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Non-loose negative torus knots

Irena Matkovič

Abstract. We study Legendrian and transverse realizations of the negative torus knots T.p;�q/

in all contact structures on the 3-sphere. We give a complete classification of the strongly

non-loose transverse realizations and the strongly non-loose Legendrian realizations with the

Thurston–Bennequin invariant smaller than �pq.

Additionally, we show that the strongly non-loose transverse realizations T are classified

by their non-zero invariants T .T / in the minus version of the knot Floer homology. However,

not all the elements of HFK�.T.p;q// can be realized.

Along the way, we relate our Legendrian realizations to the tight contact structures on

the Legendrian surgeries along them. Specifically, we realize all tight structures on the lens

space L.pq C 1; p2/ as a single Legendrian surgery on a Legendrian T.p;�q/, and we relate

transverse realizations in overtwisted structures to the non-fillable tight structures on the large

negative surgeries along the underlying knots.

1. Introduction

Legendrian and transverse knot theory in overtwisted structures was established as an

interesting subject by the work of Etnyre [6]: how a specific knot type is appearing in

various overtwisted structures indicates significant differences among them. Further-

more, classification results bring to our attention contact counterparts of an important

topological question asking which manifolds can be obtained by the surgery along

a knot. On the other hand, the introduction of contact invariants in Heegaard Floer

homology [15] has raised the contact realization problem for its non-trivial classes.

In the present paper, we intend to answer these questions for the first infinite family

of knots – negative torus knots – building upon and confirming conjectures of Geiges

and Onaran [9, 10] and Lisca, Ozsváth, Stipsicz, and Szabó [15].

Knots in overtwisted structures. The Legendrian and transverse knots in over-

twisted contact manifolds are of two types depending on whether there is an over-

twisted disk in the knot complement or not, we call them loose and non-loose,
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respectively. The level of non-looseness of a knot can be, as suggested by Baker and

Onaran [1], geometrically measured by the minimal number of intersections of the

knot with any overtwisted disk in the manifold, called the depth, or by counting the

number of stabilizations needed to loosen the knot, called the tension. If the knot

complement, additionally, has zero Giroux torsion (namely, no �-torsion), we say

that such a knot is strongly non-loose.

Another subtlety of the Legendrian knots in overtwisted structures is that their

classification up to Legendrian isotopy does not necessarily coincide with the classi-

fication up to contactomorphism, and the same holds for the transverse knots. The

majority of the rare classification results in the literature limit themselves on the

understanding of the contactomorphism type, usually called the coarse classification,

and so we will do in the present paper. In the coarse setting the complete classification

has been obtained for the loose knots, due to Etnyre [6] classified by the so-called clas-

sical invariants, and for the unknot by Eliashberg and Fraser [5]. But, even in these

simplest examples the classification does not go over to the isotopy level as shown by

Vogel [28]; in fact, to achieve this we would need some additional conditions on the

position of overtwisted disks as in Dymara [4] and Cavallo [2].

Torus knots. What makes the study of torus knots accessible (also in the contact set-

ting), is the fact that the knot complement is Seifert fibered; see Section 2 for details.

In particular, this makes an array of arguments, well-established in the case of closed

Seifert manifolds, applicable to the study of non-loose representatives of torus knots.

Also, for the study of torus knots we have an advantage of the classification being

settled in the standard contact structure, owing to the work of Etnyre and Honda [7].

Building on the above, we obtain here a classification of non-loose Legendrian

and transverse negative torus knots, giving an explicit description for a representative

of every equivalence class. Precedingly, only very limited cases have been studied,

such as the case of the left-handed trefoil in the paper of Geiges and Onaran [10].

Theorem 1.1. Up to boundary parallel Giroux torsion, every Legendrian negative

torus knot T.p;�q/ with tight complement and the Thurston–Bennequin invariant smal-

ler than TB D �pq can be represented by some stabilization of a knot L of Figure 2

which satisfies certain explicit conditions on the rotation numbers of the surgery

curves (stated in Corollary 4.3).

The transverse negative torus knots with the zero Giroux torsion complement are

exactly transverse push-offs of those Legendrian torus knots whose every negative

stabilization satisfies the above conditions.

The precise classifications will be carried out in Theorem 4.2 and Corollary 4.3

for the Legendrian negative torus knots, and in Corollary 4.6 for the transverse ones.

In particular, (as we will observe in Remark 4.9), all these non-loose realizations of
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T.p;�q/ appear in the overtwisted structures whose 3-dimensional invariant is positive,

even, and at most .p � 1/.q � 1/; up to stabilizations there is at most one transversely

non-loose realization of T.p;�q/ in each structure. Note that since T.p;�q/ is a fibered

knot and it is not strongly quasi-positive, the open book with the binding T.p;�q/ sup-

ports an overtwisted structure; and, this is the structure whose 3-dimensional invariant

equals d3 D .p � 1/.q � 1/.

Knot Floer homology. Throughout the paper, we will assume some basic know-

ledge of the knot Floer homology (as defined in [23, 25]); in particular, we will use

the minus knot Floer homology of the torus knots. Furthermore, we recall that Lisca,

Ozsváth, Stipsicz, and Szabó in [15] defined the Legendrian invariant L.L/ of the

null-homologous Legendrian knot L � .Y; �/, lying in the HFK�.�Y;L/ (so, the knot

Floer homology of the mirror image in the case of the ambient manifold being the 3-

sphere). The invariant is known to be invariant under negative stabilizations, hence

giving rise to an invariant of transverse knots, and is multiplied by U by every posit-

ive stabilization. Furthermore, when the ambient contact manifold has non-vanishing

contact invariant (so, for the sphere when we are in the standard contact structure),

the invariant is non-vanishing for every Legendrian knot, and so, in particular, it has

infinite U -order. In the overtwisted ambient, however, the invariant always has finite

U -order, and it might vanish; in particular, it vanishes for all loose knots (and more,

whenever there is Giroux 2�-torsion, as observed by Stipsicz and Vértesi [26]). In [1],

Baker and Onaran as another measure of the non-looseness suggest the order, defined

as the sum of the U -torsion orders of Legendrian invariants for the knot and its ori-

entation reverse. Finally, we recall from the work of Ozsváth and Stipsicz [22] that

the bigrading of the knot Floer homology group in which the invariant lies can be

computed from the classical invariants of the Legendrian knot L as

2A.L.L// D tb.L/ � rot.L/ C 1 and M.L.L// D �d3.�/ C 2A.L.L//;

where A is the Alexander grading and M is the Maslov grading.

