Hopf algebra object in
CN -modq . Hence, we can form the bosonizationHn Ì kCN , see [26].

Lemma 3.11. The Hopf algebra Hn Ì kCN is generated by the elements d1; : : : ; dt

andK as a k-algebra, subject to the algebra relations

KN D 1; Kdk D �kdkK;

dpk

k
D 0; Œdk ; dl �D 0:

The coproduct, antipode and counit are given on the generators by

Œ

�.K/D K ˝K; �.dk/D dk ˝ 1CK
nk ˝ dk;

S.K/D K�1; S.dk/D �K
�nk dk;

".K/D 1; ".dk/D 0:

Proof. This follows using [22, Theorem 9.4.12].
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Inductively, we obtain the formula

�.da
k/ D

aX

iD0

�
a

i

�

�
nk
k

di
kK

.a�i/nk ˝ da�i
k ; (3.14)

for any integer a � 0. Using Knk dl D dlK
nk for k ¤ l , we derive a more general

formula. For this, given a t-tupel of non-negative integers a D .a1; : : : ; at / 2 Nt
0, we

write da D da1

1 : : : dat
t andKa D Ka1n1 : : :Kat nt . Then

�.da/ D
X

b

� tY

j D1

�
aj

bj

�

�
nj

j

�
dbKa�b ˝ da�b; (3.15)

where the sum is taken over all b D .b1; : : : ; bt / 2 Nt
0 such that bk � ak for all k,

and a � b D .a1 � b1; : : : ; at � bt / 2 N
t
0.

Lemma 3.12. The element ƒ0 D
P

i K
idp1�1

1 : : : dpt �1
t is a left integral in Hn Ì

kCN .

Proof. We have to show that hƒ0 D ".h/ƒ0 for all h 2Hn Ì kCN . It suffices to check
the property on generators, on which it is evident.

Note that the trace map Tr from Lemma 3.6 is related to ƒ in the following way.
First, there is a non-degenerate Hopf pairing h ; iW .Hn Ì kCN /˝ .Hn Ì kCN /! k

obtained by extending the pairing h ; i from Remark 3.8 via

hda ˝Ki ; db ˝Kj i D hda; dbiqij : (3.16)

Thus,Hn Ì kCN is self-dual as a Hopf algebra. Following [20], we obtain another, so-
called right orthogonal, pairing . ; / on .Hn Ì kCN /˝ .Hn Ì kCN / by the formula

.da ˝Ki ; db ˝Kj / D
X

ƒ

hda ˝Ki ; ƒ1ihd
b ˝Ki ; ƒ2i D hd

a�b ˝Ki�j ; ƒi:

Restricting . ; / to Hn ˝Hn gives the pairing given by Tr.da � db/ which makes Hn

a Frobenius algebra.

3.5. A spherical structure

In this section we show that the category Hn-gmod, viewed as a monoidal category
using the tensor product structure of Hn Ì kCN -rmod, is a spherical monoidal cat-
egory (cf. [3, Section 2] or [11, Section 4.7]).



A categorification of cyclotomic rings 559

Lemma 3.13. The element ! D K�
Pt

kD1 nk satisfies the following properties.

i. It is group like in the sense that

�.!/ D ! ˝ !; S.!/ D !�1; ".!/ D 1: (3.17)

ii. Conjugating by ! implements S2. That is, for any h 2 Hn Ì kCN ,

S2.h/ D !h!�1: (3.18)

Proof. This follows from a simple computation using Lemma 3.11.

The lemma shows that Hn Ì kCN is almost a spherical Hopf algebra, with only
condition (5) of [3, Definition 3.1] missing. However, working with the full subcat-
egoryHn-gmod, this condition will always hold to give the following result.

Proposition 3.14. The monoidal categoryHn-gmod is a spherical category.

Proof. This follows using [3, Theorem 3.6]. In fact, the conditions from Lemma 3.13
give that Hn Ì kCN -mod is a pivotal category [3, Definition 2.1]. We observe that
for V a rational gradedHn-module, ! acts by

! � v D q�i.
Pt

kD1 nk/v for all v 2 V i :

Thus, for any graded morphism � W V ! V of Hn-modules, !� D �!. This shows
thatHn Ì kCN -rmod is a spherical category.

3.6. A weak replacement for the braiding

In general, the category Hn Ì kCN -gmod and its subcategory Hn-gmod are not
braided monoidal. This agrees with the observation of [5, Proposition 5] that the cat-
egory of n-complexes is not braided monoidal (unless q D q�1).

A further observation is that, as an algebra, Hn does not depend on the para-
meter q. The coproduct and Hn-module structure, however, are dependent on q,
manifested in the use of the braiding in gvecq . For any choice of a primitiveN -th root
of unity, we have two different coproducts on Hn Ì kCN – the coproduct � D �q

from Lemma 3.11, and its opposite coproduct�opD�
op
q . The tensor product obtained

from the former is denoted by˝ D ˝q for the purpose of this section. Note the sym-
metry that

�q.dk/ D dk ˝ 1CK
nk ˝ dk;

�q�1.dk/ D dk ˝ 1CK
�nk ˝ dk ;

are distinct coproducts for bosonizations of Hn, utilizing ˝q or˝q�1 , respectively.
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In this section, we describe a weaker symmetry that is present in place of a quasi-
triangular structure on Hn Ì kCN . A quasi-triangular structure would give natural
isomorphisms V ˝W Š W ˝ V: Instead, we obtain the following.

