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The next-to-top term in knot Floer homology

Yi Ni

Abstract. Let K be a null-homologous knot in a generalized L-space Z with b1.Z/ � 1. Let

F be a Seifert surface of K with genus g. We show that if bHFK.Z; K; ŒF �; g/ is supported in a

single Z=2Z-grading, then

rank bHFK.Z; K; ŒF �; g � 1/ � rank bHFK.Z; K; ŒF �; g/:

1. Introduction

Knot Floer homology is an invariant for null-homologous knots in 3-manifolds intro-

duced by Ozsváth and Szabó [10] and Rasmussen [17]. Suppose that F is a Thurston

norm minimizing Seifert surface for a null-homologous knot K �Z, then bHFK.Z;K;

ŒF �; g.F //, which is known as “the topmost term” in knot Floer homology, captures

a lot of information about the knot complement. For example, bHFK.Z; K; ŒF �; g.F //

always has positive rank [9]. Moreover, bHFK.Z; K; ŒF �; g.F // has rank 1 if and only

if F is a fiber of a fibration of Z nK over S1, see [2, 5].

It is natural to ask if one can say similar things for other terms in bHFK.Z; K/.

Baldwin and Vela-Vick [1, Question 1.11] asked whether bHFK.S3; K; g.K/ � 1/

is always nontrivial. More specifically, Sivek [1, Question 1.12] asked whether we

always have

rank bHFK.S3; K; g.K/� 1/ � rank bHFK.S3; K; g.K//: (1)

This inequality has been known for knots with thin knot Floer homology [8], L-space

knots [4], fibered knots in any closed oriented 3-manifolds [1]. In this paper, we will

prove (1) when bHFK.Z; K; ŒF �; g/ is supported in a single Z=2Z-grading.

Recall that a closed, oriented 3-manifold Z is a generalized L-space if

HFred.Z/ D 0:
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In [11], an absolute Z=2Z-grading was defined on Heegaard Floer homology. When

the underlying Spinc structure is torsion, one can define an absolute Q-grading.

Theorem 1.1. Let Z be a generalized L-space with b1.Z/ � 1, and let K � Z be

a null-homologous knot with a Thurston norm minimizing Seifert surface F of genus

g > 0. Suppose that bHFK.Z; K; ŒF �; g/ is supported in a single Z=2Z-grading. Then

for any d 2 Q, we have

rank bHFKd�1.Z; K; ŒF �; g � 1/ � rank bHFKd .Z; K; ŒF �; g/:

Theorem 1.1 contains some known cases of the conjectural inequality (1), includ-

ing fibered knots and knots with thin knot Floer homology.

To prove Theorem 1.1, we need the following result about HFC.

Theorem 1.2. Let Y be a closed oriented 3-manifold. Suppose that G � Y is a closed

oriented surface of genus g > 2. If there exist two elements 
1; 
2 2 H1.G/ with


1 � 
2 ¤ 0, such that their images in H1.Y / are linearly dependent, then the map U

is trivial on HFC.Y; ŒG�; g � 2IQ/.

Remark 1.3. When b1.Y / � 2, a simple intersection number argument shows that

the image of H1.GIQ/! H1.Y IQ/ is at most 1-dimensional for any G � Y with

ŒG� ¤ 0 2 H2.Y /. So, Theorem 1.2 can be applied to this case. Ozsváth and Szabó

have computed HFC.S3
0 .K// in the cases when K is an L-space knot [7, Proposi-

tion 8.1] and when K is an alternating knot [8, Theorem 1.4]. One can directly check

Theorem 1.2 in these two cases.

Remark 1.4. If G � Y is a closed oriented surface of genus g > 1, the map U on

HFC.Y; ŒG�; g � 1/ is trivial. The author first learned this result from Peter Ozsváth,

and learned a sketch of a proof of it from Yankı Lekili using a similar argument as

in [13, Theorem 3.1]. A proof of a more general result using the same idea as Lekili’s

was given by Wu [18]. The proof of Theorem 1.2 uses the same argument. Our proof

justifies the use of the Künneth formula for HFC in [18].