One of the motivating questions for the present study has been to find out whether

all the Heegaard Floer classes admit contact interpretation.

We will prove (in Theorem 4.7) that the non-loose transverse T.p;�q/ are classi-

fied by the non-vanishing invariants; in fact, they will be classified already by their

Alexander grading, and hence, simply, by the self-linking number.

Theorem 1.2. A transverse realization T of the knot T.p;�q/ in an overtwisted S3

is strongly non-loose if and only if it has non-zero T.T / 2 HFK�.T.p;q//. Two such

knots are equivalent if and only if they share the same invariant.

For the special family of knots T.2;�2nC1/ (see Example 4.10), our theorem con-

firms the conjectured non-vanishing of the Legendrian invariants for Legendrian knots
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presented in [15, Section 6], by Lisca, Ozsváth, Stipsicz, and Szabó. In this case,

the Legendrian invariants provide generators for the torsion part of the knot Floer

homology. However, we will observe (by examples) that generally not all the U -tor-

sion elements can be presented by the Legendrian invariants, not even in the over-

twisted structure (equivalently, in the torsion summand .F ŒU �=.U n//.A;M / with d3 D

2A � M ) in which there exists a transversely non-loose realization.

Tight contact structures on small Seifert manifolds. Our understanding of the

Legendrian torus knots with tight complements is built on the embedding into and

comparison with the tight contact structures on the closed manifolds obtained by

the contact surgery along these knots. Specifically, we will make use of the clas-

sification of tight and fillable contact structures on small Seifert fibered L-spaces

M.�1I r1; r2; r3/, given in [18] and [19] by the author.

First, we use these classification results in order to put bounds on and to distin-

guish between tight contact structures on the knot complements. But, eventually, they

lead us to some intriguing relations between the tight contact structures on the knot

complement and the tight contact structures on the surgeries along that knot.

Proposition 1.3. All the tight contact structures on the very negative integral surger-

ies along a negative torus knot arise by Legendrian surgery: the fillable structures

from the Legendrian realizations in the standard tight contact structure, and the tight

non-fillable structures from the non-loose realizations in overtwisted structures. They

can be counted in terms of the number of transverse realizations with zero Giroux

torsion.

Proposition 1.3 refers to the statement of Proposition 4.11 and the observations

made in the paragraphs above it, based on the classification result of Theorem 4.2.

Additionally, we observe the following result about Legendrian lens space surger-

ies, completing the work of Geiges and Onaran from [9].

Theorem 1.4. For any pair of coprime positive integers p < q, every tight contact

structure on the lens space L.pq C 1; p2/ can be obtained by a single Legendrian

surgery along some Legendrian realization of the negative torus knot T.p;�q/ in some

contact structure on S3.

Overview

Section 2 elaborates on the Seifert fibered structure of the torus knot complements,

and presents a way to equip them with contact structures. In Section 3, we prove

Theorem 1.4 concerning tight structures on lens spaces. In Section 4, we obtain

classifications of non-loose negative torus knots (Theorem 1.1), together with the
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non-vanishing of the knot Floer invariants (Theorem 1.2) and relations to the con-

tact structures on the surgeries along these knots (Proposition 1.3).

2. Seifert fibration of the knot complement

Let p and q be positive integers such that p < q and gcd.p; q/ D 1, and write T.p;�q/

for the negative .p; �q/-torus knot.

It is well-known that the complement of a torus knot is Seifert fibered. Concretely,

the complement of the knot T.p;�q/ is Seifert fibered over the disk with two singular

fibers whose Seifert invariants are �p0

p
and � q0

.�q/
for p0; q0 such that pq0 � qp0 D 1.

Since �1 < �p0

p
< 0 and q0

q
> 0, we can renormalize the invariants as in Figure 1;

denote this manifold as M.D2I p�p0

p
; q0

q
/.

�1

� p
p�p0 � q

q0

T.p;�q/

Figure 1. Torus knot T.p;�q/.

If we write q D np � k for n � 2 and k < p; gcd.p; k/ D 1, the Seifert invariants

equal M.D2I p�C
p

; C n�D
np�k

/ where C and D are positive integers satisfying C k D

Dp C 1. Furthermore, the negative continued fraction expansions of the two invariants

are related as follows; here, we use the convention

Œc0; : : : ; cm� D c0 �
1

: : : � 1
cm

:

Lemma 2.1. With positive integers p; n; k; C; D chosen as above, the negative con-

tinued fraction expansions of the two Seifert invariants equal

p

p � C
D Œa0

1; : : : ; as
1� and

np � k

C n � D
D Œa0

2; : : : ; at
2; n�

for some a
j
i � 2 satisfying Œa0

1; : : : ; as
1��1 C Œa0

2; : : : ; at
2��1 D 1.

Proof. If we write out

p

p � C
D Œa0

1; : : : ; a
m1

1 � and
np � k

C n � D
D Œa0

2; : : : ; a
m2

2 �;
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then the chain of unknots with coefficients .�a
m1

1 ; : : : ; �a0
1; �1; �a0

2; : : : ; �a
m2

2 /

gives a surgery description of the ambient manifold, which is S3.

On the other hand, since
p�C

p
C C n�D

np�k
> 1, there are truncated continued frac-

tions such that Œa0
1; : : : ; as

1��1 C Œa0
2; : : : ; at

2��1 D 1 for s � m1 and t � m2, and

the truncated chains of unknots join into a chain with coefficients .�as
1; : : : ; �a0

1; �1;

�a0
2; : : : ;�at

2/ which corresponds to S1 � S2 (for more details, see [19, Lemma 3.1]).

Now, the only way to get S3 from S1 � S2 by lengthening the chain is by adding

a single unknot at one of the two ends. Since the numerator of the second fraction is

larger, the coefficient is added to the second continued fraction; so, m1 D s and m2 D

t C 1. Finally, that the added coefficient equals n can be seen from the comparison

to the continued fraction expansion of np2�kpC1

p2 which starts in n (see the proof of

Theorem 1.4).

