
Quantum Topol. 13 (2022), 593–668
DOI 10.4171/QT/167

© 2023 European Mathematical Society
Published by EMS Press

This work is licensed under a CC BY 4.0 license

Drinfeld centers of fusion categories
arising from generalized Haagerup subfactors

Pinhas Grossman and Masaki Izumi

Abstract. We consider generalized Haagerup categories such that 1˚ X admits a Q-system
for every non-invertible simple object X . We show that in such a category, the group of order
two invertible objects has size at most four. We describe the simple objects of the Drinfeld center
and give partial formulas for the modular data. We compute the remaining corner of the modular
data for several examples and make conjectures about the general case. We also consider several
types of equivariantizations and de-equivariantizations of generalized Haagerup categories and
describe their Drinfeld centers.

In particular, we compute the modular data for the Drinfeld centers of a number of examples
of fusion categories arising in the classification of small-index subfactors: the Asaeda–Haagerup
subfactor; the 3Z4 and 3Z2�Z2 subfactors; the 2D2 subfactor; and the 4442 subfactor.

The results suggest the possibility of several new infinite families of quadratic categories.
A description and generalization of the modular data associated to these families in terms of
pairs of metric groups is taken up in the accompanying paper [Comm. Math. Phys. 380 (2020),
1091–1150].
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1. Introduction

In the 1990s Asaeda and Haagerup discovered two “exotic” subfactors, known as the
Haagerup subfactor and the Asaeda–Haagerup subfactor [2]. They called these sub-
factors exotic since they were the first examples of finite depth subfactors which did
not arise from known symmetries of groups or quantum groups. The fusion category
C which is the principal even part of the Haagerup subfactor has as its group of invert-
ible objects

G D Inv.C/ D Z3

and is tensor generated by a simple object X satisfying the fusion rules

g ˝X Š X ˝ g�1 and X ˝X Š 1˚
M
g2G

g ˝X:

The Haagerup subfactor corresponds to the algebra object 1˚X in this category.
In [17] the second named author gave a new construction of the Haagerup sub-

factor in which the simple objects of C are realized by certain endomorphisms of the
Cuntz C�-algebra O4 (extended to a von Neumann algebra closure). In this construc-
tion, the four Cuntz algebra generators correspond to embeddings of the four simple
summands of X ˝X . The structure constants for the action of these endomorphisms
on the generators encode the associativity structure of the tensor category; these con-
stants are in turn determined by polynomial equations.

More generally, it was shown that for an arbitrary finite Abelian group G of odd
order, there is a similar system of polynomial equations whose solution gives an asso-
ciativity structure for a tensor category satisfying the Haagerup fusion rules above,
but with G replacing Z3. Such a generalized Haagerup category can then be realized
via endomorphisms of the Cuntz algebra OjGjC1. There is an additional equation for
the existence of a Q-system (an algebra structure with a unitarity condition [24])
on 1 ˚ X ; a subfactor corresponding to such a Q-system is called a generalized
Haagerup subfactor for G, or a 3G subfactor (after the shape of its principal graph).
It was shown in [17] that there is a unique 3Z5 subfactor (up to isomorphism of the
standard invariant), but the general existence question was left open.

The Drinfeld center Z.C/ of a fusion category is the category of half-braidings
of C by objects Y 2 C . For a fusion category over C, Z.C/ is a non-degenerate
braided fusion category. If C is spherical (in particular if C is unitary), then Z.C/ has
the structure of a modular tensor category [29]. A modular tensor category gives rise
to a projective unitary representation of the modular group SL2.Z/, with canonical
generators mapped to a pair of matrices called the S and T matrices, also known as
the modular data. The modular data encodes among other things the fusion rules of
the category via the Verlinde formula [35].
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Modular tensor categories appear in a variety of contexts, including conformal
field theory [25], quantum topology [34], and topological quantum computing [12].
On the other hand, every fusion category can be realized as a category of modules over
a commutative algebra in its Drinfeld center. Thus, the Drinfeld center construction
provides a bridge between the theory of ordinary fusion categories and that of modular
tensor categories.

A useful feature of the Cuntz algebra approach to the construction of subfactors
is that it comes with a simple formalism for computing arbitrary tensor products and
compositions of morphisms in the tensor category. This was exploited in [17] to give
an explicit description of the tube algebra of the Haagerup category, and thereby com-
pute the modular data of its Drinfeld center.

In [11], Evans and Gannon found simpler formulas for the modular data of the
Drinfeld center of the Haagerup category. They generalized these formulas to an infin-
ite family of modular data, which they conjectured were realized by Drinfeld centers
of generalized Haagerup categories. They also computed solutions to the polyno-
mial equations for generalized Haagerup categories for a number of odd groups, and
found numerical evidence for the existence of (non-unique in some cases) generalized
Haagerup subfactors for all odd cyclic groups up to order 19.

The fusion categories which are the even parts of the Asaeda–Haagerup subfactor
have less symmetric fusion rules than the Haagerup category. The original construc-
tion of Asaeda and Haagerup used generalized open string bimodules, a generalization
of Ocneanu’s connection formalism for graphs, to describe the categories. Their calcu-
lations showed the existence of the categories, but did not give a practical framework
for performing complicated computations within the category; in particular, a descrip-
tion of the Drinfeld center was not accessible.

In [14], the authors and Snyder gave a new construction of the Asaeda–Haagerup
subfactor. The construction starts with a generalized Haagerup category for the group
G D Z4 � Z2. The original Asaeda–Haagerup categories are then shown to be Mor-
ita equivalent to a category arising from this generalized Haagerup category via a
construction called de-equivariantization (see [6, 8, 28]). The system of polynomial
equations for generalized Haagerup categories associated to even groups is consider-
ably more subtle than for the odd case, and involves a collection of characters �.�/.g/
of the group G2 � G of order elements, indexed by G, see [19].

Since the Drinfeld center is an invariant of Morita equivalence [33], this con-
struction allows us to use the Cuntz algebra framework for generalized Haagerup cat-
egories to describe the Drinfeld center and compute the modular data of the Asaeda–
Haagerup categories (which was first announced in [14]). The original motivation of
this paper was to describe this computation.

However, it turns out that generalized Haagerup categories for groups of even
order play a central role in the classification of small-index subfactors beyond the
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Asaeda–Haagerup case. Subfactors with index less than 4 have index of the form
4cos2 �

k
; k D 3;4; 5; : : : (see [21]), and their principal graphs are simply laced Dynkin

diagrams. In the 1990s Haagerup initiated the classification of subfactors with index
slightly above 4 by searching for admissible principal graphs (which is how the
Haagerup and Asaeda–Haagerup subfactors were discovered), see [15]. This classi-
fication has now been extended to index 5 (see [22]), and then to index 5:25 (see [1]),
with only a small number of finite-depth examples appearing.

The most interesting index value between 5 and 5:25 is 3 C
p
5, which is the

first composite index above 4. There are exactly seven finite depth subfactor planar
algebras at index 3 C

p
5 up to duality [1]. Of these, two are the unique 3Z4 and

3Z2�Z2 subfactors; another one is the 2D2 subfactor , which is related to the 3Z4

subfactor through a Z2-de-equivariantization; and another one is the 4442 subfactor,
which is related to the 3Z2�Z2 subfactor through a Z3-equivariantization (and another
one is related to the 3Z4 subfactor by Morita equivalence), see [19, 26, 27, 32].

In addition to the Asaeda–Haagerup subfactor, we compute the modular data for
these four subfactors with index 3C

p
5, as well as for a Z2-de-equivariantization of

a 3Z8 subfactor. We also numerically compute modular data for 3Z6 , 3Z8 , and 3Z10

subfactors (of which there are two each for Z6 and Z10).
More generally, we consider families of subfactors associated to these examples.

The appearance of the characters �.:/.g/ on G2 makes the study of generalized
Haagerup categories for even groups considerably more complicated than the odd
case. Indeed, generalized Haagerup categories for odd groups can always be con-
structed as de-equivariantizations of near-group categories [18]; this is not true for
even groups. However, our first main result restricts the groups for which generalized
Haagerup subfactors can exist, under an additional assumption.

Theorem 1.1. Let G be the group of invertible objects of a generalized Haagerup
category, and suppose that 1˚ .g ˝X/ admits a Q-system for all g 2 G. Let G2 D
.Z2/m � G be the elementary 2-group of order 2 elements. Then m � 2.

In light of this result, we consider generalized Haagerup categories associated to
a group G D Z2m � Z2n �H with m � n � 0 and jH j odd. By analyzing the tube
algebra, we can describe the simple objects in the Drinfeld center. All of the simple
objects in the center contain invertible simple summands except for

� D
M
g2G

g ˝X

(which has jGj
2

2
half-braidings); and, in the case that jG2j D 2, the objects �˙, where

� D �C ˚ �� is the decomposition of � into the direct sums of those g ˝X indexed
by the two cosets of 2G in G (which have two half-braidings each).
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We give formulas for the modular data in terms of the characters �.:/.g/, except
for the corner in which both indices are half-braidings of � or �˙. In the case that
jG2j D 4, under the additional assumption that the braiding on G2 is non-degenerate
(which is a property of the characters �.:/.g/), the modular data factors, and we get

formulas for the modular data modulo the corner indexed by the jGj
2

8
half-braidings

of � in the Müger commutant of G2 (see [30]).
To compute the missing corner of the modular data, it is necessary to perform

detailed calculations in the tube algebra, and we do not have general formulas. How-
ever, we have conjectures based on computations for small examples.

For the Asaeda–Haagerup subfactor, we consider a generalized Haagerup category
C for G D Z4 � Z2 with a certain form of �, as in [14]. Then VecZ2�Z2 lifts to the
center as a non-degenerate subcategory, and its Müger commutant in Z.C/ is exactly
the Drinfeld center of the Asaeda–Haagerup categories. More generally, we can con-
sider Z2-de-equivariantizations for generalized Haagerup categories for Z4m � Z2
with a similar form of �. We compute the missing corner of the modular data for the
Asaeda–Haagerup case m D 1.

The 2D2 subfactor arises from a Z2-de-equivariantization of a generalized
Haagerup category for Z4 with non-trivial � (which is uniquely determined up to
gauge equivalence). We can similarly consider Z2-de-equivariantizations of gener-
alized Haagerup categories for Z4m with non-trivial �. We obtain formulas for the
modular data except for a corner, and compute the missing corner for the two known
examples m D 1; 2.

Finally, we consider the 4442 subfactor, which comes from a Z3-equivariantiz-
ation of a generalized Haagerup category C for Z2 � Z2. We compute the modular
data from the tube algebra of the Morita equivalent crossed product category, which is
a Z3-graded extension of C and has a Cuntz algebra model. It may be possible to gen-
eralize this construction to generalized Haagerup categories of the form Z2 �Z2 �H

with jH j odd, but we do not know of any examples for nontrivial H , and we do not
attempt this generalization here.

In summary, these examples suggest several possibly infinite families of quadratic
categories, which are distinguished by the 2-subgroups of the associated finite group.

• Generalized Haagerup categories for G D Z4m, and their Z2-de-equivariantiza-
tions (or more generally Z4m �H withH odd) - known to exist formD 1; 2 and
H trivial.

• Generalized Haagerup categories forG DZ4mC2 (or more generally Z4mC2 �H

with H odd) - known to exist for m D 0; 1; 2 and H trivial. (For m D 1; 2 these
occur in pairs.)
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• Generalized Haagerup categories for G D Z4m � Z2 (or more generally Z4m �

Z2 �H with H odd), and their Z2-de-equivariantization – only known to exist
when m D 1 and H is trivial.

• Generalized Haagerup categories for G D Z2 � Z2 � H , with H odd, and its
Z3-equivariantization - both only known to exist when H is trivial.

An analysis of potential modular data associated to such families, as well as gen-
eralizations of this modular data, in terms of pairs of metric groups will appear in the
accompanying paper [13].

To compute the missing corners of the modular data in examples, we use Mathem-
atica to perform the arithmetic in the tube algebra. These calculations require formulas
for the tube algebra operations. Such formulas are in principle straightforward to
derive from the definition of the tube algebra, the Cuntz algebra model for gener-
alized Haagerup categories, and the orbifold construction for (de)-equivariantization.
In practice the formulas are laborious to write down, so we include them in an online
appendix.

The paper is organized as follows.
In Section 2 we review some preliminaries on fusion categories, tube algebras,

and generalized Haagerup subfactors.
In Section 3 we prove the restriction on G2 for a generalized Haagerup category

with a certain assumption. Then we describe the tube algebra and give partial formulas
for the modular data.

In Section 4 we describe how to compute the remaining corner of the modular
data, and discuss several examples with jG2j=2.

In Section 5 we consider the Müger factorization of the Drinfeld center for the
case that jG2j D 4 and the braiding on G2 is non-degenerate. This case includes the
Asaeda–Haagerup subfactor (via de-equivariantization).

In Section 6 we consider a Z2-de-equivariantization of a generalized Haagerup
for Z4m. This case includes the 2D2 subfactor.

In Section 7 we describe the tube algebra and compute the modular data for the
Z3-equivariantization of a generalized Haagerup category for Z2 � Z2 (which is the
even part of the 4442 subfactor).

In an online appendix, included with the arxiv source, we give formulas for
multiplication, involution, and rotation in the tube algebras of generalized Haagerup
categories and their (de)-equivariantizations.

In an accompanying Mathematica notebook solutions.nb, also included with
the arxiv source, we give the structure constants for generalized Haagerup categories
for Z6, Z8, and Z10.

This paper replaces an earlier arXiv preprint titled “Quantum doubles of general-
ized Haagerup subfactors and their orbifolds” (arXiv:1501.07679v1) which described

https://arxiv.org/abs/1501.07679v1
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the computations of most of the main examples in this paper but without discussing
the general cases.

2. Preliminaries

2.1. Fusion categories and the category End0.M/

A fusion category over the complex numbers C is a rigid semisimple C-linear tensor
category with finitely many simple objects and finite-dimensional morphism spaces
such that the identity object is simple (see [9]). In this paper we concentrate on unitary
fusion categories embedded as full monoidal subcategories of the category of unital
endomorphisms End.M/ of a type III factorM . Note that such an embedding always
exists under the assumption of unitarity (see [18, Theorem 2.1]). Our standard refer-
ence for the category End.M/ is [4]. We follow the convention of using Greek letters
for objects in End.M/.

For a Hilbert space H , we denote by B.H / the set of bounded operators on H , and
by U.H / the set of unitary operators on H . The identity operator of H is denoted by
1H or simply by 1. For a unital C�-algebra A, we denote by U.A/ the set of unitaries
in A. The unit of A is denoted by 1A or simply by 1.

Let M be a type III factor. Then the set of unital endomorphisms End.M/ forms
a category with the morphism space from an object � to another object � given by

Hom.�; �/ D .�; �/ D ¹t 2M W t�.x/ D �.x/t for all x 2M º:

This category has a strict monoidal structure, with the monoidal product �˝ � of two
objects �; � 2 End.M/ given by the composition � ı � , and the monoidal product
between morphisms t 2 .�1; �2/ and s 2 .�1; �2/ given by

t ˝ s D t�1.s/ D �2.s/t 2 .�1 ı �1; �2 ı �2/:

The monoidal unit of End.M/ is the identity automorphism id of M . The endo-
morphism space .�; �/ is just the relative commutant M \ �.M/0; � is simple, or
irreducible, if this space consists only of the scalars. When discussing the monoidal
category End.M/, we will generally suppress the “˝” symbol, and refer directly to
multiplication in M and composition of endomorphisms.

The morphism space .�; �/ inherits a Banach space structure from M , and the
�-operation of M maps .�; �/ to .�; �/, which makes End.M/ a C�-tensor category
(see [4, Section 1]). Moreover, if � is simple, the space .�; �/ is a Hilbert space with
an inner product given by t�1 t2 D ht1; t2i1M for t1; t2 2 .�; �/.

For � 2 End.M/, its dimension d.�/ is defined by ŒM W �.M/�
1=2
0 , where ŒM W

�.M/�0 2 Œ1;1� is the minimum index of �.M/ in M . We denote by End0.M/ the
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set of � 2 End.M/ with finite d.�/. The dimension function End0.M/ 3 � 7! d.�/ is
additive with respect to the direct sum operation and multiplicative with respect to the
monoidal product operation. The monoidal category End0.M/ is rigid, which means
that objects have left and right duals. For any � 2End0.M/, there exists N� 2End0.M/,
called a dual, or conjugate, endomorphism of �, and two isometries r� 2 .id; N� ı �/,
Nr� 2 .id; � ı N�/ satisfying

Nr�� �.r�/ D r
�
� N�. Nr�/ D

1

d.�/
:

The evaluation morphism ev� is identified with
p
d.�/ Nr�, and the coevaluation morph-

ism coev� is identified with
p
d.�/r�� .

If � and � are isomorphic objects in End0.M/, then there exists a unitary u 2
U.M/ satisfying � D Adu ı � , where Adu is the inner automorphism of M given
by Adu.x/ D uxu�; we then say that � and � are unitarily equivalent, or simply
equivalent. We denote by Inn.M/ the group of inner automorphisms of M .

For a fusion category C �End.M/, the categorical dimension d.�/ coincides with
the Frobenius-Perron dimension in C . We denote by Irr.C/ the set of isomorphism
classes of simple objects in C . We often identify an element in Irr.C/ with one of its
representatives if there is no possibility of confusion. The global dimension of C is
defined by

dim C D
X

�2Irr.C/

d.�/2:

2.2. The Drinfeld center

Let C be a monoidal category. A half-braiding for an object X 2 C is a natural iso-
morphism EX WX ˝ .�/! .�/˝ X , satisfying the hexagon and unit identities. If C

is strict, these identities reduce to

EX .Y ˝Z/ D .idY ˝ EX .Z// ı .eX .Y /˝ idZ/ for all Y;Z 2 C :

and
EX .1/ D idX ;

respectively.
The Drinfeld center Z.C/ is the category whose objects are half-braidings .X;EX /

of objects in C and whose morphisms are given by

Hom..X;EX /; .Y;EY //

D ¹t 2 Hom.X; Y /W .idZ ˝ t / ı EX .Z/ D EY .Z/ ı .t ˝ idZ/ for all Z 2 Cº:
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The Drinfeld center is a braided monoidal category, with tensor product of .X; EX /
and .Y;EY / given by

.X ˝ Y;EX˝Y /

with
EX˝Y .Z/ D .EX .Z/˝ idY / ı .idX ˝ EY .Z// for all Z 2 C ;

and braiding given by
cX;Y D EX .Y /:

If C is semisimple, then a half-braiding EX is determined by EX .Y / as Y ranges
over representatives of isomorphism classes of simple objects. If C is a fusion cat-
egory, then Z.C/ is a fusion category as well, and the braiding on Z.C/ is non-
degenerate. If C is a unitary fusion category, the unitary Drinfeld center (where the
eX .Y / are required to be unitaries) is equivalent to the ordinary Drinfeld center [29].
We will therefore only consider unitary half-braidings in this paper.

A modular tensor category is a non-degenerate braided spherical fusion category
C . The S -matrix of a modular tensor category is defined by

SX;Y D
dXdYp
dim.C/

trX˝Y .cX;Y ı cY;X /;

for simple objects X and Y , where c is the braiding on C , dX is the quantum dimen-
sion, dim.C/ is the global dimension, and tr is the normalized spherical trace on
End.X ˝ Y /. The S -matrix is defined up to a choice of square root of the global
dimension.

The T -matrix is defined by

TX;Y D ıX;Y dX trX˝X .cX;X /;

and the conjugation matrix C is defined by

CX;Y D ıX; xY ;

where xY is the dual object of Y .
For a modular tensor category over C, S is symmetric, T is diagonal with finite

order, and S and T are unitary [10]. We have the relations

˛.ST /3 D S2 D C D T �1CT

for a scalar ˛, see [3, 25].
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If C is a spherical fusion category over C, then Z.C/ is a modular tensor category.
We fix

p
dim.Z.C// D dim.C/, and then ˛ D 1, see [29].

