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Triangular decomposition of SL3 skein algebras

Vijay Higgins

Abstract. We give an SL3 analogue of the triangular decomposition of the Kauffman bracket
stated skein algebras described by Lê. To any punctured bordered surface, we associate an SL3

stated skein algebra which contains the SL3 skein algebra of closed webs. These algebras admit
natural algebra morphisms associated to the splitting of surfaces along ideal arcs. We give an
explicit basis for the SL3 stated skein algebra and show that the splitting morphisms are injective
and describe their images. By splitting a surface along the edges of an ideal triangulation, we see
that the SL3 stated skein algebra of any ideal triangulable surface embeds into a tensor product
of stated skein algebras of triangles. As applications, we prove that the stated skein algebras
do not have zero divisors, we construct Frobenius maps at roots of unity, and we obtain a new
proof that Kuperberg’s web relations generate the kernel of the Reshetikhin–Turaev functor.
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1. Introduction

The representation theory of a quantum group admits a diagrammatic calculus. Rib-
bon diagrams in the plane depict maps between representations, and skein relations
among the diagrams correspond to relations among the maps. For the case of SLn,
it has been shown that such skein theories essentially completely describe the rep-
resentation theory of the quantum group Uq.sln/ (see [6, 24]). Instead of restricting
our attention to diagrams in the plane, we can associate to any surface a skein mod-
ule which consists of formal linear combinations of diagrams on the surface modulo
local skein relations. Such a skein module admits a natural algebra structure given
by superimposing one diagram on top of another. For the SLn case, Sikora [30] has
described a skein theory built from directed n-valent ribbon graphs which is particu-
larly amenable to the algebra structure since only one color of strand is used. For the
SL2 case, this skein theory coincides with that given by the Kauffman bracket skein
relations and for the SL3 case it coincides with that given by the Kuperberg bracket
skein relations.

Since the skein algebras are defined as quotients of free modules which happen to
admit natural algebra structures, it is difficult to study the algebra structures explicitly.
In particular, it can be difficult to construct algebra morphisms whose domains are the
skein algebras. Nevertheless, the SL2 case of the Kauffman bracket skein algebras of
surfaces is relatively well studied since the diagrams are built out of curves on surfaces
and various geometric and combinatorial techniques have been developed to handle
them.

In [3], Bonahon and Wong defined an algebra embedding of the Kauffman bracket
skein algebra into quantum Teichmüller space. This map is called the quantum trace
map and is viewed as a quantization of the classical trace map. The quantum Teich-
müller space is a certain quantum torus, an algebra whose presentation is constructed
from an ideal triangulation of a surface. Inspired by the computations involved with
checking that the quantum trace map is well defined, Lê developed in [26] a triangular
decomposition of the Kauffman bracket skein algebra by introducing the Kauffman
bracket stated skein algebra. The stated skein algebra is a finer version of the regular
skein algebra with extra relations along the boundary allowing one to define splitting
morphisms, which are algebra maps associated to the splitting of a surface along an
ideal arc. The extra boundary relations are consistent with the regular skein algebra
relations, so no information is lost when passing to the stated skein algebra. The split-
ting morphisms are injective, so no information is lost by passing to the triangular
decomposition. One can define an algebra map out of a skein algebra by defining
maps on stated skein algebras of triangles and then precomposing with the triangular
decomposition. Using this method, Lê was able to reconstruct the quantum trace map.
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Lê and Costantino further developed the theory of the Kauffman bracket stated
skein algebras of surfaces in [8]. There, they highlighted the connections between
the stated skein algebra, the quantized ring of coordinate functions Oq.SL2/, and the
Reshetikhin–Turaev invariant of ribbon tangles. This perspective provides hints for
how to construct a stated skein algebra for Lie groups other than SL2 :

A triangular decomposition for the algebra of functions on G-character variet-
ies of surfaces has been developed by Korinman in [21] for quite a general class of
Lie groups G: Furthermore, Korinman and Quesney [22] and Costantino and Lê [8]
showed that for the SL2 case, the triangular decomposition of the stated skein algebra
fits into an exact sequence which parallels the exact sequence associated to the tri-
angular decomposition of the character variety. One may expect that skein algebras
associated to other Lie groups G have analogous triangular decompositions lining up
with those of the character variety.

The goal of this paper is to give an explicit description of a stated version of the
SL3 skein algebra, analogous to the Kauffman bracket skein algebra, and to study
some of its properties. The current version of this paper is adapted from an earlier
version as well as from material appearing in the author’s thesis [17]. We now sum-
marize our main results about the SL3 stated skein algebra, �

SL3
q .†/; of a punctured

bordered surface †:

1.1. Main results

One of the most interesting properties of our description of the SL3 stated skein
algebra by explicit skein relations is that our skein relations are confluent.

Theorem 1.1 (Theorem 5.3). The SL3 stated skein algebra �
SL3
q .†/ is a free module

with a canonical basis which is an extension of the Sikora–Westbury canonical basis
of the SL3 ordinary skein algebra of closed webs [31]. Furthermore, any element
of the stated skein algebra can be written in the basis by repeatedly applying the
reduction rules labeled (I1a)–(I4b), (B1)–(B4), (Ck), and (S) which may be found in
Sections 2 and 5 of this paper.

Analogous to the Kauffman bracket stated skein algebras, our SL3 stated skein
algebras admit splitting maps associated to cutting surfaces along ideal arcs. Our basis
allows us to prove important properties of the splitting maps.

Theorem 1.2 (Theorems 8.1 and 8.2). The splitting maps are injective and their
images can be explicitly described. Each splitting map fits into an exact sequence
of the form described in [8, 21, 22].

To show the injectivity of the splitting map associated to an arbitrary ideal arc, we
show that it suffices to prove the injectivity of the splitting map for an ideal arc that
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bounds a monogon. While this case is much simpler to consider, it is still difficult to
prove. We use the list of reduction rules suggested by the SL3 skein algebra relations
as in [31] and expand the list to include relations along the boundary. Using these
reduction rules, we apply the diamond lemma to find an explicit basis that helps us
prove the injectivity of the splitting map for an ideal arc bounding a monogon. To
generalize these results to other G, we desire similar reduction rules for their skein
theories or else we hope to find a replacement for the role that the basis plays in this
paper.

The splitting maps allow us to study skein algebras of punctured surfaces by study-
ing stated skein algebras of building block surfaces: the monogon M, the bigon B;

and the triangle T : We give explicit presentations for these stated skein algebras.

Theorem 1.3 (Proposition 6.1 and Theorems 9.3 and 10.1). We have the following
identifications:

(i) �
SL3
q .M/ Š R; the ground ring;

(ii) �
SL3
q .B/ Š Oq.SL3/ as Hopf algebras;

(iii) �
SL3
q .T / Š Oq.SL3/

x
˝Oq.SL3/; the braided tensor square of Oq.SL3/:

In the second half of the paper, we use these tools to obtain several applications.
In our first application, we use the fact that Oq.SL3/ has no zero divisors to establish
the same result for SL3 stated skein algebras.

Theorem 1.4 (Theorem 11.1). Suppose that † is a punctured bordered surface with
at least one puncture and that the ground ring R has no zero divisors. Then �

SL3
q .†/

has no zero divisors.

In an important construction, [4] defines the Chebyshev–Frobenius homomorph-
ism, which produces central elements in the SL2 skein algebra at roots of unity by
threading elements of the skein algebra through Chebyshev polynomials. The works
[2, 22] extend this construction to the case of SL2 stated skein algebras. We are inter-
ested in generalizing these constructions to the case of SL3. We make progress in this
direction by adapting the arguments of [22] to establish the existence of an SL3 ana-
logue of the Chebyshev–Frobenius homomorphism, using the Frobenius map for the
quantum group Oq.SL3/ given in [28].

Theorem 1.5 (Theorem 12.1). Suppose that R has no zero divisors and q1=3 is a root
of unity of order N coprime to 6: If † has at least one puncture, then there exists an
embedding

�
SL3

1 .†/ ,! Z.�SL3
q .†//

into the center of the stated skein algebra.
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In [24], Kuperberg’s SL3 web category is shown to be equivalent to a full subcat-
egory of Uq.sl3/-mod: Theorem 1.3 from this introduction provides a diagrammatic
definition of the quantum group Oq.SL3/: We can then use Theorem 1.2 to give a
new, diagrammatic proof of Kuperberg’s result in the context of Oq.SL3/-comodules
for any coefficient ring R and any choice of invertible element q 2 R:

Theorem 1.6 (Theorem 13.1). Kuperberg’s SL3 web category is equivalent to a full
subcategory of Oq.SL3/-comod; and the Reshetikhin–Turaev functor providing the
equivalence can be described explicitly in terms of a splitting map for the bigon.

1.2. Recent related works

The study of skein algebras for higher rank lie groups has been a popular topic
recently. We would like to take note of a few works that are especially related to
this paper.

A construction of the SL3 quantum trace map has been developed by works of
Douglas and of Kim. In [10], Douglas proposes a definition of the quantum trace map
for links while Kim extends the definition to webs and the SL3 skein algebra in [20]
by making use of the SL3 stated skein algebra defined in the present paper.

In [13], Frohman and Sikora develop and study a reduced skein algebra, which
ends up sandwiched between the ordinary skein algebra and the stated skein algebra.
The reduced skein algebra is coordinatized in [11–13] and its connections to cluster
algebras are further studied in [18,20]. It turns out that the basis of the reduced stated
skein algebra of Frohman-Sikora can be viewed, in an appropriate way, as a subset of
the basis for the stated skein algebra described in this paper. See [11,27] for discussion
of this fact.

The study of SLn skein algebras for n > 3 is continued in the paper of Lê and
Sikora [27], in which they develop a theory of SLn stated skein algebras compat-
ible with Sikora’s definition of SLn webs [30]. Some techniques in the present paper
are adaptable to the higher rank case, and Lê and Sikora have been able to establish
analogues of several of our main results. The method of confluence theory does not
appear to be effective for the web relations in the higher rank case, and so it remains
an important problem to describe a basis of webs for SLn skein algebras when n > 3:

Skein algebras have been studied by some authors from a more general perspect-
ive of skein categories using methods of factorization homology, such as in [1, 7, 15].
In particular, [15] describe a so-called internal skein algebra by way of a coend con-
struction. In [7], an excision property for skein categories is established. The work
of [16] in the SL2 case relates stated skein algebras to internal skein algebras and
properties of splitting maps to the excision property. It is believed that the methods of
[16] should extend to higher rank cases as well. In contrast to the general methods of
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factorization homology, in this paper we are focused on studying skein algebras from
the perspective of explicit skein relations.

2. The SL3 stated skein algebra

Definition 2.1. A punctured bordered surface is a pair .†0;P /; where†0 is a smooth
compact oriented surface, possibly with boundary, and P is a collection of finitely
many points of †0: We require that each boundary component of †0 contains at least
one point of P :We do not require†0 to be connected. We let†D†0 nP : To simplify
notation, we also refer to the pair .†0;P / simply by †: A boundary arc of † is a
connected component of @†:

For a punctured bordered surface †, a web in † � .0; 1/ is an embedding of a
directed ribbon graph � such that each interior vertex of � in V† � .0; 1/ is a trivalent
sink or a trivalent source. We allow � to have univalent vertices, called endpoints,
contained in @†� .0; 1/ such that for each boundary arc b of† the vertices contained
in b � .0; 1/ have distinct heights. We require the web to have a vertical framing
with respect to the .0; 1/ component and we require that strands that terminate in a
univalent vertex are transverse to @†:

We consider isotopies of webs in the class of webs. In particular, our isotopies
must preserve the height order of boundary points of webs for each boundary arc
of †:

For a web � , a state is a function sW @� ! ¹�; 0;Cº. A stated web is a web
together with a state. We will make use of the order � < 0 < C on the set ¹�; 0;Cº.
For notational purposes, it will be convenient to sometimes add states together. By
identifying the state � with the integer �1 and the state C with the integer 1, we
partially define an addition on the set ¹�; 0;Cº whenever the answer is contained in
the set as well.

Definition 2.2. A web � in † � .0; 1/ is in generic position if the projection
� W† � .0; 1/! † restricts to an embedding of � except for the possibility of trans-
verse double points in the interior of †: Each web is isotopic to a web in generic
position. A stated diagram D of a generic stated web � is the projection �.�/ along
with the over/undercrossing information at each double point and the height orders
and states of the boundary points of �: Web diagrams are isotopic if they are isotopic
through an isotopy of the surface.

As in [26], it will be convenient for us to record the local height orders of the
boundary points of a web diagram by drawing an arrow along a portion of the bound-
ary arc of †.
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Let R be a unital commutative ring containing an invertible element q1=3: The
quantum integer Œn� denotes the Laurent polynomial defined by Œn� D qn�q�n

q�q�1 :

Definition 2.3. The SL3 stated skein algebra �
SL3
q .†/ is the R-module freely spanned

by isotopy classes of webs in † � .0; 1/ modulo the following relations.

Interior relations:

D q2=3 C q�3�1=3 ; (I1a)

D q�2=3 C q�3C1=3 ; (I1b)

D q6
�

C

�
; (I2)

D �q3Œ2� ; (I3)

D Œ3�; (I4a)

D Œ3�: (I4b)

Boundary relations:

aC b

D .�1/aCbq�1=3�.aCb/

a b

(for b > a), (B1)

b a

D q�1

a b

C q�3

a b

(for b > a), (B2)

a a
D 0 (for any a 2 ¹�; 0;Cº), (B3)

�0C
D q�2 : (B4)

The interior relations above hold for local diagrams contained in an embedded
disk in †: The boundary relations hold for local diagrams in a neighborhood of a
point of @†: The thicker line denotes a portion of a boundary arc while the thin lines
belong to a web. The arrow along the boundary arc indicates the height order of that
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boundary arc. For example, in the diagram on the right side of relation (B1), the
endpoint with the state b has a greater height than the endpoint with the state a.

The module defined above admits a natural multiplication where the product �1�2
of two stated webs �1; �2 in†� .0; 1/ is given by isotoping �1 so that it is contained
in † � .1=2; 1/; isotoping �2 so that it is contained in † � .0; 1=2/, and then taking
the union of these two stated webs in † � .0; 1/: This gives �

SL3
q .†/ an associative,

unital R-algebra structure.