This paper is organized as follows. In Section 2, we will collect some results

about Heegaard Floer homology we will use. In Section 3, we prove Theorem 1.2. In

Section 4, we prove Theorem 1.1.

We will use the following notations, If N is a submanifold of another manifold

M , let �.N / be a closed tubular neighborhood of N in M , and let �ı.N / be the

interior of �.N /. If K is a null-homologous knot in a 3-manifold Z, let Zp=q.K/ be

the manifold obtained by p
q

-surgery on K.
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2. Preliminaries on Heegaard Floer homology

Heegaard Floer homology [12], in its most fundamental form, assigns a package of

invariants

cHF; HFC; HF�; HF1

to a closed, connected, oriented 3-manifold Y equipped with a Spinc structure s 2

Spinc.Y /.

As described in [16, Section 2], let HF� and HF1 denote the completions of

HF� and HF1 with respect to the maximal ideal .U / in the ring ZŒU �. By [16, (5)],

when c1.s/ is non-torsion, HF1.Y; s/ D 0. By [16, (4)], which is an exact sequence

relating HF�.Y; s/; HF1.Y; s/; HFC.Y; s/, one gets [16, (6)], which is

HFC.Y; s/ Š HF�.Y; s/; (2)

if c1.s/ is non-torsion.

Let CF�0.Y; s/ be the subcomplex of CF1.Y; s/ which consists of Œx; i �, i � 0.

This chain complex is clearly isomorphic to CF�.Y; s/ via the U -action. We have a

similar completion HF�0.

We often use HFı to denote one of the above invariants.

When W is a cobordism from Y1 to Y2, and S 2 Spinc.W /, there is an induced

homomorphism

F ı
W;SWHFı.Y1; SjY1

/! HFı.Y2; SjY2
/:

In [12, Section 4.2.5], Ozsváth and Szabó defined an action of H1.Y /= Tors on

HFı.Y /. Given 
 2 H1.Y /= Tors, there is a homomorphism

A
 WHFı.Y /! HFı.Y /

satisfying A2

 D 0. The following theorem is the HF�0 version of [3, Theorem 3.6].

See the remark following the proof.

Theorem 2.1. Suppose Y1; Y2 are two closed, oriented, connected 3-manifolds, and

W is a cobordism from Y1 to Y2. Let

F
�0
W WHF�0.Y1/! HF�0.Y2/

be the homomorphism induced by W . Suppose �1 � Y1, �2 � Y2 are two closed curves

which are homologous in W . Then

F
�0
W ı AŒ�1� D AŒ�2� ı F

�0
W :
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3. The next-to-top term in HFC

We will use Q-coefficients for Heegaard Floer homology in the rest of this paper.

Let G be a closed oriented surface of genus g > 2. Let

V WS3 ! G � S1

be the cobordism which consists of 2g one-handles and 1 two-handle with attaching

curve being the Borromean knot Bg . Let Sg�2 2 Spinc.V / be the Spinc structure

with hc1.Sg�2/; ŒG�i D 2g � 4, and let sg�2 2 Spinc.G � S1/ be the restriction of

Sg�2 to G � S1.

Let

F
�0
V;Sg�2

WHF�0.S3/! HF�0.G � S1; sg�2/

be the map induced by the cobordism .V; Sg�2/, and let

y D F
�0
V;Sg�2

.1/: (3)

In [10, Theorem 9.3], it is shown that

HFC.G � S1; sg�2/ Š X.g; 1/ D H 0.G/˝QŒU �=.U 2/˚H 1.G/˝QŒU �=.U /;

(4)

with the homological action given by

A
 .� ˝ 1/ D PD.
/˝ 1; A
 .�˝ 1/ D h�; 
i ˝ U: (5)

Here � is a generator of H 0.G/, and � 2 H 1.G/. We will fix an identification as

in (4). By abuse of notation, we often use � to denote � ˝ 1 2 X.g; 1/.

We will prove the following proposition.

Proposition 3.1. The element y defined in (3) has the form a� C bU� for some a;b 2

Q, a ¤ 0.