We now return to a unitary fusion category C embedded in End0.M/. Let � 2 C

be a (not necessarily simple) object in C . Then the data of a half-braiding for � is
given by family of unitaries E� D ¹E� .�/º�2Irr.C/ with E� .�/ 2 .��; ��/ such that for
any t 2 .�; ��/ with �; �; � 2 Irr.C/, we have

tE� .�/ D �.E� .�//E� .�/�.t/: (2.1)

In general, a single object � may have several inequivalent half-braidings, and we
introduce labeling to distinguish them and use the notation Q� l D .�;E l� / for simplicity.
We denote by F the forgetful functor F WZ.C/! C .

2.3. The tube algebra

We summarize the basics of tube algebras following [16].
The tube algebra for a fusion category C � End.M/ is a finite-dimensional C�-

algebra with underlying vector space

Tube C D
M

�;�;�2Irr.C/

.��; ��/:

An element x 2 .��; ��/ is denoted as an element of Tube C by .� �jxj� �/. The
�-algebra operations of Tube C are defined by

.� �jxj� �/.� 0 �0jyj�0 �0/

D ı�;�0
X

�2Irr.C/

dim.�;�� 0/X
iD1

.� �jt .��;� 0/
�
i �.y/x�.t.

�
�;� 0/i /j� �

0/;

.� �jxj� �/� D d.�/.� N�j N�.�. Nr�� /x
�/r� j N��/;

where ¹t .�
�;� 0
/iº

dim.�;�� 0/
iD1 is an orthonormal basis of the space .�; ��0/. We denote

A�;� D

M
�2Irr.C/

.��; ��/;

which is a subspace of Tube C satisfying

A�;�A�0;�0 � ı�;�0A�;�0 ; A��;� D A�;� :

In particular, A� WD A�;� is a �-subalgebra of Tube C with unit 1� D .� 0j1j0 �/,
where we denote id by 0 for simplicity. We haveX

�2Irr.C/

1� D 1Tube C :
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The algebra A� is a corner of Tube C in the sense that we have

1� Tube C1� D A� :

In particular, every minimal projection in A� is minimal in Tube C . The space A�;�

is a A� -A� bimodule with respect to the left and right multiplication of A� and A� ,
respectively.

There is a one to one correspondence between the set of simple components of
Tube C and Irr.Z.C//, and we denote by z. Q� l/ the minimal central projection in
Tube C corresponding to Q� l . Then the algebra z. Q� l/ Tube C is isomorphic to a full
matrix algebra, and we can write down a system of matrix units for it in terms of
E l� as follows. We choose an orthonormal basis ¹w� .�/iº

dim.�;�/
iD1 of .�; �/ for each

� 2 Irr.C/, and set

E l� .�/.�;i/;.�;j / D �.w� .�/
�
j /E

j
� .�/w� .�/i 2 .��; ��/;

e. Q� l/.�;i/;.�;j / D
d.�/

ƒ
p
d.�/d.�/

X
�2Irr.C/

d.�/.� �jE� .�/.�;i/;.�;j /j� �/ 2 Tube C ; (2.2)

whereƒ is the global dimension of C . Then ¹e. Q� l/.�;i/;.�;j /º.�;i/;.�;j / forms a system
matrix units for the subalgebra z. Q� l/Tube C , and

z. Q� l/ D
X
.�;i/

e. Q� l/.�;i/;.�;i/: (2.3)

In particular, the rank of z. Q� l/Tube C isX
�2Irr.C/

dim.�; �/:

Conversely, every system of matrix units for the tube algebra arises this way (by
varying the choices of orthonormal bases for each .�; �/). This gives a very practical
way to determine the data of half-braidings from the algebra structure of the tube
algebra. Starting from a system of matrix units for Tube C , one can use (2.2) to extract
the components of the half-braidings E l� .�/.�;i/;.�;j /.

Note that X
i

e. Q� l/.�;i/;.�;i/

is a minimal central projection in A� , and the corresponding simple component of
A� has rank dim.�; �/. Conversely, every minimal central projection in A� is of this
form. The element e. Q� l/.�;i/;.�;i/ acts on A�;� as a projection of rank dim.�; �/.
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The modular data .S; T / for the modular tensor category Z.C/ can be computed
in terms of Tube C as follows. For � 2 Irr.C/, we set

t� D d.�/.� N�jr� Nr
�
� j
N��/:

Then t� is a unitary central element of A� with adjoint t�
�
D .� �j1j� �/. Let

t D
X

�2Irr.C/

t� :

Then t is a central unitary element in Tube C , giving the T -matrix via

tz. Q� l/ D TQ� l ;Q� l z. Q�
l/:

We can compute T by computing the eigenvalues of t� (or t�
�

).
We introduce a linear transformation S0 ofM

�

A�

by
S0..� �jxj� �// D d.�/. N� �jr

�
� N�.x�. Nr�//j� N�/; (2.4)

which can be thought of as rotation. Then S0 preserves the center of Tube C , and the
S -matrix is given by the matrix coefficients of S0 with respect to the basis ¹

p
ƒ

d.�/
z. Q� l/º.

We can extract these matrix coefficients using the linear functional on Tube C

 .� �jxj� �/ D d.�/2ı�;�ı�;0x:

Then

SQ� l ; Q�m D
d.�/d.�/

ƒ
 .S0.z. Q�

l//; z. Q�m//: (2.5)

In practice, it is often easier to compute S and T from the following formulas
via (2.2) (see [16, Lemma 5.3]). Let ��.x/ D r�� �.x/r� be the standard left inverse of
� 2 Irr.C/. Fix a simple summand .�; j / of � . Then

SQ� l ; Q�m D
d.�/

ƒ

X
�;i

d.�/��.E
m
� .�/

�
.�;i/;.�;i/E

l
� .�/

�
.�;j /;.�;j //; (2.6)

where the sum is taken over simple summands of �, and

TQ� l ;Q� l D d.�/��.E
l
� .�/.�;j /;.�;j //: (2.7)

Equation (2.2) implies the following observation, which allows us to determine
Irr.Z.C// from the algebra structure of Tube C .
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Lemma 2.1. Let �; � 2 Irr.C/.

1. The A� -A� bimodule A�;� is decomposed as

A�;� D

X
�2Irr.Z.C//

z.�/A�;�;

where each z.�/A�;� is, if it is not 0, an irreducible A� -A�-bimodule of
dimension dim.�; F .�// dim.�; F .�//. If two objects �; � 2 Irr.Z.C// are
inequivalent, so are the corresponding bimodules z.�/A�;� and z.�/A�;� .

2. Let � 2 Irr.Z.C// with dim.�;F .�// ¤ 0. Then every minimal projection in
z.�/A� acts on A�;� as a projection of rank dim.�;F .�//.

Apparently, the following property of simple objects of fusion categories has never
been observed before except in [17, proof of Theorem 6.4; Lemma 8.1 (7)]. It often
occurs in quadratic categories as a key feature that allows us to compute their tube
algebras.

Definition 2.2. An simple object � 2 C is said multiplicity free if the subalgebra A�

of Tube C is abelian.

Equation (2.2) and Lemma 2.1 imply the following.

Lemma 2.3. Let �; � 2 Irr.C/.

1. The object � is multiplicity free if and only if for any � 2 Irr.Z.C// the multi-
plicity of � in F .�/ is at most one.

2. Assume that � is multiplicity free. Then the multiplicity of every irreducible
A� -module contained in A�;� as a left A� -module is at most one.

2.4. Generalized Haagerup categories

We now introduce generalized Haagerup categories embedded in End.M/ (see [19,
Definition 2.7] for the definition without unitarity). Let C � End.M/ be a fusion cat-
egory. Then the set of isomorphism classes of invertible objects forms a finite group,
and we denote it by G. Throughout the paper we assume that G is abelian, and we
use additive notation for G. We choose a representative ˛g 2 C for each g 2 G. Then
by definition, we get

Œ˛g �Œ˛h� D Œ˛gCh�:

Thus, the map ˛WG!Aut.M/ is aG-kernel (see [20]), and it gives rise to an obstruc-
tion class inH 3.G;T /, which is identified with the associator of the pointed category
Inv.C/. Furthermore, we assume that there exists a self-dual object � 2 C such that

Irr.C/ D ¹Œ˛g �ºg2G t ¹Œ˛g ı ��ºg2G ; (2.8)
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with the fusion rules

Œ˛g �Œ�� D Œ��Œ˛�g �; g 2 G; (2.9)

Œ��2 D Œid�C
X
g2G

Œ˛g ı ��: (2.10)

We consider a Z2-action on G defined by multiplying by �1. Then the third
cohomology obstruction c0;3.C/ for ˛ actually belongs to H 3.G; T /Z2 (see [19,
Lemma 2.5]). Assume that it vanishes. Then we can choose ˛ to be a G-action on
M . From the fusion rules above, we see that there exist unitaries ug 2 M for each
g 2 G satisfying

Adug ı ˛g ı � D � ı ˛�g :

Since ˛ is a G-action, we get

AdugCh ı ˛gCh ı � D � ı ˛gCh D � ı ˛g ı ˛h
D Adug ı ˛g ı � ı ˛h
D Ad.ug˛g.uh// ı ˛g ı ˛h ı �

D Ad.ug˛g.uh// ı ˛gCh ı �;

and there exists a 2-cocycle ! 2 Z2.G;T / satisfying

ug˛g.uh/ D !.g; h/ugCh:

The cohomology class Œ!� 2 H 2.G;T / in fact gives a class in H 1.Z2; H 2.G;T //

(see [19, Lemma 2.6]), which we denote by c1;2.C/.

Definition 2.4. Let C � End.M/ be a fusion category with abelian G satisfying
(2.8)–(2.10). If the cohomology classes c0;3.C/ and c1;2.C/ vanish, we say that C

is a generalized Haagerup category.

Generalized Haagerup categories are completely classified by the solutions of the
following polynomial equations up to an appropriate equivalence relation (see [19,
Theorem 5.7]). Let

d D
jGj C

p
jGj2 C 4

2
;

where jGj is the order of G. We consider �h.g/ 2 ¹1;�1º, �g 2 T , and Ag.h; k/ 2 C

for g; h; k 2 G satisfying the following conditions:

�hCk.g/ D �h.g/�k.g C 2h/; �h.0/ D 1; (2.11)

�gC2h D �g ; �3g D 1; (2.12)



Drinfeld centers of fusion categories 607

X
h2G

Ag.h; 0/ D �
�g

d
; (2.13)

X
h2G

Ag.h � g; k/Ag0.h � g0; k/ D ıg;g0 �
�g�g0

d
ık;0; (2.14)

AgC2h.p; q/ D �h.g/�h.g C p/�h.g C q/�h.g C p C q/Ag.p; q/; (2.15)

Ag.k; h/ D Ag.h; k/; (2.16)

Ag.h; k/ D Ag.�k; h � k/�g��k.g C h/��k.g C k/��k.g C hC k/

D Ag.k � h;�h/�g��h.g C h/��h.g C k/��h.g C hC k/; (2.17)

Ag.h; k/ D AgCh.h; k/�g�gCk�gCh�gChCk�h.g/�h.g C k/

D AgCk.h; k/�g�gCh�gCk�gChCk�k.g/�k.g C h/; (2.18)

X
l2G

Ag.x C y; l/Ag�pCx.�x; l C p/Ag�qCxCy.�y; l C q/

D Ag.p C x; q C x C y/Ag�p.q C y; p C x C y/

� �g�gCqCx�gCpCqCy�gCp�gCxCy�gCqCxCy

� �p.g � p C x/�pCx.g � p C q C y/

� �q.g � q C x C y/�qCy.g � q C x/

�
ıx;0ıy;0

d
�g�gCp�gCq: (2.19)

These numerical invariants arise as follows (see [19, Section 3]). Let C � End.M/

be a generalized Haagerup category with G. Since c1;2.C/ D 0, we can choose � and
˛g satisfying the relation

˛g ı � D � ı ˛�g :

Let
G2 D ¹g 2 GW 2g D 0º:

Then thanks to the above relation, we have

˛g..�; �
2// D .�; �2/

for g 2G2. By replacing � with an equivalent endomorphism, we may further assume
that ˛g for g 2 G2 acts on .�; �2/ trivially. Then we can choose bases of intertwiner
spaces consisting of isometries s 2 .id; �2/, tg 2 .˛g ı �; �2/ satisfying

˛h.s/ D s; ˛h.tg/ D �h.g/tgC2h; (2.20)
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�.s/ D
1

d
s C

1
p
d

X
g2G

tg tg ; (2.21)

˛g ı �.tg/ D �g tgss
�
C

�g
p
d
st�g C

X
h;k2G

Ag.h; k/tgChtgChCkt
�
gCk : (2.22)

Recall that the Cuntz algebra On for an integer n larger than 1 is the universal
C�-algebra with generators ¹siºniD1 satisfying the relations

s�i sj D ıi;j 1;

nX
iD1

sis
�
i D 1:

Note that the above isometries ¹sº [ ¹tgºg2G satisfy the OjGjC1-relation.
Conversely, assume that we are given a solution .�h.g/; �g ; Ag.h; g// of

(2.11)–(2.19) (without knowing that it comes from a generalized Haagerup category).
We consider the Cuntz algebra OjGjC1 with the canonical generators ¹sº [ ¹tgºg2G .
Then we can introduce a G-action ˛ on OjGjC1 and an endomorphism � of OjGjC1
by (2.20)–(2.22), which satisfy ˛g ı � D � ı ˛�g and

�2.x/ D sxs� C
X
g2G

tg˛g ı �.x/t
�
g :

Taking the weak closure of OjGjC1 in an appropriate representation, we get a type III
factorM and a generalized Haagerup category C � End.M/ generated by (extensions
of) ˛g and � (see [19, Theorems 4.1 and Theorem 10.2]).

From now on, whenever we discuss a generalized Haagerup category C with a
finite abelian group G, we choose and fix ˛g , �, and ¹sº [ ¹tgºg2G � M satisfy-
ing (2.20)–(2.22).

When a generalized Haagerup category comes from a generalized Haagerup sub-
factor (called a 3G subfactor in [19]), the object id˚ � has a Q-system. It is shown
in [17, Section 7] that id˚ � has a Q-system if and only if the following holds:

A0.h; 0/ D ıh;0 �
1

d � 1
: (2.23)

In concrete examples, it is often the case that a solution of (2.11)–(2.19) and (2.23)
automatically satisfies

Ag.h; 0/ D ıh;0 �
1

d � 1
; (2.24)

for any g; h 2 G. In other words, once id ˚ � has a Q-system, so does any other
id˚ ˛g ı � in known examples.

Under 2.24), we get �g D 1 from (2.17), and (2.15) implies that the map

G 3 g 7! �h.g/ 2 ¹1;�1º
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is a character for any h 2G2. In particular, it makes sense to say that .�h.g/;Ag.h;k//
is a solution of (2.11)–(2.19) and (2.24), omitting �g .

Solutions to (2.11)–(2.19) and (2.24) have been computed for a number of small
groups. We list the known solutions, up to group automorphism and gauge equival-
ence. For G D Z2, there is a unique solution, corresponding to the A7 subfactor. For
Z3, there is a unique solution, corresponding to the Haagerup subfactor. In [17] a
unique solution was found for Z5. In [11] Evans and Gannon found a unique solution
for Z7, exactly two solutions for Z9, and no solutions for Z3 � Z3; they also found
numerical evidence for solutions for several larger odd cyclic groups. In [19] unique
solutions were found for Z4 and Z2 � Z2. In [14] a solution was found for Z4 � Z2.
In working through the examples in this paper we found that there exactly two solu-
tions each for Z6 and Z10, as well as at least one solution for Z8; these solutions are
contained in the accompanying Mathematica notebook solutions.nb.

2.5. (De)-equivariantization and orbifolds

Let G be a finite group acting on a fusion category C by tensor autoequivalences.
Then one can define the notion of a G-equivariant object in C . The category of
G-equivariant objects is a fusion category, called an equivariantization of C by G,
and denoted CG . There is an inverse construction called de-equivariantization, by
which C may be recovered from CG . We refer the reader to [8] for details. In addition
to the equivariantization (which can be thought of as taking the “fixed points” of the
G-action), one can also construct the crossed product C Ì G. The crossed product is
a quasi-trivialG-graded extenension of C which is Morita equivalent to CG , see [31].

For a fusion category C embedded in End.M/, both equivariantization and de-
equivariantization can sometimes be realized by an orbifold construction, in which
the von Neumann M is enlarged to a crossed product by a group action, and the
endomorphisms comprising the objects of C are extended to the larger algebra.

For generalized Haagerup categories, two specific types of orbifolds were con-
structed in [19, Section 8]. We briefly recall these constructions, and refer the reader
there for more details.

2.5.1. De-equivariantization. Let C be a generalized Haagerup category embedded
in End.M/. Suppose there is a z 2G2 such that �z.�/ is a character satisfying �z.z/D
1. LetP DM Ì˛z Z2 be the crossed product ofM by ˛z . ThenP is the von Neumann
algebra generated by M and a unitary � satisfying �2 D 1 and

�x��1 D ˛z.x/ for all x 2M:

Each ˛g can be extended to an automorphism Q̨g of P by setting

Q̨g.�/ D �z.g/�:
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Similarly, � can be extended to an endomorphism Q� of P by setting

Q�.�/ D �:

Then g 7! Q̨g defines an action of G on P , and we have

Q̨g ı Q� D Q� ı Q̨�g for all g 2 G:

Moreover,
Œ Q̨g � D Œ Q̨h� () g � h 2 ¹0; zº;

and if G0 � G is a set of representative elements for the ¹0; zº-cosets of G, we have

Œ Q�2� D Œid�
M
g2G0

2Œ Q̨g Q��:

The fusion category in End.P / tensor generated by Q� is a Z2-de-equivariantization
of C .

2.5.2. Equivariantization. Let C again be a generalized Haagerup category, and let
� be an automorphism of G which preserves the structure of C :

��.h/.�.g// D �h.g/;

��.g/ D �.g/;

A�.g/.�.h/; �.k// D Ag.h; k/ for all g; h; k 2 G:

Define an automorphism  on M by

.s/ D s; .tg/ D t�.g/; g 2 G:

Then

 ı � D � ı 

and

 ı ˛g D ˛�.g/ ı :

The automorphism  thus induces an action of Zm on C , where m is the order of � .
Let P D M Ì Zm be the crossed product of M by  . Then P is the von Neumann
algebra generated by M and a unitary � satisfying

�m D 1 and �x��1 D .x/ for all x 2M:

We can extend � to an endomorphism Q� of P by setting

Q�.�/ D �:
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Then the category C in End.P / tensor generated by Q� is a Zm-equivariantization
of C . The corresponding crossed product category is the category in End.M/ tensor
generated by C and  .

2.6. Tube algebras for generalized Haagerup categories

In this section we describe a convenient basis for the tube algebra of a generalized
Haagerup category. Let C be a generalized Haagerup category in End.M/, with group
of invertible objects ¹˛gºg2G and s 2 .id; �2/, tg 2 .˛g ; �2/, as in Section 2.4. Inside
the tube algebra, let

AG D

M
g;h2G

A˛g;˛h ; AG;G� D

M
g;h2G

A˛g;˛h�;

A
G�;G D

M
g;h2G

A˛g�;˛h ; A
G� D

M
g;h2G

A˛g�;˛h�:

Then
Tube.C/ D AG ˚AG;G� ˚A

G�;G ˚A
G�:

To simplify notation, when expressing elements of the tube algebra, we will sup-
press “˛” and refer to the simple objects as g (instead of ˛g ) and g� (instead of ˛g�).