3. Consequences of the defining relations

Proposition 3.1. The following relations are consequences of the defining relations:

q�8=3 D D q8=3 ; (a)

�q�4 D D �q4 ; (b)

a b

D �q�4=3ıaCb;0 ; (c)

D �q�4=3
X

aCbD0b a

; (d)

a b

D �q�4=3q2aıaCb;0 ; (e)

D �q�4=3
X

aCbD0

q2a

b a

; (f)

a b

D �q4=3ıaCb;0 ; (g)

D �q4=3
X

aCbD0b a

; (h)

a b

D �q4=3q2bıaCb;0 ; (i)

D �q4=3
X

aCbD0

q2b

b a

; (j)
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�1 �2 �3

D

´
q�2.�q/l.�/ if � D .�1; �2; �3/ 2 S3,

0 if .�1; �2; �3/ … S3
(same for sinks), (k)

D q�2
X
�2S3

.�q/l.�/

�3 �2 �1

(same for sinks), (l)

�3 �2 �1

D

´
�q2.�q/l.�/ if � D .�1; �2; �3/ 2 S3,

0 if .�1; �2; �3/ … S3
(same for sinks), (m)

D �q2
X
�2S3

.�q/l.�/

�1 �2 �3

(same for sinks). (n)

In the notation above, we consider the permutation .�; 0;C/ to be the identity
permutation and l.�/ denotes the length of the permutation �:

Proof. Relations (a) and (b) follow from the defining interior relations.
The relations involving boundary orientations pointing to the right can be checked

by reducing both sides according to the algorithm given by the diamond lemma
described in Theorem 5.3.

The relations involving boundary orientations pointing to the left can be derived
from those involving orientations pointing to the right by sliding the boundary points
horizontally to reverse the height order and using the twisting relations (a) and (b).

4. The splitting morphism

As in [26], our stated skein algebras of punctured bordered surfaces satisfy a compat-
ibility with the gluing and splitting of surfaces. If † is a punctured bordered surface
and a and b are two boundary arcs of †; we can obtain a new punctured bordered
surface x† D †=.a D b/ by gluing the arcs a and b together in the way compatible
with the orientation of †: It is the reverse of this process that gives us an algebra
morphism from �

SL3
q .x†/ to �

SL3
q .†/ associated with splitting the surface x† along an

ideal arc c:

Definition 4.1. If † is a punctured bordered surface, an ideal arc in † is a proper
embedding cW .0; 1/! V† such that its endpoints are (not necessarily distinct) points
in the set of punctures, P :

Let pW†!†=.aD b/DW x† be the projection map associated to the gluing. Then
c WD p.a/ D p.b/ is an ideal arc. We will define a splitting morphism

�c W �
SL3
q .x†/! �SL3

q .†/
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by defining it on stated webs in x† � .0; 1/ and then checking that it is well defined
on �

SL3
q .x†/:

For a stated web Œ�; s� in x†� .0;1/, we first isotope it so that � intersects c � .0;1/
transversely in points of distinct heights. By defining p to act trivially on the .0; 1/
factor, we can extend it to a map pW†� .0;1/! x†� .0;1/:We then consider p�1.�/;
which is a web in†� .0;1/: Except for the points of p�1.c \�/; each boundary point
of p�1.�/ inherits a state from �:

We will say that s0 is an admissible state for p�1.�/ if s0.p�1.x// D s.x/ for all
x 2 @� and if y; z 2 p�1.� \ c/ then s0.y/ D s0.z/:

We define the splitting morphism on a stated web Œ�; s� in x† � .0; 1/ by

�c.�; s/ D
X

admissible s0
Œp�1.�/; s0�:

Theorem 4.2. (a) The map �c described above extends linearly to a well-defined
algebra morphism �c W �

SL3
q .x†/! �

SL3
q .†/.

(b) If a and b are two ideal arcs with disjoint interiors, then we have

�a ı�b D �b ı�a:

As in [26], the map �c is injective, but we will postpone a discussion of this fact
until Section 8.

Proof. If �c is well defined, then the fact that it is an algebra morphism and that it
satisfies the property given in part (b) of Theorem 4.2 follows from the definition of
the splitting morphism.

To check that it is well defined, we first check that the effect of passing cups, caps,
vertices, and crossings past the ideal arc c commutes with the application of �c :
This will tell us that the splitting morphism is well defined with respect to isotopies of
diagrams. Cups and caps can slide past the arc because of relations (c)–(j) from above.
To slide a vertex past the arc, we can first rotate the vertex, using the fact that cups
and caps can slide past the arc, until it appears as in relations (k)–(n). Since crossings
can be rewritten as a linear combination of cups, caps and vertices, this allows us to
pass a crossing past the arc.

If strands intersecting c � .0; 1/ are isotoped vertically, so as to alter their height
order, then on a diagram this has the effect of a Reidemeister 2 move. Since crossings
can slide past c, we can isotope the disk containing the Reidemeister 2 move on the
diagram past c and then perform the move. This tells us that the splitting map is well
defined on isotopy classes of webs.

To check that the splitting morphism respects the defining relations of �
SL3
q .†/,

we observe that if c cuts through a disk or half disk appearing in one of the defining
relations, we can isotope the diagram away from c first and then apply the relation.
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5. A basis for the stated skein algebra

If a module is defined as a quotient of a free module by a list of relations, and if
each relation can be interpreted as a reduction rule that permits the replacement of
one element by a linear combination of simpler elements, then the module is a good
candidate for an attempted application of the diamond lemma to produce a basis. As
explained in [31], the diamond lemma can accommodate modules built out of dia-
grams on surfaces and it has been successful in producing bases for webs on surfaces
for the cases of Kuperberg’s webs of type A1; A2; B2; and G2: In [26], Lê organized
the new boundary relations into reduction rules that are compatible with the reduction
rules coming from the Kauffman bracket skein algebra and then applied the diamond
lemma to find a basis. In this section, we will do the same for the SL3 case.

We first summarize our goal. To apply the diamond lemma, we need to realize our
skein module as a quotient of a free module by reduction rules that are terminal and
locally confluent. The defining relations from Section 2 provide a starting point for a
list of reduction rules. We will introduce a measure of complexity that allows us to
say that the diagrams in the right side of each defining relation are simpler than the
diagram on the left side. Using a reduction rule on a diagramD replaces that diagram
with a linear combination of simpler diagrams. We call any linear combination of
diagrams obtained by applying a sequence of reduction rules toD a descendant ofD,
and we call the diagrams appearing in the linear combination descendant diagrams
of D. If there exists no infinite chain of descendant diagrams for D, then D can
be written as a linear combination of irreducible diagrams by repeatedly applying
reduction rules to the diagram and to its descendants. If no diagram admits an infinite
chain of descendant diagrams, then the reduction rules are called terminal and this
property implies that irreducible diagrams span our module. Sometimes, more than
one reduction rule will apply to a diagram. If there is always a common descendant
for any two ways of reducing a diagram, then the reduction rules are called locally
confluent. If the set of reduction rules are terminal and locally confluent, then the set
of irreducible diagrams forms a basis for our module, by [31, Theorem 2.3].

In anticipation of issues regarding local confluence, we need to introduce the fol-
lowing redundant relations:

D ; (S)
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� 0 0 0 0 C

k

D q3k�2

0 0

k

: (Ck)

Relation (S) allows one to switch two circles of opposite orientations whenever
the two circles bound an annulus. We see from [31] that relation (S) will be necessary
for our list of reduction rules to be confluent, as none of the left sides of the defining
relations are applicable to the diagrams in (S) unless they happen to bound a disk.
We borrow notation from [13] to say that two circles that bound an annulus on the
surface and are oriented inconsistently with the boundary of the annulus form a British
highway. For example, the two circles on the left side of the relation (S) form a British
highway. The fact that we are using oriented surfaces allows us to declare the right
side of (S) to be the more reduced side. The relation (S) will serve as a reduction rule
that will decrease the number of British highways on any connected component that
is not a torus. The torus provides an exception since parallel nontrivial circles will
bound two distinct annuli. See the remark after Theorem 5.3 regarding this exception.

Proposition 5.1. (i) The relations (S) hold in �
SL3
q .†/ for any annulus embedded

in †:

(ii) The relations (Ck) hold in �
SL3
q .†/ for all k � 0:

Proof. (i) (S) represents an isotopy of webs in the thickened surface † � .0; 1/, so
the relation holds in �

SL3
q .†/:

(ii) We will proceed by induction on k: (C0) is the same as (B4), so the statement
is true for k D 0:

If k > 0 we can apply the relation (j) to the horizontal bar to the right of the top
left strand to yield

�q4=3
X

b2¹�;0;Cº

q�2b

b 0 0 0 0 C

k � 1

� 0 �b

:

When b D 0 the right connected component of the diagram is zero by relation (B3).
When b D C we compute that the left portion of the diagram reduces to

� 0 �

D �q�1=3C1

� 0 � 0

D �q�1=3C1

 
q�1

� � 0 0

C q�3

� � 0 0

!
:
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Both of the last terms reduce to 0 using (B3) after applying (I2) to the second diagram.
When b D � we are interested in computing

�q4=3q2

� 0 0 0 0 C

k � 1

� 0 C

:

The right part of the diagram can be reduced by induction now while the left part of
the diagram can be computed in the following manner:

� 0 C

(B1)
D �q1=3�1

� C

(h)
D �q1=3�1.�q4=3/

X
a2¹�;0;Cº�aa � C

(k)
D �q1=3�1.�q4=3/q�2.�q/

0

:

This all reduces to

�q1=3�1.�q4=3/q�2.�q/.�q4=3q2/q3.k�1/�2

0 0

k

D q3k�2

0 0

k

;

which concludes the proof by induction.

For the rest of this section, we will assume any boundary arcs in our diagram have
an orientation that matches the one appearing in the pictures of the defining boundary
relations and that this orientation dictates the height order.

A univalent endpoint of a web diagram is a bad endpoint if the strand attached to
the endpoint is oriented out of the boundary. For example, the endpoint in the picture
on the left of relation (B1) is a bad endpoint while the two endpoints on the right of
the relation are good. We say that a pair of two good endpoints on the same boundary
arc with states b and a are a bad pair if b > a but the endpoint with state b is lower
in the height order than the endpoint with state a. For example, the two endpoints on
the left of (B2) form a bad pair, while the two endpoints in each diagram of the right
side of the relation form a good pair. In the following, by the term vertices we mean
only trivalent vertices of the web.
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Definition 5.2. We define the complexity of a stated web diagram to be the tuple
(#crossings, #bad endpoints, #bad pairs, #vertices, #connected components, #British
highways) in Z6�0.

We use the lexicographic ordering on Z6�0 and note that each defining relation,
each relation (Ck), and each relation (S) involve a single diagram on the left side of
the equation while the right side of the equation contains only diagrams of strictly
lower complexity than the one on the left side of the equation.

We say that a diagram contains a reducible feature if the left side of one of the rela-
tions (I1a)–(I4b), (B1)–(B4), (Ck), or (S) applies. If a diagram contains no reducible
feature, we call such a diagram an irreducible diagram.

Theorem 5.3. The set of isotopy classes of irreducible diagrams on † forms a basis
for �

SL3
q .†/.

Remark 5.4. If † has a connected component that is a torus, we modify our notion
of an irreducible diagram. By omitting the reduction rule (S) on any torus, the proof
below can be modified to show that the remaining reduction rules will produce a basis
consisting of the set of irreducible diagrams up to isotopy and circle flip moves (S) on
any torus.

Proof. We will apply the diamond lemma in much the same setup as [26]. First, we
claim that the module freely spanned by isotopy classes of web diagrams with our
chosen boundary orientations modulo the defining relations along with (Ck) and (S)
yields a module isomorphic to �

SL3
q .†/. To do this, one observes that ribbon Reide-

meister moves RI, RII, and RIII and the fact that a strand can pass over or under
a vertex all follow from the defining interior relations, as shown in [23]. The fact
that (Ck) and (S) are redundant relations completes this part of the argument.

Next, we must verify that given a diagram D; the process of iteratively applying
the left sides of our relations toD and to its descendants always terminates in a linear
combination of irreducible diagrams. This is guaranteed by the fact that our reduction
rules involve replacing a diagram by a linear combination of diagrams of strictly lower
complexity in our lexicographic ordering, as in [31, Theorem 2.2]. Thus, the set of
isotopy classes of irreducible diagrams span �

SL3
q .†/:

To show that each diagram can be uniquely written as a linear combination of
irreducible diagrams, we must show the local confluence of our relations. This is the
reason that we had to include the redundant relations (Ck) and (S). We must check
that if more than one relation is applicable to a diagram then we can reach a common
descendant regardless of which relation we choose to apply. We use the same notion
of the support of a relation as [26]. If two relations are applicable to a diagram, but
their support is disjoint, then the applications of these relations commute with each
other, and thus immediately reach a common descendant.
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We must find local confluence for relations whose supports overlap nontrivially.
If the two relations are both interior relations or (S), then we see by [31] that they are
locally confluent.

There is one possible way for the support of an interior relation to intersect the
support of a boundary relation: a square could be connected to the top of the rela-
tions (Ck) for some k � 2. The following diagram shows an example of an overlap
of (C4) and (I2):

� 0 0 0 0 0 C

:

Such a situation will terminate at 0 no matter which relation (Ck) or (I2) is applied
first, as each resulting diagram will provide an opportunity to apply (B3).

Finally, we consider the cases of overlapping supports of the defining boundary
relations and the additional relations (Ck). A first easy case is an overlap of (B3)
with (B3), which must be of the following form:

aaa
(a 2 ¹�; 0;Cº).

Applying (B3) to either the left triangle or the right triangle in the above diagram
yields zero.

We see that the only other supports that can overlap are those of (B2) with any
of (B2)–(B4), and (Ck).

Relations (B2) and (B2). If (B2) overlaps with (B2), the overlap must be of the fol-
lowing form:

C0�
:

If we first apply (B2) to the right two endpoints, and then we continue to apply (B2)
until there are no longer any bad pairs we obtain

q�3

�0C
C 2q�5

�0C
C q�5

�0C
C q�7

�0C

C q�7

�0C
C q�7

C0�
C q�9

�0C
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(I3), (I2), (B4)
D q�3

�0C
C q�5

�0C
C q�5

�0C
C q�7

�0C

C q�7

C0�
C q�5 :

If, instead, we first apply (B2) to the left two endpoints, and then we continue to
apply (B2) until there are no longer any bad pairs, we obtain the same linear com-
bination but with the diagrams reflected in a vertical line (but with the state locations
and boundary orientation remaining the same). By noting the coefficients in our last
equation are symmetric with respect to this reflection, we see that we obtain the same
answer in both cases.

Relations (B2) and (B3). If (B2) overlaps with (B3), the overlap must take one of the
following forms:

b aa

or
abb

(b > a).