Some contact structures on the above (bounded) Seifert manifolds can be de-

scribed by the contact surgery diagrams of Figure 2. These diagrams first appeared

in the work of Lisca and Stipsicz [16], and have since been extensively used in under-

standing tight structures on Seifert fibered spaces [11,17–19], as well as for providing

examples of non-loose knots [9, 10, 15].

� q
q0

� p
p�p0

C1
C1

L

Figure 2. Legendrian realizations of the torus knot T.p;�q/.

Recall that such a diagram gives a family of contact structures, whose elements

can be specified by replacing each rational contact surgery with a Legendrian surgery

along a chain of unknots whose Thurston–Bennequin invariants are determined by the

continued fraction expansion as

tb0
i D �a0

i and tb
j
i D �a

j
i C 1 for j > 0;

and rotation numbers are chosen arbitrarily in

rot
j
i 2 ¹tb

j
i C1; tb

j
i C3; : : : ; � tb

j
i �1º:
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So, a single Legendrian representation of T.p;�q/ from Figure 2 is specified by the

array of rotation numbers for the unknots supporting Legendrian surgery.

Let us recall some terminology from [19].

Definition 2.2. We say that a Legendrian unknot is fully positive if all its stabiliza-

tions are positive, that is rot D �.tb C1/. Analogously, a Legendrian unknot is fully

negative if all its stabilizations are negative, that is rot D tb C1.

Additionally, a contact surgery along four .�1/-linked unstabilized Legendrian

unknots (as in Figure 2) with .C1/-surgery performed along two of them and the

negative inverses of the rational surgery coefficients of the other two adding to one,

is called a balanced link when turned into a Legendrian surgery along the chains of

Legendrian unknots, all the unknots of one chain are fully positive and all the unknots

of the other chain are fully negative.

Proposition 2.3. For any choice of rotation numbers, Figure 2 presents Legendrian

torus knot T.p;�q/ with tight complement in some contact structure on S3. Moreover,

the ambient contact structure on S3 is tight if and only if the contact surgery present-

ation contains a balanced link.

Proof. For tightness of the knot complement we use the standard cancellation argu-

ment: since the .�1/-surgery along L results in a tight contact manifold, the comple-

ment of L cannot be overtwisted.

Knowing that the only tight structure on S3 is also Stein fillable, the question

whether the contact structure on the ambient S3, given by the surgery diagram of Fig-

ure 2, is tight or overtwisted, is in greater generality answered in [19, Theorem 1.1]. It

is equivalent to the surgery presentation containing a balanced sublink, which in our

case is fulfilled by either

rot
j
1 D tb

j
1 C1 for j 2 ¹0; : : : ; sº and rot

j
2 D � tb

j
2 �1 for j 2 ¹0; : : : ; tº;

or

rot
j
1 D � tb

j
1 �1 for j 2 ¹0; : : : ; sº and rot

j
2 D tb

j
2 C1 for j 2 ¹0; : : : ; tº:

3. Legendrian knots with tb D �pq and tight L.pq C 1; p2/

Lemma 3.1. In any contact surgery presentation of Figure 2, the Legendrian realiza-

tion L of the torus knot T.p;�q/ has the Thurston–Bennequin invariant equal tb.L/ D

�pq.

Proof. We use the formula from [15, Lemma 6.6]:

tb.L/ D tb0 C
det.Q.0; 0; 0; x; y//

det.Q.0; 0; x; y//
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where tb0 is the Thurston–Bennequin invariant of the knot before surgery, and Q

with x D �1 � q
q0

; y D �1 � p
p�p0

is the intersection matrix of the (smooth) surgery

diagram of Figure 2. Then,

tb.L/ D �1 C
�4 � 3x � 3y � 2xy

�3 � 2x � 2y � xy
D

�pq

pq0 � p0q
D �pq:

We know (since Moser [21]) that all torus knots are lens space knots; explicitly,

the �.pq ˙ 1/-surgery along the negative torus knot T.p;�q/ results in the lens space

L.pq ˙ 1; p2/.

In [9], Geiges and Onaran studied Legendrian lens space surgeries, culminat-

ing in a presentation of every tight contact structure on L.np2 � p C 1; p2/ as a

Legendrian surgery on some Legendrian realization of T.p;�.np�1//. We generalize

their result to every negative torus knot, completely confirming the conjecture stated

in [9, Remark 1.2 (3)].

Theorem 1.4. For any pair of coprime positive integers p < q, every tight contact

structure on the lens space L.pq C 1; p2/ can be obtained by a single Legendrian

surgery along some Legendrian realization of the negative torus knot T.p;�q/ in some

contact structure on S3.

Proof. Since in Lemma 3.1 we have computed the Thurston–Bennequin invariant of

any Legendrian realization L of T.p;�q/ from Figure 2 to be �pq, we know that

Legendrian surgery along any such L results in some contact L.pq C 1; p2/. In fact,

as noticed already in the proof of Proposition 2.3, the resulting contact structure is

tight. We need to show that by varying Legendrian realization L – that is, by choosing

different rotation numbers for the surgery curves – we reach all tight contact structures

on L.pq C 1; p2/.

As specified by Honda [12], the tight structures on a lens space L.u; v/ for rel-

atively prime u and v correspond to the choices of rotation numbers on the chain of

Legendrian unknots whose Thurston–Bennequin invariants are determined by the neg-

ative continued fraction expansion of u
v

. In fact, the tight structures are distinguished

already by their induced Spinc-structures.

Geiges and Onaran (see [9, Theorem 1.1]) proved the theorem in the case q D

np � 1 by finding as many different rotation numbers for Legendrian T.p;�q/ with

tb D �pq as there are tight contact structures on L.pq C 1;p2/. In contrast, we obtain

a direct comparison of the two surgery presentations: the standard one as a Legendrian

surgery along the chain of unknots, and the one given by a single Legendrian sur-

gery along a Legendrian T.p;�q/ in some contact S3. For the second, we consider

Legendrian knots L of Figure 2.

Together with the Legendrian surgery along L, the surgery diagram of Figure 2

smoothly describes L.pq C 1; p2/ and it looks like the first diagram of Figure 3.
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�a0
1 � 1

.rot01/

�a0
2 � 1

.rot02/

0

.0/

�1

�a1
2

� � �

�at
2 �n

.rot12/ .rott2/
.rottC1

2 /

� � �

�as
1 �a2

1
�a1

1

.rots1/ .rot21/
.rot11/

�a0
1 �a0

2

.rot01 C1/ .rot02 C1/

.0/

0
�a1

2

� � �

�at
2 �n

� � �

�as
1 �a2

1
�a1

1

�a0
1 � a0

2

.rot01 � rot02/

�a1
2

� � �

�at
2 �n

� � �

�as
1 �a2

1
�a1

1

Figure 3. Kirby diagrams for L.np2 � kp C 1; p2/ with the Spinc-structure.