Let Y be a closed, oriented 3-manifold and suppose that G embeds into Y as a

homologically essential surface. Consider the trivial cobordism

Y � Œ0; 1�W Y ! Y:

Let p be a point in G, and let W1 be a tubular neighborhood of

.Y � ¹0º/ [
�
p �

h
0;

1

2

i�
[

�
G �

°1

2

±�
:

Then W1 is a cobordism from Y to Y #.G � S1/. Let W2 D Y � Œ0; 1� nW1.

Let t 2 Spinc.Y / be a Spinc structure satisfying hc1.t/; ŒG�i D 2.g � 2/, and let

T 2 Spinc.Y � Œ0; 1�/ be the corresponding Spinc structure. If we think of G � S1 as
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the boundary of a regular neighborhood of G � ¹1
2
º, then we clearly have T jG�S1 D

sg�2. By [6, Lemma 2.1],

F ı
W2;T jW2

ı F ı
W1;T jW1

D idWHFı.Y; t/! HFı.Y; t/: (6)

Lemma 3.2. Suppose that x 2 HF�0.Y; t/, then F
�0
W1;T jW1

.x/ D x ˝ y. Here y is

defined in (3), and

x ˝ y 2 HF�0.Y; t/˝QŒU � HF�0.G � S1; sg�2/ � HF�0.Y #.G � S1/; t#sg�2/

by the Künneth formula.

Proof. By [7, Proposition 4.4], there is a commutative diagram (note that we switch

the order of the tensor product)

HF�0.Y; t/˝HF�0.S3/ HF�0.Y; t/

HF�0.Y; t/˝HF�0.G � S1; sg�2/ HF�0.Y #.G � S1/; t#sg�2/

 

!
F

�0

Y #S3;t

 !id ˝F
�0
V;Sg�2

 ! F�0

W1;TjW1

 

!

F
�0

Y #.G�S1/;t#sg�2

Our conclusion follows from this commutative diagram.

Proof of Proposition 3.1. We choose Y DG �S1 and xDU� . By (6) and Lemma 3.2,

U� D F
�0
W2
ı F

�0
W1

.U�/ D F
�0
W2

.U� ˝ y/ D F
�0
W2

.� ˝ Uy/:

Since U� ¤ 0, Uy ¤ 0. From the structure of X.g; 1/ in (4), we see that any homo-

geneous element y (with respect to the Z=2Z-grading) satisfying Uy ¤ 0 must be of

the form a� C bU� , a ¤ 0.

Lemma 3.3. For any 
1; 
2 2 H1.G/ � H1.G � S1/, we have

A
2
ı A
1

.y/ D .
1 � 
2/Uy:

Proof. By Proposition 3.1, y D a� C bU� . By the module structure of X.g; 1/ in (4)

and (5), Uy D aU� , and

A
2
ıA
1

.y/ D hPD.
1/; 
2iaU� D .
1 � 
2/aU�:

Proof of Theorem 1.2. Let t 2 Spinc.Y / be as above. Assume further that U ¤ 0 on

HFC.Y; t/. By (2), Ux ¤ 0 for some x 2 HF�0.Y; t/. By (6) and Lemma 3.2,

x D F
�0
W2
ı F

�0
W1

.x/ D F
�0
W2

.x ˝ y/: (7)
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Let ci � G be a closed curve representing 
i , i D 1; 2. Let 
 0
i 2 H1.Y #.G � S1// be

represented by ci � point�G � S1, and let 
 00
i 2H1.Y / be represented by ci�G�Y .

Then .ci � Œ1
2
;1�/\W2 defines a homology between 
 0

i and 
 00
i . By Lemma 3.3 and (7)

we have

.
1 � 
2/Ux D F
�0
W2

.x ˝ .
1 � 
2/Uy/

D F
�0
W2

.x ˝ A
2
ı A
1

.y//

D F
�0
W2

.A
 0
2
ı A
 0

1
.x ˝ y//;

where the last equality follows from the fact that the actions of A
 0
1

and A
 0
2

on the

HF�0.Y; t/ factor are trivial.

