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Non-semisimple 3-manifold invariants
derived from the Kauffman bracket

Marco De Renzi and Jun Murakami

Abstract. We recover the family of non-semisimple quantum invariants of closed oriented
3-manifolds associated with the small quantum group of sl2 using purely combinatorial meth-
ods based on Temperley–Lieb algebras and Kauffman bracket polynomials. These invariants
can be understood as a first-order extension of Witten–Reshetikhin–Turaev invariants, which
can be reformulated following our approach in the case of rational homology spheres.

1. Introduction

The distinction between semisimple and non-semisimple constructions in quantum
topology refers to the properties of the algebraic ingredients involved. One of the most
celebrated families of quantum invariants, known as Witten–Reshetikhin–Turaev (or
WRT) invariants, is of the first kind. Indeed, if r > 3 is an integer called the level of
the theory, then the WRT invariant �r can be constructed using a semisimple quotient
of the category of representations of the small quantum group xUq sl2 at the r-th root
of unity q D e

2�i
r , see [42]. (In this paper, the acronym WRT will not refer to the lar-

ger family of quantum invariants constructed by Reshetikhin and Turaev in terms of
the representation theory of modular Hopf algebras, but rather to the specific subfam-
ily recovering the topological invariants first obtained by Witten using Chern–Simons
gauge theory and the Feynman path integral [49].) This invariant extends to a Topo-
logical Quantum Field Theory (TQFT for short), which can also be obtained using
several different approaches based on methods ranging from combinatorics and skein
theory [8] to geometric topology and conformal field theory [2]. On the other hand,
the family of quantum invariants Zr considered in this paper is of the second kind. It
has already been defined using the non-semisimple representation theory of quantum
groups (without quotient operation), as well as more general categorical methods. By
contrast, the approach developed here relies uniquely on Temperley–Lieb algebras
and Kauffman bracket polynomials. In particular, we provide the first reformulation of
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a non-semisimple quantum invariant of closed 3-manifolds that completely bypasses
Hopf algebras and their representation theory. This is the first step towards a purely
combinatorial construction of non-semisimple TQFTs which will naturally induce
new families of representations of Kauffman bracket skein algebras of surfaces.

The invariant Zr is defined for odd levels r > 3, it takes values in complex num-
bers, and it coincides with the renormalized Hennings invariant associated with xUq sl2

at q D e
2�i
r , as defined in [14]. Since the category of finite-dimensional representa-

tions of xUq sl2 is modular (in the non-semisimple sense of [34]), Zr fits into the
larger family of quantum invariants constructed in [13], and both of these approaches
produce TQFT extensions whose properties are in sharp contrast with those of their
semisimple counterparts, see for instance [12, Proposition 1.4]. It should also be noted
that the family of invariants considered here is very closely related to the generalized
Kashaev invariants of knots in 3-manifolds defined in [37], which have been extended
to logarithmic Hennings invariants of links in 3-manifolds [4], although both con-
structions focus on a somewhat complementary case, namely when the level r > 4 is
even. All these constructions build on the structure and properties of quantum groups
and ribbon categories, and thus have a distinct algebraic flavor.

The goal of this paper is to reproduce the renormalized Hennings invariant associ-
ated with xUq sl2 relying exclusively on the technical setup used by Lickorish for the
construction of WRT invariants [32]. One of the basic ingredients for this approach is
given by the family of Temperley–Lieb algebras1 TL.m/ of parameter ı D �q � q�1,
where m is a natural number, and by specific idempotent elements fm 2 TL.m/
defined for 0 6 m 6 r � 1 called (simple) Jones–Wenzl idempotents. In particular,
a leading role is played by a formal linear combination of simple Jones–Wenzl idem-
potents in the range 0 6 m 6 r � 2 called (semisimple) Kirby color, and denoted !.
The name comes from the fact that the scalar associated with an !-labeled framed link
by the graphical calculus based on the Kauffman bracket polynomial [28] with vari-
able A D q

rC1
2 is invariant under Kirby II moves. Our main technical achievement is

the introduction of a non-semisimple Kirby color �, which is given by Definition 3.1
in terms of non-semisimple Jones–Wenzl idempotents gm 2TL.m/ for r 6m6 2r � 2,
which are in turn given by equations (9)–(11). Although this generalization of simple
Jones–Wenzl idempotents dates back to [21], the formulas reported here were found
in [7], and were inspired by similar ones, for even values of the level r , due to

1The connection between the two approaches stems from the well-known equivalence
between the Temperley–Lieb algebra TL.m/ and the centralizer algebra for the m-th tensor
power of the fundamental representation of a closely related Hopf algebra, Lusztig’s divided
power quantum group Uq sl2, which contains the small quantum group xUq sl2 as a Hopf sub-
algebra. In light of this, we can say our purpose is to reformulate the renormalized Hennings
invariant in diagrammatic terms, rather than algebraic ones.
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Ibanez [25] and Moore [36]. It should also be noted that, when the level is a prime
number p, then non-semisimple Jones–Wenzl idempotents recover p-Jones–Wenzl
idempotents in the corresponding range, as defined in [9].

1.1. Outline of the construction

The topological notion underlying the graphical calculus developed in this paper is
that of a bichrome tangle. Roughly speaking, a bichrome tangle is the union of a
blue framed tangle, which is both oriented and labeled by idempotent morphisms of
the Temperley–Lieb category TL of parameter ı D �q � q�1, and a red framed link,
which carries neither orientations nor labels. When a bichrome tangle T is embed-
ded inside a 3-manifold M , one should think of its blue part as an element of the
corresponding Kauffman bracket skein module, and of its red part as a surgery pre-
scription. Bichrome links, which are closed bichrome tangles, allow us to revisit, in
Section 3.4, a construction due to Blanchet [5]. Indeed, the SO.3/ version of the WRT
invariant �r.M;T / can be defined for a closed oriented 3-manifoldM decorated with
a bichrome link T � M . This is done by means of a topological invariant F! of
bichrome links, taking values in C, which is constructed using the Kirby color ! and
the Kauffman bracket polynomial. If M is a closed oriented 3-manifold, T � M is
a bichrome link, and L � S3 is a red surgery presentation of M with positive signa-
ture �C and negative signature ��, then

�r.M; T / WD
F!.L [ T /

ı
�C
C ı���

is a topological invariant of the pair .M; T /, where

ıC WD
i� r�12 r 12 q r�32

¹1º
;

ı� WD �
i
r�1
2 r

1
2 q

rC3
2

¹1º
:

Similarly, the non-semisimple invariant Zr.M;T / is defined for a closed oriented
3-manifold M decorated with a bichrome link T � M , but not an arbitrary one.
Indeed, T needs to satisfy a certain admissibility condition which consists in requiring
the presence, among the labels of its blue components, of an idempotent morphism
of TL belonging to the ideal generated by fr�1, which can be understood as the ideal
of projective objects of the idempotent completion of TL. For instance, gr ; : : : ; g2r�2
all correspond to projective objects, and the same holds for their tensor product with
any other idempotent morphism of TL, but f0; : : : ; fr�2 do not. In particular, the red
part of an admissible bichrome link is allowed to be empty, while the blue part is not.
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In Section 3.4, we define a topological invariant F 0� of admissible bichrome links,
with values in C, using the non-semisimple Kirby color �, the Kauffman bracket
polynomial, and the theory of modified traces [18]. We point out that the admiss-
ibility assumption is required precisely in order to use this last ingredient, without
which non-semisimple quantum invariants essentially boil down to a reformulation of
semisimple ones, as in [10]. Indeed, in the case of non-semisimple ribbon categor-
ies such as TL, non-degenerate modified traces can only be consistently defined on
proper tensor ideals, and general existence results usually focus on the special case of
the ideal of projective objects, see Section 2.2. Our main result can then be stated as
follows.

Theorem 1.1. IfM is a closed oriented 3-manifold, T �M is an admissible bichrome
link, and L�S3 is a red surgery presentation of M with positive signature �C and
negative signature ��, then

Zr.M; T / WD
F 0�.L [ T /
�
�C
C ����

is a topological invariant of the pair .M; T /, where

�C WD i�
r�1
2 r

3
2 q

r�3
2 ;

�� WD i
r�1
2 r

3
2 q

rC3
2 :

1.2. Strategy of the proof

Although the small quantum group xU WD xUq sl2 and its category of finite-dimensional
representations xU -mod do not appear in the definition of Zr , they play an important
role in the proof of its topological invariance. Indeed, a well-known faithful braided
monoidal linear functor FTLW TL! xU -mod allows us to interpret morphisms of TL
as intertwiners between tensor powers of the fundamental representation X of xU , as
recalled in Section 5. Then, the idea is essentially to check that our definition of Zr
computes exactly the renormalized Hennings invariant associated with xU .

In Section 4 we prepare the ground for this comparison by introducing our algeb-
raic setup. In particular, we fix a left integral of xU , which is a linear form � 2 xU �

satisfying a crucial condition that can be understood as an algebraic version of the
invariance under Kirby II moves, see Section 6.3. This provides the key ingredient for
the definition of both the original Hennings invariant and its renormalized version.2

2Both [24] and [14] actually use a right integral, but the difference is simply a matter of
conventions. Other related choices involve the use of top tangles, bottom tangles, or string links,
the use of the adjoint, the coadjoint, or the regular representation, and so on. Changing one of
these conventions requires changing accordingly all the others.
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The left integral � belongs to the space QC. xU/ of quantum characters of xU , which
admits a basis composed of quantum traces and pseudo quantum traces correspond-
ing to simple and indecomposable projective xU -modules. In Section 4.6 we adapt
computations of Arike [3] to the odd level case, and obtain an explicit decomposition
of � into this basis of QC. xU/. Next, we use the fact that every quantum character can
be interpreted as a xU -module morphism with target the trivial representation C and
source the adjoint representation ad, which has been studied in detail by Ostrik [40].
An important property of ad is that it admits a Z-grading, and that, as explained in
Section 4.7, every quantum character is completely determined by its restriction to the
subspace of degree 0 vectors of ad. Then, the rest of the paper is devoted to explain
why and how the non-semisimple Kirby color� provides a diagrammatic implement-
ation of the left integral �, and for the proof it is sufficient to focus on the degree 0
part of ad.

The next step consists in reviewing the algorithm for the computation of the Hen-
nings invariant. We point out that there exist already several places in the literature
where different methods have been explained in detail. The interested reader can
check [24] for the original definition, [29] for an improved construction that avoids
the use of orientations, [22, 31, 34, 38, 47] for several reformulations, and [14] for the
renormalized version involving modified traces. The common idea behind all these
different approaches is essentially to get rid of the representation theory in the original
construction of WRT invariants [42], to figure out explicitly the relevant combinator-
ics for elements of the quantum group, and to evaluate these using the left integral �.
We will briefly explain the procedure once again in Section 5 for convenience, but it
should be noted that, once we establish that the non-semisimple Kirby color� imple-
ments the left integral �, the rest of the proof should be regarded as a well-known
consequence of the Hennings–Kauffman–Radford (or HKR) theory. More precisely,
in Section 5.2 we introduce the bead category TL xU by allowing elements of xU to sit
on strands of morphisms of the Temperley–Lieb category TL. This allows us to reph-
rase the HKR algorithm, and in particular the one presented by Kerler and Virelizier,
as a procedure which, starting from a top tangle, returns a morphism of the bead cat-
egory. Then, in Section 5.3 we prove our main technical result, which can be explained
as follows: completing the HKR algorithm with the algebraic evaluation based on the
left integral � yields the same result as completing it with the diagrammatic evaluation
based on the non-semisimple Kirby color�. The proof is obtained by explicit compu-
tation, and it is based on a series of formulas involving non-semisimple Jones–Wenzl
idempotents which are established in Section 7.
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1.3. Relation with WRT

As explained in Section 3.4, an invariant of closed oriented 3-manifolds decorated
with non-admissible (possibly empty) bichrome links can be obtained by setting

Yr.M; T / WD Zr.M # S3; T [O/;

where O � S3 is a blue unknot of framing 0 and label fr�1. Then, using [10, The-
orem 1], we can show that

Yr.M; T / D h1.M/�r.M; T /;

where h1.M/ D jH1.M/j if jH1.M/j is finite, and h1.M/ D 0 otherwise. Further-
more, if T 0 �M 0 is an admissible bichrome link, then we have

Zr.M #M 0; T [ T 0/ D Yr.M; T /Zr.M 0; T /:

Therefore, we can think of the invariant Zr as a first-order extension of �r , at least for
rational homology spheres, in the same spirit of [11, Section 1.3].

1.4. Future perspectives

An extended version TL of the Temperley–Lieb category TL was introduced in [7]
in order to recover a diagrammatic description of the full monoidal subcategory of
xU -mod generated by the fundamental representation of xU . Indeed, roughly speaking,
TL misses a few morphisms, since it is equivalent to the category of tilting modules
of a different Hopf algebra, namely Lusztig’s divided power quantum group Uq sl2,
of which the small quantum group xU is a Hopf subalgebra. Now, although TL can
be avoided for the definition of Zr , we expect it to play a major role in any purely
diagrammatic proof of its topological invariance, as well as in the skein model for its
TQFT extension based on the universal construction of [8].

