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Exotic Lagrangian tori in Grassmannians

Marco Castronovo

Abstract. We describe an iterative construction of Lagrangian tori in the complex Grassman-

nian Gr.k; n/, based on the cluster algebra structure of the coordinate ring of a mirror Landau–

Ginzburg model proposed by Marsh and Rietsch (2020). Each torus comes with a Laurent

polynomial, and local systems controlled by the k-variables Schur polynomials at the n-th roots

of unity. We use this data to give examples of monotone Lagrangian tori that are neither dis-

placeable nor Hamiltonian isotopic to each other, and that support nonzero objects in different

summands of the spectral decomposition of the Fukaya category over C.

1. Introduction

1.1. Lagrangian tori

The construction and classification of Lagrangian submanifolds is a driving question

in symplectic topology, with Lagrangian tori having a prominent role. One reason for

this is the origin of the field in the Hamiltonian formulation of classical mechanics. In

this context, the Arnold–Liouville theorem constrains the level sets of a completely

integrable system to be Lagrangian tori; see, e.g., Duistermaat [12]. A more recent

motivation is the geometric description of mirror symmetry, where Lagrangian tori

arise as generic fibers of Strominger–Yau–Zaslow fibrations [44]. Lagrangian tori

are also of interest in low-dimensional topology: the Luttinger surgery [27] opera-

tion was used by Auroux, Donaldson, and Katzarkov [4] to study symplectic isotopy

classes of plane curves; Vidussi [48] and Fintushel and Stern [13] found connec-

tions between Seiberg–Witten invariants and Lagrangian tori. In general dimension,

Lagrangian tori in the standard symplectic R2n have been the subject of much invest-

igation: Viterbo [49] and Buhovsky [5] constrained their Maslov class; Chekanov [9]

classified those of product type [9]; Chekanov and Schlenk [8], and Auroux [3] con-

structed examples that are not products.
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1.2. Disk potentials

A unifying way to think about these results is to consider Lagrangian tori L � R2n D
Cn as boundary conditions for maps uWD2 ! Cn satisfying the nonlinear Cauchy–

Riemann type equation x@J .u/ D 0, where J is an almost-complex structure on the

target that may vary from point to point and be non-integrable. One can try to under-

stand how J -holomorphic disks change as L is deformed through Lagrangian embed-

dings; many known results focus on deformations by Hamiltonian isotopies. This line

of thought generalizes to the global case, when L � X is not in a Darboux chart of

the symplectic manifold X ; however, J -holomorphic disks are not easy to describe

for an arbitrary targetX . Since the work of Floer [14] and Oh [34], the monotone case

has been the focus of much investigation. A symplectic manifold .X2N ; !/ is mono-

tone if Œ!� and the first Chern class c1.X/ are positively proportional in H 2.X I R/;

a Lagrangian L � X is monotone if the area !.ˇ/ of disk classes ˇ 2 H2.X;LI R/

is positively proportional to their Maslov index �.ˇ/. In this setting, for generic J

the moduli space MJ .L; ˇ/ of unparametrized J -holomorphic disks with boundary

on L, homology class ˇ and a boundary marked point � is a compact manifold of

dimension �.ˇ/C dim.L/ � 2. One can encode counts of J -holomorphic disks in a

finite generating function called disk potential, and try to establish general properties

of the function that may imply something about its coefficients. The disk potential of

a monotone Lagrangian torus LN � X2N is defined as

WL D
X

ˇ2H2.X;LIZ/

cˇ .L/x
@ˇ 2 CŒx˙

1 ; : : : ; x
˙
N �I

here the degree cˇ .L/ D deg.ev� W MJ .L; ˇ/ ! L/ 2 Z of the evaluation map ev�

at the marked point � 2 @D2 is independent of J , and rigid disks have �.ˇ/ D 2;

monotonicity implies that cˇ .L/ ¤ 0 for finitely many classes ˇ. When writing the

disk potential, we implicitly assume the choice of a basis of cycles 1; : : : ; N 2
H1.LI Z/ Š ZN , so that J -holomorphic disks with boundary of class @ˇ D k11 C
� � � C kN N contribute to the monomial x@ˇ D xk1 : : : xkN . A Hamiltonian isotopy

�t gives an isomorphism .�t /� WH1.LIZ/!H1.�
t .L/IZ/, andW�t .L/ DWL in the

induced basis of cycles. It is known that the critical points of WL obstruct Hamilto-

nian displaceability; see Cho and Oh [10, Proposition 7.2] for toric moment fibers,

Auroux [2, Proposition 6.9], and Sheridan [43, Proposition 4.2] for a general discus-

sion. Disk potentials have been used by Vianna [46,47] to distinguish infinitely many

monotone Lagrangian tori in complex surfacesX of Fano type; see also Pascaleff and

Tonkonog [36].
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1.3. A cluster construction

In this article, we construct Lagrangian tori in a class of Fano manifolds of arbit-

rarily large dimension: the Grassmannians Gr.k; n/ of complex k-dimensional linear

subspaces in Cn.

Construction 1.1. Given integers 1� k <n, for any Plücker sequence s of type .k;n/

there is a corresponding Lagrangian torus Ls � Gr.k; n/, equipped with a canonical

basis of cycles d 2 H1.LsI Z/ labeled by Young diagrams d � k � .n � k/. The

torus comes with a rational functionWs of formal variables xd .

The Plücker sequences s are based on the notion of quiver mutation from rep-

resentation theory; see Section 2 for more details and Example 1.3 below. The Lag-

rangian tori Ls are obtained from algebraic degenerations to (singular) toric varieties

Gr.k; n/ X.†s/, using a general technique for constructing completely integrable

systems on complex projective manifolds studied by Harada and Kaveh [21]; the

notion of toric degeneration is explained in Section 3. Such degenerations of Grass-

mannians have been studied by Rietsch and Williams [40] in connection with the

theory of Okounkov bodies [23, 25, 35]. All Plücker sequences start from a single

initial seed, and the rational functions Ws are obtained by explicit rational changes

of variable from a single initial Laurent polynomial W0, whose variables are labeled

by those Young diagrams d � k � .n � k/ that are rectangles. In [6], it was proved

that W0 is in fact the disk potential of the monotone Lagrangian torus fiber of the

Gelfand–Cetlin integrable system introduced by Guillemin and Sternberg [20]. The

formulation of the construction as iterative procedure is particularly convenient for

computational purposes. To illustrate this point, we created a random walk that gener-

ates Plücker sequences s of arbitrary length, and computes the corresponding Laurent

polynomialsWs explicitly; the code is available for inspection and experiments [7].

1.4. Topology of Laurent/positivity phenomena

By computing a few examples ofWs, one quickly notices the following two phenom-

ena, which are not a direct consequence of the construction:

1. the rational functionWs is a Laurent polynomial;

2. the coefficients of each Laurent polynomialWs are natural numbers.

Property (1) is related to the Laurent phenomenon of cluster algebras, a notion

developed by Fomin and Zelevinsky [15]. Think each xd as a Plücker coordinate on

the dual Grassmannian Gr_.k; n/ D Gr.n � k; n/ � P .
n
k/�1 in its Plücker embed-

ding; the definition of Plücker coordinate is recalled in Definition 2.1. Each Plücker

sequence s singles out an open algebraic torus chart Ts � Uk;n D Gr_.k; n/ nD_
F Z

in the complement of a particular divisor D_
F Z , and the global regular functions
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Ak;n D O.Uk;n/ form a cluster algebra; see Scott [41]. The space Uk;n is a smooth

affine variety known as open positroid stratum, and its properties have been the focus

of several works in representation theory, combinatorics, topology and mirror sym-

metry [24,26,37,40,42]. By a result of Marsh and Rietsch [28], one can think of each

Ws as restriction Ws D W jTs
of a single global regular function W 2 Ak;n called

Landau–Ginzburg potential. Property (2) is related to positivity of cluster algebras,

which has been proved by Gross, Hacking, Keel, and Kontsevich [19]. Their proof

consists in interpreting the coefficients of certain elements of a cluster algebra as

counts of tropical curves called broken lines. In mirror symmetry, broken lines are

expected to correspond to the J -holomorphic disks of symplectic topology, and this

heuristic leads us to the following.

Conjecture 1.2 (see the more precise Conjecture 3.8). The Laurent polynomialWs is
an invariant of the Hamiltonian isotopy class of the Lagrangian torus Ls � Gr.k; n/.

(a) Q0, mutation at v D (b) Q1 , mutation at v D (c) Q2 , mutation at v D

(d) Q3, mutation at v D (e) Q4, mutation at v D (f) Q5 D Q0

Figure 1. A Plücker sequence of type .2; 5/ and length five. The labeling variables xd on the

nodes are replaced by d for notational convenience.

Example 1.3. Let k D 2 and n D 5. Figure 1 represents a Plücker sequence

sW .Q0; W0/ ! .Q1; W1/ ! .Q2; W2/ ! .Q3; W3/ ! .Q4; W4/ ! .Q5; W5/

of type .2; 5/ and length five, where the final step and the initial one coincide. At

each step .Qi ; Wi /, the graph Qi is a quiver whose nodes are labeled by Plücker
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coordinates xd for some collection of Young diagrams d � 2� 3, andWi is a Laurent

polynomial of the variables xd . A step .Qi ; Wi / ! .QiC1; WiC1/ in the sequence

consists in performing a quiver mutation at a mutable node v of Qi as described in

Section 2. This procedure changes the label l.v/ of the node v in Qi to a new label

l 0.v/ of the same node inQiC1. The two labels are related by the following exchange

relation: l.v/l.v0/ is a sum of two terms, obtained by taking the product of labels

l.w/ from incoming/outgoing nodes w adjacent to v respectively. The rational func-

tion WiC1 is obtained fromWi by using the previous relation to replace the label l.v/

with l.v0/, and becomes Laurent modulo Plücker relations, i.e., when interpreted as

element of the function field Frac.A2;5/D C.U2;5/D C.Gr_.2;5// of the dual Grass-

mannian Gr_.2; 5/ D Gr.3; 5/. The intermediate steps of Construction 1.1 produce

Lagrangian tori L0; L1; L2; L3; L4 � Gr.2; 5/. In this case, all the tori are monotone

and the Laurent polynomialsWi for 0 � i � 4 match their disk potentials WLi
:

W0 D x C
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x
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x x;

x x
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x x;

x x
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x
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x

x
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x
C
x

x
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x x

x x
C

x

x
C x C

x;x

x x
C
x;x

x x

C
x

x
C
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x x
:

The equalityWs D WLs
is an application of a general result of Nishinou, Nohara,

and Ueda [30] on the behavior of disk potentials under toric degeneration, which
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also implies monotonicity of Ls; see Proposition 3.12. This result gives a sufficient

condition for the equalityWs DWLs
, which is the existence of a small toric resolution

for the singular toric variety X.†s/; see Definition 3.11. Due to the combinatorial

nature of toric varieties, for any given Plücker sequence s one can check this condition

in finitely many steps. In Section 4 we use this to describe a sample application in the

smallest example not accessible by previous techniques.