Both cases are handled symmetrically, so we will focus on the left case. If we apply
(B3) first, we obtain zero. So, we must show that if we instead apply (B2) first we
eventually obtain zero. We do this by computing

b aa

(B2)
D q�1

ab a

C q�3

ab a

(B2)
D q�2

aab

C q�4

aab

C q�4

aab

C q�6

aab

(I2), (I3), (B3)
D .q�2 � q�4q3Œ2�C 1/

aab
D 0;

resolving this case.
Since (B4) is the same as (C0) the last overlap we need to check is an overlap

between (B2) and (Ck) for any k � 0:
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Relations (B2) and (Ck). There are four cases for such an overlap. Consider first the
following two cases:

0 � 0 0 0 0 C

k

or
� 0 0 0 0 C 0

k

:

These two cases are handled symmetrically, so we will focus on the left case. If we
apply (Ck) first, we obtain

q3k�2

0 0

k C 1

:

If we apply (B2) first, we obtain

q�1

� 0 0 0 0 0 C

k

C q�3

� 0 0 0 0 0 C

k

:

The first term in this linear combination becomes zero after applying (B3).
The diagram in the second term is isotopic to the diagram appearing on the left side
of (CkC1). After application of (CkC1) we obtain confluence in this case.

The other two possible overlaps between (B2) and (Ck) are of the following forms:

C � 0 0 0 0 C

k

or
� 0 0 0 0 C �

k

:

Since these two cases are handled symmetrically, we will focus on the left case.
We introduce some notation to simplify this computation. We will use symbols

placed next to each other to represent certain diagrams appearing next to each other.
We represent the diagrams in the left case above by #C �Ck : We denote by 0i the
diagram involving i parallel strands that terminate in good endpoints with states
labeled 0: We also denote by Xi the diagram

Xi D

0 0 0 0 0 C

i

:
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By applying the relation (Ck) to #C �Ck we obtain q3k�2 #C �0k : Consider the
effect of using relation (B2) on q3k�2 #C �0k to get rid of bad pairs, using (B3) at
each opportunity. The reduced result is of the form

q3k�2
kX
lD0

q�lq�3.k�l/0l �Xk�l D

kX
lD0

q2l�20l �Xk�l :

We now check that we reach the same reduced result if we instead apply (B2) first
to #C �Ck . We introduce another piece of notation. The diagram Ai;j has i 0-states
on the left of theC-state and j 0-states on the right:

Ai;j D
� 0 0 0 C 0 0 C

i j

:

We also note that diagrams of the form

0 C 0 0 0 0 0 C
D 0

are zero, as can be shown by induction on the number of zero states appearing between
the two + states. The inductive hypothesis can be applied after applying (B2) once to
improve the order of the states and then applying (I2) to remove the square that forms.

If we apply relation (B2) to #C �Ck , then one of the resulting terms will become
zero as it is of the form above. We are then left with

#C �Ck D q
�3A0;kC1:

Now, consider the diagram Al;m for some l; m � 0: We have Al;0 D 0 by rela-
tion (B3). For m > 0 we can apply relation (B2) followed by (I2) and, ignoring the
term with the zero diagram as above, we see that

Al;m D q
�1AlC1;m�1 C q

3Cl �Xm�1:

A repeated application of this equation yields

q�3A0;kC1 D q
�3q3

kX
iD0

q�iCi �Xk�i

.Ci /
D

kX
iD0

q�iq3i�20i �Xk�i

D

kX
iD0

q2i�20i �Xk�i :
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Thus, we have reached local confluence in this last case. The diamond lemma now
gives us the result.

We define the interior skein algebra V�SL3
q .†/ as the module freely spanned by

closed webs contained in the interior of † modulo the interior relations (I1a)–(I4b)
only.

Corollary 5.5. There is an algebra embedding

V�SL3
q .†/! �SL3

q .†/

induced by the inclusion map on diagrams.

Proof. Using the reduction rules (I1a)–(I4b) and (S), the diamond lemma applies to
give a basis for V�SL3

q .†/. This set of basis diagrams is a subset of basis diagrams of
�

SL3
q .†/, thus the inclusion induces an injective map.

6. Bialgebra and comodule structure associated to the bigon

The surface made by removing one point from the boundary of a closed disk is called
the monogon and will be denoted M: The surface obtained by removing two points
from the boundary of a closed disk is called the bigon and will be denoted B. (See
Figure 1.)

Figure 1. Bigon B on the left and monogon M on the right.

Proposition 6.1. �
SL3
q .M/ Š R:

Proof. We show that �
SL3
q .M/ is spanned by the empty diagram. The fact that the

empty diagram is nonzero follows from the fact that it is irreducible and is thus a
basis element.

Consider a web diagram W in �
SL3
q .M/. We can use relations (I1a) and (I1b)

to inductively write W as a linear combination of crossingless diagrams. We can use
relations (l) or (m) to get rid of vertices near the boundary. If there are strands between
a vertex and the boundary we can apply relations (d) or (f) to create room for the vertex
to slide over to the boundary without introducing crossings.
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So, by induction we can write W as a linear combination of diagrams with no
crossing and no vertex. After applying relations (I4a) and (I4b) to get rid of circles,
these diagrams only have arcs connected to the single boundary arc. By applying
relations (g) and (i), these diagrams become scalar multiples of the empty diagram.

We recall that in [23], Kuperberg used an Euler characteristic argument to show
that the module spanned by closed webs in the plane is 1-dimensional. We remark
that by Proposition 6.1 along with the corollary to the construction of the basis, we
obtain an alternate proof that Kuperberg’s relations are enough to reduce any closed
web in the plane to a scalar multiple of the empty web, and that this reduction can
be performed algorithmically by iteratively applying the left sides of the interior
relations. We also observe that Proposition 6.1 and the algorithm produced by the
diamond lemma imply that any stated web in M can be reduced to a scalar multiple
of the empty diagram by iteratively applying just the left sides of the defining relations
and (Ck).

We next describe the bialgebra structure of �
SL3
q .B/: For a counit, we will con-

struct an algebra morphism "W �
SL3
q .B/! �

SL3
q .M/ Š R. As in [26] we will use an

edge inversion map.

Definition 6.2. If b is a boundary arc of † with the orientation given in the defining
relations of �

SL3
q .†/, we define the inversion along b, invbW �

SL3
q .†/! �

SL3
q .†/ to

be the R-module homomorphism defined on web diagrams by reversing the height
order of b; switching the states to their negatives, and multiplying by scalars C "s and
C
#
s for each endpoint on b: Here, we use C #s D �q�4=3 for each good endpoint on
b with any state s and we use C "t D �q

�4=3q�2t for each bad endpoint on b with a
state t 2 ¹�; 0;Cº:

Proposition 6.3. The map invb defined above is a well-defined R-module automorph-
ism.

Proof. We must check that the map respects the defining boundary relations. To do
so, we apply the map to both sides of a boundary relation and then reduce the results
using the diamond lemma algorithm to see that we obtain the same answers in each
case. Thus, the map is well defined. Alternatively, it is easier to use the relations in
Section 3 to check that invb respects the relations (c), (e), (h), (j), (k), and (n). We
then observe that these relations imply relations (B1)–(B4). To check that it is an
automorphism, one needs to check that the obvious candidate for its inverse is well
defined in the same way.

We define "W �SL3
q .B/! �

SL3
q .M/ to be the map given by the result of inverting

the right boundary arc er of the bigon with inver
and then filling in the puncture. The

map is well defined since it is a composition of well-defined maps. The fact that it
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is an algebra morphism is an easy diagrammatic observation, and can be seen in the
same way as in [8].

The comultiplication �W �SL3
q .B/ ! �

SL3
q .B/ ˝ �

SL3
q .B/ is given by the split-

ting morphism �c for an ideal arc c that travels from the bottom puncture to the top
puncture. By Theorem 4.2,� is an algebra morphism and satisfies the coassociativity
property.

To check that " satisfies the counit property, we only need to check on generators.
To find a nice set of generators, we use the method in the proof of Proposition 6.1 to
see that any web in the bigon can be written as a linear combination of webs which
have no crossing, no vertex, and no circle. Any trivial arc that starts and ends on the
same boundary arc can be replaced by a scalar, and we are left with a linear combin-
ation of webs containing only parallel and antiparallel strands with one endpoint on
each boundary arc. Thus, �

SL3
q .B/ has a generating set consisting of diagrams, each

of which contains a single strand traveling from one boundary arc of the diagram to
the other. We denote such diagrams ˛st and ˇst depending on the strand orientation
and states. (See Figure 2.)

s t s t

Figure 2. Generator ˛st on the left and generator ˇst on the right.

We use our diagrammatic definition of " to compute that

".˛st / D "
�
s t

�
D �q�4=3q�2t

�
s �t

�
(i)
D �q�4=3q�2t .�q4=3q2tıs�t;0/ D ıst :

We similarly compute that ".ˇst / D ıst .
By the definition of �, we compute that

�.˛st / D
X

l2¹�;0;Cº

˛sl ˝ ˛lt :

Similarly,
�.ˇst / D

X
l2¹�;0;Cº

ˇsl ˝ ˇlt :

These equations allow us to verify that

."˝ id/ ı�.˛st / D ˛st D .id˝"/ ı�.˛st /:

The same equations hold for ˇst and we have proven the following proposition.
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Proposition 6.4. The algebra �
SL3
q .B/ has a natural bialgebra structure given by the

maps � and " defined above.

The ingredients here are now the same as in [8] and so we obtain the following
analogue.

Proposition 6.5. Suppose b is a boundary arc of †: The map defined by splitting †
along an ideal arc isotopic to b so as to split off a bigon B whose right edge is b gives
an R-algebra homomorphism

�bW �
SL3
q .†/! �SL3

q .†/˝ �SL3
q .B/:

This endows �
SL3
q .†/ with a right comodule-algebra structure over �

SL3
q .B/: Simil-

arly, the map b� defined by splitting off from † a bigon B whose left edge is b gives
an R-algebra homomorphism

b�W �
SL3
q .†/! �SL3

q .B/˝ �SL3
q .†/:

This endows �
SL3
q .†/ with a left comodule-algebra structure over �

SL3
q .B/:

7. Gluing or cutting along a triangle

Consider a punctured bordered surface † with two distinct boundary arcs a and b:
Also consider an ideal triangle T , which is a disk with three points removed from its
boundary. We will denote the punctured bordered surface †#T obtained by gluing †
to T along a and b: We label the edges of T as in the following diagram:

a0 b0

c
.

There is a well-defined R-module homomorphism

glueT W �
SL3
q .†/! �SL3

q .†#T /

defined on diagrams by continuing the strands with endpoints on a or b until they
reach c. The map is depicted in the following diagram:

a0 b0

c

a
s1

sk
b
tl

t1
glueT
7���!

s1 sk t1 tlc

:
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The map glueT was introduced in [8] for the SL2 case. In general, glueT does not
respect the algebra structure, but it gives rise to an algebra structure that is called a self
braided tensor product in [8]. In Section 10 of this paper, we describe a special case
of this structure, called the braided tensor product. In this section, we are interested
in glueT because it is an R-linear isomorphism. We will show this by constructing a
natural inverse.

The triangle T admits an analogue of the bigon’s counit. We define

"T W �
SL3
q .T /! �SL3

q .M/

as the map obtained by applying invb0 ı inva0 and then filling in the punctures between
c and a0 and between a0 and b0 as in the following figure:

a’ b’

c

invb0 ı inva0

7�������! a’ b’

c

fill
7�! :

Since "T is defined as a composition of well-defined R-linear maps, it is an R-lin-
ear map. What makes "T an analogue of " is that if "T is applied to a diagram W of
the form

W D

s1 sn x1 xm

t1

tn y1

ym

(with any choice of strand orientations), then the result is

"T .W / D
� nY
iD1

ısi ;ti

�� mY
jD1

ıxj ;yj

�
:

We next define an R-linear map

cutT W �SL3
q .†#T /! �SL3

q .†/:

Recall the notation of the projection pW† tT ! †#T associated to gluing † to the
triangle along a and b. If a00 D p.a0/D p.a/ and b00 D p.b0/D p.b/; we define cutT
by

cutT D ."T ˝ id/ ı .�b00 ı�a00/:

Since .�b00 ı�a00/ cuts out a triangle, we view it as a linear map

�SL3
q .†#T /! �SL3

q .T /˝ �SL3
q .†/;

so the composition above makes sense.
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Proposition 7.1. The R-linear maps glueT and cutT satisfy

cutT ı glueT D id
�

SL3
q .†/

and

glueT ı cutT D id
�

SL3
q .†#T/

:

Proof. We will check each equality on a spanning set for the skein algebra involved.
For the case of �

SL3
q .†/, we consider the spanning set consisting of all stated web

diagrams. Suppose D is a stated web diagram on †. If we examine the diagrams that
appear in the triangle cut out by .�b00 ı�a00/ ı glueT .D/, we see that they are all of
the form W above. Thus, the computation for "T .W / above shows that

."T ˝ id/.�b00 ı�a00/ ı glueT .D/ D D:

This proves the first equality of Proposition 7.1.
For the second equality, we wish to use a smaller spanning set of �

SL3
q .†#T /:

Consider a stated web diagram D on .†#T / and examine it in a neighborhood
of p.T /. By applying an isotopy, we can guarantee that p.T / contains only arcs,
and that any arc that enters the triangle through one of the sides either leaves through
the other side or terminates at an endpoint on c: After such an isotopy, we obtain a
diagram of the following form (for some choice of strand orientations):

c
.

Using relations (f) and (j), we can break up the strands that pass through both a00 and
b00 and thus write our diagramD as a linear combination of diagrams of the following
form:

c
.

So, a spanning set consists of diagrams on †#T that are of the above form in a
neighborhood of p.T /. LetE be such a diagram. We see that the triangles that appear
in the terms of .�b00 ı�a00/.E/ are all of the form W above. Again, the computation
of "T .W / above allows us to see that

glueT ı."T ˝ id/ ı .�b00 ı�a00/.E/ D E:

This proves the second equality of Proposition 7.1.
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Corollary 7.2. Suppose c is a boundary arc of a punctured bordered surface x† and
that a00 and b00 are ideal arcs with disjoint interiors such that a00 [ b00 [ c bounds an
ideal triangle. Then both �a00 and �b00 are injective.

Proof. Let T be the ideal triangle that is split off from x† if�b00 ı�a00 is applied. Then
x† D †#T for the punctured bordered surface † containing two distinct boundary
arcs a and b resulting from the splitting maps. Proposition 7.1 tells us that cutT is
injective. By the definition of cutT , we see that �b00 ı �a00 is injective. Thus, �a00
is injective. By Theorem 4.2, we see that �b00 ı �a00 D �a00 ı �b00 . Thus, �b00 is
injective as well.

8. The triangular decomposition

We are now able to prove the following addendum to Theorem 4.2.

Theorem 8.1. Suppose x† is a punctured bordered surface and a00 is an ideal arc
on x†: Then the map �a00 is injective.