Using TL, we can define appropriate bichrome versions of Kauffman bracket skein
modules. State spaces of non-semisimple TQFTs are quotients of these bichrome
skein modules, and they naturally carry actions of Kauffman bracket skein algeb-
ras. The prospect of obtaining new families of representations for these algebraic
structures is especially interesting, since most geometric applications of WRT TQFTs
exploit this technology. More generally, the development of alternative models of non-
semisimple TQFTs is a crucial step for enhancing the flexibility of the theory, and for
promoting its applications to the deep and mysterious questions concerning the geo-
metric and dynamic content of quantum constructions in topology.
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2. Temperley–Lieb category and modified trace

In this section we recall definitions for the main tools required by our construction:
Temperley–Lieb algebras, Kauffman bracket skein relations, and modified traces. In
order to do this, we fix once and for all an odd integer 3 6 r 2 Z, and we consider the
primitive r-th root of unity q D e

2�i
r . For every natural number k 2 N we adopt the

notation

¹kº WD qk � q�k; Œk� WD
¹kº

¹1º
; Œk�Š WD

kY
jD1

Œj �; ¹kº0 WD qk C q�k :

2.1. Temperley–Lieb category

For the definition of the Temperley–Lieb category, we will follow the approach of [32,
Section 3.3] and [8, Section 3], which is based on the category of unoriented framed
tangles [45, Section 7]. Let us consider the cube I 3 � R3, where I � R denotes
the interval Œ0; 1�. An .m;m0/-tangle is the unoriented image of a proper embedding
into I 3 of a disjoint union of finitely many copies of I and S1, whose boundary is
composed of m points on the bottom line I � ¹1

2
º � ¹0º � I 3 and m0 points on the

top line I � ¹1
2
º � ¹1º � I 3. A framed tangle is a tangle equipped with a framing,

that is, a transverse vector field along each of its components. We represent framed
tangles in I 3 as planar diagrams projected orthogonally to I � ¹0º � I , and we adopt
the blackboard framing convention, which means the framing always points to the
reader. The Temperley–Lieb category TL is the linear category with set of objects N,
and with vector space of morphisms from m 2 TL to m0 2 TL denoted TL.m; m0/,
and given by the quotient of the vector space generated by isotopy classes of framed
.m;m0/-tangles in I 3 modulo the subspace generated by vectors of the form

(S1)

(S2)

These pictures represent operations performed inside a disc D3 embedded into I 3,
and they leave tangles unchanged in the complement. Composition of morphisms of
TL is given by gluing vertically two copies of I 3, in the opposite order with respect
to [45], and then shrinking the result into I 3. Then, for every m 2 TL, the m-th
Temperley–Lieb algebra is defined as TL.m/ WD TL.m;m/.

The Temperley–Lieb category TL can be given a ribbon structure, see [16, Sec-
tion 8.10] for a definition. Tensor product of objects of TL is given by taking their
sum, while tensor product of morphisms of TL is given by gluing horizontally two
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copies of I 3, and then shrinking the result into I 3. When representing graphically a
morphism of TL, we will sometimes allow components (or their endpoints) to carry
labels given by natural numbers, as a shorthand for the number of parallel strands with
respect to the framing (although sometimes, when this information can be deduced
from the rest of the diagram, labels can be omitted), and we will allow morphisms
to be replaced by boxes containing their name. Then left and right evaluation and
coevaluation, braiding, and twist morphisms are defined, for all m;m0 2 TL, by

 �evm D
�!evm D

m m

 ��coevm D
��!coevm D

mm

(1)

cm;m0 D

m0

m0 m

m

#m D

m

m

(2)

In particular, the dual u� 2 TL.m0; m/ of a morphism u 2 TL.m;m0/ is obtained by
a rotation of angle � . By abuse of notation, we still denote by TL the idempotent
completion of TL. This means we promote idempotent endomorphisms p 2 TL.m/
to objects of TL, and for all p 2 TL.m/ and p0 2 TL.m0/ we set

TL.p; p0/ WD ¹u 2 TL.m;m0/ j up D u D p0uº: (3)

By the same abuse of notation, we sometimes consider natural numbers m 2 TL as
idempotent endomorphisms of TL.

Next, let us recall the definition of a special family of idempotents of TL, first
defined in [26, 48], and later generalized in [21]. We will follow the approach of [7],
where more details can be found. For every integer 0 6 m 6 r � 1 the m-th simple
Jones–Wenzl idempotent fm 2 TL.m/ is recursively defined as

WD (4)

WD (5)
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WD C
Œm � 1�

Œm�
� (6)

Let us recall some basic properties of simple Jones–Wenzl idempotents. We have

D D (7)

for all integers 0 6 m 6 r � 1 and 0 6 n 6 r �m � 1, and

D .�1/k
ŒmC 1�

Œm � k C 1�
� (8)

for every integer 0 6 k 6 m. Simple Jones–Wenzl idempotents satisfy f �m D fm for
every integer 0 6 m 6 r � 1 with respect to the rigid structure determined by equa-
tion (1). In other words, a rotation of angle � fixes fm.

Similarly, thanks to [7, Lemma 3.2], for every integer r 6 m 6 2r � 2 the m-th
non-semisimple Jones–Wenzl idempotent gm 2 TL.m/ is recursively defined as

WD (9)
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WD � � � Œ2� � (10)

WD C
Œm � 1�

Œm�
� �

2

Œm�2
� (11)

where hm 2 TL.m/ is the nilpotent endomorphism defined as

WD .�1/mC1ŒmC 1� � (12)

As explained in [7, Section 3], these endomorphisms satisfy

D D (13)
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for all integers 0 6 m 6 r � 1 and r �m 6 n 6 2r �m � 2,

D D (14)

D D (15)

D D 0 (16)

for all integers r 6 m 6 2r � 2 and 0 6 n 6 2r �m � 2,

D .�1/k
ŒmC 1�

Œm � k C 1�
� C .�1/k

2Œk�

Œm � k C 1�2
�

(17)

D .�1/k
ŒmC 1�

Œm � k C 1�
� (18)
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for every integer 0 6 k 6 m � r ,

D .�1/m¹mC 1º0 � (19)

D .�1/mC1ŒmC 1� � (20)

for k D m � r C 1, and

D D 0 (21)

for every integer m � r C 2 6 k 6 m, see [7, Lemma 3.1]. While for every integer
r 6 m 6 2r � 2 we have h�m D hm, non-semisimple Jones–Wenzl idempotents do
not meet, in general, this condition, with the only exception of g�2r�2 D g2r�2, as
explained in [7, Remark 3.4]. For an explicit computation of non-semisimple Jones–
Wenzl idempotents in the special case r D 3, see Section 3.5. For a representation
theoretic interpretation of the recursive relations (4)–(6) and (9)–(11), compare with
equations (49)–(50) using [7, Lemma 4.1].

2.2. Modified trace

We recall now a few important definitions which will require the abstract language of
ribbon categories, see again [16, Section 8.10] for a general definition. What is most
important for our purposes is the fact that a ribbon category C comes equipped with
a tensor product and a tensor unit, as well as structural data given by left and right
evaluation and coevaluation, braiding, and twist morphisms, such as those introduced
in equations (1) and (2) for TL. Using this structure, a diagrammatic calculus for
morphisms of C , based on the Penrose graphical notation, can be developed. We
point out that our convention for orientations will be opposite with respect to the
one of [46, Section I.1.6]. Consequently, if C is a ribbon category, then structure
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morphisms are represented, for all x; x0 2 C , by

 �evx D
 ��coevx D

�!evx D
��!coevx D

cx;x0 D #x D

An ideal of a ribbon category C is a full subcategory 	 of C which is absorbent
under tensor products and closed under retracts. In other words, if x 2 	, then for
every x0 2 C we have x ˝ x0 2 	, and for all f 2 C.x0; x/ and f 0 2 C.x; x0/ satisfy-
ing f 0 ı f D idx0 we have x0 2 	. The ideal generated by an object x 2 C is the ideal
of C whose objects x0 satisfy idx0 D f 0 ı f for some object x00 2 C and morphisms
f 2 C.x0; x ˝ x00/ and f 0 2 C.x ˝ x00; x0/. Remark that equations (9)–(11) immedi-
ately imply that, for every integer r 6 m 6 2r � 2, the non-semisimple Jones–Wenzl
idempotent gm belongs to the ideal of TL generated by fr�1.

The partial trace of an endomorphism f 2 EndC .x ˝ x
0/ is the endomorphism

ptrx0.f / 2 EndC .x/ defined as

ptrx0.f / WD

Following [18], a trace t on an ideal 	 of a ribbon linear category C over C is a
family of linear maps

¹tx WEndC .x/! C j x 2 	º

satisfying:

(i) cyclicity: tx.f 0 ı f / D tx0.f ı f 0/ for all objects x; x0 2 	 and all morph-
isms f 2 C.x; x0/, f 0 2 C.x0; x/;

(ii) partial trace: tx˝x0.f / D tx.ptrx0.f // for all objects x 2 	, x0 2 C , and
every endomorphism f 2 EndC .x ˝ x

0/.
A trace t on 	 is non-degenerate if, for all x 2 	 and x0 2 C , the bilinear pairing
tx._ ı _/W C.x0; x/ � C.x; x0/ ! C determined by .f 0; f / 7! tx.f 0 ı f / is non-
degenerate. Let us denote by Proj.TL/ the ideal of projective objects of TL.

Proposition 2.1. The ideal Proj.TL/ is generated by fr�1 2 TL, and there exists a
unique trace tTL on Proj.TL/ satisfying

tTL
fr�1

.fr�1/ D 1: (22)

Furthermore, tTL is non-degenerate.



M. De Renzi and J. Murakami 14

A proof of Proposition 2.1 is postponed to Section 6.1. For the moment, let us
simply point out that Proposition 2.1 implies that every idempotent p 2 TL.m/ of
Proj.TL/ can be written as p D u0u for some morphisms u 2 TL.m; fr�1 ˝m0/ and
u0 2 TL.fr�1 ˝m0; m/. Furthermore, equations (19) and (20) imply

tTL
gm
.gm/ D .�1/

m
¹mC 1º0; tTL

gm
.hm/ D .�1/

mC1ŒmC 1� (23)

for all r 6 m 6 2r � 2. See also [23, Corollary 3.4] for more existence results con-
cerning modified traces, and [44, Proposition 3.12] for related formulas.

3. 3-Manifold invariant

In this section we introduce bichrome links, and we define a topological invariant Zr
of closed 3-manifolds decorated with admissible ones. We also explain how to useZr
to obtain a topological invariant Yr of closed 3-manifolds without decorations, and
show that this invariant recovers the SO.3/ WRT invariant �r for rational homology
spheres. Every 3-manifold is assumed to be oriented.

3.1. Bichrome tangles

The notion of bichrome link will be based on a few preliminary definitions. First of all,
the category TTL of TL-labeled oriented framed tangles is the category whose objects
are finite sequences .

N
";
N

p/ D .."1; p1/; : : : ; ."j ; pj //, where "i 2 ¹C;�º is a sign and
pi 2 TL.mi / is an idempotent for every integer 1 6 i 6 j , and whose morphisms
from .

N
";
N

p/ D .."1; p1/; : : : ; ."j ; pj // to .
x
"0;
x

p0/ D .."01; p01/; : : : ; ."0j 0 ; p
0
j 0// are iso-

topy classes of framed .j; j 0/-tangles whose components carry orientations and labels
given by idempotents of TL matching those specified by .

N
";
N

p/ and .
x
"0;
x

p0/, with C
and � corresponding to upward and downward orientation respectively. Composition
of morphisms of TTL is given by gluing vertically two copies of I 3 and then shrink-
ing the result into I 3. We will adopt a shorthand notation omitting signs for positive
sequences. In other words, a sequence

N

p D .p1; : : : ; pj / will stand for the object
..C; p1/; : : : ; .C; pj // of TTL. Furthermore, an object of TTL which is not underlined
will stand for a sequence with a single entry, and¿ will stand for the empty sequence.

The category TTL naturally supports a ribbon structure. Tensor product of objects
of TTL is given by taking their concatenation, while tensor product of morphisms of
TTL is given by gluing horizontally two copies of I 3 and then shrinking the result
into I 3. When representing graphically a morphism of TTL, we use the color blue.
Then, left and right evaluation and coevaluation, braiding, and twist morphisms are
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Figure 1. An example of a bichrome 2-top tangle with source ..�; p/; .C; p0/; .�; p00/;
.C; p/; .C; p00// and target .C; p0/.

defined, for all p; p0 2 TTL, by

 �evp D
 ��coevp D

�!evp D
��!coevp D (24)

cp;p0 D #p D (25)

There exists a ribbon functor
h_iW TTL ! TL;

which we refer to as the Kauffman bracket functor, satisfying

D E
D

D E
D (26)

for every idempotent p 2 TL.m/, and sending structure morphisms of equations (1)
and (2) to those of equations (24) and (25) respectively.

For every k 2N a bichrome k-top tangle from .
N
";
N

p/ to .
x
"0;
x

p0/, sometimes simply
called a top tangle, is the union of a blue TL-labeled oriented framed tangle from
.
N
";
N

p/ to .
x
"0;
x

p0/ and a red framed .0; 2k/-tangle satisfying the following condition:
for every 16 i 6 k, the 2i -th and .2i � 1/-th outgoing boundary points (starting from
the left) are connected by a red component, while all the other incoming and outgo-
ing boundary points belong to blue components. An example of a bichrome 2-top
tangle is given in Figure 1. In order to distinguish red components from blue ones
in black-and-white versions of this paper, remark that red components are unoriented
and unlabeled, while blue ones are oriented and labeled.
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We denote by Tk.
N

p;
x

p0/ the set of isotopy classes of bichrome k-top tangles from

N

p to
x

p0 featuring no closed red component, and we adopt the shorthand notation Tk.
N

p/

when
N

pD
x

p0. A bichrome k-top tangle is simply called a bichrome tangle if kD 0. We
denote by B.

N

p;
x

p0/ the set of isotopy classes of bichrome tangles from
N

p to
x

p0, and we
adopt the shorthand notation B.