Theorem 1.4 (see Theorem 4.16). The Grassmannian Gr.3; 6/ contains at least 6
monotone Lagrangian tori that are non-displaceable and pairwise inequivalent under
Hamiltonian isotopy.

We call these tori exotic, because only one monotone torus was previously known:

the Gelfand–Cetlin torus. The new examples are of the form Ls for some Plücker

sequence s, and are distinguished by a combination of two invariants: the number of

critical points of their disk potential WLs
and the f -vector of its Newton polytope.

This strategy applies without modification to arbitrary Grassmannians. If Conjec-

ture 3.8 holds, the same arguments of Theorem 4.16 imply that the tori Ls � Gr.k;n/

are always nondisplaceable, and generally not Hamiltonian isotopic. Note that Con-

jecture 3.8 may still hold when the toric variety X.†s/ has no small toric resolution,

and the result of Nishinou, Nohara, and Ueda [30] does not apply. In this case, pos-

itivity of the coefficients of Ws suggests an enumerative interpretation in terms of

counts of J -holomorphic disks with boundary on Ls. We plan to explore this in a

separate work, simply pointing out here a possible interpretation in terms of low-area

Floer theory in the sense of Tonkonog and Vianna [45]. For k D 1, one has projective

spaces Gr.1; n/ D P n�1, and there is only one Plücker sequence s of length 0; in this

caseWs is the disk potential of the Clifford torus. In particular, Construction 1.1 does

not imply the existence of exotic tori in P 2 established by Vianna [46,47]. For k D 2,

Construction 1.1 recovers a different one studied by Nohara and Ueda [32], who intro-

duced a collection of Lagrangian tori in Gr.2; n/ corresponding to triangulations of

an n-gon; the relation is explained in Lemma 4.4, and it implies that Conjecture 3.8

holds when k D 2.

1.5. Probing the spectral decomposition

Since for k D 2 all tori Ls � Gr.2; n/ are monotone, it is natural to think of them as

objects of the monotone Fukaya category. As described by Sheridan [43], the Fukaya

category of a monotone symplectic manifold X has a spectral decomposition

F .X/ D
M

�

F�.X/:
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The summands are A1-categories indexed by the eigenvalues � of the operator c1?

of multiplication by the first Chern class acting on the small quantum cohomology.

The objects of the �-summand are monotone Lagrangians L� equipped with a rank

one local system � such that

m0.L�/ D
X

ˇ

cˇ .L/ hol�.@ˇ/ D �:

Definition 3.7 introduces some natural local systems supported on the Lagrangian tori

Ls � Gr.k; n/, that are controlled by the values of k-variables Schur polynomials

at certain roots of unity. These local systems generalize the ones studied in [6] for

the Gelfand–Cetlin torus, that were controlled by Schur polynomials corresponding

rectangular Young diagrams. When k D 2, we show that the corresponding objects

split-generate the derived Fukaya category DF .Gr.2; n// in some cases, notably

including examples where the Gelfand–Cetlin torus alone fails to do so.

Theorem 1.5 (see Theorem 4.8). If n D 2t C 1 for some t 2 NC, then the derived
Fukaya category DF .Gr.2; 2t C 1// is split-generated by objects supported on a
single Plücker torus.

The Lagrangian torus in the statement is associated to a special triangulation

of the n-gon, that we call dyadic. In fact, Section 4 contains a criterion to prove

split-generation of DF .Gr.2; n// by objects supported on any number of tori Ls �
Gr.2; n/, whenever n is odd. The criterion is based on a construction of triangulations

of the n-gon whose sides lengths avoid the prime numbers appearing in the factoriza-

tion of n.

Theorem 1.6 (see Theorem 4.11). Let n > 2 be odd, and consider its prime factoriz-
ation n D p

e1

1 : : : p
el

l
. If for all 1 � i � l there exists a triangulation �i of Œn� that is

pi -avoiding, then DF .Gr.2; n// is split generated by objects supported on l Plücker
tori.

Remark 1.7. A standard consequence of split-generation is that any monotone Lag-

rangian supporting nonzero objects of the Fukaya category must intersect the gener-

ator.

These results seem to suggest that objects supported on the tori Ls could split-

generate DF .Gr.k; n// in general, although split-generation over C has a subtle

relation with the location of the critical points ofW 2 Ak;n relative to the torus charts

Ts � Uk;n. For example, split-generation over C fails for Gr.2; 4/, whereW has two

critical points in a complex codimension 2 locus of Uk;n which is not covered by

cluster charts. We plan to investigate in a separate work how the situation changes

when considering bulk-deformations in the sense of Fukaya, Oh, Ohta, and Ono [17].
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1.6. Mirror symmetry and abundance of Lagrangian tori

This article can be thought of as part of a broader program aimed at investigating

the abundance of Lagrangian tori in Fano manifolds X with an anti-canonical divisor

D � X whose complementU D X nD is a cluster variety. This class includes many

homogeneous varieties X D G=P with P � G parabolic subgroup of a complex

linear algebraic group. The cluster variety U comes with a Langlands dual cluster

variety U_, and Gross, Hacking, Keel, and Kontsevich [19] proposed that .X;D/ has

a Landau–Ginzburg model .U_; W / in the sense of homological mirror symmetry.

Here W 2 O.U_/ is a regular function intrinsically defined by the cluster structure

and given as a sum of theta functions, which are generating functions of discrete

objects called broken lines in a scattering diagram. We expect that the cluster charts

of U_ will correspond to certain Lagrangian tori in L � G=P , and that the restriction

of W to different cluster charts will fully determine their disk potential WL in some

cases, and in general suffice to distinguish many of their Hamiltonian isotopy classes

in the spirit of Conjecture 1.2.

1.7. Algebraic and topological wall-crossing

When WLs
D Ws, the Lagrangian tori Ls � Gr.k; n/ constructed in this article have

disk potentials related by algebraic wall-crossing formulas by construction. It is nat-

ural to ask if these formulas correspond to a topological wall-crossing, i.e., if the

tori Ls are connected by families of Lagrangian immersions that bound Maslov 0

J -holomorphic disks at some intermediate time. We do not investigate this ques-

tion here, but only point out that it would be interesting to see if there is a relation

between our examples and the model of Lagrangian mutation studied by Pascaleff

and Tonkonog [36].

2. The iterative construction

Throughout this article, k and n are integers with 1 � k < n. The symbol d denotes

a Young diagram in the k � .n� k/ grid, obtained by placing di consecutive boxes in

the i -th row for all 1 � i � k, starting from the left in each row and with d1 � d2 �
� � � � dk . Chosen 0� i � k and 0� j � .n� k/, one has a rectangular Young diagram

i � j , with i � j D ; empty diagram if i D 0 or j D 0. A full rank n� .n� k/matrix

M determines an .n � k/-dimensional linear subspace of Cn by taking its column-

span. If ŒM� is the equivalence class of M modulo column operations, write ŒM� 2
Gr_.k; n/ D Gr.n � k; n/ and think of it as a point of the complex Grassmannian.

Each Young diagram d has a profile path, which connects the top-right corner of

the k � .n � k/ grid to the bottom-left one. Labeling the steps of the path by Œn� D
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3

4

5

67

8

Figure 2. A Young diagram d � 3 � 5 with d� D ¹1; 2; 4; 6; 7º and d j D ¹3; 5; 8º.

¹1; : : : ; nº, the vertical steps of d determine a set d j � Œn� with jd jj D k, while the

horizontal steps determine a set d� � Œn� with jd�j D n � k; see Figure 2 for an

example with k D 3 and n D 8.

Definition 2.1. If M is a full rank n � .n� k/ matrix, the determinant of M at rows

d� is denoted xd .M/ and called Plücker coordinate corresponding to d .

The Plücker coordinates define a projective embedding of Gr_.k; n/ in P .
n
k/�1. If

	k;n � CŒxd W d � k � .n � k/� is the corresponding homogeneous ideal, each xd is

an element of the algebra Ak;n D CŒxd W d � k � .n � k/�=	k;n of regular functions

of the affine cone over Gr_.k; n/.

2.1. Initial seed

Definition 2.2. A quiver with potential of type .k; n/ is a pair .Q;W /, where

1. Q is an oriented connected graph, with no edge connecting a node to itself

and no oriented loops with two edges, whose nodes are labeled by Plücker

coordinates xd 2 Ak;n;

2. W is a Laurent polynomial in the labels of the nodes of Q;

As part of the data, the nodes of Q are partitioned in two groups, called frozen and

mutable.

Remark 2.3. To avoid confusion, we point out that Definition 2.2 is not a special case

of the notion of quiver with potential in representation theory: althoughQ is a quiver

in the classical sense, the potentialW is an element of the commutative algebra Ak;n

as opposed to the non-commutative path algebra of Q.