Proof. Let b00 be an ideal arc isotopic to a00 so that the ideal arcs have disjoint interiors
and bound a bigon. Let c00 be an ideal arc that bounds a monogon whose ideal vertex
is an endpoint of a00, and such that a00; b00; c00 have disjoint interiors and a00 [ b00 [ c00

bounds an ideal triangle. The following diagram depicts the map �c00 :

c00
a00 b00

�c00

7���!
a00 b00

c

c0

:

Consider the application of �c00 to the set of basis diagrams described in The-
orem 5.3. Each irreducible diagram D can be isotoped so that it does not intersect
the monogon bounded by c00: This allows us to observe that �c00.D/ is an irreducible
diagram on its surface as well, and that the isotopy class of D can be completely
determined by the isotopy class of this irreducible representative of �c00.D/: Thus,
�c00 maps a basis to a linearly independent set and we conclude that �c00 is injective.

After splitting off the monogon bounded by c00, we are left with a surface † that
contains a boundary arc c such that p.c/ D c00: Now, the ideal arcs a00; b00 and the
boundary arc c satisfy the hypothesis of Corollary 7.2. By the corollary,�a00 is inject-
ive on the image of �c00 and thus �a00 ı�c00 is an injective map. The fact that these
maps commute implies that �a00 is injective on �

SL3
q .x†/ as well.
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Now, that we have determined the splitting morphisms have trivial kernels, we
discuss their images.

Suppose † is a punctured bordered surface with distinct boundary arcs a and b:
Let x† D †=.a D b/ and denote by c the common image of a and b under the gluing
map. Recall the comodule structure maps associated to the boundary arcs a; and b:
We will be interested in�aW�

SL3
q .†/! �

SL3
q .†/˝ �

SL3
q .B/ and � ıb �W�

SL3
q .†/!

�
SL3
q .†/˝ �

SL3
q .B/; where � only transposes the tensor factors. We are interested in

the following result.

Theorem 8.2. Let x† D †=.a D b/ and denote by c the common image of a and b
under the gluing map. Then we have

im.�c/ D ker.�a � � ıb �/:

Proof. The inclusion im.�c/ � ker.�a � � ıb �/ follows by coassociativity of split-
ting x† along c and an ideal arc isotopic to c:

To prove the other inclusion, we assume that y 2 �
SL3
q .†/ satisfies

�a.y/ D � ıb �.y/:

Our goal is to find some x 2 �
SL3
q .x†/ such that y D �c.x/: The element y is repres-

ented by a linear combination of stated web diagrams on †: We will find a candidate
for x by trying to weld the strands with endpoints on a or on b to each other. This
process uses a map similar to the edge inversion maps inv before, but this time with a
different choice of scalars associated to the endpoints.

For a boundary arc e with positive orientation, we define the edge reversal map
reve to be the R-linear automorphism of the stated skein module that reverses the
height order on e, flips the states to their negatives and multiplies by the following
scalars for each endpoint on e: #sC D �q�4=3q2s for good endpoints with a state s
and "sC D�q�4=3 for bad endpoints with a state s. We can check that this map is well
defined and an automorphism in the same way that we checked this for inve :

Let z D �a.y/ D � ıb �.y/: Denote the left boundary arc of the bigon of † tB

by el and the right arc by er : Let T1 and T2 be two triangles. We will use the gluing
maps glueT defined in Section 7. Denote the left, right, and bottom edges of the
triangles t1l , t2l , t1r , t2r ; and t1b , t2b , respectively. We will consider the result of
reversing the arc a, reversing the arc er ; then gluing to the triangles. To glue to T2 we
glue b to t2r and glue er to t2l : To glue to T1; we glue el to t1r and glue a to t1l :
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We can write the new element as glueT1
ı glueT2

ı rever
ı reva.z/: This gluing is

depicted in the following diagram:

el era b

t1b

t1l
t1r

t2b

t2l
t2r

glueT1
ı glueT2

ı rever ı reva

7������������������!

t1b t2b

:

First, we view z as z D � ıb �.y/. Write y as a linear combination of diagrams
Di . For each i; � ıb �.Di / is a linear combination of diagrams Dij : Each Dij has
ki endpoints on er , ki endpoints on b, and the states of corresponding endpoints
match. After applying rever

to Dij and then gluing to T; we see that there are 2ki
endpoints on t2b; and that the endpoints which are ki -th and ki C 1-st in the height
order have opposite states and opposite orientations. The scalars associated with the
application of rever

guarantee that relations (d) or (f) are applicable and allow us
to reduce the number of endpoints on t2b: After applying these relations ki times
for each Di , we see that we can write glueT1

ı glueT2
ı rever

ı reva.z/ as a linear
combination of diagrams, where no diagram has an endpoint on t2b: As no reduc-
tion rule from our diamond lemma algorithm can result in an endpoint appearing on
a boundary arc that previously contained no endpoints, we see that when we write
glueT1

ı glueT2
ı rever

ı reva.z/ as a linear combination of our basis diagrams, each
basis diagram that appears in the linear combination has no endpoints on t2b:

Next, we view z as z D �a.y/: In a similar way as the last paragraph, we see
that after applying reva and gluing to T; we can apply relations (d) and (f) to write
glueT1

ı glueT2
ı rever

ı reva.z/ as a linear combination of basis diagrams such that
no diagram has an endpoint on t1b: By the uniqueness of this linear combination we
see that we can write it as a linear combination of basis diagrams so that no diagram
appearing in the linear combination has an endpoint on t1b or on t2b:

Now, glueT1
ı glueT2

ı rever
ı reva.z/ is a linear combination of basis diagrams

on .† t B/#T1#T2: Consider the surface .† t B/#T1#T2 n .t1b [ t2b/. This is
not a punctured bordered surface, but depending on whether the appropriate
endpoint of c was a boundary puncture or was an interior puncture, this surface is
either a punctured bordered surface missing an interval on its boundary or it is a
punctured bordered surface missing a boundary circle. In either case, it is naturally
diffeomorphic to the original punctured bordered surface x† by replacing this miss-
ing boundary interval or boundary circle with a single puncture. There is a linear
map defined on the submodule of �

SL3
q ..†tB/#T1#T2/ spanned by basis diagrams

that have no endpoints on t1b or t2b that takes such a basis diagram and embeds
it in .†tB/#T1#T2 n .t1b [ t2b/. After applying this map to the linear combination
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glueT1
ıglueT2

ı rever
ı reva.z/ and composing with our diffeomorphism, we obtain

our candidate x 2 �
SL3
q .x†/:

To see that x is the correct choice, we consider �c.x/ and then apply the same
process to it as we did to y and observe that

glueT1
ı glueT2

ı rever
ı reva ı�a.y/ D glueT1

ı glueT2
ı rever

ı reva ı�a.�c.x//:

The injectivity of the maps involved allow us to conclude that �c.x/ D y:

We say that a punctured bordered surface is ideal triangulable if it can be obtained
from a finite collection of disjoint triangles by gluing some pairs of edges together.
It is known that a punctured bordered surface is ideal triangulable if it has no connec-
ted component that is one of the following surfaces: a closed surface, a sphere with
fewer than three punctures, a bigon, or a monogon.

If † is an ideal triangulable punctured bordered surface, then the images of the
glued edges are ideal arcs on † with disjoint interiors. These form the set of interior
edges E for the ideal triangulation of †. Let

pW

nG
iD1

Ti ! †

be the gluing map. If e 2 E , then its preimage p�1.e/ D ¹e0; e00º consists of two
triangle edges. The composition� of the splitting maps�e for e 2 E gives an algebra
embedding

�W �SL3
q .†/!

nO
iD1

�SL3
q .Ti /:

The composition L� of all left comodule maps e00� gives a map

L�W

nO
iD1

�SL3
q .Ti /!

�O
e2E

�SL3
q .B/

�
˝

� nO
iD1

�SL3
q .Ti /

�
:

The composition �R of all right comodule maps �e0 gives a map

�RW

nO
iD1

�SL3
q .Ti /!

� nO
iD1

�SL3
q .Ti /

�
˝

�O
e2E

�SL3
q .B/

�
:

Then Theorem 8.1 and Theorem 8.2 allow us to observe the following corollary.

Corollary 8.3. If † admits an ideal triangulation with a set of interior edges E; then
the following sequence of R-modules is exact:

0! �SL3
q .†/

�
!

nO
iD1

�SL3
q .Ti /

�R��ıL�
�������!

� nO
iD1

�SL3
q .Ti /

�
˝

�O
e2E

�SL3
q .B/

�
:
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9. The stated skein algebra of the bigon

In [8], it was shown that the Kauffman bracket stated skein algebra of the bigon is
isomorphic to Oq.SL2/ as a Hopf algebra (with a suitable renormalization of q). They
showed this by defining a bialgebra map between Oq.SL2/ and the Kauffman bracket
stated skein algebra of the bigon. The fact that this map is an isomorphism follows
because it maps the canonical basis of the stated skein algebra to a well-known basis
of Oq.SL2/: There is an analogous isomorphism between our SL3 stated skein algebra
of the bigon and Oq.SL3/: However, the proof here will require us to define maps in
both directions since it is not otherwise clear that the canonical basis of the SL3 stated
skein algebra of the bigon matches up with a basis of Oq.SL3/:

We first recall the R-matrix definition of Oq.SL3/: Consider the free R-module
V with basis ¹x1; x2; x3º. The standard R-matrix for SL3 is a linear map

RWV ˝ V ! V ˝ V

defined by

R.xi ˝ xj / D q
�1=3

8̂̂<̂
:̂
qxi ˝ xj (if i D j ),

xj ˝ xi (if i > j ),

xj ˝ xi C .q � q
�1/xi ˝ xj (if i < j ):

We develop some notation for the matrix entries Rklij of R: We have that the entry
R.xi ˝ xj / is uniquely written as

R.xi ˝ xj / D
X

1�k;l�3

Rklij xk ˝ xl :

We define Oq.SL3/ as the free R-algebra generated by elements ¹Xij º1�i;j�3
modulo the following relations:´P

1�k;l�3R
kl
ij XkmXln D

P
1�k;l�3R

mn
kl
XikXjl (for 1 � i; j;m; n � 3),P

�2S3
.�q/l.�/X�11X�22X�33 D 1:

Here, we consider .�1; �2; �3/ D .1; 2; 3/ the identity permutation.
The left side of the second equation is called the quantum determinant, detq; of

the matrix of generators .A/ij D Xij . We will also make use of notation AŒi jj � to
mean the quantum minor of A after deleting row i and column j:

Oq.SL3/ has a Hopf algebra structure with structure maps given by

".Xij / D ıij
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and

�.Xij / D

3X
kD1

Xik ˝Xkj :

The antipode S WOq.SL3/! Oq.SL3/ is defined by

S.Xij / D .�q/
i�jAŒj ji �:

For the purpose of notation to match up our stated skein algebra with the standard
definition of Oq.SL3/;we define a bijection t W ¹1;2; 3º!¹�; 0;Cº given by t .1/DC,
t .2/D 0, t .3/D �: Since t reverses the order we have placed on the sets ¹1; 2; 3º and
¹�; 0;Cº, we will have to take care when we apply relations (k)-(n) to diagrams.

Proposition 9.1. There is a unique bialgebra morphism �W Oq.SL3/ ! �
SL3
q .B/

defined by

�.Xij / D t .i/ t.j /:

Proof. Since the elements Xij generate Oq.SL3/, the morphism will be unique if it
exists. By construction, such a morphism will preserve the bialgebra structure. To
prove that � gives a well-defined algebra morphism, we must check that it respects
the defining relations of Oq.SL3/. We must show that the relationsX

1�k;l�3

Rklij �.Xkm/�.Xln/ D
X

1�k;l�3

Rmnkl �.Xik/�.Xjl/

and X
�2S3

.�q/l.�/�.X�11/�.X�22/�.X�33/ D 1

hold in �
SL3
q .B/: For this, we recall the bialgebra structure of the bigon given in

Section 6. We consider the result of applying ."˝ id/ ı� to the following diagram
in two different ways:

t .i/

t.j /

t.m/

t.n/
.

For the first way, we split the bigon along an ideal arc that stays to the right of the
crossing and obtainX

1�k;l�3

"
�
t .i/

t.j /

t.k/

t.l/

�
t .k/

t.l/

t.m/

t.n/
:



Triangular decomposition of SL3 skein algebras 31

For the second way, we split the bigon along an ideal arc that stays to the left of the
crossing and then apply id˝":X

1�k;l�3

t .i/

t.j /

t.k/

t.l/
"
�
t .k/

t.l/

t.m/

t.n/

�
:

The bialgebra axiom ."˝ id/� D .id˝"/� along with the isotopy invariance of
the splitting map guarantee that both answers must be the same.

We can use the defining relations to compute that

"
�
t .a/

t.b/

t.c/

t.d/

�
D Rcdab :

Equating our two answers shows that the relationsX
1�k;l�3

Rklij �.Xkm/�.Xln/ D
X

1�k;l�3

Rmnkl �.Xik/�.Xjl/

hold in �
SL3
q .B/:

Next, we consider the following diagram:

t .1/
t.2/
t.3/

.

On the one hand, we can evaluate this diagram using relation (k) from Section 3 along
the right edge of the bigon. On the other hand, we could use relation (l) along the left
edge of the bigon.

This gives us the relation

q�2 D q�2
X
�2S3

.�q/l.�/
t .1/
t.2/
t.3/

t.�1/
t.�2/
t.�3/

:

Thus, the relation X
�2S3

.�q/l.�/�.X�11/�.X�22/�.X�33/ D 1

holds in �
SL3
q .B/. Thus, � is well defined.

To prove that � is an isomorphism, we will construct an inverse function. We will
define an algebra morphism  W �

SL3
q .B/! Oq.SL3/ by defining it on diagrams and

then checking that it is well defined.
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In order for  to be the inverse of � we are forced to define it on the diagrams
˛t.i/t.j / and ˇt.i/t.j / from Section 6 as

 .ˇt.i/t.j // D Xij

and

 .˛t.i/t.j // D .�q/
j�iAŒ4 � i j4 � j �:

As was noted in Section 6, the diagrams ˛t.i/t.j / and ˇt.i/t.j / generate �
SL3
q .B/.

So, the values of  on these diagrams would determine  on �
SL3
q .B/. However,

as we do not a priori have a definition of �
SL3
q .B/ as a quotient of a free algebra

by relators, it will be tricky to check that the map is well defined. Instead, we have
a definition of �

SL3
q .B/ as a quotient of a free module and so we will define  on

any diagram by giving specific directions on how to write the diagram in terms of the
diagrams ˛t.i/t.j / and ˇt.i/t.j / and then check that this process leads to a well-defined
map.