A basis for AG is given by

¹.g kj1jk g/ºg;k2G [ ¹.g k�j1jk� � gºg;k2G I

a basis for AG;G� is given by

¹.g k�jt2kCg�hjk� h�/ºg;h;k2G I

a basis for A
G�;G is given by

¹.h� k�jt
�
h�g jk� g/ºg;h;k2G I

and a basis for A
G� is given by

¹.h1� k�jtk�h2Cg t
�
h1�kCg

jk� h2�/ºh1;h2;k;g2G

[ ¹.h� k�jss
�
jk� 2k�h�/ºh;k2G [ ¹.h� kj1jk h�2k�/ºh;k2G :

Multiplying two elements .� �jxj� �/ and .� 0 �0jyj�0 �0/ in a tube algebra requires
summing over simple objects � 2 Irr.C/ and an orthonormal basis for each space
.�; ��0/. Note that for a generalized Haagerup category, any product of two objects in
Irr.C/ is of the form ˛g , ˛g�, or ˛g�2 for some g 2 G. Moreover, we have

.˛g ; ˛h/ D .˛g�; ˛h�/ D ıg;hC;
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.˛g ; ˛h�
2/ D ıg;hCs; .˛g�; ˛h�

2/ D CtgCh:

Therefore, all possible non-zero hom spaces .�; ��0/ are 1-dimensional and spanned
by either 1 or a Cuntz algebra generator. We can then take 1 or the appropriate Cuntz
algebra generator in each case as a canonical isometry for computing the tube algebra
multiplication.

3. Structure of the tube algebra for a generalized Haagerup category
and restriction on the size of G2

We fix a generalized Haagerup category C � End.M/ with a finite abelian group G.
We choose ˛, �, s, and tg satisfying (2.11)–(2.22) for C . Recall that

G2 D ¹g 2 GI 2g D 0º:

In this section we will describe the structure of the tube algebra of C , and show
that this leads to a restriction on the size of G2.

We denote by yG the dual group of G. Let

. yG/2 D ¹� 2 yGI 2� D 0º:

We choose G� � G and yG� � yG satisfying

G D G2 tG� t .�G�/;

yG D . yG/2 t yG� t .� yG�/:

Let ƒ be the global dimension of C :

ƒ D jGj C jGjd2 D jGj.2C jGjd/ D jGj
jGj2 C 4C jGj

p
jGj2 C 4

2
:

Letting a D 1=jGj and b D 1=
p
jGj2 C 4, we get the simple expression

1

ƒ
D
a � b

2
:

3.1. The non-invertible simple objects in C are multiplicity free

Lemma 3.1. The object ˛g ı � is multiplicity free (i.e., the algebra A
g� is abelian)

for any g 2 G.
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Proof. It suffices to show the statement for gD 0 because the pair .C ;˛g ı �/ satisfies
the same conditions as the pair .C ; �/. The map S20 is an anti-isomorphism from each
A� in the tube algebra to A N� (diagrammatically this corresponds to rotation by �).
Since � is self-dual, the map S20 restricted A� is an anti-automorphism. On the other
hand, we claim that this map is the identity, which would show that A� is abelian.

Indeed, ˛k.s/ D s implies that S20 acts on .� kj1jk �/ and .� k�jss�jk� �/ as the
identity. We also have from (2.4)

S20 ..� g�jthCg t
�
h�g jg� �//

D dS0..g��js
�˛g ı �.thCg t

�
h�g�.s//j� g�//

D
p
dS0..g� �js

�˛g ı �.thCg th�g/j� g�//

D d3=2..�g�js
��.s�˛g ı �.thCg th�gs//jg� �//:

Then using (2.21–2.22) gives

d3=2s��.s�˛g ı �.thCg th�gs//

D d3=2��h.g C h/s
��.s�˛g�h ı �.tg�h/˛g ı �.th�gs//

D d��h.g C h/s
��.t�g�h/� ı ˛g ı �.th�gs/

D d��h.g C h/�g�h.h � g/s
�˛h�g ı �.t

�
h�g/�

2
ı ˛�g.th�gs/

D d�g.h � g/s
�t�h�g�

2
ı ˛�g.th�gs/

D d�g.h � g/s
�˛h ı �.th�gs/t

�
h�g

D ds�˛hCg ı �.thCgs/t
�
h�g

D d1=2t�hCg�.s/t
�
h�g

D thCg t
�
h�g :

Since elements of the above forms span A�, the claim is shown.

3.2. The structure of AG and its action on AG;G�

In this section we describe the structure of the “group part” of the tube algebra AG ,
following [17] (where the computation was done for the odd case, i.e., G2 D ¹0º).
Then we describe the action of AG on AG;G�, which will allow us to determine
the simple objects in the Drinfeld center whose underlying objects contain invertible
summands.

In what follows, we assume (2.24). It is straightforward to show the following,
using (2.1).
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Lemma 3.2. For k 2 G2, the object ˛k has a unique half-braiding Ek , and it is given
by Ek.g/ D �k.g/ and Ek.g�/ D �k.g/.

The above lemma implies that ˛k for k 2G2 has a unique extension f̨k to the Drin-
feld center Z.C/, which we often again denote by k for simplicity. Thanks to (2.2)
and (2.3), the corresponding minimal central projection in Tube C is

z.k/ D
1

ƒ

X
g2G

.�k.g/.k gj1jg k/C d�k.g/.k g�j1jg� k// 2 Ak :

3.2.1. Structure of AG . Note that Ag;hD 0 unless gD�h. Therefore, we can write

AG D

M
k2G2

Ak ˚

M
g2G�

Bg ;

where
Bg WD Ag ˚Ag;�g ˚A�g;g ˚A�g :

We now determine the algebra structure of the Ak and Bg . For .g; �/ 2 G � yG, let

p.g; �/ D
1

jGj

X
h2G

hh; �i.g hj1jh g/:

Then the p.g; �/ are mutually orthogonal projections which sum to the identity in
AG , and we have

p.g; �/.g �j1j� � g/ D .g �j1j� � g/p.�g;��/:

For .g; �/ 2 .G � yG/n.G2 � . yG/2/, set

E.g; �/11 D p.g; �/; E.g; �/22 D p.�g;��/;

E.g; �/12 D p.g; �/.g �j1j� � g/ D .g �j1j� � g/p.�g;��/;

E.g; �/21 D p.�g;��/.�g �j1j� g/ D .�g �j1j� g/p.g; �/:

Then since .g; �/ ¤ .�g;��/, it is easy to see that the E.g; �/ij are matrix units
for a 2 � 2 subalgebra of AG . For .k; �/ 2 G2 � yG�, this gives a subalgebra of Ak ,
which we denote by A�

k
. For .g; �/ 2 G� � G, this gives a subalgebra of Bg which

we denote by B�
g .

What remains is to decompose the projections p.k; �/ for .k; �/ 2 G2 � . yG/2.
Recall that for k 2 G2, the map

G 3 g 7! �k.g/ 2 ¹1;�1º
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is a character, and we can regard �k as an element in . yG/2. Thus, we have the follow-
ing expression

z.k/ D
jGj

ƒ
p.k; �k/.1k C d.k �j1j� k// D

jGj

ƒ
.1k C d.k �j1j� k//p.k; �k/:

For � 2 . yG/2, the projection p.k;�/ is central in A0, and p.k;�/A0 is a 2-dimen-
sional algebra spanned by p.k; �/ and p.k; �/.k �j1j� k/. We have

.p.k; �/.k �j1j� k//2

D p.k; �/C
X
g2G

p.0; �/.k g�j1jg� k/

D p.k; �/C
X
g2G

hg; �ip.k; �/.k �j1j� k/

D

´
p.k; �k/C jGjp.k; �k/.k �j1j� k/; � D �k;

p.k; �/; � ¤ �k :

Set

E.k; k/ D
jGjd

ƒ
p.k; �k/.d1k � .k �j1j� k//

and

E.k; �/˙ D
1

2
p.k; �/.1k ˙ .k �j1j� k//

for � 2 . yG/2 n ¹�kº.
Then E.k; k/ is a minimal central projection in Ak orthogonal to z.k/, and the

pair E.k; �/˙ are mutually orthogonal minimal central projections in Ak .
To summarize, we have the following decompositions.

Lemma 3.3. 1. For g 2 G�, we have

Bg D

M
�2 yG

B�
g :

2. For k 2 G2, we have

Ak D Cz.k/˚CE.k; k/˚
M

�2. yG/2n¹kº

.CE.k; �/C ˚CE.k; �/�/˚
M
�2G�

A�
k :

3.2.2. Action of AG on AG;G�. In this section we determine the action of each Ag

on each Ag;h�, using Lemma 2.3. Since, each A
h� is multiplicity free by Lemma 3.1,

each irreducible Ag -module can appear in Ag;h� with multiplicity at most one. Thus,



P. Grossman and M. Izumi 616

it suffices to known whether each simple component of Ag acts on Ah;g� trivially or
not.

For g 2 G n G2, we can easily determine the Ag -action on Ag;h�, as we have
dim Ag D dim Ag;h� D jGj. Namely, every simple component Cp.g; �/ acts on
Ag;h� with multiplicity one.

Since
¹.k hj1jh k/.k �jtk�g j� g�/ºh2G ;

is a basis for Ak;g� , so is

¹p.k; �/.k �jtk�g j� g�/º�2 yG :

Since z.k/ is central in Tube C , it acts on Ak;g� trivially. Then the algebras CE.k; k/

and A�
k

for � 2 yG� must act on Ak;g� non-trivially, since each p.k; �/ acts non-
trivially on the basis above.

It remains to show how CE.k; �/˙ acts on p.k; �/.0 �jtk�g j� g�/ for
� 2 . yG/2 n ¹�kº.

Lemma 3.4. For � 2 . yG/2 n ¹�kº, we have

.k �j1j� k/p.k; �/.k �jtk�g j� g�/ D hg C k; �C �kip.k; �/.k �jtk�g j� g�/:

Proof. Since .k �j1j� k/ commutes with p.k; �/ as � 2 . yG/2, we have

.k �j1j� k/p.k; �/.k �jtk�g j� g�/

D p.k; �/.k �j1j� k/.k �jtk�g j� g�/

D p.k; �/
X
h2G

�k.h/.k h�jt
�
h�.tk�g/thjh� g�/

D p.k; �/
X
h2G

�k.h/Ag�k.hC k � g; hC k � g/

� �k�g.g � k/.k h�jt2hCk�g jh� g�/

D p.k; �/
X
h2G

�k.h/Ag�k.hC k � g; hC k � g/�k�g.g � k/

� �h.k � g/.k hj1jh k/.k �jtk�g j� g�/

D

�X
h2G

Ag�k.hC k � g; hC k � g/�hCk�g.g � k/hh; �C �ki
�

� p.k; �/.k �jtk�g j� g�/

D hg C k; �C �ki
�X
h2G

Ag�k.h; h/�h.g � k/hh; �C �ki
�

� p.k; �/.k �jtk�g j� g�/:
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Equations (2.17) and (2.24) then implyX
h2G

Ag�k.h; h/�h.g � k/hh; �C �ki D
X
h2G

�
ıh;0 �

1

d � 1

�
hh; �C �ki D 1:

The above lemma implies that

E.k; �/hgCk;�C�kip.k; �/.k �jtk�g j� g�/ D p.k; �/.k �jtk�g j� g�/;

and
E.k; �/�hgCk;�C�kiAk;g� D ¹0º:

In conclusion, we have that every simple component of every Ag acts nontrivially
on every Ag;h�, except that for Ak for k 2 G2:

1. the components Cz.k/ act trivially on each Ak;h�;

2. the components CE.k; �/�hhCk;�C�ki, with � 2 yG2 n ¹�kº act trivially on
Ak;h�.

3.3. The simple objects in Z.C / and restriction on G2

In this section we use the structure of the tube algebra to describe the simple objects
of Z.C/ and prove the restriction on G2.

The minimal central projections in Ak; k 2 G2 and in Bg ; g 2 G� correspond to
the simple objects � 2 Z.C/ such that F .�/ 2 C contains an invertible summand.
Since the non-invertible simple objects ˛h ı � of C are all multiplicity free, for each
simple � 2 Z.C/, the object F .�/ contains each of ˛h ı � with multiplicity at most
one. If F .�/ contains ˛g , whether the multiplicity of ˛h� in F .�/ is 0 or 1 is determ-
ined by whether the action of z.�/Ag on Ag;h� is trivial or not, which we have just
determined above.

Summing up, we get the following list of simple objects in Z.C/ whose under-
lying objects in C contain invertible summands. In each case, the parts of the half-
braidings E.�/.�/g;g (or E.�/.�/.g;i/;.g;i/ when there is multiplicity) can be read off
using (2.2) and the formulas obtained above for the minimal projections in Ag and
Bg , as in [17].

Lemma 3.5. Let the notation be as above, and let k 2 G2.

1. Let
� D id˚

M
g2G

˛g ı �:

The object � has a unique half-braiding, which gives e. Q�/0;0 D E.0; 0/, and

E�.h/0;0 D 1; E�.h�/0;0 D �
1

d2
:
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More generally, ˛k� has a unique half-braiding Ek�.�/ D Ek.�/˛k.E�.�//.

2. For � 2 . yG/2 n ¹0º, let

'�;˙ D id˚
M

hg;�iD˙1

˛g ı �:

The object '�;C has a unique half-braiding, which gives

e.e'�;C/0;0 D E.0; �/C;
and '�;� has a unique half-braiding, which gives

e.e'�;�/0;0 D E.0; �/�:
The corresponding half-braidings are

E'�;˙.h/0;0 D hh; �i; E'�;˙.h�/0;0 D
˙hh; �i

d
:

More generally, ˛k'�;˙ has a unique half-braiding

Ek'�;˙.�/ D Ek.�/˛k.E'�;˙.�//:

3. Let
�k D ˛k ˚ ˛k ˚

M
g2G

˛g ı �:

The object �k has exactly .jGj � jG2j/=2 half-braidings parametrized by � 2
yG�, which give e.e�k� /.k;i/;.k;j / D E.k; �/ij , and

E��k .h/.k;1/;.k;1/ D hh; �i; E��k .h�/.k;i/;.k;i/ D 0:

(4) For g 2 G�, let
�g D ˛g ˚ ˛�g ˚

M
h2G

˛h ı �:

The object �g has exactly jGj half-braidings parametrized by � 2 yG, which
give e.f�g� /g;g D p.g; �/, and

E��g .h/g;g D hh; �i; E��g .h�/g;g D 0:

Since the algebra A� has the basis

¹.� kj1jk �/ºk2G2 [ ¹.� k�jss
�
jk� �/ºk2G2 [ ¹.� g�jthCg t

�
h�g jg� �/ºg;h2G ;

we see that dim A� D jGj
2 C 2jG2j. In a similar way, we can see that

dim A
g�;� D

´
jGj2 C 2jG2j; g 2 2G;

jGj2; g 2 G n 2G:
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Let ZG be the sum of the central projections in the tube algebra that have a non-zero
subprojection in some Ag . In other words,

ZG D
X
k2G2

�
z.k/C z.fk�/CX

�2.. yG/2/n¹0º

�
z.Ak'�;C/C z.Ak'�;�/

�
C

X
�2 yG�

z.e�k� /�
C

X
g2G�

X
�2 yG

z.f�g� /:
Theorem 3.6. Let C � End.M/ be a generalized Haagerup category with a finite
abelian group G satisfying (2.24). Then jG2j � 4.

Proof. If G is an odd group, we have nothing to prove, and we assume that G is an
even group. Then

dim.1 �ZG/A� D dim A� � jG2j.1C j. yG/2j � 1C j yG�j/ � jG�jj yGj

D jGj2 C 2jG2j �
�
jG2j

2
C .jGj C jG2j/

jGj � jG2j

2

�
D jGj2 C 2jG2j �

jGj2 C jG2j
2

2

D
jGj2

2
�
jG2j

2

2
C 2jG2j:

On the other hand, if g 2 G n 2G, we get

dim.1 �ZG/Ag�;�

D dim A
g�;� � jG2j.1C #¹� 2 . yG/2 n ¹0ºI hg; �i D h0; �iº C j yG�j/ � jG�jj yGj

D jGj2 � jG2j.1C #¹� 2 . yG/2 n ¹0ºI hg; �i D 1º �
jGj2 � jG2j

2

2

D
jGj2 C jG2j

2

2
� jG2j.1C #¹� 2 . yG/2 n ¹0ºI hg; �i D 1º:

Note that the group . yG/2 is identified with the dual group ofG=2GŠZm2 , and gC 2G
in G=2G is not 0. Thus, we get

#¹� 2 . yG/2 n ¹0ºI hg; �i D 1º D
j. yG/2j

2
� 1 D

jG2j

2
� 1;

and

dim.1 �ZG/Ag�;� D
jGj2

2
:

Since � and ˛g ı � are multiplicity free, Lemma 2.3 implies that

dim.1 �ZG/Ag�;� � dim.1 �ZG/A�:

This is possible only if jG2j � 4.



P. Grossman and M. Izumi 620

The above computation shows the following. If jG2j D 2, we have

dim.1 �ZG/A� D
jGj2

2
C 2;

and for g 2 G n 2G, we have

dim.1 �ZG/Ag�;� D
jGj2

2
:

This means that if we set

� D
M
g2G

˛g�; �C D
M
g22G

˛g�; �� D
M

g2Gn2G

˛g�;

then the object � has exactly jGj2=2 half-braidings ¹E i�ºi2I , and each of �C and ��
has exactly two half-braidings ¹Ej�˙ºjD0;1.

If jG2j D 4, we have

dim.1 �ZG/A� D dim.1 �ZG/Ag�;� D
jGj2

2
;

for any g 2 G. Thus, � has exactly jGj2=2 half-braidings ¹E i�ºi2I .

3.4. Modular data

So, far we have determined the algebra structure of Tube C . We can now compute the
modular data S and T .

The basic idea, following [17], is that to apply the formula (2.6) to a pair of
objects e�1l ; e�2m in Z.C/, it is enough to know the components of the half-braidings
Em�2.�/.�;i/;.�;i/ and E l�1.�/.�;j /;.�;j / for a fixed simple summand .�; j / of �1, as .�; i/
varies over the simple summands of �2.

In particular, in our situation where C is a generalized Haagerup category, if �1
contains an invertible summand ˛g , then we can choose � D ˛g . Then we only need
to know the components of the half-braidings of the form E l�1.�/.g;j /;.g;j /, which
are given by Lemma 3.5; and Em�2.g/.�;i/;.�;i/. If g D 0, then by the definition of
a half-braiding, we have Em�2.g/.�;i/;.�;i/ D 1 for any .�; i/. Moreover, if g … G2,
then Em�2.g/.h;i/;.h;i/ can be computed from Lemma 3.5, and Em�2.g/h�;h� D 0, since
.˛h�˛g ; ˛g˛h�/ D 0.

Therefore, we can compute all entries of the S -matrix involving 0, Q� , e'�;˙, andf�g� , for g 2 G�. For k; l 2 G2, the computation of Se�k� ;e�l � using (2.6) would in
principle require determining E��

k
.l/

h�;h�. However, since in the formula E��
k
.l/

h�;h�

multiplies E��
l
.h�/.l;1/;.l;1/, which is 0 by Lemma 3.5, we don’t actually need to know

E��
k
.l/

h�;h�.
The computations are summarized in the following lemma.
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Lemma 3.7. We have the following formulas for entries of S and T :

S0;0 D
1

ƒ
D
a � b

2
; S0; Q� D

1C jGjd

ƒ
D
aC b

2
;

S
0;e'�;˙ D

1C jGj
2
d

ƒ
D
a

2
; S0;e�g� D 2C jGjd

ƒ
D a;

S Q�; Q� D
1

ƒ
D
a � b

2
; S

Q�;e'�;˙ D
a

2
; S

Q�;e�g� D a;
SA'�1;"1 ;A'�2;"2 D

a

2
C
"1"2ı�1;�2

4
; Se'�;˙;e�g� D ahg; �i;

Se�g� ;e�h� D a.hh; �ihg; �i C hh; �ihg; �i/:
T0;0 D T Q�; Q� D Te'�;˙;e'�;˙ D 1; Te�g� ;e�g� D hg; �i:

Proof. The computation not involving '�;˙ is the same as in [17], so we compute
only those involving '�;˙, using (2.6).