The iterative construction we describe in this section begins with a specific quiver

with potential.
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n k

k

Figure 3. Initial quiver Q0: labels xd are indicated by d , frozen nodes in bold type.

Definition 2.4. The initial seed of type .k; n/ is the quiver with potential .Q0; W0/,

where

1. Q0 is the oriented labeled graph in Figure 3;

2. W0 is the Laurent polynomial

x1�1 C
kX

iD2

n�kX

j D1

xi�jx.i�2/�.j �1/

x.i�1/�.j �1/x.i�1/�j

C x.k�1/�.n�k�1/

xk�.n�k/

C
kX

iD1

n�kX

j D2

xi�jx.i�1/�.j �2/

x.i�1/�.j �1/xi�.j �1/

:

A node of Q0 is frozen if its label is xi�j with i � j D ;, i D k or j D n � k; the

remaining nodes are mutable.

Observe that the labels on the nodes ofQ0 are precisely the k.n� k/C 1 variables

xd where d is a rectangular Young diagram, and n of the nodes are frozen.
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2.2. Mutation step

Given a quiver with potential .Q;W / as in Definition 2.2, and fixed a mutable node

v of Q, one can form a new labeled quiverQ0 as follows:

1. start with Q0 D Q, and for all length 2 paths a ! v ! b with at least one

mutable node among a and b, add to Q0 a new edge a ! b;

2. modifyQ0 by reversing all the edges incident to v;

3. remove all oriented 2-cycles formed in Q0, by deleting their arrows.

Calling l.w/ the label of a nodew inQ, define new labels l 0.w/ inQ0 by declaring

l 0.w/ D l.w/ if w ¤ v, and

l 0.v/ D
Q

w!v l.w/C
Q

v!w l.w/

l.v/
:

Since Q and Q0 have the same nodes, the nodes of Q0 inherit the property of being

frozen or mutable from Q.

Definition 2.5. The mutation of .Q;W / along v is the pair .Q0; W 0/ with Q0 con-

structed as above, and W 0 obtained from W by substitution

l.v/ D
�Y

w!v

l 0.w/C
Y

v!w

l 0.w/
�
l 0.v/�1:

A priori, mutations of quivers with potentials as in Definition 2.2 are not neces-

sarily quivers with potentials, since l 0.v/ and W 0 are only rational functions of the

Plücker coordinates xd . The following guarantees that certain iterated mutations of

the initial seed of Definition 2.4 remain quivers with potentials.

Proposition 2.6 (Scott [41, Theorem 3] and Marsh and Rietsch [28, Section 6.3]).

Given a finite sequence of mutations that starts at .Q;W / and ends at .Q0; W 0/:

1. if .Q;W /D .Q0;W0/ is the initial seed of Definition 2.4, thenW 0 is a Laurent
polynomial in the labels ofQ0;

2. if in addition each mutation of the sequence is based at some node with two
incoming and two outgoing edges, then the labels of Q0 are Plücker coordin-
ates xd .

Proof. For the reader’s convenience, we explain how the statements follow from the

cited results. It suffices to prove them when the sequence of mutations consists of a

single mutation, as the general case follows by applying repeatedly the same argu-

ment.
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(1) Marsh and Rietsch [28, Section 6.3] (see also Rietsch and Williams [40, Pro-

position 9.5]) showed that the potential W0 of the initial seed is the restriction W0 D
W jT0

of a regular function W 2 Ak;n to an algebraic torus T0 � Gr_.k; n/ defined

by

T0 D ¹ŒM� 2 Gr_.k; n/W l.M/ ¤ 0 for all l label of Q0º:

By Scott [41, Theorem 3] Ak;n is a cluster algebra, and the rational functions labeling

the nodes of Q0 are cluster variables. Just as with the labels of Q0, one can use the

labels of Q0 to define an algebraic torus T 0 � Gr_.k; n/ via

T 0 D ¹ŒM� 2 Gr_.k; n/W l 0.M/ ¤ 0 for all l 0 label of Q0ºI

this torus is called toric chart in [41, Section 6]. By Definition 2.5, W 0 is obtained

from W0 by substitution l.v/ D .
Q

w!v l
0.w/ C

Q
v!w l

0.w//l 0.v/�1. This means

that W 0 is the pull-back of W0 along the birational map from T 0 to T0 defined by the

substitution formula. It is part of the statement that Ak;n is a cluster algebra that the

substitution formula gives a relation

l.v/l 0.v/ �
Y

w!v

l 0.w/ �
Y

v!w

l 0.w/ 2 	k;n;

so thatW 0 DW jT 0 is a restriction ofW as well. In particular,W 0 is a regular function

on the algebraic torus T 0, and hence a Laurent polynomial.

(2) If the mutation from .Q;W / to .Q0; W 0/ is based at some node v with two

incoming and two outgoing edges, denote ¹vC
1 ; v

C
2 º and ¹v�

1 ; v
�
2 º the corresponding

nodes of Q adjacent to v. The substitution formula of Definition 2.5 simplifies to

l.v/ D .l 0.vC
1 /l

0.vC
2 / C l 0.v�

1 /l
0.v�

2 //l
0.v/�1. By definition of mutation l 0.vC

i / D
l.vC

i / and l 0.v�
i / D l.v�

i / for i D 1; 2. Moreover, by assumption the l labels are

Plücker coordinates, meaning that l.vC
i / D x

d
C
i

and l.v�
i / D xd�

i
for i D 1; 2 and

l.v/ D xd for some Young diagrams d; dC
1 ; d

C
2 ; d

�
1 ; d

�
2 � k � .n � k/. Scott [41,

proof of Theorem 3] proves that this implies l 0.v/ D xd 0 for some Young diagram

d 0 � k � .n � k/ too, using combinatorial objects called wiring arrangements. The

same phenomenon is discussed by Rietsch and Williams in [40, Lemma 5.6] in the

combinatorial framework of plabic graphs; see also the proof of Proposition 3.2 for a

comparison between plabic graphs and quivers.

Definition 2.7. A length l Plücker sequence of mutations of type .k; n/, denoted s,

is a finite sequence of pairs .Qi ; Wi / with 0 � i � l such that

1. .Q0; W0/ is the initial seed of type .k; n/ of Definition 2.4;

2. .QiC1; WiC1/ is obtained from .Qi ; Wi / by mutation along a mutable node

with two incoming and outgoing edges, as in Definition 2.5.
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If we want to suppress the length l , we denote .Ql ; Wl / D .Qs; Ws/ and call it the

final quiver with potential of s.

2.3. Relation with polytope mutations

Later on in this article, we will be interested in how the Newton polytope Ps D
Newt.Ws/ changes throughout a sequence of mutations in the sense of Definition 2.5.

Definition 2.8. A convex polytope P � RN is Fano if the following properties hold:

1. dim.P / D N ;

2. 0 2 RN is an interior point of P ;

3. the vertices V.P / form a set of primitive vectors V.P / � ZN .

Proposition 2.10 proves that each Ps is a Fano polytope. The Fano condition has

the following interpretation in terms of toric geometry; see [11, 18] for some general

background on toric varieties.

Lemma 2.9. If P is a Fano polytope, then the polyhedral fan†D†f P consisting of
the cones spanned by its faces is such that the associated toric variety X.†/ is Fano,
meaning that

1. the anti-canonical toric Weil divisor D† is Q-Cartier;

2. D† is ample.

Proof. The anti-canonical toric Weil divisor is defined to be

D† D
X

�2†.1/

D�;

where the sum is over the one-dimensional cones � 2†.1/ andD� is the prime divisor

corresponding to �. By [11, Theorem 4.2.8]D† is Q-Cartier if and only if

for all � 2 †.N/ there exists m� 2 QN such that

hm� ; u�i D �1 for all � 2 �.1/;

where †.N/ is the set of maximal cones of †, �.1/ is the set of one-dimensional

cones in � , and u� 2 ZN is the primitive generator of �; ifm� exists then it is unique,

and when all m� 2 ZN one recorvers the stronger Cartier condition. By assump-

tion (3) in Definition 2.8 and the fact that † D †f P , one has u� 2 V.P / for all

� 2 †.1/. Now, consider the polar dual polytope

P ı D ¹v 2 RN W hv; ui � �1 for all u 2 P ºI
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since .P ı/ı D P and V.P / � ZN , the polytope P ı is reflexive. One equivalent for-

mulation of reflexivity is to say that each vertex of the polar dual polytope u� 2
V..P ı/ı/ D V.P / defines a facet (or codimension one face)

Fu�
D P ı \ ¹v 2 RN W hv; u�i D �1º:

We claim that for each � 2 †.N/ one has

\

�2�.1/

Fu�
D ¹m�º;

where m� 2 QN and it satisfies the Q-Cartier condition. Polar duality exchanges

the face fan †f and the normal fan †n, so that � 2 † D †f P D †nP ı; from this

point of view the vector u� can be thought of as inward-pointing normal to the facet

Fu�
� P ı. By [11, Proposition 2.3.8] the intersection above describes the unique

vertex m� 2 V.P ı/ corresponding to the N -dimensional cone � of the normal fan.

Although in generalm� … ZN , one always hasm� 2 QN , becauseP ı is the polar dual

of a polytopeP with V.P /� ZN ; see [11, Exercise 2.2.1 (a)]. Finally, hm� ;u�i D �1
for all � 2 �.1/ because m� 2 Fu�

by construction. This proves part (1), for part (2)

proceed as follows. The Q-Cartier divisor D† has a support function �D†
W RN !

R, which is piecewise-linear on † and such that �D†
.u�/ D �1 for all � 2 †.1/.

By [11, Theorem 6.1.7 and Lemma 6.1.13] D† is ample if and only if the points

¹m� W � 2 †.N/º are the vertices of the polytope

PD†
D ¹v 2 RN W hv; u�i � �D†

.u�/ for all � 2 †.1/º;

and moreoverm� ¤ m� 0 for � ¤ � 0. This is true because PD†
D P ı and the fact that

the correspondence between faces of P ı and cones of its normal fan is a bijection.