In Figure 3, we use q D np � k as in Lemma 2.1 and we keep track of the Spinc-struc-

ture, induced by the chosen contact structure, by writing its evaluations on the homo-

logy generators (in the parenthesis above the corresponding knots).

We get from the first to the second diagram by blowing up the .�1/-linking point

followed by a blow-down of the .C1/-framed meridian of the thus-added curve. Then,

from the second to the third diagram we get by sliding the .�a0
1/-framed unknot over

the reversely oriented .�a0
2/-framed unknot, thus unlinking the .�a0

1/-framed unknot

from the 0-framed unknot, and a consecutive cancellation of the .�a0
2/-framed unknot

with its 0-framed meridian.

Now, since Œa0
1; : : : ; as

1��1 C Œa0
2; : : : ; at

2��1 D 1, we know that one of the two

coefficients a0
1 or a0

2 equal 2. Hence, we can reach all possible rotation numbers on the

.�a0
1 � a0

2/-framed unknot in the chain by differences of the initial rotation numbers.

Indeed, without loss of generality let us write a0
1 D 2 and a0

2 D m, then the possible
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rotation numbers for the .�2 � m/-framed unknot are �m; �m C 2; : : : ; m � 2; m,

and we can get them by choosing, for example, the pairs of rotation numbers

.�1; m � 1/; .�1; m � 3/; : : : ; .�1; �m C 1/; .1; m C 1/

for the .�3/- and .�m � 1/-framed unknots in the initial diagram. The choice of all

the other rotation numbers can be taken equal in both diagrams. So, we have real-

ized all possible choices of the rotation numbers on the chain by possible choices of

rotation numbers in our surgery diagrams, and by that, all possible tight contact struc-

tures on L.pq C 1; p2/ by a Legendrian surgery along L in some contact structure

on S3.

4. Legendrian knots with tb < �pq and knot Floer invariants

Stabilizing a Legendrian knot does not change its knot type, hence any `-times stabil-

ization of a knot L from Figure 2 gives us a Legendrian T.p;�q/ with tb D �pq � `.

Let us denote any `-times stabilization of any knot L by L`. As before, a single

Legendrian realization is specified by an array of rotation numbers for all the surgery

curves in Figure 2, and here additionally, by the rotation number of L`. Be aware,

however, that for ` � 1 not all L` have tight complements.

Let us recall an equivalence relation on the set of Legendrian or transverse knots.

Definition 4.1. Two Legendrian or transverse knots K1 and K2 in a closed contact

3-manifold .M; �/ are said (coarse) equivalent if there exists a contactomorphism of

.M; �/ which maps K1 to K2.

When the self-contactomorphism group of .M; �/ is not contractible, the coarse

equivalence is known (see for example [28]) to be weaker than Legendrian isotopy.

However, based on Kegel’s [13, Lemma 10.3], we know that in the case of non-trivial

knots in the 3-sphere, when we have no cosmetic surgeries, the equivalence type of

a Legendrian knot is completely determined by the contactomorphisms of the knot

complement, even when we look at all contact structures on S3 simultaneously.

Theorem 4.2 (coarse classification of Legendrian T.p;�q/ with tb < �pq). Let K be

a Legendrian realization of the knot T.p;�q/ with tb.K/ D �pq � ` in some contact

structure on S3 . The complement of K has Giroux torsion equal to zero if and only

if K is equivalent to some L` along which the Legendrian surgery results in a tight

contact manifold.

Moreover, two Legendrian knots K1 and K2 are equivalent if and only if the

two contact manifolds obtained by Legendrian surgery along the knot Ki and its

Legendrian push-off for i D 1 and 2 are contact isotopic.
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Proof. We will first show that there is a one-to-one correspondence between the equi-

valence classes of Legendrian knots T.p;�q/ with tb D �pq � ` whose complement

has zero Giroux torsion, and the tight contact structures on M.�1I p�p0

p
; q0

q
; 2

2`C1
/ up

to contact isotopy. This will prove that the knot complement has zero Giroux torsion

if and only if it is equivalent to some L` and the Legendrian surgery along it and its

Legendrian push-off results in a tight manifold, and that two knots are equivalent if

and only if the results of surgery are isotopic. Then, we will observe that the contact

manifold obtained by the Legendrian surgery along a Legendrian knot L` is tight if

and only if the contact manifold obtained by the Legendrian surgery along the knot

and its Legendrian push-off is tight, thus completing the proof of the theorem.

If we write out the Seifert fibration of the T.p;�q/ complement as M.D2I p�p0

p
; q0

q
/,

and choose a trivialization of its boundary torus by the meridian �@D2 � ¹1º

and the longitude a parallel Seifert fiber ¹�º � S1 for � 2 @D2, then the slope of

dividing curves on the boundary torus (once perturbed to be minimal convex) equals

s D 1
tb �pq

C 1 (for details see [10, Section 4]). Utilizing the idea of Ding, Li, and

Zhang [3], we want to embed this knot complement in some small Seifert fibered

manifold M.�1I p�p0

p
; q0

q
; r3/ such that the boundary slope s coincides with the slope

�1 when measured in the standard basis for the neighborhood of the knot; by the for-

mula in [3, p. 65], the third Seifert constant then equals r3 D 2
2`C1

D Œ` C 1; 2��1.

Since there is a unique tight structure with boundary slope �1 on the solid torus, this

immediately tells that on the T.p;�q/ complement with boundary slope s there are at

least as many structures with zero Giroux torsion as on M D M.�1I p�p0

p
; q0

q
; 2

2`C1
/.