1. Computation of Se'�;˙; Q� :

Se'�;˙; Q� D
d.'�;˙/

ƒ

X
�

d.�/��.E�.0/
�
�;�E'�;˙.�/

�
0;0/

D
a

2

�
1C d

X
g2G

�
g�.E�.0/

�

g�;g�
E'�;˙.g�/

�
0;0/

�
D
a

2

�
1C d

X
g2G

˙hg; �i

d

�
D
a

2
:

2. Computation of SA'�1;"1 ;A'�2;"2 :

SA'�1;"1 ;A'�2;"2 D
d.'�1;"1/

ƒ

X
�

d.�/��
�
E'�2;"2 .0/

�
�;�E'�1;"1 .�/

�
0;0

�
D
a

2

�
1C d

X
hg;�2iD"2

�
g�

�
E'�2;"2 .0/

�

g�;g�
E'�1;"1 .g�/

�
0;0

��
D
a

2

�
1C "1

X
hg;�2iD"2

hg; �1i
�
:

Note that we have X
hg;�2iD1

hg; �1i C
X

hg;�2iD�1

hg; �1i D 0;
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and so

"1
X

hg;�2iD"2

hg; �1i D "1"2
X

hg;�2iD1

hg; �1i D "1"2ı�1;�2
jGj

2
:

3. Computation of Se'�;˙;e�0� :

Se'�;˙;e�0� D d.'�;˙/

ƒ

X
�;i

d.�/��
�
E��0.0/

�
.�;i/;.�;i/E'�;˙.�/

�
0;0

�
D
a

2

�
2C d

X
g2G

�
g�

�
E��0.0/

�

g�;g�
E'�;˙.g�/

�
0;0

��
D
a

2

�
2C d

X
g2G

˙hg; �i

d

�
D a:

4. Computation of Se'�;˙;e�g� :

Se'�;˙;e�g� D d.'�;˙/

ƒ

X
�

d.�/��
�
E��g .0/

�
�;�E'�;˙.�/

�
0;0

�
D
a

2

�
E��g .0/

�
g;gE'�;˙.g/

�
0;0 C E��g .0/

�
�g;�gE'�;˙.�g/

�
0;0

C d
X
h2G

�
h�

�
E��0.0/

�

h�;h�
E'�;˙.h�/

�
0;0

��
D
a

2

�
E'�;˙.g/

�
0;0 C E'�;˙.�g/

�
0;0 C d

X
h2G

˙hh; �i

d

�
D ahg; �i:

We have determined the entries of the modular data where both indices are among
the objects 0, Q� , e'�;˙, and f�g� . We would like to extend the formulas in Lemma 3.7
to the objects k, k Q� , and ke'�;˙ for k 2 G2.

First, note that for k; l 2 G2, we have

Sk;l D
�k.l/�l.k/

ƒ
D
a � b

2
�k.l/�l.k/; Tk;k D �k.k/:

Next, for any invertible object g and any simple object X in a modular tensor cat-
egory D , EX .g/ ıEg.X/ is an automorphism of g˝X , and hence a scalar. Therefore,

jSg;X j D
dXp

dim.D/
;

and in particular jSg;X j ¤ 0. We then have, for any X and Y ,

Sg˝X;Y D

p
dim.D/

dX
Sk;Y SX;Y D

Sk;Y

jSk;Y j
SX;Y :
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Returning to our generalized Haagerup category, for k 2 G2 and a simple object
X in Z.C/, we set

s.k;X/ D
Sk;X

jSk;X j
:

Then we have

SkX;Y D s.k; Y /SX;Y ;

TkX;kX D s.k;X/Tk;kTX;X ;

and so

SkX;lY D s.k; l/s.k; Y /s.l; X/SX;Y D �k.l/�l.k/s.k; Y /s.l; X/SX;Y ; (3.1)

for l 2 G2 and Y 2 Irr.Z.C//.
Note that we have, for any Q i 2 Z.C/ with simple summand .�; j /,

s.k; Q i / D Ek.�/
�E i .k/

�
.�;j /;.�;j /:

In particular, when  contains g 2 G, we get

s.k; Q i / D �k.g/E
i
 .k/

�
g;g ;

and when  contains ˛g ı �,

s.k; Q i / D �k.g/E
i
 .k/

�

g�;g�
:

These facts imply the following formulas.

Lemma 3.8. For k 2 G2, we have

s.k; Q�/ D 1;

s.k; e'�;˙/ D hk; �i;
s.k;f�g� / D �k.g/hk; �i:

Lemma 3.8, together with Lemma 3.7 and (3.1), determines the entries of the
modular data where both indices are among the objects k, k Q� , ke'�;˙, and f�g� . It
remains to determine the entries of the modular data which involve the Q�i and e�"j .

Let
.G � yG/� D .G2 � . yG/�/ t .G� � yG/:

Then we have

G � yG D .G � yG/2 t .G � yG/� t �.G � yG/�:
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Theorem 3.9. Let C � End.M/ be a generalized Haagerup category with a finite
group G satisfying (2.24). Assume jG2j D 2. The following set exhausts the equival-
ence classes of the simple objects in Z.C/:

¹kºk2G2 [ ¹k Q�ºk2G2 [ ¹ke'�0;"ºk2G2; "2¹1;�1º
[ ¹f�g�º.g;�/2.G� yG/� [ ¹e�"j º"2¹1;�1º; j2¹0;1º [ ¹ Q�iºi2I ;

where we use the notation . yG/2 D ¹0; �0º and I is an index set with jI j D jGj2=2.
Every object in Z.C/ is self-dual.

There exist characters G2 3 k 7! s.k;f�˙j / 2 ¹1;�1º and G2 3 k 7! s.k; Q�i / 2

¹1;�1º satisfying

Sk;l D s.k; l/
a � b

2
; Sk:l Q� D s.k; l/

aC b

2
; S

k;lA'�0;˙ D s.k; l/
a

2
hk; �0i;

Sk;e�g� D ahk; �i�k.g/; Sk;e�˙j D s.k;f�˙j /b2 ; Sk; Q�i D s.k; Q�
i /b;

Sk Q�;l Q� D s.k; l/
a � b

2
;

S
k Q�;lA'�0;˙ D s.k; l/

a

2
hk; �0i;

Sk Q�;e�g� D ahk; �i�k.g/;
Sk Q�;e�˙j D �s.k;f�˙j /b2 ; Sk Q�; Q�i D �s.k; Q�

i /b;

S
kA'�0;"1 ;lA'�0;"2 D s.k; l/hk; �0ihl; �0i

�a
2
C
"1"2

4

�
;

Ske'";e�g� D ahk; �i�k.g/hg; �0i;
S
kA'�0;"1 ;f�"2j D s.k;f�"2j /"1"24 ;

S
kA'�0;˙; Q�j D 0;

Se�g� ;e�h� D a.hh; �ihg; �i C hh; �ihg; �i/; Se�g� ;e�˙k D 0; Se�g� ; Q�j D 0;
Tk;k D Tk Q�;k Q� D �k.k/; T

kA'�0;˙;kf'˙ D �k.k/hk; �i; Te�g� ;e�g� D hg; �i:
Proof. Most of the computation is similar to that in [17], except for

1. computation of Se'�0;";e�Ci :
Se'�0;";e�Ci D d.'�0;"/

ƒ

X
g22G

d�
g�.E

i
�C
.0/�

g�;g�
E'�0;".g�/

�
0;0/

D
"

2jGj

X
g22G

hg; �0i D
"

4
I
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2. computation of Se'�0;";e��i :
Se'�0;";e��i D d.'�0;"/

ƒ

X
g2Gn2G

d�
g�.E

i
��
.0/�

g�;g�
E'�0;".g�/

�
0;0/

D
"

2jGj

X
g2Gn2G

hg; �0i D �
"

4
I

3. computation of Se'�0;"; Q�j :

Se'�0;"; Q�j D
d.'�0;"/

ƒ

X
g2G

d�
g�.E

j
�.0/

�

g�;g�
E'�0;".g�/

�
0;0/

D
1

2jGj

X
g2G

"hg; �0i D 0:

We have already seen in the proof of Lemma 3.1 that S20 restricted to A
g� is the

identity, which implies that every simple objectX 2Z.C/with F .X/ containing ˛g ı
� for some g 2 G is self-dual. The only simple objects not satisfying this condition
are those in G2, and they are again self-dual.

In a similar way, we can show the following.

Theorem 3.10. Let C � End.M/ be a generalized Haagerup category with a finite
group G satisfying (2.24). Assume jG2j D 4. The following set exhausts the equival-
ence classes of the simple objects in Z.C/:

¹kºk2G2 [ ¹k Q�ºk2G2 [ ¹ke'�;"ºk2G2; �2. yG/2n¹0º; "2¹1;�1º
[ ¹f�g�º.g;�/2.G� yG/� [ ¹ Q�iºi2I

where I is an index set with jI j D jGj2=2. Every object in Z.C/ is self-dual.
Let k; l 2 G2, and let

s.k; l/ D �k.l/�l.k/:

There exist characters
G2 3 k 7! s.k; Q�i / 2 ¹1;�1º

satisfying

Sk;l D s.k; l/
a � b

2
; Sk:l Q� D s.k; l/

aC b

2
; S

k;le'�;˙ D s.k; l/
a

2
hk; �i;

Sk;e�g� D ahk; �i�k.g/; Sk; Q�i D s.k; Q�
i /b;

Sk Q�;l Q� D s.k; l/
a � b

2
; S

k Q�;le'�;˙ D s.k; l/
a

2
hk; �i; Sk Q�;e�g� D ahk; �i�k.g/;
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S

l s.k; l/a�b
2

l Q� s.k; l/aCb
2

s.k; l/a�b
2

lA'�2;"2 s.k; 1/a
2
hk; �2i s.k; l/a

2
hk; �2i s.k; l/hk; �2ihl; �1i.

a
2
C

"1"2ı�1;�2
4

/e�h� ahk; �i�k.h/ ahk; �i�k.h/ ahk; �i�k.h/hh; �1i a.hh; �ihg; �i C hh; �ihg; �if�"2j s.k;f�"2j /b2 �s.k;f�"2j /b2 s.k;f�"2j / "1"24 0 ‹

Q�i s.k; Q�i /b �s.k; Q�i /b 0 0 ‹ ‹

k k Q� kA'�1;"1 f�g� f�"1j 0 Q�i 0
T �k.k/ �k.k/ �k.k/hk; �1i hg; �i ‹ ‹

Table 1. Partial modular data for generalized Haagerup categories for even groups satisfy-
ing (2.24). Undetermined entries are labeled by “?”. (The index set for e�" is empty when
jG2j D 4.)

Sk Q�; Q�i D �s.k; Q�
i /b; S

kA'�1;"1 ;lA'�2;"2 D s.k; l/hk; �2ihl; �1i
�a
2
C
"1"2ı�1;�2

4

�
;

S
ke'�;";e�g� D ahk; �i�k.g/hg; �i; S

ke'�;˙; Q�j D 0;

Se�g� ;e�h� D a.hh; �ihg; �i C hh; �ihg; �i/; Se�g� ; Q�j D 0;
Tk;k D Tk Q�;k Q� D �k.k/; T

ke'�;˙;ke'�;˙ D �k.k/hk; �i; Te�g� ;e�g� D hg; �i:
The results of Theorems 3.9 and 3.10 are summarized in Table 1.
We now show how to determine s.k; Q�i / and s.k;f�˙i / for k 2 G2. For g 2 G and

k 2 G2, we set
Ug.k/ D �k.g/.g� kj1jk g�/:

Then ¹Ug.k/ºk2G2 forms a representation of G2 in A
g�. Let X D Q i be a simple

object in Z.C/ such that  contains g� and h�. Since A
g� is abelian,Ug.k/e.X/g�;h�

is a scalar multiple of e.X/
g�;h�.

Lemma 3.11. Let the notation be as above.

Ug.k/e.X/g�;h� D s.k;X/e.X/g�;h�:

Proof. It suffices to show the statement in the case of h D g. We have already seen

s.k;X/ D �k.g/E
i
 .k/

�

g�;g�
;

and so
E i .k/g�;g� D s.k;X/�k.g/ 2 .˛g�˛k; ˛k˛g�/ D C:
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Thus

e.X/
g�;g�

D
d.X/

ƒd

X
�

d.�/.g� �jE
i
 .�/g�;g�j� g�/

D
d.X/

ƒd

�X
k2G2

.g� kjE
i
 .k/g�;g�jk g�/C

X
h2G

d.g� h�jE
i
 .h�/g�;g�jh� g�/

�
D
d.X/

ƒd

� X
k2G2

s.k;X/Ug.k/C
X
h2G

d.g� h�jE
i
 .h�/g�;g�jh� g�/

�
;

which shows the statement.

From the definition of Ug.k/, we can see that the representation ¹Ug.k/ºk2G2
of G2 in A

g�;g� is a multiple of the regular representation - that is, each character
of G2 occurs with the same multiplicity. For the same reason, we see that the left
multiplication of Ug.k/ on A

g�;h� gives rise to a representation of G2, which is a
multiple of the regular representation. On the other hand, the above formulas tell us
the multiplicity of each character in ZGA

g� and ZGA
g�;h�. Thus, we also know the

multiplicity of each character in .1 �ZG/Ag� and .1 �ZG/Ag�;h�.
If G2 D Z2, and a0 is the nontrivial element, then this amounts to saying that

for each g 2 G, the function s.a0; �/ takes on the value 1 for exactly half of the
simple objects � 2Z.C/ such that F .�/ contains ˛g�; and also for each g;h 2G, the
function s.a0; �/ takes on the value 1 for exactly half of the simple objects � 2 Z.C/

such that F .�/ contains both ˛g� and ˛h�. For g 2 2G, and h 2 Gn2G, the set of
simple objects in Z.C/ whose underlying object in C contains ˛g� is

¹k Q�ºk2G2 [ ¹kA'�0;Cºk2G2 [ ¹f�g�º.g;�/2.G� yG/� [ ¹f�Cj ºj2¹0;1º [ ¹ Q�iºi2I I
contains ˛h is

¹k Q�ºk2G2 [ ¹kA'�0;�ºk2G2 [ ¹f�g�º.g;�/2.G� yG/� [ ¹f��j ºj2¹0;1º [ ¹ Q�iºi2I I
and contains both is

¹k Q�ºk2G2 [ ¹f�g�º.g;�/2.G� yG/� [ ¹ Q�iºi2I :
Thus, we can determine the signs of s.a0;e�"j / and s.a0; Q�i / from those of s.a0; k Q�/,
s.a0; ke'�0;"/, and s.a0;f�g� /, which we have already computed above.

Recall that we can canonically decompose G as Ge � Go where Ge is a 2-group
and Go is an odd group. We can consider two cases: Ge D Z2 or Ge D Z2m for some
m > 1. Let a0 be the non-trivial element of G2, and let �0 be the nontrivial element
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of yG2. If Ge D Z2, then �0.a0/ D �1, and exactly half of the characters in G� take
the value 1 on a0. On the other hand, if Ge D Z2m withm > 1, then �0.a0/ D 1, and
there is one more character in G� which takes the value �1 on a0 than the number of
characters which take the value 1 on a0.

Corollary 3.12. Assume jG2j D 2, and let a0 be the unique non-trivial element of
G2. Let I be the index set of the half-braidings of �, and let

I˙ D ¹i 2 I I s.a0; Q�
i / D ˙1º:

1. Assume that Ge is Z2. Then jICj D jGj2=4 � 1, jI�j D jGj2=4 C 1, and
s.a0;f�˙j / D 1.

2. Assume that Ge is not Z2. Then jI˙j D jGj2=4 and s.a0;f�˙j / D �1.

Proof. IfGe is Z2, then we have s.a0;ke'�0;"/D �0.a0/D�1, for k 2G2. Therefore,
by the discussion above we must have s.a0;f�˙j / D 1. Also, since s.a0; k Q�/ D 1 for
k 2 G2, and s.a0;f�g� / D �a0.g/ha0; �i is equal to 1 for exactly half of .g; �/ 2
.G � yG/�, we must have jI�j D jICj C 2.

Similarly, if Ge is not Z2, then we have s.a0; ke'�0;"/ D �0.a0/ D 1, so
s.a0;f�˙j /D�1. Since s.a0; k Q�/D 1 for k 2G2; s.a0;f�g� / is equal to 1 for exactly
half of .g;�/2G� � yG; and the set .g;�/2G2 � yG� for which s.a0;f�g� /D 1 has size
two less than that of the set for which s.a0;f�g� /D�1, we must have jICj D jI�j.

4. Computing the remaining corner of the modular data

Table 1 gives formulas for the modular data of the center of a generalized Haagerup
category for an even group satisfying (2.24), except for the corners of S and T indexed
by e�"j (for jG2j D 2) and Q�i . Since F .�/ and F .�/ do not have any invertible simple
summands, we are unable to prove a general formula for the modular data in terms of
the characters �. However, for specific examples we can compute the missing corner
directly from the tube algebra using the full data of the category .�;A/. In this section
we outline the method of computation . We also look at some examples with jG2j D 2,
and formulate conjectures for the general case. .

4.1. Outline of the method

To perform the computation of the modular data, we need to find the minimal pro-
jections e.e�"j /g�;g� and e.e�i /

g�;g� in A
g� for each g. The projections e.�/

g�;g� for
different g can then be added together to find the minimal central projections z.e�"j /
and z. Q�i / in Tube C . Then the modular data can be computed using (2.5) or (2.6).
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First, we find formulas for the minimal central projections z.�/ corresponding to
each of k Q� , ke'�;˙, and e�g;� as follows. Let

AG D

M
g;h2G

Ag;h;

and similarly for A
G�, etc. For each minimal central projection p in AG and each

h 2 G such that pAG;h� is nontrivial, we choose a minimal subprojection p0 of
p and a partial isometry j.p0; h/ in AG;h� such that j.p0; h/j �.p0; h/ D p0; then
j.p0; h/j �.p0; h/ is the corresponding minimal projection in A

h�. In this way we
can find all of the minimal central projections z.�/ in the tube algebra such that
1AGz.�/ ¤ 0. Summing the z.�/ for all of the k, k Q� , ke'�;˙, and e�g;� , we obtain ZG .

Next, we diagonalize the action of t
g� on A

g� for a representative g in each
coset of 2G (since 1

g� is equivalent to 1
gC2h�). We use Mathematica to perform

the calculations. It turns out that even for relatively small examples, it is difficult to
calculate the eigenvalues directly, since the arithmetic takes place in a complicated
number field. So, instead we first find the eigenvalues numerically and guess their
exact values. Then we use this guess to construct the minimal polynomial q of t

g�.
We then verify that the guess is correct by showing through exact calculation that
q.t

g�/ vanishes, and that no proper factor of q vanishes on t
g�.

Once we have the eigenvalues of t
g�, we can compute the projections onto the

eigenspaces. For each eigenvalue �, set

p�g D
q�.tg�/
q�.�/

; where q� is the polynomial q�.z/ D
q.z/

z � �
:

For each eigenvalue �, let .p�g /
0 D .1 �ZG/p

�
g .

If the number of non-zero .p�g /
0 in A

g� is equal to the dimension of .1�ZG/Ag�,
then the .p�g /

0 must be exactly the e.e�"j /g�;g� and e. Q�i /
g�;g� that we are looking for.