Akhtar, Coates, Galkin, and Kasprzyk [1] proposed a general notion of polytope

mutation that should describe how the Newton polytope of a Laurent polynomial

changes under the action of special birational maps of a torus. More precisely, con-

sider a birational map of the form

�W .C�/N ! .C�/N ; � D �M2
ı �A ı �M1

;

where

.C�/N D Spec CŒx˙
1 ; : : : ; x

˙
N � and �A.x1; : : : ; xN / D .x1; : : : ; xN �1; AxN /

for some Laurent polynomial A with @xN
A D 0, and where

�Mi
.x1; : : : ; xN / D .x

m11

1 : : : x
m1N

N ; : : : ; x
mN1

1 : : : x
mNN

N /;
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with Mi D .mst /1�s;t�N 2 GL.N;Z/ for i D 1; 2 are automorphisms of the torus,

specified by invertible integer matrices. If f is a Laurent polynomial, one can think

of it as a polynomial in the x˙
N variables with coefficients Ch which are Laurent

polynomials with @xN
Ch D 0 and write

f D
X

�hmin�h�hmax

Ch.x1; : : : ; xN �1/x
h
N with hmin; hmax 2 N:

Then the rational function

��
Af D

X

�hmin�h�hmax

Ch

A�h
xh

N

is again a Laurent polynomial whenever A�hjCt for all �hmin � h < 0, and so is

��f D g because �M1
;�M2

are automorphisms. The Newton polytopesP D Newt.f /

and P 0 D Newt.g/ are convex hulls in RN of the exponent vectors of the monomi-

als in f and g respectively. The special form of �A singles out the xN variable, and

a width vector w D .0; : : : ; 0; 1/ 2 ZN corresponding to this choice. For heights

�hmin � h � h one can form lattice polytopeswh.P / � P by taking the convex hull

of lattice points in hyperplane sections orthogonal to the w-direction:

wh.P / D Conv.P \ ¹h�; wi D hº \ ZN /:

In fact, hmax � hmin 2 N can be thought as the width of the polytope P with respect

to the w-direction, and h as a height coordinate. Calling

F D Newt.A/ and Gh D Newt
� Ch

A�h

�
for all � hmin � h � hmax;

the polytope F � RN has codimension at least one and lies at height hD 0. Denoting

V.P / the vertices of P one has

V.P / \ ¹h�; wi D hº � Gh C .�h/F � wh.P / for all � hmin � h < 0:

The notation P 0 D mutw.P; F / expresses the fact that P 0 is a polytope mutation of

P in direction w and with factor F , and the quantity hmax � hmin is called width of

the mutation. We now explain how mutation in the sense of Definition 2.5 is related

to polytope mutations.

Proposition 2.10. If .Q0; W 0/ is obtained from .Q;W / by mutation along a node v,
then the Newton polytopesP D Newt.W / andP D Newt.W 0/ are related by polytope
mutation. In particular, Ps and X.†f Ps/ are Fano for any Plücker sequence s.

Proof. Define the complex tori

T D Spec.CŒx˙
d W d label of Q�/; T 0 D Spec.CŒx˙

d W d label of Q0�/;
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and think ofW andW 0 as regular functions on them. Quiver mutation along v changes

the label xl.v/ of Q into a new label xl 0.v/ in Q0, and the two are related by

xl.v/xl 0.v/ D
Y

w!v

xl.w/ C
Y

v!w

xl.w/:

Up to automorphisms of tori, one can arrange the coordinates in such a way that xl.v/

and xl 0.v/ go last, and the common ones appear in the same order. With this choice,

there is a birational transition map between the tori

� D
�

id;
� Y

w!v

xl.w/ C
Y

v!w

xl.w/

�
x�1

l.v/

�
:

The Laurent polynomial A D
Q

w!v xl.w/ C
Q

v!w xl.w/ satisfies @xl.v/
A D 0, and

using the notation introduced in this section � D �A ı �M1
, where �M1

is the auto-

morphism of T that inverts the last coordinate. By direct inspection, one sees that the

polytope P0 D Newt.W0/ corresponding to the initial potential W0 given in Defin-

ition 2.4 is Fano in the sense of Definition 2.8. It follows from [1, Proposition 2]

that Ps is Fano for every Plücker sequence s, and thus X.†f Ps/ is too, thanks to

Lemma 2.9.

3. Plücker Lagrangians

In this section, † denotes a complete fan in Rk.n�k/, and X.†/ its associated proper

toric variety; see for example [11,18] for background material on toric geometry. The

reader familiar with symplectic manifolds and Hamiltonian torus actions can think of

† as the normal fan † D †n� of a moment polytope �, with the important caveat

that X.†/ is typically singular, and not even an orbifold; in this case � should be

thought as the closure of the open convex region obtained from the moment map of

the maximal torus orbit.

We will assume that the primitive generators of the rays of † in the lattice

Zk.n�k/ � Rk.n�k/ are the vertices of a convex polytope P , and alternatively think of

† as its face fan† D †f P . This condition is equivalent to X.†/ being Fano, and P

is sometimes called a Fano polytope. The reader should not confuse the polytopes �

and P : the second is always a lattice polytope, whereas the first may not be. The two

polytopes are related by polar duality � D P ı.

3.1. Lagrangian tori from degenerations

Definition 3.1. If X � P M is a smooth subvariety of complex dimension N , an

embedded toric degeneration X  X.†/ is a closed subscheme X � P M � C such



Exotic Lagrangian tori in Grassmannians 81

that the map p W X ! C obtained by restriction of the projection satisfies the follow-

ing properties:

• p�1.C�/ Š X � C� as schemes over C�;

• p�1.0/ � P M is an orbit closure for some linear torus action .C�/N Õ P M ;

• p�1.0/ is a toric variety with fan †.

Proposition 3.2 (Rietsch and Williams [40, Theorem 1.1]). Every Plücker sequence s

of mutations of type .k;n/ has an associated embedded toric degeneration Gr.k;n/ 

X.†s/, where †s D †f Ps is the face fan of the Newton polytope Ps of the final
potentialWs.

Proof. For the reader’s convenience, we provide details on how to specialize the res-

ult of Rietsch and Williams [40, Theorem 1.1] to recover this statement. Each step

.Qi ; Wi / of the Plücker sequence s corresponds to a reduced plabic graph Gi of

type �k;n [40, Section 3], which is a combinatorial object encoding the quiver Qi

and the Laurent polynomial Wi simultaneously. Nodes in Qi correspond to faces in

Gi , and each arrow of Qi is dual to an edge of Gi , with black/white nodes of the

plabic graph respectively to the right/left of the arrow. The frozen nodes of Qi cor-

respond to boundary faces of Gi , and the mutable nodes to interior faces. Mutations

at some mutable node with two incoming and outgoing arrows in Qi correspond to

a square move on the plabic graph Gi . The Plücker variables on nodes of Qi are

labeled by the Young diagrams appearing on the faces of Gi , which are induced by

trips as in [40, Definition 3.5]. The Laurent polynomial Wi is a generating function

counting matchings on the plabic graph Gi [40, Theorem 18.2]; see also Marsh-

Scott [29] for a proof. The initial seed .Q0; W0/ corresponds to a particular plabic

graph G0 D Grec
k;n

, called the rectangle plabic graph in [40, Section 4]. Consider

the divisor Di � Gr.k; n/ cut out by the equation xdi
D 0, with di � k � .n � k/

one of the n frozen Young diagrams, and call D D r1D1 C � � � C rnDn a general

effective divisor with the same support. One can associate to the pair .D;Gs/ a con-

vex polytope �Gs
.D/ known as Okounkov body [40, Section 1.2]. From now on,

set r1 D � � � D rn D 1, and call DF Z D D1 C � � � C Dn the corresponding divisor.

There exists a scaling factor rs 2 QC such that rs�Gs
.DF Z/ is a normal lattice

polytope [11, Definition 2.2.9]; normality is referred to as integer decomposition

property in [40, Definition 17.7], and from [40, Proposition 19.4] one sees that the

scaling factor mentioned there is related to ours by rs D rGs

n
. From [40, Section 17]

one gets a degeneration of Gr.k; n/ to the toric variety associated with the polytope

rs�Gs
.DF Z/, and this is an embedded toric degeneration in the sense of Defini-

tion 3.1 with fan †s D †nrs�Gs
.DF Z/ D †n�Gs

.DF Z/, where we used that the

normal fan of a polytope does not change under scaling. In [40, Theorem 1.1] and

[40, Definition 10.14], an interpretation of�Gs
.r1D1 C � � � C rnDn/ is given in terms
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of the tropicalization ofWs. Setting r1 D � � � D rn D 1, one finds in particular that for

DF Z D D1 C � � � CDn in fact

�Gs
.DF Z/ D ¹v 2 Rk.n�k/W hv; ui � �1 for every vertex u 2 PsºI

here Ps denotes the Newton polytope of the Laurent polynomialWs, i.e., the convex

hull of its exponents. To see this, observe that from [40, Theorem 1.1] and [40, Defin-

itions 10.7 and 10.14] one has

v 2 �Gs
.DF Z/ () Trop.Wi jTs

/.v/ � �1 for i D 1; : : : ; nI

here eachWi is a special term of a rational functionW DW1 C � � � CWn on Gr_.k;n/

defined in [40, Definition 10.1], and

Ts D ¹ŒM� 2 Gr_.k; n/W l.M/ ¤ 0 for all l label of Qsº

is a complex torus chart such that W jTs
D Ws; compare (1) of Proposition 2.6. The

symbol Trop.�/ denotes tropicalization of Laurent polynomials, which produces a

piece-wise linear function defined as

Trop
�X

u

cux
u
�
.v/ D minuhv; ui:

Also observe that

Trop.Wi jTs
/.v/ � �1 for i D 1; : : : ; n

() miniD1;:::;n Trop.Wi jTs
/.v/ � �1

() Trop.W jTs
/.v/ � �1

() Trop.Ws/.v/ � �1:

Summarizing, v 2 �Gs
.DF Z/ is equivalent to hv; ui � �1 for every u exponent of a

monomial inWs. By convexity, the latter condition is equivalent to asking hv;ui � �1
only for those u that are vertices of the Newton polytope Ps of Ws. We have thus

recovered the polar dual polytope, i.e., �Gs
.DF Z/ D P ı

s
. Since the normal fan of a

polytope equals the face fan of its polar dual and polar duality is an involution, we

find that †s D †n�Gs
.DF Z/ D †f Ps as in the statement.