Given a diagram D, we obtain  .D/ by performing the following algorithm:

• apply � by splitting D near the right boundary arc of B so that �.D/ is written
as

�.D/ D
X

Di ˝Ei ;

where the diagrams Ei each contains only parallel and antiparallel strands;

• apply ."˝ id/ to �.D/ to write

."˝ id/�.D/ D
X

".Di /Ei I

• obtain
 .D/ D

X
".Di / .Ei / 2 Oq.SL3/;

where  .Ei / is determined by the values of  .˛t.i/t.j // and  .ˇt.i/t.j // given
above.

Proposition 9.2. The map  W�SL3
q .B/!Oq.SL3/ described above is a well-defined

algebra homomorphism.

Proof. We observe that if  is well defined, then it does respect the natural multiplic-
ation of diagrams in �

SL3
q .B/:

We must check that the process outlined in the bulletpoints above respects the
defining relations of the stated skein algebra. We split the relations into three cases:
interior relations, boundary relations along the left boundary arc of B, boundary rela-
tions along the right boundary arc of B:

Consider a relation falling under the first two cases. Such a relation only affects the
diagrams Di during the process. Since " is well defined, application of such relations
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will result in identical representatives in Oq.SL3/, and so the process respects these
relations.

The case of a relation along the right boundary arc of B is more difficult since it
will change the diagramsEi and will thus ultimately produce different representatives
in Oq.SL3/. It is our task to show that these representatives are equivalent. We handle
each relation separately.

Relation (B1). To prove that  respects relation (B1) it will suffice to check that

 
�
e aC b

�
D .�1/aCbq�1=3�.aCb/ 

�
e

b

a

�
for any states e; a; b 2 ¹�; 0;Cº with a < b:

Fix such e; a; b and let i D t�1.e/ and j D t�1.a C b/ be the corresponding
integers in ¹1; 2; 3º. Then by the definition of  ; the left side of our relation is
.�q/j�iAŒ4 � i j4 � j �.

We now compute the right side of the equation. It will be convenient to let c; d be
the unique states in ¹�; 0;Cº such that c < d and c C d D e:

By the definition of  ; we compute that

 
�
c C d

b

a

�
D

X
x;y

"
�
c C d

x

y

�
 
�
x

y
b

a

�
:

We will denote the values of the counit appearing in the above equation as
"cCd;x;y : We use (B3) and (B1) to compute that "cCd;x;y D 0 unless ¹x; yº D ¹c; dº
and we use (B2) to see that "cCd;c;d D �q"cCd;d;c :We also use (B1) to compute that
"cCd;d;c D .�1/

cCdq1=3C.cCd/:

The right side of our relation becomes

D .�1/aCbq�1=3�.aCb/.�1/cCdq1=3C.cCd/

�

�
 
�
d

c

b

a

�
� q 

�
c

d

b

a

��
D .�q/.cCd/�.aCb/

�
 
�
d

c

b

a

�
� q 

�
c

d

b

a

��
:

We check that this formula agrees with

.�q/t
�1.aCb/�t�1.cCd/.Xt�1.d/t�1.b/Xt�1.c/t�1.a/ � qXt�1.c/t�1.b/Xt�1.d/t�1.a//

which is
.�q/.j�i/AŒ4 � i j4 � j �;

as required.
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Relation (B2). To show that  respects relation (B2) it suffices to check that the
following relation holds in Oq.SL3/;

 
�
t .i/

t.j /

t.m/

t.n/

�
D q�1 

�
t .i/

t.j /

t.n/

t.m/

�
C q�3 

�
t .i/

t.j /

t.n/

t.m/

�
for i; j;m; n 2 ¹1; 2; 3º such that n < m: So, we must show that

 
�
t .i/

t.j /

t.n/

t.m/

�
D q3XimXjn � q

2XinXjm:

From relation (I1a) and the computations of ".ˇst / from Section 6, we compute
that

"
�
t .i/

t.j /

t.n/

t.m/

�
D q3C1=3Rklij � q

4ıikıjl :

Thus, we must show that�X
k;l

q3C1=3Rklij XknXlm

�
� q4XinXjm D q

3XimXjn � q
2XinXjm:

We apply the identityX
k;l

Rklij XknXlm D
X
k;l

Rnmkl XikXjl :

Since n < m, we have that Rnmnm D q
�1=3.q � q�1/ and Rnmmn D q

�1=3 are the only
nonzero values of Rnm

kl
as k and l vary.

The left side of our equation now becomes�X
k;l

q3C1=3Rklij XknXlm

�
� q4XinXjm

D

�X
k;l

q3C1=3Rnmkl XikXjl

�
� q4XinXjm

D q3.q � q�1/XinXjm C q
3XimXjn � q

4XinXjm

D q3XimXjn � q
2XinXjm;

as required. So,  respects (B2).
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Relation (B3). To show that  respects (B3) we need to show that

 
�
t .i/

t.j /

t.j /

�
D 0

for any i; j 2 ¹1; 2; 3º:
By the definition of  ; we have

 
�
t .i/

t.j /

t.j /

�
D

X
k;l

"
�
t .i/

t.k/

t.l/

�
XkjXlj :

We compute that

"
�
t .i/

t.k/

t.l/

�
D 0

if 4 � i is in ¹k; lº or if k D l:
If l < k we have "ikl D �q"ilk : This can be computed by using relations (B2)

and (I3).
Thus,

 
�
t .i/

t.j /

t.j /

�
D "ilk.XljXkj � qXkjXlj /

for the unique suitable pair l; k for which "ilk is nonzero. The result follows from the
identity

XljXkj D qXkjXlj

which holds in Oq.SL3/ for l < k:

Relation (B4). To check that  respects relation (B4) it suffices to check

 
� t .1/

t.2/
t.3/

�
D q�2:

By the definition of  ; we compute

 
� t .1/

t.2/
t.3/

�
D

X
�2S3

"
� t .�1/

t.�2/
t.�3/

�
X�11X�22X�33:

We see that this is equal to

q�2
X
�2S3

.�q/l.�/X�11X�22X�33 D q
�2 detq D q�2:

So, we see that  respects (B4) and, thus,  is well defined.
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Our previous two propositions allow us to state the following theorem.

Theorem 9.3. We have that

�SL3
q .B/ Š Oq.SL3/

as Hopf algebras.

Proof. In Proposition 9.1 we showed that � is a well-defined map of bialgebras. To
show that � is an isomorphism, it suffices to show that � is invertible as a map of
R-modules. We claim that  is its inverse.

We observe that  ı �.Xij / D Xij for all generators Xij of Oq.SL3/: Since  
and � are both algebra maps, this implies that

 ı � D idOq.SL3/ :

Similarly, � ı  agrees with id
�

SL3
q .B/

for all generating diagrams ˛st and ˇst :
Thus,

� ı  D id
�

SL3
q .B/

:

Thus, Oq.SL3/ and �
SL3
q .B/ are isomorphic as bialgebras. Since Oq.SL3/ is a

Hopf algebra, then Oq.SL3/ and �
SL3
q .B/ are isomorphic as Hopf algebras.

10. The stated skein algebra of the triangle

The Hopf algebra Oq.SL3/ is equipped with a cobraiding

�WOq.SL3/˝Oq.SL3/! R:

In [8] the cobraiding for the SL2 case was shown to have a simple diagrammatic
definition, and an analogous definition will work here as well. This cobraiding will
allow us to describe the SL3 stated skein algebra of the triangle, T :

We define the cobraiding �W �SL3
q .B/˝ �

SL3
q .B/! R on diagrams by

�

0BB@ A ˝ B

1CCA D "
0BBB@ A

B

1CCCA:

In the diagrams above, the strands depict a bundle of parallel or antiparallel
strands. The diagrammatic definition of the map makes it easy to see that it respects
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the defining relations of the stated skein algebra, so it is well defined. The argument
that this satisfies the cobraiding axioms is identical to the one in [8], but we do not
need to use it in this paper.

We recall that a cobraiding is determined by its values on a set of generators and
so we see that the map � that we have defined diagrammatically satisfies

�.Xij ˝Xkl/ D R
jl

ik
;

and thus matches up with the standard co-R-matrix.
In the situation that we have two algebrasM andN which are both left comodule-

algebras over Oq.SL3/ we can endow the vector space M ˝N with a left comodule-
algebra structure using the cobraiding �: We will denote this algebra by M

x
˝N and

call it the braided tensor product of the algebrasM andN . Using Sweedler’s notation,
its multiplication is defined as follows:

.x ˝ y/ ? .z ˝ t / D .x ˝ 1/
� X
.z/.y/

�.z0 ˝ y0/.z00 ˝ y00/
�
.1˝ t /

Equivalently, if we identify M with M ˝ ¹1º and N with ¹1º ˝N; then our product
structure is given by

xy D

8̂̂<̂
:̂
xy if x; y both in M or both in N ,

x ˝ y if x in M and y in M ,P
.x/.y/ �.y

0 ˝ x0/.y00 ˝ x00/ if x in N and y in M .

Costantino and Lê showed in [8] that gluing disjoint surfaces along a triangle
yields a braided tensor product of stated skein algebras for the SL2 case. The same
is true for the SL3 case and Proposition 7.1 from this paper takes care of most of the
work we need to do to show it.

Theorem 10.1. Let †1 and †2 be disjoint punctured bordered surfaces. If a is a
boundary arc of †1 and b is a boundary arc of †2, then we have an algebra iso-
morphism

�SL3
q .†1/

x
˝ �SL3

q .†2/ Š �SL3
q ..†1 t†2/#T /

given by the map glueT defined in Section 7.

Proof. By Proposition 7.1, the map

glueT W �
SL3
q .†1 t†2/! �SL3

q ..†1 t†2/#T /

is an R-module isomorphism. Since �
SL3
q .†1 t †2/ is naturally isomorphic to

�
SL3
q .†1/˝ �

SL3
q .†2/; we see that the isomorphism claimed in Theorem 10.1 holds
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on the level of R-modules. To see that it holds on the level of R-algebras we must
show that glueT respects the algebra structure.

For this fact, the same diagrammatic proof in [8] works here. In each of the fol-
lowing cases:

• x; y are both in �
SL3
q .†1/;

• x; y are both in �
SL3
q .†2/;

• or x is in �
SL3
q .†1/ while y is in �

SL3
q .†2/;

it is clear that glueT .x/ glueT .y/ D glueT .xy/:

In the remaining case, we have that x is in �
SL3
q .†2/ and y is in �

SL3
q .†1/: We

diagrammatically compute that

glueT .x/ glueT .y/ D xy

D

X
.x/.y/

"

0BBB@ x0y0

1CCCA x00y00

D

X
.x/.y/

�.y0 ˝ x0/ glueT .y
00
˝ x00/

D glueT

� X
.x/.y/

�.y0 ˝ x0/.y00 ˝ x00/
�

D glueT .xy/:

This shows that glueT respects the multiplication of �
SL3
q .†1/

x
˝ �

SL3
q .†2/ and com-

pletes our proof.

By applying Theorem 10.1 in the special case where †1 and †2 are both bigons
B we obtain the following corollary.

Corollary 10.2. �
SL3
q .T / Š Oq.SL3/

x
˝Oq.SL3/:
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11. The skein algebra of a punctured surface is a domain

Suppose that our ground ring R is a domain, which means that if xy D 0 for elements
x; y 2 R; then we must have that x D 0 or y D 0: Our goal in this section is to show
that whenever R is a domain, �

SL3
q .†/ is a domain as well. We are able to prove this

fact as long as † has at least one puncture. We state our main theorem here and then
prove it in the rest of the section.

Theorem 11.1. If R is a domain and † has at least one puncture, then �
SL3
q .†/ is a

domain as well.

We remark that this theorem also implies that the ordinary skein algebra is a
domain since it embeds in the stated skein algebra.

We first prove the theorem for the cases when† has no ideal triangulation. A punc-
tured bordered surface† is called a small surface if it is one of the following surfaces:
a bigon, a monogon, a sphere with two punctures or a sphere with one puncture.

Proposition 11.2. If R is a domain and † is a small surface, then �
SL3
q .†/ is a

domain.

Proof. If † is a monogon or a sphere with one puncture, then �
SL3
q .†/ Š R and is a

domain.
If † is a bigon, then one has �

SL3
q .†/ Š Oq.SL3/; which is a domain by [5,

Theorem I.2.10]. The proof there is stated for R D k; a field but their proof works for
any domain R:

Finally, if † is a sphere with two punctures, then by applying the splitting map
associated to an ideal arc traveling from one puncture to the other, we obtain an
embedding �

SL3
q .†/ ,! �

SL3
q .B/ and so our skein algebra is a domain in this case

as well.

If † is a punctured surface that is not a small surface, then† has an ideal triangu-
lation and we can apply our triangular decomposition to obtain an embedding

�SL3
q .†/ ,!

O
i

�SL3
q .Ti /;

where for each triangle Ti ; we have �
SL3
q .Ti / Š Oq.SL3/

x
˝Oq.SL3/:

So, it will suffice to show that
N
i .Oq.SL3/

x
˝ Oq.SL3// is a domain. Since

domains are not necessarily well behaved under tensor products or braided tensor
products (recall that C ˝R C is not a domain), our result does not follow immedi-
ately from the fact that Oq.SL3/ is a domain. However, we will still model our proof
on the proof in [5] by first using properties of Oq.M3/ and then using a localization.
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Recall that the bialgebra Oq.M3/ has a similar presentation as Oq.SL3/; gener-
ated by elements Xij with the only difference being that the presentation of Oq.M3/

does not include the relation detq D 1: The precise relations for Oq.M3/ are as fol-
lows:

XijXlm D

8̂̂̂̂
<̂
ˆ̂̂:
q�1XlmXij .i > l; j D m/;

q�1XlmXij .i D l; j > m/;

XlmXij .i < l; j > m/;

XlmXij � .q � q
�1/XimXlj .i > l; j > m/:

We define an order on our generators Xij using the lexicographic ordering, mean-
ing Xij < Xkl if i < k or if both i D k and j < l: Using the defining relations of
Oq.M3/ as reduction rules and a standard diamond lemma argument, we have a basis
for Oq.M3/ consisting of monomials of generators appearing in increasing order. We
will soon observe that this basis of monomials is compatible with the multiplication
on Oq.M3/ in the following sense.

Definition 11.3. A total order on a monoid M is compatible with its operation if it
satisfies the property that for elements m1 � m2 and n1 � n2; we have m1 C n1 �
m2 C n2: We will refer to such a monoid M as a totally ordered monoid.