If the number of non-zero .p�g /
0 in A

g� is less than the dimension of .1�ZG/Ag�,
then some of the .p�g /

0 have rank greater than 1 and we need to split them up. In the
small examples that we consider, the highest rank that comes up for .p�g /

0 is 2. We
can then split up a given projection .p�g /

0 by finding an element x in A
g� such that

x.p�g /
0 is not a scalar multiple of .p�g /

0. Then we can write down a linear relation
among .p�g /

0, x.p�g /
0, and x2.p�g /

0 and find the minimal subprojections of .p�g /
0.

Once we have found all of the e.�/
g�;g�, we need to match them up and add them

together and find the z.�/. Matching minimal projections of A
g� and A

h� which share
a common T -eigenvalue can be done by looking at the action of A

g�;h�. However,
in the small examples we consider, there is only one matching that gives consistent
modular data.

Remark 4.1. 1. The first step, finding an expression for ZG , is not strictly necessary
if one is only interested in finding the missing corner of modular data. If we skip
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this step, there may be a bit more work when we diagonalize the action of t
g� in

figuring out which eigenvalues correspond to the e�"j and the Q�i , and in splitting up
the corresponding eigenprojections if some of the e�"j or Q�i share eigenvalues with
subprojections of ZG .

2. To find the partial isometries j.p0; h/ in Ag;h�, we can simply multiply p0 by
elements of a basis for Ag;h� until we find something non-zero. Since p0 is minimal
and A

h� is Abelian, any non-zero element in p0Ag;h� can be rescaled to a partial
isometry.

3. If we use (2.5) to compute the S -matrix, we can take advantage of the fact that
the expression

 .S0.�/; �/

is bilinear to simplify the calculation in the case that the t-eigenvalues for the Q�i are
multiplicity free. In this case, we can write each Q�i as a linear combination of powers
of t. Then we can find the corresponding values of the S -matrix by first computing

 .S0.tm/; tn/

for various m and n, and then taking an appropriate linear combination of those val-
ues. The advantage is that the tube algebra calculations now take place with simpler
numbers, and the more complicated coefficients are only introduced at the last step.

4.2. Examples with jG2j D 2

Example 4.2. ForG DZ2 there is a unique generalized Haagerup category C , which
is the even part of the A7 subfactor (or the quantum group category PSU.2/ at level
6). The structure constants .�; A/ for this category are given in [19, Section 9.1].

Then G D G2, .G � yG/� is empty, jI j D jICj D 2, and Z.C/ has rank 14. The
T -eigenvalues for the six objects .f�C0;f�C1;f��0;f��1; Q�0; Q�1/ are given by�

i;�i; i;�i;
1C i
p
2
;
1 � i
p
2

�
;

and the corresponding block of the S -matrix is

1

8

0BBBBBBB@

�2C
p
2 2C

p
2 2C

p
2 �2C

p
2 �2

p
2 2

p
2

2C
p
2 �2C

p
2 �2C

p
2 2C

p
2 2

p
2 �2

p
2

2C
p
2 �2C

p
2 �2C

p
2 2C

p
2 �2

p
2 2

p
2

�2C
p
2 2C

p
2 2C

p
2 �2C

p
2 2

p
2 �2

p
2

�2
p
2 2

p
2 �2

p
2 2

p
2 0 0

2
p
2 �2

p
2 2

p
2 �2

p
2 0 0

1CCCCCCCA :
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Let a0 be the non-trivial element of G, which we also use to label the correspond-
ing invertible object in Z.C/. Since �a0.a0/ D �1, a0 is a fermion (which means its
twist is �1), and .Z.C/; k0/ is a spin-modular category in the sense of [5].

The trivial component Z.C/0 with respect to the Z2-grading associated to a0 is
the supermodular tensor subcategory generated by the objects k, k Q� , and e��j . Then
Z.C/ is a modular closure of Z.C/0, and by [23, Theorem 5.4] there are exactly 16
different modular closures of Z.C/0. The modular data for 8 of these can be computed
by the zesting formula in [7, Theorem 3.15].

Example 4.3. For G D Z4, there is a unique generalized Haagerup category satis-
fying (2.24). The structure constants .�; A/ for this category are given in [19, Sec-
tion 9.3]. In this case jICj D jI�j D 4. We index the Q�i by ¹C;�º � ¹1; 2º � ¹�1; 1º
(with the sign corresponding to I˙).

We can compute the missing corner of the modular data following the outline in
Section 4.1. Some of the t-eigenvalues for the Q�i have multiplicity, so it is necessary
to split the corresponding eigenprojections by brute force as explained above.

Then the 12 � 12 block corresponding to the

.f�C;f��;f�C;f��/
is as follows. The eigenvalues of the T -matrix are

.i;�i; i;�i; �25 ; �
2
5 ; �
�2
5 ; ��25 ; i�25 ;�i�

2
5 ; i�

�2
5 ;�i��25 /;

where �nr D e
2�in
r , and the corresponding block of the S -matrix is0BBBBBBBBBBBBBBBBBBBB@

c3 c2 c1 c4 �1 1 �1 1 1 �1 1 �1

c2 c3 c4 c1 �1 1 �1 1 �1 1 �1 1

c1 c4 c3 c2 �1 1 �1 1 1 �1 1 �1

c4 c1 c2 c3 �1 1 �1 1 �1 1 �1 1

�1 �1 �1 �1 c3 c3 c1 c1 c3 c3 c1 c1

1 1 1 1 c3 c3 c1 c1 c2 c2 c4 c4

�1 �1 �1 �1 c1 c1 c3 c3 c1 c1 c3 c3

1 1 1 1 c1 c1 c3 c3 c4 c4 c2 c2

1 �1 1 �1 c3 c2 c1 c4 c2 c3 c4 c1

�1 1 �1 1 c3 c2 c1 c4 c3 c2 c1 c4

1 �1 1 �1 c1 c4 c3 c2 c4 c1 c2 c3

�1 1 �1 1 c1 c4 c3 c2 c1 c4 c3 c2

1CCCCCCCCCCCCCCCCCCCCA
where ck D 2 cos k�

5
2
1
2
¹˙1˙

p
5º.

This information can be summarized by Table 2.
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p
n2 C 4 � Sf�"01"02 "2"

0
2

2
�
"1"2"

0
1"
0
2

4

p
n2 C 4f�Cl 0;"0 �"0 �2 cos 4�all

0

rf��l 0;"0 "0
2
" �"2 cos 4�all

0

r
""02 cos 4�all

0

rf�"1"2 f�Cl;" f��l;"
T "2i �al

2

r "i�al
2

r

Table 2. The missing corner of modular data for the generalized Haagerup category for Z4.
Here n D jGj D 4, r D .n2 C 4/=4 D 5, l ranges from 1 to .r � 1/=2 D 2, and a D 2 satisfies
.a
r
/ D �1, where .a

r
/ is the Jacobi symbol.

Example 4.4. For G D Z8, there is a generalized Haagerup category satisfying
(2.24), whose data .�; A/ is given in the accompanying Mathematica notebook
solutions.nb. It is too difficult to compute the modular data exactly, but we have
checked numerically that the modular data appears to conform Table 2 as well (for
n D 8).

Example 4.5. For each of G D Z6 and G D Z10, there are exactly two generalized
Haagerup categories which satisfy (2.24). The data .�;A/ for these categories is given
in the accompanying Mathematica notebook solutions.nb. We did not compute the
modular data exactly, but numerical calculations led to a conjecture summarized by
Table 3. In each case, the two generalized Haagerup categories for G correspond to
the two different possible values of the Jacobi symbol .a

r
/.

For these examples, we also have a fermion in Z.C/, so in each case there are 16
different modular closures of the supermodular subcategory, as above.

p
n2 C 4 � Sf�"0

1

"0
2

"2"
0
2

2
�
"1"2"

0
1
"0
2

4

p
n2 C 4f�Cl 0;s0 .�1/s

0C1 .�1/ss
0C12 cos 4�al l

0

rf��m0;"0 �.a
r
/"0"2 f .s/"s2 cos 4�am

0l
r

�.a
r
/.�1/

.1�"/.1�"0/
4 2 sin 4�amm0

rf�"1"2 f�Cl;s f��m;"
T "2i �s4�

al2

r �
. amC2/"

8 �am
2

r

Table 3. Conjecture for the missing corner of modular data for the generalized Haagerup cat-
egory for Z4mC2. Here nD jGj; r D .n2C 4/=8; 1� l � .r � 1/=2; 0� s � 3; 0�m� r � 1;
f .0/ D �1, f .1/ D �.a

r
/, f .2/ D 1, and f .3/ D .a

r
/.
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5. Tensor product factorization

In this section we consider a generalized Haagerup category satisfying (2.24) such
that G2 D Z2 � Z2. In this case, the VecZ2�Z2 subcategory lifts to the center by
Lemma 3.2, and if the braiding on this subcategory is non-degenerate, we can apply
Müger factorization.

5.1. Müger factorization

We fix a generalized Haagerup category C � End.M/ with a finite abelian group G
satisfying (2.24). We assume that jG2j D 4 (i.e., G2 Š Z2 � Z2/, and the symmetric
bicharacter s.k; l/D �k.l/�l.k/ onG2 �G2 is non-degenerate. Then the subcategory
of Z.C/ generated by G2, which we still denote by G2 for simplicity, is a modular
tensor category, whose modular data are SG2

k;l
D

s.l;k/
2

, T G2
k;k
D �k.k/. Let

Z.C/ \G02 D ¹X 2 Z.C/WE.k;X/ D E.X; k/�1 for all k 2 G2º;

where E is the braiding of Z.C/. Then Müger’s factorization theorem [30, The-
orem 4.2]) says that this is a modular tensor category with

Z.C/ Š G2 � .Z.C/ \G02/:

We denote by .S 0; T 0/ the modular data of Z.C/ \ G02. Then we have the tensor
product factorization S D SG2 ˝ S 0, T D T G2 ˝ T 0.

A simple object X 2 Z.C/ belongs to Irr.Z.C/ \G02/ if and only if s.k;X/ D 1
for any k 2 G2. For X; Y 2 Irr.Z.C/ \G02/, we have S 0X;Y D 2SX;Y , T 0X;X D TX;X .

Let

J1 D ¹.k; �/ 2 G2 � .. yG/2 n ¹0ºº/W s.l; k/hl; �i D 1 for all l 2 G2º;

J2 D ¹.g; �/ 2 .G � yG/�W hk; �i�k.g/ D 1 for all k 2 G2º;

I0 D ¹i 2 I W s.k; Q�
i / D 1 for all k 2 G2º:

Then Theorem 3.10 implies

Irr.Z.C/ \G02/ D ¹0; Q�º [ ¹ke'�;"º.k;�/2J1;"2¹1;�1º [ ¹f�g�º.g;�/2J2 [ ¹ Q�iºi2I0 :
Since jI j D 4jI0j, we have jI0j D jGj2=8.

The modular data .S; T / are determined by .S 0; T 0/, and the latter have been
already decided except for the I0 � I0 entries. In concrete examples, we can often
compute them by diagonalizing the multiplication operators ofUg.k/ and t

g� on A
g�.
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5.2. When Ge D Z2 � Z2

In this section, we assume that G D Z2 � Z2 � Go with odd Go, and that the sym-
metric bicharacter s.k; l/ on G2 � G2 is non-degenerate. In this case, we can easily
identify the index sets J1 and J2 as follows.

We identify yG with . yG/2�cGo. Then for each l 2 G2, there exists a unique �l 2
. yG/2 satisfying s.k; l/Dhk; �li for any k2G2. We setˆk;"DkA'�k ;" for k2G2 n ¹0º.

For the sets G� and yG�, we may assume that there exist subsets Go��Go and
yGo�� yGo satisfying G�D.G2�Go�/ and yG�D. yG2� yGo�/. Let zGDG2�Go� yGo,
and let

zG� D .G2 � ¹0º � yG0�/ t .G2 �Go� � yGo/ � G2 �Go � yGo;

which satisfies
zG D zG2 t zG� t � zG�:

We identify G2 with zG2.
For .k; h; �/ 2 zG�, we set

†k;h;� DA�.k;h/.�kC�k ;�/:

We set

a0 D 2a D 1=2jGoj D 1=

q
j zGj; b0 D 2b D 1=

p
4jGoj2 C 1:

Theorem 5.1. Let the notation be as above.The set

¹0; Q�º [ ¹ˆk;"ºk2 zG2n¹0º;"2¹1;�1º [ ¹†k;h;�º.k;h;�/2 zG� [ ¹ Q�
i
ºi2I0

exhausts all simple objects in Z.C/\G02. Except for Q�i - Q�i
0

entries, the modular data
of Z.C/ \G02 are given by

S 00;0 D S
zC1
Q�; Q�
D
a0 � b0

2
; S 00; Q� D

a0 C b0

2
;

S 00;ˆk;" D S
0
Q�;ˆk;"

D
a0

2
; S 00;†k;h;� D S

0
Q�;†k;h;�

D a0;

S 0
0; Q�j
D b0; S 0

Q�; Q�j
D �b0;

S 0ˆk;";ˆk0;"0
D s.k; k0/

a0 C ""0ık;k0

2
; S 0ˆk;";†l;h;� D s.k; l/a

0; S 0
ˆk;"; Q�

j D 0;

S 0†k;h;� ;†k0;h0;�0
D s.k; k0/.hh; � 0ihh0; �i C hh; � 0ihh0; �i/a0; S 0

†k;h;� ; Q�
j D 0;

T 00;0 D T
0
Q�; Q� D 1; T 0ˆk;";ˆk;" D �k.k/; T 0†k;h;� ;†k;h;� D �k.k/hh; �i:

The data in Theorem 5.1 are summarized in Table 4.
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S

0 a0�b0

2

Q� a0Cb0

2
a0�b0

2

ˆk0;"0
a0

2
a0

2
s.k; k0/

a0C""0ık;k0

2

†l 0;h0;� 0 a0 a0 s.k; l 0/a0 s.l; l 0/.hh; � 0ihh; � 0i C hh; � 0ihh; � 0i/a0

Q�i
0

b0 �b0 0 0 ‹

0 Q� ˆk;" †l;h;� Q�i

T 1 1 �k.k/ �l.l/.hh; �i ‹

Table 4. Modular data for the commutant of G2 for Ge D G2 D Z2 � Z2, with the entries
labeled by “?” undetermined.

Example 5.2. Let G D Z2 � Z2. There is a unique generalized Haagerup category
for G. The structure constants .�; A/ are given in [19, Section 9.4]. Looking at �, we
find that

SZ2�Z2 D
1

2

0BBB@
1 1 1 1

1 1 �1 �1

1 �1 1 �1

1 �1 �1 1

1CCCA
and

T Z2�Z2 D Diag.1;�1;�1;�1/:

Since we have .SZ2�Z2/2 D I and .SZ2�Z2T Z2�Z2/3 D �I , the modular group
relation for S 0 and T 0 takes the form S 0

2
D I , .S 0T 0/3 D �I .

We can compute the I0 � I0 entries from the tube algebra, following the outline
in Section 4.1. We have jI0j D 2. The two eigenvalues for Q�i are �˙15 , and the corres-
ponding block of the S -matrix is

1

10

�
5C
p
5 �5C

p
5

�5C
p
5 5C

p
5

�
:

It was pointed out to us by Marcel Bischoff that this example is related to a simple
current extension of SU.5/5, see [36, Section 3.3].

5.3. When G D Z2m � Z2 with �.km;l/.i; j / D .�1/kj

In this section we assume thatG DZ2m �Z2 withm� 2 and �.km;l/.i; j /D .�1/kj .
In this case, we have

G2 D ¹.0; 0/; .m; 0/; .0; 1/; .m; 1/º;

s..mi; j /; .mi 0; j 0// D �.mi;j /..mi
0; j 0//�.mi 0;j 0/..mi; j // D .�1/

ij 0Ci 0j ;
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which is non-degenerate on G2 �G2, and

T.mi;j /;.mi;j / D .�1/
ij :

Thus, the modular data .SG2 ; T G2/ are those of Z.VecZ2/. We will show below that
m must be even if such a generalized Haagerup category C exists.

We can identify the two index sets J1 and J2 as follows. We identify cZn with Zn
via hj; ki D �jkn where �n D e2�i=n. Let zG D Z22m, and let

zG� D ¹.i; j / 2 Z22mI i 2 ¹0;mº; 0 < j < mº [ ¹.i; j / 2 Z22mI 0 < i < mº;

which satisfies
zG D zG2 t zG� t � zG�:

For .i; j / 2 Z22 n ¹0º, we set

ˆ.i;j /;" D .mj;mi/B'.mi;j /;":

For .i; j / 2 zG�, we set
†.i;j / D Q�

.j;0/

.i;j /
:

Let

a0 D 2a D
1

2m
D

1q
j zGj

;

b0 D 2b D
1

p
4m2 C 1

:

Theorem 5.3. With the above assumptions the natural numberm is always even. The
following set exhausts the simple objects of Z.zC \G02/:

¹0; Q�º [ ¹ˆ.i;j;"/º.i;j /2Z2
2
n¹0º;"2¹1;�1º [ ¹†.i;j /º.i;j /2 zG� [ ¹ Q�

i
ºi2I0 ;

and they are all self-conjugate. Except for Q�i - Q�i
0

entries, the modular data are given
as

S 00;0 D S
0
Q�; Q� D

a0 � b0

2
; S 00; Q� D

a0 C b0

2
; S 00;ˆ.i;j /;" D S

0
Q�;ˆ.i;j /;"

D
a0

2
;

S 00;†.i;j / D S
0
Q�;†.i;j /

D a0; S 0
0; Q�i
D b0; S 0

Q�; Q�j
D �b0;

S 0ˆ.i;j /;";ˆ.i0;j 0/;"0
D
a0 C ıi;i 0ıj;j 0""

0

2
;

S 0ˆ.i;j /;";†.i0;j 0/
D .�1/i i

0Cjj 0a0;

S 0
ˆ.i;j /;"; Q�

k D 0;
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S 0†.i;j /;†.i0;j 0/
D 2a0 cos

.ij 0 C i 0j /�

m
; S 0

†.i;j /; Q�
k D 0;

T 00;0 D T
0
Q�; Q� D T

0
ˆ.i;j /;";ˆ.i;j /;"

D 1; T 0†.i;j /;†.i;j / D �
ij
2m:

The data in Theorem 5.3 is summarized in Table 5.