Proposition 3.15. There are natural isomorphisms of gradedHn-modules

‰V;W WV ˝q W Š W ˝q�1 V; ‰V;W .v ˝w/ D q
�ijw ˝ v

where v 2 V i , w 2 W j are homogeneous elements.

Proof. The proposition can be checked by a direct computation that‰V;W intertwines
with the action of theHn generators dk , k D 1; : : : ; t . More intrinsically, consider the
universal R-matrix R for kCN from equation (3.2). Now, R is a right 2-cycle for
kCN , and also for Hn Ì kCN which contains kCN as a Hopf subalgebra. Hence,
we can consider the Drinfeld twist �R

q D R
���qR of the coproduct of Hn Ì kCN ,

see [8]. We compute that

�R
q .dk/ D

X

i;j;a;b

qij �abKidkK
a ˝KjKb C

X

i;j;a;b

qij �abKiKnkKa ˝Kj dkK
b

D
X

i;j;a;b

qi.j Cnk/�abdkK
iCa ˝Kj Cb

C
X

i;j;a;b

q.iCnk/j �abKiCnkCa ˝ dkK
j Cb

D
X

i;j;a;b

.qij �abdkK
iCa ˝Kj �nkCb C qij �abKiCa ˝ dkK

j Cb/

D .dk ˝K
�nk C 1˝ dk/

X

i;j;a;b

qij �abKiCa ˝Kj Cb

D .dk ˝K
�nk C 1˝ dk/ D �

op
q�1.dk/:

The result follows.

4. A tensor ideal in Hn-gmod

4.1. The category of Hn-modules

We use the same notation as in the previous sections, and work with the category
Hn-gmod of finite-dimensional gradedHn-modules. This category has internal homs
Hom�.V;W / Š V � ˝W . The differential dk 2 Hn acts on an element f WV ! W ,
for v homogeneous of degree i , by

.dk � f /.v/ D �
�i
k .dkf .v/ � f .dkv//; (4.1)
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as in equation (2.11),1 where �k D q
nk . Hence, dk � f D 0 if and only if f .dkv/ D

dkf .v/ for all v 2 V . In particular, a linear map is gradedHn-invariant if and only if
it is of degree zero and commutes with all differentials. In this way, the category of
Hn-modules is enriched over itself.

As Hn is naturally a Z-graded algebra, we have the grading shift functors on
Hn-gmod

¹kºWHn-gmod! Hn-gmod for all k 2 Z.

Equivalently, consider the modules k¹˙1º, which are one-dimensional over k, with
generators 1 sitting respectively in Z-degrees �1. Then V ¹˙1º Š V ˝ k¹˙1º.
Indeed, for all vi 2 Vi ,

dk.vi ˝ 1/ D .dkvi /˝ 1:

This shows that the isomorphism V ˝ k¹˙1º ! V ¹˙1º sending vi ˝ 1 to vi com-
mutes with the dk-action, for vi ˝ 1 has degree i � 1.

Lemma 4.1. For any two Hn-modules V; W , there are natural isomorphisms of

Hn-modules

V ˝ .W ¹˙1º/ Š .V ˝W /¹˙1º Š .V ¹˙1º/˝W:

Proof. We show the ¹1º case. SinceW ¹1º ŠW ˝k¹1º, the first isomorphism is easy.
To establish the second isomorphism, we consider the isomorphisms of Hn-modules

V ¹1º ˝W Š .V ˝ k¹1º/˝W Š V ˝ .k¹1º ˝W /;

which reduces the problem to showing that k¹1º ˝W Š W ˝ k¹1º.
Denote by 1 a generator of k¹1º which lives in degree �1. We define the map rV ,

for any homogeneous vi 2 Vi , by

rV .vi ˝ 1/ WD q�i 1˝ vi :

It follows that, for any k D 1; : : : ; t ,

dk.rV .vi ˝ 1// D q�i dk.1˝ vi /

D q�i��1
k 1˝ dkvi

D q�i�nk 1˝ dkvi D rV .dkvi ˝ 1/

D rV .dk.vi ˝ 1//;

1Note that this formula differs slightly from [15, (1.14)]. A formula similar to that of
Kapranov is obtained by using the alternative internal hom from Remark 2.1. In this case, we
would obtain .dkf /.v/ D dkf .v/ � �

deg.f /

k
f .dkv/. The results of this section apply using

either convention.
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proving that rV is a morphism of Hn-modules. Naturality is clear as any morphism
f WV ! W of Hn-modules preserves the grading, and hence

rW .f .vi /˝ 1/ D q�i .1˝ f .vi // D 1˝ f .q�ivi / D .Id˝f /rV .vi ˝ 1/:

The grading shift ¹�1º is similar, and one just replaces q by q�1 in the above compu-
tations.