Suppose that B is an R-basis of an R-algebra A: If there exists an injective
assignment d WB !M; then d can be extended to A n ¹0º in the following way. If
a 2 A n ¹0º; express a D

P
ribi uniquely as a finite linear combination of elements

in the basis B: Define d.a/ to be the maximum value of ¹d.bi /jri ¤ 0º:
We say that B is a compatibly ordered basis for A if it is indexed by a totally

ordered monoid M such that the map d WA!M satisfies

d.b1b2/ D d.b1/C d.b2/

for any basis elements b1; b2 2 B:

Proposition 11.4. The monomial basis for Oq.M3/ described above is a compatibly
ordered basis.

Proof. To each basis monomial, we may associate a degree d 2 Z9�0 by

d.X
m11

11 X
m12

12 � � �X
m33

33 / D .m33; m32; : : : ; m11/;

the list of exponents of the generators, listed in reverse order. A basis element is
determined uniquely by its degree, and so we have an indexing of our basis by the
totally ordered monoid Z9�0:

To an arbitrary nonzero element x 2 Oq.M3/ we can associate a degree d.x/ by
writing x in the basis and defining d.x/ to be the maximum degree among all basis
elements appearing with nonzero coefficients.
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Suppose m1 and m2 are two monomial basis elements. The reduction rules imply
that generators q-commute up to terms of smaller degree and so

d.m1m2/ D d.m1/C d.m2/:

Corollary 11.5. If R is a domain then Oq.M3/ is a domain.

Proof. Suppose that x and y are nonzero elements of Oq.M3/: The fact that

d.m1m2/ D d.m1/C d.m2/

for all monomial basis elements m1; m2 implies that we also have

d.xy/ D d.x/C d.y/:

From this we can deduce that d.xy/ > E0:Hence, xy ¤ 0 and Oq.M3/ is a domain.

We next prove the same property holds for the braided tensor square of Oq.M3/:

Proposition 11.6. If R is a domain thenO
i

.Oq.M3/
x
˝Oq.M3//

is a domain.

Proof. We upgrade our compatibly ordered basis of Oq.M3/ to a compatibly ordered
basis of Oq.M3/

x
˝Oq.M3/: We will continue to use Xij to refer to the generators in

the first factor and use Yij to refer to the generators in the second factor. Recall that
the algebra Oq.M3/

x
˝Oq.M3/ is isomorphic as a module to Oq.M3/˝Oq.M3/ and

thus has a basis ¹mXmY º where mX is a monomial of generators Xij in increasing
order andmY is a monomial of generators Yij appearing in increasing order. We claim
that this basis is compatibly ordered as well.

For a basis element mXmY , we define its degree d.mXmY / 2 Z18�0 to be the
concatenation .d.mX /; d.mY // where d.mX / was defined in the proof of Propos-
ition 11.4 and d.mY / is the corresponding definition using the generators Yij : We
recall that in the braided tensor product Oq.M3/

x
˝Oq.M3/ we have that

YijXkl D q
�1=3

8̂̂<̂
:̂
qXklYij .i D k/;

XklYij C .q � q
�1/XilYkj .i < k/;

XklYij .i > k/:

We note that if i < k thenXil <Xkl . Thus, the generators Yij andXkl q-commute
up to lower order terms. From this, we deduce that

d.mX1
mY1

mX2
mY2

/ D d.mX1
mY1

/C d.mX2
mY2

/

and consequently Oq.M3/
x
˝Oq.M3/ is a domain.



V. Higgins 42

We then use the tensor product of these bases to get a compatibly ordered basis ofN
i .Oq.M3/

x
˝Oq.M3// and see that it is a domain.

We would like to take the Ore localization of
N
i .Oq.M3/

x
˝ Oq.M3// with

respect to the multiplicative set generated by the elements detXi
and detYi

: This will
be easy to do if we can show that these determinant elements are central. It suffices to
show the following.

Proposition 11.7. The quantum determinant elements detX and detY are central ele-
ments of Oq.M3/

x
˝Oq.M3/:

Proof. We will prove that detX is central. The argument that detY is central is similar.
It is well known that detX commutes with the generators Xij so we need to check

that it commutes with the generators Ykl : Recall from the previous proof that the
commutativity relations involving Ykl andXij only depend on the row indices k and i:

We must check that

Ykl

�X
�

.�q/l.�/X1�.1/X2�.2/X3�.3/

�
D

�X
�

.�q/l.�/X1�.1/X2�.2/X3�.3/

�
Ykl :

If k D 3 then the row index of Y is not smaller than any row indices of the generators
Xij and so Y3l can slide past the determinant, picking up one factor of q2=3 and two
factors of q�1=3 along the way. Thus, the relation holds if k D 3:

If k D 2; then we use the relations to slide Y2l past the generators Xi�.i/ to get

Y2l

�X
�

.�q/l.�/X1�.1/X2�.2/X3�.3/

�
D

X
�

.�q/l.�/q2=3q�1=3X1�.1/X2�.2/Y2lX3�.3/

D

�X
�

.�q/l.�/X1�.1/X2�.2/X3�.3/

�
Y2l

C

X
�

.�q/l.�/.q � q�1/X1�.1/X2�.2/X2�.3/Y3l

This last term is zero since
P
� .�q/

l.�/X1�.1/X2�.2/X2�.3/ has a repeated row index
and so is zero by properties of quantum determinants. Thus, Y2l commutes with detX :

When k D 1 a similar computation shows that Y1l commutes with detX :

We can then take an Ore localization of
N
i .Oq.M3/

x
˝ Oq.M3// to obtain the

algebra O
i

.Oq.GL3/
x
˝Oq.GL3//;
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where Oq.GL3/ D Oq.M3/Œdet�1q �: Since the localization of a domain is a domain
(see [14, Chapter 6]), we have that

N
i .Oq.GL3/

x
˝Oq.GL3// is a domain.

The proof of Theorem 11.1 then follows from the following.

Proposition 11.8. There is an algebra embeddingO
i

.Oq.SL3/
x
˝Oq.SL3// ,!

O
i

.Oq.GL3/
x
˝Oq.GL3//:

Proof. Producing an embedding Oq.SL3/
x
˝Oq.SL3/ ,! Oq.GL3/

x
˝Oq.GL3/ will

induce the desired embedding since these algebras are free R-modules and so the
tensor product of injective maps will be an injective map.

To produce this embedding we follow the construction of an the embedding
Oq.SL3/ ,! Oq.GL3/ from [5].

We show that

.Oq.SL3/
x
˝Oq.SL3//Œz˙1X ; z˙1Y � Š Oq.GL3/

x
˝Oq.GL3/:

We will denote by Xij and Yij the generators of Oq.SL3/
x
˝Oq.SL3/ and by xij and

yij the generators of Oq.GL3/
x
˝Oq.GL3/: Define

F W .Oq.SL3/
x
˝Oq.SL3//Œz˙1X ; z˙1Y �! Oq.GL3/

x
˝Oq.GL3/

on generators by

Xi1 7! xi1 det�1x ; Xij 7! xij .j ¤ 1/;

Yi1 7! yi1 det�1y ; Yij 7! yij .j ¤ 1/;

zX 7! detx; zY 7! dety :

Since detx and dety are central, we can see that F respects the standard Oq.M3/

relations. By construction, it satisfies F.detX / D 1 D F.detY /: It also satisfies the
mixed relations involving Yij and Xkl : Thus, F is a well-defined algebra map.

We define

GWOq.GL3/
x
˝Oq.GL3/! .Oq.SL3/

x
˝Oq.SL3//Œz˙1X ; z˙1Y �

on generators by

xi1 7! Xi1zX ; xij 7! Xij .j ¤ 1/;

yi1 7! Yi1zY ; yij 7! Yij .j ¤ 1/;

det�1x 7! z�1X ; det�1y 7! z�1Y :

G respects the relations and so is a well-defined algebra map. We can see on gener-
ators that FG D id and GF D id and so we have an isomorphism. Restricting F to
Oq.SL3/

x
˝Oq.SL3/ produces the desired embedding.
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12. The SL3 analogue of the Frobenius homomorphism

In [4], an algebra map called the Chebyshev–Frobenius homomorphism was construc-
ted, which embedded the classical skein algebra �

SL2

1 .†/ into the center of the skein
algebra �

SL2
q .†/ at a root of unity q of odd order. The map is interesting from a

topological viewpoint since it has a definition in terms of threading links through
Chebyshev polynomials and the fact that it is well defined follows from “miraculous
cancellations” in skein theoretic computations when q is a root of unity. From an
algebraic viewpoint, the map is important because it provides a source of central ele-
ments which can be used to study the representation theory of �

SL2
q .†/ at roots of

unity. We are interested in finding an analogous map for the case of SL3 :
Throughout this section, we assume that R is a domain and q1=3 is a root of unity

of order N coprime to 6: We are interested in the relationship between �
SL3

1 .†/ and
�

SL3
q .†/; where the skein algebra �

SL3

1 .†/ is obtained from the definition of �
SL3
q .†/

by replacing q1=3 by 1 in all of the defining skein relations. Our goal in this section is
to prove the following.

Theorem 12.1. Suppose that R is a domain and q1=3 is a root of unity of order N
coprime to 6: Then, for a punctured bordered surface † with at least one puncture
per connected component, there exists an embedding

F†W �
SL3

1 .†/ ,! Z.�SL3
q .†//:

The Frobenius map F† will be constructed by starting with the Hopf algebra
embedding O1.SL3/ ,!Oq.SL3/ constructed in [28] and then, in some sense, extend-
ing the map to †: We follow the strategy of [22] from the SL2 case.

When we say that q1=3 has order N; we mean that .q1=3/N D 1 and .q1=3/k ¤ 1
for 0 < k < N: Our assumption that N is coprime to 6 guarantees that q and q2 are
also roots of unity of the same order N; which is a hypothesis used in [28].

Proposition 12.2 ([28]). There is a Hopf algebra map

FBWO1.SL3/! Oq.SL3/

defined on generators by FB.Xij / D .Xij /
N : Furthermore, the image of FB is con-

tained in the center of Oq.SL3/:

We observe the following.

Lemma 12.3. The Hopf algebra map FB is an embedding.

Proof. The set of monomials

¹X
m11

11 X
m12

12 � � �X
m33

33 j m11m22m33 D 0º
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forms a basis for both O1.SL3/ and Oq.SL3/: Since

FB.X
m11

11 X
m12

12 � � �X
m33

33 / D X
Nm11

11 X
Nm12

12 � � �X
Nm33

33 ;

we see that FB maps the basis of O1.SL3/ injectively into the basis of Oq.SL3/:

We next extend this map to the case of the braided tensor square. Recall that when
q D 1; the braided tensor square of O1.SL3/ is just the ordinary tensor square.

Proposition 12.4. There is an algebra embedding

FT WO1.SL3/
x
˝O1.SL3/ ,! Z.Oq.SL3/

x
˝Oq.SL3//

defined by FT D FB ˝ FB:

Proof. Since O1.SL3/ is a free R-module, by setting FT D FB ˝ FB we obtain an
embedding of R-modules O1.SL3/

x
˝O1.SL3/ ,! Oq.SL3/

x
˝Oq.SL3/:We need to

check that this map respects the algebra structure.
Recall the notation XijYkl for generators of Oq.SL3/

x
˝Oq.SL3/: To see that FT

respects the algebra structure of the braided tensor product, it will suffice to observe
that the images of generators FT .Ykl/ D Y N

kl
commute with the generators Xij in

Oq.SL3/
x
˝ Oq.SL3/: A symmetric argument shows the same is true for FT .Xij /

and Ykl :
If k D i; we have the relation YklXij D q2=3XijYkl and so

Y Nkl Xij D .q
2=3/NXijY

N
kl D XijY

N
kl ;

since .q1=3/N D 1: Similarly, if k > i; we have the relation

YklXij D q
�1=3XijYkl

and so
Y Nkl Xij D XijY

N
kl

in this case as well.
If k < i; then we will use the relation

YklXij D q
�1=3XijYkl C q

�1=3.q � q�1/XkjYil :

We will prove the following for m � 1 by induction:

Y mklXij D .q
�1=3/mXijY

m
kl C .q

�1=3/m.q � q�1/

m�1X
nD0

q�2nXkjYilY
m�1
kl :
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We are given the base case. Now, assume the inductive hypothesis. We have

Y mklXij D Ykl.q
�1=3/m�1XijY

m�1
kl

C .q�1=3/m�1.q � q�1/

m�2X
nD0

q�2nYklXkjYilY
m�2
kl

D .q�1=3/mXijY
m
kl C .q

�1=3/m.q � q�1/XkjYilY
m�1
kl

C .q�1=3/m�1.q � q�1/

m�2X
nD0

q�1=3q�2nC2XkjYilY
m�1
kl

D .q�1=3/mXijY
m
kl C .q

�1=3/m.q � q�1/

m�1X
nD0

q�2nXkjYilY
m�1
kl ;

as claimed.
When we specialize this formula to the case m D N we obtain

Y Nkl Xij D XijY
N
kl

as required since .q�1=3/N D 1 and .q � q�1/
PN�1
nD0 q

�2n D q.1 � q�2N / D 0:

We next investigate the diagrammatic properties of our maps FB and FT when
we view them as maps on the skein algebras of the bigon B and triangle T :

Proposition 12.5. When �
SL2
q .B/ is identified with Oq.SL3/; FB is defined on gener-

ating strands by FB.˛t.i/t.j // D ˛N
t.i/t.j /

and FB.ˇt.i/t.j // D ˇN
t.i/t.j /

for all
i; j 2 ¹1; 2; 3º:

Proof. Our isomorphism �
SL3
q .B/!Oq.SL3/ sends ˇt.i/t.j / toXij and so we already

know that FB.ˇt.i/.j // D ˇ
N
t.i/t.j /

:

For the strands ˛t.i/t.j / we will use the antipodes S and the fact that FB commutes
with the antipodes. For our strands ˛t.i/t.j /; we use the fact

˛t.i/t.j / D q
2j�2iS.ˇt. N|/t.N{//;

where N{ D 4 � i: We then compute

FB.˛t.i/t.j // D FB.S.ˇt. N|/t.N{/// D S.FB.ˇt. N|/t.N{/// D S..ˇt. N|/t.N{//
N /

D S.ˇt. N|/t.N{//
N
D .q2i�2j /N˛Nt.i/t.j / D ˛

N
t.i/t.j /;

as claimed.

Thus, even though our isomorphism �
SL3
q .B/ Š Oq.SL3/ depends on a choice of

right and left boundary arcs of B; the definition of FB is invariant under this choice.
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Similarly, even though �
SL3
q .T / Š �

SL3
q .B/

x
˝ �

SL3
q .B/ depended on a choice of

bottom edge of the triangle, we aim to show that the map FT W �
SL3

1 .T /! �
SL3
q .T /

is invariant under this choice.
We call a stated arc in the triangle T a corner arc if it admits a crossingless

diagram and it is not homotopic to a boundary arc. The following illustrates examples
of top, left, and right corner arcs:

:

Proposition 12.6. The map FT sends a stated corner arc to its N -th power.