Proof. The above formulas for the modular data follow from Theorem 3.10 except
that it instead gives

S 0ˆ.i;j /;";ˆ.i0;j 0/;"0
D .�1/m.ij

0Ci 0j / a
0 C ıi;i 0ıj;j 0""

0

2
;

T 0ˆ.i;j /;";ˆ.i;j /;" D .�1/
mij :

Note that we have .ST /3 D I because every object in Z.C/ is self-conjugate
thanks to Theorem 3.10. Since .SG2T G2/3 D I , we get .S 0T 0/3 D I . To show that
m is even, we compute the ˆ.i;j /;"-ˆ.i 0;j 0/;"0 entries of

S 0T 0S 0 D .T 0S 0T 0/�1 D T 0S 0T 0:

We have

.S 0T 0S 0/ˆ.i;j /;";ˆ.i0;j 0/;"0 D
X
x

Sˆ.i;j /;";xT
0
x;xSˆ.i0;j 0/;"0 ;x

D
a02

4
C
a02

4
C

X
.i 00;j 00;"00/2J1�¹1;�1º

.�1/m.ij
00Cj i 00Ci 0j 00Cj 0i 00Ci 00j 00/

�
.a0 C ""00ıi;i 00ıj;j 00/.a

0 C "0"00ıi 0;i 00ıj 0;j 00/

4

S

0 a0�b0

2

Q� a0Cb0

2
a0�b0

2

ˆ.h0;j 0/;"0
a0

2
a0

2

a0Cı.h;j/;.h0;j 0/""
0

2

†.k0;l 0/ a0 a0 .�1/hk
0Cjl 0a0 2a0 cos .kl

0Ck0l/�
m

Q�i
0

b0 �b0 0 0 ‹

0 Q� ˆ.h;j /;" †.k;l/ Q�i

T 1 1 1 �
ij
2m ‹

Table 5. Modular data for the commutant of G2 D Z2 � Z2 for G D Z2m � Z2 with
�.km;l/.i; j / D .�1/

kj , with the entries labeled by “?” undetermined.
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C a02
X

.p;q/2J2

.�1/ipCjqCi
0pCj 0q�

pq
2m

D
a02

2
C

X
.i 00;j 00/2Z2

2
n¹0º

.�1/m.ij
00Cj i 00Ci 0j 00Cj 0i 00Ci 00j 00/

�
a02 C ""0ıi;i 00ıj;j 00ıi 0;i 00ıj 0;j 00

2

C
a02

2

X
.p;q/2 zGn zG2

.�1/ipCjqCi
0pCj 0q�

pq
2m

D

X
.i 00;j 00/2Z2

2

.�1/m..iCi
0/j 00C.jCj 0/i 00Ci 00j 00/

�
a02 C ""0ıi;i 00ıj;j 00ıi 0;i 00ıj 0;j 00

2

C
a02

2

�
�

X
.p;q/2 zG2

.�1/.iCi
0/pC.jCj 0/q�

pq
2m

C

X
.p;q/2 zG

.�1/.iCi
0/pC.jCj 0/q�

pq
2m

�
D
.�1/mij ""0ıi;i 0ıj;j 0

2

C
a02.�1/m.iCi

0/.jCj 0/

2

X
.p;q/2 zG

�
.pCm.jCj 0//.qCm.iCi 0//
2m

D .�1/m.iCi
0/.jCj 0/ a

0 C .�1/mij ""0ıi;i 0ıj;j 0

2
:

This coincides with .T 0S 0T 0/ˆ.i;j /;";ˆ.i0;j 0/;"0 if and only if m is even.

Since �.0;1/..0; 1//D 1, we can de-equivariantize C to get another fusion category
zC1 realized as endomorphisms ofPDM Ì˛.0;1/ Z2, with implementing unitary �2P .
Then the set

¹˛0.g;0/ºg2Z2m [ ¹˛
0
.g;0/ ı �

0
ºg2Z2m

exhausts all simple objects in zC1, as we have ˛0
.0;1/
D Ad�. We have

˛0.g;0/ ı ˛
0
.h;0/ D ˛

0
.gCh;0/;

˛0.�g;0/ ı �
0
D �0 ı ˛0.g;0/;

�02.x/ D sxs� C
X

g2Z2m

�
t.g;0/˛

0
.g;0/ ı �

0.x/t�.g;0/ C t.g;1/�˛
0
.g;0/ ı �

0.x/.t.g;1/�/
�
�
:
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We denote by P4mC1 the C �-algebra generated by

¹sº [ ¹t.g;0/ºg2Z2m [ ¹t.g;1/�ºg2Z2m ;

which satisfies the Cuntz algebra relations. Note that ˛0 and �0 globally preserve
P4mC1.

Let ˇ be the dual action of ˛.0;1/, which is a period 2 automorphism of P satisfy-
ing ˇ.x/D x for any x 2M , and ˇ.�/D ��. Let  D ˛0

.m;0/
ı ˇ. Then  commutes

with ˛0 and �0, and therefore induces a Z2-action on zC1. The equivariantization of zC1
with respect to this action is equivalent to C .

Let zC2 the fusion category generated by  , which is equivalent to VecZ2 , and let
zC be the fusion category generated by zC1 and zC2. Then zC is the crossed product
category for the Z2-action on zC1 induced by  . Therefore, zC is Morita equivalent to
C , and their Drinfeld centers are braided equivalent.

Theorem 5.4. The fusion category zC is equivalent to zC1 � zC2. In consequence,

Z.C/ Š Z.zC1/�Z.VecZ2/;

and the modular data of Z.zC1/ are .S 0; T 0/.

Proof. Every intertwiner between products of objects of objects ˛0
.g;0/

and �0 belongs
to P4mC1, and  acts on P4mC1 trivially. On the other hand, every intertwiner between
products of  is a scalar, and so we get the splitting

zC Š zC1 � zC2:

As a consequence of Theorem 5.4, the modular data of the Drinfeld center of the
de-equivariantization zC1 is determined by Theorem 5.3, except for the I0 � I0 corner.

Example 5.5. Let G D Z4 � Z2. It was shown in [14] that there is a generalized
Haagerup category C for G with �.2k;l/.i; j /D .�1/kj such that the even parts of the
Asaeda–Haagerup subfactor are Morita equivalent to the Z2-de-equivariantization zC1.
Therefore the modular data for the Drinfeld center of the Asaeda–Haagerup categories
is given in part by the table in Table 5. To find the missing corner, we can work in the
tube algebra of the generalized Haagerup category C , or directly in the tube algebra
of the de-equivariantization zC1.

We have jI0j D 8, and we find that the T -eigenvalues for Q�i are of the form
�3i

2

17 , for 1 � i � 8. Since these numbers are distinct (and also different from the
T -eigenvalues for the other objects), we can compute the corresponding projections
in the tube algebra as eigenprojections of t. Then the corresponding block of the
S -matrix is given by the formula

S
Q�i ; Q�i

0 D �
2
p
17

cos
12�i i 0

17
:
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We do not know whether there exist further examples of “generalized Asaeda–
Haagerup categories,” i.e., generalized Haagerup categories for Z4m � Z2 with

�.2mk;l/.i; j / D .�1/
kj

for m > 1.

6. Z2-de-equivariantization

In this section we consider Z2-de-equivariantizations of generalized Haagerup cat-
egories for cyclic groups. For a generalized Haagerup category with group G, the
gauge equivalence class of the cocycle �g.h/ is determined by its restriction to .g;h/2
G2 �G, which is a bicharacter under the assumption (2.24), see [19]. For an even cyc-
lic group G D Z2n, this bicharacter is determined by the value �n.1/. In all known
examples, we have �n.1/ D �1, and hence �n.n/ D .�1/n. To perform de-equivari-
antization with respect to n as in Section 2.5.1, we require �n.n/D 1. This means that
n must be even, i.e., jGj is divisible by 4.

Therefore, we consider a generalized Haagerup category C for G D Z4m and
assume �2m.g/ D .�1/g , meaning ˛2m.tg/ D .�1/g tg . Then we may assume that

˛h.t0/ D t2h; ˛h.t1/ D t1C2h for 0 � h < 2m:

We extend � 2 End.M/ and ˛g 2 Aut.M/ to the crossed product

M Ì˛2m Z2 DM _ ¹�º

by
�0.�/ D �; ˛0g.�/ D .�1/

g�:

We denote by D the fusion category generated by �0, which is a Z2-de-equivariantiz-
ation of C . Note that we have ˛02m D Ad�, and the set

¹˛0gº0�g<2m [ ¹˛
0
g ı �

0
º0�g<2m

exhausts the equivalence classes of simple objects in D . We have the decomposition

�0
2
.x/ D sxs� C

2m�1X
gD0

.tg˛
0
g ı �

0.x/t�g C tgC2m�˛
0
g ı �

0.x/.tgC2m�/
�/:

Let
d D d.�0/ D 2mC

p
4m2 C 1;
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and let ƒ0 be the global dimension of D :

ƒ0 D 2m.1C d2/

D 2m.2C 4md/

D 4m.4m2 C 1C 2m
p
4m2 C 1/:

Setting a0 D 1=2m and b0 D 1=
p
4m2 C 1, we get

1

ƒ0
D
a0 � b0

2
:

To represent an element in the cyclic group Z2m, we always use a number 0� g <
2m. However, note that indices of the Cuntz algebra generators tg live in the cyclic
group Z4m). As for Tube.C/, we use the shorthand notation

.g hj1jh g/ D .˛0g ˛
0
hj1j˛

0
h ˛
0
g/:

We can decompose Tube.D/ in a similar way as Tube.C/:

Tube.D/ D AG ˚AG;G�0 ˚A
G�0;G ˚A

G�0

where a basis for AG is given by

¹.g kj1jk g/º0�g;k<2m [ ¹.0 k�
0
j1jk�

0 0º0�k<2mº

[ ¹.g k�
0
j�jk�

0 2m � gº0<g<2m; 0�k<2mI

a basis for AG;G�0 is given by

¹.g k�
0
jt2kCg�hjk�

0
h�/; .g k�

0
jt2kCg�hC2m�jk�

0
h�
0/º0�g;h;k<2mI

a basis for A
G�0;G is given by

¹.h�
0
k�
0
jt�h�g jk�

0 g/; .h�
0
k�
0
jt�h�gC2m�jk�

0 g/ºg;h;k2G I

and a basis for A
G�0 is given by

¹.h1�
0
k�
0
jtk�h2Cg t

�
h1�kCg

jk�
0
h2�
0/;

.h1�
0
k�
0
jtk�h2CgC2mt

�
h1�kCgC2m

jk�
0
h2�
0/;

.h1�
0
k�
0
jtk�h2CgC2mt

�
h1�kCg

�jk�
0
h2�
0/;

.h1�
0
k�
0
jtk�h2Cg t

�
h1�kCgC2m

�jk�
0
h2�
0/º0�h1;h2;k;g<2m

[ ¹.h�
0
k�jss

�
jk�
0
2k�h�

0/º0�k<2m; 0�h�min¹2k;2m�1º

[ ¹.h�
0
k�
0
jss��jk�

0
2k�hC2m�

0/º0�k<2m; max¹0;2kC1º�h<2m

[ ¹.h�
0 kj1jk h�2k�

0/º0�k<2m; max¹0;2kº�h<2m

[ ¹.h�
0 kj�jk h�2kC2m�

0/º0�k<2m; 0�h�min¹2k;2m�1º:
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To compute multiplication in the tube algebra, we need to choose orthonormal
bases for morphism sets of the form .�; ��0/, where �; �; �0 2 Irr.D/. Note that each
product ��0 is of the form ˛0g , ˛0g�

0, or ˛0g�
02 for some g 2 Z4m, so we can always

choose our basis from the set

¹1; �; s; s�º [ ¹tg ; tg�ºg2Z4m :

To describe the Drinfeld center and compute the modular data, we will follow a
similar outline as in Section 3. Namely, we first describe the structure of AG and its
action on AG;G�0 . Then we use this to describe the simple objects in Z.D/ whose
underlying objects in D contain invertible summands, as well as the parts of the cor-
responding half-braidings needed to compute the modular data. Finally, we deduce
the remaining simple objects in Z.D/ and compute the modular data, except for the
corner where both indices correspond to objects without invertible simple summands.

While the overall approach is the same as for a generalized Haagerup category,
working in a de-equivariantization makes some of the arguments more difficult.

6.1. The structure of AG and its action on AG;G�
0

The multiplication in AG is given by

.g hj1jh g/.g kj1jk g/D

´
.g hC kj1jhC k g/; hC k < 2m;

.�1/g.g hC k � 2mj1jhC k � 2m g/; hC k � 2m;

so the map
Z2m 3 h 7! �

gh
4m.g hj1jh g/ 2 Ag ;

where �k D e
2�i
k , is a representation. Let

p.g; k/ D
1

2m

2m�1X
hD0

�
gh
4m�

hk
2m.g hj1jh g/:

Then p.g; k/ 2 Ag is a projection.
Note that Ag;h D ¹0º unless g D h D 0 or g C h D 2m. The latter case can be

further subdivided according to whether g D hDm, or one of g, h is less thanm. We
consider these three cases separately.

6.1.1. The structure of A0. We have

.0 hj1jh 0/.0 �0j1j�0 0/ D .0 �0j1j�0 0/.0 2m � hj1j2m � h 0/;

.0 �0j1j�0 0/2 D 1�0 C

2m�1X
hD0

2.0 hj1jh 0/.0 �0j1j�0 0/D 1�0 C 4mp.0; 0/.0 �
0
j1j�0 0//:
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Thus, we have

p.0; k/.0 �0j1j�0 0/ D .0 �0j1j�0 0/p.0; 2m � k/ for 0 < k < m;

and the linear span of

¹p.0; 0/; p.0;m/; p.0; 0/.0 �0j1j�0 0/; p.0;m/.0 �0j1j�0 0/º

is a subalgebra of A0 isomorphic to C4. Let

z.eid/ D 1

ƒ0

X
g2G

..0 gj1jg 0/C d.0 g�
0
j1jg�

0 0//

D
2m

ƒ0
p.0; 0/.10 C d.0 �

0
j1j�0 0//;

E.0; 0/ D
2md

ƒ0
p.0; 0/.d10 � .0 �

0
j1j�0 0//;

E.0;m/˙ D
1

2
p.0;m/.10 ˙ .0 �

0
j1j�0 0//:

Then these are the minimal projections of the subalgebra. For 0 < k < m, we set

E.0; k/11 D p.0; k/;

E.0; k/22 D p.0; 2m � k/;

E.0; k/12 D p.0; k/.0 �
0
j1j�0 0/;

E.0; k/21 D p.0; 2m � k/.0 �
0
j1j�0 0/;

and set Ak
0 D span¹E.0; k/ij º1�i;j;�2. Then Ak

0 is isomorphic to the 2 by 2 matrix
algebra with a system of matrix units ¹E.0; k/ij º1�i;j�2. Now, we have

A0 D Cz.eid/˚CE.0; 0/˚CE.0;m/C ˚CE.0;m/� ˚
M

0<k<m

Ak
0 :

6.1.2. The structure of Ag;h for g ¤ 0. Note that p.g; 2m/ is well defined and
equal to p.g; 0/.

Lemma 6.1. For 0 < g < 2m and 0 � k � 2m,

p.g; k/.g �j�j� 2m � g/ D .g �j�j� 2m � g/p.2m � g; 2m � k/:

Proof. On one hand, we have

p.g; k/.g �0j�j�0 2m � g/

D
1

2m

2m�1X
hD0

�
gh
4m�

hk
2m.g hj1jh g/.g �

0
j�j�0 2m � g/
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D
1

2m

2m�1X
hD0

�
gh
4m�

hk
2m.g h�

0
j˛0h.�/jh�

0 2m � g/

D
1

2m

2m�1X
hD0

�
gh
4m�

hk
2m.�1/

h.g h�
0
j�jh�

0 2m � g/:

On the other hand,

.g �0j�j�0 2m � g/p.2m � g; 2m � k/

D
1

2m

2m�1X
hD0

�
.2m�g/h
4m �

h.2m�k/
2m .g �0j�j�0 2m � g/.2m � g hj1jh 2m � g/

D
1

2m
.g �0j�j�0 2m � g/12m�g

C
1

2m

2m�1X
hD1

�
.2m�g/h
4m �

h.2m�k/
2m .g 2m�h�

0
j��1�˛0g.�/j2m�h�

0 2m � g/

D
1

2m
.g �0j�j�0 2m � g/

C
1

2m

2m�1X
hD1

�
.2m�g/.2m�h/
4m �

.2m�h/.2m�k/
2m .�1/g.g h�

0
j�jh�

0 2m � g/

D
1

2m

2m�1X
hD0

�
gh
4m�

hk
2m.�1/

h.g h�
0
j�jh�

0 2m � g/;

which shows the statement.

For g D m, the linear span of

¹p.m; 0/; p.m;m/; p.m; 0/.m �0j�j�0 m/; p.m;m/.m �0j�j�0 m/º;

is a commutative subalgebra of Am isomorphic to C4. Note that we have

.m �0j�j�0 m/2

D .m 0js��0.�/�˛m.s/j0 m/

C

2m�1X
hD0

.m h�
0
jt�h�

0.�/�˛m.th/C �
�1t�hC2m�

0.�/�˛0m.thC2m�/jh�
0 m/

D 1m C

2m�1X
hD0

.m h�
0
jt�h˛m.th/C �

�1t�hC2m˛m.thC2m/�jh�
0 m/

D 1m:
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Let

E.m; 0/˙ D
1

2
p.m; 0/.1m ˙ .m �0j�j�0 m//;

E.m;m/˙ D
1

2
p.m;m/.1m ˙ .m �0j�j�0 m//:

Then they are the minimal projections of the subalgebra. For 0 < k < m, we set

E.m; k/11 D p.m; k/;

E.m; k/22 D p.m; 2m � k/;

E.m; k/12 D p.m; k/.m �j�j� m/;

E.m; k/21 D p.m; 2m � k/.m �j�j� m/:

and set Ak
m D span¹E.m; k/ij º1�i;j;�2. Then Ak

m is isomorphic to the 2 by 2 matrix
algebra with a system of matrix units ¹E.m; k/ij º1�i;j�2. Now, we have

Am D CE.m; 0/C ˚CE.m; 0/� ˚CE.m;m/C ˚CE.m;m/� ˚
M

0<k<m

Ak
m:

Finally, for 0 < g < m and 0 � k < 2m, we set

E.g; k/11 D p.g; k/;

E.g; k/22 D p.2m � g; 2m � k/;

E.g; k/12 D p.g; k/.g �
0
j�j�0 2m � g/;

E.g; k/21 D p.2m � g; 2m � k/.2m � g �
0
j�j�0 g/;

and
Bk
g D span¹E.g; k/ij º1�i;j;�2:

Then Bk
g is isomorphic to the 2 by 2 matrix algebra with a system of matrix units

¹E.g; k/ij º1�i;j�2. Now, we have

Ag ˚Ag;2m�g ˚A2m�g;g ˚A2m�g D

M
0�k<2m

Bk
g :

6.1.3. The action of AG on AG;G�
0 . We now determine the action of each simple

component of each Ag on each Ag;h�
0 . Note that unlike in the case of a generalized

Haagerup category, ˛h�0 is not necessarily multiplicity free (and in fact it is not, as we
will see shortly), and therefore irreducible modules over simple components of Ag in
Ag;h�

0 can appear with multiplicity.
Note that for each 0 � g; k; h < 2m, the space p.g; k/Ag;h�

0 is 2-dimensional,
with basis

¹p.g; k/.g �0jtg�hj�
0
h�
0/; p.g; k/.g �0jtg�hC2m�j�

0
h�
0/º:
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For each g; k such that at least one of g or k does not belong to ¹0; mº, the pro-
jection p.g; k/ is minimal in Ag , so the irreducible modules over the corresponding
simple components in each Ag;h�

0 have multiplicity 2.
Similarly, since Cz.eid/ acts trivially on each p.0;0/A0;h�

0 , we have that CE.0;0/

acts as the identity on p.0; 0/A0;h�
0 , and therefore the irreducible CE.0; 0/-module

in each A0;h�
0 has multiplicity 2.

It remains only to determine the actions of CE.0; m/˙, CE.m; 0/˙, and
CE.m;m/˙.

We first look at CE.0;m/˙. Note that we have

.p.0;m/.0 �0j1j�0 0//2 D p.0;m/:

Lemma 6.2. The element .0 �0j1j�0 0/ acts on p.0;m/A0;g�0 as multiplying by .�1/g .

