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A1-category of Lagrangian cobordisms
in the symplectization of P �R

Noémie Legout

Abstract. We define a unital A1-category Fuk.R � Y / whose objects are exact Lagrangian
cobordisms in the symplectization of Y D P �R, with negative cylindrical ends over Legendri-
ans equipped with augmentations. The morphism spaces homFuk.R�Y /.†0; †1/ are given in
terms of Floer complexes CthC.†0; †1/ which are versions of the Rabinowitz Floer complex
defined by Symplectic Field Theory (SFT) techniques.
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1. Introduction

This paper deals with Lagrangian cobordisms in the symplectization .R � Y; d.et˛//
of a contact manifold .Y; ˛/. These cobordisms are properly embedded Lagrangian
submanifolds admitting cylindrical ends on Legendrian submanifolds of Y , and here
Y will be the contactization .P �R; dz C ˇ/ of a Liouville manifold .P; ˇ/.
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Our goal is to define through SFT-techniques introduced in [19] a unital A1-cat-
egory Fuk.R � Y / whose objects are Lagrangian cobordisms equipped with an aug-
mentation of the Chekanov–Eliashberg algebra (CE-algebra) of its negative end, and
whose morphism spaces are given by certain Floer-type complexes CthC.†0; †1/.
In particular, when †0 is a cylinder over a Legendrian equipped with an augment-
ation and †1 a parallel copy, the complex CthC.†0; †1/ is an SFT-formulation of
the Lagrangian Rabinowitz Floer complex due to Merry [24]. There already exists
several versions of Fukaya categories whose objects are (non-compact) exact Lag-
rangians, notably the (partially) wrapped Fukaya categories of a Liouville domain
(see [2, 3, 28]) and more recently of Liouville sectors [20]. In this paper we instead
consider Lagrangian submanifolds in a trivial Liouville cobordism, meaning a trivial
cylinder over a contact manifold. The main difference between this and the case of
Liouville domains is that we have a non-empty concave end. It is known that addi-
tional assumptions are necessary in order to define Floer complexes in this setting
(Lagrangian cobordisms with loose negative ends are known to satisfy some flexib-
ility results). For that reason, we impose some restriction on the Lagrangians. More
precisely, we consider only exact Lagrangian cobordisms with negative cylindrical
ends over Legendrian submanifolds whose CE-algebra admits an augmentation. In
particular, an exact Lagrangian filling implies the existence of an augmentation [17].

Generalizing the structures we define in this paper to the case of Lagrangians in
a more general Liouville cobordism should be possible using the latest techniques of
virtual perturbations in [26] or the polyfold technology developed in [21]. Note that
Cieliebak and Oancea in [11] have defined a version of Rabinowitz Floer homology
for Lagrangians in a Liouville cobordism under the assumption that this cobordism
admits a filling. The Floer complex we define in this paper are similar to the ones
defined by Cieliebak and Oancea; for instance, there is an identification on the level of
generators. The main difference is that their differential is defined by Floer strips with
a Hamiltonian perturbation term that corresponds to wrapping, while the differential
considered here is defined in terms of honest SFT-type pseudo-holomorphic discs. It
is expected that the two theories give quasi-isomorphic complexes.

We start by contrasting the complex considered here with the Floer-type com-
plex for pairs of Lagrangian cobordisms considered in [9]. Namely, given a pair of
transverse exact Lagrangian cobordisms .†0;†1/ where†i has positive and negative
cylindrical ends over LegendriansƒCi andƒ�i respectively andƒ�i are equipped with
augmentations, the authors in [9] define the Floer complex .Cth.†0; †1/; d/ whose
underlying vector space is given by

Cth.†0; †1/ D C.ƒC0 ; ƒ
C
1 /˚ CF.†0; †1/˚ C.ƒ�0 ; ƒ

�
1 /

where C.ƒ˙0 ; ƒ
˙
1 / is generated by Reeb chords from ƒ˙1 to ƒ˙0 and CF.†0; †1/ is

generated by intersection points in †0 \ †1. This complex is actually the cone of a
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map

f1WCF�1.†0; †1/ WD CF.†0; †1/˚ C.ƒ�0 ; ƒ
�
1 /! C.ƒC0 ; ƒ

C
1 /

In [22] the author defined a product structure on CF�1.†0; †1/, as well as higher
order maps satisfying the A1-equations. Moreover, in the same paper it is proved
that the map f1 generalizes to a family of maps ¹fd ºd�1,

fd WCth.†d�1; †d /˝ � � � ˝ Cth.†0; †1/! C.ƒC0 ; ƒ
C

d
/

defined for a .d C 1/-tuple of pairwise transverse exact Lagrangian cobordisms
.†0; : : : ;†d /, and satisfying theA1-functor equations; where theA1-structure maps
on C.ƒC

d�1
;ƒC

d
/˝ � � � ˝C.ƒC0 ;ƒ

C
1 / are given by the structure maps of the augment-

ation category Aug�.ƒ
C
0 [ � � � [ ƒCd /, see [4]. However, there exists no non-trivial

A1-structure on the whole complex Cth.†0;†1/ for example for degree reasons: the
grading of Reeb chord generators in the positive end in Cth.†0; †1/ is given by the
Conley–Zehnder index plus 1 (see Sections 2.5 and 2.8) so a count of rigid pseudo-
holomorphic discs with boundary on the positive cylindrical ends, with two negative
Reeb chord asymptotics and one positive Reeb chord asymptotic would not provide a
degree 0 order 2 map for example.

In this article, we use similar techniques for constructing a version of the Rabinow-
itz complex .CthC.†0; †1/;m1/, on which it will be possible to define higher order
structure maps. The underlying vector space is

CthC.†0; †1/ D C.ƒC1 ; ƒ
C
0 /˚ CF.†0; †1/˚ C.ƒ�0 ; ƒ

�
1 /;

so the only difference with Cth.†0; †1/ is the generators we consider in the posit-
ive end; unlike in the complex Cth.†0; †1/ these generators consist of the chords
which start at ƒC0 and end at ƒC1 . The differential is defined by a count of pseudo-
holomorphic discs with boundary on the cobordisms and asymptotic to Reeb chords
and intersection points such that

• C.ƒ�0 ; ƒ
�
1 / is a subcomplex which is the linearized Legendrian contact cohomo-

logy complex of ƒ�0 [ƒ�1 restricted to chords from ƒ�1 to ƒ�0 ;

• C.ƒC1 ; ƒ
C
0 / is a quotient complex which is the linearized Legendrian contact

homology complex of ƒC0 [ƒC1 restricted to chords from ƒC0 to ƒC1 .

In the case †0 D R �ƒ0 and †1 is a cylinder over a perturbed copy ofƒ0 translated
far in the positive Reeb direction, the complex CthC.†0; †1/ is the complex of the
2-copy of ƒ0 considered in [16].

Then we proceed to investigate the properties of this complex. Some of them
resemble properties satisfied by the complex Cth.†0; †1/ but there are also some
significant differences.
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Acyclicity. Contrary to Cth.†0;†1/, the complex CthC.†0;†1/ is not always acyc-
lic. For example, if Y D J 1M for a closed manifold M , †0 is a cylinder over the
0-section in J 1M and †1 a cylinder over a Morse perturbation of the 0-section, the
homology of CthC.†0; †1/ does not vanish but equals instead the Morse homology
of M . However, in the case Y D P �R where any compact subset of P is Hamilto-
nian displaceable, for example Y D R2nC1, the complex CthC.†0; †1/ is always
acyclic. It is also always acyclic whenever ƒ�0 D ƒ�1 D ; as in this case the complex
is actually the same as the dual complex of Cth.†1; †0/.

Structure maps and continuation element. The new Cthulhu complex carries struc-
ture maps which satisfy the A1-equations. More precisely, for any .d C 1/-tuple
.†0; : : : ; †d / of pairwise transverse exact Lagrangian cobordisms, we define a map

md WCthC.†d�1; †d /˝ � � � ˝ CthC.†0; †1/! CthC.†0; †d /

by counts of SFT-buildings consisting of pseudo-holomorphic discs with boundary
on the †i ’s and asymptotic to Reeb chords and intersection points. Then, for any
1 � k � d and sub-tuple .†i0 ; : : : ; †ik / with 0 � i0 < � � � < ik � d , one has

kX
jD1

k�jX
nD0

mk�jC1.id˝k�jC1˝mj ˝ id˝n/ D 0 (1)

where the inner mj has domain

CthC.†inCj�1
; †inCj

/˝ � � � ˝ CthC.†in ; †inC1
/

and mk�jC1 has domain

CthC.†ik�1
; †ik /˝ � � � ˝ CthC.†in ; †inCj

/˝ � � � ˝ CthC.†i0 ; †i1/:

In the case when†1 is a suitable small Hamiltonian perturbation of†0 one estab-
lishes the existence of a continuation element in CthC.†0; †1/ (see Section 7 for a
precise description of the Hamiltonian perturbation †1).

Theorem 1. There exists an element e†0;†1
2 CthC.†0; †1/ satisfying that for any

exact Lagrangian cobordism †2 transverse to †0 and †1 the map

m2. � ; e†0;†1
/WCthC.†1; †2/! CthC.†0; †2/

is a quasi-isomorphism.

Finally, we use these ingredients to construct a unital A1-category Fuk.R � Y /
via localization, in the same spirit as the construction of the wrapped Fukaya category
of Liouville sectors in [20].
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Theorem 2. There exists a unital A1-category Fuk.R � Y / whose objects are Lag-
rangian cobordisms equipped with augmentations of its negative ends and whose
morphism spaces in the cohomological category satisfy H� homFuk.R�Y /.†0; †1/ Š
H�.CthC.†0; †1/;m1/ whenever †0 and †1 are transverse.

The homology of the Rabinowitz complex CthC.†0; †1/ is invariant under cyl-
indrical at infinity Hamiltonian isotopies (in particular under Legendrian isotopies of
its ends). This implies that the quasi-equivalence class of the category Fuk.R � Y /
does not depend on choices of representatives of Hamiltonian isotopy classes of Lag-
rangian cobordisms involved in its construction by localization (see Section 8.2).

Behaviour under concatenation. Given a pair .V0 ˇ W0; V1 ˇ W1/ of concaten-
ated cobordisms, we describe the complex CthC.V0 ˇW0; V1 ˇW1/ in terms of the
complexes CthC.V0; V1/ and CthC.W0; W1/ and some transfer maps fitting into a
diagram

CthC.V0; V1/
�W

1 ��� CthC.V0 ˇW0; V1 ˇW1/
bV

1��! CthC.W0; W1/

We prove that �W1 and bV1 are chain maps which induce a Mayer–Vietoris sequence
and moreover preserve the continuation element in homology.

In addition, the transfer maps generalize also to families of maps ¹�d ºd�1 and
¹bd ºd�1 satisfying the A1-functor equations. That is to say, for a .d C 1/-tuple of
concatenated cobordisms .V0 ˇW0; : : : ; Vd ˇWd / there are maps

mVˇW
d

WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.V0 ˇW0; Vd ˇWd /;

�Wd WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.V0; Vd /;

bVd WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.W0; Wd /

such that for all 1 � k � d and sub-tuple .Vi0 ˇWi0 ; : : : ; Vik ˇWik / with 0 � i0 <
� � � < ik � d , the maps ¹mVˇW

k
º1�k�d satisfy the A1-equations (1), and the maps

¹�Wk º1�k�d and ¹bVk º1�k�d satisfy

kX
sD1

X
j1C���CjsDk

mV
s .�

W
js
˝ � � � ˝�Wj1

/

C
kX

jD1

jX
nD0

�Wk�jC1.id
˝k�jC1˝mVˇW

j ˝ id˝n/ D 0;
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kX
sD1

X
j1C���CjsDk

mW
s .b

V
js
˝ � � � ˝ bVj1

/

C
kX

jD1

jX
nD0

bVk�jC1.id
˝k�jC1˝mVˇW

j ˝ id˝n/ D 0:

2. Background

2.1. Geometric set-up

Throughout the paper, we will be working with a contact manifold .Y;˛/ given by the
contactization of a Liouville manifold. We briefly recall the definition of these terms.
A Liouville domain . yP ; �/ is the data of a 2n-dimensional manifold with boundary yP
as well as a 1-form � on yP such that d� is symplectic, and the Liouville vector field
V defined by �V d� D � is required to point outward on the boundary @ yP . In partic-
ular, �

j@ yP
is a contact form on @ yP . The completion of . yP ; �/ is the exact symplectic

manifold .P D yP [
@ yP
Œ0;1/ � @ yP ;! D dˇ/, where ˇ equals � in yP and e��

j@ yP
on

Œ0;1/� @ yP where � is the coordinate on Œ0;1/. The Liouville vector field smoothly
extends to the whole manifold P . We call .P; ˇ/ a Liouville manifold.

The contactization of a Liouville manifold .P; ˇ/ is the contact manifold .Y; ˛/
where Y is the 2nC 1-dimensional manifold Y D P �R and ˛ D dzC ˇ, where z is
the R-coordinate. The Reeb vector field of ˛ is given byR˛ D @z so in particular there
are no closed Reeb orbits in Y . A Legendrian submanifold of .Y;˛/ is a n-dimensional
submanifoldƒ satisfying ˛jTƒ D 0, and Reeb chords ofƒ are trajectories of the Reeb
flow starting and ending on ƒ. We consider only Legendrian with a finite number of
isolated Reeb chords, and denote R.ƒ/ the set of Reeb chords of ƒ. These are called
pure Reeb chords. Given two Legendrian ƒ0 and ƒ1, we denote R.ƒ1; ƒ0/ the set
of Reeb chords starting onƒ0 and ending onƒ1, these are called mixed Reeb chords.

The main objects under consideration in this article are exact Lagrangian cobord-
isms between Legendrian submanifolds of Y . These are Lagrangian submanifolds in
the symplectization of .Y;˛/ which is the symplectic manifold .R� Y;d.et˛// where
t is the R-coordinate.

Definition 1. Given ƒ�; ƒC � Y Legendrian, an exact Lagrangian cobordism from
ƒ� to ƒC is a submanifold † � R � Y such that there exists

• T > 0 such that

(1) † \ ŒT;1/ � Y D ŒT;1/ �ƒC,

(2) † \ .�1;�T � � Y D .�1;�T � �ƒ�,

(3) † \ Œ�T; T � � Y is compact;
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• f W†! R a smooth function called a primitive of †, satisfying

(1) et˛jT† D df ,

(2) f is constant on ŒT;1/ �ƒC and .�1;�T � �ƒ�.

In all the paper, we will assume that the coefficient field is Z2. Moreover, we
assume that 2c1.P /D 0, and that the Legendrian submanifolds and Lagrangian cobor-
disms between them have Maslov number 0. This will ensure a well-defined Z grading
for the various complexes that will appear.

2.2. Almost complex structure

Given a family of pairwise transverse Lagrangian cobordisms .†0; : : : ; †d / with
Legendrian cylindrical ends R�ƒ˙i , 0 � i � d , we consider several types of moduli
spaces of pseudo-holomorphic discs with boundary on those Lagrangian cobordisms.
Those discs are asymptotic to intersection points and/or Reeb chords of the links
ƒ˙0 [ � � � [ ƒ˙d . First, let us describe briefly the almost complex structure we con-
sider on the symplectic manifold .R� Y;d.et˛//, in order to define the moduli spaces
mentioned above and achieve transversality.

An almost complex structure J on .R � Y; d.et˛// is called cylindrical if

• it is compatible with d.et˛/,

• J.@t / D R˛ ,

• J.�/ D � ,

• J is invariant by translation along the t -coordinate axis.

We denote Jcyl.R� Y / the set of cylindrical almost complex structures on R� Y . An
almost complex structure on P is called admissible if it is cylindrical on P n yP outside
of a compact set. The cylindrical lift of an admissible almost complex structure JP
on P is the unique cylindrical almost complex structure zJP on R � .P �R/ making
the projection �P WR � .P �R/! P holomorphic.

Let JC and J� be two cylindrical almost complex structures which coincide out-
side of R �K for some compact K � Y . Assuming that the cobordisms we consider
are all cylindrical outside of Œ�T; T � � Y for some fixed T > 0, we take an almost
complex structure J which is equal to J� on .�1;�T /� Y , to JC on .T;C1/� Y ,
and to the cylindrical lift of an admissible complex structure JP on Œ�T;T �� .Y nK/.
We denote JJC;J�.R � Y / this class of almost complex structures on R � Y .

In order to achieve transversality for the moduli spaces later on, we will finally
need domain dependent almost complex structures with values in JJC;J�.R � Y /,
i.e., families of almost complex structures in JJC;J�.R � Y / parametrized by the
domains of the pseudo-holomorphic discs (punctured Riemann discs), which is part
of a universal choice of perturbation data, see [27, Section (9h)].
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2.3. Moduli spaces of curves with boundary on Lagrangian cobordisms

Let RdC1 be the space of d C 1 cyclically ordered points y D .y0; : : : ;yd /2 .S1/dC1
quotiented by the automorphisms of the unit disc D2. This is the Deligne–Mumford
space. For y 2 R, let us denote Sy D D2n¹y0; : : : ; yd º. In a sufficiently small
neighborhood of the punctures yi in the disc, we have strip-like end coordinates
Œsi ; ti � 2 .0;C1/ � Œ0; 1�, 0 � i � d .

Let us denote †0;:::;d D .†0; : : : ; †d / a d C 1-tuple of Lagrangian cobordisms
satisfying the following:

• if †0 D †d , then †i D †0 for all 1 � i � d ,

• if †0 ¤ †d , then the ordered family †0; : : : ; †d is of the form

†i0 ; : : : ; †i0 ; †i1 ; : : : ; †i1 ; †i2 ; : : : ; †ik ;

with †i0 WD †0 and †ik WD †d , and such that †i0 ; †i1 ; : : : ; †id are pairwise
transverse. In other words, we allow only consecutive repetition of a given Lag-
rangian.

The set of asymptoticsA.†i�1;†i / associated to the pair .†i�1;†i / consists of Reeb
chords in R.ƒ˙i�1 [ ƒ˙i /, and intersection points in †i�1 \ †i when the cobord-
isms are transverse. Consider a d C 1-tuple of asymptotics .a0; : : : ; ad /, with ai 2
A.†i�1; †i /, †�1 WD †d , and ƒ˙�1 WD ƒ˙d . If †i�1 D †i , then ai is called a pure
asymptotic, and it is a pure Reeb chord ofƒ˙i�1 Dƒ˙i , while if†i�1 ¤†i , then ai is
called a mixed asymptotic. Given J an almost complex structure on R� Y , we denote
M†0;:::;d ;J .a0I a1; : : : ; ad / the set of pairs .y; u/ where

(1) y 2 RdC1,

(2) uW .Sy ; j /! .R � Y; J / is a pseudo-holomorphic map (with j the standard
almost complex structure on D2),

(3) u maps the boundary of Sr contained between yi and yiC1 for 0 � i � d
(ydC1 WD y0) to †i ,

(4) limz!yi
u.z/ D ai .

Let us specify the condition (4) in the case ai is a Reeb chord, for which we also
denote ai W Œ0; 1�! Y a parametrization. We say that

• u has a positive asymptotic to ai at yi if limsi!C1 u.si ; ti / D ai .ti /,
• u has a negative asymptotic to ai at yi if limsi!C1 u.si ; ti / D ai .1 � ti /.
Remark 1. Note that the fact that a mixed Reeb chord asymptotic is a positive or
a negative asymptotic is entirely determined by the “jump” of the chord. Namely,
positive mixed Reeb chord asymptotics are mixed chords of ƒCi [ ƒCiC1 from ƒCi
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to ƒCiC1, and negative mixed Reeb chord asymptotics are mixed Reeb chords of
ƒ�i [ƒ�iC1 from ƒ�iC1 to ƒ�i .

Notations 1. From now on, we denote the Lagrangian boundary condition for discs
only by the family .†i0 ; †i2 ; : : : ; †ik /, even though the pseudo-holomorphic discs
we will consider can have pure Reeb chords asymptotics too.

In the following two subsections we describe the several types of moduli spaces
we will make use of later.

2.3.1. Moduli spaces of curves with cylindrical boundary conditions. The Lag-
rangian boundary conditions we consider here are trivial cylinders over Legendrians,
and we take an almost complex structure J 2 Jcyl.R� Y /. If the boundary conditions
consists of only one cylinder R �ƒ then we denote

MR�ƒ;J .

CI 
1; : : : ; 
d /

the moduli space of discs with boundary on R �ƒ, with a positive asymptotic to 
C

and negative asymptotics at 
i for 1 � i � d . We call discs in such moduli spaces
pure, as all asymptotics are pure. In case the Lagrangian conditions is a family of
distinct transverse cylinders R �ƒ0;:::;d WD .R �ƒ0; : : : ;R �ƒd / with d > 0, we
consider the following spaces.

(1) The banana-type moduli spaces

MR�ƒ0;:::;d ;J .
d;0I ı0; 
1; ı1; : : : ; 
d ; ıd /

where 
d;0 2 R.ƒ0; ƒd / is a mixed Reeb chord from ƒd to ƒ0, where

i 2R.ƒi�1;ƒi /[R.ƒi ;ƒi�1/ are mixed chords ofƒi�1 [ƒi , and where
ıi are words of Reeb chords of ƒi and are negative asymptotics. Note that,
according to Remark 1, 
d;0 is a positive Reeb chord asymptotic and then 
i
is a positive asymptotic if it is in R.ƒi ; ƒi�1/ and a negative one if it is in
R.ƒi�1; ƒi /.

(2) The �-type moduli spaces

MR�ƒ0;:::;d ;J .
0;d I ı0; 
1; ı1; : : : ; 
d ; ıd /

where 
0;d 2 R.ƒd ; ƒ0/ is a negative Reeb chord asymptotic and with the
same condition as above on asymptotics 
i and ıi .

The discs in moduli spaces of type (1) and (2) are called mixed as d C 1 asymptot-
ics are mixed. There is a R-action by translation on moduli spaces with cylindrical
Lagrangian boundary condition, we use the notation eM to denote the quotient of the
moduli space M by R.
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2.3.2. Moduli spaces of curves with boundary on non-cylindrical Lagrangians.
The Lagrangian boundary conditions consist of Lagrangian cobordisms .†0; : : : ;†d /
such that at least one is not a trivial cylinder. Denote J a domain dependent almost
complex structure with values in JJC;J�.R � Y /. If d D 0, † WD †0 is a non-trivial
cobordism from ƒ� to ƒC and we denote

M†;J.

CI 
1; : : : ; 
d /

the moduli space of discs where 
 2 R.ƒC/ is a positive Reeb chord asymptotic and

i 2 R.ƒ�/ are negative Reeb chord asymptotics. We call again those discs pure. If
the Lagrangian boundary condition consists of several distinct Lagrangians†0;:::;d D
.†0; : : : ; †d / where d > 0 and †i is a cobordism from ƒ�i to ƒCi , then we consider
the following mixed moduli spaces:

(1) the banana-type moduli space M†0;:::;d ;J.
d;0I ı0; a1; ı1; : : : ; ad ; ıd /,
(2) the m0-type moduli space M†0;:::;d ;J.xI ı0; a1; ı1; : : : ; ad ; ıd /,
(3) the �-type moduli space M†0;:::;d ;J.
0;d I ı0; a1; ı1; : : : ; ad ; ıd /,

where 
d;0 2R.ƒC0 ;ƒ
C

d
/ is a positive Reeb chord asymptotic, 
0;d 2R.ƒ�

d
;ƒ�0 / is

a negative Reeb chord asymptotic, ai are intersection points in †i�1 \ †i or mixed
Reeb chord asymptotics in R.ƒCi ; ƒ

C

i�1/ [R.ƒ�i�1; ƒ
�
i /, and ıi are words of pure

Reeb chords of ƒ�i .

2.4. Action and energy

Consider a d C 1-tuple of pairwise disjoint cobordisms .†0; : : : ;†d /with cylindrical
ends over ƒ˙i . Let T > 0 and " > 0 such that all cobordisms are cylindrical outside
of Œ�T C "; T � "� � Y . The length of a chord 
 is defined by `.
/ WD R



˛. Then,

the action of asymptotics is defined as follows:

a.
/ D eT `.
/C cj � ci for 
 2 R.ƒCi ; ƒ
C

j /;

a.x/ D fj .x/ � fi .x/ for x 2 †i \†j ; i < j;
a.
/ D e�T `.
/ for 
 2 R.ƒ�i ; ƒ

�
j /;

a.
/ D e˙T `.
/ for 
 2 R.ƒ˙/:

Given a function �WR! R satisfying for some " > 0

�.t/ D

8̂̂<̂
:̂
eT for t � T;
et for � T C " � t � T � ";
e�T for t � �T;
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and �0.t/ � 0, one defines the energy of a pseudo-holomorphic disc u to be

E.u/ D
Z
u

d.�.t/˛/

This energy is always positive and vanishes if and only if the disc is constant. The
energy of the pseudo-holomorphic discs considered in this paper is finite and can be
expressed in terms of the action of the asymptotics.

Proposition 1. For the moduli spaces described in Sections 2.3.1 and 2.3.2, we have
the following:

(1) if u 2MR�ƒ.

CI 
1; : : : ; 
d /, then

E.u/ D a.
C/ �
X
i

a.
i /I

(2) if u 2MR�ƒ0;:::;d
.
d;0I ı0; 
1; ı1; : : : ; 
d ; ıd /, then

E.u/ D a.
d;0/C
X


i2R.ƒi ;ƒi�1/

a.
i / �
X


i2R.ƒi�1;ƒi /

a.
i / �
dX
iD0

a.ıi /I

(3) if u 2MR�ƒ0;:::;d
.
0;d I ı0; 
1; ı1; : : : ; 
d ; ıd /, then

E.u/ D �a.
0;d /C
X


i2R.ƒi ;ƒi�1/

a.
i / �
X


i2R.ƒi�1;ƒi /

a.
i / �
dX
iD0

a.ıi /I

(4) if u 2M†.

CI 
1; : : : ; 
d /, then

E.u/ D a.
C/ �
X
i

a.
i /I

(5) if u 2M†0;:::;d
.
d;0I ı0; a1; ı1; : : : ; ad ; ıd /, then

E.u/ D a.
d;0/C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

a.ai / �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

a.ai / �
X

ai2†i�1\†i

a.ai / �
dX
iD0

a.ıi /I

(6) if u 2M†0;:::;d
.xI ı0; a1; ı1; : : : ; ad ; ıd /, then

E.u/ D a.x/C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

a.ai / �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

a.ai / �
X

ai2†i�1\†i

a.ai / �
dX
iD0

a.ıi /I

(7) if u 2M†0;:::;d
.
0;d I ı0; a1; ı1; : : : ; ad ; ıd /, then

E.u/ D �a.
0;d /C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

a.ai / �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

a.ai / �
X

ai2†i�1\†i

a.ai /�
dX
iD0

a.ıi /:
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2.5. Grading

Given cobordisms .†0; : : : ; †d / as above, we associate a grading to the asymptotics
of pseudo-holomorphic discs with boundary on †0;:::;d using the Conley–Zehnder
index. We refer for example to [14] for the definition of this index.