Remark 3.3. The toric variety X.†s/ depends only the final step of s in the fol-

lowing sense. Suppose that Qs and Qs
0 are the final quivers of two different Plücker

sequences. Consider the charts

Ts D ¹ŒM� 2 Gr_.k; n/W l.M/ ¤ 0 for all l label of Qsº
and

Ts
0 D ¹ŒM� 2 Gr_.k; n/W l 0.M/ ¤ 0 for all l 0 label of Qs

0ºI
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these were already considered in (1) of Proposition 2.6, were it was observed that

Ws DW jTs
andWs

0 DW jTs
. If the quiversQs andQ0

s
have equal sets of labels, then

Ts D Ts
0 and therefore the final Laurent polynomials of the two Plücker sequences

are equal: Ws D Ws
0 . Since †s and †s

0 are the face fans of their Newton polytopes

Ps D Ps
0 , it follows that †s D †s

0 and thus X.†s/ D X.†s
0/.

In what follows, we endow the Grassmannian Gr.k; n/ with the symplectic struc-

ture obtained by restriction of the Fubini-Study form on the target projective space of

the Plücker embedding.

Proposition 3.4 (Harada and Kaveh [21, Theorem B]). Every Plücker sequence s of
mutations of type .k; n/ has an associated Lagrangian torus Ls � Gr.k; n/, and it
comes with a canonical basis ofH1.LsI Z/.

Proof. For the reader’s convenience, we provide details on how to specialize the result

of Harada and Kaveh [21, Theorem B] to recover this statement. Recall from Propos-

ition 3.2 that s determines a degeneration of Gr.k; n/ to the toric variety associated

with the polytope rs�Gs
.DF Z/, known as Okounkov body; for a detailed descrip-

tion of the value semigroup underlying this Okounkov body and of why it satisfies

the assumptions of [21, Theorem B], see [40, Definition 17.8 and Lemma 17.9].

From [21, Theorem B] one deduces the existence of an open set Us � Gr.k; n/ and

a smooth submersion �sWUs ! Rk.n�k/ whose image is the interior of the polytope,

and whose fibers are Lagrangian tori. Call Ls D ��1
s
.0/. If p 2 Ls, the tangent space

to the fiber at p is Tp.Ls/D ker.dp�s/. Therefore, the standard basis of Rk.n�k/ lifts

under dp�s to a basis of Tp.Us/=Tp.Ls/. Since the symplectic structure vanishes on

Ls, the lift defines a symplectic-dual basis of Tp.Ls/. Since Ls is a torus, the vectors

of this basis are tangent to natural closed loops inLs, and their homology classes give

a basis of H1.LsI Z/ which is independent of the point p 2 Ls.

Definition 3.5. The LagrangiansLs � Gr.k; n/ of Proposition 3.4 are called Plücker
tori, and the elements d 2 H1.LsI Z/ of the canonical basis are called canonical
cycles. We index the canonical cycles by Young diagrams d � k � .n � k/ such that

d ¤ ; and d appears in a label xd of the final quiverQs.

Remark 3.6. Note that x; is the label of a frozen node in the initial quiverQ0. Since

frozen labels do not change under mutation, x; is in fact a the label of a forzen node

in any quiverQs.
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3.2. Local systems from Schur polynomials

Given a Young diagram d � k � .n � k/, the corresponding k-variables Schur poly-

nomial is defined as

Sd .z1; : : : ; zk/ D
X

Td

z
t1
1 : : : z

tk
k
;

where the sum runs over semi-standard tableauxTd on d . The tableaux Td are obtained

by labeling d with integers in ¹1; : : : ; kº, in such a way that rows are weakly increas-

ing and columns are strictly increasing. The exponent ti is the number of times that the

integer i appears in the tableaux Td . If I is any of the
�

n
k

�
sets of roots of zn D .�1/kC1

with jI j D k, it makes sense to evaluate Sd .I / 2 C without specifying an order on

the elements of I because Schur polynomials are symmetric functions.

Definition 3.7. For each Plücker torus Ls � Gr.k; n/ and set I , denote �I the rank

one local system whose holonomy hol�I
W H1.LsI Z/ ! C� around the canonical

cycles of Definition 3.5 is given by the formula

hol�I
.d / D Sd .I / 2 C�I

if Sd .I /D 0 for some d appearing in a label xd of the final quiver of s, then �I is not

defined.

3.3. A conjecture and some evidence

If s is a Plücker sequence of type .k; n/, after setting x; D 1 the Laurent polynomial

Ws can be thought of as a regular function on the algebraic torusH1.LsI Z/˝ C� Š
.C�/k.n�k/. Setting x; D 1 corresponds to thinking Ak;n D O.Uk;n/ as algebra of

regular functions on Uk;n D Gr_.k; n/ nD_
F Z rather than on its affine cone.

The canonical cycles d 2 H1.LsI Z/ of Definition 3.5 give an isomorphism of

schemes H1.LsI Z/ ˝ C� Š .C�/k.n�k/, where one thinks the latter torus as hav-

ing coordinates xd labeled by Young diagrams d � k � .n � k/ such that d ¤ ;
and d appears in some label of the quiver Qs. Under the identification described by

Scott [41, Theorem 4], one can think thatH1.LsI Z/˝ C� Š Ts � Gr_.k; n/ where

Ts D ¹ŒM� 2 Gr_.k; n/W xd.M/ ¤ 0 for all d label of Qsº:

Conjecture 3.8. If s and s
0 are two Plücker sequences of type .k; n/, and � is a

Hamiltonian isotopy of Gr.k; n/ such that �.Ls/ D Ls
0 , then the induced map �� W

H1.LsI Z/ ! H1.Ls
0 I Z/ is such that

Ws � Ws
0 ı .�� ˝ idC�/;

where � denotes equality up to automorphisms of Ts.
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Remark 3.9. The reason for � in the conjecture above is the following. Suppose that

Ws is the disk potential of Ls, i.e., Ws D WLs
. By Hamiltonian invariance of the

disk potential, if Ls
0 D �.Ls/ then WL

s
0 D WLs

D Ws as long as we express the

disk potential of Ls
0 in the basis of cycles induced by �� WH1.LsIZ/!H1.Ls

0 IZ/.
Instead, the Laurent polynomialWs

0 expresses the disk potential of Ls
0 in the canon-

ical basis of cycles of Definition 3.5, which is a priori different from the one induced

by ��.

Under some assumptions on the singularities of the toric varieties X.†s/ appear-

ing as limits of the degenerations Gr.k; n/ X.†s/, the conjecture above can be

verified. We describe below how, and give some sample applications in Section 4.

Definition 3.10. If X.†/ is a projective toric variety, a toric resolution consists of a

smooth projective toric varietyX.z†/ with a toric morphism r W X.z†/! X.†/ which

is a birational equivalence.

Any toric variety X.†/ has a toric resolution; see for example [11, Chapter 11].

Toric resolutions can be constructed by taking refinements z† of the fan †, which

have natural associated morphisms r . The refined fan z† has in general more rays

than †, and these correspond to torus invariant divisors in the exceptional locus

r�1.SingX.†//.

Definition 3.11. A toric resolution r WX.z†/ ! X.†/ is small if z† and † have the

same rays. Being small is equivalent to codimC.r
�1.SingX.†///� 2; see for example

[11, Proposition 11.1.10].

Proposition 3.12. If s is a Plücker sequence of type .k; n/, and the toric variety
X.†s/ admits a small resolution, thenLs � Gr.k;n/ is monotone and has disk poten-
tial Ws with respect to the basis of canonical cycles for H1.LsI Z/.

Proof. Recall from Proposition 3.4 that there is a smooth submersion �sW Us !
Rk.n�k/ with Lagrangian torus fibers, defined on some open set Us � Gr.k; n/. If

Ps is the Newton polytope of the Laurent polynomial Ws, the image of this map is

the interior of the polytope described in Proposition 3.2:

rs�Gs
.DF Z/ D ¹v 2 Rk.n�k/W hv; ui � �rs for every vertex u 2 Psº:

Call v a point in the interior, and Ls.v/ D ��1
s
.v/ the corresponding Lagrangian

torus fiber. Observe that X.†s/ is Fano, thanks to Proposition 2.10. The assump-

tion that X.†s/ has a small toric resolution allows to invoke a theorem of Nishinou,

Nohara, and Ueda [30, Theorem 10.1], and conclude that the disk potential ofLs.v/�
Gr.k; n/ has one monomial for each facet hv; ui D �rs of rs�Gs

.DF Z/, with expo-

nent u 2 H1.Ls.v/I Z/. The subgroup of disk classes in H2.Gr.k; n/; Ls.v/I Z/ is
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generated by Maslov index 2 classes. This holds becauseUs � Gr.k;n/ is the domain

of a symplectomporhism  W Us ! X.†s/ n D†s
with the maximal torus orbit of

the toric variety X.†s/ obtained by removing the standard torus invariant divisor

D†s
. Harada-Kaveh [21, Theorem A (1)] shows that  extends to a continuous map

x W Gr.k; n/ ! X.†s/. As explained in Nishinou, Nohara, and Ueda [30, Lemma 9.2

and Corollary 9.3], the assumption that X.†s/ has a small resolution X.f†s/ allows

to use the map x to identify disk classes in H2.Gr.k; n/; Ls.v/I Z/ with classes of

disks in X.f†s/ with boundary on the toric moment fiber over v, and these are gen-

erated by Maslov index 2 classes; see Cho and Oh [10, Theorem 5.1] for a general

formula computing the Maslov index of disks with boundary in a toric moment fiber.