Since 
 00
1 and 
 00

2 in H1.Y / are linearly dependent, we get

F
�0
W2

.A
 0
2
ıA
 0

1
.x ˝ y// D A
 00

2
ı A
 00

1
F

�0
W2

.x ˝ y/ D 0

by Theorem 2.1 and the fact that A2

 D 0 for any 
 2 H1.Y /. This contradicts the

assumption that 
1 � 
2 ¤ 0 and Ux ¤ 0.

4. Proof of the main theorem

Let K be a null-homologous knot in a generalized L-space Z. Let F be a Thurston

norm minimizing Seifert surface of K with genus g > 2. By the proof of [10, The-

orem 5.1], we can choose a Heegaard diagram for .Z; K/ such that

bCFK.Z; K; ŒF �; i / D 0 if ji j > g.

Given s 2 Spinc.Z/, let

C D CFK1.Z; K; s; ŒF �/;

then

C.i; j / D 0; if ji � j j > g: (8)

Let

AC
k
D C ¹i � 0 or j � kº; BC D C ¹i � 0º

and define maps

vC
k

; hC
k
WAC

k
! BC

as in [15]. More precisely, vC
k

is the natural quotient map (or the vertical projec-

tion) onto BC, and hC
k

is essentially a horizontal projection. By [15, Theorem 2.3],
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vC
k

and hC
k

can be identified with certain chain maps induced by a two-handle cobor-

dism W 0
n.K/WZn.K/! Z.

When s is a torsion Spinc structure, by [14], there is an absolute Q-grading on

HFC.Z; s/, so there is an absolute Q-grading on C . The shift of the absolute grading

of maps induced by cobordisms is computed as in [14, Theorem 7.1]. In particular, if

we identify vC
k

and hC
k

with maps induced by the cobordism W 0
n.K/, the difference

between the grading shifts of vC
k

and hC
k

is

�
.2k � n/2 � .2k C n/2

4n
D 2k: (9)

Proposition 4.1. Let bF be the closed surface in Z0.K/ obtained by capping off @F

with a disk. Let sg�2 2 Spinc.Z0.K// be the Spinc structure satisfying that

sg�2jZn�ı.K/ D sjZn�ı.K/; hc1.sg�2/; ŒbF �i D 2.g � 2/:

If there exists an element a 2 H�.C ¹i < 0; j � g � 2º/ such that Ua ¤ 0, then there

also exists an element a0 2 HFC.Z0.K/; sg�2/ such that Ua0 ¤ 0.

Proof. Consider the short exact sequence of chain complexes

0! C ¹i < 0; j � g � 2º ! AC
g�2

v
C
g�2

���! BC ! 0; (10)

which induces an exact triangle.

By [15, Section 4.8], CFC.Z0.K/;sg�2/ is quasi-isomorphic to the mapping cone

of

vC
g�2 C hC

g�2WA
C
g�2! BC:

So, there is also an exact triangle. We will use a standard argument to compare these

two exact triangles.

Case 1: s is a torsion Spinc structure. Since Z is a generalized L-space,

v D .vC
g�2/�WH�.AC

g�2/! H�.BC/

is surjective. So

H�.C ¹i < 0; j � g � 2º/ Š ker v

as a QŒU �-module.

By (9), vC
g�2 and hC

g�2 have different grading shifts. Since Z is a generalized

L-space,

v C h D .vC
g�2/� C .hC

g�2/�WH�.AC
g�2/! H�.BC/

is surjective. So

HFC.Z0.K/; sg�2/ Š ker.v C h/

as a QŒU �-module.
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Since v is homogeneous and surjective, there exists a homogeneous homomorph-

ism �WH�.BC/! H�.AC
g�2/ satisfying

v ı � D id :

By (9) and the assumption that g.F / > 2, the grading shift of h is strictly less than the

grading shift of v, so the grading shift of �h is negative. As the grading of H�.AC
g�2/

is bounded from below, for any x 2 H�.AC
g�2/, .�h/m.x/D 0 when m is sufficiently

large. So, the map

id��hC .�h/2 � .�h/3 C � � � WH�.AC
g�2/! H�.AC

g�2/

is well defined, and it maps ker v to ker.v C h/.