N

p/ when
N

p D
x

p0. Every bichrome k-top tangle T 2
Tk.
N

p;
x

p0/ determines a bichrome tangle pc.T / 2B.
N

p;
x

p0/ obtained by considering its
plat closure, that is,

pc

0BBB@
1CCCA WD (27)

Then, a top tangle presentation of a bichrome tangle T 2 B.
N

p;
x

p0/ is a bichrome top
tangle T 0 2 Tk.

N

p;
x

p0/ whose plat closure is T . By definition, a top tangle presentation
of a bichrome tangle has no closed red component.

A bichrome link is a bichrome tangle from ¿ to itself. A bichrome link is admiss-
ible if it features a projective blue component, which is a blue component labeled by an
idempotent p 2 TL.m/ of Proj.TL/. If p 2 TL.m/ is an idempotent of Proj.TL/, then
every bichrome tangle T 2 B.p/ determines an admissible bichrome link tc.T / 2
B.¿/ obtained by considering its trace closure, that is,

tc

0BBB@
1CCCA WD (28)

A cutting presentation of an admissible bichrome link T 2 B.¿/ is a top tangle
presentation T 00 2 Tk.p/ of a bichrome tangle T 0 2 B.p/ whose trace closure is T ,
for some idempotent p 2 TL.m/ of Proj.TL/. In other words, if T 2 B.¿/ is an
admissible bichrome link and T 0 2 Tk.p/ is a cutting presentation of T , then

D

3.2. Ribbon Kauffman bracket

In order to define a topological invariant of admissible bichrome links, we first need
to adjust the sign in front of the Kauffman bracket appropriately. The reason for this is
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rather subtle, and will be explained more carefully in Section 5.1, once the definition
of the small quantum group xU WD xUq sl2 will have been recalled. Very briefly, the
problem originates from the comparison between the Temperley–Lieb category TL
and the category of finite-dimensional representations xU -mod. Indeed, both are ribbon
categories, and a dictionary between the two is provided by a faithful linear functor
FTLWTL! xU -mod which preserves braided monoidal structures. However, FTL does
not preserve ribbon structures. In particular, partial traces and twist morphisms of TL
are translated to those of xU -mod only up to a sign. If we want the diagrammatic con-
struction based on TL to replicate the algebraic computation based on xU , as defined
in [14], this sign needs to be controlled. This is precisely what we will do now, fol-
lowing [39, Theorem H.3].

First of all, we recall that, ifK andK 0 are disjoint oriented knots in S3, then their
linking number lk.K;K 0/ is defined as the transverse intersection number S tK 0 2Z,
where S is a Seifert surface for K. Alternatively, lk.K; K 0/ can be computed as the
difference between the number of positive and negative crossings of K over K 0 in
a diagram of K [ K 0. We also recall that, if K is a framed oriented knot in S3, its
framing number fr.K/ is defined as lk.K; zK/ 2 Z, where zK is a parallel copy of
K determined by its framing. The framing number is actually independent of the
orientation of K.

A blue link is a bichrome link without red components. If T is a blue link with
components T1; : : : ; T` labeled by p1 2 TL.m1/; : : : ; p` 2 TL.m`/ respectively, we
define its ribbon number rb.T / as the integer

rb.T / WD
X̀
iD1

mi .fr.Ti /C 1/: (29)

The ribbon Kauffman bracket of a blue link T is the scalar hT irb 2 TL.0/DC defined
by

hT irb WD .�1/rb.T /hT i; (30)

as considered by Ohtsuki in [39, Theorem H.3].
Let now r � 1 6 n1; : : : ; nk 6 2r � 2 be integers. The .n1; : : : ; nk/-labeling of

a bichrome top tangle T 2 Tk.p/ is defined as the blue TL-labeled oriented framed
tangle lbn1;:::;nk .T / from .C; p/ to ..C; n1/; .�; n1/; : : : ; .C; nk/; .�; nk/; .C; p//
obtained from T by turning all its red components blue, by orienting them from right
to left, and by labeling the i -th one by ni for all 1 6 i 6 k, that is,

lbn1;:::;nk

0BBB@
1CCCA WD (31)
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Then the .n1; : : : ; nk/-bracket of a bichrome top tangle T 2 Tk.p/ is the morphism
hT in1;:::;nk 2 TL.p; n1 ˝ n1 ˝ � � � ˝ nk ˝ nk ˝ p/ defined by

hT in1;:::;nk WD hlbn1;:::;nk .T /i: (32)

We can extend the ribbon number defined in equation (29) for blue links to the
.n1; : : : ; nk/-labeling of a bichrome top tangle T 2 Tk.p/ with a single non-closed
blue component B labeled by p 2 TL.m/, with closed blue components B1; : : : ; Bj
labeled by p1 2 TL.m1/; : : : ; pj 2 TL.m`/, and with red components R1; : : : ;Rk , by
setting, in the notation of equations (27) and (28) for plat and trace closures,

rb.lbn1;:::;nk .T // WD m fr.tc.B//C
jX
iD1

mi .fr.Bi /C 1/C
kX
iD1

ni fr.pc.Ri //: (33)

The ribbon .n1; : : : ; nk/-bracket of a bichrome top tangle T 2 Tk.p/ is the morphism
hT irbn1;:::;nk 2 TL.p; n1 ˝ n1 ˝ � � � ˝ nk ˝ nk ˝ p/ defined by

hT irbn1;:::;nk WD .�1/
rb.lbn1;:::;nk .T //hT in1;:::;nk : (34)

3.3. Bichrome link invariant

Let us define a topological invariant of admissible bichrome links. In order to do this,
let us set

WD 2 TL.fr�1 ˝ fr�1; g2r�2/;

WD 2 TL.gm ˝ g�m; g2r�2/;
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WD 2 TL.gm ˝ g�m; g2r�2/

for every integer r 6 m 6 2r � 2. Remark that we are using the notation introduced
in equation (3), which means we are considering Jones–Wenzl idempotents as objects
of TL. See Section 3.5 for an explicit computation in the case r D 3.

Definition 3.1. The non-semisimple Kirby color � is, by definition, the linear com-
bination of morphisms

� WD

2r�2X
mDr�1

�m 2

2r�2M
mDr�1

TL.m˝m; 2r � 2/;

where �m 2 TL.m˝m; 2r � 2/ is given by

�r�1 WD tr�1;

�m WD .�1/
m ¹mC 1º

0

2
tm � .�1/

mŒmC 1�t 0m:

If p 2TL.m/ is an idempotent of Proj.TL/, the non-semisimple Kirby color� can
be used to associate with every bichrome k-top tangle T 2 Tk.p/ an endomorphism
F�;p.T / 2 TL.p/, in the notation of equation (3). Indeed, if u 2 TL.m; fr�1 ˝m0/
and u0 2 TL.fr�1 ˝ m0; m/ are morphisms satisfying p D u0u, then, using the rib-
bon Kauffman bracket of equation (34), which coincides with the standard Kauffman
bracket of equation (32) up to a sign, we can set

F�;p

0BBB@
1CCCA WD 2r�2X

n1;:::;nkDr�1
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Proposition 3.2. If T 2B.¿/ is an admissible bichrome link, p 2 TL.m/ is an idem-
potent of Proj.TL/, and T 0 2 Tk.p/ is a cutting presentation of T , then

F 0�.T / WD .�1/
mtTL
p .F�;p.T

0// (35)

is a topological invariant of T , meaning it is independent of the choice of p and T 0.

For a proof of Proposition 3.2, see Section 6.2.

Remark 3.3. Let us consider the equivalence relation � on the vector space

2r�2M
mD0

TL.m˝m; 2r � 2/

determined, for all 0 6 m;n 6 2r � 2, u 2 TL.n˝m;2r � 2/, and v 2 TL.m; n/, by

Using the Kauffman bracket of equation (32), every T 2 T1.¿/ satisfies

Indeed, this can be shown using isotopy and the naturality of the braiding of TL.
Furthermore, TL.m; n/ is non-zero only if m � n is even, in which case

.�1/mfr.pc.T //
D .�1/nfr.pc.T //:

Then it is easy to see that every linear combination of morphisms which is equivalent
to the non-semisimple Kirby color � determines the same topological invariant F 0�.
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3.4. 3-Manifold invariant

We are now ready to define a topological invariant of closed 3-manifolds decorated
with admissible bichrome links. The definition relies on the following computation.

Lemma 3.4. For every admissible bichrome link T 2 B.¿/ we have

F 0�

 !
D �CF 0�.T /; F 0�

 !
D ��F 0�.T /;

(36)

where

�C WD i�
r�1
2 r

3
2 q

r�3
2 ; �� WD i

r�1
2 r

3
2 q

rC3
2 :

A proof of Lemma 3.4 will be given in Section 6.3. We are now ready to recall
our main statement.

Theorem 3.5. If M is a closed 3-manifold, T � M is an admissible bichrome link,
and L � S3 is a red surgery presentation of M with positive signature �C and neg-
ative signature ��, then

Zr.M; T / WD
F 0�.L [ T /
�
�C
C �

��C
(37)

is a topological invariant of .M; T /, meaning it is independent of the choice of L.

For a proof of Theorem 3.5, see Section 6.3. In the meantime, let us relateZr to its
semisimple counterpart by reviewing the construction of the SO.3/WRT invariant �r .
In order to do this, let us set

WD 2 TL.fm ˝ fm; f0/

for every integer 0 6 m 6 r � 2. The semisimple Kirby color ! is the linear combin-
ation of morphisms

! WD

r�2X
mD0

!m 2

r�2M
mD0

TL.m˝m; 0/;

where !m 2 TL.m˝m; 0/ is given by

!m WD

´
ŒmC 1�tm if m � 0 mod 2;

0 if m � 1 mod 2:
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Remark 3.6. Another possibility is to consider the double Kirby color Q!, which is
the linear combination of morphisms

Q! WD

r�2X
mD0
Q!m 2

r�2M
mD0

TL.m˝m; 0/;

where Q!m 2 TL.m˝m; 0/ is given by

Q!m WD .�1/
mŒmC 1�tm:

However, the invariant obtained from Q! turns out to be essentially equivalent to the
one obtained from !. Furthermore, in order to extend �r to a TQFT, only the (idem-
potent completion of the) full subcategory of TL whose objects are even integers
should be considered. A proof of this fact, in the equivalent language of the small
quantum group xUq sl2, is given in [6, Section 5]. Therefore, in accordance with [10,
Section 2.3], we use ! instead of Q!.

The semisimple Kirby color ! can be used to associate with every bichrome k-top
tangle T 2 Tk.¿/ a scalar F!.T / 2 TL.0/ D C. Indeed, using the Kauffman bracket
of equation (32), we can set

F!

0BBB@
1CCCA WD r�2X

n1;:::;nkD0

Remark that, since ! is a linear combination of even terms, replacing the Kauffman
bracket of equation (32) with its ribbon version of equation (34) in the definition of
F! yields the same result. Now, if T 2 B.¿/ is a bichrome link and T 0 2 Tk.¿/ is a
top tangle presentation of T , then

F!.T / WD F!.T
0/

is a topological invariant of T , meaning it is independent of the choice of T 0. Indeed,
this is clear because the semisimple Kirby color ! has target 0 2 TL, which means
F!.T / can be alternatively defined starting directly from a diagram of T , without ever
choosing a top tangle presentation T 0.

Lemma 3.7. We have

F!

 !
D ıC; F!

 !
D ı�; (38)
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where

ıC WD
i� r�12 r 12 q r�32

¹1º
; ı� WD �

i
r�1
2 r

1
2 q

rC3
2

¹1º
:

A proof of Lemma 3.7 can be found in Section 6.3. The following result follows
from [5, Theorem III.1], where �r is denoted by Q#A.

Theorem 3.8 (Blanchet). IfM is a closed 3-manifold, T �M is a bichrome link, and
L � S3 is a red surgery presentation of M with positive signature �C and negative
signature ��, then

�r.M; T / WD
F!.L [ T /

ı
�C
C ı���

(39)

is a topological invariant of .M; T /, meaning it is independent of the choice of L.

If b1.M/ denotes the first Betti number of M , let us set

h1.M/ D

´
jH1.M/j if b1.M/ D 0;

0 if b1.M/ > 0:

Proposition 3.9. If M and M 0 are closed 3-manifolds, T � M is a bichrome link,
and T 0 �M 0 is an admissible bichrome link, then

Zr.M #M 0; T [ T 0/ D h1.M/�r.M; T /Zr.M
0; T 0/:

For a proof of Proposition 3.9, see Section 6.3. For the moment, let us draw a few
simple consequences from it. First of all, if both T and T 0 are admissible, then

Zr.M #M 0; T [ T 0/ D 0;

because �r vanishes against 3-manifolds decorated with admissible bichrome links,
as a consequence of equation (8) with m D r � 1. Next, if M is a closed 3-manifold
and O � S3 is a blue unknot of framing 0 and label fr�1, then

Yr.M/ WD Zr.M # S3; O/

is a topological invariant ofM . Furthermore, the chosen normalization of the modified
trace t on Proj.TL/ implies, by definition, that

Zr.S
3; O/ D 1:

Then Proposition 3.9 immediately yields

Yr.M/ D h1.M/�r.M/:
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3.5. Level 3

Let us unpack some definitions for the first level r D 3. In this case, we have qD e
2�i
3 ,

which means Œ2� D �1. For what concerns both simple and non-semisimple Jones–
Wenzl idempotents, as well as their nilpotent endomorphisms, a direct computation
gives

D �

D �

D � � C

D � � � � C C

C � C 2 � C 2 � � 3 �

D � � C

For what concerns components of the non-semisimple Kirby color, we have

� � � C

� � � C

� � C �

� C 2 � �
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� � � 3 � C 3 �

C 2 � � 2 �

� � C �

� C 2 �

� 2 � C 2 � � 2 � C 2 �

C 3 � � 6 � � C 3 �

where � denotes the equivalence relation introduced in Remark 3.3.