What is more, for both structures the maximal twisting number of the regular fiber

(of the Seifert fibration) is equal to zero, hence, according to Lisca and Stipsicz [16,

Proposition 6.1] they can all be presented by surgery diagrams of Figure 2. Examin-

ing the upper bound for the number of tight structures on M in [18, Section 5], we

observe that all the overtwistedness as well as all the isotopies between different sur-

gery presentations have been achieved in the complement of the singular fibers; hence,

actually giving the upper bound for the number of structures with zero Giroux torsion

on the knot complement. Here, the condition of the zero Giroux torsion comes from

the fact that the boundary parallel Giroux �-torsion gives rise to an overtwisted disk

once we do Legendrian surgery along the core knot, and hence in [18] only appropri-

ate structures on the circle bundle over the pair of pants were taken into consideration.

This proves our first assertion about the correspondence with the tight contact struc-

tures on M.�1I p�p0

p
; q0

q
; 2

2`C1
/, the relation is accomplished by Legendrian surgery

along the knot and its push-off.

In order to prove the second assertion about the two surgeries being tight for

the same Legendrian knots, we need to look closer at the isotopy and overtwisted-

ness conditions in [18, Section 5]. The manifold obtained by the Legendrian surgery
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along a Legendrian knot L` is M.�1I p�p0

p
; q0

q
; 1

`C1
/, and the manifold obtained

by the Legendrian surgery along the knot and its Legendrian push-off is M.�1I p�p0

p
;

q0

q
; 2

2`C1
/. First, we notice that isotopies of type (I3) of [18, Proposition 5.2] and

overtwisted structures of type (O2) of [18, Proposition 5.1] do not occur for either of

considered manifolds, because the continued fraction expansions of the Seifert con-

stants cannot fulfill the required equality. Hence, different surgery presentations of

M.�1I p�p0

p
; q0

q
; 1

`C1
/ are isotopic if they are related by either (I2) or a sequence

of (I1) changes of rotation numbers as in [18, Proposition 5.2], while in the case of

M.�1I p�p0

p
; q0

q
; 2

2`C1
/ the relation (I2) does not give an isotopy. Anyway, the over-

twisted structures in both cases are described by (O1) of [18, Proposition 5.1] or

the structures which are related to a structure satisfying (O1) by a sequence of (I1)

changes.

In fact, we can write out explicitly when a Legendrian knot L` is non-loose and

whether two L` are coarse equivalent. Recall that a Legendrian knot L` is specified

by its rotation number and the rotation numbers for the surgery curves of Figure 2.

We will write the rotation numbers of the unknots forming the two singular fibers as

rotij , and use pi
j and ni

j for the number of their positive and negative stabilizations

respectively (of course rotij D pi
j � ni

j ). Note though that we do not fix j D 1; 2

to a particular Seifert constant, but rather take j D 1 for the singular fiber with the

longer fully negative truncation and j D 2 for the one with the longer fully positive

truncation. (To be clear, here by longer we mean that the denominator of the inverse

of the corresponding continued fraction is bigger; however, the inequality might not

be strict for both positive and negative truncations, and then the one which is strict

determines the order of singular fibers, or if neither is strict the order is arbitrary.)

Corollary 4.3. Let K be some Legendrian knot L`, presented by the unknot stabilized

p-times positively and n-times negatively, and with the rotation numbers on the two

singular fibers taking the values

roti1 D tbi
1 C1 for i D 0; : : : ; K; and rotKC1

1 ¤ tbKC1
1 C1;

roti2 D � tbi
2 �1 for i D 0; : : : ; J; and rotJ C1

2 ¤ � tbJ C1
2 �1:

Denote by D the denominator of Œa0
1; : : : ; aK�1

1 ��1 and by D0 the denominator of

Œa0
1; : : : ; aK

1 ��1, and similarly, by E the denominator of Œa0
2; : : : ; aJ �1

2 ��1 and by E 0

the denominator of Œa0
2; : : : ; aJ

2 ��1. (Whenever the continued fraction is empty, we

formally take Œ � D 1
0

.)

• We have another presentation of the equivalent knot if either

D � p
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and there exist

j � J C 1 and p0 � p
j
2

such that

Œa0
1; : : : ; aK�1

1 ��1 C Œa0
2; : : : ; a

j �1
2 ; p0��1 D 1;

or

E � n

and there exist

k � K C 1 and n0 � nk
1

such that

Œa0
2; : : : ; aJ �1

2 ��1 C Œa0
1; : : : ; ak�1

1 ; n0��1 D 1:

In the first case it is given by

ROT i
1 D � tbi

1 �1 for i D 0; : : : ; K; and ROT KC1
1 D rotKC1

1 �2;

ROT i
2 D tbi

2 C1 for i D 0; : : : ; j � 1; and ROT
j
2 D rot

j
2 �2p0;

and the rotation number of the knot decreased by 2D,

in the second case by

ROT i
2 D tbi

1 C1 for i D 0; : : : ; J; and ROTJ C1
2 D rotJ C1

2 C2;

ROT i
1 D � tbi

2 �1 for i D 0; : : : ; k � 1; and ROTk
2 D rotk2 C2n0;

and the rotation number of the knot increased by 2E.

Any two presentations of the same knot are connected by a sequence of the de-

scribed equivalences.

• The knot K is loose if and only if one (and all) of its equivalent presentations

satisfies

Œa0
1; : : : ; aK

1 ��1 C Œa0
2; : : : ; aJ

2 ��1 < 1

and either

D0 < E 0 and p � D0

or

E 0 < D0 and n � E 0:

(In particular, if no leading unknot of the singular fibers nor the knot itself is fully

positive or fully negative, then K is loose.)
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Proof. We rewrite relations from [18, Section 5] in accordance with the correspond-

ence given in Theorem 4.2. Indeed, the equivalent presentations exactly correspond to

isotopies (I1) from [18, Proposition 5.2], and the loose knots to overtwisted surgeries

given by (O1) in [18, Proposition 5.1].

The simplification that looseness can be read from any given presentation is a

consequence of the fact that the inequality Œa0
1; : : : ; aK

1 ��1 C Œa0
2; : : : ; aJ

2 ��1 < 1 fails

only when presentation contains a balanced sublink, and in all other cases D0 and E 0

are different.

Remark 4.4 (Negative torus knots in the standard structure). In Proposition 2.3 we

tell when the ambient contact structure of a Legendrian knots L, and hence of L`,

is tight; that is, if and only if the surgery diagram (of Figure 2) contains a balanced

sublink. From the classification in Theorem 4.2 it follows that we can present in this

form all Legendrian negative torus knots lying in .S3; �std/, as classified by Etnyre

and Honda [7] (recall from [7] that tb � �pq).