In conclusion, Ls.v/ is monotone if and only if all Maslov index 2 classes have the

same symplectic area. The symplectic area of a Maslov 2 disk with boundary u is

2�.hv; ui C rs/I see Cho and Oh [10, Theorem 8.1] for a proof. The choice v D 0

guarantees that all the areas are equal, and thus Ls D Ls.0/ is monotone.

4. Sample applications

We describe some sample applications of what seen so far to the symplectic topology

of Grassmannians. These results are by no means optimal; they are meant to illus-

trate new phenomena, and we give some indications on how one can prove analogous

statements using the same techniques.

4.1. Generating the Fukaya category of Gr.2 ; n/

In this section we focus on Grassmannians of planes Gr.2; n/. For this class of Grass-

mannians, Nohara and Ueda [31, 32] have used symplectic reduction techniques to

construct a Catalan number Cn�2 of integrable systems on Gr2.n/, each labeled by a

triangulation � of the n-gon; the generic fibers of these systems are Lagrangian tori

L� � Gr2.n/, and the images of their Hamiltonians are lattice polytopes�� . Explicit

formulas for the disk potentials WL�
were given as sums over edges of the triangu-

lation � . We compare this construction with the case k D 2 of our Construction 1.1,

and explore some consequences for the Fukaya category of Gr.2;n/. When k D 2, the

Plücker coordinates appearing as labels of a quiver Qs have a simple combinatorial

description.

Definition 4.1. Let n > 2, and consider n points on S1, labeled counter-clockwise

from 1 to n. A triangulation � of Œn� is a collection of subsets ¹i; j º � Œn� with i ¤ j ,

such that connecting i and j with an arc inD2 for all ¹i; j º 2 � one gets a triangula-

tion of the n-gon with vertices at Œn�.
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Remark 4.2. Every triangulation � of Œn� must contain the n sets

¹1; 2º; ¹2; 3º; : : : ; ¹n � 1; nº; ¹1; nºI

these correspond to the edges of the n-gon; the other sets in � correspond to interior

edges of the triangulation. Note that the n sets above are also the vertical steps d j of

those Young diagrams d � 2 � .n � 2/ that label the frozen nodes in Definition 2.4

(specialized to k D 2).

Lemma 4.3 (Fomin and Zelevinsky [16, Proposition 12.5]; [33, Theorem 1.6]). A
collection of Young diagrams d � 2� .n� 2/ labels the nodes ofQs for some Plücker
sequence s of type .2; n/ if and only if the set � D ¹d j � Œn�º is a triangulation of Œn�.

Proof. A set of Plücker coordinates xd labels the nodes of some quiverQs precisely

if it is a cluster in the cluster algebra structure of A2;n. By Oh, Postnikov, Speyer

[33, Theorem 1.6], this is equivalent to saying that the sets d j of vertical steps of the

corresponding Young diagrams d � 2 � .n � 2/ form a maximal weakly separated

collection in the sense of [33, Definition 3.1]. For kD 2 the general notion of maximal

weakly separated collection recovers the one of triangulation given in Definition 4.1.

Lemma 4.4 (Nohara and Ueda [31, Theorem 1.5] and [32, Theorem 1.1]). If k D 2

then the Lagrangian toriLs � Gr.2;n/ are monotone for all s and have disk potential
Ws. Consequently, by Hamiltonian invariance of the disk potential, Conjecture 3.8

holds.

Proof. In view of Proposition 3.12, it suffices to prove that for any Plücker sequence

s of type .2;n/ the toric varietyX.†s/ has a small toric resolution. From Lemma 4.3,

the labels ofQs define a triangulation �s of Œn�. Nohara and Ueda [32, Theorem 1.1]

describe an open embedding ��s
W .C�/2.n�2/ ! Gr_.k; n/ such that ���s

W D W�s
,

whereW 2 Ak;n is the Landau–Ginzburg potential defined by Marsh-Rietsch [28] and

W�s
is a Laurent polynomial associated to the triangulation �s. It was shown earlier

by Nohara and Ueda [31, Proposition 7.4] that the polar dual of the Newton polytope

of W�s
is a lattice polytope ��s

D Newtı.W�s
/ (as opposed to just a rational poly-

tope) and that the associated toric variety X.†n��s
/ has a small toric resolution [31,

Theorem 1.5]. Since polar duality exchanges normal and face fans X.†n��s
/ D

X.†f Newt.W�s
//. The image of the embedding ��s

is the cluster chart Ts and

Ws D W jTs
, soW�s

andWs are Laurent polynomials related by an automorphism of

the torus, therefore their Newton polytopes Newt.W�s
/ and Ps are equivalent under

the action of GL.2.n� 2/;Z/. We conclude that X.†f Newt.W�s
// Š X.†f Ps/ D

X.†s/ and therefore X.†s/ has a small toric resolution too.
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As described by Sheridan [43], the Fukaya category of a monotone symplectic

manifold like the Grassmannian has a spectral decomposition

F .Gr.k; n// D
M

�

F�.Gr.k; n//:

The summands areA1-categories indexed by the eigenvalues� of the operator c1? of

multiplication by the first Chern class acting on the small quantum cohomology. The

objects of the �-summand are monotone Lagrangians with rank one local systems L�

as described in Section 1. The following proposition holds for general Grassmannians.

Proposition 4.5. For any 1 � k < n and any Plücker sequence s of type .k; n/:

1. if F�.Gr.k; n// ¤ 0 then � D n.�1 C � � � C �k/ for some ¹�1; : : : ; �kº D I �
¹� 2 CW �n D .�1/kC1º with jI j D k;

2. if X.†s/ has a small toric resolution, then .Ls/�I
is a defined and nonzero in

F�.Gr.k; n// if and only if Sd .I / ¤ 0 for all Young diagrams d appearing as
labels on the nodes of Qs, and moreover � D n.�1 C � � � C �k/.

Proof. (1) By [6, Proposition 1.3], � 2 C is an eigenvalue of the operator c1? of

multiplication by the first Chern class acting on the small quantum cohomology if and

only if �D n.�1 C � � � C �k/ for some ¹�1; : : : ; �kº D I � ¹ � 2 CW�n D .�1/kC1 º with

jI j D k. By Auroux [3, Proposition 6.8], any monotone LagrangianL with a rank one

local system � having Floer cohomology HF.L� ; L�/ ¤ 0 must have m0.L�/ which

is an eigenvalue of c1?.

(2) Think of the holonomy of a local system � onLs as a point on a complex torus

hol� 2 Hom.H1.LsI Z// Š .C�/k.n�k/:

The identification depends on the choice of a basis for H1.LsI Z/, and we use the

canonical d 2 H1.LsI Z/ of Definition 3.5. By Proposition 3.12 and the assump-

tion of small resolution, the Lagrangian torus Ls is monotone and has disk potential

WLs
D Ws. By Auroux [3, Proposition 6.9] and Sheridan [43, Proposition 4.2], one

has Floer cohomologyHF..Ls/� ; .Ls/�/ ¤ 0 if and only if hol� is a critical point of

the disk potential. By Definition 3.7, the local system � D �I has hol�I
.d / D Sd .I /.

Rietsch [38, Lemma 4.4] proves that Sd .I / D SdT .I_/, where dT � .n� k/ � k is

the transpose Young diagram of d and I_ D ¹�1; : : : ; �n�kº is the set of n � k dis-

tinct roots of �n D .�1/n�kC1 obtained by looking at the roots I c of �n D .�1/kC1

that are not in I and declaring I_ D e�iI c . Consider the points ŒMI _ � 2 Gr_.k; n/
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defined as

ŒMI _ � D

2
6666664

1 1 1 : : : 1

�1 �2 �3 : : : �n�k

�2
1 �2

2 �2
3 : : : �2

n�k
:::

:::
:::

:::

�n�1
1 �n�1

2 �n�1
3 : : : �n�1

n�k

3
7777775

I

these are known to be the critical points of the Landau–Ginzburg potential W 2
Ak;n defined by Marsh and Rietsch [28]; see [22, Theorem 1.1 and Corollary 3.12].

Observe that SdT .I_/ D xd .MI _/=x;.MI _/; this follows from the expression of

Schur polynomials as determinants [6, Proposition 2.3 (1)]. After setting x; D 1, one

can think of Ws as a regular function on the cluster chart Ts � Gr_.k; n/ such that

Ws D W jTs
, as explained in Proposition 2.6 (1). This means that the critical points of

Ws are precisely those critical points ŒMI _ � 2 Gr_.k; n/ ofW such that ŒMI _ � 2 Ts.

By definition of Ts the latter condition is equivalent to xd .MI _/ ¤ 0 for all Young

diagrams d appearing as labels of Qs, and thus �I is a well-defined local system on

Ls such that HF..Ls/� ; .Ls/�/ ¤ 0 if and only if Sd .I / ¤ 0 for all d appearing as

labels of Qs.

Lemma 4.6. If n is odd, all the eigenvalues of c1? acting on QH.Gr.2; n// have
algebraic multiplicity one.