Corollary 4.2. Let V , W be Hn-modules. For any k 2 Z, there are isomorphisms of

Hn-modules

.V ¹kº/˝W Š .V ˝W /¹kº Š V ˝ .W ¹kº/; (4.2)

Hom�.V ¹�kº; W / Š Hom�.V;W ¹kº/ Š Hom�.V;W /¹kº: (4.3)

Proof. The first equation (4.2) is a repeated application of the previous Lemma 4.1.
Using equation (2.12) and the first part of the corollary, we have the chain of

isomorphisms of Hn-modules

Hom�.V ¹�kº; W / Š .V ¹�kº/� ˝W Š .k¹�kº ˝ V /� ˝W

Š .V � ˝ k¹�kº�/˝W Š V � ˝ .k¹kº ˝W /

Š V � ˝W ¹kº Š Hom�.V;W ¹kº/:

The last isomorphism in the second equality (4.3) is established in a similar way.

As a special case, we can consider n D pa . In this case, we can fully classify
indecomposable modules over Hn. Any indecomposable Hn-module is isomorphic
to a grading shift of a quotient moduleHn=.d

l
1/, for l D 0; : : : ; p1 � 1. Such a simple

classification is not possible in the presence of more than two distinct prime factors
in n.

4.2. The tensor ideals Ik

Once again, fix a positive integer n and its prime decomposition n D pa1

1 : : :p
at
t , and

let us consider the categoryHn-gmod of finite-dimensional graded modules over the
braided Hopf algebraHn.

The braided Hopf algebraHn has many useful Hopf subalgebras. For each prime
factor pk , let us consider two complementary Hopf subalgebras inside Hn:

H k
n WD

kŒdk�

.dpk

k
/
; yH k

n WD
kŒd1; : : : ; bdk ; : : : ; dt �

.dp1

1 ; : : : ;bdpk

k
; : : : ; dpt

t /
: (4.4)
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Here the “hatted” terms in the second equation are dropped from the expressions.
Each dk has degree nk WD n=pk . If t D 1, i.e., nD pa1

1 is a prime power, we shall not
consider yH 1

n , andH 1
n D Hn.

We record the following simple observation.

Lemma 4.3. The left regular module is, up to isomorphism and grading shift, the

only indecomposable projective-injectiveHn-module. Its graded dimension equals

dim�.Hn/ D

tY

kD1

.1C �nk C � � � C �.pk�1/nk/

D

tY

kD1

1 � �n

1 � �nk
:

Proof. This follows since Hn is a graded Frobenius local algebra (Lemma 3.6), and
thus is graded self-injective. The graded dimension computation is an easy exercise.

Definition 4.4. For each prime factor pk of n, we define a pk-dimensional graded
Hn-module Vk by

Vk WD IndHn

yH k
n

.k/ Š Hn ˝ yH k
n

k:

Further, if t > 1, we denote

Wk WD IndHn

H k
n

.k/ Š Hn ˝H k
n

k;

which is an mk-dimensionalHn-module.

Observe that theHn-module Vk is a pk-fold extension of the trivialHn-module k

by itself:

k
dk
�! k¹�nkº

dk
�! � � �

dk
�! k¹.2 � pk/nkº

dk
�! k¹.1 � pk/nkº:

We further observe that Vk is isomorphic as an Hn-module, up to grading shift, to

the submodule of Hn generated by the element dp1�1
1 : : :

1dpk�1

k
: : : dpt �1

t . Similarly,

Wk is isomorphic to a grading shift of the submodule generated by dpk�1

k
. It follows

similarly to Lemma 4.3 that

dim�.Vk/ D
1� �n

1 � �nk
; dim�.Wk/ D

Y

l¤k

1 � �n

1 � �nl
: (4.5)

The module Vk is free when viewed as an H k
n -module, while Wk is free as an yH k

n

module. In particular, Wk is free as an H l
n-module for all l ¤ k.
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Definition 4.5. Assume that t > 1. For any k D 1; : : : ; t , we let Ik be the full subcat-
egory of modules in Hn-gmod consisting of direct summands of Hn-modules V of
the following form:

i. V is equipped with a finite-step filtration byHn-submodules: 0D F0 �F1 �

F2 � � � � � Fr D V ;

ii. each of the subquotient modules Fi=Fi�1 (i D 1; : : : ; r) is isomorphic toWk

up to a grading shift.

If t D 1, so that n D p
a1

1 , we denote I1 WD IHn
, the full subcategory of graded

projective-injectiveHn-modules, cf. Section 2.2.

Lemma 4.6. The ideal Ik is closed under extensions. More precisely, if U , V andW ,

fit into a short exact sequence ofHn-modules

0! U ! W
�
! V ! 0

with U; V being in Ik , then W also lies in Ik .

Proof. The case when t D 1 is clear, so we assume t > 1. Assume given such a
short exact sequence of Hn-modules such that U 0, V 0 be Hn-modules satisfying that
U ˚ U 0 and V ˚ V 0 are equipped with filtrations F1 � � � � � Fr and F 0

1 � � � � � F
0
s

as in Definition 4.5. Then we have a short exact sequence

0! U ˚ U 0 ! W ˚ U 0 ˚ V 0 ! V ˚ V 0 ! 0;

and W ˚ U 0 ˚ V 0 is equipped with a filtration

0 � F1 � � � � � Fr D U � �
�1.F 0

1/ � � � � � �
�1.F 0

s/ D W;

which satisfies the hypothesis of Definition 4.5. Hence, W , as a direct summand of
W ˚ U 0 ˚ V 0, is contained in Ik .