Indeed, these are the only presentations for which the inequality in the second

item of Corollary 4.3 is never satisfied.

Remark 4.5 (Tension). On the other hand, we know that a knot in an overtwisted

structure becomes loose after sufficiently many stabilizations. However, we can read

from the looseness criterion of Corollary 4.3 that for any non-loose realizations of

T.p;�q/ stabilizations of one sign suffice, while stabilizations of the opposite sign will

keep the knot non-loose. Concretely, invoking the notation of Corollary 4.3, the knot

K with D0 < E 0 has the positive tension equal to tC.K/ D D0 and the infinite negative

tension t�.K/ D 1, and oppositely, the knot K with E 0 < D0 has the negative tension

equal to t�.K/ D E 0 and the infinite positive tension tC.K/ D 1.

Corollary 4.6 (Coarse classification of transverse T.p;�q/). Any transverse realiza-

tion T of the knot T.p;�q/ with Giroux torsion equal to zero arises as a transverse

approximation of an L` for which p < D0 < E 0 in the notation of Corollary 4.3.

Proof. Recall that transverse knots can be thought of as Legendrian knots up to negat-

ive stabilizations. Hence, for a transverse knot to have tight complement, all negative

stabilizations of its Legendrian push-off have to have tight complement as well. Since

by stabilizing, the Thurston–Bennequin invariant eventually gets smaller than �pq,

every transverse knot will be an approximation of some L`. According to the pre-

ceding Remark 4.5, the realizations with infinite negative tension has D0 < E 0, while

p < D0 ensures that the Legendrian knot is non-loose.

Note though that not all transversely non-loose T.p;�q/ can arise as transverse

approximation of an (non-stabilized) L from Figure 2. This can be observed from the

isotopies in the first item of Corollary 4.3: when D is greater than 1, the D-times
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positively stabilized L in the first presentation will be isotopic to D-times negatively

stabilized knot in the second presentation, however the d -times positive stabilizations

of L for d < D do not negatively destabilize to any non-loose knot with tb D �pq.

In the following, we will examine the question whether all elements of the minus

version of the knot Floer homology can be realized as the Legendrian invariants (in the

sense of Lisca, Ozsváth, Stipsicz and Szabó [15]) of a Legendrian realization in some

contact structure on S3 of the underlying knot. Notice that although the Legendrian

invariant was introduced as a Legendrian isotopy invariant, its vanishing depends only

on the contactomorphism type of the knot complement as can be understood from its

sutured reinterpretation (established by Etnyre, Vela-Vick and Zarev in [8]).

Theorem 4.7. A Legendrian realization K of the knot T.p;�q/ in an overtwisted S3

has non-zero Legendrian invariant L.K/ in HFK�.T.p;q// if and only if K is up to

negative stabilizations equivalent to a Legendrian knot L` with p < D0 < E 0.

Hence, a transverse realization T of the knot T.p;�q/ in an overtwisted S3

is strongly non-loose if and only if it has non-zero transverse invariant T.T / in

HFK�.T.p;q//. Moreover, they are classified by their transverse invariants, and actu-

ally, even by the self-linking number.

Proof. First, if a knot K has a non-zero invariant L.K/, so do all its negative stabil-

izations. Hence, a Legendrian negative torus knot has non-zero invariant only if it is

strongly non-loose as a transverse knot. Indeed, in the presence of Giroux 2�-torsion

all Heegaard Floer invariants vanish [26], while the vanishing of invariants when we

add boundary parallel �-torsion is a consequence of an odd change (by sl D 2A � 1)

in d3 and the structure of HFK�.T.p;q// (see Remark 4.9). So, by Corollary 4.6, K is

up to negative stabilizations equivalent to a Legendrian knot L` with p < D0 < E 0.

So, we just need to prove that every L` with p < D0 < E 0 (hence, every trans-

versely non-loose realization) has non-zero invariant, and that they distinguish non-

equivalent realizations.

Nonvanishing is a direct application of [20, Theorem 1.1]. Indeed, the negative

tension of L` with p < D0 < E 0 is infinite, and by the correspondence of Theorem 4.2

the �n-contact surgeries of all stabilizations negative along such L` are tight for all

n 2 N. Since the underlying smooth manifolds are small Seifert fibered L-spaces

with Euler number �1, the tight structures also have non-zero contact invariant (by

[18, Corollary 1.4]). Hence, the theorem applies and L.L`/ ¤ 0, and then L.K/ ¤ 0

for any Legendrian K which is equivalent to L` up to negative stabilizations.

Non-equivalent L` give by the correspondence of Theorem 4.2 non-isotopic tight

structures on M.�1I p�p0

p
; q0

q
; 2

2`C1
/; by [18, Theorem 1.3] also their induced Spinc-

structures are different, and so are the relative Spinc-structures of the knots. Therefore,



I. Matkovič 684

non-equivalent transverse knots are differed (already) by the Alexander grading of

their transverse invariants, or equivalently, by their self-linking number.

Remark 4.8. Applying Remark 4.5 we see that any Legendrian realization K of the

knot T.p;�q/ in an overtwisted structure on S3 has the order equal to the tension (in

terminology of Baker and Onaran [1]).

Remark 4.9 (Ambient overtwisted structures). Here we show in which overtwisted

structures transverse strongly non-loose negative torus knots T.p;�q/ appear, and that

each of these structures can be occupied by only one such knot up to stabilizations.

Nonvanishing of Legendrian invariants makes it easy to see that transverse strongly

non-loose negative torus knots T.p;�q/, and in fact all L from Figure 2, live in the

overtwisted structures with the 3-dimensional invariant positive, even, and at most

.p � 1/.q � 1/. Indeed, the knot Floer homology of a positive torus knot [24] takes

the following form

HFK�.T.p;q// Š F ŒU �.A0;M0/ ˚
M

i

�

F ŒU �=.U ni /
�

.Ai ;Mi /

where .Ai ; Mi / is the bigrading of the generator for each summand. Now, since

HFK�.T.p;q// is the homology of the associated graded complex of an upper stair-

case, the generators of the direct summands correspond exactly to the bottom dots of

the staircase and 2Ai � Mi (which is preserved by U -multiples, and hence throughout

each summand) is equal to twice the second coordinate of the bottom dots of the upper

staircase (when based on the axes of the first quadrant). Therefore, HFK�.T.p;q// is

supported only in finitely many values of 2A � M , all of which are even and in the

interval Œ0; .p � 1/.q � 1/�. This finishes the proof for the transversely non-loose

knots whose invariants are non-zero by Theorem 4.7; however, from Remark 4.5 we

see that every L is either transversely non-loose or it gets such after all unknots in

its surgery presentation are taken with its reversed orientation, which preserves the

3-dimensional invariant.