Proof. It was explained in Proposition 4.5 (2) that the eigenvalues of c1? acting on

QH.Gr.k; n// correspond to critical values of the Landau–Ginzburg potential W on

Gr_.k; n/ defined by Marsh and Rietsch [28], and that the corresponding critical

points can be explicitly described. In particular, there are
�

n
k

�
critical points, and thus

at most the same number of critical values. Therefore, the statement is equivalent to

proving that there are precisely
�

n
2

�
distinct eigenvalues. From Proposition 4.5 (1),

each eigenvalue is of the form � D n.�1 C �2/, with �1 and �2 distinct roots of

�n D �1. Write �1 D e
�i
n

a and �1 D e
�i
n

b with 0 < a < b < 2n odd integers. The

norm of one such eigenvalue is

j�j D n
p
2
�
1C 2 cos

��
n
.b � a/

��1=2

:

The function cos.x/ is decreasing for 0 � x � � and cos.2� � x/ D cos.x/; in our

case 0 � �
n
.b � a/ � � whenever 0 � b � a � n. Since n is odd by assumption, by

varying a and b among all odd integers with 0 < a < b < 2n one finds l D .n� 1/=2
eigenvalues with 0 < j�1j < � � � < j�l j, corresponding to b � a attaining all the even

integer values in the interval Œ2; n� 1�. Moreover, fixed any 1 � t � l , the n complex

numbers �t ; .e
2�
n

i/�t ; : : : ; .e
2�
n

i /n�1�t are eigenvalues of c1? too, and they have the

same norm as �t ; see also [6, Proposition 1.12] for more on the symmetries of the

spectrum of c1?. Overall, we found n.n � 1/=2 D
�

n
2

�
distinct eigenvalues.
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Lemma 4.7. Let d � 2� .n� 2/ be a Young diagram, and denote by d j D ¹s; tº with
1 � s < t � n its vertical steps. Writing an arbitrary set I � ¹� 2 CW �n D �1º with
jI j D 2 as Ia;b D ¹e �

n
ia; e

�
n

ibº with 0 < a < b < 2n odd integers, then

Sd .Ia;b/ D 0 () n j b � a
2

.t � s/:

Proof. Consider the full rank n � 2 matrix

ŒMIa;b
� D

"
1 e

�
n

ia .e
�
n

ia/2 : : : .e
�
n

ia/n�1

1 e
�
n ib .e

�
n ib/2 : : : .e

�
n ib/n�1

#T

As pointed out in part (2) of Proposition 4.5, one has Sd .Ia;b/ D 0 if and only

if xdT .MIa;b
/ D 0. Observe that the horizontal steps of the transpose diagram are

.dT /� D ¹nC 1 � t; nC 1 � sº, so that

xdT .MIa;b
/ D e

�
n

ia.n�t/e
�
n

ib.n�s/ � e
�
n

ia.n�s/e
�
n

ib.n�t/;

from which xdT .MIa;b
/ D 0 if and only if e

�
n

i.asCbt�at�bs/ D 1. The last condition

is verified precisely when 2n j .b � a/.t � s/, and since b � a is the difference of two

odd integers this can be rewritten as in the statement.

Theorem 4.8. If nD 2t C 1 for some t 2 NC, the derived Fukaya category DF .Gr.2;

2t C 1// is split-generated by objects supported on a single Plücker torus.

Proof. Up to replacing 2 with n� 2, we can think of the critical points ŒMIa;b
� of the

Landau–Ginzburg potential W on Gr_.2; n/ defined by Marsh and Rietsch [28] as

being parametrized by sets Ia;b D ¹e �
n

ia; e
�
n

ibº with 0 < a < b < 2n odd integers;

compare with Proposition 4.5 (2). We claim that there exists a Plücker sequence s of

type .2; n/ such that the corresponding cluster chart Ts � Gr_.2; n/ contains all crit-

ical points ŒMIa;b
�. If this is true, then these will be also critical points of the Laurent

polynomialWs DW jTs
, which is the disk potential of the monotone Lagrangian torus

Ls � Gr.2;n/ by Proposition 3.12 and Lemma 4.4. By Sheridan [43, Corollary 2.19],

if the generalized eigenspace QH�.X/ of the operator c1? is one-dimensional, any

monotone Lagrangian braneL� withHF.L� ;L�/¤ 0 split-generates DF�.X/. Since

n D 2t C 1 is odd, by Lemma 4.6 we can apply this to X D Gr.2; n/, L D Ls and

any � D �Ia;b
for all 0 < a < b < 2n odd integers, thus concluding that the objects

.Ls/Ia;b
split-generate every summand of DF .Gr.2; 2t C 1//. The construction of

the Plücker sequence s mentioned in the claim above proceeds as follows.
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1 2 4 5 6 7 8 93

Figure 4. The dyadic triangulation of an 9-gon.

Consider the following incremental construction of a set � (an example with t D 3

is given in Figure 4):

1. start with a segment partitioned in n � 1 D 2t intervals, which are added to �

as new edges ¹1; 2º, ¹2; 3º, . . ., ¹2t ; 2t C 1º;

2. partition the segment into .n� 1/=2D 2t�1 pairs of consecutive intervals, and

add a new arc connecting the left end of the left interval to the right end of the

right interval in each pair, thus adding new edges ¹1;3º, ¹3;5º, . . .,¹2t�1; 2tC1º
to �;

3. partition the segment in .n � 1/=22 D 2t�2 tuples of 22 consecutive intervals,

and add a new arc connecting the left end of the leftmost interval to the right

end of the rightmost interval in each tuple, thus adding new edges ¹1;5º, ¹5;9º,

. . .,¹2tC1 � 22; 2tC1º to �;

4. proceed as above until the initial segment is partitioned in two tuples of 2t�1

consecutive intervals, and add the edge ¹1; nº D ¹1; 2t C 1º to � , so that it

becomes a triangulation of Œn� in the sense of Definition 4.1.

Let .Q0; W0/ be the initial seed of Definition 2.4, and call �0 the triangulation

of Œn� corresponding to Young diagrams labeling the nodes of Q0 as in Lemma 4.3.

The triangulation �0 is connected to � constructed above by a sequence of flips,

which correspond to mutations of the quiver Q0 at nodes with to incoming and two

outgoing arrows. From Proposition 2.6, this gives a Plücker sequence of mutations of

type .2; n/ in the sense of Definition 2.7, which ends at .Qs; Ws/ and such that the

labels ofQs correspond to the triangulation �s D � , again by Lemma 4.3. It remains

to show that ŒMIa;b
� 2 Ts for all odd integers a and b such that 0 < a < b < 2n.

Suppose not, then there exist some a; b and some Young diagram d � 2 � .n � 2/

such that xd .MIa;b
/ D 0. By Lemma 4.7, this implies that n j b�a

2
.t � s/, where

d j D ¹s; tº are the vertical steps of d . By construction, for any d j 2 �s, if d j D ¹s; tº
then t � s is a power of 2, and since n D 2t C 1 is odd by assumption we must have

n j b�a
2

. This is impossible, because b�a
2
< n.
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Example 4.9. DF .Gr.2; 9// is generated by a single Plücker torus. Note that instead

the Gelfand–Cetlin torus mentioned in Section 1 does not support enough nonzero

objects to generate; compare [6, Figure 2 (C)].

The arguments presented above can be generalized to prove that certain collec-

tions of Plücker tori split generate DF .Gr.2; n//.

Definition 4.10. Let p be a prime number. A triangulation� of Œn� as in Definition 4.1

is called p-avoiding if for all ¹s; tº 2 � one has p − .t � s/.

Theorem 4.11. Let n> 2 be odd, and consider its prime factorization nDp
e1

1 : : :p
el

l
.

Assume that for all 1 � i � l there exists a triangulation �i of Œn� that is pi -avoiding,
then DF .Gr.2; n// is split generated by objects supported on l Plücker tori.

Proof. Recall that up to replacing 2 with n � 2, we can think of the critical points

ŒMIa;b
� of the Landau–Ginzburg potential W on Gr_.2; n/ defined by Marsh and

Rietsch [28] as being parametrized by sets Ia;b D ¹e �
n

ia; e
�
n

ibº with 0 < a < b < 2n

odd integers; compare with part (2) of Proposition 4.5. Denote C the set of all critical

points of W , and for 1 � i � l define

Cpi
D ¹ŒMIa;b

� 2 C Wpei

i −
b � a

2
º:

Observe that C D Cp1
[ � � � [ Cpl

. Indeed, if p
ei

i j .b � a/=2 for all 1 � i � l

then p
e1

1 : : : p
el

l
D n j .b � a/=2, against the fact that .b � a/=2 < n. By assump-

tion, for each 1 � i � l there exist a triangulation �i of Œn� that is pi -avoiding, and

arguing as in Theorem 4.8 one finds a Plücker sequence si of type .2; n/ that starts

with the initial seed .Q0; W0/ and ends with .Qsi
; Wsi

/, and such that the labels

of Qsi
correspond to the triangulation �si

D �i as in Lemma 4.3. Each of the l

Plücker tori Lsi
� Gr.2; n/ has an associated cluster chart Tsi

� Gr_.2; n/, and

we claim that Cpi
� Tsi

. Suppose not, then there exists some ŒMIa;b
� 2 Cpi

such

that ŒMIa;b
� … Tsi

. This means that p
ei

i −
b�a

2
and there exists some Young diagram

d � 2 � .n � 2/ such that xd .MIa;b
/ D 0, and denoting d j D ¹s; tº its vertical steps

¹s; tº 2 �si
. By Lemma 4.7, this implies that n j b�a

2
.t � s/, and so in particular

p
ei

i j b�a
2
.t � s/. Since �si

is pi -avoiding, this means that p
ei

i j b�a
2

, against the fact

that ŒMIa;b
� 2 Cpi

. As in Theorem 4.8, the assumption n odd and Lemma 4.6 guaran-

tee, by Sheridan [43, Corollary 2.19], that any nonzero object of the Fukaya category

supported on one of the l monotone Plücker tori Ls1
; : : : ; Lsl

� Gr.2; n/ split-

generates the summand DF�.Gr.2; n// of the derived Fukaya category containing

it. The objects supported on Lsi
are obtained by endowing it with local systems �Ia;b

as in Definition 3.7 corresponding to critical points ŒMIa;b
� 2 Tsi

; these are such that

HF..Lsi
/�Ia;b

; .Lsi
/�Ia;b

/¤ 0 because the disk potential ofLsi
isWsi

DW jTsi
.
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1 2 153 4 5 6 7 8 9 10 11 12 13 14

(a) 3-avoiding triangulation

1 2 153 4 5 6 7 8 9 10 11 12 13 14

(b) 5-avoiding triangulation

Figure 5. Two triangulations of a 15-gon.