Grading of Reeb chords. Consider ƒ � Y a connected Legendrian. Then the grad-
ing of a Reeb chord 
 2 R.ƒ/ is defined to be

j
 j D CZ.
/ � 1

where CZ.
/ denotes the Conley–Zehnder index of a capping path for 
 . Note that it
does not depend on the choice of capping path as by hypothesis we consider Maslov
0 Legendrians, and it does not depend neither on a choice of symplectic trivialization
of TP along the capping path, as 2c1.P / D 0. If the Legendrian ƒ is not connected,
there are no capping paths for Reeb chords connecting two distinct components so
some additional choices are needed (see [12]). If 
 is a chord from ƒj to ƒi , one
fixes points pj 2 ƒj and pi 2 ƒi and a path �i;j from pi to pj as well as a path of
Lagrangians from Tpi

�P .ƒi / to Tpj
�P .ƒj /. Then, one takes as capping path for 
 a

path from the ending point of 
 to pi , followed by �i;j , followed by a path from pj

to the starting point of 
 . The grading of mixed chords depends on those additional
paths but the difference in grading of two chords does not.

Grading of intersection points. Let p 2 †i \ †j , for i < j . Generically, the
immersed Lagrangian †i [ †j lifts to an embedded Legendrian submanifold
z†i [ z†j � ..R � Y / �Ru; duC et˛/ and p is the projection of a Reeb chord 
p of
z†i [ z†j . If 
p is a chord from z†j to z†i , then jpj D CZ.
p/. If 
p is a chord from z†i
to z†j , then jpj D nC 1�CZ.
p/. These Conley–Zehnder indices are computed after
a choice of path connecting z†i and z†j as explained above for the non-connected case.
Again, the vanishing of the Maslov number for Lagrangian cobordisms, and of the first
Chern class of P imply that the grading of intersection points does not depend on the
choices made, except paths to connect any two distinct components of the Legendrian
lift.

The expected dimension of the moduli spaces described in Sections 2.3.1 and 2.3.2
can then be expressed in terms of the grading of asymptotics; this is the purpose of
the next proposition.

Proposition 2. Consider the moduli spaces described in Sections 2.3.1 and 2.3.2. For
those where it applies denote jC the number of positive mixed Reeb chord asymptotics
among ¹
1; : : : ; 
d º or ¹a1; : : : ; ad º, and l the number of intersection points asymp-
totics among ¹a1; : : : ; ad º. Moreover, we assume that negative asymptotics to pure
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Reeb chords ıi have degree 0. Then we have

dim eMR�ƒ.

CI 
1; : : : ; 
d / D j
Cj �

X
j
i j � 1;

dim eMR�ƒ0;:::;d
.
d;0I ı0; 
1; ı1; : : : ; 
d ; ıd /

D j
d;0j C
X


i2R.ƒi ;ƒi�1/

j
i j �
X


i2R.ƒi�1;ƒi /

j
i j C .2 � n/jC � 1;

dim eMR�ƒ0;:::;d
.
0;d I ı0; 
1; ı1; : : : ; 
d ; ıd /

D �j
0;d j C
X


i2R.ƒi ;ƒi�1/

j
i j �
X


i2R.ƒi�1;ƒi /

j
i j C .2 � n/.jC � 1/ � 1;

dim M†.

CI 
1; : : : ; 
d / D j
Cj �

X
j
i j;

dim M†0;:::;d
.
d;0I ı0; a1; ı1; : : : ; ad ; ıd /

D j
d;0j C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

jai j �
X

ai2†i�1\†i

jai j �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

jai j C .2 � n/jC C l;

dim M†0;:::;d
.xI ı0; a1; ı1; : : : ; ad ; ıd /

D jxj C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

jai j �
X

ai2†i�1\†i

jai j �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

jai j C .2 � n/jC C l � 2;

dim M†0;:::;d
.
0;d I ı0; a1; ı1; : : : ; ad ; ıd /

D �j
0;d j C
X

ai2R.ƒ
C
i
;ƒ
C
i�1

/

jai j �
X

ai2†i�1\†i

jai j �
X

ai2R.ƒ�
i�1

;ƒ�
i
/

jai j C nC .2 � n/jC C l � 2:

Notations 2. Given a moduli space M†0;:::;d
.a0I a1; : : : ; ad /, we add an exponent

indicating the (expected) dimension of it as a smooth manifold:

Mi
†0;:::;d

.a0I a1; : : : ; ad /:

This dimension is equal to the index of the Fredholm operator obtained by linearizing
N@ at a pseudo-holomorphic disc u.

2.6. Compactness

This section sums up what will be used to prove almost all the results in this paper.
Namely, once transversality is achieved simultaneously for all moduli spaces
considered above, which is possible using a domain dependent almost complex struc-
ture, 0-dimensional (eventually after quotienting by an R-action) moduli spaces are
compact manifolds. We call discs in these moduli spaces rigid discs. Then, 1-dimen-
sional moduli spaces are not necessarily compact and can be compactified by adding
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broken discs. The goal of this section is to describe the types of broken discs one can
find in the boundary of the compactification of the moduli spaces in Sections 2.3.1
and 2.3.2.

Consider a 1-dimensional moduli space

M1
L0;:::;d

.a0I ı0; a1; ı1; : : : ; ıd�1; ad ; ıd /

of curves whereL0;:::;d DR�ƒ0;:::;d or†0;:::;d (in the first case we have M1
L0;:::;d

DfM2
L0;:::;d

), with mixed asymptotics ai and asymptotics to words of pure Reeb
chords ıi . By results in [5] and [1, Theorem 3.20], a sequence of curves in such a mod-
uli space admits a subsequence converging to a pseudo-holomorphic building (see the
cited references for a precise definition) consisting of several pseudo-holomorphic
discs together with nodes connecting these components and choices of asymptotics
for these nodes, satisfying the following:

• each disc in the pseudo-holomorphic building has positive energy, so in particular
a component with only Reeb chords asymptotics must have at least one positive
Reeb chord asymptotic;

• each disc has a non-negative Fredholm index because of the regularity of the
almost complex structure;

• if the building consists of the discs u1; : : : ; uk , then the glued solution u has
index ind.u/ D � CPi ind.ui /, where � is the number of nodes asymptotic to
intersection points.

Let us now precise what these conditions imply in particular in the case of moduli
spaces described in the previous sections.

1. Cylindrical boundary condition. Consider a 1-dimensional moduli spacefM2
R�ƒ0;:::;d

.
0I ı0; 
1; ı1; : : : ; ıd�1; 
d ; ıd /:

The conditions described above imply that a sequence of discs in this moduli space
admits a subsequence which limits to a pseudo-holomorphic building consisting of
two index 1 pseudo-holomorphic discs with boundary on cylinders, and which glue
together along a node asymptotic to a Reeb chord. Remark that this Reeb chord can
be pure or mixed, we will later be interested only in the case of nodes asymptotic to
mixed Reeb chords, see Remark 4.

2. Non-cylindrical boundary conditions. Consider a 1-dimensional moduli space

M1
†0;:::;d

.a0I ı0; a1; ı1; : : : ; ıd�1; ad ; ıd /

of curves with boundary on the cobordisms †0; : : : ; †d , with mixed asymptotics
ai and asymptotics to words of pure Reeb chords ıi . A sequence of discs in such
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a moduli space admits a subsequence converging to a pseudo-holomorphic building
which is

(a) either a pseudo-holomorphic building with two index 0 components (which
are not trivial strips) with boundary on non-cylindrical parts of the cobord-
isms and connected by node asymptotic to an intersection point, or

(b) a pseudo-holomorphic building consisting of some index 0 components with
boundary on the non-cylindrical parts of the cobordisms, and one index 1
component with boundary on the positive or negative cylindrical ends of the
cobordisms, connected to each index 0 component via a node asymptotic to
a Reeb chord.

Notations 3. We denote @M2
R�ƒ0;:::;d

WD @fM2
R�ƒ0;:::;d

, and @M1
†0;:::;d

the set of
pseudo-holomorphic buildings arising at the boundary of the compactification of the
corresponding moduli spaces.

2.7. Legendrian contact homology

Consider a compact Legendrian submanifoldƒ� Y . We denote by C.ƒ/ the Z2-vec-
tor space generated by Reeb chords ofƒ. The Legendrian contact homology ofƒ is an
invariant of ƒ up to Legendrian isotopy, introduced by Chekanov in [10] and Eliash-
berg [18] (see also [14,15]). It is the homology of a differential graded algebra (DGA)
.A.ƒ/; @/ associated to ƒ. The algebra A.ƒ/, called the Chekanov–Eliashberg
algebra of ƒ, is the unital tensor algebra of C.ƒ/, i.e.,

A.ƒ/ D
M
i�0

C.ƒ/˝i

with C.ƒ/˝0 WD Z2. The grading of Reeb chords is as defined in Section 2.5. Given
a cylindrical almost complex structure, the differential @ is defined as follows. For

 2 R.ƒ/, we have

@
 D
X
d�0

X

i2R.ƒ/

fM1
R�ƒ.


CI 
1; : : : ; 
d /
1
2 : : : 
d

The differential @ extends to the whole algebra by Leibniz rule, and satisfies @2 D 0.
We consider the SFT definition of the differential here, which has been proved in [12]
to give the same invariant as the original version with a differential defined by a count
of discs in P with boundary on �P .ƒ/. For a generic cylindrical almost complex
structure, the moduli spaces fM1

R�ƒ.
 I 
1; : : : ; 
d / are compact 0-dimensional man-
ifolds. The Legendrian contact homology of ƒ, denoted LCH�.ƒ/, does not depend
on a generic choice of almost complex structure and is invariant under Legendrian
isotopy.
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Consider now an almost complex structure J 2 JJC;J�.R � Y /. It is proved
in [17] that an exact Lagrangian cobordism † from ƒ� to ƒC induces a DGA-map

ˆ†WA.ƒC/! A.ƒ�/

defined by

ˆ†.
/ D
X
d�0

X

i2R.ƒ/

M0
†.


CI 
1; : : : ; 
d /
1
2 : : : 
d

When † is a Lagrangian filling of ƒ, i.e., ƒ� D ;, then ˆ† is a map from A.ƒ/ to
A.;/ WD Z2. It is an instance of an augmentation of A.ƒ/. More generally, we have
the following definition.

Definition 2. An augmentation of .A.ƒ/; @/ over Z2 is a map "WA.ƒ/! Z2 satis-
fying

(1) " ı @ D 0,

(2) ".
/ D 0 if j
 j ¤ 0,

(3) ".1/ D 1,

(4) ".
1
2/ D ".
1/".
2/,
In other words, it is a unital DGA-map when considering Z2 as a DGA with a vanish-
ing differential.

Remark 2. The condition (2) in the definition above means that the augmentations
we consider are graded (more precisely 0-graded). In this paper we will only consider
0-graded augmentations, although we could as well take them �-graded for � a posit-
ive integer (meaning that all chords with degree 0 mod � can potentially be augmen-
ted) or even ungraded (any chord can be augmented). If we consider �-graded, resp.
ungraded, augmentations, the complexes appearing later in the paper and involving
augmentations become �-graded, resp. ungraded, as well as some higher order opera-
tions being part of some A1-structure.

Chekanov made use of augmentations to linearize the DGA .A.ƒ/; @/, lead-
ing to finite dimensional invariants called linearized Legendrian contact homolo-
gies. Bourgeois and Chantraine [4] generalized this idea using two augmentations
instead of one: assume A.ƒ/ admits augmentations "0; "1, then there is a complex
.LCC"0;"1

� .ƒ/; @
"0;"1

1 / where LCC"0;"1
� .ƒ/ WD C.ƒ/ and for a Reeb chord 
 ,

@
"0;"1

1 .
/ D
X
d�0

X

1;:::;
d2R.ƒ/

dX
iD1

fM1
R�ƒ.


CI 
1; : : : ; 
d /"0.
1 : : : 
i�1/
� "1.
iC1 : : : 
d /
i :
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This map satisfies .@"0;"1

1 /2 D 0. The Legendrian contact homology of ƒ bilinearized
by ."0; "1/ is the homology of this complex, denoted LCH"0;"1

� .ƒ/. The dual complex
.LCC�"0;"1

.ƒ/;�1"0;"1
/ is the complex of the bilinearized Legendrian contact cohomo-

logy ofƒ, LCH�"0;"1
.ƒ/. For Reeb chords 
;ˇ 2R.ƒ/, if we denote by h@"0;"1

1 .ˇ/; 
i
the coefficient of 
 in @"0;"1

1 .ˇ/, then we have

�1"0;"1
.
/ D

X
ˇ2R.ƒ/

h@"0;"1

1 .ˇ/; 
iˇ

When "0 D "1, these complexes correspond to the linearized Legendrian contact
(co)homology complexes defined by Chekanov. Finally, given an augmentation "� of
A.ƒ�/ and an exact Lagrangian cobordism ƒ� �† ƒC, it induces an augmentation
"C WD "� ıˆ† of A.ƒC/.

2.8. The Cthulhu complex Cth

The Cthulhu homology is the homology of a Floer-type complex defined in [9] for
a pair ƒ�0 �†0

ƒC0 and ƒ�1 �†1
ƒC1 of transverse exact Lagrangian cobordisms in

R � Y such that the algebras A.ƒ�0 / and A.ƒ�1 / admit augmentations "�0 and "�1
respectively. The Cthulhu complex .Cth.†0; †1/;d"�

0
;"�

1
/ has three types of generat-

ors,

Cth.†0; †1/ D C.ƒC0 ; ƒ
C
1 /Œ2�˚ CF.†0; †1/˚ C.ƒ�0 ; ƒ

�
1 /Œ1�

where C.ƒC0 ;ƒ
C
1 /Œ2� denotes the Z2-vector space generated by Reeb chords fromƒC1

toƒC0 with a grading shift, namely if 
 2 C.ƒC0 ;ƒ
C
1 /Œ2� then j
 jCth.†0;†1/ D j
 j C 2,

CF.†0; †1/ is the Z2-vector space generated by intersection points in †0 \†1, and
C.ƒ�0 ; ƒ

�
1 / is generated by Reeb chords from ƒ�1 to ƒ�0 . The differential is given by

the matrix

d"�
0
;"�

1
D
 dCC dC0 dC�

0 d00 d0�

0 d�0 d��

!
:

It is a degree 1map defined by a count of rigid pseudo-holomorphic discs with bound-
ary on the cobordisms, as schematized on Figure 1. The study of broken discs arising
at the boundary of the compactification of 1-dimensional moduli spaces gives that
d"�

0
;"�

1
squares to 0, see [9, Theorem 4.1].

Denote by .CF�1.†0; †1/;m�11 / the quotient complex of the Cthulhu complex
Cth.†0; †1/, with CF�1.†0; †1/ D CF.†0; †1/˚ C.ƒ�0 ; ƒ

�
1 /Œ1� and

m�11 D
�
d00 d0�

d�0 d��

�
:
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†1 [†2

R .ƒ1 [ƒ2 /

out out
out out in

out in outin

in

00 000

1 1

in in

Figure 1. Curves contributing to the differential @"�0 ;"�1 , “in” stands for input and “out” for
output. The “0” and “1” indicate the Fredholm index of the respective discs.

In [22] the author proved that given a triple of pairwise transverse cobordisms†0;†1
and †2, there is a non-trivial map

m�12 WCF�1.†1; †2/˝ CF�1.†0; †1/! CF�1.†0; †2/

satisfying the Leibniz rule

m�12 .m�11 ˝ id/Cm�12 .id˝m�11 /Cm�11 ım�12 D 0;

see Section 5.1 for more details.

3. The complex CthC

3.1. Definition of the complex

In this section, we define the Rabinowitz complex CthC.†0; †1/ for a pair of trans-
verse exact Lagrangian cobordismsƒ�0 �†0

ƒC0 andƒ�1 �†1
ƒC1 . We assume again

that A.ƒ�i / admit augmentations "�i for i D 0; 1, inducing augmentations "Ci of
A.ƒCi /. The complex CthC.†0; †1/ is generated by three types of generators:

CthC.†0; †1/ D C.ƒC1 ; ƒ
C
0 /
�Œn � 1�˚ CF.†0; †1/˚ C.ƒ�0 ; ƒ

�
1 /Œ1�

If we denote j � jCthC the grading of generators in CthC.†0; †1/, then we have

j
01jCthC D n � 1 � j
01j; for 
01 2 C.ƒC1 ; ƒ
C
0 /
�Œn � 1�;

jxjCthC D jxj; for x 2 CF.†0; †1/;

j�10jCthC D j�10j C 1; for �10 2 C.ƒ�0 ; ƒ
�
1 /Œ1�:

The difference on generators between CthC.†0; †1/ and the original Cthulhu com-
plex Cth.†0; †1/ in [9] is that the generators that are Reeb chords in the positive end
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are chords from ƒC0 to ƒC1 in CthC.†0; †1/, whereas they are chords from ƒC1 to
ƒC0 in Cth.†0; †1/. The differential on CthC.†0; †1/ is then given by

m
"�

0
;"�

1

1 D
 �C1 0 0

d0C d00 d0�

b�1 ı�†1 b�1 ı�†1 b�1

!

with the following conventions.

(1) �C1 WC.ƒC1 ; ƒC0 /�Œn � 1�! C.ƒC1 ; ƒ
C
0 /
�Œn � 1� is defined by

�C1 .

C
01/ D

X

�

01

X
�i

# fM1
R�ƒC

01

.
�01I �0; 
C01; �1/"C0 .�0/"C1 .�1/
�01

and is of degree 1 according to Proposition 2.

(2) m0
1 WD d0C C d00 C d0�WCthC.†0; †1/! CF.†0; †1/ with

d0C.

C
01/ D

X
x

X
ıi

#M0
†0;†1

.xI ı0; 
C01; ı1/"�0 .ı0/"�1 .ı1/x;

d00.q/ D
X
x

X
ıi

#M0
†0;†1

.xI ı0; q; ı1/"�0 .ı0/"�1 .ı1/x;

d0�.

�
10/ D

X
x

X
ıi

#M0
†0;†1

.xI ı0; 
�10; ı1/"�0 .ı0/"�1 .ı1/x;

is also of degree 1.

(3) �†1 WCth�C.†0; †1/! Cn�1��.ƒ
�
1 ; ƒ

�
0 / is defined, for a 2 CthC.†0; †1/,

by

�†1 .a/ D
X

01

X
ıi

#M0
†0;†1

.
01I ı0; a; ı1/"�0 .ı0/"�1 .ı1/
01

so in particular it vanishes for energy reasons on C.ƒ�0 ; ƒ
�
1 /. This map is of

degree 0, i.e., j
01j D n� 1� jajCthC where j
01j is as defined in Section 2.5.

(4) Let us denote C�.ƒ�0 ;ƒ
�
1 /DCn�1��.ƒ�1 ;ƒ�0 /˚C ��1.ƒ�0 ;ƒ�1 /. We finally

define the map b�1 WC�.ƒ�0 ; ƒ�1 /! C ��1.ƒ�0 ; ƒ
�
1 / by

b�1 .
/ D
X


C
10

X
ıi

# fM1
R�ƒ�

01
.
10I ı0; 
; ı1/"�0 .ı0/"�1 .ı1/
10

where 
 is a positive asymptotic if it is in C.ƒ�1 ; ƒ
�
0 / and a negative asymp-

totic if it is in C.ƒ�0 ; ƒ
�
1 /. This map is of degree 1.

On Figure 2 are schematized the pseudo-holomorphic curves contributing to the dif-
ferential m

"�
0
;"�

1

1 .
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†0 [†1

R .ƒ0 [ƒ1 /

R .ƒC
0
[ƒC

1
/

in

in in

in
in

in

in

out

out
out outout out

out

1

1 1 1

0

00

0 0

Figure 2. Curves contributing to the differential m
"�0 ;"�1
1

.

Remark 3. In the definition of m
"�

0
;"�

1

1 , all components are related to components of
the differential of Cth.†0; †1/ or Cth.†1; †0/ as follows:

• the map �C1 is the dual of dCC in Cth.†1; †0/, and it is the differential of the
bilinearized Legendrian contact homology ofƒC0 [ƒC1 restricted to C.ƒC1 ;ƒ

C
0 /,

• the map d0C is the dual of dC0 in Cth.†1; †0/,

• the map �†1 restricted to the positive Reeb chords is the dual of dC� in
Cth.†1; †0/ and restricted to intersection points it is the dual of d0� in
Cth.†1; †0/,

• b�1 restricted to C.ƒ�1 ; ƒ
�
0 / is the banana map in Cth.†0; †1/, and restricted to

C.ƒ�0 ; ƒ
�
1 / it is the map d�� in Cth.†0; †1/ that is to say the differential of the

Legendrian contact cohomology of ƒ�0 [ƒ�1 restricted to C.ƒ�0 ; ƒ
�
1 /.

In particular, the Floer complex .CF�1.†0;†1/;m�11 / is a subcomplex of the com-
plex CthC.†0; †1/.

Theorem 3. m
"�

0
;"�

1

1 is a degree 1 map satisfying m
"�

0
;"�

1

1 ım
"�

0
;"�

1

1 D 0.

Remark 4 (@-breaking). Before we prove the theorem, let us give some precision
about some types of pseudo-holomorphic buildings arising as limit of a sequence of
pseudo-holomorphic discs in a 1-dimensional moduli space. Namely, the buildings
containing a non-trivial pure disc are a bit special.

Consider again the case 1. in Section 2.6, i.e., the limit of a sequence of discs with
boundary on trivial cylinders. As we said, it consists of two index 1 discs connected
by a Reeb chord node. If this node is a pure Reeb chord 
 2 R.ƒ/, then the (non-



A1-category of Lagrangian cobordisms in the symplectization of P �R 121

trivial) disc u in the building for which this node is a positive Reeb chord asymptotic
is a pure disc, given the condition we take on the Lagrangian boundary conditions
in Section 2.3, and thus contributes to the differential of 
 in the Legendrian contact
homology DGA of ƒ. Then, applying an augmentation " of A.ƒ/ to all the negative
pure Reeb chord asymptotics of u results in a pseudo-holomorphic curve count con-
tributing to " ı @.
/. The sum over all possible negative pure Reeb chord asymptotics
of a pure disc with positive asymptotic 
 leads in a curve count giving the whole term
" ı @.
/ which vanishes by definition of an augmentation.

Consider now the case 2 (b) in Section 2.6, and the subcase where the index 1
curve that we denote u has boundary on the negative ends of the cobordisms and has
one positive Reeb chord asymptotic which is a pure Reeb chord 
 2 R.ƒ�/. In this
case, for the same reason as above, u is a pure disc, and the contribution of such discs
vanish once we apply an augmentation to pure negative Reeb chords.

In the subcase of 2 (b) where the index 1 curve u has boundary on the positive ends
of the cobordisms, u cannot have a positive asymptotic to a pure Reeb chord because
this is not a node and thus would imply that the sequence of discs we started with
had a positive pure Reeb chord asymptotic. However, there can be one (or several)
index 0 pure curve with a positive asymptotic to a pure chord 
 of ƒC, and with
boundary on a cobordism ƒ� �† ƒC. Such an index 0 curve, call it v, contributes
thus to ˆ†.
/ where ˆ†WA.ƒC/! A.ƒ�/ is the map induced by the cobordism.
Applying the augmentation "� to negative Reeb chord asymptotics of v leads to a
curve count contributing to "� ı ˆ†.
/ D "C.
/ by definition of "C. Fixing 
 and
summing over all possible negative Reeb chords of ƒ� leads in a curve count giving
the term "C.
/.

In this paper, every time we define a map via a count of mixed pseudo-holomorphic
discs in some moduli spaces, we sum over all possible pure negative Reeb chord
asymptotics, to which we apply then the given augmentations of the Legendrian neg-
ative ends. Thus,

(A) the contribution of broken discs having a non-trivial pure disc component
with boundary on cylindrical ends will vanish;

(B) applying the augmentation "�i to negative pure chords in R.ƒ�i / corresponds
to applying "Ci to the potential pure chords asymptotics in R.ƒCi / of a disc
with boundary on the positive cylindrical ends.

This being said, we will now ignore the broken discs of case (A), and the use of the
induced augmentations "Ci when describing the boundary of the compactification of
moduli spaces refers to breakings in case (B).
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Proof of Theorem 3. The degree of m
"�

0
;"�

1

1 follows from Proposition 2. Then, we
have

m
"�

0
;"�

1

1 ım
"�

0
;"�

1

1 D
 �C1 ı�C1 0 0

m21 m22 m23

m31 m32 m33

!
;

where

m21 WD d0C ı�C1 C d00 ı d0C C d0� ı b�1 ı�†1 ;
m22 WD d200 C d0� ı b�1 ı�†1 ;
m23 WD d00 ı d0� C d0� ı b�1 ;
m31 WD b�1 ı�†1 ı�C1 C b�1 ı�†1 ı d0C C .b�1 /2 ı�†1 ;
m32 WD b�1 ı�†1 ı d00 C .b�1 /2 ı�†1 ;
m33 WD b�1 ı�†1 ı d0� C .b�1 /2:

(1) �C1 ı�C1 vanishes because for any 
01 2C.ƒC1 ;ƒ
C
0 /, the discs contributing to

�C1 ı�C1 .
01/ are in one-to-one correspondence with broken curves in the boundary
of the compactification of moduli spaces fM2

R�ƒC
01

.�01I �0; 
; �1/, for all possible
chord �01 2 C.ƒC1 ; ƒ

C
0 / and words of pure Reeb chords �i . Observe that �C1 is in

fact the bilinearized Legendrian homology differential of ƒC0 [ƒC1 restricted to the
subcomplex C.ƒC1 ; ƒ

C
0 /.

(2) For 
01 2 C.ƒC1 ; ƒ
C
0 /, the term

.d0C ı�C1 C d00 ı d0C C d0� ı b�1 ı�†1 /.
01/

is given exactly by the count of broken curves in @M1
†0;†1

.pI ı0; 
01; ı1/ for all
p 2 †0 \†1 and words ıi .

(3) For 
01 2 C.ƒC1 ; ƒ
C
0 /, the term

.b�1 ı�†1 ı�C1 C b�1 ı�†1 ı d0C C .b�1 /2 ı�†1 /.
01/

is given by the count of curves infM1
R�ƒ�

01
.�10I ı00; ˇ01; ı01/ � @M1

†0;†1
.ˇ01I ı0; 
01; ı1/

and

@M2
R�ƒ�

01
.�10I ı00; ˇ01; ı01/ �M0

†0;†1
.ˇ01I ı0; 
01; ı1/

for all �10 2 C.ƒ�0 ; ƒ
�
1 /; ˇ01 2 C.ƒ�1 ; ƒ

�
0 / and words of pure Reeb chords ıi ; ı0i

ofƒ�i . Indeed, the study of @M2
R�ƒ�

01
.�10Iı00;ˇ01;ı01/ gives that the map b�1 restric-

ted to C.ƒC1 ;ƒ
C
0 / satisfies .b�1 /

2 C b�1 ı��1 D 0, where��1 is the obvious analogue
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of �C1 but defined on C.ƒ�1 ; ƒ
�
0 /. Then one can write

.b�1 ı�†1 ı�C1 C b�1 ı�†1 ı d0C C .b�1 /2 ı�†1 /.
01/
D b�1 .�†1 ı�C1 C�†1 ı d0C C��1 ı�†1 /.
01/

and there is a one-to-one correspondence between broken discs contributing to

�†1 ı�C1 C�†1 ı d0C C��1 ı�†1
and broken discs in @M1

†0;†1
.ˇ01I ı0; 
; ı1/.