4. Small quantum group

In this section we recall the definition of the small quantum group of sl2 at odd roots
of unity, which was first given by Lusztig in [33], as well as crucial results concerning
its representation theory.

4.1. Definition

We denote by xU D xUq sl2 the small quantum group of sl2, which is defined as the
algebra over C with generators ¹E;F;Kº and relations

Er D F r D 0; Kr D 1;

KEK�1 D q2E; KFK�1 D q�2F; ŒE; F � D
K �K�1

q � q�1
:
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A Poincaré–Birkhoff–Witt basis of xU is given by

¹EaF bKc j 0 6 a; b; c 6 r � 1º:

We make xU into a Hopf algebra by setting

�.E/ D E ˝K C 1˝E; ".E/ D 0; S.E/ D �EK�1;
�.F / D K�1 ˝ F C F ˝ 1; ".F / D 0; S.F / D �KF;

�.K/ D K ˝K; ".K/ D 1; S.K/ D K�1:

We also fix an R-matrix R D R0 ˝R00 2 xU ˝ xU given by

R WD
1

r

r�1X
a;b;cD0

¹1ºa

Œa�Š
q
a.a�1/
2 �2bcKbEa ˝KcF a;

whose inverse R�1 D S.R0/˝R00 2 xU ˝ xU is given by

R�1 D
1

r

r�1X
a;b;cD0

¹�1ºa

Œa�Š
q�

a.a�1/
2 C2bcEaKb ˝ F aKc :

Furthermore, we fix a ribbon element vC 2 xU given by

vC WD
i
r�1
2

p
r

r�1X
a;bD0

¹�1ºa

Œa�Š
q�

a.a�1/
2 C .rC1/.a�b�1/22 F aKbEa;

whose inverse v� 2 xU is given by

v� D
i� r�12
p
r

r�1X
a;bD0

¹1ºa

Œa�Š
q
a.a�1/
2 C .r�1/.aCb�1/22 F aKbEa:

These data make xU into a ribbon Hopf algebra, and also determine further additional
structures. For instance, the unique pivotal element g 2 xU compatible with the spe-
cified ribbon structure, in the sense that g D S.R00/R0v�, is given by g WDK, see [27,
Proposition XIV.6.5]. Furthermore, the M-matrix M DM 0 ˝M 00 2 xU ˝ xU defined
by

M WD R21R12;

where R12 D R is the R-matrix and R21 is obtained from R by reversing the order of
its components, is given by

M D
1

r

r�1X
a;b;c;dD0

¹1ºaCb

Œa�ŠŒb�Š
q
a.a�1/Cb.b�1/

2 �2cd�.bCc/.b�d/F bKcEa ˝EbKdF a:
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This determines a linear map DW xU � ! xU defined by

D.'/ WD '.M 0/M 00

for every ' 2 xU �. Maps of this form were first considered in [15, Proposition 3.3], and
D is therefore known as the Drinfeld map. The ribbon Hopf algebra xU is factorizable
in the sense that D is an isomorphism, as first shown in [34, Corollary A.3.3], see
also [35, Example 3.4.3]. In particular, thanks to the construction of [14], the small
quantum group xU gives rise to a topological invariant of closed 3-manifolds, and more
generally to a TQFT.

4.2. Center

Let us describe the center Z. xU/ of the algebra xU , which has been studied in detail by
Kerler in [30] starting from the quantum Casimir element

C WD EF C
q�1K C qK�1

¹1º2
D FE C

qK C q�1K�1

¹1º2
2 Z. xU/: (40)

The minimal polynomial of C is

‰.X/ D

r�1Y
mD0

.X � ˇm/ D .X � ˇr�1/

r�3
2Y

mD0
.X � ˇm/

2;

where

ˇm WD
¹mC 1º0

¹1º2
:

Indeed, ˇr�m�2 D ˇm for every integer 0 6 m 6 r � 2. If we set

‰r�1.X/ D
‰.X/

.X � ˇr�1/
; ‰m.X/ D

‰.X/

.X � ˇm/2

for every integer 0 6 m 6 r � 2, then we can define the central elements

er�1 WD
‰r�1.C /
‰r�1.ˇr�1/

2 Z. xU/; (41)

em WD
‰m.C /

‰m.ˇm/
�
‰0m.ˇm/.C � ˇm/‰m.C /

‰m.ˇm/2
2 Z. xU/; (42)

wm WD
.C � ˇm/‰m.C /

‰m.ˇm/
2 Z. xU/: (43)

Furthermore, if we consider the non-central projector

vm WD
1

r

r�1X
aD0

q�amKa 2 xU (44)
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on the eigenspace of eigenvalue qm for the regular action of K on xU , then setting

Tm WD

mX
jD0

vm�2j 2 xU (45)

for every integer 0 6 m 6 r � 2 allows us to decompose

wm D w
C
m C w

�
m

for the central elements

wCm WD Tm
.C � ˇm/‰m.C /

‰m.ˇm/
2 Z. xU/; (46)

w�m WD .1 � Tm/
.C � ˇm/‰m.C /

‰m.ˇm/
2 Z. xU/: (47)

It is proven in [30, Lemma 14] that a basis of Z. xU/ is given by

¹er�1º [
°
em; w

C
m ; w

�
m

ˇ̌̌
0 6 m 6 r � 3

2

±
;

and that basis vectors satisfy

emem0 D ım;m0em; w"mem0 D ım;m0w
"
m; w"mw

"0

m0 D 0: (48)

Remark that er�m�2 D em and w"r�m�2 D w�"m for every integer 0 6 m 6 r � 2. For
future convenience, we also set

em WD e2r�m�2; w"m WD w
"
2r�m�2; wm WD w2r�m�2;

for every integer r 6 m 6 2r � 2.

Lemma 4.1. The ribbon element and its inverse vC; v� 2 Z. xU/ admit the Jordan
decompositions

v˙ D q
r˙1
2 er�1 C

r�3
2X

mD0
q
r�1
2 m2�m

�
em �

.mC 1/¹1º

ŒmC 1�
wCm �

.m � r C 1/¹1º

ŒmC 1�
w�m

�
:

Proof. The formula for v� is obtained from [30, Lemma 15] by carefully comparing
Kerler’s conventions with ours. Indeed, what Kerler refers to as the ribbon element is
actually v� in our notation. Furthermore, Kerler uses a different set of generators for
the definition of xUq sl2, which can be obtained from ours by replacing E with ¹1ºE.
Consequently, Kerler’s quantum Casimir element is equal to ¹1ºC , and his basis of
Z. xU/ is

¹er�1º [
°
em; ¹1ºw

C
m ; ¹1ºw

�
m

ˇ̌̌
0 6 m 6 r � 3

2

±
:

The formula for vC is obtained from the one for v� using equation (48).
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4.3. Finite-dimensional representations

The category xU -mod of finite-dimensional representations of xU supports the structure
of a ribbon category. In order to recall it, let us adopt Sweedler’s notation for iterated
coproducts, that is,

�.m/.x/ D x.1/ ˝ � � � ˝ x.mC1/ 2 xU˝mC1

for all x 2 xU and m 2 N. Then the coproduct � is used to define, for all V; W 2
xU -mod, the tensor product V ˝W , which is determined by

x � v ˝ w WD .x.1/ � v/˝ .x.2/ � w/

for all x 2 xU , v 2 V , and w 2 W . The counit " is used to define the tensor unit
C 2 xU -mod, which is determined by the trivial representation over C given by

x � 1 WD ".x/

for every x 2 xU . The antipode S is used to define, for every V 2 xU -mod, the two-sided
dual V �, which is determined by

.x � '/.v/ WD '.S.x/ � v/

for all x 2 xU , ' 2 V �, and v 2 V . The pivotal element g and its inverse are used to
define, for every V 2 xU -mod, left and right evaluation and coevaluation morphisms
 �evV W V � ˝ V ! C,  ��coevV WC ! V ˝ V �, �!evV W V ˝ V � ! C, and ��!coevV WC !
V � ˝ V , which are determined by

 �evV .' ˝ v/ WD '.v/;
 ��coevV .1/ WD

nX
iD1

vi ˝ '
i ;

�!evV .v ˝ '/ WD '.g � v/;
��!coevV .1/ WD

nX
iD1

'i ˝ .g�1 � vi /;

for all v 2 V and ' 2 V �, where ¹vi 2 V j 1 6 i 6 nº and ¹'i 2 V � j 1 6 i 6 nº
are dual bases. The R-matrix R is used to define, for all V;W 2 xU -mod, the braiding
morphism cV;W WV ˝W ! W ˝ V , which is determined by

cV;W .v ˝ w/ WD .R
00
� w/˝ .R0 � v/

for all v 2 V and w 2 W . The inverse ribbon element v� is used to define, for every
W 2 xU -mod, the twist morphism #W WW ! W , which is determined by

#W .w/ WD v� � w

for every w 2 W .
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4.4. Simple and projective modules

Let us recall the classification of simple and indecomposable projective xU -modules.
For every integer 0 6 m 6 r � 1 we denote by Xm the simple xU -module with basis

¹amj j 0 6 j 6 mº

and action given, for all integers 0 6 j 6 m, by

K � amj D q
m�2jamj ;

E � amj D Œj �Œm � j C 1�a
m
j�1;

F � amj D a
m
jC1;

where am�1 WD ammC1 WD 0. Among these, we highlight the fundamental representation
X WD X1, which is a monoidal generator for the family of xU -modules considered
in this paper (in the sense that every simple and every indecomposable projective
xU -module is a direct summand of a tensor power of X ), and the Steinberg module
Xr�1, which is the only xU -module which is both simple and projective. Every simple
object of xU -mod is isomorphic toXm for some integer 06m6 r � 1. Next, for every
integer r 6 m 6 2r � 2 we denote by Pm the indecomposable projective xU -module
with basis

¹amj ; x
m
k ; y

m
k ; b

m
j j 0 6 j 6 2r �m � 2; 0 6 k 6 m � rº

and action given, for all integers 0 6 j 6 2r �m � 2 and 0 6 k 6 m � r , by

K � amj D q
�m�2j�2amj ;

E � amj D �Œj �ŒmC j C 1�a
m
j�1;

F � amj D a
m
jC1;

K � xmk D q
m�2kxmk ;

E � xmk D Œk�Œm � k C 1�x
m
k�1;

F � xmk D

´
xm
kC1 if 0 6 k < m � r;
am0 if k D m � r;

K � ymk D q
m�2kymk ;

E � ymk D

´
am2r�m�2 if k D 0;

Œk�Œm � k C 1�ym
k�1 if 0 < k 6 m � r;

F � ymk D y
m
kC1;

K � bmj D q
�m�2j�2bmj ;
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E � bmj D

´
xmm�r if j D 0;

amj�1 � Œj �ŒmC j C 1�b
m
j�1 if 0 < j 6 2r �m � 2;

F � bmj D

´
bmjC1 if 0 6 j < 2r �m � 2;
ym0 if j D 2r �m � 2;

where am�1 WD am2r�m�1 WD xm�1 WD ymm�rC1 WD 0. We point out that Pm is sometimes
denoted by P2r�m�2, because it is the projective cover of X2r�m�2 for every integer
r 6 m 6 2r � 2. Every indecomposable projective object of xU -mod is isomorphic to
either Xr�1 or Pm for some integer r 6 m 6 2r � 2.

Fusion formulas for decompositions of tensor products in xU -mod are given by

Xm�1 ˝X1 Š

8̂̂<̂
:̂
X1 if m D 1;

Xm ˚Xm�2 if 1 < m 6 r � 1;
Pr if m D r;

(49)

Pm�1 ˝X1 Š

8̂̂<̂
:̂
PrC1 ˚Xr�1 ˚Xr�1 if m D r C 1;

Pm ˚ Pm�2 if r C 1 < m 6 2r � 2;
Xr�1 ˚Xr�1 ˚ P2r�3 if m D 2r � 1:

(50)

These formulas should be compared with equations (4)–(6) and (9)–(11) using [7,
Lemma 4.1].

As proved in [20, Theorem 4.7.1], the ideal Proj. xU -mod/ of projective objects of
xU -mod is generated by the Steinberg module Xr�1, and there exists a unique trace t xU

on Proj. xU -mod/ satisfying
t xUXr�1.idXr�1/ D 1: (51)

Furthermore, t xU is non-degenerate.