Lemma 4.7. The ideal Ik is closed under forming duals and tensor products with

arbitrary objects in Hn-gmod. Consequently, Ik is a two-sided tensor ideal in

Hn-gmod.

Proof. The case t D 1 follows from [16, Proposition 2]. Hence, we assume t > 1. If
V is a direct summand of an objectW of Ik with a filtration F�, thenW � is equipped
with the dual filtration F �

� , which is readily checked to satisfy the conditions of Defin-
ition 4.5. Hence, V �, as a direct summand of W �, is an object in Ik .

Suppose V 2 Ik and U is any Hn-module. The module U has a nontrivial socle
since Hn is a graded local algebra. Choose k¹sº lying inside the socle of U , which
gives us a short exact sequence of Hn-modules

0! k¹sº ! U ! xU ! 0:
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Tensoring, for instance, on the left with V , we obtain

0! V ¹sº ! V ˝ U ! V ˝ xU ! 0:

By induction on dim.U /, we may assume that V ˝ xU 2 Ik (the case dim.U / D 1

is the assumption that V 2 Ik). Now, the previous lemma applies and shows that
V ˝ U 2 Ik .

It follows that the internal homs also preserve the ideals Ik .

Corollary 4.8. Let U be an Hn-module in the ideal Ik and V be an arbitrary finite-

dimensionalHn-module. Then both Hom�.U; V / and Hom�.V; U / are objects of Ik .

Proof. This follows from Lemma 4.7 and the isomorphism of graded Hn-modules
Hom�.U; V / Š U � ˝ V from equation (2.12).

Remark 4.9. We note that the category Ik is the smallest subcategory of Hn-gmod

closed under grading shifts, extensions, and direct summands that contains the objects
Wk . We conjecture that any object in Ik in fact has a filtration as in Definition 4.5.

Lemma 4.10. The class of projective-injective objects of Hn-gmod is contained in

each Ik , for k D 1; : : : ; t .

Proof. This follows since we have

Hn D IndHn

H k
n

H k
n ; (4.6)

and the regular H k
n -module is an iterated extension of grading shifts of the trivial

H k
n -module.

Example 4.11. Let nD 2a � 3b , with a;b� 1. Then d1 raises degrees by n1D 2
a�13b,

and d2 raises degrees by n2 D 2
a3b�1. We note that Vk D Wk in the case of only two

distinct prime factors. Let us consider the following module V with the non-zero
differential acting by identity maps indicated on the arrows:

V W k k¹�n2º k¹�2n2º

k¹n2 � n1º k¹�n1º k¹�n1 � n2º

 ! d1

 

!
d2  

!
d2

 ! d1

 

!
d2  

!
d2

The module V is contained in the ideal I2 (note that p2 D 3 here). Note that V does
not split as a direct sum of shifts ofW2, but we see that there is a short exact sequence
of Hn-modules

0! W2¹n2 � n1º ! V ! W2 ! 0:
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If n D 2a � 3b � 5c , there exist various non-split extensions in I1. For example,
consider the module W , where we omit the degree shifts,

W W k k k k k

k k k k k

k k k k k

k k k k k

k k k k k

k k k k k

 

!
d3  

!
d3  

!
d3  

!
d3

 !d2

 

!
d3

 

! d1

 !d2

 

!
d3

 
! d1

 !d2

 

!
d3

 

! d1

 !d2

 

!
d3

 

! d1

 !d2

 !d2

 

!

 !

 

!

 !

 

!

 !

 

!

 !d2

 

!

 

!

 

!

 

!

 !d2

 

!
d3

 !

 

!
d3

!

 

 !

 

!
d3

!

 

 !

 

!
d3

!

 

 !d2

!

 

 !d2

 

!
d3

 !

 

!
d3

 !

 

!
d3

 !

 

!
d3

 !d2

The Hn-moduleW is free overH 1
n and fits into a non-split short exact sequence

0! W2¹�n1 C n2 C n3º ! W ! W2 ! 0:

4.3. The tensor ideal I

In order to capture rings of cyclotomic integers via categorification, we shall work
with a larger ideal I inHn-gmod than that of projective-injective objects and contain-
ing each Ik . This can be thought of as a type of “sum” of the ideals Ik .

Definition 4.12. Let I be the full subcategory ofHn-gmod which consists of objects
U D

Lt
kD1 Uk , where Uk is an object in Ik .

Lemma 4.13. The ideal I is closed under grading shifts, forming duals, and taking

tensor products with arbitrary objects of Hn-gmod. Consequently, I is a two-sided

tensor ideal in Hn-gmod.

Proof. This is a consequence of Lemma 4.7.

Corollary 4.14. Let U be an Hn-module in the ideal I and V be an arbitrary finite-

dimensionalHn-module. Then both Hom�.U; V / and Hom�.V; U / are objects of I.

Proof. This follows from Lemma 4.13 and the isomorphism Hom�.U;V /Š U � ˝ V

of Hn-modules from equation (2.12).
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Lemma 4.15. The ideal I is closed under taking direct summands. That is, if W 2 I

andW Š U ˚ V , then both U and V belong to I.