(4) .d200 C d0� ı b�1 ı �†1 /.x/, for x 2 CF.†0; †1/, counts broken curves in
@M1

†0;†1
.pI ı0; x; ı1/, for all p 2 †0 \†1 and words ıi .

(5) .b�1 ı�†1 ı d00 C .b�1 /2 ı�†1 /.x/ counts broken curves infM1
R�ƒ�

01
.�10I ı00; ˇ01; ı01/ � @M1

†0;†1
.ˇ01I ı0; x; ı1/

and

@M2
R�ƒ�

01
.�10I ı00; ˇ01; ı01/ �M0

†0;†1
.ˇ01I ı0; x; ı1/

for all �10; ˇ01 and words of Reeb chords ıi and ı0i as above.

(6) .d00 ı d0� C d0� ı b�1 /.
10/, for 
10 2 C.ƒ�0 ; ƒ
�
1 /, counts broken curves in

@M1
†0;†1

.pI ı0; 
10; ı1/.
(7) .b�1 ı�†1 ı d0�C .b�1 /2/.
10/D .b�1 /2.
10/ for energy reasons, and vanishes

as b�1 restricted to C.ƒ�0 ; ƒ
�
1 / is the bilinearized Legendrian contact cohomology

differential of ƒ�0 [ ƒ�1 restricted to the subcomplex C.ƒ�0 ; ƒ
�
1 / (observe other-

wise that the broken discs contributing to .b�1 /
2.
10/ are exactly the one appearing in

@M2
R�ƒ�

01
.�10I ı0; 
10; ı1/, for all �10; ı0; ı1).

Notations 4. A few remarks about notations of maps.
(1) Very rigorously, we should write the augmentations involved in the definition

of each map all the time, but we drop it to enlighten the notation.
(2) Given a pair of cobordisms .†0; †1/, we will then write m†

1 for the differen-
tial on CthC.†0; †1/, so without specifying the augmentations, and “†”” stands for
the ordered pair .†0; †1/. If we want to explicit the order, we will sometimes write
m
†0;†1

1 or m
†01

1 . Similarly, we write �†1 instead of �†0;†1

1 , and finally b�1 is a short

notation for b
ƒ�

0
;ƒ�

1

1 and �C1 is a short notation for �
ƒ
C
0
;ƒ
C
1

1 .
(3) We write m†;C

1 , m†;0
1 , and m†;�

1 (or simply mC1 , m0
1, and m�1 when the

pair of cobordisms is clear from the context) the components of the differential with
values in C.ƒC1 ;ƒ

C
0 /
�Œn� 1�, CF.†0;†1/, and C.ƒ�0 ;ƒ

�
1 /Œ1�, respectively, and then

m
†;ij
1 WD m†;i

1 Cm
†;j
1 , for i; j 2 ¹C; 0;�º distinct.
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(4) We will sometimes denote

CFC1.†0; †1/ WD C.ƒC1 ; ƒ
C
0 /
�Œn � 1�˚ CF.†0; †1/;

but observe that contrary to CF�1.†0; †1/, this is not a complex.

Considering the notations above, the components mC1 and m�1 of m†
1 can be

expressed as

mC1 D �C1
m�1 D b�1 ı�†1

where
�†1 WCthC.†0; †1/! Cn�1��.ƒ

�
1 ; ƒ

�
0 /˚ C ��1.ƒ�0 ; ƒ�1 /

is defined by

�†1 .a/ D
´
a if a 2 C.ƒ�0 ; ƒ

�
1 /;

�†1 .a/ otherwise.

Example 1 (Case of concordances). Consider a compact non-degenerate Legendrian
submanifold ƒ � Y , admitting augmentations "0; "1. Consider a 2-copy ƒ.2/ of ƒ
consisting of the components ƒ0 and ƒ1 such that ƒ1 is a copy of ƒ0 WD ƒ per-
turbed by a small negative Morse function f , i.e., ƒ1 is identified with j 1.f / in a
neighborhood ofƒ identified with a neighborhood of the 0-section of J 1.ƒ/, see Fig-
ure 3. The Legendrian ƒ1 inherits a Maslov potential from ƒ0 and the mixed Reeb
chords of ƒ0 [ƒ1 are of three types.

• p-chords: long chords from ƒ1 to ƒ0 corresponding to pure chords of ƒ0,

• q-chords: long chords from ƒ0 to ƒ1 corresponding to pure chords of ƒ0,

• Morse chords: short chords from ƒ1 to ƒ0 corresponding to critical points of f .
Note that an index k critical point of f corresponds to a Morse Reeb chord of
LCH-degree n � k � 1 as f is negative.

We have

CthC.R �ƒ0;R �ƒ1/ D C.ƒ1; ƒ0/�Œn � 1�˚ C.ƒ0; ƒ1/Œ1� D C�.ƒ0; ƒ1/

where C.ƒ1;ƒ0/�Œn� 1� is generated by q-chords and C.ƒ0;ƒ1/Œ1� is generated by
p and Morse chords. The differential takes the form

m
"0;"1

1 D
�

�C1 0

b�1 ı�†1 b�1

�
D
�
�C1 0

b�1 b�1

�
because the cobordisms are trivial cylinders so the map �†1 is the identity map.



A1-category of Lagrangian cobordisms in the symplectization of P �R 125

ƒ0

ƒ1

ƒ1

ƒ0

Figure 3. Left: 2-copy ƒ.2/ of ƒ; right: 2-copy ƒ.2/.

Consider another 2-copy of ƒ which we denote ƒ.2/, consisting of ƒ0 [ ƒ1,
such that ƒ0 WD ƒ and ƒ1 a perturbation of a push-off of ƒ1 far in the positive Reeb
direction so that it lies entirely above ƒ0 (the z-coordinate of any point in ƒ1 is
greater than the z coordinate of any point in ƒ0). This is the 2-copy of ƒ considered
in [16]. The mixed Reeb chords of ƒ0 [ƒ1 are all from ƒ0 to ƒ1 but still of three
different types

• Nq-chords, long chords corresponding to pure chords of ƒ0,

• Np-chords, short chords corresponding to pure chords of ƒ0,

• Morse chords corresponding to critical points of f . Note that in this case an index
k critical point of f corresponds to a Morse Reeb chord of LCH-degree k � 1.

We have

.CthC.R �ƒ0;R �ƒ1/;m"0;"1

1 / D .C.ƒ1; ƒ0/�Œn � 1�;�C1 /

and this complex is the complex of the bilinearized Legendrian contact homology of
ƒ0 [ƒ1 restricted to mixed chords, but with a choice of grading making the differ-
ential a degree 1 map. There is a canonical isomorphism of complexes�

CthC.R �ƒ0;R �ƒ1/;
�
�C1 0

b�1 b�1

��
'�! .CthC.R �ƒ0;R �ƒ1/;�C1 /

sending a q-chord to its corresponding Nq-chord, a p-chord to its corresponding
Np-chord and a Morse chord c to its corresponding Morse chord which we denote
Nc. Moreover, it is of degree 0 according to the CthC grading. This isomorphism of
graded vector spaces extends to an isomorphism of complexes. We refer for example
to [25, Proposition 5.4] for a detailed proof, we recall here the correspondence of
pseudo-holomorphic discs with boundary on one of the 2-copy or the other. Pseudo-
holomorphic discs with boundary on R � .ƒ0 [ƒ1/ with one positive asymptotic to
a q-chords q1 and one negative asymptotic to a q-chord q2 are identified with discs
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with boundary on R � .ƒ0 [ƒ1/ with one positive, resp. negative asymptotic to the
chords Nq1, resp. Nq2. These discs correspond to�C1 in CthC.R�ƒ0;R�ƒ1/ and�C1
restricted to Nq chords and with values in Nq chords in CthC.R �ƒ0;R �ƒ1/. Then,
the component b�1 restricted to q-chords is defined by a count of bananas with two
positive asymptotics, one at a q-chord which is an input and one at a p- or a Morse
chord which is the output. Such bananas correspond exactly to discs with boundary
on R � .ƒ0 [ ƒ1/ with one positive input asymptotic at the corresponding Nq-chord
and one negative output asymptotic to the Np- or Morse chord. These are discs con-
tributing to �C1 restricted to Nq-chords and taking values in Np- and Morse chords in
CthC.R �ƒ0;R �ƒ1/. Finally, a disc contributing to b�1 restricted to p- and Morse
chords is a disc with a negative input asymptotic at a p- or Morse chord 
1 and
a positive output asymptotic at a p� or Morse chord 
2. These become discs with
boundary on R � .ƒ0 [ ƒ1/ with a positive input asymptotic at N
1 and a negative
output asymptotic at N
2.

Example 2 (0-section of a jet space). Consider the jet space J 1.M/ D T �M � R

of a smooth manifold M , endowed with the standard contact form dz � � where
z is the R coordinate and � the canonical form on T �M . Then the 0-section is a
Legendrian ƒ0 WD M . Take a small push-off of ƒ in the positive Reeb (@z) direc-
tion and perturb it by a small Morse function f Wƒ0 ! R. Denote this Legendrian
ƒ1. Consider the trivial augmentations "i , i D 0; 1. Then, the complex .CthC.R �
ƒ0;R �ƒ1/;m"�

0
;"�

1

1 / is just the complex .C.ƒ1; ƒ0/�Œn � 1�;�C1 / which is canon-
ically identified with the Morse complex of f .

3.2. Concatenation of cobordisms

3.2.1. Definition of the complex CthC.V0 ˇW0; V1 ˇW1/. Consider Legendrian
submanifoldsƒ�i ;ƒi ;ƒ

C

i for i D 0; 1, and cobordismsƒ�i �Vi
ƒi andƒi �Wi

ƒCi .
As the positive end of Vi is a cylinder over ƒi , as well as the negative end of Wi ,
one can perform the concatenation of Vi and Wi denoted Vi ˇWi , which is an exact
Lagrangian cobordism from ƒ�i to ƒCi , see for example [9, Section 5.1]. Assume
that A.ƒ�i / admit augmentations "�0 ; "

�
1 . These augmentations induce augmenta-

tions "0 and "1 of A.ƒ0/ and A.ƒ1/ respectively, and augmentations "C0 and "C1
of A.ƒC0 / and A.ƒC1 /. Assuming that the cobordisms V0 ˇW0 and V1 ˇW1 inter-
sect transversely, the Cthulhu complex of the pair .V0ˇW0; V1ˇW1/ has four types
of generators

CthC.V0 ˇW0; V1 ˇW1/
D C.ƒC1 ; ƒ

C
0 /˚ CF.W0; W1/˚ CF.V0; V1/˚ C.ƒ�0 ; ƒ

�
1 /

D CFC1.W0; W1/˚ CF�1.V0; V1/



A1-category of Lagrangian cobordisms in the symplectization of P �R 127

and the differential is given by

mVˇW
1

D

0BBB@
mW;C
1 0 0 0

mW;0
1 .idC bV1 ı�W1 / mW;0

1 .idC bV1 ı�W1 / mW;0
1 ıbV1 mW;0

1 ıbV1
mV;0
1 ı�W1 mV;0

1 ı�W1 mV;0
1 mV;0

1

mV;�
1 ı�W1 mV;�

1 ı�W1 mV;�
1 mV;�

1

1CCCA
where

bV1 WCthC.V0; V1/! C.ƒ0; ƒ1/Œ1�

is the degree 0 map defined by

bV1 .a/ D
X

10

X
ıi

#M0
V0;V1

.
10I ı0; a; ı1/"�0 .ı0/"�1 .ı1/
10

We will extend the definitions of the maps bV1 and �V1 to CthC.V0 ˇW0; V1 ˇW1/
in order to obtain a compact formula for mVˇW

1 . Namely, we define

bV1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.W0; W1/

by

bV1 .a/ D
´
aC bV1 ı�W1 .a/ for a 2 CFC1.W0; W1/;

bV1 .a/ for a 2 CF�1.V0; V1/;

and
�W1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.V0; V1/

by

�W1 .a/ D
´
�W1 .a/ for a 2 CFC1.W0; W1/;

a for a 2 CF�1.V0; V1/:

This may seem confusing because we have already defined a map �†1 for the case
of a pair of cobordisms .†0; †1/ in the previous section. However, this map �†1 can
be recovered from the map �W1 for the pair .V0 ˇW0; V1 ˇW1/ where .V0; V1/ D
.R �ƒ�0 ;R �ƒ�1 / and .W0; W1/ D .†0; †1/, see Section 3.2.3 for more details. In
the remaining of this section, to make it clear we write�W�W1 when we consider the
map for the pair .W0; W1/ not in the concatenation.

One can thus write the product in the following more compact way:

mVˇW
1 D mW;C0

1 ıbV1 CmV;0�
1 ı�W1 :
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Let us now check that mVˇW
1 is indeed a differential. Using the definition of bV1

and�W1 , we have

.mVˇW
1 /2 D .mW;C0

1 ıbV1 CmV;0�
1 ı�W1 / ı .mW;C0

1 ıbV1 CmV;0�
1 ı�W1 /

D mW;C0
1 ımW;C0

1 ıbV1 CmW;C0
1 ı.bV1 ı�W1 / ımW;C0

1 ıbV1
CmW;C0

1 ıbV1 ımV;0�
1 ı�W1

CmV;0�
1 ı�W1 ımW;C0

1 ıbV1 CmV;0�
1 ımV;0�

1 ı�W1

where by definition the term mW;C
1 ıbV1 ı�W1 vanishes but we keep it in the formula

to make it more homogeneous. We use then the following.

Lemma 1. (1) The map

�W1 ımW;C0
1 ıbV1 CmV;C

1 ı�W1 WCthC.V0 ˇW0; V1 ˇW1/! Cn�1��.ƒ1; ƒ0/

vanishes.

(2) So does the map

bV1 ımV
1 ı�W1 C bƒ1 ı�W�W1 ı bV1 WCthC.V0 ˇW0; V1 ˇW1/! C ��1.ƒ0; ƒ1/:

Proof. (1) For a 2 CF�1.V0; V1/ we have

�W1 ımW;C0
1 ıbV1 .a/CmV;C

1 ı�W1 .a/ D �W1 ımW;C0
1 ıbV1 .a/CmV;C

1 .a/

and the first term vanishes for energy reason and the second one by definition. Then,
for a 2 CFC1.W0; W1/ we have

�W1 ımW;C0
1 ıbV1 .a/CmV;C

1 ı�W1 .a/
D �W1 ımW;C0

1 .aC bV1 ı�W1 .a//CmV;C
1 ı�W1 .a/

D �W1 ımW;C0
1 .a/CmV;C

1 ı�W1 .a/

because �W1 ımW;C0
1 ıbV1 ı�W1 .a/ vanishes for energy reason.

Consider the boundary of the one-dimensional moduli space

M1
W0;W1

.ˇ01I ı0; a; ı1/ for ˇ01 2 C.ƒ1; ƒ0/.

The broken discs arising in the boundary (schematized on Figure 4 for the case a D

01 2 C.ƒC1 ; ƒ

C
0 /) contribute exactly to

h.�W1 ımW;C0
1 CmV;C

1 ı�W1 /.a/; ˇ01i
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R .ƒC
0
[ƒC

1
/

R .ƒ0 [ƒ1/

W0 [W1

01

ˇ01

1

1

0 0

0

0

Figure 4. Types of broken discs in the boundary of M1
W0;W1

.ˇ01I ı0; 
01; ı1/.

(2) For a 2 CF�1.V0; V1/ we have

bV1 ımV
1 ı�W1 .a/C bƒ1 ı�W�W1 ı bV1 .a/ D bV1 ımV

1 .a/C bƒ1 ı bV1 .a/

and for a 2 CFC1.W0; W1/ we have

bV1 ımV
1 ı�W1 .a/C bƒ1 ı�W�W1 ı bV1 .a/

D bV1 ımV
1 ı�W1 .a/C bƒ1 ı�W�W1 .aC bV1 ı�W1 .a//

D bV1 ımV
1 ı�W1 .a/C bƒ1 ı�W1 .a/C bƒ1 ı bV1 ı�W1 .a/

To conclude that this map vanishes, one has to consider the broken curves in the
boundary of the compactification of moduli spaces of bananas with boundary on V ,
namely the boundary of the moduli space M1

V0;V1
.
10Iı0;a;ı1/ for 
102C.ƒ0;ƒ1/,

and a 2 CthC.V0ˇW0; V1ˇW1/, see Figure 5 for the case aD x 2 CF.W0;W1/.

Thus, using Lemma 1 (1), we can rewrite

.mVˇW
1 /2 D mW;C0

1 ımW;C0
1 ıbV1 CmW;C0

1 ıbV1 ımV;C
1 ı�V1

CmW;C0
1 ıbV1 ımV;0�

1 ı�W1 CmV;0�
1 ımV;C

1 ı�V1
CmV;0�

1 ımV;0�
1 ı�W1

D mW;C0
1 ımW;C0

1 ıbV1 CmW;C0
1 ıbV1 ımV

1 ı�V1 CmV;0�
1 ımV

1 ı�V1 :

Now, using mW;C0
1 ımW;C0

1 DmW;C0
1 ımW;�

1 DmW;C0
1 ıbƒ1 ı�W�W1 , Lemma 1 (2),

and the fact that mV;0�
1 ımV

1 D 0, one gets that .mVˇW
1 /2 D 0.
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W0 [W1

R .ƒ0 [ƒ1/

V0 [ V1

R .ƒ0 [ƒ1 /

0 0 0

0 0

00

0 0

00 11 1

1 1

1

0

0 0

Figure 5. Types of broken discs in @M1
V0;V1

.
10I ı0; 
01; ı1/.

3.2.2. Transfer maps. The maps bV1 and �W1 defined in the previous section are in
fact what we will call transfer maps. In particular, they are chain maps as we prove
now.

Proposition 3. bV1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.W0; W1/ is a chain map.

Proof. We need to prove that

bV1 ımVˇW
1 CmW

1 ıbV1 D 0 (2)

By definition of mVˇW
1 we have that the left-hand side of (2) is equal to

bV1 ımW;C0
1 ıbV1 C bV1 ımV;0�

1 ı�W1 CmW
1 ıbV1

D mW;C0
1 ıbV1 C bV1 ı�W1 ımW;C0

1 ıbV1 C bV1 ımV;0�
1 ı�W1 CmW

1 ıbV1
D bV1 ı�W1 ımW;C0

1 ıbV1 C bV1 ımV;0�
1 ı�W1 CmW;�

1 ıbV1
Using the first part of Lemma 1 on the first term and the second part of the lemma on
the second and third terms, recalling that mW;�

1 D bƒ1 ı�W�W1 , we get that the sum
above vanishes.

Proposition 4. �W1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.V0; V1/ is a chain map.

Proof. We have to prove that

�W1 ımVˇW
1 CmV

1 ı�W1 D 0

The left-hand side of the equation is

�W1 ımW;C0
1 ıbV1 C�W1 ımV;0�

1 ı�W1 CmV
1 ı�W1
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whose first term equals mV;C
1 ı�W1 by Lemma 1 and the second term equals

mV;0�
1 ı�W1 by definition of�W1 . Thus, the sum vanishes.

3.2.3. Special cases. Let us have a look at the two following cases for the pair
.V0 ˇW0; V1 ˇW1/:

(1) .W0; W1/ D .R �ƒ0;R �ƒ1/,
(2) .V0; V1/ D .R �ƒ0;R �ƒ1/

In the first case, one has

CthC.V0 ˇ .R �ƒ0/; V1 ˇ .R �ƒ1//
D C.ƒ1; ƒ0/�Œn � 1�˚ CF.V0; V1/˚ C.ƒ�0 ; ƒ

�
1 /Œ1� D CthC.V0; V1/

and we actually have an equality of complexes as �W1 on C.ƒ1; ƒ0/ is the identity
map (as it counts index 0 discs with boundary on Lagrangian cylinders so it can only
count trivial strips). Thus, the map bV1 defined for a general pair of concatenated
cobordisms before gives in this case a map

bV1 WCthC.V0; V1/! CthC.R �ƒ0;R �ƒ1/ D C�.ƒ0; ƒ1/

satisfying

bV1 .a/ D aC bV1 .a/ for a 2 C.ƒ1; ƒ0/

and

bV1 .a/ D bV1 .a/ for a 2 CF�1.V0; V1/.

In the second case, one has

CthC..R �ƒ0/ˇW0; .R �ƒ1/ˇW1/
D C.ƒC1 ; ƒ

C
0 /
�Œn � 1�˚ CF.W0; W1/˚ C.ƒ0; ƒ1/Œ1� D CthC.W0; W1/

and again this equality holds in terms of complexes as bV1 is the identity map on
C.ƒ0; ƒ1/ and vanishes on C.ƒ1; ƒ0/ (no index 0 banana with boundary on R �
.ƒ0 [ƒ1/ and two positive Reeb chord asymptotics), and �V1 is the identity map on
C.ƒ1; ƒ0/. For such a pair of concatenated cobordisms, we get the map

�W1 WCthC.W0; W1/! C�.ƒ0; ƒ1/

satisfying

�W1 .a/ D �W1 .a/ for a 2 CFC1.W0; W1/

and

�W1 .a/ D a for a 2 C.ƒ0; ƒ1/,

which recovers exactly the definition we gave at the end of the Section 3.1.
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Notations 5. From now on, we use the maps bV1 and �W1 without specifying if we
are in the case of a pair .V0 ˇW0; V1 ˇW1/, .V0 ˇ .R � ƒ0/; V1 ˇ .R � ƒ1// or
..R �ƒ0/ˇW0; .R �ƒ1/ˇW1/.
3.2.4. Mayer–Vietoris long exact sequence. From the previous special cases, one
deduces a Mayer–Vietoris sequence. Consider a pair of concatenations .V0 ˇ W0;
V1 ˇW1/. By definition, we have the following result.

Lemma 2. The map

bV1 ı�W1 C�W1 ı bV1 WCthC.V0 ˇW0; V1 ˇW1/! C�.ƒ0; ƒ1/

vanishes.

Proof. First, remember that

�V1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.V0; V1/;

so the term bV1 ı�W1 should be read as bV�V1 ı�W�VˇW1 . Similarly,

bV1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.W0; W1/;

thus the term �W1 ı bV1 should be read as being �W�W1 ı bV�VˇW1 . Then we have
for a 2 CFC1.W0; W1/,

bV1 ı�W1 .a/ D bV1 ı�W1 .a/ D �W1 .a/C bV1 ı�W1 .a/;
�W1 ı bV1 .a/ D�W1 .aC bV1 ı�W1 .a//

D�W1 .a/C�W1 ı bV1 ı�W1 .a/ D �W1 .a/C bV1 ı�W1 .a/

and, for a 2 CF�1.V0; V1/,

bV1 ı�W1 .a/ D bV1 .a/ D bV1 .a/; �W1 ı bV1 .a/ D �W1 ı bV1 .a/ D bV1 .a/:

From this, we get a short exact sequence of complexes

0! Cth�C.V0 ˇW0; V1 ˇW1/
.�W

1 ;bV
1 /������! Cth�C.V0; V1/˚ Cth�C.W0; W1/

bV
1 C�

W
1������! Cth�C.R �ƒ0;R �ƒ1/! 0

which gives rise to a Mayer–Vietoris sequence

� � � ! H� CthC.V0 ˇW0; V1 ˇW1/! H� CthC.V0; V1/˚H� CthC.W0; W1/

! H� CthC.R �ƒ0;R �ƒ1/
g��! H�C1 CthC.V0 ˇW0; V1 ˇW1/! � � � :
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The connecting morphism g� is given on the chain level by mW;0
1 ıbV1 C mV;0�

1

on C.ƒ1; ƒ0/�Œn � 1� � CthC.R � ƒ0;R � ƒ1/ and by mW;0
1 on C.ƒ0; ƒ1/Œ1� �

CthC.R �ƒ0;R �ƒ1/. Below we check that g is indeed a chain map so induces a
well-defined map in homology, and that the sequence is exact.

We need to prove that g ımR�ƒ
1 D mVˇW

1 ıg. Instead of writing big matrices,
let us prove it for the two types of generators separately. Consider 
01 2 C.ƒ1; ƒ0/,
we have

g ımR�ƒ
1 .
01/CmVˇW

1 ıg.
01/
D g.�ƒ1 .
01/C bƒ1 .
01//C .mW;C0

1 ıbV1
CmV;0�

1 ı�W1 / ı .mW;0
1 ıbV1 CmV;0�

1 /.
01/

D .mW;0
1 ıbV1 CmV;0�

1 / ı�ƒ1 .
01/CmW;0
1 ıbƒ1 .
01/CmW;0

1 ımW;0
1 ıbV1 .
01/

CmW;0
1 ıbV1 ımV;0�

1 .
01/CmV;0�
1 ımV;0�

1 .
01/

where we have removed terms vanishing for energy reasons. Now, observe that

mV;0�
1 ı�ƒ1 .
01/CmV;0�

1 ımV;0�
1 .
01/ D 0 as �ƒ1 .
01/ D mV;C

1 .
01/

and mV
1 is a differential. Finally, the remaining terms are the algebraic contributions

of the broken curves arising in the boundary of products of moduli spaces of the
following type:

M1
W0;W1

.x; �0; 
10; �1/ �M0
V0;V1

.
10; ı0; 
01; ı1/;

M0
W0;W1

.x; �0; 
10; �1/ �M1
V0;V1

.
10; ı0; 
01; ı1/;

for x 2 CF.W0; W1/, 
10 2 C.ƒ0; ƒ1/, ıi words of pure Reeb chords of ƒ�i and �i
words of pure Reeb chords of ƒi .