Assume that a 2 ker v is a homogeneous element with Ua ¤ 0. Then

a0 D .id��hC .�h/2 � .�h/3 C � � � /.a/ D aC lower grading terms 2 ker.vC h/

so

Ua0 D UaC lower grading terms

which is nonzero since Ua ¤ 0.

Case 2. s is non-torsion. Since Z is a generalized L-space, HFC.Z;s/D 0. Namely,

H�.BC/ D 0. By the two exact triangles at the beginning of this proof, we have

H�.C ¹i < 0; j � g � 2º/ Š HFC.Z0.K/; sg�2/

as QŒU �-modules. So, our conclusion holds.

We will use the following elementary lemma in linear algebra.

Lemma 4.2. Let V;W be two linear spaces over a field F , and let V1;W1 be their

subspaces, respectively. If v 2 V n V1, w 2 W n W1, then

v ˝w … V1 ˝ WC V˝ W1:

Proof. Suppose that dim V D m, dim V1 D m1, dimW D n, dimW1 D n1. We can

choose a basis

v1; : : : ; vm

of V, such that v1; : : : ; vm1
is a basis of V1, and v D vm1C1. Similarly, we choose a

basis

w1; : : : ; wn

of W, such that w1; : : : ; wn1
is a basis of W1, and w D wn1C1. Then

vi ˝ wj ; 1 � i � m; 1 � j � n;
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is a basis for V˝ W. Now, V1 ˝ WC V˝ W1 is spanned by

vi ˝wj ; 1 � i � m1 or 1 � j � n1:

So, v ˝w D vm1C1 ˝wn1C1 is not in this subspace.

Let @ be the differential in C D CFK1, @0 be the component of @ which preserves

the .i; j /-grading, @z be the component of @ which decreases the .i; j /-grading by

.0; 1/, and @w be the component which decreases the .i; j /-grading by .1; 0/. Since

@2 D 0, each homogeneous summand of @2 is zero. If we consider the summand of @2

which preserves the .i; j /-grading, we get

@2
0 D 0:

Similarly, considering the summands of @2 which decrease the .i;j /-grading by .0;1/,

.1; 0/, and .1; 1/, respectively, we get

@z ı @0 C @0 ı @z D 0; @w ı @0 C @0 ı @w D 0; (11)

and

@w ı @z C @zw ı @0 C @0 ı @zw D 0 on C.0; g/; (12)

where in the last equation we use the fact that C.�1; g/ D 0 (see (8)).

It follows from (11) that @z and @w induces homomorphisms on the homology

with respect to the differential @0, denoted by .@z/� and .@w/�. By (12),

.@w/� ı .@z/� D 0 (13)

on H�.C.0; g//.

Theorem 4.3. Let Z be a generalized L-space, K � Z be a null-homologous knot.

Let F be a Seifert surface of K with genus g > 2. Let d 2 Q satisfy

bHFKd˙1.Z; K; ŒF �; g/ D 0: (14)

If there exist two elements 
1; 
2 2 H1.F / with 
1 � 
2 ¤ 0, such that the images of


1; 
2 in H1.Z/ are linearly dependent, then

rank bHFKd .Z; K; ŒF �; g/ � rank bHFKd�1.Z; K; ŒF �; g � 1/:

Proof. By (8), the chain complex C ¹i < 0; j � g � 2º has the form

C.�1; g � 1/

C.�2; g � 2/ C.�1; g � 2/

 ! @z
 

!

@zw

 

!