Proof. This follows from the fact that Hn-gmod has the Krull–Schmidt property.

The ideal I is not closed under extensions. However, its image in the stable cat-
egoryHn-gmod will possess the two-out-of-three property (see Lemma 5.3) based on
the following proposition which generalises [23, Theorem 3.5] in our setup.

Proposition 4.16. Let pk and pl be distinct prime factors of n. Let V be an object

in Ik and W an object in Il . Then Hom�
Hn-gmod.V; W / � I

�
Hn
.V; W /. That is, all

Hn-morphisms from V to W are null-homotopic.

Proof. We first show the statement for V D Wk and W D Wl , k ¤ l . According to
Theorem 2.6,

Hom�
Hn-gmod.Wk; Wl/ D

.W �
k
˝Wl /

Hn

ƒ � .W �
k
˝Wl /

:

Since k ¤ l , we can equip Wk with a filtration of Hn-modules whose successive
quotients are grading shifts of the module Vl . Hence, W �

k
also has such a filtration.

Next, we observe that the tensor product Vl¹sº ˝ Wl is free over Hn. Inductively,
it follows from the exactness of ˝ that W �

k
˝ Wl has a (split) resolution by free

Hn-modules and is hence free. Therefore, ƒ � .W �
k
˝Wl / D .W

�
k
˝Wl /

Hn and we
have shown that Hom�

Hn-gmod.Wk; Wl / D ¹0º.
Using Corollary 4.2, we can replaceWk ,Wl by grading shifts. Thus, the statement

holds for all modules V in Ik and W in Il that have filtrations as in Definition 4.5. If
UV is a direct summand of V and UW a direct summand of W and f WUV ! UW an
Hn-module morphism. Then f extends by zeros to a Hn-morphism V ! W , which
is null homotopic by the above. Hence, f is also null-homotopic, and the statement
is proved for general objects in Ik and Il .

5. Categorifying cyclotomic rings

In this section, we construct a tensor triangulated category On, whose Grothendieck
ring is isomorphic to the cyclotomic ring On at an n-th root of unity.

5.1. A triangulated quotient category

Consider the stable category Hn-gmod from Section 2 which is tensor triangulated.
Let us denote by I the full subcategory consisting of objects that are isomorphic to
those of I under the natural quotient functor Hn-gmod! Hn-gmod. Thus, I is a
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strictly full subcategory of Hn-gmod. Our first goal is to show that I is a thick trian-
gulated subcategory inHn-gmod. To do this we first exhibit some preparatory results.

Lemma 5.1. The subcategory I is closed under the tensor product action by

Hn-gmod. More precisely, if U is an object of I and V 2Hn-gmod, then both V ˝U

and U ˝ V are in I. Consequently, I constitutes a tensor ideal in Hn-gmod.

Proof. We may take U to be the image of an object of I under the quotient functor.
The lemma is then a consequence of Lemma 4.13 of Section 4.3.

Corollary 5.2. The subcategory I is closed under the homological shifts ofHn-gmod.

Proof. This follows from the previous lemma and the fact that

U Œ1� Š U ˝ .Hn=kƒ/¹`º

for any object U 2 Hn-gmod.

Lemma 5.3. Let U ! V ! W ! U Œ1� be a distinguished triangle in Hn-gmod. If

two out of the three objects U , V and W are in I, then so is the third object.

Proof. Using Corollary 5.2 and the fact that any distinguished triangle is isomorphic
to a standard distinguished triangle, we are reduced to showing that, if U , V are
objects of I and f WU ! V is a map of Hn-modules, then the cone Cf of f is also
in I.

There exist direct sum decompositions U Š
Lt

kD1 Xk and V Š
Lt

lD1 Yl , with
Xk; Yk 2 Ik . Under these isomorphisms, f D .fkl/ is a matrix of Hn-module maps,
where fkl D �Yl

f �Xk
for the canonical inclusion �Xk

W Xk ! U and projection
�Yk
W V ! Yk . It follows from Proposition 4.16 that the images of the components

fkl are zero inHn-gmod. Hence, we may replace f by the diagonalHn-module map
f 0 D .ık;lfkk/ which has an isomorphic cone in Hn-gmod. Further, the cone con-
struction respects direct sums of morphisms, i.e.,Cf ˚g ŠCf ˚Cg . Hence, it suffices
to show that Cg is in I for any morphism gWU 0! V 0, where U 0; V 0 are objects in Ik .

By the definition of distinguished triangles, see equation (2.5), the cone Cg fits
into the diagram

0 U U ˝Hn U Œ1� 0

0 V Cg U Œ1� 0

 

!

 ! g

 

!
�U

 !

 

!

((

 

!

 

!

 

!

 

!
h  

!

By Lemma 4.6, Cg is an object in Ik � I.

Lemma 5.4. The ideal I is closed under direct summands. That is, ifW Š U ˚ V as

objects of I, then both U and V belong to I.
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Proof. By adding enough projective-injective Hn-modules to both sides, we may
assume that W Š U ˚ V in Hn-gmod. Thus, the claim is a direct consequence of
Lemma 4.15.