Then, consider 
10 2 C.ƒ0; ƒ1/. We have

g ımR�ƒ
1 .
10/CmVˇW

1 ıg.
10/
Dg ı bƒ1 .
10/C .mW;C0

1 ıbV1 CmV;0�
1 ı�W1 / ımW;0

1 .
10/

DmW;0
1 ı bƒ1 .
10/CmW;0

1 ımW;0
1 .
10/

where we have removed terms vanishing for energy reason. Then the two remaining
terms are algebraic contributions of the broken configurations in the boundary of the
compactification of moduli spaces M1

W0;W1
.x; �0; 
10; �1/.
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Now, we check the exactness of

: : :! H��1 CthC.R �ƒ0;R �ƒ1/
g��1���! H� CthC.V0 ˇW0; V1 ˇW1/
.�W

1 ;bV
1 /������! H� CthC.V0; V1/˚H� CthC.W0; W1/! � � � :

Consider a cycle 
01 C 
10 2 CthC.R �ƒ0;R �ƒ1/, so in particular it means that
�ƒ1 .
01/ D 0 and bƒ1 .
01/C bƒ1 .
10/ D 0. We need to check that in homology

�W1 ı g�.
01 C 
10/ D bV1 ı g�.
01 C 
10/ D 0:
We have

�W1 ı g�.
01 C 
10/ D �W1 .mW;0
1 .bV1 .
01/C 
10/CmV;0�

1 .
01//

D �W1 ımW;0
1 .bV1 .
01/C 
10/CmV;0�

1 .
01/

D mV;0�
1 .
01/

for energy reason, and then

mV;0�
1 .
01/ D mV

1 .
01/

because mV;C
1 .
01/ D �ƒ1 .
01/ D 0 by assumption. Thus, �W1 ı g�.
01 C 
10/ 2

CthC.V0; V1/ is a boundary so vanishes in homology. Then

bV1 ı g�.
01 C 
10/
D bV1 .mW;0

1 .bV1 .
01/C 
10/CmV;0�
1 .
01//

D mW;0
1 .bV1 .
01/C 
10/C bV1 ı�W1 ımW;0

1 .bV1 .
01/C 
10/
C bV1 ımV;0�

1 .
01/

D mW;0
1 .bV1 .
01/C 
10/C bV1 ımV;0�

1 .
01/:

Then, by the study of index 1 bananas with boundary on V0 [ V1 as above, one has
bV1 ı mV;0�

1 .
01/ D bƒ1 ı bV1 .
01/ C bV1 ı �ƒ1 .
01/ C bƒ1 .
01/. But �ƒ1 .
01/ D 0

by assumption, as well as bƒ1 .
01/ D bƒ1 .
10/ and then by definition bƒ1 .
10/ D
mW;�
1 .
10/. Thus, we get

bV1 ı g�.
01 C 
10/
D mW;0

1 ıbV1 .
01/CmW;0
1 .
10/C bƒ1 ı bV1 .
01/CmW;�

1 .
10/:

Finally, bƒ1 ı bV1 .
01/ D mW;�
1 ıbV1 .
01/ by definition, and one can add the terms

mW;C
1 ıbV1 .
01/ and mW;C

1 .
10/ which vanish to obtain that bV1 ı g�.
01 C 
10/ D
mW
1 .b

V
1 .
01/C 
10/ is a boundary in CthC.W0; W1/.
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Finally, let us check the exactness of

: : :! H� CthC.V0; V1/˚H� CthC.W0; W1/

bV
1 C�

W
1������! H� CthC.R �ƒ0;R �ƒ1/

g��! H� CthC.V0 ˇW0; V1 ˇW1/! � � � :

Given two cycles 
01 C cV�1 2 CthC.V0; V1/ and cWC1 C 
10 2 CthC.V0; V1/, where

012C.ƒ1;ƒ0/, cV�12CF�1.V0; V1/, cWC12CFC1.W0;W1/, and 
102C.ƒ0;ƒ1/,
we want to show that in homology

g� ı bV1 .
01 C cV�1/C g� ı�W1 .cWC1 C 
10/ D 0:

We will actually show that

g� ı bV1 .
01 C cV�1/C g� ı�W1 .cWC1 C 
10/ D mVˇW
1 .cV�1 C cWC1/:

By definition we have

g� ı bV1 .
01 C cV�1/C g� ı�W1 .cWC1 C 
10/
D g.
01 C bV1 .
01/C bV1 .cV�1//C g.�W1 .cWC1/C 
10/
D mW;0

1 ıbV1 .
01/CmV;0�
1 .
01/CmW;0

1 ıbV1 .
01/CmW;0
1 ıbV1 .cV�1/

CmW;0
1 ıbV1 ı�W1 .cWC1/CmV;0�

1 ı�W1 .cWC1/CmW;0
1 .
10/

D mV;0�
1 .
01/CmW;0

1 ıbV1 .cV�1/
CmW;0

1 ıbV1 ı�W1 .cWC1/CmV;0�
1 ı�W1 .cWC1/CmW;0

1 .
10/

The second and fourth terms in this last sum are equal to mW;C0
1 ıbV1 .cV�1/

and mV;0�
1 ı�W1 .cWC1/ respectively, by definition of bV1 and �W1 and because

mW;C
1 ıbV1 .cV�1/ D 0 so we can add it. The remaining terms in the sum are

mV;0�
1 .
01/CmW;0

1 ıbV1 ı�W1 .cWC1/CmW;0
1 .
10/ (3)

But by assumption, mV;0�
1 .
01/CmV;0�

1 .cV�1/ D 0 because 
01 C cV�1 is a cycle,
and similarly using also the fact that mW;C

1 .
10/ D 0, we have

mW;C0
1 .cWC1/CmW;C0

1 .
10/ D 0:

Thus, the sum (3) is equal to

mV;0�
1 .cV�1/CmW;0

1 ıbV1 ı�W1 .cWC1/CmW;C0
1 .cWC1/

D mV;0�
1 ı�W1 .cV�1/CmW;C0

1 ıbV1 .cWC1/;
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where the last equality holds by definition of bV1 and�W1 and because

mW;C
1 ıbV1 ı�W1 .cWC1/ D 0:

So, we get

g� ı bV1 .
01 C cV�1/C g� ı�W1 .cWC1 C 
10/
D mW;C0

1 ıbV1 .cV�1/CmV;0�
1 ı�W1 .cWC1/

CmV;0�
1 ı�W1 .cV�1/CmW;C0

1 ıbV1 .cWC1/
D mVˇW

1 .cV�1 C cWC1/;

which completes the proof of exactness.

4. Acyclicity for horizontally displaceable Legendrian ends

The acyclicity of the complex CthC.†0; †1/ is proved in the same way as the acycli-
city of the complex Cth.†0; †1/ in [9]. However, in the case of CthC we need some
horizontal displaceability assumption of at least one of the two Legendrian ends to
achieve acyclicity.

Definition 3. Two Legendrian submanifolds ƒ0; ƒ1 � Y D P � R are horizont-
ally displaceable if there exists an Hamiltonian isotopy 't of P which displace the
Lagrangian projections …P .ƒ0/ and …P .ƒ1/, i.e., …P .ƒ0/ and '1.…P .ƒ1// are
contained in two disjoint balls. A Legendrian is called horizontally displaceable if it
can be displaced from itself.

The goal of the next subsections is to prove the following.

Theorem 4. Let ƒ�0 ; ƒ
�
1 ; ƒ

C
0 ; ƒ

C
1 � Y be Legendrian submanifolds such that ƒ�0

andƒ�1 , orƒC0 andƒC1 are horizontally displaceable. Assume moreover that A.ƒ�0 /

and A.ƒ�1 / admit augmentations "�0 and "�1 . Then, for any pair of transverse exact
Lagrangian cobordismsƒ�0 �†0

ƒC0 andƒ�1 �†1
ƒC1 , the complex .CthC.†0;†1/;

m
"�

0
;"�

1

1 / is acyclic.

The hypothesis of horizontal displaceability is necessary. Indeed, in the setting of
Example 2 the 0-section of a jet space is not horizontally displaceable, and in fact the
complex is not acyclic.

When CthC.†0;†1/ is acyclic, one recovers long exact sequences obtained in [9].
Indeed, the complex CthC.†0; †1/ is the cone of the degree 1 map

d0C C b�1 ı�†1 WC.ƒC1 ; ƒC0 /�Œn � 1�! CF�1.†0; †1/;
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which is then a quasi-isomorphism since the complex is acyclic, i.e., we have

H�.C.ƒC1 ; ƒ
C
0 /
�Œn � 1�/ ' HF�C1�1 .†0; †1/; (4)

where HF�1 denotes the homology of the complex CF�1. Assume first that the
Legendrian submanifolds ƒC0 and ƒC1 are horizontally displaceable. Then, the acyc-
licity of CthC.R �ƒC0 ;R �ƒC1 / yields

H�.C.ƒC1 ; ƒ
C
0 /
�Œn � 1�/ ' H�.C.ƒC0 ; ƒC1 // (5)

as there are no intersection point generators, and the Legendrians in the negative
end are also ƒC0 and ƒC1 . When .†0; †1/ is a directed pair, then d0� D 0 and
CF��1.†0;†1/ is the cone of d�0WCF�.†0;†1/!C �.ƒ�0 ;ƒ

�
1 /. When .†0;†1/ is a

V-shaped pair, then d�0D 0 and CF��1.†0;†1/ is the cone of d0�WC ��1.ƒ�0 ;ƒ�1 /!
CF�C1.†0; †1/. The long exact sequence of a cone, together with the isomorph-
isms (4) and (5), and the fact that by definition

H�.C.ƒC0 ; ƒ
C
1 // D LCH�

"
C
0
;"
C
1

.ƒC0 ; ƒ
C
1 /

and

H�.C.ƒ�0 ; ƒ
�
1 // D LCH�"�

0
;"�

1
.ƒ�0 ; ƒ

�
1 /

give

� � � ! LCHk�1
"
C
0
;"
C
1

.ƒC0 ; ƒ
C
1 /! HFk.†0; †1/

LCHk"�
0
;"�

1
.ƒ�0 ; ƒ

�
1 /! LCHk

"
C
0
;"
C
1

.ƒC0 ; ƒ
C
1 /! � � �

 
!

for a directed pair, and

� � � ! LCHk�1
"
C
0
;"
C
1

.ƒC0 ; ƒ
C
1 /! LCHk�1"�

0
;"�

1
.ƒ�0 ; ƒ

�
1 /

HFkC1.†0; †1/! LCHk
"
C
0
;"
C
1

.ƒC0 ; ƒ
C
1 /! � � �

 
!

for a V-shaped pair. These are the long exact sequences in [9, Corollary 1.3].

In the case where ƒC0 and ƒC1 are not horizontally displaceable but ƒ�0 and
ƒ�1 are, one gets the same exact sequences from the acyclicity of the dual complex
Cthdual
C .†0; †1/:

Cthdual
C .†0; †1/ D C �.ƒC1 ; ƒC0 /�Œn � 1�˚ CF�.†0; †1/˚ C�.ƒ�0 ; ƒ�1 /
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with the degree �1 differential0B@bC1 b
†1;†0

1 b
†1;†0

1 ı b�1
0 d

†1;†0

00 d
†1;†0

0�

0 �
†1;†0

1 ��1

1CA
However as we do not especially need this dual complex in this article we will not
give more details here.

4.1. Wrapping the ends

Given a pair of cobordisms .†0; †1/ cylindrical outside Œ�T; T � � Y , we will wrap
the positive and negative ends of †1 in order to get a pair of cobordisms such that
the associated CthC complex has only intersection points generators. The wrapping is
done by Hamiltonian isotopy. A smooth function hWR!R gives rise to a Hamiltonian
H W R � P � R ! R defined by H.t; p; z/ D h.t/. The corresponding Hamilto-
nian vector field Xh is defined through the equation d.et˛/.Xh; � / D �dH , and its
Hamiltonian flow 's

h
takes the following simple form

'sh.t; p; z/ D .t; p; z C se�th0.t//
Moreover, the image of an exact Lagrangian cobordism † with primitive f† by an
Hamiltonian isotopy 's

h
as above is still an exact Lagrangian cobordism†s D 'sh.†/,

with a primitive f†s
given by

f†s
D f† C s.h0 � h/ ı �R

where �RWR � Y ! R is the projection on the symplectization coordinate t . Given
N > T , consider a function hCT;N WR! R satisfying8̂̂<̂

:̂
hCT;N .t/ D 0 for t � T CN;
hCT;N .t/ D �et for t � T CN C 1;
.hCT;N /

0.t/ � 0;

such that the Hamiltonian vector field takes the form �CT;N .t/@z where �CT;N WR! R

satisfies 8̂̂<̂
:̂
�CT;N .t/ D 0 for t < T CN;
�CT;N .t/ D �1 for t > T CN C 1;
.�CT;N /

0.t/ � 0:
Let SC > 0 greater than the length of the longest Reeb chord fromƒC0 toƒC1 . We

set
W1 WD 'SC

h
C
T;N

.R �ƒC1 / and W0 WD R �ƒC0 ;
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T CN C1

T CN

T

T

†0 †1

W0
W1

Figure 6. Wrapping the positive end of †1.

and consider the pair .†0 ˇW0; †1 ˇW1/, where in fact †0 ˇW0 D †0, see Fig-
ure 6. The complex CthC.†0 ˇ W0; †1 ˇ W1/ has only three types of generators,
namely

CthC.†0 ˇW0; †1 ˇW1/ D CF.W0; W1/˚ CF.†0; †1/˚ C.ƒ�0 ; ƒ
�
1 /Œ1�

Under this decomposition, the transfer map

�W1 WCthC.†0 ˇW0; †1 ˇW1/! CthC.†0; †1/

is equal to the matrix

�W1 D
 �W1 0 0

0 id 0

0 0 id

!
:

We have then the following.

Proposition 5. The transfer map

�W1 WCthC.†0 ˇW0; †1 ˇW1/! CthC.†0; †1/

is an isomorphism.

Proof. The proof is the same as the proof of [9, Proposition 8.2]. After wrapping, each
Reeb chord from ƒC0 to ƒC1 creates an intersection point in W0 \W1, and observing
that the wrapping in the positive end makes the Conley–Zehnder index increasing by
1, there is a canonical identification of graded modules:

CF�.W0; W1/ D C �.ƒC1 ; ƒC0 /�Œn � 1� � CthC.†0; †1/ (6)
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If p 2 CF.W0;W1/ we denote by 
p 2 C �.ƒC1 ;ƒC0 /�Œn� 1� the corresponding Reeb
chord. The goal is to prove that this identification also applies at the level of com-
plexes. We will show that under the identification (6), the map �W1 is the identity
map.

We consider the component

�W1 WCF�.W0; W1/! Cn�1��.ƒ
C
1 ; ƒ

C
0 /

of �W1 which is of degree 0. Let u 2M0
W0;W1

.
01I ı0; p; ı1/ where p 2 W0 \W1,

01 2 R.ƒC1 ; ƒ

C
0 / is a negative Reeb chord asymptotic, and ıi are words of degree

0 pure Reeb chords which are also negative asymptotics. This disc contributes to
�W1 .p/. By rigidity of u, we have

n � 1 � j
01j � jpjCthC.W0;W1/ D 0

Now, the projection of u to P is a pseudo-holomorphic map in M
�P .ƒ

C
0
/;�P .ƒ

C
1
/
.
01I

ı0; �P .p/; ı1/ which has dimension j�P .p/j � j
01j � 1 D j
pj � j
01j � 1, but we
have

0 D n � 1 � j
01j � jpjCthC.W0;W1/ D n � 1 � j
01j � .n � 1 � j
pj/ D j
pj � j
01j

where we have used the identification (6). This implies that �P .u/ is in a moduli
space of dimension �1 so it must be constant. Hence, 
01 D 
p . On the other side, for
each intersection point p 2 W0 \W1 a strip over 
p lifts to a disc in M0

W0;W1
.
pI ı0;

p; ı1/. We obtain that�W1 is the identity map.

Next, we wrap the negative end of †1 ˇW1 as schematized on Figure 7, using a
Hamiltonian defined by a function h�T;N WR! R satisfying8̂̂<̂

:̂
h�T;N .t/ D et for t < �T �N � 1;
h�T;N .t/ D D for t > �T �N;
.h�T;N /

0.t/ � 0;

for some positive constantD � e�T�N , such that the Hamiltonian vector field is given
by ��T;N .t/@z where ��T;N WR!R satisfies ��T;N .t/D 1 for t ��T �N , ��T;N .t/D 0
for t � �T , and .��T;N /

0.t/ � 0. Let S� > 0 be greater than the length of the longest

chord fromƒ�1 toƒ�0 and define V1 WD 'S�h�
T;N

.R�ƒ�1 / and set V0 WD R�ƒ�0 . After
concatenation, we obtain a pair

.V0 ˇ†0 ˇW0; V1 ˇ†1 ˇW1/ D .†0; V1 ˇ†1 ˇW1/:

The Cthulhu complex of the pair .†0; V1 ˇ .†1 ˇW1// has only intersection points
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Figure 7. Wrapping the negative end of †1 ˇW1.

generators, we have

CthC.†0; V1 ˇ .†1 ˇW1// D CF.†0; †1 ˇW1/˚ CF.V0; V1/

Under this decomposition, the map

bV1 WCthC.†0; V1 ˇ .†1 ˇW1//! CthC.†0; †1 ˇW1/

is given by

bV1 D
�

id 0

bV1 ı�†ˇW1 bV1

�
:

Proposition 6. The map bV1 above is an isomorphism.

Proof. It is the same kind of proof as for Proposition 5. In this case we have a canon-
ical identification:

CF.V0; V1/ D C.ƒ�0 ; ƒ
�
1 /Œ1� � CthC.†0; †1 ˇW1/ (7)

Let us consider the component

bV1 WCF�.V0; V1/! C ��1.ƒ�0 ; ƒ
�
1 /

of bV1 which is of degree 0. Let u 2M0
V0;V1

.
10I ı0; p;ı1/ where p 2 V0 \ V1, 
10 2
R.ƒ�0 ; ƒ

�
1 / is a positive Reeb chord asymptotic, and ıi are words of degree 0 pure

Reeb chords which are also negative asymptotics, contributing to this component. By
rigidity, we have

.j
10j C 1/ � jpjCF.V0;V1/ D 0:
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The projection of u to P is a pseudo-holomorphic map in M�P .ƒ
�
0
/; �P .ƒ

�
1
/.
10I ı0;

�P .p/; ı1/ which has dimension j
10j � j
pj � 1. Using the identification (7) we
have

0 D j
10j � jpjCF.V0;V1/ C 1 D j
10j � .j
pj C 1/C 1 D j
10j � j
pj

So, the disc �P .u/ must be constant and 
10 D 
p .

4.2. Invariance by compactly supported Hamiltonian isotopy

Let us consider a pair .†0; †1/ of exact Lagrangian cobordisms and a path of exact
Lagrangian cobordisms †s0 for s 2 Œ0; 1� induced by a compactly supported Hamilto-
nian isotopy, with †00 WD †0. In particular, for all s 2 Œ0; 1�, †s0 have positive and
negative cylindrical ends over ƒ˙0 .

Proposition 7. The complexes .CthC.†00; †1/;m
"�

0
;"�

1

1 / and .Cth.†10; †1/;m
"�

0
;"�

1

1 /

are homotopy equivalent.

Proof. First, wrap the positive and negative ends of †1 in the negative and posit-
ive Reeb direction respectively, as done in the previous section. One gets the pair of
cobordisms .†0; V1 ˇ †1 ˇ W1/, whose Cthulhu complex is isomorphic to that of
the pair .†0; †1/ by Propositions 5 and 6. Then, all along the isotopy the complex
.†s0;V1ˇ†1ˇW1/ as only intersection point generators and the bifurcation analysis
explained in [7, Proposition 8.4] (see also [13] for the case of fillings) proves that the
complexes CthC.†00; V1 ˇ †1 ˇW1/ and CthC.†10; V1 ˇ †1 ˇW1/ are homotopy
equivalent. Finally, unwrapping the ends of †1 leads again to an isomorphism of
complexes.

4.3. Proof of Theorem 4

Consider a pair of Lagrangian cobordisms .†0; †1/ satisfying the hypothesis of the
Theorem. We assume without loss of generality that ƒ�0 and ƒ�1 are horizontally
displaceable (in the case ƒCi are horizontally displaceable but ƒ�i are not, the same
type of argument works but moving the wrapping in the positive end instead of the
negative end, see below). By wrapping the cylindrical ends of †1 we get the pair
.†0; V1 ˇ†1 ˇW1/ such that

(1) †0 and V1 ˇ†1 ˇW1 are cylindrical outside Œ�T �N; T CN� � Y ;

(2) CthC.†0; V1 ˇ†1 ˇW1/ has only intersection points generators.

By a Hamiltonian isotopy '1
hc

compactly supported in Œ�T � N; T C N� � Y , we
perturb V1 ˇ †1 ˇW1 in such a way that all the intersection points are in fact con-
tained in Œ�T �N;�T � � Y , and are in bijective correspondence with mixed chords
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†0
z†1

Figure 8. Deformation by a compactly supported Hamiltonian isotopy.

of ƒ�0 [ ƒ�1 , as schematized on Figure 8. For this purpose we use for example the
Hamiltonian

Hc.t; p; z/ D hc.t/
with hc WR! R satisfying8̂̂<̂

:̂
hc.t/ D �et C C for t 2 Œ�T; T �;
.�1;�T �N/ [ .T CN;1/ � .h0c/�1.0/;
h0c.t/ � 0;

with C > 0 constant such that hc.t/ D 0 for t � �T �N , to ensure the primitive of
the perturbed cobordism to still vanish on the negative cylindrical end. The Hamilto-
nian vector field is given by �c.t/@z with �c.t/ D �1 on Œ�T; T � and 0 on .�1;
�T �N/ [ .T CN;1/.

Let us denote z†1 D 'Shc
.V1 ˇ†1 ˇW1/, with S big enough so that there are no

intersection points in Œ�T; T C N� � Y anymore. This S exists as †0 \ Œ�T � N;
T CN� � Y and V1 ˇ†1 ˇW1 \ Œ�T �N; T CN� � Y are compact. By Propos-
ition 7, the complexes CthC.†0; †1/ and CthC.†0; z†1/ have the same homology.
Now, we prove that CthC.†0; z†1/ is acyclic. Given the Hamiltonian we used to
perturb V1 ˇ†1 ˇW1, we have the canonical identification

CthC.†0; z†1/ D CthC.R �ƒ�0 ; 'Shc
.V1//

Then, we unwrap the negative end of 'S
hc
.V1/, and thus CthC.R � ƒ�0 ; 'Shc

.V1//

is isomorphic to CthC.R � ƒ�0 ;R � zƒ�1 / where zƒ�1 is a translation of ƒ�1 in the
negative Reeb direction and lies entirely below ƒ�0 , see Figure 9. In this case, we
have CthC.R � ƒ�0 ;R � zƒ�1 / D C.ƒ�0 ; zƒ�1 /Œ1� with the differential b�1 being the
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R ƒ0 R ƒ0 R zƒ0'S
hc

.V1/

Figure 9. Left: pair of concordances .R �ƒ�
0
; 'S

hc
.V1//; right: pair .R �ƒ�

0
;R � zƒ�

1
/.

Legendrian contact cohomology differential bilinearized by "�0 and "�1 . But as the
pair .ƒ�0 ; ƒ

�
1 / is a pair of horizontally displaceable Legendrians, so this complex is

acyclic (observe that �P .ƒ�1 / D �P .zƒ�1 /).

5. Product structure

5.1. Definition of the map

Givenƒ�i �†i
ƒCi for i D 0;1;2 three exact Lagrangian cobordisms that are pairwise

transverse such that A.ƒ�i / admit augmentations "�0 , "�1 and "�2 , we will define a map

m2WCthC.†1; †2/˝ CthC.†0; †1/! CthC.†0; †2/

and we prove that it satisfies the Leibniz rule. Let us denote the components of the
product m2 by mk

ij , with i; j; k 2 ¹C; 0;�º such that mk
ij takes as arguments a gen-

erator of type i in CthC.†1; †2/, a generator of type j in CthC.†0; †1/ and has for
output a generator of type k in CthC.†0; †2/. For example, m0

C� is the component
C.ƒC2 ;ƒ

C
1 /
�Œn� 1�˝C.ƒ�0 ;ƒ

�
1 /Œ1�! CF.†0;†2/. We define m2 as follows. First,

the eight components corresponding to the map

CF�1.†1; †2/˝ CF�1.†0; †1/! CF�1.†0; †2/

are the same components as those defining the product m�12 in [22], we start by
recalling its definition (see also Figure 10). For a pair of asymptotics .a2; a1/ which
is equal to one of the four pairs .x12; x01/; .x12; 
10/; .
21; x01/, or .
21; 
10/ in
CF�1.†1; †2/˝ CF�1.†0; †1/ (xij is an intersection point in †i \†j and 
ij is
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†0 [†1 [†2

R .ƒ0 [ƒ1 [ƒ2 /

0
0 0 0

0 0 0
0

1 11 1 1

Figure 10. Pseudo-holomorphic discs contributing to m�1
2

.

a chord from ƒ�i to ƒ�j ) we have

m0
2.a2; a1/ D

X
p202†0\†2;ıi

#M0
†012

.p20I ı0; a1; ı1; a2; ı2/"�0 .ı0/"�1 .ı1/"�2 .ı2/p20

where the sum is over all intersection points p20 2 †0 \ †2 and words ıi of pure
Reeb chords of ƒ�i . Then, for a pair .x12; x01/ 2 CF.†1; †2/ ˝ CF.†0; †1/, we
have

m�00.x12; x01/

D
X


20;
02

ıi ;ı
0
i

# fM1
R�ƒ�

012
.
20I ı0; 
02; ı2/#M0

†012
.
02I ı00; x01; ı01; x12; ı02/

� "�i .ıiı0i /
20

C
X


20;
01;
12

ıi ;ı
0
i ;ı
00
i

# fM1
R�ƒ�

012
.
20I ı0; 
01; ı1; 
12; ı2/#M0

†01
.
01I ı00; x01; ı01/

#M0
†12

.
12I ı001; x12; ı002/"�i .ıiı0iı00i /
20

where "�i .ıi / stands for the product of the augmentations applied to the corresponding
pure chords. For a pair .x12; 
10/ 2 CF.†1; †2/˝ C.ƒ�0 ; ƒ

�
1 /, we have

m�0�.x12; 
10/

D
X


20;
02

ıi ;ı
0
i

# fM1
R�ƒ�

012
.
20I ı0; 
02; ı2/#M0

†012
.
02I ı00; 
10; ı01; x12; ı02/"�i .ıiı0i /
20

C
X


20;
12

ıi ;ı
0
i

# fM1
R�ƒ�

012
.
20I ı0; 
10; ı1; 
12; ı2/#M0

†12
.
12I ı01; x12; ı02/"�i .ıiı0i /
20

and the obvious symmetric formula for a pair .
21; x01/, and finally for a pair of Reeb
chords .
21; 
10/ 2 C.ƒ�1 ; ƒ

�
2 /˝ C.ƒ�0 ; ƒ

�
1 /,

m���.
21; 
10/ D
X

20;ıi

# fM1
R�ƒ�

012
.
20I ı0; 
10; ı1; 
21; ı2/"�i .ıiı0i /
20:
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Then, let us define the remaining components of the map m2, involving Reeb
chords in the positive end. First, the components mC00, mC0�, mC�0, and mC�� vanish.
It remains to define mk

CC, mk
Ci , and mk

iC for i 2 ¹0;�º and k 2 ¹C; 0;�º. Given a
pair .
12; 
01/ 2 C.ƒC2 ; ƒ

C
1 /˝ C.ƒC1 ; ƒ

C
0 /, we have first

mCCC.
12; 
01/ D
X

02;�i

# fM1
R�ƒC

012

.
02I �0; 
01; �1; 
12; �2/"Ci .�i /
02

C
X


02;
21
�i ;ıi

# fM1
R�ƒC

012

.
02I �0; 
01; �1; 
21; �2/
#M0

†12
.
21I ı1; 
12; ı2/"Ci .�i /"�i .ıi /
02

C
X


02;
10
�i ;ıi

# fM1
R�ƒC

012

.
02I �0; 
10; �1; 
12; �2/
#M0

†01
.
10I ı0; 
01; ı1/"Ci .�i /"�i .ıi /
02

summing over 
ij 2 C.ƒCj ;ƒ
C

i /, �i words of Reeb chords ofƒCi , for i D 0; 1; 2, and
ıi words of Reeb chords of ƒ�i , for i D 0; 1; 2. Then we have

m0
CC.
12; 
01/ D

X
p20;ıi

#M0
†012

.p20I ı0; 
01; ı1; 
12; ı2/"�i .ıi /p20

summing over p02 2 †0 \†2 and ıi as above. And finally the last component of the
product for this pair of generators is

m�CC.
12; 
01/

D
X

20;�02

ıi ;ı
0
i

# fM1
R�ƒ�

02
.
20I ı0; �02; ı2/#M0

†012
.�02I ı00; 
01; ı01; 
12; ı02/

� "�i .ıi /"�i .ı0i /
20
C
X


20;�01;�12

ıi ;ı
0
i ;ı
00
i

# fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/#M0

†01
.�01I ı00; 
01; ı01/

#M0
†12

.�12I ı001; 
12; ı002/"�i .ıiı0iı00i /
20

summing over 
20 2 C.ƒ�0 ; ƒ
�
2 /, �ij 2 C.ƒ�j ; ƒ

�
i /, and ıi , ı0i words of Reeb chords

of ƒ�i . Then, for a pair of generators .
12; x01/ 2 C.ƒC2 ; ƒ
C
1 / ˝ CF.†0; †1/ we

define

mCC0.
12; x01/ D
X


02;
10
�i ;ıi

# fM1
R�ƒC

012

.
02I �0; 
10; �1; 
12; �2/
#M0

†01
.
10I ı0; x01; ı1/"Ci .�i /"�i .ıi /
02;

m0
C0.
12; x01/ D

X
p20;ıi

#M0
†012

.p20I ı0; x01; ı1; 
12; ı2/"�i .ıi /p02;
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m�C0.
12; x01/ D
X

20;�02

ıi ;ı
0
i

# fM1
R�ƒ�

02
.
20I ı0; �02; ı2/

#M0
†012

.�02I ı00; x01; ı01; 
12; ı02/"�i .ıi /"�i .ı0i /
20

C
X


20;�01;�12

ıi ;ı
0
i ;ı
00
i

# fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/
#M0

†01
.�01I ı00; x01; ı01/

#M0
†12

.�12I ı001; 
12; ı002/"�i .ıiı0iı00i /
20:

We finish by defining the product for a pair .
12; 
10/ 2 C.ƒC2 ; ƒ
C
1 /˝ C.ƒ�0 ; ƒ

�
1 /

as follows:

mCC�.
12; 
10/ D
X

02;�10
�i ;ıi

# fM1
R�ƒC

012

.
02I �0; �10; �1; 
12; �2/
#M0

†01
.�10I ı0; 
10; ı1/"Ci .�i /"�i .ıi /
02

m0
C�.
12; 
10/ D

X
p20;ıi

#M0
†012

.p20I ı0; 
10; ı1; 
12; ı2/"�i .ıi /p02;

m�C�.
12; 
10/ D
X

20;�02

ıi ;ı
0
i

# fM1
R�ƒ�

02
.
20I ı0; �02; ı2/
#M0

†012
.�02I ı00; 
10; ı01; 
12; ı02/"�i .ıi /"�i .ı0i /
20

C
X

20;�12

ıi ;ı
0
i

# fM1
R�ƒ�

012
.
20I ı0; 
10; ı1; �12; ı2/
#M0

†12
.�12I ı01; 
12; ı02/"�i .ıiı0i /
20:

The components mk
0C and mk

�C for k DC; 0;� are defined analogously as mk
C0 and

mk
C�. See Figures 11, 12, and 13.