Example 4.12. DF .Gr.2; 15// is generated by two Plücker tori, whose correspond-

ing triangulations are shown in Figure 5. To get the two triangulations, one starts by

constructing a partial triangulation of the 15-gon with dyadic arcs as in Theorem 4.8

(solid arcs in Figure 5). The partial triangulation is p-avoiding for every prime p > 2

by construction. Since 15 D 3 � 5, by Theorem 4.11 one needs to find completions of

the partial triangulation to full triangulations that are 3-avoid and 5-avoiding respect-

ively. In Figure 5, the remaining arcs ¹i; j º with 3 j .j � i / are coarsely dashed,

while the one with 5 j .j � i / is finely dashed; triangulation (A) is obtained by adding

two shaded arcs and is 3-avoiding, while triangulation (B) is obtained by adding two

different shaded arcs and is 5-avoiding.

4.2. Exotic Lagrangian tori in Gr.3; 6/

Definition 4.13. If Ls � Gr.k; n/ is a Plücker Lagrangian of type .k; n/, define its

f -vector to be

f.Ls/ D .f1; : : : ; fk.n�k// 2 Nk.n�k/;

where fi is the number of .i � 1/-dimensional faces in the Newton polytope Ps of

the potentialWs.

Definition 4.14. If Ls � Gr.k; n/ is a Plücker Lagrangian of type .k; n/, define its

weight wt.Ls/ 2 N to be the number of sets

I � ¹� 2 CW �n D .�1/kC1º

such that jI j D k and Sd .I / ¤ 0 for all Young diagrams d appearing as labels of the

quiverQs.

Lemma 4.15. Assume s; s0 are Plücker sequences of type .k; n/ satisfying Conjec-
ture 3.8. If f.Ls/¤ f.Ls

0/ or wt.Ls/ ¤ wt.Ls
0/, then the Lagrangian tori Ls;Ls

0 �
Gr.k; n/ are not Hamiltonian isotopic.
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Proof. Suppose that there exists a Hamiltonian isotopy � such that �.Ls/ D Ls
0 .

Then by assumption the induced map ��WH1.LsI Z/ ! H1.Ls
0I Z/ is such that

Ws � Ws
0 ı .�� ˝ idC�/;

where � denotes equality up to automorphisms of Ts. This means that the Newton

polytopes Ps and Ps
0 of the Laurent polynomials Ws and Ws

0 are related by a trans-

formation of GL.k.n� k/;Z/, and hence have the same f -vector, because the number

of faces of any given dimension of a polytope is a unimodular invariant; this proves

that f.Ls/ D f.Ls
0/. Moreover, the Laurent polynomials Ws and Ws

0 can be thought

of as regular functions on a torus .C�/k.n�k/, which agree up to an automorphism.

Since the number of critical points of a function is invariant under automorphisms of

its domain, it follows from part (2) of Proposition 4.5 that wt.Ls/ D wt.Ls
0/.

Theorem 4.16. The Grassmannian Gr.3;6/ contains at least 6monotone Lagrangian
tori that are non-displaceable and pairwise inequivalent under Hamiltonian isotopy.

Proof. Table 1 above contains informations about the steps of a Plücker sequence s of

type .3; 6/. In each row, the reader can find the Young diagrams d � 3 � 3 appearing

as labels of Qs at a given step, identified by their sets of vertical sets ¹i; j; kº � Œ6�.

Each potential Ws has an associated Newton polytope Ps, whose f -vector is f.Ls/

as in Definition 4.13. Following Definition 4.14, the weight w.Ls/ is computed by

counting how many of the
�

6
3

�
sets I of roots of �6 D 1 with jI j D 3 have the property

that Sd .I /¤ 0 for all Young diagrams d � 3� 3 that appear as labels on the nodes of

the quiverQs. Calling †s D †f Ps the face fan of the Newton polytope, by Propos-

ition 3.12 the Lagrangian torus Ls � Gr.k; n/ is monotone and has disk potentialWs

whenever the toric variety X.†s/ has a small toric resolution in the sense of Defin-

ition 3.11. This condition can be checked algorithmically at each step, since every

fan has finitely many simplicial refinements with the same rays, and every smooth

refinement is in particular simplicial. For the 34 steps in Table 1, the code [7] finds

small resolutions in 32 cases; the remaining 2 cases are marked gray in the table (we

did not actually check all possible simplicial refinements in these cases, so small toric

resolutions for them may still exist). From Lemma 4.15, we conclude that Gr.3; 6/

contains at least 6 monotone Lagrangian tori that are pairwise not Hamiltonian iso-

topic: rows 1, 3, 7, 8, 15, 29. Regarding nondisplaceability, it suffices to show that the

32 tori Ls � Gr.3; 6/ have Floer cohomology HF.L� ; L�/ ¤ 0 for some local sys-

tem � . By Auroux [3, Proposition 6.9] and Sheridan [43, Proposition 4.2], the Floer

cohomology of a monotone Lagrangian torus brane L� is nonzero if and only if the

holonomy hol� of its local system � is a critical point of the disk potential disk poten-

tial Ws. Therefore, it suffices to show that each of the 32 Laurent polynomials Ws
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k D 3, n D 6

Ls Labels of Qs f.Ls/ wt.Ls/

1 123, 124, 125, 126, 156, 234, 245, 256, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

2 123, 124, 125, 126, 145, 156, 234, 245, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

3 123, 125, 126, 135, 145, 156, 234, 235, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

4 123, 126, 134, 136, 146, 156, 234, 345, 346, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

5 123, 126, 156, 234, 235, 236, 245, 256, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

6 123, 125, 126, 156, 234, 235, 245, 256, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

7 123, 124, 125, 126, 134, 145, 156, 234, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18

8 123, 125, 126, 134, 135, 145, 156, 234, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6

9 123, 124, 126, 146, 156, 234, 245, 246, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6

10 123, 126, 156, 234, 236, 246, 256, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

11 123, 124, 126, 146, 156, 234, 246, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

12 123, 124, 126, 145, 146, 156, 234, 245, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18

13 123, 126, 146, 156, 234, 236, 246, 345, 346, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6

14 123, 126, 156, 234, 236, 256, 345, 346, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

15 123, 126, 146, 156, 234, 236, 245, 246, 345, 456 (18, 111, 358, 700, 882, 728, 386, 123, 20) 6

16 123, 126, 156, 234, 235, 236, 256, 345, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

17 123, 124, 126, 134, 145, 146, 156, 234, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

18 123, 126, 134, 135, 136, 156, 234, 345, 356, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6

19 123, 126, 134, 136, 145, 146, 156, 234, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

20 123, 126, 135, 136, 145, 156, 234, 235, 345, 456 (15, 93, 317, 661, 882, 760, 413, 132, 21) 6

21 123, 126, 136, 146, 156, 234, 236, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18

22 123, 125, 126, 134, 135, 156, 234, 345, 356, 456 (18, 111, 358, 700, 882, 728, 386, 123, 20) 6

23 123, 126, 136, 156, 234, 235, 236, 345, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

24 123, 126, 134, 135, 136, 145, 156, 234, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

25 123, 124, 126, 156, 234, 245, 246, 256, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

26 123, 126, 134, 136, 156, 234, 345, 346, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18

27 123, 126, 135, 136, 156, 234, 235, 345, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6

28 123, 124, 126, 134, 146, 156, 234, 345, 346, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

29 123, 126, 156, 234, 236, 245, 246, 256, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 18

30 123, 126, 136, 156, 234, 236, 345, 346, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

31 123, 125, 126, 145, 156, 234, 235, 245, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18

32 123, 125, 126, 135, 156, 234, 235, 345, 356, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6

33 123, 125, 126, 156, 234, 235, 256, 345, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18

34 123, 124, 126, 156, 234, 246, 256, 345, 346, 456 (15, 93, 317, 661, 882, 760, 413, 132, 21) 6

Table 1

has at least one critical point. Thinking Ws as restriction Ws D W jTs
of the Landau–

Ginzburg potential W on Gr_.3; 6/ defined by Marsh and Rietsch [28] to the cluster

chart Ts � Gr_.3; 6/, it suffices to show that each of the charts contains at least one

critical point of W . In fact, something stronger is true: there is a critical point of

W that is contained in Ts for all s. As proved by Rietsch [39] (see also Karp [22]),

for any 1 � k < n there is a (unique) critical point of W in the totally positive part

Gr_.k; n/>0 � Gr_.k; n/, i.e., the locus where all Plücker coordinates are real and

positive. Following the notation of Proposition 4.5 (2), this point is ŒMI0
� 2 Gr_.k; n/

with I0 the set of k roots of �n D .�1/kC1 closest to 1. Applying this to .k;n/D .3;6/,
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and recalling that ŒMI0
� 2 Ts if and only if xd .MI0

/ for all Young diagrams d � 3� 3
appearing as labels on the nodes of Qs, we conclude that the total positivity of ŒMI0

�

implies that it belongs to every cluster chart Ts, and this proves that all Ls are nondis-

placeable.

Remark 4.17. We emphasize that the arguments of Theorem 4.16 prove that any

Ls � Gr.k; n/ is nondisplaceable as long as Ws D WLs
. This is due to the fact that

the tori Ls correspond to cluster charts Ts � Gr_.k; n/ by construction, and that W

has a critical point in the intersection of all such charts.

Remark 4.18. It was shown in [6, Theorem 4.8] that the dihedral group

Dn D hr; s j rn D s2 D 1; rs D sr�1i

acts on the set of critical points ofW 2 Ak;n, and that the cluster chart Ts is invariant

under the action of the subgroup hri. Since wt.Ls/ is the number of critical points in

Ts, the fact that Z=nZ acts on it puts some arithmetic constraints on this number.
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