Recall that a full triangulated subcategory in a triangulated category is called thick

(or saturated) if it is closed under taking direct summands (see, e.g., [7, Tag 05RA]).
Lemma 5.4 thus establishes the thickness of the ideal I inside Hn-gmod.

Summarizing the above discussion, we have established the following.

Theorem 5.5. The ideal I constitutes a full triangulated tensor ideal in the stable

categoryHn-gmod which is thick. �

Hence, standard machinery on localization allows us form a Verdier localized (or
quotient) category of Hn-gmod by I, see, e.g., [7, Tag 05RA].

Definition 5.6. For any positive integer n, the category On is defined as the Verdier
localization of Hn-gmod by the ideal I:

On WD Hn-gmod=I:

A morphism sWM ! N in Hn-gmod descends to an isomorphism in On if and
only if the cone of s is isomorphic to an object of I. We declare this class of morphisms
s as quasi-isomorphisms. Such quasi-isomorphisms constitute a localizing class in
Hn-gmod since I is a saturated full-subcategory of Hn-gmod. A general morphism
from M to N in the localized category On is represented by a “roof” of the form

M 0

M N
 

!s  !
f (5.1)

where s is a quasi-isomorphism and f is some morphism in Hn-gmod.

Remark 5.7. The localization construction used is a also known as the Verdier quo-
tient, cf. [7, Tag 05RA]. Observe that a morphism f WX ! Y in Hn-gmod descends
to zero in On if and only if it factors through an object of I. Indeed, the “if” part is
clear, since any object of I is isomorphic to the zero object in On. Conversely, choose
an sW Y ! Y 0 in Hn-gmod such that s ı f D 0 and s descends to an isomorphism
in On. Then the cone of s shifted by Œ�1�, denoted by C , fits into the diagram

C

X Y

Y 0

 !

 

!
f

 !

 !s

http://stacks.math.columbia.edu/tag/0123
http://stacks.math.columbia.edu/tag/0123
http://stacks.math.columbia.edu/tag/0123
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Thus, the dashed arrow exists by the exactness of HomHn-gmod.X; -/ applied to the
distinguished triangle

C ! Y
s
! Y 0 Œ1�

�! CŒ1�:

A standard distinguished triangle in On is the image of a distinguished triangle in
Hn-gmod, and any triangle of On isomorphic to a standard distinguished triangle is
called a distinguished triangle.

5.2. Tensor triangulated structure

Our goal in this part is to establish the triangulated tensor category structure on On

which is inherited from that of Hn-gmod under localization.

Lemma 5.8. The following functors on Hn-gmod descend to (bi-)exact functors

on On:

1. the tensor product .-˝ -/WHn-gmod �Hn-gmod! Hn-gmod;

2. the inner hom Hom�.-; -/WHn-gmodop �Hn-gmod! Hn-gmod;

3. the grading shift functors ¹kºWHn-gmod! Hn-gmod, where k 2 Z;

4. the vector space dual .-/�WHn-gmod! Hn-gmod.

Proof. The tensor product functor ˝ on Hn-gmod is bi-exact [16]. Thus, for (1), it
suffices to show that it preserves the class of quasi-isomorphisms. Let sWM ! M 0

be a quasi-isomorphism in Hn-gmod that arises from an actual Hn-module map
sWM ! M 0. Replacing s by .s; �M /WM ! M 0 ˚M ˝H ¹`º if necessary, we may
assume from the start that s is injective. Thus, C WD coker.s/ is isomorphic to a mod-
ule in I in Hn-gmod, and a direct sum of C by some projective-injectiveHn-module
belongs to I. Since I is closed under summands (Lemma 4.15), we may assume C is
also in I. Tensoring the exact sequence

0!M
s
!M 0 ! C ! 0

with any module N on the left, we have a short exact sequence

0! N ˝M
IdN ˝s
����! N ˝M 0 ! N ˝ C ! 0:

By Lemma 4.13, N ˝ C 2 I, and hence IdN ˝ s descends to a quasi-isomorphism
in Hn-gmod. The case of tensoring on the right is similar, and this finishes the proof
of (1).

Part (4) is clear since the dual of any object in I is also in I by definition. Now,
parts (2) and (3) are easy consequences of (1) and (4) because of Corollary 4.2 and
the isomorphism Hom�.M;N / ŠM� ˝ N of equation (2.12).
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We are now ready to establish a tensor-hom adjunction in our category On.

Theorem 5.9. The tensor-hom adjunction holds in On:

HomOn
.M ˝ L;N / Š HomOn

.L;Hom�.M;N //;

where M , N and L are arbitrary objects of On.

Proof. Given a morphism f 2 HomOn
.L;Hom�.M; N // represented by a “roof”

diagram in Hn-gmod

L0

L Hom�.M;N /

 !s

 

!
g

 

!
f

we have, by the adjunction (2.7), another “roof” f 0 2 HomOn
.M ˝ L;N /

M ˝ L0

M ˝ L N

 !