Theorem 5. The map m2 satisfies the Leibniz rule, i.e., given three exact pairwise
transverse Lagrangian cobordisms ƒ�i �†i

ƒCi with augmentations "�i of A.ƒ�i /

for i D 0; 1; 2, we have

m2.m
"�

1
;"�

2

1 ; � /Cm2. � ;m"�
0
;"�

1

1 /Cm
"�

0
;"�

2

1 ım2. � ; � / D 0:

Remark 5. A “complete” notation for the product would be something of the form
m
†0;†1;†2

"�
0
;"�

1
;"�

2
as it depends on the choice of cobordisms and on the choice of augmenta-

tions of the negative ends. However, to simplify, we will just write it m2 as the choices
mentioned are clear from the context.

As for m1, we can write the components mC2 and m�2 as a composition of maps, it
will be convenient when describing the boundary of the compactification of 1-dimen-
sional moduli spaces. First, we introduce the maps

�C2 W C�.ƒC1 ; ƒC2 /˝ C�.ƒC0 ; ƒ
C
1 /! Cn�1��.ƒ

C
2 ; ƒ

C
0 /;

�†2 W CthC.†1; †2/˝ CthC.†0; †1/! Cn�1��.ƒ
�
2 ; ƒ

�
0 /;

b�2 W C�.ƒ�1 ; ƒ�2 /˝ C�.ƒ�0 ; ƒ
�
1 /! C ��1.ƒ�0 ; ƒ

�
2 /;
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Figure 11. Pseudo-holomorphic discs contributing to mkCC, k D C; 0;�.
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Figure 12. Pseudo-holomorphic discs contributing to mkC0
, k D C; 0;�.
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Figure 13. Pseudo-holomorphic discs contributing to mkC�, k D C; 0;�.

defined by

�C2 .
2; 
1/ D
X

02;�i

# fM1
R�ƒC

012

.
02I �0; 
1; �1; 
2; �2/"Ci .�i /
02;

�†2 .a2; a1/ D
X

02;ıi

#M0
†012

.
02I ı0; a1; ı1; a2; ı2/"�i .ıi /
02;

b�2 .
2; 
1/ D
X

20;ıi

# fM1
R�ƒ�

012
.
20I ı0; 
1; ı1; 
2; ı2/"�i .ıi /
20



A1-category of Lagrangian cobordisms in the symplectization of P �R 149

and observe that �†2 vanishes on C.ƒ1; ƒ2/˝ C.ƒ0; ƒ1/ for energy reasons. Using
these maps, we have

mC2 D �C2 .b†1 ˝ b†1 /; (8)

m�2 D b�1 ı�†2 C b�2 .�†1 ˝�†1 /; (9)

where the maps b�1 ;�
†
1 are defined in Section 3.1 and b†1 in Section 3.2 (see also

Section 3.2.3).

5.2. Leibniz rule

The map m2 restricted to CF�1.†1;†2/˝ CF�1.†0;†1/ satisfies the Leibniz rule
because m�12 satisfies it with respect to the differential m�11 (see [22]) and there
is no component of the differential m

"�
0
;"�

1

1 from the subcomplex CF�1.†0; †1/ to
C.ƒC0 ;ƒ

C
1 /. It remains to check the Leibniz rule for each pair of generators containing

at least one Reeb chord in the positive end:

(a) .
12; 
01/ 2 C.ƒC2 ; ƒ
C
1 /˝ C.ƒC1 ; ƒ

C
0 /,

(b) (i) .
12; x01/ 2 C.ƒC2 ; ƒ
C
1 /˝ CF.†0; †1/ and

(ii) .x12; 
01/ 2 CF.†1; †2/˝ C.ƒC1 ; ƒ
C
0 /,

(c) (i) .
12; 
10/ 2 C.ƒC2 ; ƒ
C
1 /˝ C.ƒ�0 ; ƒ

�
1 / and

(ii) .
12; 
01/ 2 C.ƒ�1 ; ƒ
�
2 /˝ C.ƒC1 ; ƒ

C
0 /.

As usual, the Leibniz rule will follow from the study of the boundary of the compac-
tification of some (product of) moduli spaces. Recall that we described in Section 2.6
the different types of broken discs arising in this boundary. We focus now on some
particular moduli spaces and specify the algebraic contribution of each broken disc.

Leibniz rule for a pair of type (a). For the pair of generators of type (a), we will
show that the following three relations are satisfied:

mC2 .m
"�

1
;"�

2

1 .
12/; 
01/CmC2 .
12;m
"�

0
;"�

1

1 .
01//CmC1 ımC2 .
12; 
01/D 0; (10)

m0
2.m

"�
1
;"�

2

1 .
12/; 
01/ C m0
2.
12;m

"�
0
;"�

1

1 .
01// C m0
1 ım2.
12; 
01/ D 0; (11)

m�2 .m
"�

1
;"�

2

1 .
12/; 
01/ Cm�2 .
12;m
"�

0
;"�

1

1 .
01// C m�1 ım2.
12; 
01/ D 0: (12)

After adding in (10) the vanishing terms

mC1 ım0
2.
12; 
01/ D mC1 ım�2 .
12; 
01/ D 0;
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Figure 14. Types of broken discs in the boundary of M2
R�ƒ

C
012

.
02I �0; 
01; �1; 
12; �2/.

the sum of these three relations gives the Leibniz rule for the pair

.
12; 
01/ 2 C.ƒC1 ; ƒ
C
2 /˝ C.ƒC0 ; ƒ

C
1 /:

First, we see that relation (10) follows from the study of the boundary of the compac-
tification of the following products of moduli spaces:fM2

R�ƒC
012

.
02I �0; 
01; �1; 
12; �2/; (13)fM2
R�ƒC

012

.
02I �0; 
01; �1; 
21; �2/ �M0
†12

.
21I ı1; 
12; ı2/; (14)fM1
R�ƒC

012

.
02I �0; 
01; �1; 
21; �2/ �M1
†12

.
21I ı1; 
12; ı2/; (15)fM2
R�ƒC

012

.
02I �0; 
10; �1; 
12; �2/ �M0
†01

.
10I ı0; 
01; ı1/ (16)fM1
R�ƒC

012

.
02I �0; 
10; �1; 
12; �2/ �M1
†01

.
10I ı0; 
01; ı1/: (17)

The broken discs in @M2
R�ƒC

012

.
02I�0; 
01;�1; 
12;�2/ are schematized on Fig-
ure 14. The sum of their algebraic contributions vanishes, and thus gives

�C2 .m
C
1 .
12/; 
01/C�C2 .
12;mC1 .
01//

CmC1 ı�C2 .
12; 
01/C�C2 .bC1 .
12/; 
01/C�C2 .
12; bC1 .
01// D 0: (18)

The boundary of the compactification of (14), see Figure 15, gives the algebraic rela-
tion

�C2 .b
†
1 .
12/;m

C
1 .
01//CmC1 ı�C2 .b†1 .
12/; 
01/C�C2 .bC1 ı b†1 .
12/; 
01/ D 0

(19)

One gets the symmetric relation

�C2 .m
C
1 .
12/; b

†
1 .
01//CmC1 ı�C2 .
12; b†1 .
01//C�C2 .
12; bC1 ı b†1 .
01// D 0

(20)
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Figure 15. Broken discs in @M2
R�ƒ

C
012

.
02I �0; 
01; �1; 
21; �2/ �M0
†12

.
21I ı1; 
12; ı2/.

12

01
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R ƒ

†
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1
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Figure 16. Broken discs in fM1
R�ƒ

C
012

.
02I�0; 
01;�1; 
21;�2/� @M1
†12

.
21Iı1; 
12;ı2/.

by studying the boundary of (16). Finally, one gets the relation

�C2 .b
†
1 ımC1 .
12/; 
01/C�C2 .bC1 ı b†1 .
12/; 
01/C�C2 .bC1 .
12/; 
01/

C�C2 .b†1 ım0
1.
12/; 
01/C�C2 .b†1 ım�1 .
12/; 
01/ D 0 (21)

and the symmetric

�C2 .
12; b
†
1 ımC1 .
01//C�C2 .
12; bC1 ı b†1 .
01//C�C2 .
12; bC1 .
01//

C�C2 .
12; b†1 ım0
1.
01//C�C2 .
12; b†1 ım�1 .
01// D 0 (22)

by studying first (15) and then (17) (see Figure 16). Observe that for these last two,
we consider the boundary of the compactification of moduli spaces of bananas with
boundary on non-cylindrical parts of the cobordisms and with two positive Reeb chord
asymptotics, as we have done already in the proof of Lemma 1.

Summing (18), (19), (20), (21), and (22), canceling terms appearing twice and
using the definition of b†1 and mC2 given in (8), one obtains relation (10).

Then, the study of the boundary of the compactification of

M1
†012

.p20I ı0; 
01; ı1; 
12; ı2/
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Figure 17. Broken discs in @M1
†012

.p20I ı0; 
01; ı1; 
12; ı2/.

gives relation (11), see Figure 17 for a description of broken discs. Indeed, the algeb-
raic contributions of those discs are (from left to right and top to bottom on the figure):

m0
2.m

C
1 .
12/; 
01/Cm0

2.
12;m
C
1 .
01//Cm0

1 ı�C2 .
12; 
01/
Cm0

1 ı�C2 .b†1 .
12/; 
01/Cm0
1 ı�C2 .
12; b†1 .
01//Cm0

2.m
0
1.
12/; 
01/

Cm0
2.
12;m

0
1.
01//Cm0

1 ım0
2.
12; 
01/Cm0

2.m
�
1 .
12/; 
01/

Cm0
2.
12;m

�
1 .
01//Cm0

1 ıb�1 ı�†2 .
12; 
01/
Cm0

1 ıb�2 .�†1 .
12/;�†1 .
01// D 0:

And using the definitions of mC2 and m�2 given in (8) and (9) one deduces rela-
tion (11).

Finally, analogously to the previous cases, the broken curves in the boundary of
the compactification offM2

R�ƒ�
02
.
20I ı0; 
02; ı2/ �M0

†012
.
02I ı00; 
01; ı01; 
12; ı02/; (23)fM1

R�ƒ�
02
.
20I ı0; 
02; ı2/ �M1

†012
.
02I ı00; 
01; ı01; 
12; ı02/; (24)fM2

R�ƒ�
012
.
20I ı0; �01; ı1; �12; ı2/ �M0

†01
.�01I ı00; 
01; ı01/

�M0
†12

.�12I ı001; 
12; ı002/; (25)fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/

�M1
†01

.�01I ı00; 
01; ı01/ �M0
†12

.�12I ı001; 
12; ı002/; (26)fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/ �M0

†01
.�01I ı00; 
01; ı01/

�M1
†12

.�12I ı001; 
12; ı002/ (27)
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Figure 18. Broken discs in @M1
†012

.
02I ı00; 
01; ı
0
1; 
12; ı

0
2/.

give relation (12). First, let us consider (23) and (24). There are two types of broken
discs arising in @M2

R�ƒ�
02
.
20I ı0; 
02; ı2/ giving the algebraic relation

b�1 ı b�1 .
02/C b�1 ı��1 .
02/ D 0

that we have already considered in the proof of Theorem 3. Then, on Figure 18 are
schematized the broken discs in @M1

†012
.
02I ı00; 
01; ı01; 
12; ı02/. From this, the

broken discs in the boundary of the compactification of (23) contribute algebraically
to

b�1 ı b�1 ı�†2 .
12; 
01/C b�1 ı��1 ı�†2 .
12; 
01/ (28)

and the ones in the boundary of the compactification of (24) contribute to (from top
to bottom and left to right for discs on Figure 18)

b�1 ı�†2 .mC1 .
12/; 
01/C b�1 ı�†2 .
12;mC1 .
01//Cm�1 ı�C2 .
12; 
01/
Cm�1 ı�C2 .b†1 .
12/; 
01/Cm�1 ı�C2 .
12; b†1 .
01//
C b�1 ı�†2 .m0

1.
12/; 
01/C b�1 ı�†2 .
12;m0
1.
01//Cm�1 ım0

2.
12; 
01/

C b�1 ı�†2 .m�1 .
12/; 
01/C b�1 ı�†2 .
12;m�1 .
01//
C b�1 ı��2 .�†1 .
12/;�†1 .
01//C b�1 ı��1 ı�†2 .
12; 
01/: (29)

Note that the three last terms on the first line give m�1 ımC2 .
12; 
01/ by definition
of mC2 . Moreover, observe that the last term of (28) is the same as the last term of (29).



N. Legout 154

R ƒ

R ƒ
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Figure 19. Broken discs in @M2
R�ƒ�012

.
20I ı0; �01; ı1; �12; ı2/.

Thus, the boundary of the compactifications of (23) and (24) provides us with the
following relation:

b�1 ı b�1 ı�†2 .
12; 
01/C b�1 ı�†2 .m1.
12/; 
01/C b�1 ı�†2 .
12;m1.
01//

Cm�1 ı.mC2 Cm0
2/.
12; 
01/C b�1 ı��2 .�†1 .
12/;�†1 .
01// D 0: (30)

Let us now consider the products (25), (26), and (27). The broken discs arising in
the boundary of the compactification of moduli spaces of bananas with three positive
mixed asymptotics are schematized on Figure 19. We deduce from this that the broken
discs in the boundary of the compactification of (25) give the relation

b�1 ı b�2 .�†1 .
12/;�†1 .
01//C b�1 ı��2 .�†1 .
12/;�†1 .
01//
C b�2 ..��1 C b�1 /.�†1 .
12//;�†1 .
01//
C b�2 .�†1 .
12/; .��1 C b�1 /.�†1 .
01/// D 0: (31)

The last moduli spaces to study are moduli spaces of discs with boundary on the
non-cylindrical parts of the cobordisms, with a positive and a negative mixed Reeb
chord asymptotic. We have already considered the boundary of the compactification of
such moduli spaces in the proof of Theorem 3 as well as in the proof of Lemma 1, see
also Figure 4. The algebraic contributions of broken discs in @M1

†01
.�01Iı00; 
01;ı01/

and @M1
†12

.�12I ı001; 
12; ı002/ give the following relations:

�†1 ı�C1 .
01/C�†1 ım0
1.
01/C��1 ı�†1 .
01/ D 0; (32)

�†1 ı�C1 .
12/C�†1 ım0
1.
12/C��1 ı�†1 .
12/ D 0: (33)

Observe now that in the two last terms of the sum (31) we have

b�1 ı�†1 .
12/ D m�1 .
12/ and b�1 ı�†1 .
01/ D m�1 .
01/

by definition of m�1 . Moreover, in the same terms one can replace ��1 ı�†1 .
12/ and
��1 ı �†1 .
01/ by �†1 ı .mC1 Cm0

1/.
12/ and �†1 ı .mC1 Cm0
1/.
01/ respectively,

using the relations (32) and (33) and the definition of mC1 . Finally, recall that by
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definition of�†1 we have�†1 ı .mC1 Cm0
1/D�†1 ı .mC1 Cm0

1/ and m�1 D�†1 ım�1 .
Thus, relation (31) can be rewritten

b�2 .�
†
1 ˝�†1 /.m1.
12/; 
01/C b�2 .�†1 ˝�†1 /.
12;m1.
01//

C b�1 ı b�2 .�†1 ˝�†1 /.
12; 
01/C b�1 ı��2 .�†1 .
12/;�†1 .
01// D 0: (34)

In order to get the Leibniz rule relation (12), we sum relations (30) and (34), removing
the term which appears twice (the last term in each of them), and get

b�1 ı b�1 ı�†2 .
12; 
01/C b�1 ı�†2 .m1.
12/; 
01/C b�1 ı�†2 .
12;m1.
01//

Cm�1 ı.mC2 Cm0
2/.
12; 
01/C b�2 .�†1 ˝�†1 /.m1.
12/; 
01/

C b�2 .�†1 ˝�†1 /.
12;m1.
01//C b�1 ı b�2 .�†1 ˝�†1 /.
12; 
01/ D 0

By definition of m�1 and m�2 , we have that the sum of the first and the last term gives
m�1 ım�2 .
12; 
01/, the sum of the second and fifth term gives m�2 .m1.
12/; 
01/,
and the sum of the third and sixth term gives m�2 .
12;m1.
01//. We have thus shown
that relation (12) holds.

Leibniz rule for a pair of type (b). Let us consider a pair .
12; x01/ of generators
of type (b). The Leibniz rule for such a pair decomposes into the following three
relations:

mC2 .�
C
1 .
12/; x01/CmC2 .
12;m1.x01//CmC1 ımC2 .
12; x01/D 0; (35)

m0
2.m1.
12/; x01/ C m0

2.
12;m1.x01// C m0
1 ım2.
12; x01/ D 0; (36)

m�2 .m1.
12/; x01/ Cm�2 .
12;m1.x01// C m�1 ım2.
12; x01/ D 0: (37)

where for (35) we make use of the fact that both the term mC2 .m
0
1.
12/; x01/ and the

term mC2 .m
�
1 .
12/; x01/ vanish by definition (mC00 D mC�0 D 0). The study of the

boundary of the compactification of the productsfM2
R�ƒC

012

.
02I �0; �10; �1; 
12; �2/ �M0
†01

.�10I ı0; x01; ı1/;fM1
R�ƒC

012

.
02I �0; �10; �1; 
12; �2/ �M1
†01

.�10I ı0; x01; ı1/

gives relation (35). In order to get relation (36) we need to study the boundary of

M1
†012

.p20I ı0; x01; ı1; 
12; ı2/

and finally for relation (37), we studyfM2
R�ƒ�

02
.
20I ı0; �02; ı2/ �M0

†012
.�02I ı00; x01; ı01; 
12; ı02/;fM1

R�ƒ�
02
.
20I ı0; �02; ı2/ �M1

†012
.�02I ı00; x01; ı01; 
12; ı02/;
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fM2
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/ �M0

†01
.�01I ı00; x01; ı01/

�M0
†12

.�12I ı001; 
12; ı002/;fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/ �M1

†01
.�01I ı00; x01; ı01/

�M0
†12

.�12I ı001; 
12; ı002/;fM1
R�ƒ�

012
.
20I ı0; �01; ı1; �12; ı2/ �M0

†01
.�01I ı00; x01; ı01/

�M1
†12

.�12I ı001; 
12; ı002/:

Leibniz rule for a pair of type (c). Finally, for a pair .
12; 
10/ of generators of
type (c), we decompose the Leibniz rule into

mC2 .�
C
1 .
12/; 
10/CmC2 .
12;m1.
10//CmC1 ımC2 .
12; 
10/D 0; (38)

m0
2.m1.
12/; 
10/ C m0

2.
12;m1.
10// C m0
1 ım2.
12; 
10/ D 0; (39)

m�2 .m1.
12/; 
10/ Cm�2 .
12;m1.
10// C m�1 ım2.
12; 
10/ D 0; (40)

and observe that one of the two terms contributing to m�2 .
12;m
0
1.
10//, namely

b�2 .�
†
1 .
12/; �

†
1 ı m0

1.
10//, vanishes for energy reasons. Relations (38), (39),
and (40) are obtained respectively by studying the boundary of the compactification
of fM2

R�ƒC
012

.
02I �0; �10; �1; 
12; �2/ �M0
†01

.�10I ı0; 
10; ı1/;fM1
R�ƒC

012

.
02I �0; �10; �1; 
12; �2/ �M1
†01

.�10I ı0; 
10; ı1/

of M1
†012

.p20I ı0; 
10; ı1; 
12; ı2/, and of

fM2
R�ƒ�

02
.
20I ı0; �02; ı2/ �M0

†012
.�02I ı00; 
10; ı01; 
12; ı02/;fM1

R�ƒ�
02
.
20I ı0; �02; ı2/ �M1

†012
.�02I ı00; 
10; ı01; 
12; ı02/;fM2

R�ƒ�
012
.
20I ı0; 
10; ı1; �12; ı2/ �M0

†12
.�12I ı01; 
12; ı02/;fM1

R�ƒ�
012
.
20I ı0; 
10; ı1; �12; ı2/ �M1

†12
.�12I ı01; 
12; ı02/:

6. Product in the concatenation

6.1. Definition of the product

Given a pair of concatenation .V0 ˇW0; V1 ˇW1/, we denote mV
1 ;m

W
1 the differ-

entials of the complexes CthC.V0; V1/ and CthC.W0; W1/ respectively. Given a third
concatenation V2 ˇW2, we denote again mV

1 and mW
1 the differentials on complexes
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CthC.Vi ; Vj / and CthC.Wi ; Wj / respectively, for 0 � i ¤ j � 2, without specifying
the pair of cobordisms when it is clear from the context. Moreover, we will use the
transfer maps

b
Vi ;Vj

1 WCthC.Vi ˇWi ; Vj ˇWj /! CthC.Wi ; Wj /

and
�
Wi ;Wj

1 WCthC.Vi ˇWi ; Vj ˇWj /! CthC.Vi ; Vj /

and will shorten the notations to bV1 and�W1 as there should not be any risk of confu-
sion about which pair of cobordisms is involved in the domain and codomain. Finally,
we denote mV

2 ;m
W
2 the products CthC.V1; V2/˝ CthC.V0; V1/! CthC.V0; V2/ and

CthC.W1; W2/ ˝ CthC.W0; W1/ ! CthC.W0; W2/ respectively. We now define a
product

mVˇW
2 W CthC.V1 ˇW1; V2 ˇW2/˝ CthC.V0 ˇW0; V1 ˇW1/

! CthC.V0 ˇW0; V2 ˇW2/:

Using maps we already defined before, as well as the two inputs banana bV2 with
boundary on V0 [ V1 [ V2 (we encountered in Section 5.1 the two inputs banana b�2
with boundary on cylindrical ends), defined by

bV2 WCthC.V1; V2/˝ CthC.V0; V1/! C ��1.ƒ0; ƒ1/;

bV2 .a2; a1/ D
X

20;ıi

#M0
V012

.
20I ı0; a1; ı1; a2; ı2/"�i .ıi /
20;

we set

mVˇW
2 D mW;C0

2 .bV1 ˝ bV1 /CmW;C0
1 ıbV1 ı�W2 .bV1 ˝ bV1 /

CmW;C0
1 ıbV2 .�W1 ˝�W1 /CmV;0�

2 .�W1 ˝�W1 /
CmV;0�

1 ı�W2 .bV1 ˝ bV1 /;

where mW;C0
i D mW;C

i CmW;0
i , i D 1; 2, is the component of mW

i with values in
C.ƒC2 ; ƒ

C
0 /˚ CF.W0; W2/, and mV;0�

i D mV;0
i CmV;�

i , i D 1; 2, is the component
of mV

i with values in CF.V0; V2/ ˚ C.ƒ�0 ; ƒ
�
2 /. Observe that both the component

mW;C
1 ıbV1 ı�W2 .bV1 ˝ bV1 / and the component mW;C

1 ıbV2 .�W1 ˝�W1 / vanish, but
we keep it in the formula to make it look more homogeneous, which helps a bit to
check the Leibniz rule in the next section.
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6.2. Leibniz rule

This section is dedicated in proving that the map mVˇW
2 satisfies the Leibniz rule

with respect to mVˇW
1 . This is just computation. We want to show

mVˇW
2 .mVˇW

1 ˝ id/CmVˇW
2 .id˝mVˇW

1 /CmVˇW
1 ımVˇW

2 D 0

We will actually decompose it into two equations:

m
VˇW;C0W

2 .mVˇW
1 ˝ id/Cm

VˇW;C0W

2 .id˝mVˇW
1 /

Cm
VˇW;C0W

1 ımVˇW
2 D 0; (41)

m
VˇW;0V�

2 .mVˇW
1 ˝ id/Cm

VˇW;0V�

2 .id˝mVˇW
1 /

Cm
VˇW;0V�

1 ımVˇW
2 D 0: (42)

The first one corresponds to the components of the Leibniz rule taking values in
C.ƒC2 ; ƒ

C
0 /˚ CF.W0; W2/, and the second one to the components taking values in

CF.V0; V2/˚ C.ƒ�0 ; ƒ
�
2 /.