4.5. Regular representation

The regular representation of xU , which is determined by the regular action of xU onto
itself by left multiplication, decomposes into a direct sum of indecomposable pro-
jective xU -modules. Explicit bases for indecomposable projective factors of xU are
described in [3, Section 4] when r is even, but can be easily generalized to our case.
Basis vectors are defined in terms of the non-central projectors vm 2 xU given by
equation (44) for m 2 Z. If, for every integer 0 6 j 6 r � 1, we set

a
r�1;n
j WD F jEr�1F r�n�1v�2n�1;

then
¹a
r�1;n
j 2 xU j 0 6 j 6 r � 1º
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is a basis for a submodule xXr�1;n of xU which is isomorphic to Xr�1. Similarly, if, for
all integers r 6 m 6 2r � 2, 0 6 j 6 2r �m � 2, and 0 6 k 6 m � r , we set

a
m;n
j WD F jEr�1F r�n�1v�m�2n�2;

x
m;n
k
WD

m�rX
hD0

Œk�ŠŒh�Š

Œm � k � r�ŠŒm � h � r�Š
Em�k�h�1F r�n�h�2v�m�2n�2;

y
m;n
k
WD

m�rX
hD0

Œm � r�ŠŒh�Š

Œm � h � r�Š
F 2r�mCk�1Er�h�2F r�n�h�2v�m�2n�2;

b
m;n
j WD

m�rX
hD0

Œm � r�ŠŒh�Š

Œm � h � r�Š
F jEr�h�2F r�n�h�2v�m�2n�2;

then

¹a
m;n
j ; x

m;n
k

; y
m;n
k

; b
m;n
j 2 xU j 0 6 j 6 2r �m � 2; 0 6 k 6 m � rº

is a basis for a submodule xPm;n of xU which is isomorphic to Pm. If we set

xXr�1 WD
r�1M
nD0
xXr�1;n; xPm WD

2r�m�2M
nD0

xPm;n;

then it can be easily checked that

xU Š xXr�1 ˚
2r�2M
mDr

xPm:

4.6. Integral

A key ingredient for the HKR approach to the construction of 3-manifold invariants
are integrals, whose theory is well established [41, 43]. A left integral � 2 xU � and a
right integral � 2 xU � are linear forms satisfying

�.x.2//x.1/ D �.x/1 2 xU; �.x.1//x.2/ D �.x/1 2 xU
�

for every x 2 xU �. Since xU is finite-dimensional, left integrals and right integrals span
one-dimensional vector spaces. If � is a left integral, then � ı S is a right integral,
and similarly, if � is a right integral, then � ı S is a left integral. Every left integral
� 2 xU � satisfies

�.xy/ D �.yS2.x// (52)



Non-semisimple 3-manifold invariants derived from the Kauffman bracket 33

for all x;y 2 xU �, which means it can be regarded as an intertwiner between the trivial
representation C and the adjoint representation ad, which is determined by the action
of xU onto itself given by

adx.y/ WD x.1/yS.x.2//

for all x; y 2 xU �. Every left integral � 2 xU � is of the form

�.EaF bKc/ WD �ıa;r�1ıb;r�1ıc;r�1

for some � 2 C. For the purpose of our construction, it will be convenient to fix the
left integral � 2 xU � determined by the coefficient

� WD r.Œr � 1�Š/2 D
r3

¹1º2r�2
2 C�:

The stabilization parameters corresponding to this normalization are

�.vC/ D i
r�1
2 r

3
2 q

rC3
2 ; �.v�/ D i�

r�1
2 r

3
2 q

r�3
2 : (53)

Following the approach of [3, Section 5], we give an explicit decomposition of the
left integral � 2 xU � into a linear combination of quantum traces and pseudo quantum
traces corresponding to indecomposable projective xU -modules. This requires a few
preliminary definitions. First of all, for every Hopf algebra H , we denote by QC.H/
the space of quantum characters of H , which are linear forms ' 2 H� satisfying
'.xy/ D '.yS2.x// for all x; y 2 H . Thanks to equation (52), left integrals are
quantum characters. Similarly, for every algebraA, we denote by SLF.A/ the space of
symmetric linear functions on A, which are linear forms ' 2 A� satisfying '.xy/ D
'.yx/ for all x; y 2 A. A pivotal element g 2 H , which is a group-like element sat-
isfying gxg�1 D S2.x/ for every x 2 H , defines an isomorphism between QC.H/
and SLF.H/ sending every quantum character ' to the symmetric linear function
'._g�1/. For a finite-dimensional ribbon Hopf algebraH and a non-zero left integral
� 2 H�, [24, Proposition 4.2] gives

SLF.H/ D ¹�._g�1z/ 2 H� j z 2 Z.H/º:

Therefore, the idea is to use the basis of Z. xU/ given in Section 4.2 in order to find a
basis of QC. xU/, and then to compute the corresponding coefficients of �.

If, for every integer r � 1 6 m 6 2r � 2, we denote by xQm the generalized
eigenspace of eigenvalue ˇm for the regular action of the quantum Casimir element
C 2 Z. xU/ on the regular representation xU , then the same argument of [17, Proposi-
tion D.1.1] shows

xQm D

´
xXr�1 if m D r � 1;
xPm ˚ xP3r�m�2 if r 6 m 6 2r � 2:
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The regular action of the canonical central element em 2 Z. xU/ recovers the projector
onto xQm with respect to the decomposition

xU D

3 r�12M
mDr�1

xQm;

and a basis for Z. xQm/ is given by ¹er�1º, if m D r � 1, and by ¹em; wCm ; w�mº, if
r 6 m 6 2r � 2. We will first decompose the symmetric linear form

�._K�1em/ 2 SLF. xQm/

with respect to the corresponding basis of SLF. xQm/.
If, for every integer 0 6 n 6 r � 1, we set

A
r�1;n
j WD

1

.Œr � 1�Š/2
a
r�1;n
j 2 xXr�1;

then
¹A

r�1;n
j 2 xXr�1 j 0 6 j; n 6 r � 1º

is a basis of xXr�1, and we can denote by

¹ 
j
r�1;n 2 xX

�
r�1 j 0 6 j; n 6 r � 1º

the dual basis. Then, in the standard basis of Xr�1, the action of xXr�1 is represented
by the matrix

 r�1 2Mr�r. xX�r�1/

whose .j; n/-th entry is given by  jr�1;n. Therefore, if we set

�r�1 WD tr. r�1/ D
r�1X
nD0

 nr�1;n;

then ¹�r�1º is a basis of SLF. xQr�1/. We call �r�1 the r � 1-trace.

Lemma 4.2. We have
�._K�1er�1/ D �r�1:

Proof. On the one hand, we have

�.a
r�1;n
j K�1er�1/ D �.F jEr�1F r�n�1v�2n�1K�1/ D .Œr � 1�Š/2ıj;n:

This implies

�.A
r�1;n
j K�1er�1/ D ıj;n:

On the other hand,
�r�1.Ar�1;nj / D ıj;n:
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Next, if, for all integers r 6 m 6 2r � 2 and 0 6 n 6 2r �m � 2, we set

A
m;n
j WD

ŒmC 1�2

.Œr � 1�Š/2
a
m;n
j 2 xPm;

X
m;n
k
WD

ŒmC 1�2

.Œr � 1�Š/2
x
m;n
k
2 xPm;

Y
m;n
k
WD

ŒmC 1�2

.Œr � 1�Š/2
y
m;n
k
2 xPm;

B
m;n
j WD

ŒmC 1�2

.Œr � 1�Š/2
b
m;n
j C

¹mC 1º0

.Œr � 1�Š/2
a
m;n
j 2 xPm;

then

¹A
m;n
j ; X

m;n
k

; Y
m;n
k

; B
m;n
j 2 xPm j 0 6 j; n 6 2r �m � 2; 0 6 k 6 m � rº

is a basis of xPm, and we can denote by

¹ jm;n; �
k
m;n; �

k
m;n; '

j
m;n 2

xP �m j 0 6 j; n 6 2r �m � 2; 0 6 k 6 m � rº

the dual basis. Then, in the standard bases of Pm and of P3r�m�2, the action of xPm is
represented by the matrices0BBB@

'm 0 0  m

0 0 0 �m

0 0 0 �m

0 0 0 'm

1CCCA ;
0BBB@
0 �m �m 0

0 'm 0 0

0 0 'm 0

0 0 0 0

1CCCA 2M2r�2r. xP �m/;

where
 m; 'm 2M.2r�m�1/�.2r�m�1/. xP �m/

denote the matrices whose .j; n/-th entries are given by  jm;n, 'jm;n, and where

�m; �m 2M.m�rC1/�.2r�m�1/. xP �m/

denote the matrices whose .k; n/-th entries are given by �km;n, �km;n respectively.
Therefore, if we set

�m WD tr.'m/ D
2r�m�2X
nD0

'nm;n; � 0m WD tr. m/ D
2r�m�2X
nD0

 nm;n;

then ¹�m; �3r�m�2; � 0m C � 03r�m�2º is a basis of SLF. xQm/. We call �m the m-trace
and � 0m the pseudom-trace. Remark that neither � 0m nor � 03r�m�2 is a symmetric linear
function, only their sum � 0m C � 03r�m�2 is.
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Lemma 4.3. For every integer r 6 m 6 2r � 2 we have

�._K�1em/ D ¹mC 1º0.�m C �3r�m�2/C ŒmC 1�2.� 0m C �
0
3r�m�2/:

Proof. On one hand, we have

�.a
m;n
j K�1em/

D �.F jEr�1F r�n�1v�m�2n�2K�1/
D .Œr � 1�Š/2ıj;n;

�.x
m;n
k

K�1em/

D

m�rX
hD0

Œk�ŠŒh�Š

Œm � k � r�ŠŒm � h � r�Š
�.Em�k�h�1F r�n�h�2v�m�2n�2K�1/

D 0;

�.y
m;n
k

K�1em/

D

m�rX
hD0

Œm � r�ŠŒh�Š

Œm � h � r�Š
�.F 2r�mCk�1Er�h�2F r�n�h�2v�m�2n�2K�1/

D 0;

�.b
m;n
j K�1em/

D
ŒmC 1�2

.Œr � 1�Š/2

m�rX
hD0

Œm � r�ŠŒh�Š

Œm � h � r�Š
�.F jEr�h�2F r�n�h�2v�m�2n�2K�1/

D 0:

This implies

�.A
m;n
j K�1em/ D ŒmC 1�2ıj;n;

�.X
m;n
k

K�1em/ D 0;
�.Y

m;n
k

K�1em/ D 0;
�.B

m;n
j K�1em/ D ¹mC 1º0ıj;n:

On the other hand,

�m.A
m;n
j /D 0; � 0m.A

m;n
j /D ıj;n;

�m.X
m;n
k

/D 0; � 0m.X
m;n
k

/D 0;

�m.Y
m;n
k

/D 0; � 0m.Y
m;n
k

/D 0;

�m.B
m;n
j /D ıj;n; � 0m.B

m;n
j /D 0:
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The previous discussion implies a basis of QC. xU/ is given by

¹�m._K/ j r � 1 6 m 6 2r � 2º [
°
� 0m._K/C �

0
3r�m�2._K/

ˇ̌̌
r 6 m 6 3r � 1

2

±
:

For every integer r � 1 6 m 6 2r � 2 we call �m._K/ the quantum m-trace, and for
every integer r 6 m 6 2r � 2 we call � 0m._K/ the pseudo quantum m-trace. We are
now ready to decompose the left integral.

Proposition 4.4. The left integral � 2 xU � can be written as

� D �r�1._K/C
2r�2X
mDr
¹mC 1º0�m._K/C ŒmC 1�2� 0m._K/: (54)

Proof. The formula follows from

� D

3 r�12X
mDr�1

�._em/:

4.7. Adjoint representation

Let us highlight an important property of the adjoint representation ad of xU which
follows directly from the explicit description provided in [40]. The adjoint action of
xU onto itself is determined by

adE .x/ D ŒE; x�K�1; adF .x/ D K�1ŒKF; x�; adK.x/ D KxK�1

for every x 2 ad. We can define a Z-grading on ad by setting

deg.E/ D 1; deg.F / D �1; deg.K/ D 0:

Remark that for every integer 0 6 m 6 r � 1 the generalized eigenspace xQm defines
a subrepresentation adm of ad, because C is central. In other words, we have

ad D
3 r�12M
mDr�1

adm:

If ad0m denotes the space of degree 0 vectors of adm, a basis of ad0r�1 is given by

¹Kaer�1 j 0 6 a 6 r � 1º;

and similarly, for every integer r 6 m 6 2r � 2, a basis of ad0m is given by

¹Kaem; K
awm j 0 6 a 6 r � 1º:
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Lemma 4.5. Every xU -module morphism from adm to P2r�2 is uniquely determined
by its restriction to ad0m.

Proof. As mentioned earlier, the proof follows from the explicit description of ad
given in [40]. Indeed, if m D r � 1, the xU -module adr�1 is projective, and it decom-
poses as

x
Xr�1;r�1 ˚

r�1
2M

nD1 x
Pr�1;rC2n�1;

where
x
Xr�1;r�1 is isomorphic to Xr�1, and

x
Pr�1;rC2n�1 is isomorphic to PrC2n�1.

Each of these submodules is generated by some vector in ad0r�1. On the other hand, if
r 6 m 6 3 r�1

2
, the xU -module adm is not projective, and it decomposes as the direct

sum of a projective submodule

x
Xm;r�1 ˚

x
X 0m;r�1 ˚

�3 r�12 �mM
nD1 x

Pm;rC2n�1 ˚
x
P 0m;rC2n�1

�
˚

mM
nDr x

Pm;2.r�mCn�1/

and a non-projective submodule
mM
nDr x

X
#
m;2.m�n/ ˚

x
XC
m;r�2.m�nC1/ ˚

x
X�m;r�2.m�nC1/ ˚

x
X
"
m;2.m�n/;

where
x
Xm;r�1 and

x
X 0m;r�1 are isomorphic to Xr�1,

x
Pm;rC2n�1 and

x
P 0m;rC2n�1 are

isomorphic to PrC2n�1,
x
Pm;2.r�mCn�1/ is isomorphic to P2.r�mCn�1/,

x
X
#
m;2.m�n/

and
x
X
"
m;2.m�n/ are isomorphic to X2.m�n/, and

x
XC
m;r�2.m�nC1/ and

x
X�
m;r�2.m�nC1/

are isomorphic to Xr�2.m�nC1/. Each of these submodules is generated by some vec-
tor in ad0m, with the exception of

x
XC
m;r�2.m�nC1/ and

x
X�
m;r�2.m�nC1/ for every integer

r 6 n 6 m. Remark however that these xU -modules admit no non-trivial morphism to
P2r�2, which is the projective cover of X0 D C.