Proof. If the arc is a left or right corner arc, then by the definition of FT D FB˝ FB

and our diagrammatic interpretation of FB; we already know that FT sends the arc to
its N -th power. So, we just have to show the same is true for a top corner arc. We will
compute this for a top corner arc with one orientation. A similar computation works
for the opposite orientation.

We compute the value of FT on our arc by first writing it in terms of left and right
corner arcs and then applying FT :

i j
D

X
a

�

a �a

i j FT
7��!

X
a

�

a �a

i j

D

X
a

�

a �a

i j
;

where the thick strands denote N parallel strands. The orientation reversal of the
left edge in the last equality is possible since it comes at the expense of a factor of
.q2=3/N.N�1/=2 D 1:

We claim the last expression in our computation is the same as the N -th power of
our top corner arc. To show this, we will make use of the fact that FB is a bialgebra
map. Let er denote the right boundary arc of the left bigon in a disjoint union B tB

and denote by el the left boundary arc of the right bigon. Recall the maps rever
and

glueT : We have that the N -th power of our top corner arc is the same as

glueT rever
�.FB.ˇij // D glueT rever

.FB ˝ FB/�.ˇij /;

which is our last expression in our computation above. This part uses the fact that
rever

multiplies each diagram by .�1/N D �1; since N is odd.
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Now, that we have established diagrammatic interpretations of our maps FB and
FT ; we can observe that they satisfy a compatibility with our splitting maps. Suppose
that a is a boundary arc of a triangle T :

Lemma 12.7. Our Frobenius maps F commute with �a and a� in the sense that

.FT ˝ FB/�a D �aFT

and

.FT ˝ FB/a� D a�FT :

Proof. This follows from the fact that� ıFB D .FB˝FB/ ı� and from an embed-
ding B tB ,! B tT :

We can now construct a Frobenius map F† for any ideal triangulable †:

Proposition 12.8. Suppose † has an ideal triangulation with a set of interior edges
E: There exists an algebra embedding F†;E of �

SL3

1 .†/ into the center Z.�SL3
q .†//

defined as the unique algebra map making the left square in the following diagram
commute:

0 �
SL3

1 .†/

nO
iD1

�
SL3

1 .Ti /
� nO
iD1

�
SL3

1 .Ti /
�
˝

�O
e2E

�
SL3

1 .B/
�

0 �
SL3
q .†/

nO
iD1

�SL3
q .Ti /

� nO
iD1

�SL3
q .Ti /

�
˝

�O
e2E

�SL3
q .B/

�
 

!

 

!
�

 

!

F†;E
 

!
�R��ıL�

 !

N
i FTi

 !

N
i FTi

˝eFB

 

!

 

!
�  

!
�R��ıL�

Proof. The horizontal rows are exact, by our triangular decomposition theorem. The
right square commutes by Lemma 12.7. Thus, there exists a unique map of modules
F†;E as claimed. The map is an injective algebra map because� and FTi

are injective
algebra maps. By the centrality of FTi

and the injectivity of �; we see that F†;E is
central.

So, far we have defined F†;E in terms of the ideal triangulation E: We next aim
to show that if E and E 0 are two ideal triangulations of †; then F†;E D F†;E0 : As
shown in [22] for the SL2 case, this will follow from showing that † DQ is an ideal
square, then FQ is the same map for both triangulations of Q: We illustrate the two
triangulations of Q here. One triangulation is E D ¹eº and the other is E 0 D ¹e0º:

e ; e0 :
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The skein algebra �
SL3
q .Q/ has a nice generating set consisting of single corner

arcs, single horizontal arcs, single vertical arcs, with all possible strand orientations
and state labels.

Proposition 12.9. Suppose that 
 is a stated arc in our generating set for �
SL3
q .Q/:

Then both FQ;E and FQ;E0 send 
 to 
N : Thus, the map FQ is invariant under change
of triangulation of Q:

Proof. We must check that for the generator 
 2 �
SL3

1 .Q/; we have the equalities

�e.

N / D .FT ˝ FT /�e

and

�e0.

N / D .FT ˝ FT /�e0 :

If 
 can be isotoped so that it does not intersect e then the first equation is obvious.
Otherwise, it can be isotoped so that it intersects e exactly once and then the first
equality follows from the fact that FB is a bialgebra map and from an embedding
B tB ,! T tT : An analogous argument works for the second equality.

Next, we record a compatibility of F†;E with a partial splitting of the triangula-
tion. Suppose a and b are two boundary arcs of a punctured bordered surface † and
let x† D †=.a D b/: Then the common image of a and b on x† is an ideal arc we
will denote e: Suppose x† has an ideal triangulation with set of interior edges E with
e 2 E: Then † naturally inherits an ideal triangulation with edge set E n ¹eº: We are
interested in the relationship between Fx†;E and F†;En¹eº:

Proposition 12.10. We have that Fx†;E is equal to the unique algebra map making
the following diagram commute:

�
SL3

1 .x†/ �
SL3

1 .†/

�
SL3
q .x†/ �

SL3
q .†/:

 

!
�e

 ! Fx†;E  ! F†;En¹eº

 

!
�e

Proof. We examine the following diagram:

�
SL3

1 .x†/ �
SL3

1 .†/
Nn
i Ti

�
SL3
q .x†/ �

SL3
q .†/

Nn
i Ti

 

!
�e

 ! Fx†;E  ! F†;En¹eº

 

!
�En¹eº

 !

N
i FTi

 

!
�e  

!
�En¹eº

The outer rectangle and the right square both commute by the definitions of Fx†;E
and F†;En¹eº: Thus, the left square commutes. The injectivity of �e and F†;En¹eº
imply the uniqueness of Fx†;E :
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Corollary 12.11. Suppose that † is a punctured bordered surface with an ideal tri-
angulation with a set of internal edges E: The map F†;E does not depend on the
triangulation E:

Proof. Suppose that † has a second ideal triangulation E 0: Then E 0 may be obtained
from E by a finite sequences of edge flips involving an internal edge that borders
two distinct faces. Thus, without loss of generality, we can assume that E and E 0 are
identical except for a single edge flip in a square Q:

e $ e0 :

Let�QW�
SL3
q .†/! �

SL3
q .† nQ/ be the composition of splitting maps associated

to cutting the square Q out of †:
By Proposition 12.9, FQ does not depend on its triangulation. A repeated applic-

ation of Proposition 12.10 implies that since both F†;E and F†;E0 make the diagram

�
SL3

1 .†/ �
SL3

1 .† nQ/˝ �
SL3

1 .Q/

�
SL3
q .†/ �

SL3
q .† nQ/˝ �

SL3
q .Q/

 

!
�Q

 !  ! F†nQ˝FQ

 

!
�Q

commute, we have the equality F†;E D F†;E0 :

So far, we have shown that Theorem 12.1 is true for any ideal triangulable surface
† and that the definition of F† in these cases does not depend on the triangulation. We
now briefly comment on the surfaces with at least one puncture which do not admit
an ideal triangulation.

Proposition 12.12. The four punctured bordered surfaces which do not admit a tri-
angulation admit a Frobenius map.

Proof. The four surfaces are the monogon M; the bigon B; and the sphere with 2 or
1 punctures. If the surface † is the monogon or the sphere with one puncture, then
�

SL3
q .†/ŠR; which is commutative. So, in these cases, F† is determined by the fact

that it sends the empty diagram to the empty diagram.
If † D B; we have already constructed FB as the map from [28] from O1.SL3/

to Oq.SL3/:
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If † is the sphere with 2 punctures, then we let c be an ideal arc connecting the
two punctures and we define F† to be the unique map making the following diagram
commute:

�
SL3

1 .†/ �
SL3

1 .B/

�
SL3
q .†/ �

SL3
q .B/

 

!
�c

 ! F†  ! FB

 

!
�c

In this section, we have defined our Frobenius morphism F† locally, in mostly
an algebraic manner, and extended it to the whole surface. We have shown that for a
triangulable surface †; the map F† does not depend on the triangulation, and so is
canonical in some sense. However, there should be a nice global definition of F† that
can be given without reference to a triangulation, and one which will generalize to the
case of skein algebras of closed surfaces and skein modules of 3-manifolds. We would
hope for a description of the image of an arbitrary web with a single connected com-
ponent. For example, it is certain that a stated arc ˛ should be sent to its N -th framed
power. A knot should be threaded through an SL3 analogue of the N -th Chebyshev
polynomial analogous to the SL2 constructions in [2, 4, 22, 25]. It is unclear what
should be the image of a more complicated web, so it would be interesting to find a
nice description for it. These questions are beyond the scope of the current paper but
deserve to be explored in the future.

13. Kuperberg’s SL3 spider

The skein relations referred to as interior relations in this paper (relations (I1a)–(I4b)
of Section 2) first appeared in [19, 23]. In the paper [23], Kuperberg noted that the
link invariant computed by the skein relations is an explicit example of the SL3 case
of a more general construction of invariants of ribbon graphs arising from quantum
groups due to the work of Reshetikhin and Turaev [29]. In a followup work, [24],
Kuperberg showed that the collection of SL3 webs, called the SL3 spider, encodes a
full subcategory of the representation category of Uq.sl3/:

Roughly speaking, Kuperberg’s spider can be interpreted as a category of unstated
webs, WebSL3 : An unstated web in a rectangle encodes a morphism of Uq.sl3/-mod-
ules with the boundary data of the web encoding the domain and codomain of the
morphism as tensor products of the standard representation of Uq.sl3/ and its dual.
The work of [29] describes a monoidal functor from the category WebSL3 to the cat-
egory of Uq.sl3/-modules. The work of Kuperberg in [24] shows that this functor is
faithful and that the image of the functor is onto the full subcategory of Uq.sl3/-mod
generated by tensor products of the standard representation of Uq.sl3/ and its dual.
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Kuperberg achieved his result by using the interior skein relations to construct
spanning sets of webs which enabled him to bound the dimensions of Hom-spaces in
WebSL3 : He then used results from Lie theory to establish the fullness of the functor
and used a dimension count to establish the faithfulness of the functor. Consequently,
he also proved that the spanning sets of webs were bases for the Hom-spaces in
WebSL3 :

Our identification of the stated skein algebra of the bigon with the quantum group
Oq.SL3/ allows us in this section to recover the result of Kuperberg in the language of
Oq.SL3/-comodules. Our web basis of stated webs from Section 5 is a finer tool than
the web basis of unstated webs and it allows us to prove the fullness and faithfulness of
the Reshetikhin–Turaev functor by using our results from Section 8 about the splitting
map for the stated skein algebra.

Later in this section, we give precise definitions, in the context of skein algebras,
of the categories WebSL3 and Oq.SL3/-comodhV i, and of the Reshetikhin–Turaev
functor RT : The main result of the section is the following.

Theorem 13.1. The Reshetikhin–Turaev functor RTWWebSL3 ! Oq.SL3/-comodhV i
is an isomorphism of braided monoidal categories.

The theorem will follow from an interpretation of the exact sequence associated
to our splitting map.

To define relevant categories and functors, it will be convenient to introduce mod-
ified versions of �

SL3
q .B/ in which we allow for one or both boundary arcs of B to

be designated to contain endpoints of webs without states and in which we do not
impose any boundary skein relations along the designated boundary arcs. We can call
such a boundary arc an inactive boundary arc. In our notation, we will use “_” on the
right or left of B to indicate an inactive boundary arc, which is one designated to have
endpoints which are not labeled by states. For example, �

SL3
q ._B_/ denotes the skein

algebra of webs in the bigon with endpoints unlabeled by states and subject to only the
interior skein relations. The notation �

SL3
q ._B/ denotes the skein algebra of webs in

the bigon such that any endpoints on the left boundary arc of B are unlabeled by states
(but endpoints on the right boundary arc are labeled by states), and which is subject
to only the interior skein relations and stated skein relations along the right boundary
arc. Similarly, the skein algebra �

SL3
q .B_/ denotes the skein algebra of webs in the

bigon such that any endpoints on the right boundary arc of B are unlabeled by states,
and which is subject to only the interior skein relations and the stated skein relations
along the left boundary arc.

Our theorems involving bases and splitting maps carry over to the situation of
inactive boundary arcs. We use these modified versions of skein algebras to define
certain categories and functors. First we observe that these new versions of our skein
algebras admit a module decomposition in terms of boundary data of webs. Let Ea
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be a sequence of left and right arrows Ea D .a1; : : : ; ak/ for some k � 0 with each
ai 2 ¹ ;!º:

In this section, we will identify the state C with the integer 1, the state 0 with the
integer 2 and the state � with the integer 3:

Definition 13.2. For an arrow sequence Ea we define �
SL3
q .EaB/ to be the submodule

of �
SL3
q ._B/ spanned by webs whose left boundary data, read from top to bottom,

agrees with the arrow sequence Ea: Similarly, we define �
SL3
q .BEa/ to be the submodule

of �
SL3
q .B_/ spanned by webs whose right boundary data, read from top to bottom,

agrees with the arrow sequence Ea: Finally, for two arrow sequences Ea; Eb we define
�

SL3
q .EbBEa/ to be the submodule of �

SL3
q ._B_/ spanned by webs whose left boundary

data agrees with Eb and whose right boundary data agrees with Ea:

Proposition 13.3. Our algebras are graded with respect to the following decomposi-
tions as R-modules:

(i) �
SL3
q ._B/D

L
Ea �

SL3
q .EaB/; where the direct sum is over all possible arrow

sequences Ea;

(ii) �
SL3
q .B_/D

L
Ea �

SL3
q .BEa/; where the direct sum is over all possible arrow

sequences Ea;

(iii) �
SL3
q ._B_/ D

L
Ea;Eb

�
SL3
q .EbBEa/; where the direct sum is over all possible

arrow sequences Ea; Eb:

Proof. The proposition follows from the fact that none of our reduction rules coming
from our diamond lemma algorithm will change the boundary data of a web along an
inactive boundary arc, and so the algebras are graded with respect to this data.