In the proof of the Leibniz rule, we will refer to the following equations:

mW;C0
2 .mW

1 ˝ id/CmW;C0
2 .id˝mW

1 /CmW;C0
1 ımW

2 D 0; (43)

mV;0�
2 .mV

1 ˝ id/ C mV;0�
2 .id˝mV

1 / C mV;0�
1 ımV

2 D 0; (44)

�W2 .m
W
1 ˝ id/C�W2 .id˝mW

1 /C�W1 ımW
2 C�ƒ2 .�W1 ˝�W1 /

C�ƒ1 ı�W2 D 0; (45)

bV2 .m
V
1 ˝ id/C bV2 .id˝mV

1 /C bV1 ımV
2 C bƒ2 .bV1 ˝ bV1 /C bƒ1 ı bV2 D 0; (46)

bV1 ı�W1 D �W1 ı bV1 : (47)

Equations (43) and (44) come from the fact that mW
2 and mV

2 satisfy the Leibniz rule.
Equations (45) and (46) (for other Lagrangian boundary conditions) appear implicitly
in Section 5.2: they come respectively from the study the boundary of the compacti-
fication of moduli spaces

M1
W012

.
02I ıW0 ; aW1 ; ıW1 ; aW2 ; ıW2 / and M1
V012

.
20; ı
V
0 ; a

V
1 ; ı

V
1 ; a

V
2 ; ı

V
2 /;

for 
02 2 C.ƒ2;ƒ0/, 
20 2 C.ƒ0;ƒ2/, .aW2 ; a
W
1 / 2 CthC.W1;W2/˝CthC.W0;W1/,

.aV2 ; a
V
1 / 2 CthC.V1; V2/˝ CthC.V0; V1/, ıWi words of pure Reeb chords of ƒi , ıVi

words of pure Reeb chords of ƒ�i . Finally, equation (47) is the content of Lemma 2.
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6.2.1. Equation (41). Let us write the left-hand side of equation (41) as (LR1), i.e.,
(41) () (LR1)=0. We start by developing the first term of (LR1), using the defini-
tion of mVˇW

2 and the fact that bV1 and�W1 are chain maps:

m
VˇW;C0W

2 .mVˇW
1 ˝ id/ D .mW;C0

2 CmW;C0
1 ıbV1 ı�W2 /ŒbV1 ımVˇW

1 ˝bV1 �
CmW;C0

1 ıbV2 Œ�W1 ımVˇW
1 ˝�W1 �

D .mW;C0
2 CmW;C0

1 ıbV1 ı�W2 /ŒmW
1 ıbV1 ˝ bV1 �

CmW;C0
1 ıbV2 ŒmV

1 ı�W1 ˝�W1 �
D mW;C0

2 .mW
1 ˝ id/ŒbV1 ˝ bV1 �

CmW;C0
1 ıbV1 ı�W2 .mW

1 ˝ id/ŒbV1 ˝ bV1 �

CmW;C0
1 ıbV2 .mV

1 ˝ id/Œ�W1 ˝�W1 �:

One decomposes similarly the symmetric term m
VˇW;C0W

2 .id˝mVˇW
1 /. Now, let

us take a look at m
VˇW;C0W

1 ımVˇW
2 . We have

m
VˇW;C0W

1 ımVˇW
2

D mW;C0
1 ıbV1 ımVˇW

2

D mW;C0
1 ıbV1 .mVˇW;C0W

2 Cm
VˇW;0V�

2 /

D mW;C0
1 .m

VˇW;C0W

2 CbV1 ı�W1 ım
VˇW;C0W

2 CbV1 ım
VˇW;0V�

2 /

D .mW;C0
1 CmW;C0

1 ıbV1 ı�W1 /
�
mW;C0
2 .bV1 ˝ bV1 /
CmW;C0

1 ıbV1 ı�W2 .bV1 ˝ bV1 /
CmW;C0

1 ı bV2 .�W1 ˝�W1 /
�

CmW;C0
1 ıbV1 ŒmV;0�

2 .�W1 ˝�W1 /CmV;0�
1 ı�W2 .bV1 ˝ bV1 /�:

The term mW;C0
1 ıbV1 ı�W1 ımW;C0

1 ıbV1 ı�W2 .bV1 ˝ bV1 / vanishes for energy reas-
ons, as well as mW;C0

1 ıbV1 ı�W1 ımW;C0
1 ı bV2 .�W1 ˝�W1 /, hence we finally get

m
VˇW;C0W

1 ımVˇW
2 D mW;C0

1 ımW;C0
2 .bV1 ˝ bV1 /

CmW;C0
1 ıbV1 ı�W1 ımW;C0

2 .bV1 ˝ bV1 /
CmW;C0

1 ımW;C0
1 ıbV1 ı�W2 .bV1 ˝ bV1 /

CmW;C0
1 ımW;C0

1 ıbV2 .�W1 ˝�W1 /
CmW;C0

1 ıbV1 ımV;0�
2 .�W1 ˝�W1 /

CmW;C0
1 ıbV1 ımV;0�

1 ı�W2 .bV1 ˝ bV1 /:
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Summing all together gives

(LR1) D �mW;C0
1 ımW;C0

2 CmW;C0
2 .mW

1 ˝ id/

CmW;C0
2 .id˝mW

1 /
�
.bV1 ˝ bV1 / (L1)

C ŒmW;C0
1 ıbV1 �

�
�W1 ımW;C0

2 C�W2 .mW
1 ˝ id/

C�W2 .id˝mW
1 /
�
.bV1 ˝ bV1 / (L2)

CmW;C0
1 ımW;C0

1 ıbV1 ı�W2 .bV1 ˝ bV1 / (L3)

CmW;C0
1 ımW;C0

1 ı bV2 .�W1 ˝�W1 / (L4)

CmW;C0
1

�
bV1 ımV;0�

2 CbV2 .mV
1 ˝ id/

C bV2 .id˝mV
1 /
�
.�W1 ˝�W1 / (L5)

CmW;C0
1 ıbV1 ımV;0�

1 ı�W2 .bV1 ˝ bV1 /: (L6)

Now, we use equation (43) on (L1), equation (45) on (L2), the fact that

mW;C0
1 ımW;C0

1 D mW;C0
1 ımW;�

1

on (L3) and (L4) and finally equation (46) on (L5), to write

(LR1) D mW;C0
1 ımW;�

2 .bV1 ˝ bV1 / (L10)

CmW;C0
1 ıbV1

�
�W1 ımW;�

2 C�ƒ2 .�W1 ˝�W1 /
C�ƒ1 ı�W2

�
.bV1 ˝ bV1 / (L20)

CmW;C0
1 ımW;�

1 ıbV1 ı�W2 .bV1 ˝ bV1 / (L30)

CmW;C0
1 ımW;�

1 ı bV2 .�W1 ˝�W1 / (L40)

CmW;C0
1 ŒbV1 ımV;C

2 Cbƒ2 .bV1 ˝ bV1 /C bƒ1 ı bV2 �.�W1 ˝�W1 / (L50)

CmW;C0
1 ıbV1 ımV;0�

1 ı�W2 .bV1 ˝ bV1 /: (L60)

We apply then the following modifications.

(1) On (L10) we write

mW;�
2 D bƒ1 ı�W2 C bƒ2 .�W1 ˝�W1 /:

(2) On (L20) observe that �W1 ımW;�
2 vanishes for energy reasons.

(3) On (L30) and (L40) we have

mW;�
1 ıbV1 D bƒ1 ı�W1 ı bV1 D bƒ1 ı bV1

and
mW;�
1 ıbV2 D bƒ1 ı�W1 ı bV2 D bƒ1 ı bV2 :
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(4) On (L50), we write
mV;C
2 D �ƒ2 .bV1 ˝ bV1 /:

(5) Finally, in the last term of (L20) we have �ƒ1 D mV;C
1 so adding it to (L60)

gives mW;C0
1 ıbV1 ımV

1 ı�W2 .bV1 ˝bV1 /. But observe that by definition of�W1
one has bV1 ımV

1 ı�W2 DbV1 ımV
1 ı�W1 ı �W2 , which gives, by Lemma 1,

bƒ1 ı�W1 ı bV1 ı�W2 . We thus get

mW;C0
1 ıbV1 ımV

1 ı�W2 .bV1 ˝ bV1 /
D mW;C0

1 ıbƒ1 ı�W1 ı bV1 ı�W2 .bV1 ˝ bV1 /;

which, using equation (47), is equal to

mW;C0
1 ıbƒ1 ı bV1 ı�W1 ı�W2 .bV1 ˝ bV1 /
D mW;C0

1 ıbƒ1 ı bV1 ı�W2 .bV1 ˝ bV1 /
D ŒmW;C0

1 ıbƒ1 �Œ�W2 C bV1 ı�W2 �.bV1 ˝ bV1 /:

So, finally we have

(LR1) D mW;C0
1 ıbƒ1 ı�W2 .bV1 ˝ bV1 / (R1)

CmW;C0
1 ıbƒ2 .�W1 ı bV1 ˝�W1 ı bV1 / (R2)

CmW;C0
1 ıbV1 ı�ƒ2 .�W1 ı bV1 ˝�W1 ı bV1 / (R3)

CmW;C0
1 ıbƒ1 ı bV1 ı�W2 .bV1 ˝ bV1 / (R4)

CmW;C0
1 ıbƒ1 ı bV2 .�W1 ˝�W1 / (R5)

CmW;C0
1 ıbV1 ı�ƒ2 .bV1 ı�W1 ˝ bV1 ı�W1 / (R6)

CmW;C0
1 ıbƒ2 .bV1 ı�W1 ˝ bV1 ı�W1 / (R7)

CmW;C0
1 ıbƒ1 ı bV2 .�W1 ˝�W1 / (R8)

CmW;C0
1 ıbƒ1 ı�W2 .bV1 ˝ bV1 /CmW;C0

1 ıbƒ1 ı bV1 ı�W2 .bV1 ˝ bV1 /:
(R9)

We have

(R1)C (R4)C (R9)D 0 and (R5)C (R8)D 0:
Then, using equation (47) gives

(R2)C (R7)D 0 and (R3)C (R6)D 0:

Thus, (LR1)D 0:
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6.2.2. Equation (42). Denote (LR2) the left-hand side of equation (42) so that this
equation is equivalent to (LR2)D 0: Using again the fact that bV1 and �W1 are chain
maps, the first term of (LR2) is

m
VˇW;0V�

2 .mVˇW
1 ˝ id/

D mV;0�
2 .�W1 ımVˇW

1 ˝�W1 /CmV;0�
1 ı�W2 .bV1 ımVˇW

1 ˝bV1 /
D mV;0�

2 .mV
1 ı�W1 ˝ �W1 /CmV;0�

1 ı�W2 .mW
1 ıbV1 ˝ bV1 /

D mV;0�
2 .mV

1 ˝ id/.�W1 ˝�W1 /CmV;0�
1 ı�W2 .mW

1 ˝ id/.bV1 ˝ bV1 /:

One writes analogously the symmetric term m
VˇW;0V�

2 .id˝mVˇW
1 /. Now, let us

consider the third term of (LR2):

m
VˇW;0V�

1 ımVˇW
2 D mV;0�

1 ı�W1 ımVˇW
2

D mV;0�
1 ı�W1 ım

VˇW;C0W

2 CmV;0�
1 ım

VˇW;0V�

2

D mV;0�
1 ı�W1 ŒmW;C0

2 .bV1 ˝ bV1 /
CmW;C0

1 ıbV1 ı�W2 .bV1 ˝ bV1 /
CmW;C0

1 ıbV2 .�W1 ˝�W1 /�
CmV;0�

1 ımV;0�
2 Œ�W1 ˝�W1 �

CmV;0�
1 ımV;0�

1 ı�W2 ŒbV1 ˝ bV1 �:
The term

mV;0�
1 ı�W1 ŒmW;C0

1 ıbV1 ı�W2 .bV1 ˝ bV1 /CmW;C0
1 ıbV2 .�W1 ˝�W1 /�

vanishes for energy reasons. Then, observe that mV;0�
1 ımV;0�

1 DmV;0�
1 ımV;C

1 and
�W1 ımW;C0

2 D �W1 ımW
2 because �W1 ımW;�

2 D 0, so we have

m
VˇW;0V�

1 ımVˇW
2 D mV;0�

1 ı�W1 ımW
2 .b

V
1 ˝ bV1 /

CmV;0�
1 ımV;0�

2 Œ�W1 ˝�W1 �
CmV;0�

1 ımV;C
1 ı�W2 ŒbV1 ˝ bV1 �:

Summing all together gives

(LR2) D mV;0�
1

�
�W1 ımW

2 C�W2 .mW
1 ˝ id/

C�W2 .id˝mW
1 /
�
.bV1 ˝ bV1 / (L1)

C �mV;0�
1 ımV;0�

2 CmV;0�
2 .mV

1 ˝ id/

CmV;0�
2 .id˝mV

1 /
�
.�W1 ˝�W1 / (L2)

CmV;0�
1 ımV;C

1 ı�W2 .bV1 ˝ bV1 /:
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Use then equation (45) on (L1) and equation (44) on (L2) to get

(LR2) DmV;0�
1 Œ�ƒ2 .�

W
1 ˝�W1 /C�ƒ1 ı�W2 �.bV1 ˝ bV1 /

CmV;0�
1 ımV;C

2 Œ�W1 ˝�W1 �
CmV;0�

1 ımV;C
1 ı�W2 ŒbV1 ˝ bV1 �:

But remark that mV;C
1 D �ƒ1 and mV;C

2 D �ƒ2 .b
V
1 ˝ bV1 / by definition so then by

equation (47), we get (LR2)D 0:

6.3. Functoriality of the transfer maps

In this section, we prove that the product structures behave well under the transfer
maps bV1 and�W1 . Namely, we have first the following.

Proposition 8. The map induced by bV1 in homology preserves the product structures,
in other words we have bV02

1 ımVˇW
2 D mW

2 .b
V12

1 ˝ bV01

1 / in homology.

Proof. Given a triple .V0 ˇW0; V1 ˇW1; V2 ˇW2/, we define a map

bV2 WCthC.V1 ˇW1; V2 ˇW2/˝ CthC.V0 ˇW0; V1 ˇW1/! CthC.W0; W2/

by
bV2 D bV1 ı�W2 .bV1 ˝ bV1 /C bV2 .�W1 ˝�W1 /:

In order to prove the proposition, we prove that the following relation is satisfied:

bV2 .m
VˇW
1 ˝ id/C bV2 .id˝mVˇW

1 /

C bV1 ımVˇW
2 CmW

2 .b
V
1 ˝ bV1 /CmW

1 ıbV2 D 0 (48)

Let us first consider bV2 .m
VˇW
1 ˝ id/. We have

bV2 .m
VˇW
1 ˝ id/ D bV1 ı�W2 ŒbV1 ımVˇW

1 ˝bV1 �C bV2 Œ�W1 ımVˇW
1 ˝�W1 �

D bV1 ı�W2 .mW
1 ıbV1 ˝ bV1 /C bV2 .mV

1 ı�W1 ˝�W1 /
D bV1 ı�W2 .mW

1 ˝ id/.bV1 ˝ bV1 /C bV2 .mV
1 ˝ id/.�W1 ˝�W1 /:

Then we consider bV1 ımVˇW
2 . Observe that we have already computed this term

in Section 6.2.1 when considering the term m
VˇW;C0W

1 ımVˇW
2 . So, recall that we

have

bV1 ımVˇW
2 D mW;C0

2 .bV1 ˝ bV1 /CmW;C0
1 ıbV1 ı�W2 .bV1 ˝ bV1 /

CmW;C0
1 ıbV2 .�W1 ˝�W1 /C bV1 ı�W1 ımW;C0

2 .bV1 ˝ bV1 /
C bV1 ımV;0�

2 .�W1 ˝�W1 /C bV1 ımV;0�
1 ı�W2 .bV1 ˝ bV1 /:
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The left-hand side of (48), rearranging terms according to the decompositions above
is thus given by

bV1 .�
W
2 .m

W
1 ˝ id/C�W2 .id˝mW

1 /C�W1 ımW;C0
2 /.bV1 ˝ bV1 / (L1)

C .bV2 .mV
1 ˝ id/C bV2 .id˝mV

1 /C bV1 ımV;0�
2 /.�W1 ˝�W1 / (L2)

C .mW;C0
2 CmW

2 /.b
V
1 ˝ bV1 / (L3)

C .mW;C0
1 ıbV1 ı�W2 CmW

1 ıbV1 ı�W2 /.bV1 ˝ bV1 / (L4)

C .mW;C0
1 ıbV2 CmW

1 ıbV2 /.�W1 ˝�W1 / (L5)

C bV1 ımV;0�
1 ı�W2 .bV1 ˝ bV1 /: (L6)

We use now equation (45) on (L1), equation (46) on (L2) and the same modification
as Section 6.2.1 (5) on line (L6) to rewrite

.bV1 ı�ƒ2 .�W1 ˝�W1 /C bV1 ı�ƒ1 ı�W2 /.bV1 ˝ bV1 /
C .bV1 ımV;C

2 C bƒ2 .bV1 ˝ bV1 /C bƒ1 ı bV2 /.�W1 ˝�W1 /
CmW;�

2 .bV1 ˝ bV1 /
CmW;�

1 ıbV1 ı�W2 .bV1 ˝ bV1 /
CmW;�

1 ıbV2 .�W1 ˝�W1 /
C .bV1 ımV;C

1 ı�W2 C bƒ1 ı bV1 ı�W2 /.bV1 ˝ bV1 /:

Finally, using

(1) mV;C
2 D �ƒ2 .bV1 ˝ bV1 / and mV;C

1 D �ƒ1 ,

(2) mW;�
1 ıbV1 D bƒ1 ı�W1 ı bV1 D bƒ1 ı bV1 , and also mW;�

1 ıbV2 D bƒ1 ı bV2 ,

(3) bƒ1 ı bV1 ı�W2 D bƒ1 ı�W2 C bƒ1 ı bV1 ı�W2 ,

we rewrite

.bV1 ı�ƒ2 .�W1 ˝�W1 /C bV1 ı�ƒ1 ı�W2 /.bV1 ˝ bV1 /
C .bV1 ı�ƒ2 .bV1 ˝ bV1 /C bƒ2 .b

V
1 ˝ bV1 /C bƒ1 ı bV2 /.�W1 ˝�W1 /

C .bƒ1 ı�W2 C bƒ2 .�W1 ˝�W1 //.bV1 ˝ bV1 /
C bƒ1 ı bV1 ı�W2 .bV1 ˝ bV1 /
C bƒ1 ı bV2 .�W1 ˝�W1 /
C .bV1 ı�ƒ1 ı�W2 C bƒ1 ı�W2 C bƒ1 ı bV1 ı�W2 /.bV1 ˝ bV1 /;

and, making use of equation (47), all the terms in the sum cancel by pair.
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The same functorial property applies for the map

�W1 WCthC.V0 ˇW0; V1 ˇW1/! CthC.V0; V1/:

Indeed, we have the following result.

Proposition 9. The map induced by �W1 in homology preserves the product struc-
tures, that is to say,�W02

1 ımVˇW
2 D mV

2 .�
W12

1 ˝�W01

1 / in homology.

Proof. Given a triple .V0 ˇW0; V1 ˇW1; V2 ˇW2/, we define a map

�W2 WCthC.V1 ˇW1; V2 ˇW2/˝ CthC.V0 ˇW0; V1 ˇW1/! CthC.V0; V2/

by
�W2 D �W2 .bV1 ˝ bV1 /;

where the map�W2 was defined in Section 5.1 for the case of three pairwise transverse
Lagrangian cobordisms. In order to prove the proposition, we prove that the following
relation is satisfied:

�W2 .m
VˇW
1 ˝ id/C�W2 .id˝mVˇW

1 /C�W1 ımVˇW
2

CmV
2 .�

W
1 ˝�W1 /CmV

1 ı�W2 D 0:
First, we have

�W2 .m
VˇW
1 ˝ id/ D �W2 .bV1 ımVˇW

1 ˝bV1 / D �W2 .mW
1 ˝ id/.bV1 ˝ bV1 /:

Then, again we have already computed the term �W1 ı mVˇW
2 when considering

m
VˇW;0V�

1 ımVˇW
2 in Section 6.2.2. Recall that we have

�W1 ımVˇW
2 D�W1 ımW;C0

2 .bV1 ˝ bV1 /CmV;0�
2 .�W1 ˝�W1 /

CmV;0�
1 ı�W2 .bV1 ˝ bV1 /:

Hence, the left-hand side of equation (6.3) is equal to

.�W2 .m
W
1 ˝ id/C�W2 .id˝mW

1 /C�W1 ımW;C0
2 /.bV1 ˝ bV1 / (L1)

CmV;0�
2 .�W1 ˝�W1 /CmV;0�

1 ı�W2 .bV1 ˝ bV1 / (L2)

CmV
2 .�

W
1 ˝�W1 /CmV

1 ı�W2 .bV1 ˝ bV1 /: (L3)

Using equation (45) on line (L1) and summing (L2) and (L3) gives

�W1 ımW;�
2 .bV1 ˝ bV1 /C�ƒ2 .�W1 ı bV1 ˝�W1 ı bV1 /C�ƒ1 ı�W2 .bV1 ˝ bV1 /

CmV;C
2 .�W1 ˝�W1 /CmV;C

1 ı�W2 .bV1 ˝ bV1 /:

Observe that�W1 ımW;�
2 .bV1 ˝ bV1 / D 0 for energy reasons. Then, mV;C

1 D �ƒ1 and
mV;C
2 D �ƒ2 .bV1 ˝ bV1 /, so using equation (47) one gets that the terms sum to 0.
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Observe that given the maps bV2 and �V2 defined in the proofs of Propositions 8
and 9, we can rewrite the formula of the product mVˇW

2 as follows:

mVˇW
2 D mW;C0

2 .bV1 ˝ bV1 /CmW;C0
1 ıbV2 CmV;0�

2 .�W1 ˝�W1 /CmV;0�
1 ı�W2 :

Moreover, if we restrict again to the special cases where the triples .W0; W1; W2/
or .V0; V1; V2/ are trivial cylinders, one has

(1) .W0; W1; W2/ D .R �ƒ0;R �ƒ1;R �ƒ2/: the map bV2 becomes a map

bV2 WCthC.V1; V2/˝ CthC.V0; V1/! C.ƒ0; ƒ2/

which is equal to the map bV2 for the case of three pairwise transverse Lag-
rangian cobordisms .V0; V1; V2/, and�W2 vanishes;

(2) .V0; V1; V2/ D .R �ƒ0;R �ƒ1;R �ƒ2/: in this case the map bV2 vanishes
and�W2 is a map

�W2 WCthC.W1; W2/˝ CthC.W0; W1/! C.ƒ2; ƒ0/

which is actually equal to the map�W2 for the case of three pairwise transverse
Lagrangian cobordisms .W0; W1; W2/.

7. Continuation element

Again, let †0 be an exact Lagrangian cobordism fromƒ�0 toƒC0 with A.ƒ�0 / admit-
ting an augmentation "�0 . In this section we prove that there is a continuation element
e 2 CthC.†0; †1/, where †1 is a suitable small Hamiltonian perturbation of †0.
Assume †0 is cylindrical outside Œ�T; T � � Y . Fix � > 0 smaller than the length of
any chord of ƒ�0 and ƒC0 , and N > 0. Then we set †1 WD '

�

zH
.†0/ for a Hamilto-

nian zH WR � .P � R/! R being a small perturbation of H.t; p; z/ D hT;N .t/ for
hT;N WR! R satisfying8̂̂̂̂

<̂
ˆ̂̂:
hT;N .t/ D �et for t < �T �N;
hT;N .t/ D �et C C for t > T CN;
h0T;N .t/ � 0;
Œ�T; T � � .h0/�1.0/;

for a positive constant C , and whose corresponding Hamiltonian vector field is given
by �T;N @z , with �T;N WR ! R satisfying �T;N .t/ D �1 for t � �T � N and t �
T C N , �T;N .t/ D 0 for t 2 Œ�T; T �, �0T;N � 0 in Œ�T � N;�T � and �0T;N � 0 in
ŒT; T C N�, see Figure 20. Moreover, under an appropriate identification of a tubu-
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1

t

T N T T T CN

t

T N T T T CN

Figure 20. Graphs of hT;N on the left and �T;N on the right.

lar neighborhood of †0 with a standard neighborhood of the 0-section in T �†0, see
[12, Section 6.2.2], we assume that †1 is given by the graph of dF in T �†0, with
F W†0 ! R Morse function satisfying under this identification the following proper-
ties.

• The critical points of F (in one-to-one correspondence with intersection points in
†0 \†1) are all contained in .�T; T / � Y .

• On the cylindrical ends of †0, F is equal to et .f˙ � �/, for f˙Wƒ˙0 ! R Morse
functions such that the C 0-norm of f˙ is much smaller than �. In other words,
it means that the cylindrical ends of †0 [ †1 are cylinders over the 2-copy
ƒ˙0 [ƒ˙1 where ƒ˙1 is a Morse perturbation of ƒ˙0 � �@z (translation of ƒ˙0 by
� in the negative Reeb direction). Moreover, we assume that f˙ admit a unique
maximum on each connected component.

• We assume that F admits a unique maximum on each filling component of †0
(observe that F is decreasing with respect to the coordinate t) and has no max-
imum on each component of †0 with a non-empty negative end.

See Figure 21 for a schematic picture of the 2-copy †0 [ †1. The CE-algebras
A.ƒ�0 / and A.ƒ�1 / are canonically identified and thus an augmentation "�0 of A.ƒ�0 /

can be seen as an augmentation of A.ƒ�1 /. Moreover, for � small enough and Morse
functions F; f˙ such that †1 is sufficiently C1-close to †0, one has "�0 ı ˆ†0

D
"�0 ıˆ†1

, see [6, Theorem 2.15].

Remark 6. Observe that in order to define the continuation element in CthC.†0;†1/
we choose to view †1 as a negative wrapping of †0 at infinity. We could also choose
to view †0 as a positive wrapping of †1, as done in [20] for Lagrangians in Liouville
sectors. Of course, both points of view are valid, in the first case our continuation
element will be represented by the sum of the maxima of the Morse functions F and
f� (see below) while in the second case it would correspond to a sum of minima.
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†0 †1

Figure 21. Schematic picture of the perturbation †1 of †0.

Remark 7. According to the choice of perturbation we take we have the following
isomorphism of complexes CF�.†0; †1/ ' CMnC1��.F /, see [9, Theorem 7.9], and
recall that a critical point of f� of Morse index k corresponds to a Morse chord of
LCH-index n � k � 1 from ƒ�1 to ƒ�0 , see Example 1.

Let us denote e D e0 C e�, where e0 DP e0i is the sum of the maxima e0i of F
and e� DP e�i is the sum of the maxima e�i of f�, where the sum is indexed over the
connected components of †. Each e�i corresponds to a Reeb chord from ƒ�1 to ƒ�0 .
Note that e is of degree 0 in the complex CthC.†0; †1/.

Proposition 10. We have m
†01

1 .e/ D 0, i.e., e is a cycle.

Proof. We develop m
†01

1 .e/ DPm0
1.e

0
i /C

P
m0
1.e
�
i /C

P
m�1 .e

0
i /Cm�1 .e

�
i /.

First, for all i m�1 .e
0
i /D 0 by assumption. Indeed the components of†0 on which

there is a maximum of F are assumed to have an empty negative end. This is also true
for action reasons because according to the perturbation we perform to construct †1
from †0, all intersection points in †0 \†1 have positive action.