5. Beads

In this section, we set up the technology for the comparison between the non-semi-
simple invariant Zr and the renormalized Hennings invariant associated with xU . In
order to establish their equivalence, we first need to relate the Temperley–Lieb cat-
egory TL to the category xU -mod of finite-dimensional left xU -modules.

5.1. Ribbon structures

Let us consider the monoidal linear functor

FTLWTL! xU -mod
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which sends the monoidal generator 1 2 TL to the fundamental representation X 2
xU -mod defined in Section 4.4, the evaluation ev1 2 TL.2; 0/ to the morphism e 2

Hom xU .X ˝X;C/ defined by

e.a10 ˝ a
1
0/ WD 0; e.a10 ˝ a

1
1/ WD �1; e.a11 ˝ a

1
0/ WD q

�1; e.a11 ˝ a
1
1/ WD 0;

(55)
and the coevaluation coev1 2TL.0;2/ to the morphism c 2Hom xU .C;X ˝X/ defined
by

c.1/ WD qa10 ˝ a
1
1 � a

1
1 ˝ a

1
0: (56)

As a consequence of the skein relation (S1), the functorFTL is braided. This means
it sends the braiding c1;1 2 TL.2; 2/ to the morphism

q
rC1
2 idX˝X C q

r�1
2 c ı e 2 End xU .X ˝X/; (57)

which coincides with the braiding cX;X 2 End xU .X ˝X/ determined by the R-matrix
R 2 xU ˝ xU .

However, FTL does not behave well with respect to the other structure morphisms
of the ribbon categories TL and xU -mod. Indeed, for every u 2 TL.m/, it sends the
partial trace ptr1.u/ 2 TL.m � 1/ to the morphism

.idX˝m�1 ˝ e/ ı .FTL.u/˝ idX / ı .idX˝m�1 ˝ c/ 2 End xU .X
˝m�1/; (58)

which is obtained from the partial trace ptrX .FTL.u// 2 End xU .X˝m�1/ determined
by the pivotal element K 2 xU by a change of sign. In particular, FTL sends the twist
#1 2 TL.1; 1/ to the morphism

�q
rC3
2 idX 2 End xU .X/; (59)

which coincides with the twist #X 2 xU -mod determined by the inverse ribbon element
v� 2 xU only up to the sign.

Remark 5.1. More generally, for all m;m0 2 TL we have

FTL.cm;m0/ D cFTL.m/;FTL.m0/; (60)

but for every u 2 TL.m/ and 0 6 k 6 m we have

FTL.ptrk.u// D .�1/
kptrFTL.k/

.FTL.u//: (61)

In particular, this implies

FTL.#m/ D .�1/
m#FTL.m/: (62)
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This sign discrepancy in the comparison between the ribbon structure of TL and that
of xU -mod is the reason why we need to use the ribbon Kauffman bracket of equa-
tion (34), instead of the standard one, in the definition of the admissible bichrome
link invariant F 0� of Proposition 3.2.

Although it does not preserve ribbon structures, the functor FTL is faithful. Indeed,
this can be shown by considering Lusztig’s divided power quantum group of sl2,
which is denoted by U , and which contains xU as a Hopf subalgebra. Then, the functor
FTL can be written as the composition of two faithful functors: the first one is the
equivalence from TL to the full monoidal subcategory of U -mod generated by the
fundamental representation of U , while the second one is the restriction functor from
U -mod to xU -mod. By abuse of notation, we still denote by FTLW TL ! VectC the
composition of FTL with the forgetful functor from xU -mod to VectC .

5.2. Bead category

Let us now revisit the HKR algorithm, which we will adapt to our purposes. This
requires a few preliminary definitions. First of all, let us denote by B the ribbon linear
category obtained from TL by allowing strands of morphisms to carry beads labeled
by elements of xU . Remark that there exists a unique monoidal linear functor F WB!

VectC extending FTL and sending every x-labeled bead to the linear endomorphism of
X determined by the action of x. The bead category TL xU is the ribbon linear category
defined as the quotient of B with respect to the kernel of F , and we denote by

F xU WTL xU ! VectC

the faithful monoidal linear functor induced by F on the quotient. In the bead category
TL xU we have

(63)

When m parallel strands are represented graphically by a single strand with label m,
we adopt the convention

(64)



Non-semisimple 3-manifold invariants derived from the Kauffman bracket 41

Remark that

(65)

for every x 2 xU and every u 2 TL.m; m0/. Furthermore, as a consequence of [7,
Lemma 4.1], we also have

D ım;n � D D 0 (66)

for every integer 0 6 m 6 r � 1, and

D .ım;n C ı3r�m�2;n/ � (67)

D �ŒmC 1�ım;n � (68)

D �ŒmC 1�ı3r�m�2;n � (69)

for every integer r 6 m 6 2r � 2.
Let now p 2 TL.m/ be an idempotent and T 2 Tk.p/ be a bichrome k-top tangle.

If lbn1;:::;nk .T / denotes the .n1; : : : ; nk/-labeling of T introduced in equation (31) for
integers r � 1 6 n1; : : : ; nk 6 2r � 2, then let us define a morphism

Bn1;:::;nk .T / 2 TL xU .p; n1 ˝ n1 ˝ � � � ˝ nk ˝ nk ˝ p/;

called the bead presentation of lbn1;:::;nk .T /, which will be obtained through the fol-
lowing version of the HKR algorithm based on singular diagrams [30, Section 3.3],
also known as flat diagrams [47, Section 4.8]. A singular diagram of a framed tangle
is obtained from a regular diagram by discarding framings and forgetting the differ-
ence between overcrossings and undercrossings. On the set of singular diagrams, we
consider the equivalence relation generated by all singular versions of the usual local
moves corresponding to ambient isotopies of tangles, except for the first Reidemeister
move. In particular, two equivalent singular diagrams represent homotopic tangles, but
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not all homotopies are allowed. Then, let us explain how to define the bead presenta-
tion of lbn1;:::;nk .T / (the reader is also invited to check the references above, or indeed
any of those listed in Section 1.2, where more details about the HKR algorithm can
be found). We start from a regular diagram of lbn1;:::;nk .T /, and we pass to its singu-
lar version while also inserting beads labeled by components of the R-matrix around
crossings as shown:

7! 7!

Next, we need to collect all beads sitting on the same strand in one place, which has
to be next to an upward oriented endpoint, for components which are not closed. As
we slide beads past maxima, minima, and crossings, we change their labels according
to the rule

Next, we pass from our singular diagram to an equivalent one whose singular cross-
ings all belong to singular versions of twist morphisms, and we replace them with
beads labeled by pivotal elements according to the rule

This is indeed possible, because we started from a bichrome top tangle featuring a
unique blue incoming boundary point and a unique outgoing one. Finally, we collect
all remaining beads, changing their labels along the way as before, and we multiply
everything together according to the rule

In the end, we are left with a planar tangle carrying at most a single bead on each of
its components. Inserting idempotents of TL as shown in equation (26) gives

Bn1;:::;nk

0BBB@
1CCCA WD (70)
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for some x1.T /; : : : ;xk.T /2 xU and some zT 2TL xU .p/. This defines the bead present-
ation of the .n1; : : : ; nk/-labeling lbn1;:::;nk .T / of T .

Proposition 5.2. The ribbon Kauffman bracket of equation (34) yields

F xU .Bn1;:::;nk .T // D FTL.hT i
rb
n1;:::;nk

/ (71)

for all T 2 Tk.p/ and r � 1 6 n1; : : : ; nk 6 2r � 2.

Remark that equation (71) uses the abusive notation FTLWTL! VectC introduced
at the end of Section 5.1. In other words, it should be read as an equality between
linear maps, where we are omitting the forgetful functor from xU -mod to VectC . The
proof of Proposition 5.2 follows directly from the construction, which is due to Hen-
nings, Kauffman, and Radford, and will not be given here. We only stress once again
the fact that the use of the ribbon version of the Kauffman bracket of equation (34)
is required by Remark 5.1. Indeed, the ribbon number of equation (33) measures
precisely the sign difference between F xU .Bn1;:::;nk .T // and FTL.hT in1;:::;nk /, as it
counts the total number of times (weighted by the label) partial traces and twist
morphisms appear in lbn1;:::;nk .T /.

5.3. Diagrammatic integral

Let us introduce a key definition for the diagrammatic translation of Hennings’ con-
struction.

Definition 5.3. A diagrammatic integral ` of TL is a family of morphisms

`r�1 2 TL.fr�1 ˝ fr�1; g2r�2/; `m 2 TL.gm ˝ g�m; g2r�2/

with r 6 m 6 2r � 2 satisfying

D �.xer�1/ � (72)

C D �.xem/ � (73)

for every x 2 xU .
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We point out that, by definition, a diagrammatic integral ` satisfies

D D D

D D D

for all integers r 6 m 6 2r � 2.
Now, despite the fact that Definition 5.3 determines a system of r�1

2
equations for

each element of the quantum group xU , which is a vector space of dimension r3, the
actual number of conditions we need to verify in order to check whether a family ` of
morphisms of TL provides a diagrammatic integral or not can be drastically reduced.
Indeed, this will follow essentially from Lemma 4.5. In order to explain how, let us
start with a quick remark.

Remark 5.4. The linear map sending every x 2 xU to

F xU

0@ 1A .1/ 2 X˝m ˝X˝m
defines a xU -module morphism jmW ad! X˝m ˝X˝m for every m 2 N. Indeed,

jm.adx.y// D x � jm.y/

follows from equation (63) for every x 2 xU and y 2 ad.

As we will show now, it is actually sufficient to restrict ourselves to beads labeled
byKa 2 xU with a 2 Z in the range 0 6 a 6 r � 1. Therefore, from now on, for every
integer a 2 Z we adopt the shorthand notation
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Furthermore, let us set

Œk�a WD

8<:
Œak�

Œa�
if a 6� 0 mod r;

k if a � 0 mod r;
¹kº0a WD ¹akº

0;

for all integers a; k 2 Z. Remark that Œk�a and ¹kº0a are obtained from Œk� and ¹kº0 by
a change of variable replacing q with qa.

Lemma 5.5. A family ` of morphisms

`r�1 2 TL.fr�1 ˝ fr�1; g2r�2/; `m 2 TL.gm ˝ g�m; g2r�2/

with r 6 m 6 2r � 2 is a diagrammatic integral of TL if and only if

D Œr�aC1 � (74)

C D Œr�aC1¹mC 1º0 � (75)

� D �Œr�aC1ŒmC 1� � (76)

for every a 2 Z, where

`0m WD `m.hm ˝ g
�
m/ 2 TL.gm ˝ g�m; g2r�2/:

Proof. Thanks to Remark 5.4, the left-hand sides of equations (72) and (73) determ-
ine xU -module morphisms from adr�1 to P2r�2 and from adm to P2r�2 respectively.
Thanks to Lemma 4.5, every morphism of this type is uniquely determined by its
restriction to ad0r�1 and ad0m respectively. Then, we simply need to check that equa-
tions (74), (75), and (76) are equivalent to equations (72) and (73) for x D Ka. On
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one hand, thanks to equations (67)–(69), we have

D �
1

ŒmC 1�
� D �

1

ŒmC 1�
� D �

1

ŒmC 1�
�

This implies

D �
1

Œ3r �m � 1�
� D

1

ŒmC 1�
�

On the other hand, thanks to Lemma 4.2 we have

�.Kaer�1/ D �r�1.KaC1/ D Œr�aC1;

and thanks to Lemma 4.3 for every integer r 6 m 6 2r � 2 we have

�.Kaem/ D ¹mC 1º
0.�m.KaC1/C �3r�m�2.KaC1//

D ¹mC 1º0.Œ2r �m � 1�aC1 C Œm � r C 1�aC1/
D Œr�aC1¹mC 1º0;

�.Kawm/ D ŒmC 1�
2
�
� 0m.K

aC1.C � ˇm//C � 03r�m�2.K
aC1.C � ˇm//

�
D ŒmC 1�2.Œ2r �m � 1�aC1 C Œm � r C 1�aC1/
D Œr�aC1ŒmC 1�2:

Proposition 5.6. The non-semisimple Kirby color of Definition 3.1 is a diagrammatic
integral of TL.

Proof. Equation (74) follows from equation (78), equation (75) follows from equa-
tions (79) and (95) with kD 0, and equation (76) follows from equations (80) and (92)
with k D 0.

6. Proofs

Let us prove all the results we claimed in Sections 2 and 3.

6.1. Proof of results from Section 2.2

Proof of Proposition 2.1. As we recalled at the beginning of Section 5, if U denotes
Lusztig’s divided power quantum group of sl2, then TL is equivalent, as a braided
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monoidal category, to the full monoidal subcategory of U -mod generated by the fun-
damental representation. Under this equivalence, fr�1 is sent to the Steinberg module,
which is projective [1, Theorem 9.8]. This means fr�1 is projective too, and thus it
generates Proj.TL/ [18, Lemma 4.4.1]. The rest of the statement follows from [19,
Theorem 5.5 and Corollary 5.6].

Remark 6.1. It was already observed in Section 5.1 that the ribbon structure of TL
does not agree with the one of xU -mod, see for instance Remark 5.1. This implies in
particular that, for every idempotent p 2 TL.m/ of Proj.TL/ and every endomorphism
u 2 TL.p/, we have

tTL
p .u/ D .�1/

mt xUFTL.p/
.FTL.u//: (77)

This sign discrepancy in the comparison between the modified trace of TL and the
one of xU -mod is the reason behind the sign in equation (35).