@w

(15)
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where

C��2.�1; g � 1/ Š C��4.�2; g � 2/ Š bCFK�.Z; K; ŒF �; g/;

and

C��2.�1; g � 2/ Š bCFK�.Z; K; ŒF �; g � 1/:

By abuse of notation, we will use @z and @w to denote their restrictions

@z W bCFKd .Z; K; ŒF �; g/! bCFKd�1.Z; K; ŒF �; g � 1/

and

@w W bCFKd�1.Z; K; ŒF �; g � 1/! bCFKd .Z; K; ŒF �; g/:

Using (13), we have

rank ker.@z/�

D rank bHFKd .Z; K; ŒF �; g/� rank im.@z/�

� rank bHFKd .Z; K; ŒF �; g/� rank ker.@w/�

D rank bHFKd .Z; K; ŒF �; g/� rank bHFKd�1.Z; K; ŒF �; g � 1/C rank im.@w/�:

If

rank bHFKd .Z; K; ŒF �; g/ > rank bHFKd�1.Z; K; ŒF �; g � 1/; (16)

then

rank ker.@z/� > rank im.@w/�;

so there exists an element x 2 ker.@z/�, such that Ux … im.@w/�. Let � 2 Cd�2.�1;

g � 1/ be a closed chain representing x, then @z.�/ is an exact chain in Cd�3.�1;

g � 2/. So, there exists an element � 2 Cd�2.�1; g � 2/ with @0� D @z.�/. By (11)

and (12),

@0@w� D �@w@0� D �@w@z.�/ D @0@zw.�/:

So, @w� � @zw.�/ is a closed chain in Cd�3.�2; g � 2/ Š bCFKdC1.Z; K; ŒF �; g/.

By (14), @w�� @zw.�/ is exact, so there exists an element � 2 Cd�2.�2; g � 2/ with

@0� D @w� � @zw.�/. This means that � � �C � is a cycle in the mapping cone (15).

Now, we want to prove U.� � �C �/DU� is not exact in (15). Otherwise, assume

U� D @.� 0 C �0 C �0/; (17)

where

� 0 2 Cd�3.�1; g � 1/; �0 2 Cd�3.�1; g � 2/; �0 2 Cd�3.�2; g � 2/:
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Considering the components of (17), we get

0 D @0� 0; (18)

0 D @z� 0 C @0�0; (19)

U� D @zw� 0 C @w�0 C @0�0: (20)

By (18), � 0 is a cycle in Cd�3.�1; g � 1/ Š bCFKd�1.Z; K; ŒF �; g/. By (14), � 0 is

exact, so there exists ! 2 Cd�2.�1; g � 1/ with @0! D � 0. Using (11) and (19), we

get

@0.�0 � @z!/ D 0:

Using (12) and (20), we get

U� D �@0@zw! C @w.�0 � @z!/C @0�0;

which means that U� is homologous to an element in @w.ker @0/. Since ŒU��D Ux …

im.@w/�, we get a contradiction.

Now, we have proved that U ¤ 0 in the mapping cone (15). By Proposition 4.1,

we have U ¤ 0 in HFC.Z0.K/; ŒbF �; g � 2/, a contradiction to Theorem 1.2.

Remark 4.4. The above proof can be greatly simplified if we use the “reduction

lemma” [4, 17] in homological algebra. In fact, the author’s original approach was

using the Reduction Lemma. The reason that we choose the current argument is that

we want to understand the diagonal map

H�.C.�1; g � 1//! H�.C.�2; g � 2//

after reduction, which may be important if we try to generalize our result to other

knots.

Proof of Theorem 1.1. When g > 2, this follows from Theorem 4.3.

If g D 2, we assume (16) holds. As in the proof of Theorem 4.3, there exists an

element x 2 ker.@z/�, such that Ux … im.@w/�. Consider the element

x ˝ x 2 bHFKd .Z; K; ŒF �; g/˝ bHFKd .Z; K; g/Š bHFK2d .Z#Z; K#K; ŒF\F �; 2g/:

In the complex CFK1.Z#Z; K#K/, we can check x ˝ x 2 ker.@z/�, while, by

Lemma 4.2, U.x ˝ x/ … im.@w/�. Let 
1; 
2 be a pair of elements in H1.F / with


1 � 
2 ¤ 0. We can think of 
1; 
2 as elements in the first summand of H1.F \F / Š

H1.F /˚H1.F /. Then the images of 
1; 
2 in H1.Z#Z/ are linearly dependent. So,

we can apply Theorem 1.2 to get a contradiction as in the proof of Theorem 4.3.

The case g D 1 can be proved similarly by considering a three-fold connected

sum.
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