Then, we prove that
P

m�1 .e
�
i / D 0. The strategy is the following. We will make

use of the isomorphism in Example 1 in order to view pseudo-holomorphic discs
contributing to m�1 .e

�
i / with boundary on R � .ƒ�0 [ ƒ�1 / as discs with boundary

on R � .ƒ�0 [ ƒ�1 /. Then, we apply results in [16] in order to interpret the later as
negative gradient flow lines of f� or generalised discs with boundary on R�ƒ�0 , and
conclude.
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Let u be a pseudo-holomorphic disc contributing to m�1 .e
�
i /. By definition, u has

boundary on R � .ƒ�0 [ƒ�1 /, a negative asymptotic to the maximum Reeb chord e�i
and a positive asymptotic to an output Reeb chord fromƒ�1 toƒ�0 , call it ˇ10. Observe
that as m�1 is of degree 1, jˇ10jCthC D 1. By the isomorphism in Example 1, the disc
u is in bijective correspondence with a disc u with boundary on R � .ƒ�0 [ ƒ�1 /, a
positive asymptotic to e�i and a negative asymptotic to ˇ10. We consider two cases:
either ˇ10 (and thus also ˇ10) is a Morse chord, or it is not.

If ˇ10 is Morse it corresponds to an index n � 1 critical point of f�. Moreover,
by [16, Theorem 3.6] u has no pure Reeb chords asymptotics for action reasons and
corresponds to a negative gradient flow line of f� from the maximum e�i to the critical
point ˇ10 (here we abuse notation and denote the same way Morse chords and critical
points of f� to which they correspond). Observe also that for each index n� 1 critical
point ˇ10 of f� there are exactly two flow lines of f� flowing to the (unique on the
i -th connected component!) maximum e�i . So, the contribution of such a critical point
ˇ10 to m�.e

�
i / vanishes.

If ˇ10 is not Morse, then by [16, Theorem 3.6] again u corresponds to a rigid
generalised disc with boundary on R �ƒ�0 , which consists of a pseudo-holomorphic
disc v with a negative gradient flow line of f� flowing from the maximum e�i to the
boundary of v. By rigidity, v is a constant disc at ˇ0 which is the pure chord of ƒ�0
corresponding to ˇ10. Following the proof of [16, Theorem 5.5] there are two ways
this negative gradient flow line can be attached to u: either on the starting point of ˇ0,
or on its ending point. Thus, we get that the contribution of ˇ10 to

P
m�1 .e

�
i / is given

by "�0 .ˇ0/C "�1 .ˇ0/ D 0.
Finally, we prove

P
m0
1.e

0
i /D

P
m0
1.e
�
i /D 0. As observe in Remark 7, m0

1.e
0
i /

counts negative gradient flow lines of F from the maximum e0i to a critical point of
Morse index n. From such a point, there are exactly two flow lines of F flowing out
and as the gradient of F points inward in the positive end, these two flow lines must
flow to the (unique on this connected component!) maximum e0i . Hence, m0

1.e
0
i /D 0.

In order to show
P

m0
1.e
�
i / D 0, wrap the negative end of (the non-empty negative

ends components of)†1 slightly in the positive Reeb direction using the Hamiltonian
vector field ��TCN;N @z (see Section 4.1). Let V1 be the image of R � ƒ�1 by the
corresponding time-s� flow where s� is bigger than the longest Morse chord from
ƒ�1 to ƒ�0 but much smaller than the shortest non-Morse chord from ƒ�1 to ƒ�0 . We
set V0 D R � ƒ�0 . Observe that each Morse chord (from ƒ�1 to ƒ�0 ) becomes an
intersection point in V0 \ V1. We denote mi the intersection point corresponding to
e�i , see Figure 22. Assume that the perturbation is sufficiently small and generic so
that V1 ˇ†1 can be seen as a perturbation of V0 ˇ†0 by a Morse function zF which
equals F on Œ�T; T � � Y \ †0. Moreover, observe that the gradient of zF points
inward in the negative end. Consider the pair of concatenations .V0 ˇ†0; V1 ˇ†1/.
By projecting curves on P as done in Section 4.1, one can prove that bV1 .mi / D e�i .
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mi

ei

V0 V1

†0 †1

T CN

T

T

T N

T 2N 1

Figure 22. Schematization of the wrapping of the negative of †1.

Then, by definition of the differential in a concatenation,

mVˇ†
1 .mi / D m†;C0

1 ıbV1 .mi /CmV;0�
1 ı�†1 .mi /

which gives m
Vˇ†;0†

1 .mi / D m†;0
1 ıbV1 .mi / D m†;0

1 .e�i / and curves contributing
to m

Vˇ†;0†

1 .mi / are in one-to-one correspondence with negative gradient flow lines
of zF from the maximum mi to a critical point in †0. Now, each intersection point in
†0 \†1 (of a non-empty negative end component) which corresponds to an index n
critical point of zF , is the starting point of two gradient flow lines flowing tomi . Thus,P

m0
1.e
�
i / D 0.

Theorem 6. Consider †0 and †1 as above. Take ƒ�2 �†2
ƒC2 another exact Lag-

rangian cobordism such that the intersection of †2 with a small standard neighbor-
hood of †0 identified with D"T �†0 and containing also †1, consists of a union of
fibres, then

m
†012

2 . � ; e/WCthC.†1; †2/! CthC.†0; †2/

is an isomorphism.

Remark 8. Given †0 and a transverse cobordism †2, one can always find a suffi-
ciently small perturbation †1 of †0 such that the intersection of †2 with D"T �†0
which contains †1, consists of a union of fibres. This way, there is a canonical identi-
fication of vector spaces CthC.†1;†2/Š CthC.†0;†2/, and for a generator 
12, x12
or 
21 in CthC.†1; †2/, one denotes respectively 
02, x02 or 
20 the corresponding
generator in CthC.†0; †2/.
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Remark 9. Proposition 10 states that the element e is a cycle. Given Theorem 6 one
gets that it is a boundary if and only if CthC.†1; †2/ is acyclic for every cobordism
†2 satisfying the hypothesis of the theorem, as proved in [8, Lemma 4.15].

Proof of Theorem 6. First we write

CthC.†1; †2/

D C.ƒC2 ; ƒ
C
1 /
�Œn � 1�˚ CF�.†1; †2/˚ C.ƒ�1 ; ƒ

�
2 /˚ CFC.†1; †2/;

where CF˙.†1; †2/ � CF.†1; †2/ is the sub-vector space generated by positive,
resp. negative action intersection points. According to this decomposition, ordering
Reeb chords in C.ƒC2 ; ƒ

C
1 /
�Œn � 1� from biggest to smallest action and intersection

points in CF�.†1;†2/˚CFC.†1;†2/ from smallest to biggest action, we will show
that the matrix of the map (6) is lower triangular with identity terms on the diagonal.

1. For 
12 2 C.ƒC2 ; ƒ
C
1 /, we have

m2.
12; e/ D mC2 .
12; e/Cm0
2.
12; e/Cm�2 .
12; e/

D �C2 .
12; b†1 .e//Cm0
2.
12; e/C b�1 ı�†2 .
12; e/

C b�2 .�†1 .
12/; e�/C b�2 .�†1 .
12/;�†1 .e0//
D �C2 .
12; b†1 .e//Cm0

2.
12; e/C b�1 ı�†2 .
12; e/
C b�2 .�†1 .
12/; e�/;

where the last equality is because �†1 .e
0
i / vanishes for energy reasons. On Figure 23

we schematized pseudo-holomorphic configurations contributing to m2.
12; e/. Let i
denote the index of the connected component of †1 containing the starting point of

12. Note that by the hypothesis on the Morse function F , if this component has a
non-empty negative end only the configurations A, B, C, and D are relevant, whereas
if it is a filling component then only the configurations A0, B0, and C0 are. We start by
considering the first case and explain at the end of this part how the second case is
treated in a similar way. We will prove that

m2.
12; e/ D 
02 C �02 C y�02 C �20 C yC02
where 
02 2 C.ƒC2 ;ƒ

C
0 / is the Reeb chord canonically identified to 
12, where �02 2

C.ƒC2 ;ƒ
C
0 / is a linear combination of Reeb chords whose action are smaller than the

action of 
02, where y˙02 2 CF˙.†0; †2/, and where �20 2 C.ƒ�0 ; ƒ
�
2 /.

Let us consider the configurations of type A. Denote v a rigid disc with boundary
on the positive cylindrical ends, with a positive asymptotic to 
12, a negative Reeb
chord asymptotic ˇ10 2 C.ƒC0 ; ƒ

C
1 /, and an output negative Reeb chord asymptotic


out 2 C.ƒC2 ; ƒ
C
0 /, and u a rigid disc with boundary on †0 [ †1 with a positive
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ei
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1
1 1

0 0000
0

0

R ƒ012

†012

R ƒC
012

Figure 23. Types of curves (potentially) contributing to m2.
12; e/.

asymptotic to ˇ10 and a negative asymptotic to a maximum Morse Reeb chord e�i .
We distinguish two cases: either ˇ10 is a Morse chord, or it is not a Morse chord.

(a) If ˇ10 is a Morse chord. First, rigidity implies that jˇ10j D je�i j D�1 (LCH-grad-
ing), and thus ˇ10 corresponds to the (only one by assumption) maximum of fC on
the component of ƒC0 containing the starting point of 
02. For action reasons the
disc u has no pure Reeb chords asymptotics. As in the proof of Proposition 10, we
show that the count of such discs u coincides with the count of some rigid gradi-
ent flow lines of a Morse function zF which equals F on †0 \ .Œ�T; T � � Y /. To
get this correspondence, wrap the negative and the positive ends of †1 slightly in
the positive Reeb direction: take V1, resp W1, to be the image of R � ƒ�1 , resp
R � ƒC1 , by the time s�, resp sC, flow of the Hamiltonian vector field ��TCN;N @z ,
resp ��CTCN;N @z , with s˙ bigger than the longest Morse chord from ƒ˙1 to ƒ˙0
but smaller than the shortest non-Morse chord from ƒ˙1 to ƒ˙0 . See Figure 24 for
a schematized picture of the perturbation. This way, e�i corresponds canonically to an
intersection pointmi 2 CF.V0; V1/ and ˇ10 corresponds to an intersection point xˇ 2
CF.W0; W1/. As before, by projecting discs on P one can prove that bV1 .mi / D e�i
and mW;0

1 .ˇ10/ D xˇ . By definition of the differential for the pairs of concatenated
cobordisms .V0 ˇ .†0 ˇW0/; V1 ˇ .†1 ˇW1// and .†0 ˇW0; †1 ˇW1/, one has

m
Vˇ.†ˇW /
1 .mi / D m†ˇW;C0

1 ıbV1 .mi /CmV;0�
1 ı�†ˇW1 .mi / (49)

and

m†ˇW;C0
1 ıbV1 .mi / D mW;C0

1 ıb†1 ı bV1 .mi /Cm†;0
1 ı�W1 ı bV1 .mi /:
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V0 V1

†0 †1

W0 W1

T C2N C1

T 2N 1

Figure 24. Schematized picture of wrapping of the negative and positive ends of †1.

Considering the components with values in CF.W0; W1/ on both sides of (49) gives

m
Vˇ.†ˇW /;0W

1 .mi / D mW;0
1 ıb†1 ı bV1 .mi /

D mW;0
1 ıb†1 ı bV1 .mi /

D mW;0
1 ıb†1 .e�i /:

The disc u contributes to the coefficient of ˇ10 in b†1 .e
�
i / which is thus equal to the

coefficient of xˇ in m
Vˇ.†ˇW /;0W

1 .mi /, as mW;0
1 .ˇ10/ D xˇ . As before, one can

view V1 ˇ†1 ˇW1 as a Morse perturbation of †0 by a Morse function zF which is
equal to F on .Œ�T; T � � Y / \ †0. Thus, pseudo-holomorphic strips asymptotic to
mi and xˇ are in one-to-one correspondence with negative gradient flow lines of zF
frommi to xˇ . Moreover, there exists exactly one such disc because xˇ is the starting
point of two flow lines of d zF , but one escapes in the positive end (note that d zF points
outward in the positive end) while the other flows to mi .

It remains to understand the pseudo-holomorphic disc v with boundary on R �
.ƒC0 [ ƒC1 [ ƒC2 / with a positive asymptotic to 
12 and negative asymptotics to a
maximum Morse chord ˇ10 and a chord 
out 2 C.ƒC2 ; ƒ

C
0 /. In order to do so, we

will use the same strategy as in the proof of Proposition 10 when we showed thatP
m�1 .e

�
i / D 0. Namely, we use the isomorphism recalled in Example 1 relating

CthC complexes of two different 2-copies, and then [16, Theorem 3.6] to identify
discs with boundary on a 2-copy with generalised discs with boundary on one copy.
The two different 2-copies we consider are the following. The first is .�0; �1/, with
�0 D ƒC0 [ ƒC2 and �1 D ƒC1 [ .ƒC2 /0 where .ƒC2 /

0 is a perturbation by a Morse
function of a small push-off ofƒC2 in the negative Reeb direction. The second 2-copy
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is .�0; �1/ where �1 is a translation of �1 far in the positive Reeb direction. Now, the
disc v we consider with boundary on R � .ƒC0 [ƒC1 [ƒC2 / is a disc with boundary
on R � .�0 [ �1/ with a mixed positive asymptotic 
12 which is a chord from �1

to �0, a mixed negative asymptotic ˇ10 from �1 to �0 and a negative asymptotic

out which is a pure chord of �0. According to the isomorphism in Example 1, this
disc corresponds to a disc with boundary on R � .�0 [ �1/ with a mixed positive
asymptotic at ˇ10, a mixed negative asymptotic at 
12 and a pure negative asymptotic
at 
out. By [16, Theorem 3.6] it corresponds to a rigid generalised disc with boundary
on R � �0 consisting of a disc and a negative gradient flow line of fC flowing from
the maximum of fC to the boundary of the disc (on R � ƒC0 ). By rigidity this last
disc is constant, implying 
out D 
02. Conversely, following the flow of dfC from the
starting point of 
02 leads to the maximum of fC on the corresponding connected
component. Such a flow line is a generalised disc which corresponds to a disc v with
boundary on R � .ƒC0 [ƒC1 [ƒC2 / as considered above.

Thus, we have proved that the coefficient of 
02 in m2.
12; e/ is 1.

(b) If ˇ10 is not a Morse chord. Given R � 0 such that the three cobordisms †0; †1
and†2 are cylindrical outside of Œ�R;R�� Y , the energy of the disc v with boundary
on the positive cylindrical ends is given by

E.v/ D a.
12/ � a.ˇ10/ � a.
out/ �
2X
iD0

a.ıi /

with

a.
12/ D eR`.
12/C c2 � c1;

a.ˇ10/ D eR`.ˇ10/C c0 � c1;

a.
out/ D eR`.
out/C c2 � c0:

One can check that

ja.
12/ � a.
02/j � eR.max kfCkC0 C �/C c0 � c1;

ja.ˇ10/ � a.ˇ0/j � eR.max kfCkC0 C �/C c0 � c1:

and thus

a.
02/ � a.
out/ � E.v/C a.ˇ0/ � 2.eR.max kfCkC0 C �/C c0 � c1/

and for � sufficiently small, the term on the right-hand side is strictly positive, so the
action of 
out is strictly smaller than that of 
02.
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Thus, together with the curves of type B, C, and D, we obtain as expected

m2.
12; e/ D 
02 C �02 C y�02 C �20 C yC02:

In case the connected component of†1 containing the starting point of 
12 has an
empty negative end, as observed at the beginning of case 1. the configurations A0, B0,
and C0 of Figure 23 are the only one which will contribute to m2.
12; e/. As for A,
the configurations of type A0 consist of two discs, one is like the disc v studied in the
case of A, positively asymptotic to 
12 and negatively asymptotic to ˇ10 and 
out, and
the other disc is a disc u0 with boundary on†0 [†1 with a positive asymptotic to ˇ10
and an intersection point asymptotic at a maximum e0i of F . As before, the term 
02

in m2.
12; e/ will come from a configuration A0 where ˇ10 is a Morse chord while
the other terms in m2.
12; e/ will come from A0 where ˇ10 is not Morse, and from
the configurations B0 and C0. If ˇ10 is Morse, we just mimic the proof of case 1 (a) in
order to show that u0 can be identified with a negative gradient flow line of a Morse
function zF (equal to F on .Œ�T; T � � Y / \ †0) from e0i to xˇ . The only difference
is that we only need to wrap slightly the positive end of †1 but not the negative end
because there is no negative end on the i -th connected component of †0.

2. For x12 2 CF.†1; †2/ D CFC.†1; †2/˚ CF�.†1 [†2/, we have

m2.x12; e/ D m0
2.x12; e/Cm�2 .x12; e/

D m0
2.x12; e/C b�1 ı�†2 .x12; e/C b�2 .�†1 .x12/; e�/
C b�2 .�†1 .x12/;�†1 .e0//
D m0

2.x12; e/C b�1 ı�†2 .x12; e/C b�2 .�†1 .x12/; e�/;

see Figure 25, and we will prove that for xC12 2CFC.†1;†2/ and x�12 2CF�.†1;†2/,
one has

m2.x
C
12; e/ D xC02 C yC02 and m2.x

�
12; e/ D x�02 C z�02 C �20 C zC02

where yC02;z
C
02 2 CFC.†0;†2/, z�02 2 CF�.†0;†2/ and �20 2 C.ƒ�0 ;ƒ

�
2 /, and each

intersection point in yC02, resp. z�02, has action strictly bigger than xC02, resp. x�02.
As for the previous case, we start by assuming that x12 is an intersection point

of †1 \ †2 with the i -th connected component of †1 having a non-empty negative
end. Then, only configurations E, F and G are relevant. Let us consider configurations
of type E. Let u be a pseudo-holomorphic disc with boundary on †0 [ †1 [ †2
negatively asymptotic to e�i , and asymptotic to x12 2CF.†1;†2/ and an output xout 2
CF.†0; †2/. The action of intersection points are assumed to be much smaller than
that of pure Reeb chords, so u has no pure Reeb chord asymptotics.

To understand what can be the output of such a disc, we wrap as before the negat-
ive end of†1 slightly in the positive Reeb direction to get the pair .V0ˇ†0;V1ˇ†1/
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Figure 25. Curves contributing to m2.x12; e/.

where the Morse Reeb chords e�j in C.ƒ�0 ; ƒ
�
1 / correspond to intersection points mj

in CF.V0; V1/ and bV1 .mj /D bV1 .mj /D e�j . By definition of the product for a pair of
concatenated cobordisms (see Section 6) we have

m
Vˇ†;0†

2 .x12; mi /

D m†;0
2 .bV1 .x12/;b

V
1 .mi //Cm†;0

1 ıbV1 ı�†2 .bV1 .x12/;bV1 .mi //
Cm†;0

1 ıbV2 .�†1 .x12/;�†1 .mi //
D m†;0

2 .bV1 .x12/; e
�
i /Cm†;0

1 ıbV1 ı�†2 .bV1 .x12/; e�i /
Cm†;0

1 ıbV2 .�†1 .x12/;mi /
D m†;0

2 .x12; e
�
i /Cm†;0

2 .bV1 ı�†1 .x12/; e�i /Cm†;0
1 ıbV1 ı�†2 .x12; e�i /

Cm†;0
1 ıbV2 .�†1 .x12/;mi /:

See Figure 26. All these terms except the first one involve bananas with two positive
Reeb chord asymptotics and with boundary on V0 [ V1 [ V2 where V0 D R � ƒ�0 ,
V1 is a wrapping of R �ƒ�1 and V2 WD R �ƒ�2 . These rigid bananas project to rigid
discs with boundary on �P .ƒ�0 [ ƒ�1 [ ƒ�2 / and for dimension reasons they must
be constant. This is not possible as they all have two distinct positive Reeb chord
asymptotics (a constant curve with boundary on �P .ƒ�0 [ ƒ�1 [ ƒ�2 / does not lift
to a banana with two positive asymptotics but to a trivial strip). So, we are left with
m
Vˇ†;0†

2 .x12; mi / D m†;0
2 .x12; e

�
i /.

Let us denote again zF a Morse function such that V1 ˇ †1 is viewed as a 1-jet
perturbation of †0 by zF , and zF equals F on †0 \ .Œ�T; T � � Y /. The intersection
point mi is a maximum of zF and the gradient flow line of zF flowing from x02 to mi
corresponds to a pseudo-holomorphic triangle asymptotic to x02, mi and x12. Thus,
the coefficient of x02 in m†;0

2 .x12; e
�
i / is 1. Note also that the energy of this triangle
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Figure 26. Curves contributing to mVˇ†;0†

2
.x;mi /.

is given by

E.u/ D a.x02/ � a.e�i / � a.x12/ (50)

and by definition of the action one can check that it can be made as small as possible
by taking smaller �.

Now, suppose there is another pseudo-holomorphic triangle with asymptotics x12,
e�i and y02 ¤ x02, contributing to the coefficient of y02 in m2.x12; e/. This triangle
necessary leaves a small neighborhood of the gradient flow line from x02 to mi and
thus according to the relation (50) between the energy of such a triangle and the
action of its asymptotics, the action of y02 is strictly bigger than the action of x02,
independently of how small � is.

Then, about configurations of type F and G, observe that a disc with boundary
on the non-cylindrical parts in such configurations exists only if the action of x12 is
negative.

To sum up, the configurations of type E, F, and G give that

m2.x
C
12; e/ D xC02 C yC02; and m2.x

�
12; e/ D x�02 C z�02 C �20 C zC02:

If the component of †1 containing x12 is a filling, we have to consider configura-
tions E0, and F0 only. For E0, we do not need to wrap the negative end of †1 and
consider directly the one-to-one correspondence between gradient flow lines of F
from x02 to e0i and pseudo-holomorphic triangles with vertices x02, e0i and x12. For F0,
observe that a disc with boundary on the non-cylindrical parts in such a configuration
exists also only if the action of x12 is negative (remember e0i has positive action).

3. Finally, for �21 2 C.ƒ�1 ; ƒ
�
2 / we have

m2.�21; e/ D m0
2.�21; e/Cm�2 .�21; e/ D m0

2.�21; e
�/C b�2 .�21; e�/

because the Morse function F has no maxima e0i on the component of†1 involved as
this component has a non-empty negative end. See Figure 27. For energy reasons, if a
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Figure 27. Curves contributing to m2.�21; e/.

disc of type H exists then the output intersection point must have positive action. Then
a disc of type I is such that �out is the chord in C.ƒ�0 ; ƒ

�
2 / canonically identified with

�21 2 C.ƒ�1 ;ƒ
�
2 /. In order to prove this, one can use the same type of argument as in

case 1. Let �0 D ƒ�0 [ .ƒ�2 /0 where .ƒ�2 /
0 is a Morse perturbation of a small push-

off of ƒ�2 in the positive Reeb direction, and �1 D ƒ�1 [ƒ�2 . The disc of type I with
boundary on �0 [ �1 corresponds to a disc with boundary on �0 [ �1 with a positive
asymptotic at e�i 2 C.ƒ�1 ; ƒ

�
0 /, a negative asymptotic at �out 2 C.ƒ�2 ; ƒ

�
0 / and a

negative asymptotic at �21 which is a pure chord of �1. By [16, Theorem 3.6] this
last disc corresponds to a rigid generalised disc with boundary on R � �0 consisting
of a constant disc at � 020 (chord in C.ƒ�0 ; .ƒ

�
2 /
0/ canonically identified with �21 2

C.ƒ�1 ; ƒ
�
2 /) and a negative gradient flow line of f� from the maximum e�i to the

ending point of � 020. Translating this back to our setting, the configuration of type I
contributes �20 to m2.�21; e/, and thus we have m2.�21; e/ D �20 C yC02.

Remark 10. Generalizing the conjectural [13, Lemma 4.10] to the case of cobord-
isms, one could probably prove that with the choice of basis given above the matrix
of m2. � ; e/ is actually the identity matrix. However we do not need such a strong
statement on the chain level here, but what we get is that it is the identity in homology
(see details at end of the current section).

We will apply now the previous theorem to a 3-copy .†0; †1; †2/ of †0. By
3-copy we mean that †1 D '�1

zH1

.†0/ and †2 D '�2

zH2

.†0/ for �2 > �1 and where zH1
and zH2 are small perturbations of the Hamiltonian H from the beginning of this
section. Moreover, we assume that there exist Morse functions F1, F2 on †0 such
that F2 � F1 is also Morse, and

• for i D 1; 2, †i is viewed as the graph of dFi in a standard neighborhood of †0;
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• on the cylindrical ends of†0 we have FiDet .f ˙i � �i /, iD1;2, for f ˙i Wƒ˙0 !R

Morse functions whose C0-norm are strictly smaller than min¹�1; �2 � �1º=2 and
such that f2 � f1 is also Morse.

• we assume that F1, F2 and F2 � F1 admit a unique maximum on each filling
component of†0 and no maximum on each component with a non-empty negative
end; and that f1, f2 and f2 � f1 admit a unique maximum on each connected
component.

Note that the critical points of Fi are in one-to-one correspondence with the intersec-
tion points in†0 \†i for i D 1; 2 and the critical points of F2 �F1 are in one-to-one
correspondence with intersection points in †1 \†2. Then we have the following.

Corollary 1. Given the 3-copy .†0; †1; †2/ described above,

m2.e†1;†2
; e†0;†1

/ D e†0;†2
:

Proof. It is enough to consider the case where †0 is connected. The case of a filling
is already known, see for example [20]. We recall a proof in our setting. Assume †0
is a connected filling ofƒC0 , then we have e†0;†1

D e0†0;†1
and e†1;†2

D e0†1;†2
and

according to Theorem 6:

m2.e
0
†1;†2

; e0†0;†1
/ D e0†0;†2

C yC02;

where yC02 2 CFC.†0;†2/, and each element in yC02 has action bigger than the action
of e0†0;†2

. Observe then that any triangle asymptotic to yC02 ¤ e0†0;†2
; e0†0;†1

, and
e0†1;†2

would have to leave a small neighborhood of a gradient flow line of F1 from
e0†1;†2

to the maximum e0†0;†1
. But for a sufficiently small perturbation no yC02 ¤

e0†0;†2
has action big enough for such a triangle to exist.

Suppose now that †0 is a connected cobordism from ƒ�0 ¤ ; to ƒC0 . Then
e†0;†1

D e�†0;†1
and e†1;†2

D e�†1;†2
and, according to Theorem 6,

m2.e
�
†1;†2

; e�†0;†1
/ D e�†0;†2

C yC02:

The proof is the same as in the filling case after wrapping slightly the negative ends of
†1 and †2 in the positive Reeb direction. We wrap so that the negative end becomes
a cylinder over ƒ�0 [ zƒ�1 [ zƒ�2 where zƒ�1 is a perturbation of a small push-off of
ƒ�0 in the positive Reeb direction and zƒ�2 is a perturbation of a small push-off of zƒ�1
in the positive Reeb direction. The pseudo-holomorphic disc asymptotic to e�†0;†2

,
e�†0;†1

and e�†1;†2
corresponds after wrapping to a triangle asymptotic to the corres-

ponding intersection points. So, then, for the same reasons as before a disc asymptotic
to yC02; e

�
†0;†1

and e�†1;†2
cannot exist.
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We end this section by proving that the transfer maps preserve the continuation
element. Consider a pair .V0 ˇW0; V1 ˇW1/ such that V1 ˇW1 is a small perturba-
tion of .V0ˇW0/ the same way as we perturbed†0 to get†1 previously, in particular
ƒ˙1 is a perturbation of a push-off of ƒ˙0 in the negative Reeb direction. We assume
moreover that the Morse function F used to perturb the compact part of V0 ˇW0 is
such that .V0; V1/ and .W0;W1/ are also pairs of cobordisms of the same type, so ƒ1
is a perturbation of a push-off of ƒ0 in the negative Reeb direction.