Moreover, since by Theorem 4.7 transversely non-loose T.p;�q/ are classified by

the transverse invariants, the only transverse knots living in the same 3-dimensional

invariant are the ones related by (positive) stabilizations, which (for their Legendrian

approximations) are exactly described by the first item of Corollary 4.3. This is

because the equality 2Ai � Mi D 2Aj � Mj holds only if i and j are equal, and

so, the same d3 is shared only by the knots whose transverse invariants are in the

same summand. But since we already know that different transverse T.p;�q/ cannot

have the same invariant, all the ones with the invariants in the same summand are

related by stabilizations.

In particular, we notice that the single generator in the top Alexander grading

A D .p�1/.q�1/
2

is always realized by the binding for the open book supporting the
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overtwisted structure with d3 D 2A (as proved by Vela-Vick in [27]), and this is the

only transversely non-loose T.p;�q/ living in the maximal d3. In our presentation of

Figure 2 the corresponding knots are given by all the surgery curves fully positive, that

is, when rot
j
i D � tb

j
i �1 for all the surgery curves. (Indeed, the maximal d3 is attained

at the maximal rot-vector because the coefficients in the inverse of the intersection

matrix are all non-negative, by an analogous argument to [14, Section 4.1].)

Example 4.10. We demonstrate that not all the torsion elements of HFK�.T.p;q//

are realized as Legendrian invariants of (transversely) non-loose negative torus knots

T.p;�q/. The first example is a (very special) family for which this is the case, the

second is a family for which all 1-torsion elements are realized, and the third is a

concrete example for which not all 1-torsion elements are realized, but there is a

Legendrian invariant of order 2.

• T.2;�2nC1/. The two singular fibers have coefficients 1
2

D Œ2��1 and n
2n�1

D

Œ2;n��1. There are n � 1 strongly non-loose representatives, distinguished by the rota-

tion number on the .�n/-framed surgery. Meanwhile, the knot Floer homology takes

the form HFK�.T.2;2n�1// Š F ŒU � ˚ F
n�1. Also, the set of pairs of Alexander and

Maslov gradings agrees with the set of triples .tb; rot; d3/ for the listed knots. This has

already been observed in [15, Remark 6.11]: in particular, our Theorem 4.7 confirms

the conjecture of Lisca, Ozsváth, Stipsicz, and Szabó that the Legendrian invariants

of the knots Lk;l (in the notation of [15]) are non-zero, and hence present generators

for all U -torsion elements of HFK�.T.2;2n�1//.

• T.n;�n�1/. The two singular fibers have coefficients 1
n

D Œn��1 and n
nC1

D

Œ2�n��1. The number of the relevant non-loose representatives (with D0 < E 0, in the

notation of Corollary 4.3) is n � 1 (the rotation number on the .�3/-framed unknot

is 1, and on the .�n � 1/-framed unknot it is any of ¹n � 1; n � 3; : : : ; �n C 3º),

while the knot Floer homology takes the form

HFK�.T.n;nC1// Š F ŒU � ˚

n�1
M

iD1

F ŒU �=.U i/:

It is possible to check that the bigradings computed from .tb; rot; d3/ agree with the

bigradings of the bottoms of the torsion summands.

• T.5;�8/. The two singular fibers have coefficients 5
8

D Œ2; 3; 2��1 and 2
5

D

Œ3; 2��1. The number of the relevant non-loose representatives (with D0 < E 0, in the

notation of Corollary 4.3) is 5. The knot Floer homology takes the form

HFK�.T.5;8// Š F ŒU � ˚ F ŒU �=.U 4/ ˚
�

F ŒU �=.U 2/
�2

˚ .F ŒU �=.U //6 ;
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the Legendrian invariants lie at .A; M/ equal to

.14; 0/ in .F ŒU �=.U //.14;0/; for rot D Œ1; 1; 0I 2; 0�I

.4; �6/ in .F ŒU �=.U //.4;�6/; for rot D Œ1; 1; 0I 0; 0�I

.�2; �12/ in .F ŒU �=.U 2//.�1;�10/; for rot D Œ1; �1; 0I 2; 0�I

.�12; �26/; .�11; �24/ in .F ŒU �=.U 4//.�9;�20/; for rot D Œ1; �1; 0I 0; 0�;

Œ�1; 1; 0I 2; 0�:

Note that the last two presentations are related by isotopy of Corollary 4.3 when the

knot is stabilized once negatively, respectively once positively.

Finally, we look back at the tight structures on

S3
�pq�m.T.p;�q// D M

�

�1I
p � p0

p
;

q0

q
;

1

m C 1

�

:

Here, we will notice that the number of tight structures on these manifolds stabilizes

once m gets big enough. Precisely, for m > q the manifold S3
�pq�m�1.T.p;�q// admits

one more tight contact structure than the manifold S3
�pq�m.T.p;�q//.

Indeed, recall first that the fillable structures always contain a balanced sublink;

see [19]. Thus, new relations among seemingly different contact presentations (of fil-

lable structures) are induced by isotopies (I1) of [18, Proposition 5.2], and they are

newly appearing only as long as the denominators of the first two Seifert constants

are bigger than m. Once m > q, all equivalences are already established and the one

more structure is always coming from the choice of the one more stabilization on the

knot supporting the third singular fiber. Thinking about Legendrian representations of

T.p;�q/ instead, we have observed already in Remark 4.4 that Lm given by the contact

surgery presentations containing a balanced sublink correspond exactly to Legendrian

realizations in the standard contact S3. The equivalences between the knot presenta-

tions from Corollary 4.3 are exactly the isotopies (I1) mentioned above for the fillable

structures. In fact, we can see directly from the mountain range that for the low enough

Thurston–Bennequin invariants, the number of Legendrian realizations of T.p;�q/ in

the standard contact structure on S3 increases by one as the Thurston–Bennequin

number decreases by one. This is indeed the case for tb � �pq � q. Therefore, for

m > q we established a one to one correspondence between fillable structures on

S3
�pq�m.T.p;�q// and transverse realizations in the standard structure with the self-

linking greater than or equal to �pq � q C p � m.