Proof. Since the two elements

¹p.0;m/.0 �0jt�g j�
0
g�
0/; p.0;m/.0 �0jt2m�g�j�

0
g�
0/º;

are exchanged, up to scalar multiple, by right multiplication of .g�0 mj�jm g�
0/, it

suffices to show

.0 �0j1j�0 0/p.0;m/.0 �0jt�g j�
0
g�
0/ D .�1/g.0 �0jt�g j�

0
g�
0/:

Indeed,

.0 �0j1j�0 0/p.0;m/.0 �0jt�g j�
0
g�
0/

D p.0;m/.0 �0j1j�0 0/.0 �0jt�g j�
0
g�
0/

D p.0;m/

2m�1X
hD0

�
0 h�

0
jt�h�.t�g/th C �

�1t�hC2m�.t�g/thC2m�jh�
0
g�
0
�

D p.0;m/

2m�1X
hD0

.0 hj1jh 0/
�
0 �0j˛�h.t

�
h�.t�g/th

C .�1/g t�hC2m�.t�g/thC2m/j�
0
g�
0
�

D p.0;m/

2m�1X
hD0

.�1/h�h.�g/
�
0 �0jt�

�h�.t2h�g/t�h

C .�1/g t�
�hC2m�.t2h�g/t�hC2mj�

0
g�
0
�

D p.0;m/
�
0 �0j

4m�1X
hD0

.�1/h�h.�g/t
�
�h�.t2h�g/t�hj�

0
g�
0
�
:

Here we have
4m�1X
hD0

.�1/h�h.�g/t
�
�h�.t2h�g/t�h
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D

4m�1X
hD0

.�1/h�h.�g/�2h�g.g � 2h/t
�
�h˛g�2h�.tg�2h/t�h

D

4m�1X
hD0

.�1/h�h.�g/�2h�g.g � 2h/Ag�2h.h � g; h � g/t�g :

Since

Ag�2h.h � g; h � g/ D �g�h.�h/Ag�2h.g � h; 0/ D ıg;h �
�g�h.�g/

d � 1
;

we get

4m�1X
hD0

.�1/h�h.�g/�2h�g.g � 2h/Ag�2h.h � g; h � g/

D .�1/g �
1

d � 1

4m�1X
hD0

.�1/h�h.�g/�2h�g.g � 2h/�g�h.�g/

D .�1/g �
1

d � 1

4m�1X
hD0

.�1/h�h.�g/�h.g � 2h/�h�g.g/�g�h.�g/

D .�1/g �
��g.g/�g.�g/

d � 1

4m�1X
hD0

.�1/h

D .�1/g ;

which shows the statement.

It follows from the lemma that CE.0;m/C acts nontrivially A0;g�0 if and only if g
is even, and CE.0;m/� acts nontrivially for g odd. Since p.0;m/A0;g�0 is 2-dimen-
sional, the irreducible CE.0;m/˙-modules in A0;g�0 occur with multiplicity 2.

Finally, we consider CE.m; 0/˙ and CE.m;m/˙.

Lemma 6.3. Let the notation be as above:

1. the action of .m �0j�j�0 m/ on p.m; 0/Am;g�0 has eigenvalues both 1 and �1;

2. the action of .m �0j�j�0 m/ on p.m;m/Am;g�0 has eigenvalues both 1 and �1.

Proof. Since .m�0j�j�0m/ acts as an invertible transformation of period 2, it suffices
to show that it is not a scalar. Indeed, it is easy to show that .m �0j�j�0 m/ switches
the two basis elements (up to scalar multiple).

It follows from the lemma that each of CE.m; 0/˙ and CE.m; m/˙ act non-
trivially on each Am;g�0 , and each irreducible CE.m; 0/˙-module and CE.m;m/˙-
module in each Am;g�0 occurs with multiplicity 1.
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6.2. The simple objects in Z.D/ and the modular data

Now, that we have determined the structure of AG and the action of AG on AG;G�0 ,
we can describe all of the simple objects in Z.D/ whose underlying objects in D

contain an invertible summand, and then compute the corresponding modular data, as
in Section 3.

Let

� D id˚ 2
2m�1M
gD0

˛0g ı �
0;

'C D id˚ 2
m�1M
gD0

˛02g ı �
0;

'� D id˚ 2
m�1M
gD0

˛02gC1 ı �
0;

 D ˛0m ˚

2m�1M
gD0

˛0g ı �
0;

�0 D id˚ id˚ 2
2m�1M
gD0

˛0g ı �
0:

For 0 < g � m, let

�g D ˛
0
g ˚ ˛

0
2m�g ˚ 2

2m�1M
hD0

˛0h ı �
0:

Then these objects have half-braidings given by the central projections in Tube D

which have nontrivial components in AG . We can read off the components of the
half-braidings E.�/.�/.g;i/;.g;i/ from the matrix units for AG computed above. We also
have E.�/.0/g�0;g�0 D 1 and E.�/.h/g�0;g�0 D 1 for h ¤ 0;m.

One complication due to the de-equivariantization is that we will now also need
E
."1;"2/
 .m/

g�0;g�0 for computing the modular data. In the following lemma we determ-

ine E
."1;"2/
 .m/

g�0;g�0 in terms of a number a"1.g/. This number will in turn be
determined later by using properties of the overall modular data.

Lemma 6.4. 1. id has a unique half-braiding E0.�/ D 1.

2. � has a unique half-braiding, which gives e. Q�/0;0 D E.0; 0/, and

E�.h/0;0 D 1; E�.h�
0/0;0 D �

1

d2
:

3. Each of 'C and '� has a unique half-braiding, which gives

e.f'˙/0;0 D E.0;m/˙
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and

E'˙.h/0;0 D .�1/
h; E'˙.h�

0/0;0 D
˙.�1/h

d
:

4.  has exactly 4 half-braidings parametrized by the set

¹.C;C/; .C;�/; .�;C/; .�;�/º;

which gives

e. z ."1;"2//m;m D E
�
m;
1 � "1

2
m
�
"2
;

and

E
."1;"2/
 .h/m;m D ."1i/

h;

cE
."1;"2/
 .h�

0/m;m D
"2.�"1i/

h

d
�;

E
."1;"2/
 .m/

g�0;g�0 D .�1/
m"2a

"1.g/."1i/
mCg�:

Here we identify the symbols C with 1 and � with �1 in an appropriate way. The
number a"1.g/ 2 ¹1;�1º satisfies a".g C 2/ D a".g/.

5. �0 has exactly m � 1 half-braidings parametrized by 0 < k < m, which gives

e.e�0k/.0;s/;.0;t/ D E.0; k/st ;
and

Ek�0.h/.0;1/;.0;1/ D �
kh
2m; Ek�0.h�

0/.0;s/;.0;s/ D 0:

6. �m has exactly m � 1 half-braidings parametrized by 0 < k < m, which give

e.f�mk/.m;s/;.m;t/ D E.m; k/st ;
and

Ek�m.h/.m;1/;.m;1/ D i
h�kh2m;

Ek�m.h�
0/.m;s/;.m;s/ D 0:

7. For 0 < g <m, �g has exactly 2m half-braidings parametrized by 0� k < 2m,
which give

e.f�gk/g;g D p.g; k/; e.f�gk/2m�g;2m�g D p.2m � g; 2m � k/;
and

Ek�g .h/g;g D �
gh
4m�

kh
2m;

Ek�g .h/2m�g;2m�g D �
.2m�g/h
4m �

.2m�k/h
2m ;

Ek�g .h�
0/g;g D 0:
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Proof. The only statement that we have not shown yet is about E
."1;"2/
 .m/

g�0;g�0 . We
first note that imCg.g�0 mj�jm g�

0/ is a period two unitary in A
g�0 satisfying

p
�
m;
1 � "

2
m
�
.m �0jtm�g j�

0
g�
0/imCg.g�

0 mj�jm g�
0/

D imCgp
�
m;
1 � "

2
m
�
.m m�

0
j��1�0.�/tm�g˛

0
m.�/jm�

0
g�
0/

D .�1/mimCgp
�
m;
1 � "

2
m
�
.m m�

0
jtm�g�jm�

0
g�
0/

D .�1/mimCgp
�
m;
1 � "

2
m
�
.m mj1jm m/.m �0j˛0

�1
m .tm�g�/j�

0
g�
0/

D .�1/mimCgp
�
m;
1 � "

2
m
�
.�i/m.�1/

1�"
2

� .m �0j.�1/m�3m.m � g/t3m�g�j�
0
g�
0/

D "�3m.m � g/i
gp
�
m;
1 � "

2
m
�
.m �0jt3m�g�j�

0
g�
0/:

Since the right multiplication of imCg.g�0 mj�jm g�
0/ and the left multiplication of

.m �0j�j�0 m/ on the 2-dimensional space p.m; 1�"
2
/Am;g�0 are commuting period

two transformations that are not scalars, they coincide up to sign, and

.m �0j�j�0 m/p
�
m;
1 � "

2
m
�
.m �0jtm�g j�

0
g�
0/

D igb".g/p
�
m;
1 � "

2
m
�
.m �0jt3m�g�j�

0
g�
0/;

with b".g/ 2 ¹1;�1º.
Since e. z ."1;"2//m;m.m �0jtm�g j�

0
g�
0/ is a multiple of a partial isometry with

range projection e. z ."1;"2//m;m, there exists a positive number c satisfying

e. z ."1;"2//
g�0;g�0

D c.m �0jtm�g j�
0
g�
0//�p

�
m;
1 � "1

2
m
�1
2
.1m C "2.m �0j�j�0 m//

� .m �0jtg�mj�
0
g�
0/

D
c�m�g.g �m/

2
.g�
0 �0jt�g�mj�

0 m/p
�
m;
1 � "1

2
m
�

� .m �0jtg�m C "2b
"1.g/ig t3m�g�j�

0
g�
0/

D
c�m�g.g �m/

4m

2m�1X
hD0

ih"h1.g�
0 �0jt�m�g j�

0 m/

� .m h�
0
j˛0h.tm�g C "2b

"1.g/ig t3m�g�/jh�
0
g�
0/:
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On the other hand, we have

e. z ."1;"2//
g�0;g�0 D

1

4md
1
g�0 C

1

4md
.g�
0 mjE

."1;"2/
 .m/

g�0;g�0 jm g�
0/

C
1

4m

2m�1X
hD0

.g�
0
h�
0
jE
."1;"2/
 .h�

0/
g�0;g�0 jh�

0
g�
0//;

and so,

1 D cd�m�g.g �m/s
��0.tg�m C "2b

"1.g/ig t3m�g�/t
�
m�g˛

0
g ı �

0.s/

D cds�˛0m�g ı �
0.tm�g/t

�
m�g ı �

0.s/ D c;

and

E
."1;"2/
 .m/

g�0;g�0 D cd�m�g.g �m/i
m"m1 �

�1s�

� �0
�
˛0m.tm�g C "2b

"1.g/ig t3m�g�/
�
t�g�m˛

0
g ı �

0.s�/

D d�m�g.g �m/�m.3m � g/i
m"m1 "2b

"1.g/ig.�1/mCg

� ��1s��0.tm�g/�t
�
g�m�.s/�

D imCg"m1 "2b
"1.g/�m.3m � g/�:

Setting a".g/ D .�1/mb".g/"g�m.3m � g/, we get

E
."1;"2/
 .m/

g�0;g�0 D .�1/
m."1i/

mCg"2a
"1.g/�:

Let 0 � g < m. Since

.2g�
0 gj1jg �0/�.2g�

0 gj1jg �0/ D 1�0

and

.2g�
0 gj1jg �0/.2g�

0 gj1jg �0/� D 1
2g�0 ;

we have

e. z ."1;"2//
2g�0;2g�0 D .2g�

0 gj1jg �0/e. z ."1;"2//�0;�0.2g�
0 gj1jg �0/�;

and so

.2g�
0 mjE

."1;"2/
 .m/

2g�0;2g�0 jm 2g�
0/

D .2g�
0 gj1jg �0/.�0 mjE

."1;"2/
 .m/�0;�0 jm �0/.�0 2m � gj1j2m � g 2g�

0/

D .2g�
0 g Cmj˛0g.E

."1;"2/
 .m/�0;�0/jg �

0/.�0 2m � gj1j2m � g 2g�
0/

D .2g�
0 mj��1˛0g.E

."1;"2/
 .m/�0;�0/˛

0
2g ı �

0.�/jm 2g�
0/

D .2g�
0 mj.�1/gE

."1;"2/
 .m/�0;�0 jm 2g�

0/:

This shows a".2g/ D a".0/. In the same way, we can show a".2g C 1/ D a".1/.
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In view of the above result, we introduce the following index sets:

J1 D ¹C;�º;

to index the objects �˙, and

J2 D ¹.C;C/; .C;�/; .�;C/; .�;�/º;

to index the half-braidings of  .
We will now determine the remaining simple objects in Z.D/.
Let zG D Z2m � Z2m, and let

zG� D ¹.j; k/ 2 zGI j 2 ¹0;mº; 0 < k < mº [ ¹.g; k/ 2 zGI 0 < g < mº:

Then we have
zG D zG2 t zG� t � zG�:

Lemma 6.5. For any 0 � k < 2m, we have

A
k�
0 D

M
."1;"2/2J2

Ce. z ."1;"2//
k�
0;k�
0 ˚M2.C/

˚4m2 :

Proof. We show the statement for k D 0 as our standing assumptions for � and ˛k ı �
are equivalent.

Let
t�0 D d.�

0 �0jss�j�0 �0/; U D im.�0 mj�jm �0/;

and
xg;h D .�

0
g�
0
jthCg t

�
h�g jg�

0 �0/ for 0 � g < 2m; 0 � h < 4m:

Then the set

¹1�0 ; U; t�0 ; U t�0º [ ¹xg;h; Uxg;hº0�g<2m; 0�h<4m

forms a basis of A�0 , and we have dim A�0 D 4C 16m
2. Note that t�0 is central, and

U is a unitary of period two. Let A0
�0 be the linear span of

¹1�0 ; t�0º [ ¹xg;hº0�g<2m; 0�h<4m:

Then A0
�0 is a �-subalgebra of A�0 . Since

Uxg;hU
�1

D .�1/m.�0 mj�jm �0/.�0 g�
0
jthCg t

�
h�g jg�

0 �0/.�0 mj�jm �0/

D

´
.�1/m.�0 gCm�

0j˛m.thCg t
�
h�g

/�jgCm�
0 �0/.�0 mj�jm �0/; 0 � g < m;

.�1/mCg.�0 mj�jm �0/.�0 g�m�
0j�thCg t

�
h�g
jg�m�

0 �0/; m � g < 2m;
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D .�1/g.�0 g�
0
j�˛m.thCg t

�
h�g/�jg�

0 �0/

D .�1/g�m.hC g/�m.h � g/xg;hC2m;

we see that U normalizes A0
�0 .

In the same way as in the proof of Lemma 3.1, we can prove that A0
�0 is abelian by

showing that the restriction of S20 to A0
�0 is the identity. It is easy to show S20 .1�0/ D

1�0 and S20 .t�0/ D t�0 . For .�0 g�0jxg;hjg�0 �0/, we have

S20 ..�
0
g�
0
jxg;hjg�

0 �0// D S0..g�
0 �0jds�˛0g ı �

0.xg;h�
0.s//j�0 g�

0//

D .�0 g�
0
jd2s��0.s�˛0g ı �

0.xg;h�
0.s//˛0g ı �

0.s//jg�
0 �0/

D .�0 g�
0
jd2s��0.s�˛0g ı �

0.xg;h�
0.s/s//jg�

0 �0/;

which is equal to xg;h thanks to the proof of Lemma 3.1. Thus, the claim is shown.
Since A0

�0 is abelian and normalized by U , and A�0 D A0
�0 C UA0

�0 , any simple
component of A�0 is either C or M2.C/. We already known thatM

."1;"2/2J2

Ce. z ."1;"2//
k�
0;k�
0 Š C4

is a direct summand of A�0 . On the other hand, let

A
"1;"2
�0 D ¹x 2 A�0 I Ux D "1x; xU D "2xº D

1C "1U

2
A�0

1C "2U

2
:

Then it is easy to show

dim A
C;C
�0 D dim A

�;�
�0 D 2C 4m

2;

dim A
C;�
�0 D dim A

�;C
�0 D 4m

2;

which shows that A�0 contains M2.C/˚4m
2

as a direct summand. Thus, we get the
statement.

We can now conclude that the remaining simple objects of Z.D/ are all given by
half-braidings of the object

� D 2

2m�1M
gD0

˛0g�
0:

Lemma 6.6. The object � has exactly 2m2 half-braidings ¹Ej�º2m
2

jD1 , which give the
remaining simple objects in Z.D/.

Proof. Let

z D z.eid/C z. Q�/CX
"2J1

z.e'"/CX
."1;"2/2J2

z. z ."1;"2//C
X

.g;k/2 zG�

z.f�gk/;
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which is a central projection of Tube.D/. Note that we have j zG�j D 2.m2 � 1/. Thus,
thanks to the previous lemma. we have

.1 � z/A
k�
0 ŠM2.C/

˚2m2 :

Since

.2k�
0 kj1jk �0/�.2k�

0 kj1jk �0/ D 1�0

and

.2k�
0 kj1jk �0/.2k�

0 kj1jk �0/� D 1
2k�0

for any 0 < k < m, we have

dim.1 � z/A
2k�
0;�0 D dim.1 � z/A�0 D 8m

2:

In the same way,

dim.1 � z/A
2kC1�

0;1�0 D dim.1 � z/A
1�0 D 8m

2:

Direct counting shows dim A
1�0;�0 D 16m

2. On the other hand, we can write down
the basis of zA

1�0;�0 coming from Q� , z ."1;"2/, andf�gk , showing dimzA
1�0;�0 D 8m

2.
Thus, we get dim.1 � z/A

1�0;�0 D 8m
2, and

.1 � z/Tube.D/ ŠM4m2.C/
˚2m2 :

This shows the statement.

Let
I D ¹1; 2; : : : ; 2m2º;

which we use to index the half-braidings of �.
We would like to determine duality for the different half-braidings of  and �.

Lemma 6.7. With the above notation, we have

z ."1;"2/ D z ."1;.�1/
m"2/;

Q�i D Q�i :

Proof. Direct computation shows

S20 .p.m; k// D p.m; 2m � k/;

S20 ..m �0j�j�0 m// D .�1/m.m �0j�j�0 m/;

which implies that

S20 .z.
z ."1;"2/// D z. z ."1;.�1/

m"2//;
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and the first statement.
Recall that we have

A�0 D

M
."1;"2/2J2

Ce. z ."1;"2//�0;�0 ˚A1
�0 ; A1

�0 ŠM2.C/
˚4m2 :

We already know

S20 .e.
z ."1;"2//�;�/ D e. z 

."1;.�1/
m"2//�;�:

In the proof of the previous lemma, we saw that the subalgebra A0
�0 includes all the

central projection of A1
�0 , and S20 acts on A0

�0 trivially. Thus, we get

S20 .z. Q�
i // D z. Q�i /:

We can now compute the modular data for Z.D/. The main difficulty is determin-
ing the numbers a".g/, which were introduced in the formulas for E

."1;"2/
 .m/

g�0;g�0

in Lemma 6.4, and we need to use the modular relation for this.

Theorem 6.8. Let the notation be as above. The following set exhausts the simple
objects of the Drinfeld center Z.D/:

¹0; Q�º [ ¹e'"º"2J1 [ ¹ z ."1;"2/º."1;"2/2J2 [ ¹f�gkº.g;k/2 zG� [ ¹ Q�iºi2I :
We have z ."1;"2/D z ."1;.�1/

m"2/, and the others are self-conjugate. Except for Q�i - Q�i
0

entries, the S -matrix and T -matrix are given as

S0;0 D S Q�; Q� D
a0 � b0

2
; S0; Q� D

a0 C b0

2
;

S0;f'˙ D S0; z ."1;"2/ D S Q�;f'˙ D S Q�; z ."1;"2/ D a0

2
;

S0;e�gk D S Q�;e�g� D a0; S0; Q�i D b
0; S Q�; Q�i D �b

0;

Se'";e'"0 D a0 C ""0

2
; Sf'˙; z ."1;"2/ D .�1/ma0

2
;

Sf'˙;e�gk D .�1/ga0; Sf'˙; Q�k D 0;
S
z ."1;"2/; z 

."0
1
;"0
2
/ D

.�"1"
0
1/
ma0 C "2"

0
2."1i/

mı"1;"01
2

;

S z ."1;"2/;e�gk D .�"1/g.�1/ka0; S z ."1;"2/; Q�i D 0;

Se�gk ;f�g0k0 D 2a0 cos
.gg0 C gk0 C g0k/�

m
; Se�gk ; Q�i D 0;

T0;0 D T Q�; Q� D Tf'˙;f'˙ D 1; T z ."1;"2/; z ."1;"2/ D ."1i/
m; Te�gk ;e�gk D �g2C2kg4m :

The data in Theorem 6.8 are summarized in Table 6.
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S

0 a0�b0

2

Q� a0Cb0

2
a0�b0

2e�0" a0

2
a0

2
a0C""0

2

Q ."
0
1
;"0
2
/ a0

2
a0

2
.�1/ma0

2

.�"1"
0
1
/ma0C"2"

0
2
."1i/

mı
"1;"
0
1

2f� 0gk0 a0 a0 .�1/g
0

.�"1/
g0.�1/k

0

a0 2a0 cos
�
.gg0Cgk0Cg0k/�

m

�
Q�i
0

b0 �b0 0 0 0 ‹

0 Q� e�" Q ."1;"2/ f�gk Q�i

T 1 1 1 ."1i/
m �

g2C2kg
4m ‹

Table 6. Modular data for the Z2-de-equivariantization of a generalized Haagerup category for
G D Z4m with �2m.g/ D .�1/g , with entries labeled by “?” undetermined.