6.2. Proof of results from Section 3.3

Proof of Proposition 3.2. First of all, we need to show that a cutting presentation of
T exists. In order to construct one, let us orient red components of T , let us consider
disjoint paths i for every 1 6 i 6 k, each joining a basepoint pi on the i -th red
component Ti to a basepoint qi on the top line I � ¹1

2
º � ¹1º � I 3, and let us choose a

projective blue component of T , meaning a blue component labeled by an idempotent
p 2 TL.m/ of Proj.TL/. Let us cut open the projective blue component and all red
ones following the specified paths and orientations, thus obtaining the bichrome k-top
tangle T 0 represented in Figure 2. By construction, T 0 is a cutting presentation of T .

Figure 2. Cutting presentation T 0 of T .
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We need to show F�.T / does not depend on the choice of the cutting presentation
of T . Thanks to equation (77), we have

tTL
p .F�;p.T

0// D .�1/mt xUFTL.p/
.FTL.F�;p.T

0///:

The advantage of looking at FTL.F�;p.T
0// rather than F�;p.T 0/ is that the former

can be computed using a different approach. In order to do this, it will be convenient
to fix some additional notation, so let us set

WD

This means morphisms �n1;:::;nk ;p 2 TL.n1 ˝ n1 ˝ � � � ˝ nk ˝ nk ˝m;m/ satisfy

F�;p.T
0/ D

2r�2X
n1;:::;nkDr�1

�n1;:::;nk ;phT
0
i

rb
n1;:::;nk

:

Thanks to Proposition 5.2, we have

FTL.F�;p.T
0// D

2r�2X
n1;:::;nkDr�1

FTL.�n1;:::;nk ;p/ ı FTL.hT
0
i

rb
n1;:::;nk

/

D

2r�2X
n1;:::;nkDr�1

FTL.�n1;:::;nk ;p/ ı F xU .Bn1;:::;nk .T
0//:

Then, thanks to Proposition 5.6, we have

2r�2X
n1;:::;nkDr�1

FTL.�n1;:::;nk ;p/ ı F xU .Bn1;:::;nk .T
0// D

� kY
iD1

�.xi .T
0//
�
F xU . zT

0/;

where xi .T 0/ 2 xU and zT 0 2 TL xU .p/ are given by equation (70). Summing up

F�.T / D t xUFTL.p/

�� kY
iD1

�.xi .T
0//
�
F xU . zT

0/
�
:

We will show now that the fact that F�.T / is independent of the cutting presentation
T 0 of T follows essentially from the fact that � is a quantum character, and that t xU is
a modified trace.
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First of all, we claim F�.T / does not depend on the choice of the path i . Indeed,
we can decompose xi .T 0/ as x.i /.1/x.Ti /S.x.i /.2//, where x.i / is collected trav-
eling along i , and x.Ti / is collected traveling along Ti , as shown in Figure 3. This
means

�.x.i /.1/x.Ti /S.x.i /.2/// D �.x.Ti /S.x.i /.2//S
2.x.i /.1///

D �.x.Ti /S.S.x.i /.1//x.i /.2///

D ".x.i //�.x.Ti //;

where the first equality follows from the fact that � is a quantum character. Then,
since x.i / is a product of copies of components of the R-matrix and copies of the
pivotal element, which satisfy

".R0/R00 D ".R00/R0 D 1; ".g/ D 1;

the contribution of the framed path i is trivial, both for the computation of �.xi .T 0//
and for its effect on other components of T 0.

Next, we claim F�.T / does not depend on the choice of the orientation of Ti .
Indeed, we can switch between the two possible ones by adding a braiding and a
twist, as shown in Figure 4. This means

�.R00u�1S.x.Ti //S.R0// D �.S�1.R0/R00u�1S.x.Ti ///
D �.S.u/u�1S.x.Ti ///
D �.g�2S.x.Ti ///
D �.x.Ti //;

where we are using the identities

S.R/˝ S.R00/ D R0 ˝R00; S.u/ D g�1vC; u�1 D g�1v�;

 

Figure 3. Independence of path.
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Figure 4. Independence of orientation.

as well as [24, Proposition 4.2], which gives, for every x 2 xU , the identity

�.g�2S.x// D �.x/:

 

 

Figure 5. Independence of basepoint.
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Now, we claim F�.T / does not depend on the choice of the basepoint pi . Indeed,
if p0i is another basepoint, we can decompose x.Ti / as x.T 00i /x.T

0
i /, where x.T 0i / is

collected traveling from pi to p0i , and x.T 00i / is collected traveling from p0i to pi , as
shown in Figure 5. This means

�.x.T 00i /x.T
0
i // D �.x.T

0
i /S

2.x.T 00i ///:

Finally, we claim F�.T / does not depend on the choice of the projective blue
component of T . Indeed, if

are different cutting presentations of T , then

t xUFTL.p/
.F xU . zT

0
p// D t xUFTL.p/

.ptrFTL.p0/
.F xU . zT

00///

D t xUFTL.p˝p0/.F xU . zT
00//

D t xUFTL.p0˝p/.FTL.cp;p0/ ı F xU . zT
00/ ı FTL.c

�1
p;p0//

D t xUFTL.p0/
.ptrFTL.p/

.FTL.cp;p0/ ı F xU . zT
00/ ı FTL.c

�1
p;p0///

D t xUFTL.p/
.F xU . zT

0
p0//;

because t xU is a modified trace.

6.3. Proof of results from Section 3.4

Proof of Lemma 3.4. It follows from the proof of Proposition 3.2 and from equa-
tion (53) that

�˙ D �.v�/ D i�
r�1
2 r

3
2 q

r�3
2 :
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Proof of Theorem 3.5. The proof of the invariance of Zr.M; T / under Kirby moves
follows the same argument of [14, Proposition 2.13]. Indeed, if the bead collected
while traveling along a red component has label x, then the operation of sliding a
strand, either blue or red, adds a bead with label R0x.1/ on the sliding component,
and changes the label of the red component to R00

.1/
x.2/S.R

00
.2/
/, as shown in Figure 6.

This means

�.R00.1/x.2/S.R
00
.2///R

0x.1/ D �.x.2/S.R00.2//S
2.R00.1///R

0x.1/
D �.x.2/S.S.R

00
.1//R

00
.2///R

0x.1/
D ".R00/�.x.2//R0x.1/
D �.x.2//x.1/

D �.x/1;

because � is a left integral. Therefore, Zr.M; T / is invariant under Kirby II moves.
Furthermore, it follows from Lemma 3.4 that adding an unknotted red component

of framing˙1 contributes a factor of

�.v�/ D �˙:

Therefore, Zr.M; T / is also invariant under Kirby I moves.

Proof of Lemma 3.7. On one hand, thanks to Lemma 4.1 and equations (66) and (8),
we have

ıC;m WD D D .�1/mq
rC1
2 m2CmŒmC 1�;

ı�;m WD D D .�1/mq
r�1
2 m2�mŒmC 1�:

Remark that for every integer 0 6 m 6 r � 2 we have

ı˙;m D ı˙;r�m�2; .�1/mŒmC 1� D .�1/r�m�2Œr �m � 1�:

Therefore, we have

ı˙ D

r�3
2X

mD0
Œ2mC 1�ı˙;2m D

r�3
2X

mD0
.�1/mŒmC 1�ı˙;m D

r�3
2X

mD0
q
r˙1
2 m2˙mŒmC 1�2:
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Figure 6. Invariance under Kirby II moves.

On the other hand, equation (54) can be rearranged as

� D �r�1._K/C

r�3
2X

mD0
¹mC 1º0

�
�2r�m�2._K/C �mCr._K/

�
C

r�3
2X

mD0
ŒmC 1�2

�
� 02r�m�2._K/C �

0
mCr._K/

�
;

and Lemma 4.1 can be rewritten as

v� D q
r�1
2 er�1 C

r�3
2X

mD0
q
r˙1
2 m2˙mem

˙

r�3
2X

mD0
q
r˙1
2 m2˙m

� .mC 1/¹1º
ŒmC 1�

wCm C
.m � r C 1/¹1º

ŒmC 1�
w�m

�
:
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Therefore, we have

�.v�/ D

r�3
2X

mD0
q
r˙1
2 m2˙m

¹mC 1º0
�
ŒmC 1�C Œr �m � 1�

�
˙

r�3
2X

mD0
q
r˙1
2 m2˙mŒmC 1�2

�
.mC 1/¹1º � .m � r C 1/¹1º

�
D ˙r¹1º

r�3
2X

mD0
q
r˙1
2 m2˙mŒmC 1�2:

This means

ı˙ D ˙
�.v�/
r¹1º

D ˙
i� r�12 r 12 q

r�3
2

¹1º
:

Proof of Proposition 3.9. It follows from the construction that

Zr.M #M 0; T [ T 0/ D  r.M; T /Zr.M 0; T 0/;

where  r is the Hennings invariant associated with xU , compare with [14, Propos-
ition 2.11] and [13, Proposition 3.11]. Now, the result follows directly from [10,
Theorem 1].

7. Computations

In this section we collect formulas which are used in the proof of Proposition 5.6.
Everything is based on equations (63)–(65).

7.1. Traces

Let us start by computing traces of Ka in TL xU for every a 2 Z.

Lemma 7.1. For every integer 1 6 m 6 r � 1 we have

D .�1/mŒmC 1�aC1: (78)
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Proof. Equation (78) is proved by induction on 1 6 m 6 r � 1. IfmD 1 then, thanks
to equation (63),

D �Œ2�aC1:

If 2 6 m 6 r � 1, then, by induction hypothesis, thanks to equations (63)–(65),

C
Œm � 1�

Œm�
�

D �Œ2�aC1 � C
Œm � 1�

Œm�
�

D .�1/m.Œm�aC1Œ2�aC1 � Œm � 1�aC1/
D .�1/mŒmC 1�aC1:

Lemma 7.2. For every integer r 6 m 6 2r � 2, we have

D .�1/mŒr�aC1¹m � r C 1º0aC1; (79)

D 0: (80)
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Proof. Equation (80) follows from equations (63)–(65), which give

.�1/mC1ŒmC 1� � D 0:

Equation (79) is proved by induction on r 6 m 6 2r � 2. If m D r then, thanks to
equation (63),

D �Œr�aC1¹1º0aC1:

If m D r C 1 then, thanks to equations (63)–(65),

� � � Œ2� �

D �Œ2�aC1 � � 2 �

D Œr�aC1
�
¹1º0aC1Œ2�aC1 � 2

�
D Œr�aC1¹2º0aC1:
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If r C 2 6 m 6 2r � 2 then by induction hypothesis, thanks to equations (63)–(65),

C
Œm � 1�

Œm�
� �

2

Œm�2
�

D �Œ2�aC1 � C
Œm � 1�

Œm�
� �

2

Œm�2
�

D .�1/mŒr�aC1
�
¹m � rº0aC1Œ2�aC1 � ¹m � r � 1º

0
aC1

�
D .�1/mŒr�aC1¹m � r C 1º0aC1:

7.2. Partial traces

Next, let us tackle some harder computations. In order to do this, we will make extens-
ive use of the identity

Œa�Œb � c�C Œb�Œc � a�C Œc�Œa � b� D 0; (81)

which holds for all integers a; b; c 2 Z.

Lemma 7.3. For all integers 1 6 m 6 r � 1 and 0 6 k 6 m we have

D

�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
�

�
Œ2�aC1Œm � k�2

Œm�2
�
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C
Œm � k�Œm � k � 1�

Œm�2
� (82)

Proof. Equation (82) is proved by induction on 1 6 m 6 r � 1. In order to do this, let
us set

D ˛k�1m;k �

C ˛km;k �

C ˛kC1
m;k
�

Remark that we have

˛�1m;0 D ˛
m
m;m�1 D ˛

m
m;m D ˛

mC1
m;m D 0

for every integer 1 6 m 6 r � 1. If m D 1, we have

D �Œ2�aC1; D �Œ2�:

This gives the condition

˛01;0 D �Œ2�aC1; ˛01;1 D �Œ2�:
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If 1 < m 6 r � 1 and k D 0, let us consider

C
Œm � 1�

Œm�
�

This gives the condition

˛0m;0 D �Œ2�aC1; ˛1m;0 D
Œm � 1�

Œm�
:

If 1 < m 6 r � 1 and 1 6 k 6 m, let us consider

C
Œm � 1�

Œm�
�

C
Œm � 1�

Œm�
� C

Œm � 1�2

Œm�2
�

This gives the condition

˛k�1m;k D �
¹mº0

Œm�
C
Œm � 1�2

Œm�2
˛k�2m�1;k�1;

˛km;k D
Œm � 1�2

Œm�2
˛k�1m�1;k�1;
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˛kC1
m;k
D
Œm � 1�2

Œm�2
˛km�1;k�1:

Thanks to equation (81), the solution is

˛k�1m;k D �
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2
;

˛km;k D �
Œ2�aC1Œm � k�2

Œm�2
;

˛kC1
m;k
D
Œm � k�Œm � k � 1�

Œm�2
:

Lemma 7.4. We have

D �Œ2�aC1 � (83)

D (84)

Furthermore, for every integer 1 6 k 6 r , we have

D �Œ2� � (85)

D D (86)
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D Œk�Œk � 1� �

� Œ2�aC1Œk�2 �

C Œk C 1�Œk� � (87)

Proof. Equations (83)–(86) are easy to prove, and left to the reader, while equa-
tion (87) follows from equation (82).