On the other hand, we have the following relation between the non-loose realiz-

ations of the knot T.p;�q/ in overtwisted structures on S3 and the non-fillable tight

contact structures on the large negative surgeries.
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Proposition 4.11. The number of non-fillable tight contact structures on the

.�m/-surgery along T.p;�q/ for large m 2 N equals twice the number of the strongly

non-loose transverse realizations of the knot T.p;�q/ decreased by the number of over-

twisted structures in which they appear. This is further equal to twice the number of

torsion elements in HFK�.T.p;q// which are realized as the Legendrian invariants,

minus the number of realized 1-torsion elements.

Proof. We have observed in Theorem 4.2 that the Legendrian realizations without

Giroux torsion of T.p;�q/ with tb D �pq � m are in one to one correspondence with

tight structures on M.�1I p�p0

p
; q0

q
; 2

2mC1
/, and that taking a single Legendrian sur-

gery along them gives rise to all tight structure on S3
�pq�m�1.T.p;�q//. Above we

have already related the fillable structures with the knots in the standard S3. So, it only

remains to prove when the Legendrian surgery along different non-loose Legendrian

knots results in the same (non-fillable) tight structure.

Comparing the equivalences from Corollary 4.3 with the isotopies described in

[18, Section 5], we see that the only identifications of tight structures (not arising from

equivalences of knots) are provided by isotopies (I2) of [18, Proposition 5.2]. These

isotopies connect surgery presentations with either a fully negative or a fully posit-

ive unknot representing the third singular fiber and neither leading unknot of the other

two singular fibers fully negative or positive, respectively. They identify them in pairs:

the one with the fully negative unknot on the third fiber and the one with this unknot

fully positive which has rotation numbers of the other leading unknots decreased by

two and the rotation numbers of all the other surgery curves the same. According

to Remark 4.5, the knots supporting the third singular fiber in these presentations

are exactly the non-loose Legendrian T.p;�q/ which have the positive, respectively

negative, tension equal to one. Furthermore, according to Remark 4.8 also their order

equals one. Therefore, we need to subtract from the number of Legendrian realizations

(which is twice the number of transverse realizations, and equals the number of real-

ized torsion HFK-classes) the number of 1-torsion elements, realized by Legendrian

invariants, or equally, the number of overtwisted structures that admit a non-loose

realization.
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References

[1] K. L. Baker and S. Onaran, Nonlooseness of nonloose knots. Algebr. Geom. Topol. 15

(2015), no. 2, 1031–1066 Zbl 1318.53089 MR 3342684

[2] A. Cavallo, On loose Legendrian knots in rational homology spheres. Topology Appl. 235

(2018), 339–345 Zbl 1385.57026 MR 3760207

[3] F. Ding, Y. Li, and Q. Zhang, Tight contact structures on some bounded Seifert manifolds

with minimal convex boundary. Acta Math. Hungar. 139 (2013), no. 1–2, 64–84

Zbl 1289.57004 MR 3028654

[4] K. Dymara, Legendrian knots in overtwisted contact structures on S3. Ann. Global Anal.

Geom. 19 (2001), no. 3, 293–305 Zbl 0985.57009 MR 1828083

[5] Y. Eliashberg and M. Fraser, Classification of topologically trivial Legendrian knots. In

Geometry, topology, and dynamics (Montreal, PQ, 1995), pp. 17–51, CRM Proc. Lecture

Notes 15, American Mathematical Society, Providence, RI, 1998 Zbl 0907.53021

MR 1619122

[6] J. B. Etnyre, On knots in overtwisted contact structures. Quantum Topol. 4 (2013), no. 3,

229–264 Zbl 1281.57016 MR 3073563

[7] J. B. Etnyre and K. Honda, Knots and contact geometry. I. Torus knots and the figure eight

knot. J. Symplectic Geom. 1 (2001), no. 1, 63–120 Zbl 1037.57021 MR 1959579

[8] J. B. Etnyre, D. S. Vela-Vick, and R. Zarev Sutured Floer homology and invariants of

Legendrian and transverse knots. Geom. Topol. 21 (2017), no. 3, 1469–1582

Zbl 1420.57035 MR 3650078

[9] H. Geiges and S. Onaran, Legendrian lens space surgeries. Michigan Math. J. 67 (2018),

no. 2, 405–422 Zbl 1404.53113 MR 3802259

[10] H. Geiges and S. Onaran, Exceptional Legendrian torus knots. Int. Math. Res. Not. IMRN

(2020), no. 22, 8786–8817 Zbl 1469.57008 MR 4216704

[11] P. Ghiggini, P. Lisca, and A. I. Stipsicz, Tight contact structures on some small Seifert

fibered 3-manifolds. Amer. J. Math. 129 (2007), no. 5, 1403–1447 Zbl 1175.57018

MR 2354324

[12] K. Honda, On the classification of tight contact structures. I. Geom. Topol. 4 (2000),

309–368 Zbl 0980.57010 MR 1786111

[13] M. Kegel, The Legendrian knot complement problem. J. Knot Theory Ramifications 27

(2018), no. 14, article id. 1850067 Zbl 1467.53088 MR 3896311

[14] T. Lidman, and S. Sivek, Contact structures and reducible surgeries. Compos. Math. 152

(2016), no. 1, 152–186 Zbl 1342.57008 MR 3453391

[15] P. Lisca, P. Ozsváth, A. I. Stipsicz, and Z. Szabó, Heegaard Floer invariants of Legendrian

knots in contact three-manifolds. J. Eur. Math. Soc. (JEMS) 11 (2009), no. 6, 1307–1363

Zbl 1232.57017 MR 2557137

[16] P. Lisca and A. I. Stipsicz, Ozsváth–Szabó invariants and tight contact 3-manifolds. III.

J. Symplectic Geom. 5 (2007), no. 4, 357–384 Zbl 1149.57037 MR 2413308

[17] P. Lisca and A. I. Stipsicz, On the existence of tight contact structures on Seifert fibered

3-manifolds. Duke Math. J. 148 (2009), no. 2, 175–209 Zbl 1233.57013 MR 2524494
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