13.1. The category WebSL3

The first category we will define is Kuperberg’s SL3 web category, modified to our
setting. The category WebSL3 is the monoidal R-linear category consisting of the
following data:

• an object Ea of WebSL3 is a sequence of arrows EaD .a1; a2; : : : ; ak/ for some k � 0
where ai 2 ¹ ;!ºI

• Hom.Ea; Eb/ is the module �
SL3
q .EbBEa/I

• the composition of morphisms is defined on diagrams D 2 �
SL3
q .EbBEa/ and E 2

�
SL3
q .EcBEb/ by horizontally gluing E on the left of D to obtain a diagram E ıD

in �
SL3
q .EcBEa/I

• the tensor product Ea˝ Eb of objects Ea and Eb is the concatenation .Ea; Eb/: The tensor
product of morphisms is then given by the product operation in �

SL3
q ._B_/:
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13.2. The category Oq.SL3/-comodhV i

We next give the definition of our category Oq.SL3/-comodhV i and then give it a
diagrammatic interpretation. The category Oq.SL3/-comodhV i is the full subcategory
of right Oq.SL3/ comodules tensor-generated by the standard rank 3 comodule V!
and its dual V :

Before giving a precise definition of our category, we fix conventions for the
standard comodule V! and its dual V : We let V! be the free R-module with basis
v1; v2; v3 with coaction V! ! V! ˝Oq.SL3/ given by

vi 7!

3X
jD1

vj ˝Xj i :

Due to conventions associated to our definition of the stated skein relations and
the splitting map, we will use a nonstandard weight basis of V ; meaning that our
basis will not be the dual basis of our basis for V!: We let V be the free R-module
with basis w1; w2; w3 with coaction V ! V ˝Oq.SL3/ given by

wi 7!

3X
jD1

wj ˝ q
2i�2jS.XN{ N| /;

where we use the notation Nk D 4 � k:
Given a sequence of arrows Ea D .a1; : : : ; ak/; we denote by VEa the tensor product

VEa D Va1
˝ Va2

˝ � � � ˝ Vak
:

The category Oq.SL3/-comodhV i consists of the following data:

• objects are the modules VEa; which are finite tensor products of copies of V!
and V ;

• morphisms are R-linear maps between objects which commute with the right
coaction of Oq.SL3/: We call the set of morphisms HomOq.SL3/.VEa; VEb/:

Recall that the splitting map

�W �SL3
q .EaB/! �SL3

q .EaB/˝ �SL3
q .B/

gives �
SL3
q .EaB/ the structure of a right �

SL3
q .B/ comodule, which is a right Oq.SL3/

comodule structure when we use the identification �
SL3
q .B/ Š Oq.SL3/: We find the

following diagrammatic interpretation of the objects of our category.

Proposition 13.4. Given a sequence of arrows Ea; we have that �
SL3
q .EaB/ Š VEa as

Oq.SL3/ comodules.
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Proof. We first look at the generating cases. If Ea happens to be the empty sequence,
then both �

SL3
q .EaB/ and VEa are isomorphic to R with the trivial comodule structure.

If Ea D .!/; then �
SL3
q .EaB/ has a basis°

i

±3
iD1

and the image of this basis under the splitting map agrees with the coaction on the
basis ¹viº3iD1 of V!:

Similarly, if Ea D . / then �
SL3
q .EaB/ has a basis°

i

±3
iD1

and the image of this basis under the splitting map agrees with the coaction on the
basis ¹wiº3iD1 of V :

If Ea is an arbitrary sequence of arrows, then a basis of �
SL3
q .EaB/ consists of a

product of basis elements of �
SL3
q . B/ and �

SL3
q .!B/: Since the splitting map is an

algebra map, we have that the image of this basis under the splitting map agrees with
the coaction on the standard tensor basis of VEa:

Next, we provide a diagrammatic interpretation of some of the morphisms of our
category.

Proposition 13.5. Given a diagram E in �
SL3
q .EbBEa/ and a diagram D in �

SL3
q .EaB/,

we obtain a diagram E ıD in �
SL3
q .EbB/ by gluing horizontally. This gluing defines a

linear map EW �SL3
q .EaB/! �

SL3
q .EbB/: The linear map commutes with the coaction.

Proof. The equation .E ˝ id/�.D/ D �.E ıD/ can be seen diagrammatically, so
E commutes with the coaction.

We now have the ingredients to define our Reshetikhin–Turaev functor.

Proposition 13.6. We produce a functor RTWWebSL3 ! Oq.SL3/-comodhV i in the
following manner. On objects, we define RT.Ea/ D VEa; which we have identified with
�

SL3
q .EaB/: On morphisms, RT is the identity on the module �

SL3
q .EbBEa/; which we

have previously identified as a submodule of HomOq.SL3/.VEa; VEb/:

We will eventually show that RT is an isomorphism of categories. First, we will
need a diagrammatic interpretation of HomR.VEa; VEb/:
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13.3. The category split.WebSL3/

The category split.WebSL3/ is the monoidal R-linear category consisting of the fol-
lowing data:

• an object Ea of split.WebSL3/ is a sequence of arrows;

• Hom.Ea; Eb/ is the module �
SL3
q .EbB/˝ �

SL3
q .BEa/I

• the composition of morphisms is defined on diagrams

D1 ˝D2 2 �SL3
q .EbB/˝ �SL3

q .BEa/

and
E1 ˝E2 2 �SL3

q .EcB/˝ �SL3
q .BEb/

by gluing E2 on the left of D1, taking the counit, and obtaining

".E2 ıD1/E1 ˝D2 2 �SL3
q .EcB/˝ �SL3

q .BEa/I

• the tensor product Ea ˝ Eb of objects Ea and Eb is the concatenation .Ea; Eb/:

The tensor product of morphisms is then given by the product operation in
�

SL3
q ._B/˝ �

SL3
q .B_/:

13.4. The category R-comodhV i

We now give the definition of the category R-comodhV i and then give it a dia-
grammatic interpretation. The category R-comodhV i is the full subcategory of right
R-comodules tensor generated by the standard rank 3 comodule V! and its dual V :
The coaction of R is the trivial coaction VEa! VEa˝R: So, it does no harm to think of
this category as the full subcategory of R-modules tensor generated by V! and V :

We record the data of our category R-comodhV i.

• Objects are the modules VEa; which are finite tensor products of copies of V!
and V :

• Morphisms are R-linear maps between objects which commute with the (trivial)
right coaction of R: We call the set of morphisms HomR.VEa; VEb/:

Proposition 13.7. We have the following:

(i) VEb Š �
SL3
q .EbB/ as R-comodules;

(ii) .VEa/
� Š �

SL3
q .BEa/ as R-comodules, with evaluation of E 2 �

SL3
q .BEa/ and

D 2 �
SL3
q .EaB/ given by gluing horizontally and taking the counit to obtain

".E ıD/;

(iii) HomR.VEa; VEb/ Š �
SL3
q .EbB/˝ �

SL3
q .BEa/:



Triangular decomposition of SL3 skein algebras 57

Proof. We already proved (i) holds for Oq.SL3/-comodules, so it holds for R-comod-
ules as well.

Under the pairing described in (ii), we have that the basis°
i

±3
iD1

of �
SL3
q .B!/ and the basis °

i

±3
iD1

of �
SL3
q .!B/ are dual bases. Similarly, the bases°

i

±3
iD1

and °
i

±3
iD1

are dual to each other. Thus, for an arbitrary arrow sequence Ea; the standard basis
of the tensor product �

SL3
q .BEa/ is dual to the standard basis of the tensor product

�
SL3
q .EaB/:

The statement (iii) follows from the property HomR.VEa; VEb/ Š VEb ˝ .VEa/
�:

We now have the ingredients to prove a category isomorphism.

Proposition 13.8. The following functor split.RT/W split.WebSL3/ ! R-comodhV i
defines an isomorphism of categories:

• on objects, split.RT/.Ea/ D VEa; which is identified with �
SL3
q .EaB/I

• on morphisms, split.RT/ is the identity on �
SL3
q .EbB/˝ �

SL3
q .BEa/:

13.5. Relating the categories

So, far we have discussed four R-linear monoidal categories. We next observe that
they fit into a commutative diagram of categories.

Proposition 13.9. The following diagram of categories is commutative:

WebSL3 split.WebSL3/

O
SL3
q -comodhV i R-comodhV i

 

!
�

 ! RT  ! split.RT/

 

!
incl
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where the functor � is defined as

• on objects, �.Ea/ D EaI

• on morphisms, �W �SL3
q .EbBEa/! �

SL3
q .EbB/˝ �

SL3
q .BEa/ is the splitting map.

Proof. We first address the functoriality of�: It respects the monoidal structure since
� is an algebra map. We need to check that it respects compositions of diagrams.
Suppose that D 2 �

SL3
q .EbBEa/ and E 2 �

SL3
q .EcBEb/ are diagrams. We need to check

that
�.E ıD/ D �.E/ ı�.D/:

Before we check this with a computation, we introduce some notation. Given an
arrow sequence Eb D .b1; : : : ; bk/ we let St.Eb/D ¹1; 2; 3ºk denote the set of sequences
of states of the same length as Eb: To verify that our equality holds, we choose to cut
E very close to its right boundary so that

�.E/ D
X
v2St.Eb/

Ev ˝ vE
00

such that each diagram vE
00 consists of only parallel strands whose left endpoints are

labeled with a sequence of states corresponding to the standard basis vector v 2 VEb
and each diagramEv is the same underlying diagram asE but with its right endpoints
labeled with states corresponding to v: Similarly, we choose to cutD very close to its
left boundary so that

�.D/ D
X

w2St.Eb/

D0w ˝ wD

such that each diagramD0w consists of only parallel strands whose right endpoints are
labeled with a sequence of states corresponding to the standard basis vector w 2 VEb:
This allows us to compute that

�.E/ ı�.D/ D
X

v;w2St.VEb/

".vE
00
ıD0w/Ev ˝ wD D

X
v;w2St.VEb/

ıvwEv ˝ wD

D

X
v2St.VEb/

Ev ˝ vD D �.E ıD/;

as required.
Next, we check that the diagram commutes. We see that it commutes for objects,

so we need to check that it commutes for morphisms. We can check this on a dia-
gram. Let E 2 �

SL3
q .EbBEa/ be a diagram. Then incl.RT.E//W �SL3

q .EaB/! �
SL3
q .EbB/

is defined on a diagram D 2 �
SL3
q .EaB/ by gluing to obtain the diagram

E ıD 2 �SL3
q .EbB/:
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On the other hand, split.RT/�.E/ D
P
.E/E

0 ˝E 00 is a morphism �
SL3
q .EaB/!

�
SL3
q .EbB/ which sends a diagram D 2 �

SL3
q .EaB/ toX

.E/

E 0".E 00 ıD/ D
X
.EıD/

.E ıD/0 ˝ "..E ıD/00/ D E ıD;

by the counit axiom. So, the diagram commutes.

13.6. Proof that RT is an isomorphism

We now will observe that RT is an isomorphism on Hom-modules. The following
proposition is a consequence of the identifications we have established in this section.

Proposition 13.10. The following diagram of R-modules commutes:

�
SL3
q .EbB/˝ �

SL3
q .BEa/ �

SL3
q .EbB/˝ �

SL3
q .B/˝ �

SL3
q .BEa/

HomR.VEa; VEb/ HomR.VEa; VEb ˝Oq.SL3//

 

!

�
Eb

B��B
Ea

 ! id˝ id  ! id˝ ˝id

 

!

�V
Eb
ı.�/�..�/˝id/ı�V

Ea

where  W�SL3
q .B/! Oq.SL3/ is our isomorphism from Proposition 9.2 and we have

used identifications in the bottom row of the form HomR.X; Y / D Y ˝ X
�; so that

the vertical maps make sense.

Corollary 13.11. The RT functor is an isomorphism of R-linear braided monoidal
categories WebSL3 ! Oq.SL3/-comodhV i:

Proof. The functor RT is bijective on objects, so we just need to show that it induces
isomorphisms on Hom-sets. For that we observe the commutative diagram

0 // �
SL3
q . EbBEa/

�

//

RT

��

�
SL3
q . EbB/˝�

SL3
q .BEa/

�EbB
��B

Ea

//

id˝id

��

�
SL3
q . EbB/˝�

SL3
q .B/˝�

SL3
q .BEa/

id˝ ˝id

��

0 // HomOq.SL3/.VEa;V Eb/

incl
// HomR.VEa;V Eb/

�V Eb
ı.�/�..�/˝id/ı�V

Ea

// HomR.VEa; V Eb˝Oq.SL3//

The top row is exact by Theorem 8.1 and Theorem 8.2 and the bottom row is exact by
the definition of a morphism of Oq.SL3/-comodhV i: The vertical maps in the middle
and the right are isomorphisms. Thus, RT is an isomorphism as well, by a special case
of the five lemma.
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Finally, we will observe that since the pairing h�;�iWOq.SL3/˝ Uq.sl3/ turns
right Oq.SL3/-comodules into left Uq.sl3/-modules, we obtain an embedding of cat-
egories

WebSL3
Š
! Oq.SL3/-comodhV i ,! Uq.sl3/-modhV i:

If the pairing is nondegenerate, then the embedding will be an isomorphism. We
can see this after observing the following.

Lemma 13.12. Suppose the pairing h�;�iWOq.SL3/˝ Uq.sl3/! R is nondegen-
erate. If U and W are right Oq.SL3/-comodules and T WU ! W is an R-linear map
which commutes with the induced left Uq.sl3/ action on U and W; then T commutes
with the Oq.SL3/ coaction as well.

Proof. Fix an arbitrary u 2 U: By assumption, we have that for any x 2 Uq.sl3/;

x:T .u/ D T .x:u/:

We expand both sides of this equation by the definitions of the actions in terms of the
pairing. The left side is

x:T .u/ D .id˝h�; xi/�W .T .u//:

The right side is

T .x:u/ D T ..id˝h�; xi/�U .U // D .id˝h�; xi/.T ˝ id/�U .u/:

These equations hold for all x 2 Uq.sl3/ and so by considering bases of U and W;
we are able to use the fact that the pairing is nondegenerate to conclude that

.T ˝ id/�U .u/ D �W T .u/;

and T commutes with the coaction.

Corollary 13.13. Whenever the pairing h�;�iWOq.SL3/˝ Uq.sl3/! R is nonde-
generate, our Reshetikhin–Turaev functor gives an equivalence of braided monoidal
categories WebSL3 ! Uq.sl3/-modhV i:

Remark 13.14. When R D C and q is not a root of unity, then the pairing h�;�i
is nondegenerate, as discussed in [32]. To work at a root of unity, one can replace
Uq.sl3/ with a form of Lusztig’s divided powers algebra studied in [9].

Using a similar method as in the proof of Theorem 8.2, we can use the reduc-
tion rules from Theorem 5.3 to define an explicit algorithm which takes as input a
morphism in split.WebSL3/ which commutes with the coaction and gives as output
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a morphism in WebSL3 : The algorithm gives us a diagrammatic description of the
inverse of the Reshetikhin–Turaev functor.
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