IdM ˝s  

!
g 0

 

!
f 0

since IdM ˝ s is a quasi-isomorphism of degree zero (see the proof of Lemma 5.8).
Here g0 is the degree zero map that corresponds to g under the isomorphism (2.7). In
other words, we have constructed a map of morphism spaces

HomOn
.M ˝ L;N /! HomOn

.L;Hom�.M;N //; f 7! f 0; (5.2)

which gives rise to a natural transformation of cohomological functors

HomOn
.-˝ L;N /! HomOn

.L;Hom�.-; N //: (5.3)

Now, assume that M is an actual Hn-module. We will prove that the natural trans-
formation of functors (5.3) is an isomorphism by induction on the dimension of M .

If M is one-dimensional, then, up to a grading shift on M , we may assume that
M D k, and (5.2) reduces to an isomorphism

HomOn
.k˝ L;N / Š HomOn

.L;N / Š HomOn
.L;Hom�.k; N //:

When dim.M/ > 1, we may assume, up to grading shift, that M contains a copy
of k in its socle. This can be done sinceHn is a graded local algebra. Then we have a
short exact sequence of Hn-modules

0! k!M !M 0 ! 0;
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where M 0 denotes the quotient. This sequence induces a distinguished triangle in
Hn-gmod and descends to a standard distinguished triangle in On. Applying (5.3) to
the obtained triangle in On, we obtain a map of exact triangles:

Ext�
On
.k˝ L;N / Ext�

On
.M ˝ L;N / Ext�

On
.M 0 ˝ L;N /

Ext�
On
.L;Hom�.k; N // Ext�

On
.L;Hom�.M;N // Ext�

On
.L;Hom�.M 0; N //

 

!

 !

 

!

 !

 

!
Œ1�

 !

 

!

 

!

 

!
Œ1�

Here we have adopted the conventional notation

Ext�
On
.L;N / WD

M

i2Z

HomOn
.L;MŒi �/:

The left-most and, by inductive hypothesis, the right-most vertical arrow are iso-
morphisms of Ext-groups. The theorem then follows from the usual “two-out-of-
three” properties for distinguished triangles in triangulated categories.

Remark 5.10. As pointed out by the referee, Theorem 5.9 admits a more conceptual
proof than the explicit one above, as follows.

Suppose that LWC !D is a functor admitting a right adjoint R. Let†C and†D

be classes of morphisms in C and D such that L.†C/�†D and R.†D/�†C . Then
it is immediate from the universal property of Verdier localization that .L;R/ induces
a pair of adjoint functors between the localised categories C.†�1

C
/ and D.†�1

D
/.

Now, in our situation, C D D D Hn-gmod. Take L and R to be the tensor and
Hom functors respectively. It suffices to check that these functors preserve the ideal I,
which in turn follows from the proof of Lemma 5.8.

Taking L D k in Theorem 5.9, we obtain an isomorphism of Hn-modules

HomOn
.M;N / Š HomOn

.k;Hom�.M;N // Š HomOn
.k;M� ˝N/;

which gives an implicit description of the morphism spaces.

Remark 5.11. It remains an interesting question to compute the endomorphism (resp.
Ext�) algebra of the unit object k 2 On. Since k is the (triangulated) monoidal unit,
the endomorphism (resp. Ext�) algebra is a commutative (resp. super) k-algebra. It is
nonzero since, otherwise, the object k would be in I. This is clearly false since k is
not free as a module over yH k

n for any k D 1; : : : ; t .

Proposition 5.12. The tensor product on On is compatible with homological shift in

the sense that for any objects X and Y there are natural isomorphisms

.X ˝ Y /Œ1� Š XŒ1�˝ Y Š X ˝ Y Œ1�:
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Proof. This is because the shift functor can be realised as

MŒ1� ŠM ˝ .Hn=kƒ/¹`º Š .Hn=kƒ/¹`º ˝M:

See [16, Lemma 2] for an explicit formula of the second isomorphism.

5.3. Rings of cyclotomic integers

In this section, we prove that the Grothendieck ring of the quotient category On is
isomorphic to the cyclotomic ring On of a primitive n-th root of unity.

For a formal variable �, recall the notation

Œn�� WD
�n � 1

� � 1
D 1C � C � � � C �n�1 2 ZŒ��;

and denote the n-th cyclotomic polynomial by ˆn.�/. We will use the following ele-
mentary facts about cyclotomic polynomials.

Lemma 5.13. Let n D p
n1

1 : : : p
nt
t , where nk � 1 are integers, and pk are pairwise

distinct primes, and m D p1 : : : pt be the radical of n. Then the cyclotomic polyno-

mials in a formal variable � satisfy

ˆm.�/ D gcd .Œm��=Œm=p1��; : : : ; Œm��=Œm=pt ��/ ; (5.4)

p̂k
.�m=pk / D Œm��=Œm=pk��; k D 1; : : : ; t; (5.5)

ˆn.�/ D ˆm.�
n=m/: (5.6)

Proof. We use the following readily verified formulas

Y

d jm;d>1

ˆd .�/ D Œm��;
Y

pk jd;d jm

ˆd .�/ D
Œm��

Œm=pk��
:

They hold because the multiplicative group of m-th roots of unity is partitioned, by
the order of the root of unity, into the divisors d ofm. The product of all � � q, where
q is a primitive d -th root of unity, is equal to ˆd .�/. It follows that, if d ¤ m, then
d is not divisible by at least one of the distinct primes pk , and thus ˆd .�/ does not
divide Œm��=Œm=pk�� . On the other hand, ˆm.�/ clearly divides each Œm��=Œm=pk�� ,
k D 1; : : : ; t . Hence, the greatest common divisor of all polynomials Œm��=Œm=pk��

is precisely ˆm.�/, establishing equation (5.4).
Equation (5.5) is easy since, for a prime p, p̂.�/ D .�

p � 1/=.� � 1/, so that

p̂k
.�m=pk/ D

�m � 1

�m=pk � 1
D

�m�1
��1

�m=pk �1
��1

D
Œm��

Œm=pk��
:

The last equation (5.6) is an exercise in [19, Chapter IV, Section 3].
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In the following, we denote by K0.Hn-gmod/ the Grothendieck group of the
stable category ofHn-modules. Given an object V , we denote its class in the Grothen-
dieck group by ŒV �. Recall that this is the abelian group generated by symbols of
isomorphism classes of objects inHn-gmod, subject to relations ŒU �� ŒW �C ŒV �D 0
whenever

U ! W ! V
Œ1�
! U Œ1�

is a distinguished triangle.
The monoidal structure of Hn gives K0.Hn-gmod/ a ring structure, and the

Z-grading shift introduced in Section 4.1 gives it the structure of a left and right
ZŒ�; ��1�-algebra, such that the left and right module structure coincide using the
natural isomorphism from Lemma 4.1.

Lemma 5.14. The Grothendieck group of Hn-gmod is isomorphic, as a ZŒ�; ��1�-

algebra, to the quotient ring

K0.Hn-gmod/ Š
ZŒ�; ��1�

.
Qt

kD1
Œn��

Œnk ��
/
:

The tensor product on Hn-gmod descends to the multiplication on the Grothendieck

group level, while the grading shift functor ¹1º descends to multiplication by �.

Proof. The Grothendieck ring K0.Hn-gmod/ is generated, as a ZŒ�; ��1�-module,
by the class of the only simple Hn-module k, which is one-dimensional. The only
relations imposed on the symbol of the simple module arise from graded dimensions
of projective-injectiveHn-modules. The result thus follows from Lemma 4.3.

In contrast, the Verdier quotient category On categorifies the cyclotomic ring On.

Theorem 5.15. The Grothendieck ring of On is isomorphic to the ring of cyclotomic

integers

K0.On/ Š
ZŒ�; ��1�

.ˆn.�//
:

Proof. We have an exact sequence of triangulated categories

I ,! Hn-gmod � On;

where the first containment is fully faithful and idempotent complete (Lemma 5.4).
It follows from well-known facts on K-theory of exact sequence of triangulated cat-
egories that

K0.On/ D K0.Hn-gmod=I/ D K0.Hn-gmod/=K0.I/
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(see, for instance, [29, 3.1.6]). We will determine the image

I WD K0.I/

in K0.Hn-gmod/. Note that I is an ideal in the ring K0.Hn-gmod/ by Lemma 5.8,
generated by the classes ŒV � for all objects V in I.

Let � be the formal variable representing the image in K0.On/ of the object k¹1º

of On. Write � WD �n=m and �k WD �
n=pk .

By definition, any object U 2 I is isomorphic to a module U 0 2 Hn-gmod such
thatU 0Š

Lt
kD1Uk , whereUk is an object in Ik . Hence, ŒU �D

Pt
kD1 ŒUk�. However,

any object in Ik is, in particular, a free yH k
n -module. Therefore, in K0.Hn-gmod/, we

have that ŒUk � is a ZŒ�; ��1�-multiple of ŒWk�. In the presence of at least two distinct
prime factors pk; pl , ŒVl � divides ŒWk�. Hence, the symbol ŒU � of any object of U in
I is a ZŒ�; ��1�-linear combination of the cyclotomic polynomials

p̂k
.�k/ D ŒVk� D 1C �k C � � � C �

pk�1

k
; for k D 1; : : : ; t:

Conversely, the relations

ŒWk � D
Y

l¤k

Œm��=Œm=pl �� D 0

hold in K0.On/; using equation (5.5) of Lemma 5.13. Therefore, the relations

gcd ¹ŒWl � j l D 1; : : : ; t such that l ¤ kº D ŒVk � D
Œm��

Œm=pk��

D 1C �k C � � � C �
pk�1

k
D 0

are satisfied in K0.On/ and generate the ideal I . Now, by equations (5.4) and (5.6),
we see that

ˆn.�/ D ˆm.�/ D gcd.Œm��=Œm=p1��; : : : ; Œm��=Œm=pt ��/

generates I . The result follows.

Remark 5.16. The theorem can be summarised as saying that the tensor triangulated
category On categorifies the cyclotomic ring of integers On. Choose an embedding of
On in C. The tensor product on On descends to the product of cyclotomic integers.
Furthermore, the vector space dual functor .-/�WOn ! On decategorifies to the com-
plex conjugation map ŒM�� D ŒM�. It also follows that the inner hom measures the
complex norm of the symbols

ŒHom�.M;M/� D ŒM� ˝M� D ŒM�ŒM� D jŒM�j2:
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