Proof. The only statements that do not directly follow from the previous arguments
are about S

z ."1;"2/; z 
."0
1
;"0
2
/ and S z ."1;"2/; Q�i . Direct computation shows

S
z ."1;"2/; z 

."0
1
;"0
2
/ D

.�"1"
0
1/
m

4m
C "2"

0
2."
0
1i/

m a
"0
1.0/C a"

0
1.1/"1"

0
1

4
:

Since S is a symmetric matrix, we have

S
z ."1;"2/; z 

."0
1
;"0
2
/ D S z ."

0
1
;"0
2
/
; z ."1;"2/

;

and
."01/

m.a"
0
1.0/C a"

0
1.1/"1"

0
1/ D ."1/

m.a"1.0/C a"1.1/"1"
0
1/:

This is equivalent to

aC.0/ � aC.1/ D .�1/m.a�.0/ � a�.1//:

Thus, either aC.0/ D aC.1/, a�.0/ D a�.1/, or

�aC.1/ D �.�1/ma�.1/ D .�1/ma�.0/ D aC.0/:

Assume aC.0/ D aC.1/, a�.0/ D a�.1/ first. Then we get

S
z ."1;"2/; z 

."0
1
;"0
2
/ D

.�"1"
0
1/
m

4m
C
"2"
0
2."1i/

ma"1.0/ı"1;"01
2

:



Drinfeld centers of fusion categories 657

Since S is a unitary,

1 D
X
a

jS z ."1;"2/;aj
2

D
1

16m2
C

1

16m2
C

1

16m2

C
1

16m2
C

X
s;t2¹1;�1º

ˇ̌̌ .�"1s/m
4m

C
"2t ."1i/

ma"1.0/ı"1;s

2

ˇ̌̌2
C
j zG�j

.2m/2
C

X
i2I

jS z ."1;"2/; Q�j j
2

D
1

2
�

1

4m2
C 2

X
s2¹1;�1º

� 1

16m2
C
ı"1;s

4

�
C

X
i2I

jS z ."1;"2/; Q�j j
2

D 1C
X
i2I

jS z ."1;"2/; Q�j j
2;

showing S z ."1;"2/; Q�j D 0.
Recall the modular group relation .S/2 D .ST /3 D C , TC D CT , where Ca;b D

ıa; Nb , and Nb is determined by Sa;bDSa; Nb . Recall z ."1;"2/D z ."1;.�1/
m"2/. We compare

the z ."1;"2/- z ."
0
1
;"0
2
/ entries of the both sides of

STS D CT �1S�1T �1 D CTST D xTS xT:

On the one hand,

.STS/
z ."1;"2/; z 

."0
1
;"0
2
/

D
1

16m2
C

1

16m2
C

1

16m2
C

1

16m2

C

X
s;t2¹1;�1º

� .�"1s/m
4m

C
"2t ."1i/

ma"1.0/ı"1;s

2

�
�

� .�"01s/m
4m

C
"02t ."

0
1i/

ma"
0
1.0/ı"0

1
;s

2

�
.si/m

C

X
.g;k/2 zG�

.�"1/
g.�1/k

2m

.�"01/
g.�1/k

2m
�
g2C2gk
4m

D
1

4m2
C 2

X
s2¹1;�1º

� ."1"01/m
16m2

C
"2"
0
2.�"1"

0
1/
ma"1.0/a"

0
1.0/ı"1;sı"01;s

4

�
.si/m

C

m�1X
kD1

1

4m2
C

m�1X
kD1

."1"
0
1/
m

4m2
imC2k C

m�1X
gD1

2m�1X
kD0

."1"
0
1/
g

4m2
�
g2C2gk
4m
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D
1

4m2
C ."1"2i/

m 1C .�1/
m

8m2

C
"2"
0
2.�"1i/

mı"1;"01
2

C
m � 1

4m2
� ."1"2i/

m 1C .�1/
m

8m2

D
1

4m
C
"2"
0
2.�"1i/

mı"1;"01
2

:

On the other hand,

. xTS xT / z ."1;"2/; z ."1;"2/ D
1

4m
C
"2"
0
2.�"1i/

ma"1.0/ı"1;"01
2

:

Thus, we get a".0/ D 1.
Assume now that the second case

�aC.1/ D �.�1/ma�.1/ D .�1/ma�.0/ D aC.0/;

occurs. Then

S
z ."1;"2/; z 

."0
1
;"0
2
/ D

.�"1"
0
1/
m

4m
C
"2"
0
2a
C.0/imı"1;�"01

2
:

In the same way as above, we get S z ."1;"2/; Q�j D 0, and

.STS/
z ."1;"2/; z 

."0
1
;"0
2
/

D
1

16m2
C

1

16m2
C

1

16m2
C

1

16m2

C

X
s;t2¹1;�1º

� .�"1s/m
4m

C
"2t i

maC.0/ı"1;�s

2

�
�

� .�"01s/m
4m

C
"02t i

maC.0/ı"0
1
;�s

2

�
.si/m

C

X
.g;k/2 zG�

.�"1/
g.�1/k

2m

.�"01/
g.�1/k

2m
�
g2C2gk
4m

D
1

4m2
C 2

X
s2¹1;�1º

� ."1"01/m
16m2

C
"2"
0
2.�1/

mı"1;�sı"01;�s

4

�
.si/m

C

m�1X
kD1

1

4m2
C

m�1X
kD1

."1"
0
1/
m

4m2
imC2k C

m�1X
gD1

2m�1X
kD0

."1"
0
1/
g

4m2
�
g2C2gk
4m

D
1

4m2
C ."1"2i/

m 1C .�1/
m

8m2
C
"2"
0
2."1i/

mı"1;"01
2

C
m � 1

4m2
� ."1"2i/

m 1C .�1/
m

8m2
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D
1

4m
C
"2"
0
2."1i/

mı"1;"01
2

:

On the other hand,

. xTS xT / z ."1;"2/; z ."1;"2/ D
1

4m
C
"2"
0
2i
maC.0/ı"1;�"01

2
;

which is a contradiction.

6.3. Examples

To compute the missing corner in examples, we use Mathematica and the formulas for
tube algebras for a de-equivariantization of a generalized Haagerup category, included
in the online appendix.

Example 6.9. For G D Z4, let C be the generalized Haagerup category satisfy-
ing (2.24). Then �2.g/D .�1/g , and we have the Z2-de-equivariantization D , which
is the principal even part of the 2D2 subfactor [19, 26].

We can compute the I � I -corner of the modular data of the Drinfeld center by
diagonalizing the action of t on the tube algebra, using a similar method to that out-
lined in Section 4.1. We have jI0j D 2. The two T -eigenvalues for Q�i are �˙25 , and
the corresponding block of the S -matrix is

1

10

�
�5C

p
5 5C

p
5

5C
p
5 �5C

p
5

�
:

This S -matrix looks similar to that of the commutant of G2 in the center of the
generalized Haagerup category for Z2 � Z2, which also has rank 10, but with differ-
ences in several blocks.

Example 6.10. The generalized Haagerup category C for Z8 with .�; A/ given in
the Mathematica notebook solutions.nb satisfies �4.g/ D .�1/g . Again, we can
compute the I � I -corner of the modular data of the Drinfeld center of the Z2-de-
equivariantization D by diagonalizing the action of t on the tube algebra. We have
jI j D 8, and we find that the missing corner is the same as that of the Drinfeld center
of the Asaeda–Haagerup categories: the eigenvalues of the Q�i are �3i

2

17 , for 1 � i � 8,
with

S
Q�i ; Q�i

0 D �
2
p
17

cos
12�i i 0

17
:
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7. Z3-equivariantization

In this section we compute the modular data for the Drinfeld center of the even part
of the 4442 subfactor. The 4442 subfactor was first constructed in [27]. It is self dual,
and its even part is a Z3-equivariantization of the generalized Haagerup category for
G D Z2 � Z2, see [19, Corollary 9.5].

The structure constants .�; A/ of the generalized Haagerup category C are given
in [19, Theorem 9.4] in terms of a sign s and a fourth root of unity zp

d
. We fix s D 1

and z D
p
d . We denote the elements of Z2 �Z2 by ¹0; a; b; cº, in the same order as

the matrices .�; A/.
Let � be the automorphism of Z2 � Z2 satisfying

�.a/ D b; �.b/ D c; �.c/ D a:

Then � and A are invariant under � , so we can define an automorphism .s/ D s and
.tg/ D t�.g/; g 2 G. Then the even part of the 4442 subfactor is equivalent to the
equivariantization CZ3 with respect to the action generated by  .

To describe the Drinfeld center of CZ3 , it is easier to work instead with the Morita
equivalent category C Ì Z3, which is generated by C and  . The category C Ì Z3
leaves the Cuntz algebra generated by s and tg ; g 2 G invariant, so we can do all of
our calculations in terms of this Cuntz algebra.

Note that H D Inv.C Ì Z3/ D .Z2 � Z2/ Ì� Z3 is isomorphic to the alternating
group on four letters. We denote a typical element of H by

.i; g/ D  i ı ˛g ; i 2 ¹0; 1; 2º; g 2 ¹0; a; b; cº:

The tube algebra of C Ì Z3 inherits the Z3-grading of the category, and so we
look for the minimal central projections in the graded components of the tube algebra
separately. For detailed calculations within the tube algebra, such as diagonalization
of t, we use Mathematica and the tube algebra formulas for an equivariantization of a
generalized Haagerup category, which are included in the online appendix.

We first look at the trivially-graded component of Tube.C Ì Z3/, which contains
Tube C . The group part AG of Tube C is Abelian, and following the notation of Sec-
tion 3, its minimal projections are z.k/ and E.k; �k/, for k 2 G; and E.k; �l/˙, for
k ¤ l 2 G.

In the larger algebra Tube.C Ì Z3/, we can break up the trivially-graded group
part as

A.0;G/ D A.0;0/ ˚A.0;Gn¹0º/;

with dim.A.0;0// D 24 and dim.A.0;Gn¹0º// D 72.
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For g;h¤ 0 2G, we have that 1g is equivalent to 1h, since g and h are in the same
conjugacy class inH . Therefore, there are 8minimal central projections in A.0;Gn¹0º/

which all have rank three. They are

z.a/C z.b/C z.c/; E.a; �a/CE.b; �b/CE.c; �c/

and

E.a; �0/" CE.b; �0/" CE.c; �0/"; E.a; �b/" CE.b; �c/" CE.c; �a/";

E.a; �c/" CE.b; �a/" CE.c; �b/"; " 2 ¹˙º:

To find the center of A.0;0/, we also consider the projections

p! D
1

3

2X
iD0

!i ..0; 0/ .i; 0/j1j.i; 0/ .0; 0//;

for ! a cube root of unity.
Then the minimal central projections of A.0;0/ are

p!z.0/ and p!E.0; 0/; ! 2 ¹1; �3; �
�1
3 º;

which each have rank one, and

E.0; �a/" CE.0; �b/" CE.0; �c/"; " 2 ¹˙º;

which each have rank three.
Therefore, there are 16 minimal central projections in A.0;G/. To find the corres-

ponding minimal central projections in Tube.C Ì Z3/, we follow a similar procedure
as in Section 4. Namely, for each minimal central projection p in A.0;G/, we choose
a minimal subprojection p0 and a basis ¹jsºs2S of mutually orthogonal partial iso-
metries for p0A.0;G/;.0;G/� (this is not difficult since for a fixed p0 and h 2 G, the
space p0A.0;G/;.0;h/� turns out to be at most 3-dimensional). Then the corresponding
minimal central projection in the tube algebra is

p C
X
s2S

j �s js:

After computing the 16minimal central projections of Tube.C Ì Z3/which have
nontrivial component in A.0;G/, we can list the corresponding objects in the Drinfeld
center Z.C Ì Z3/.

Lemma 7.1. 1. The (identity) object

.0; 0/
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and the object
.0; 0/˚

M
g2G

.0;g/�

each have three irreducible half-braidings.

2. The objects M
0¤g2G

.0; g/

and M
0¤g2G

�
.0; g/˚ 3.0;g/�

�
˚ 3.0;0/�

each have a unique irreducible half-braiding.

3. The objects M
0¤g2G

�
.0; g/˚ .0;g/�

�
˚ 3.0;0/�

and M
0¤g2G

�
.0; g/˚ 2.0;g/�

�
each have three irreducible half-braidings.

4. The objects
3.0; 0/˚ 2

M
0¤g2G

.0;g/�

and
3
�
.0; 0/˚ .0;0/�

�
˚

M
0¤g2G

.0;g/�

each have a unique irreducible half-braiding.

We can now find the remaining minimal central projections in the 0-graded com-
ponent of Tube.C Ì Z3/ as follows. Let Z.0;G/ be the sum of the 16 minimal
central projections with non-trivial component in A.0;G/. The dimension of A

.0;0/�

is 72, and for h ¤ 0 the dimensions of A
.0;h/� and A

.0;0/�;.0;h/� are 56 and 48,
respectively. On the other hand, the dimensions of Z.0;G/A.0;0/�, Z.0;G/A.0;h/�, and
Z.0;G/A.0;0/�;.0;h/� are 48, 32, and 24, respectively. This implies that

dim..1 �Z.0;G//A.0;0/�/ D dim..1 �Z.0;G//A.0;h/�/

D dim..1 �Z.0;G//A.0;0/�;.0;h/�/ D 24:

Therefore, all of the subalgebras .1 � Z.0;G//A.0;h/�/ are 24-dimensional, and the
corresponding projections .1 �Z.0;G//1.0;h/� are equivalent in the tube algebra.



Drinfeld centers of fusion categories 663

To find the minimal central projections in .1 � Z.0;G//A.0;h/�, we diagonalize
t
.0;h/�. For each h 2 G the minimal polynomial of t

.0;h/� is

q.x/ D .x2 � 1/.x2 � �25/.x
2
� ��25 /:

We let

q�.x/ D
q.x/

x � �
and p�h D

q�.t.0;h/�/
q�.�/

; � 2 ¹˙�˙15 º:

We find that each p�
h

is a rank three projection, which is a minimal central projec-
tion in A

.0;h/� for � D ��˙15 , but splits as a sum of three minimal central projections
for �D �˙15 . Then we can match up the minimal subprojections of the p�

h
for �D �˙15

for different h to find the corresponding minimal central projections in Tube.C Ì
Z3/.

Lemma 7.2. 1. The object M
h2G

.0;h/�

has 6 irreducible half-braidings.

2. The object
3
M
h2G

.0;h/�

has 2 irreducible half-braidings.

Next we consider the non-trivially-graded components of the tube algebra. Let
� 2 ¹1; 2º. Then we have A.�;g/ is isomorphic to A.�;h/ and similarly A

.�;g/� is iso-
morphic to A

.�;h/� for all g and h in G, so it suffices to consider A.�;0/ and A
.�;0/�,

which have dimensions 6 and 54 respectively. The space A.�;0/;.�;0/� has dimen-
sion 12.

The algebra A.�;0/ is Abelian, and the !-eigenspace of t.�;0/ is 2-dimensional for
each cube root of unity !. For each !, let

r!� D
1

3

2X
iD0

!i ..�; 0/ .i; 0/j1j.i; 0/ .�; 0//

and

s!� D
1

3

2X
iD0

!i ..�; 0/ .i;0/�j1j.i;0/� .�; 0//:
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Then .s!� /
2 D r!� C s

!
� and the six minimal projections of A.�;0/ are given by

p!;0� D
5C
p
5

10
r!� �

1
p
5
s!� and p!;1� D

5 �
p
5

10
r!� C

1
p
5
s!� ;

for the three choices of cube root of unity !.
The t.�;0/-eigenvalue for each p!;i� is !. We can find the corresponding min-

imal central projections in Tube.C Ì Z3/ by looking at the action of A.�;0/ on
A.�;0/;.�;0/�, in a similar way to the 0-graded case above.

Lemma 7.3. For each � in ¹1; 2º, the objectsM
g2G

�
.�; g/˚ .�;g/�

�
and

M
g2G

�
.�; g/˚ 3.�;g/�

�
each have three irreducible half-braidings.

Finally, we can determine the remaining minimal central projections in A
.�;G/�

by diagonalizing t
.�;0/�, in a similar way to the 0-graded case. We find that t

.�;0/�

has six additional eigenvalues, which are ¹!�˙15 º, for ! a cube root of unity. The
corresponding eigenprojections all have rank two and are central.

Lemma 7.4. For each � in ¹1; 2º, the object

2
M
g2G

.�;g/�

has six irreducible half-braidings.

Now, that we have found the 48minimal central projections of Tube.C Ì Z3/ and
their T -eigenvalues, we can compute the S -matrix using (2.5). To display the modular
data, we group the simple objects in Z.C Ì Z3/ into eight blocks of sizes 6, 2, 6, 2,
6, 2, 12, and 12, respectively, corresponding to the enumerations in Lemmas 7.1–7.4.
Within each block we use the following indexing convention. We factor the block size
into a product of a power of two and a power of three. Then we index each factor of
size three by a cube root of unity ! and each factor of size two by a sign " (or "1,"2).

Theorem 7.5. With notation as above and appropriate ordering within each block,
the modular data for the Drinfeld center of the even part of the 4442 subfactor is
given by the table in Table 7.
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S

˛ � ""0ˇ

3 ˛ � ""0ˇ ""0ˇ � ˛

1
8

1 �1 �1 � 2""0 C 8ı";"0ı!;!0

1
8

1 3 �1 � 2""0 2"; "0 � 1

1

6
p
5

" 3" 0 0 2 cos .2�""
0/�

5

1

2
p
5

" �" 0 0 2 cos .2�""
0/�

5
2 cos .3C""

0/�
5

1

3
p
5

2 cos .3�""
0
1
/�

10
!"
0
2 0 0 0 �"01!

�"0
2 0 2 cos .3�"1"

0
1
/�

10
.!!0/�"2"

0
2

1

3
p
5

"!"
0
2 0 0 0 2 cos .2�"

0
1
"/�

5
!�"

0
2 0 "1.!!

0/�"
0
2
"2 2 cos .3C"1"

0
1
/�

5
.!!0/�"2"

0
2

T 1 �1 1 �1 �"5 ��"5 ! !�
"1
5

Table 7. The modular data for the Drinfeld center of the 4442 fusion category. Here ˛ D 5
120

and ˇ D 2
p
5

120
. The eight blocks have sizes 6, 2, 6, 2,

6, 2, 12, and 12. The indexing of each block is as indicated in the text and primes are used for indices corresponding to rows. The number to the left
of each row is a multiplicative factor which applies to each entry in that row.
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