Lemma 7.5. For all integers r C 1 6 m 6 2r � 2, if 0 6 k 6 m � r we have

D

�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
�

�
2Œk�Œm � k C 1�

Œm�3
�

0BBBBBB@ C

1CCCCCCA
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C
4Œk�Œk � 1�

Œm�4
�

�
Œ2�aC1Œm � k�2

Œm�2
�

C
2Œ2�aC1Œk�Œm � k�

Œm�3
�

0BBBBBB@ C

1CCCCCCA

C

�3Œ2�aC1
Œm�2

ık;m�r �
4Œ2�aC1Œk�2

Œm�4

�
�

C
Œm � k�Œm � k � 1�

Œm�2
�

C

�
�

1

Œm�2
�
2Œk�Œm � k � 1�

Œm�3

�
�

0BBBBBB@ C

1CCCCCCA
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C

�
�
Œ2�

Œm�2
ık;m�r�1 �

2Œ2�

Œm�2
ık;m�r C

4Œk C 1�Œk�

Œm�4

�
� (88)

and if m � r C 1 6 k 6 m we have

D

�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
�

C

�
�

1

Œm�2
C
¹mº0Œm � k C 1�Œm � k�

Œm�3

�

�

0BBBBBB@ C

1CCCCCCA

C

� Œ2�
Œm�2

C
.¹mº0/2Œm � k C 1�Œm � k�

Œm�4

�
�

�
Œ2�aC1Œm � k�2

Œm�2
�
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�
Œ2�aC1¹mº0Œm � k�2

Œm�3
�

0BBBBBB@ C

1CCCCCCA

�
Œ2�aC1.¹mº0/2Œm � k�2

Œm�4
�

C
Œm � k�Œm � k � 1�

Œm�2
�

C
¹mº0Œm � k�Œm � k � 1�

Œm�3
�

0BBBBBB@ C

1CCCCCCA

C
.¹mº0/2Œm � k�Œm � k � 1�

Œm�4
� (89)

Proof. Equations (88) and (89) are proved by induction on r C 2 6 m 6 2r � 2. In
order to do this, let us set

D ˛k�1m;k �
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C ˇk�1m;k �

0BBBBBB@ C

1CCCCCCA

C k�1m;k �

C ˛km;k �

C ˇkm;k �

0BBBBBB@ C

1CCCCCCA

C km;k �

C ˛kC1
m;k
�
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C ˇkC1
m;k
�

0BBBBBB@ C

1CCCCCCA

C kC1
m;k
�

Remark that we have

˛�1m;0 D ˇ
�1
m;0 D 

�1
m;0 D 0;

˛mm;m�1 D ˇ
m
m;m�1 D 

m
m;m�1 D 0;

˛mm;m D ˇ
m
m;m D 

m
m;m D 0;

˛mC1m;m D ˇ
mC1
m;m D 

mC1
m;m D 0

for every integer r C 1 6 m 6 2r � 2. If m D r C 1 and k D 0, let us consider

� � � Œ2� �

This gives the condition

˛0rC1;0 D �Œ2�aC1; ˇ0rC1;0 D 0; 0rC1;0 D 0;

˛1rC1;0 D 0; ˇ1rC1;0 D �1; 1rC1;0 D �Œ2�:
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If m D r C 1 and 1 6 k 6 r C 1, let us consider

� � � Œ2� �

� C C C Œ2� �

� C C C Œ2� �

� Œ2� � C Œ2� �

C Œ2� � C Œ2�2 �
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When k D 1, this gives the condition

˛0rC1;1 D �¹1º
0; ˇ0rC1;1 D �2; 0rC1;1 D 0;

˛1rC1;1 D 0; ˇ1rC1;1 D 0; 1rC1;1 D �Œ2�aC1;

˛2rC1;1 D 0; ˇ2rC1;1 D 1; 2rC1;1 D 2Œ2�;

thanks to equations (83) and (84), and when 2 6 k 6 r C 1, this gives the condition

˛k�1rC1;k D �Œ2�C Œk � 1�Œk � 2�;

ˇk�1rC1;k D �1C ¹1º
0Œk � 1�Œk � 2�;

k�1rC1;k D Œ2�C .¹1º
0/2Œk � 1�Œk � 2�;

˛krC1;k D �Œ2�aC1Œk � 1�
2;

ˇkrC1;k D �Œ2�aC1¹1º
0Œk � 1�2;

krC1;k D �Œ2�aC1.¹1º
0/2Œk � 1�2;

˛kC1
rC1;k D Œk�Œk � 1�;

ˇkC1
rC1;k D ¹1º

0Œk�Œk � 1�;

kC1
rC1;k D .¹1º

0/2Œk�Œk � 1�;

thanks to equations (85), (86), and (87). If r C 2 6 m 6 2r � 2 and k D 0, let us
consider

C
Œm � 1�

Œm�
� �

2

Œm�2
�

This gives the condition

˛0m;0 D �Œ2�aC1; ˇ0m;0 D 0; 0m;0 D 0;

˛1m;0 D
Œm � 1�

Œm�
; ˇ1m;0 D �

1

Œm�2
; 1m;0 D 0:
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If r C 2 6 m 6 2r � 2 and 1 6 k 6 m, let us consider

C
Œm � 1�

Œm�
� �

2

Œm�2
�

C
Œm � 1�

Œm�
� C

Œm � 1�2

Œm�2
� �

2Œm � 1�

Œm�3
�

�
2

Œm�2
� �

2Œm � 1�

Œm�3
� C

4

Œm�4
�

This gives the condition

˛k�1m;k D �
¹mº0

Œm�
C
Œm � 1�2

Œm�2
˛k�2m�1;k�1;

ˇk�1m;k D �
2

Œm�2
C
Œm � 1�2

Œm�2
ˇk�2m�1;k�1 �

2Œm � 1�

Œm�3
˛k�2m�1;k�1;
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k�1m;k D
Œm � 1�2

Œm�2
k�2m�1;k�1 �

4Œm � 1�

Œm�3
ˇk�2m�1;k�1 C

4

Œm�4
˛k�2m�1;k�1;

˛km;k D
Œm � 1�2

Œm�2
˛k�1m�1;k�1;

ˇkm;k D
Œm � 1�2

Œm�2
ˇk�1m�1;k�1 �

2Œm � 1�

Œm�3
˛k�1m�1;k�1;

km;k D
Œm � 1�2

Œm�2
k�1m�1;k�1 �

4Œm � 1�

Œm�3
ˇk�1m�1;k�1 C

4

Œm�4
˛k�1m�1;k�1;

˛kC1
m;k
D
Œm � 1�2

Œm�2
˛km�1;k�1;

ˇkC1
m;k
D
Œm � 1�2

Œm�2
ˇkm�1;k�1 �

2Œm � 1�

Œm�3
˛km�1;k�1;

kC1
m;k
D
Œm � 1�2

Œm�2
km�1;k�1 �

4Œm � 1�

Œm�3
ˇkm�1;k�1 C

4

Œm�4
˛km�1;k�1:

Thanks to equation (81), when 1 6 k 6 m � r the solution is

˛k�1m;k D �
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2
;

ˇk�1m;k D �
2Œk�Œm � k C 1�

Œm�3
;

k�1m;k D
4Œk�Œk � 1�

Œm�4
;

˛km;k D �
Œ2�aC1Œm � k�2

Œm�2
;

ˇkm;k D
2Œ2�aC1Œk�Œm � k�

Œm�3
;

km;k D
3Œ2�aC1
Œm�2

ık;m�r �
4Œ2�aC1Œk�2

Œm�4
;

˛kC1
m;k
D
Œm � k�Œm � k � 1�

Œm�2
;

ˇkC1
m;k
D �

1

Œm�2
�
2Œk�Œm � k � 1�

Œm�3
;

kC1
m;k
D �

Œ2�

Œm�2
ık;m�r�1 �

2Œ2�

Œm�2
ık;m�r C

4Œk C 1�Œk�

Œm�4
;

and when m � r C 1 6 k 6 m the solution is

˛k�1m;k D �
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2
;
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ˇk�1m;k D �
1

Œm�2
C
¹mº0Œm � k C 1�Œm � k�

Œm�3
;

k�1m;k D
Œ2�

Œm�2
C
.¹mº0/2Œm � k C 1�Œm � k�

Œm�4
;

˛km;k D �
Œ2�aC1Œm � k�2

Œm�2
;

ˇkm;k D �
Œ2�aC1¹mº0Œm � k�2

Œm�3
;

km;k D �
Œ2�aC1.¹mº0/2Œm � k�2

Œm�4
;

˛kC1
m;k
D
Œm � k�Œm � k � 1�

Œm�2
;

ˇkC1
m;k
D
¹mº0Œm � k�Œm � k � 1�

Œm�3
;

kC1
m;k
D
.¹mº0/2Œm � k�Œm � k � 1�

Œm�4
:

7.3. Pseudo traces

Finally, let us move on to the most complicated case, and let us start by remarking
that, if 1 6 k 6 r � 1, then we have

D �
Œr � k�aC1

Œk�
� (90)

Lemma 7.6. For all integers r 6 m 6 2r � 2 and 0 6 k 6 m we have

D ık;m�rC1.�1/mC1Œr�aC1ŒmC 1� � (91)

Proof. The computation is easy, and left to the reader.
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Lemma 7.7. For every integer r 6 m 6 2r � 2, if 0 6 k 6 m � r we have

D

D .�1/m
Œ2r �mC k � 1�aC1ŒmC 1�

Œm � k C 1�
� (92)

and if m � r C 1 6 k 6 m we have

D

D ık;m�rC1.�1/mC1ŒmC 1� �

C .1 � ık;m�rC1/.�1/mC1
Œm � k C 1�aC1ŒmC 1�

Œm � k C 1�
�

(93)
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Proof. Equations (92) and (93) are proved by induction on r 6 m 6 2r � 2. In order
to do this, let us set

D D ˛m;k � C ˇm;k �

It is also convenient to set

˛m;�1 D ˇm;�1 D ˛m;mC1 D ˇm;mC1 D ˛m;mC2 D ˇm;mC2 D 0:

If m D r then equations (84), (86), and (90) give the condition

˛r;0 D 0; ˇr;0 D �Œr � 1�aC1;

˛r;k D ık;1; ˇr;k D �.1 � ık;1/
Œr � k C 1�aC1

Œk � 1�
:

If r C 1 6 m 6 2r � 2 and 0 6 k 6 m � r , then equations (88), (90), and (91) give
the condition

˛m;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
˛m�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
˛m�1;k C

Œm � k�Œm � k � 1�

Œm�2
˛m�1;kC1;

ˇm;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
ˇm�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
ˇm�1;k C

Œm � k�Œm � k � 1�

Œm�2
ˇm�1;kC1

� ık;m�r�1.�1/m
Œr�aC1
Œm�

:

Thanks to equation (81), the solution is

˛m;k D 0; ˇm;k D .�1/
m Œ2r �mC k � 1�aC1ŒmC 1�

Œm � k C 1�
:
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If r C 1 6 m 6 2r � 2 and m � r C 1 6 k 6 m, then equations (89), (90), and (91)
give the condition

˛m;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
˛m�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
˛m�1;k C

Œm � k�Œm � k � 1�

Œm�2
˛m�1;kC1;

ˇm;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
ˇm�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
ˇm�1;k C

Œm � k�Œm � k � 1�

Œm�2
ˇm�1;kC1

� ık;m�rC1.�1/m
Œr�aC1
Œm�

:

Thanks to equation (81), the solution is

˛m;k D ık;m�rC1.�1/mC1ŒmC 1�;

ˇm;k D .1 � ık;m�rC1/.�1/mC1
Œm � k C 1�aC1ŒmC 1�

Œm � k C 1�
:

Lemma 7.8. For every integer 0 6 h 6 r we have

2Œr � h�aC1 D 2Œr�aC1 � 2Œh�aC1: (94)

Proof. The computation is easy, and left to the reader.

Lemma 7.9. For all integers r 6 m 6 2r � 2 and 0 6 k 6 m � r we have

D .�1/m
¹m � k � r C 1º0aC1ŒmC 1�

Œm � k C 1�
�

� .�1/m
�2Œm � k � r C 1�aC1Œk�

Œm � k C 1�2

C
Œr�aC1ŒmC 1�
Œm � k C 1�

m�k�rX
hD1

¹hº0

Œh�

�
� (95)
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Proof. Equation (95) is proved by induction on r 6 m � k 6 2r � 2. In order to do
this, let us set

D ˛m;k � C ˇm;k �

It is also convenient to set

˛m;�1 D ˇm;�1 D ˛m;mC1 D ˇm;mC1 D ˛m;mC2 D ˇm;mC2 D 0:

If m � k D r and m D r , then equations (83) and (90) give the condition

˛r;0 D �Œ2�aC1; ˇr;0 D 0:

If r 6 m � k 6 2r � 2 and r C 1 6 m 6 2r � 2, then equations (88) and (90) give
the condition

˛m;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
˛m�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
˛m�1;k C

Œm � k�Œm � k � 1�

Œm�2
˛m�1;kC1

� ık;m�r�1.�1/m
2

Œm�
;

ˇm;k D
�
�
ŒmC 1�

Œm�
C
Œm � k C 1�Œm � k�

Œm�2

�
ˇm�1;k�1

�
Œ2�aC1Œm � k�2

Œm�2
ˇm�1;k C

Œm � k�Œm � k � 1�

Œm�2
ˇm�1;kC1

C .�1/m
2Œ2r �mC k C 1�aC1

Œm�Œm � k � 1�
:

Thanks to equations (81) and (94) the solution is

˛m;k D .�1/
m
¹m � k � r C 1º0aC1ŒmC 1�

Œm � k C 1�
;

ˇm;k D .�1/
mC1

�2Œm � k � r C 1�aC1Œk�
Œm � k C 1�2

C
Œr�aC1ŒmC 1�
Œm � k C 1�

m�k�rX
hD1

¹hº0

Œh�

�
:
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