Giving this, by what we did previously, there are continuation elements eV 2
CthC.V0;V1/, eW 2CthC.W0;W1/ and eVˇW 2CthC.V0ˇW0;V1ˇW1/, described
as follows:

eV D e0V C e�V D
X

e0V;i C
X

e�V;i ;

eW D e0W C e�W D
X

e0W;i C
X

e�W;i ;

eVˇW D e0W C e0V C e�V :

Proposition 11. The transfer map�W1 preserves the continuation element.

Proof. Directly from the definition, one has

�W1 .eVˇW / D �W1 .e0W C e0V C e�V / D �W1 .e0W /C e0V C e�V D e0V C e�V
where the last equality holds for energy reason.

Proposition 12. The transfer map bV1 preserves the continuation element in homo-
logy, i.e., ŒbV1 .eVˇW /� D ŒeW �.
Proof. Observe first that

bV1 .eVˇW / D bV1 .e0W C e0V C e�V /
D e0W C bV1 ı�W1 .e0W /C bV1 .e0V C e�V /
D e0W C bV1 .e0V C e�V /

for energy reasons. Now, wrapping slightly the positive and negative cylindrical ends
of V1 in the positive Reeb direction one can prove that bV1 .e

0
V C e�V / D e�W C E�W ,

where E�W 2 C.ƒ0; ƒ1/ is a linear combination of non-Morse chords (same type of
argument as in the proof of Theorem 6).

Now, take a third copy V2 ˇ W2 as in Corollary 1 such that .V0; V1; V2/ and
.W0; W1; W2/ are also 3-copies. We claim that the map

mW
2 . � ;bV1 .eVˇW01

//WCthC.W1; W2/! CthC.W0; W2/ (51)
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is a quasi-isomorphism. Again, this follows from studying the pseudo-holomorphic
curves involved, repeating some arguments of the proof of Theorem 6. As we are
working over a field, it admits an inverse.

Consider finally a fourth copy V3 ˇ W3 being a perturbation of V2 ˇ W2 using
the same type of perturbation as before. From the third A1-relation satisfied by mW

(see Section 8.1), the fact that mVˇW
2 .eVˇW12

; eVˇW01
/ D eVˇW02

, and the fact that
bV1 preserves the product structures in homology, we get that the maps

mW
2 .m

W
2 . � ;bV1 .eVˇW12

//;bV1 .eVˇW01
//WCthC.W2; W3/! CthC.W0; W3/;

mW
2 . � ;bV1 .eVˇW02

//WCthC.W2; W3/! CthC.W0; W3/

are homotopic. It implies that the map (51) is homotopic to the identity map (after
canonical identification of the generators of the complexes CthC.W1; W2/ and
CthC.W0; W1/). Finally, as eW12

is a continuation element we have

mW
2 .eW12

;bV1 .eVˇW01
// D mW

2 .eW12
; eW01

CE�W01
/

D mW
2 .eW12

; eW01
/CmW

2 .eW12
; E�W01

/

D eW02
CmW;0

2 .eW12
; E�W01

/CmW;�
2 .eW12

; E�W01
/

D eW02
CmW;�

2 .e�W12
; E�W01

/

D eW02
CE�W02

where the second to last equality comes from the fact that the connected components
of the cobordismsW0;W1 have non-empty negative end so there is no maximum of the
perturbation Morse function, so mW;0�

2 .e0W ; E
�
W / D 0, and then mW;0

2 .e�W ; E
�
W / D 0

for action reasons. We have thus mW
2 .eW ; b

V
1 .eVˇW // D bV1 .eVˇW /. As (51) is the

identity in homology, we get ŒeW � D ŒbV1 .eVˇW /�.
Remark 11. Observe that the same arguments show that

m
†012

2 . � ; e/WCthC.†1; †2/! CthC.†0; †2/

is the identity in homology as we have proved that it is an isomorphism (Theorem 6)
and that m2.e†1;†2

; e†0;†1
/ D e†0;†2

(Corollary 1).

Remark 12. In Sections 8 and 9 we will extend the algebraic structures we have
encountered to A1 ones. In particular, we will define an A1-category of cobordisms
in R� Y , Fuk.R� Y /, and generalize the transfer maps to families of maps satisfying
theA1-functor equations. Once the technical details to extend our algebraic construc-
tions to Lagrangian cobordisms in a more general Liouville cobordism are carried
out, the transfer maps will provide A1-functors Fuk dec.X0 ˇX1/! Fuk.Xi / from
the full subcategory Fuk dec.X0 ˇX1/ � Fuk.X0 ˇX1/ generated by decomposable
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Lagrangian cobordisms to the Fukaya category of each cobordism. By Proposition 11
and 12 these functors will be cohomologically unital.

8. An A1-category of Lagrangian cobordisms

8.1. Higher order maps

In this section, we extend the differential m†
1 and the product m†

2 to families of
maps m†

d
defined for each .d C 1/-tuple of pairwise transverse exact Lagrangian

cobordisms .†0; : : : ; †d / for all d � 1. Remember that we denote

C.ƒ˙i ; ƒ
˙
j / D Cn�1��.ƒ˙i ; ƒ˙j /˚ C ��1.ƒ˙j ; ƒ˙i /:

We define first six families of maps, bC
d

, b�
d

, �C
d

, ��
d

, b†
d

, and �†
d

:

b˙d W C.ƒ˙d�1; ƒ˙d /˝ C.ƒ˙d�2; ƒ
˙
d�1/˝ � � � ˝ C.ƒ˙0 ; ƒ

˙
1 /

! C ��1.ƒ˙0 ; ƒ
˙
d /;

�˙d W C.ƒ˙d�1; ƒ˙d /˝ C.ƒ˙d�2; ƒ
˙
d�1/˝ � � � ˝ C.ƒ˙0 ; ƒ

˙
1 /

! Cn�1��.ƒ
˙
d ; ƒ

˙
0 /;

b†d W CthC.†d�1; †d /˝ CthC.†d�2; †d�1/˝ � � � ˝ CthC.†0; †1/

! C ��1.ƒC0 ; ƒ
C

d
/

�†d W CthC.†d�1; †d /˝ CthC.†d�2; †d�1/˝ � � � ˝ CthC.†0; †1/

! Cn�1��.ƒ
�
d ; ƒ

�
0 /

as follows:

bC
d
.ad ; : : : ; a1/ D

X

d;0

X
�i

# fM1
R�ƒC

0;:::;d

.
d;0I �0; a1; : : : ; ad ; �d /"Ci .�i /
d;0;

b�d .ad ; : : : ; a1/ D
X

d;0

X
ıi

# fM1
R�ƒ�

0;:::;d
.
d;0I ı0; a1; : : : ; ad ; ıd /"�i .ıi /
d;0;

�C
d
.ad ; : : : ; a1/ D

X

0;d

X
�i

# fM1
R�ƒC

0;:::;d

.
0;d I �0; a1; : : : ; ad ; �d /"Ci .�i /
0;d ;

��d .ad ; : : : ; a1/ D
X

0;d

X
ıi

# fM1
R�ƒ�

0;:::;d
.
0;d I ı0; a1; : : : ; ad ; ıd /"�i .ıi /
0;d ;

b†d .ad ; : : : ; a1/ D
X

d;0

X
ıi

#M0
†0;:::;d

.
d;0I ı0; a1; : : : ; ad ; ıd /"�i .ıi /
d;0;

�†d .ad ; : : : ; a1/ D
X

0;d

X
ıi

#M0
†0;:::;d

.
0;d I ı0; a1; : : : ; ad ; ıd /"�i .ıi /
0;d :
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Observe that these maps for the case d D 1 have already been considered in Section 3,
and �C2 , �†2 and b�2 have been defined in Section 5.1 already.

Given these families of maps, we define the higher order maps md as being the
sum md D mC

d
Cm0

d
Cm�

d
, where each component is defined by

mC
d
.ad ; : : : ; a1/

D
dX
jD1

X
i1C���CijDd

�Cj .b
†
ij
.ad ; : : : ; ad�ijC1/; : : : ;b

†
i1
.ai1C1; : : : ; a1//; (52)

m0
d .ad ; : : : ; a1/ D

X
x2†0\†d

X
ıi

#M0
†0;:::;d

.xI ı0; a1; ı1; : : : ; ad ; ıd /"�i .ıi /x; (53)

m�d .ad ; : : : ; a1/

D
dX
jD1

X
i1C���CijDd

b�j .�
†
ij
.ad ; : : : ; ad�ijC1/; : : : ;�

†
i1
.ai1C1; : : : ; a1//; (54)

where the maps b†1 and �†1 are special cases of transfer maps as explained in Sec-
tion 3.2.3, and for j � 2 one has b†j WD b†j and�†j WD�†j . In the formulas above, for
1� j � d fixed and an index is , the maps b†is and�†is are defined on (with convention
i0 D �1):

CthC.†isC���Ci1 ; †1CisC���Ci1/˝ � � � ˝ CthC.†1Cis�1C���Ci1 ; †2Cis�1C���Ci1/

and the maps �Cj and b�j on

CthC.†1Cij�1C���Ci1 ; †d /˝ � � � ˝ CthC.†0; †i1C1/

For d D 1;2, the formulas (52), (53), and (54) recover the definitions of the differential
m1 and the product m2 given in Sections 3.1 and 5.1.

Remark 13. Observe that for energy reasons, depending on the d -tuple of asymp-
totics, it can happen that a lot of terms in the formulas (52) and (54) vanish, but for
example, if ai is a Reeb chord in C.ƒCiC1; ƒ

C

i / for i D 0; : : : ; d , then none of them
vanish.

Remark 14. The maps bC
d

and ��
d

defined previously are not useful to define
the maps md but they naturally appear in the proof of the A1-equations, see Sec-
tions 8.1.1 and 8.1.3 below.

Now, we want to show that the maps ¹md ºd�1 satisfy the A1-equations, i.e., for
all k � 1 and all .k C 1/-tuple of transverse cobordisms .†0; : : : ; †k/, we want to
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check that for every 1� d � k and .d C 1/-sub-tuple .†i0 ; : : : ;†id /with i0<� � �<id ,
we have

dX
jD1

d�jX
nD0

md�jC1.id˝d�j�n˝mj ˝ id˝n/ D 0:

To simplify notations in the following we assume that the .d C 1/-tuple .†i0 ; : : : ;†id /
is .†0; : : : ;†d /. As usual, we decompose this equation into three equations to check:

dX
jD1

d�jX
nD0

mC
d�jC1

.id˝d�j�n˝mj ˝ id˝n/ D 0; (55)

dX
jD1

d�jX
nD0

m0
d�jC1.id

˝d�j�n˝mj ˝ id˝n/ D 0; (56)

dX
jD1

d�jX
nD0

m�d�jC1.id
˝d�j�n˝mj ˝ id˝n/ D 0: (57)

8.1.1. Proof of equation (55). Consider the boundary of the compactification offM2
R�ƒC

0;:::;d

.
0;d I�0; a1; : : : ; ad ;�d /. According to the compactness results for one-
dimensional moduli spaces of pseudo-holomorphic discs with cylindrical Lagrangian
boundary conditions as recalled in Section 2.6, the non-trivial components of broken
discs in the boundary consist of two index 1 discs glued along a node asymptotic to a
Reeb chord. If it is a positive asymptotic for the index 1 disc not containing the output
puncture, this disc contributes to a map bCj , and if it is a negative asymptotic, this disc
contributes to a map �Cj . Hence, we get the following.

Lemma 3. For all 1 � d � k,

dX
jD1

d�jX
nD0

�C
d�jC1

.id˝d�j�n˝.bCj C�Cj /˝ id˝n/ D 0:

Then, we also have the following property.

Lemma 4. For all 1 � d � k, we have

dX
jD1

d�jX
nD0

b†d�jC1.id
˝d�j�n˝mj ˝ id˝n/C

dX
jD1

X
i1C���CijDd

bCj .b
†
ij
˝ � � � ˝ b†i1/ D 0:

Proof. This time we have to consider the boundary of the compactification of a mod-
uli space M1

†0;:::;d
.
d;0I ı0; a1; : : : ; ad ; ıd /. Again, as recalled in Section 2.6, the

broken discs are of two types. It can first consist of two index 0 discs glued at a
common intersection point. In this case, the one not containing the output puncture
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asymptotic to 
d;0 contributes m0
j , and the disc containing the output contributes to

a banana b†
d�jC1

. The other type of possible broken disc consists of several (pos-
sibly 0!) non-trivial index 0 components and an index 1 disc with boundary on the
negative or positive cylindrical ends, such that each index 0 disc is connected to the
index 1 one via a Reeb chord. Observe that the output puncture is asymptotic to a
chord in the positive end, so there are two subcases.

(1) The output puncture is contained in the index 1 disc. In this case, this disc has
boundary on the positive ends and contributes to bCj while the index 0 discs must then
have at least one positive Reeb chord asymptotic (connecting it to the index 1 disc)
and so each of them contributes to a banana b†. Note that if among the asymptotics
a1; a2; : : : ; ad there is a chord in the positive end, this chord could be an asymptotic
of the index 1 disc or of an index 0 banana b†, this is why we have the bold symbols
maps b† in the formula.

(2) The output puncture is contained in an index 0 disc. This disc contributes
thus to a map b†

d�jC1
. Then, if the index 1 disc has boundary in the positive ends,

it contributes, with the index 0 discs not containing the output, to mCj . If the index 0
disc has boundary on the negative ends, it will contribute, with the index 0 discs not
containing the output, to m�j .

Summing the algebraic contributions of all the different types of broken discs
described above gives the relation.

Now, we can compute

dX
jD1

d�jX
nD0

mC
d�jC1

.id˝d�j�n˝mj ˝ id˝n/

D
dX
jD1

d�jX
nD0

d�jC1X
kD1

kX
sD1

X
i1C���CikDd�jC1

0�rDn�i1�����is�1�is

�C
k

�
b†ik ˝ � � � ˝ b†is .id˝is�j�r ˝mj ˝ id˝r/

˝ � � � ˝ b†i1
�
:

In this sum, we fix first the number j of entries for the map mj , and then a partition of
d � j C 1 for the maps b†. Note that if is < j the terms b†is .id

˝is�j�r ˝mj ˝ id˝r/
vanish. We could also choose first a partition of d and then the number of entries for
the m “in the middle.” Thus, the sum above is equal to

dX
kD1

X
i1C���CikDd

kX
sD1

isX
jD1

is�jX
nD0

�C
k

�
b†ik ˝ � � � ˝ b†is�jC1.id˝is�j�n˝mj ˝ id˝n/

˝ � � � ˝ b†i1
�

D
dX
kD1

X
i1C���CikDd

kX
sD1

�C
k

�
b†ik ˝ � � � ˝

isX
jD1

is�jX
nD0

b†is�jC1.id
˝is�j�n˝mj ˝ id˝n/

˝ � � � ˝ b†i1
�
:
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Using the definition of b and then Lemma 4, we have

isX
jD1

is�jX
nD0

b†is�jC1.id
˝is�j�n˝mj ˝ id˝n/

D
isX
jD1

is�jX
nD0

b†is�jC1.id
˝is�j�n˝mj ˝ id˝n/CmCis

D
isX
uD1

X
t1C���CtuDis

bCu .b
†
tu
˝ � � � ˝ b†t1/CmCis :

Given this, we rewrite

dX
jD1

d�jX
nD0

mC
d�jC1

.id˝d�j�n˝mj ˝ id˝n/

D
dX
kD1

X
i1C���CikDd

kX
sD1

�C
k

�
b†ik ˝ � � � ˝

isX
uD1

X
t1C���CtuDis

bCu .b
†
tu
˝ � � � ˝ b†t1/
˝ � � � ˝ b†i1

�
C

dX
kD1

X
i1C���CikDd

kX
sD1

�C
k
.b†ik ˝ � � � ˝mCis ˝ � � � ˝ b†i1/

and we finally use Lemma 3 to obtain

dX
jD1

d�jX
nD0

mC
d�jC1

.id˝d�j�n˝mj ˝ id˝n/

D
dX
kD1

X
i1C���CikDd

kX
sD1

�C
k

�
b†ik ˝ � � � ˝

isX
uD1

X
t1C���CtuDis

�Cu .b
†
tu
˝ � � � ˝ b†t1/
˝ � � � ˝ b†i1

�
C

dX
kD1

X
i1C���CikDd

kX
sD1

�C
k
.b†ik ˝ � � � ˝mCis ˝ � � � ˝ b†i1/

D
dX
kD1

X
i1C���CikDd

kX
sD1

�C
k
.b†ik ˝ � � � ˝mCis ˝ � � � ˝ b†i1/

C
dX
kD1

X
i1C���CikDd

kX
sD1

�C
k
.b†ik ˝ � � � ˝mCis ˝ � � � ˝ b†i1/ D 0:

8.1.2. Proof of equation (56). This equation is obtained after describing the broken
discs in the boundary of the compactification of M1

†0;:::;d
.xI ı0; a1; ı1; : : : ; ad ; ıd /.
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As well as in the proof of Lemma 4, there are different types of broken discs, depend-
ing on if it contains an index 1 component or not, but the total algebraic contribution
of them gives the relation (56).

8.1.3. Proof of equation (57). Finally, to get equation (57), we study the broken
discs in the boundary of the compactification of the moduli spacesfM2

R�ƒ�
0;:::;d

.
d0I ı0; a1; : : : ; ad ; ıd /
and

M1
†0;:::;d

.
0d I ı0; a1; : : : ; ad ; ıd /

This gives us respectively the following lemmas.

Lemma 5. For all d � 1, we have

dX
jD1

d�jX
nD0

b�d�jC1.id
˝d�j�n˝.b�j C��j /˝ id˝n/ D 0:

Lemma 6. For all d � 1, we have

dX
jD1

d�jX
nD0

�†d�jC1.id
˝d�j�n˝mj ˝ id˝n/

C
dX
jD1

X
i1C���CijDd

��j .�
†
ij
˝ � � � ˝�†i1/ D 0:

We can now prove equation (57) for d � 1 in a direct way:

dX
jD1

d�jX
nD0

m�d�jC1.id
˝d�j�n˝mj ˝ id˝n/

D
dX
jD1

d�jX
nD0

d�jC1X
kD1

kX
sD1

X
i1C���CikDd�jC1

0�rDn�i1�����is�1�is

b�k
�
�†ik ˝ � � � ˝�†is .id˝is�j�r ˝mj ˝ id˝r/

˝ � � � ˝�†i1
�

D
dX
kD1

X
i1C���CikDd

kX
sD1

isX
jD1

is�jX
nD0

b�k
�
�†ik ˝ � � � ˝�†is�jC1.id˝is�j�n˝mj ˝ id˝n/

˝ � � � ˝�†i1
�

D
dX
kD1

X
i1C���CikDd

kX
sD1

b�k

�
�†ik ˝ � � � ˝

isX
jD1

is�jX
nD0

�†is�jC1.id
˝is�j�n˝mj ˝ id˝n/

˝ � � � ˝�†i1
�
:
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Observe that using the definition of�, then adding the vanishing term�†1 ım�is , and
then applying Lemma 6, we have the following consecutive equalities:

isX
jD1

is�jX
nD0

�†is�jC1.id
˝is�j�n˝mj ˝ id˝n/

D
is�1X
jD1

is�jX
nD0

�†is�jC1.id
˝is�j�n˝mj ˝ id˝n/C�†1 ımCis C�†1 ım0

is
Cm�is

D
isX
jD1

is�jX
nD0

�†is�jC1.id
˝is�j�n˝mj ˝ id˝n/Cm�is

D
isX
uD1

X
t1C���CtuDis

��u .�
†
tu
˝ � � � ˝�†t1/Cm�is :

If we plug it into the expression above, we get

dX
jD1

d�jX
nD0

m�d�jC1.id
˝d�j�n˝mj ˝ id˝n/

D
dX
kD1

X
i1C���CikDd

kX
sD1

b�k

�
�†ik ˝ � � � ˝

� isX
uD1

X
t1C���CtuDis

��u .�
†
tu
˝ � � � ˝�†t1/

�
˝ � � � ˝�†i1

�
C

dX
kD1

X
i1C���CikDd

kX
sD1

b�k .�
†
ik
˝ � � � ˝m�is ˝ � � � ˝�†i1/:

Finally, we apply Lemma 5 and we obtain

dX
jD1

d�jX
nD0

m�d�jC1.id
˝d�j�n˝mj ˝ id˝n/

D
dX
kD1

X
i1C���CikDd

kX
sD1

b�k

�
�†ik ˝ � � � ˝

� isX
uD1

X
t1C���CtuDis

b�u .�
†
tu
˝ � � � ˝�†t1/

�
˝ � � � ˝�†i1

�
C

dX
kD1

X
i1C���CikDd

kX
sD1

b�k .�
†
ik
˝ � � � ˝m�is ˝ � � � ˝�†i1/

D
dX
kD1

X
i1C���CikDd

kX
sD1

b�k .�
†
ik
˝ � � � ˝m�is ˝ � � � ˝�†i1/

C
dX
kD1

X
i1C���CikDd

kX
sD1

b�k .�
†
ik
˝ � � � ˝m�is ˝ � � � ˝�†i1/ D 0:
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8.2. Fukaya category of Lagrangian cobordisms

We define an A1-category Fuk.R � Y / whose objects are exact Lagrangian cobor-
disms whose negative ends are cylinders over Legendrian admitting augmentations.
We define this category by localization, in the same spirit as the definition of the
wrapped Fukaya category of a Liouville sector in [20] to which we refer for details
about quotient and localization, as well as [23].

Definition 4. A Hamiltonian isotopy 's
h

of R � Y is called cylindrical at infinity if
there exists a R > 0 such that 's

h
does not depend on the symplectization coordinate

t in .�1;�R/ � Y and .R;1/ � Y .

Let E be a countable set of exact Lagrangian cobordisms in R � Y , with neg-
ative cylindrical ends on Legendrian submanifolds of Y admitting an augmentation.
Assume that any exact Lagrangian cobordism ƒ� �† ƒC such that ƒ� admits an
augmentation is isotopic to one in E through a cylindrical at infinity Hamiltonian iso-
topy. For each cobordism ƒ� �† ƒC in E, we choose a sequence †� of cobordisms

†� D .†.0/; †.1/; †.2/; : : : /

as follows. First †.0/ D †, and then we need to make several choices:

(1) a sequence ¹�iºi�1 of real numbers such that
P
j>0 �j is strictly smaller than

the length of the shortest Reeb chord of ƒC [ƒ�, and denote

�i D
iX

jD1

�j ;

(2) given that † is cylindrical outside Œ�T; T � � Y , and given N > 0, we choose
Hamiltonians Hi WR � Y ! R, i � 1, being small perturbations of hT;N (see
Section 7) and set †.i/ D '

�i
Hi
.†/ such that †.i/ is the graph of dFi in a

standard neighborhood of the 0-section in T �†, for Fi W†! R Morse func-
tion satisfying the following:

(a) on † \ .ŒT C N;1/ � Y /, resp. † \ ..�1; �T � N� � Y /, Fi is
equal to et .f Ci � �i /, resp et .f �i � �i / where f ˙i W ƒ˙ ! R are
Morse functions such that the C0-norm of f ˙i is strictly smaller than
min¹�i ; �iC1º=2;

(b) the functions Fi � Fj , f ˙i � f ˙j are Morse for i ¤ j ;

(c) the functions f ˙i and f ˙i � f ˙j admit a unique maximum on each con-
nected component while the functions Fi and Fi � Fj admit a unique
maximum on each filling connected component and no maximum on
each connected component of † admitting a non-empty negative end.
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We call such a sequence of cobordisms cofinal. Note that an augmentation ofƒ� gives
canonically an augmentation of the negative end of †.i/ for i � 1. The construction
is inductive and the different choices above are made so that for any .d C 1/-tuple of
cobordisms†0;†1; : : : ;†d inE (not necessarily distinct), and any strictly increasing
sequence of integers i0 < i1 < � � � < id , the cobordisms †.i0/0 ; †

.i1/
1 ; : : : ; †

.id /

d
are

pairwise transverse. Let us construct now a strictly unital A1-category O as follows:

• Obj.O/: pairs .†.i/; "�/where† 2E is an exact Lagrangian cobordism fromƒ�

to ƒC, and "� is an augmentation of ƒ�;

• we set

homO..†
.i/
0 ; "

�
0 /; .†

.j /
1 ; "�1 //

D

8̂̂<̂
:̂

CthC.†
.i/
0 ; †

.j /
1 / if i < j;

Z2e
.i/
"�

0
if †0 D †1; i D j and "�0 D "�1 ;

0 otherwise,

where e.i/"�
0

is a formal degree 0 element.

The A1-operations are given by the maps defined in Section 8.1 for each
.d C 1/-tuple of cobordisms †.i0/0 ; †

.i1/
1 ; : : : ; †

.id /

d
with i0 < i1 < � � � < id , i.e., for

such a tuple we have a map

md WCthC.†
.id�1/

d�1
; †

.id /

d
/˝ � � � ˝ CthC.†

.i0/
0 ; †

.i1/
1 /! CthC.†

.i0/
0 ; †

.id /

d
/

These maps extend to maps defined for any .d C 1/-tuple†.i0/0 ;†
.i1/
1 ; : : : ;†

.id /

d
with

the condition that the elements e.i/"�
j
2 homO..†

.i/
j ; "

�
j /; .†

.i/
j ; "

�
j // behave as strict

units.

We finally define the Fukaya category Fuk.R � Y / of Lagrangian cobordisms in
R � Y as a quotient of O by the set of continuation elements, as follows. Consider
† 2 E together with an augmentation "� ofƒ�. For all i < j , there is a continuation
element e†.i/;†.j / 2 homO..†

.i/; "�/; .†.j /; "�// as described in Section 7, which is
a cycle in O. Let Tw.O/ denote the A1-category of twisted complexes of O and C

the full subcategory of Tw.O/ generated by cones of the continuation elements. We
define Fuk.R � Y / WD OŒC�1� to be the image of O in the quotient Tw.O/=C .

Defined as follows, the category Fuk.R� Y / depends on various choices, namely,

(1) the choice for each † in E of a cofinal sequence †� D .†.0/; †.1/; : : : /;
(2) the choice of the countable set E of representatives of Hamiltonian isotopy

classes of exact Lagrangian cobordisms with negative end admitting an aug-
mentation.
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The fact that the quasi-equivalence class of the category does not depend on the
choice of a cofinal sequence for each element in E is purely algebraic. Assume †z�

is a cofinal sequence for † which is a subsequence of a bigger cofinal sequence †�.
Then, denote zO the category constructed using the cofinal sequence †z� and O the
one constructed using †�. The inclusion functor zO ! O is full and faithful, and if
zC � Tw zO denotes the full subcategory generated by cones of continuation elements,
one gets a cohomologically full and faithful functor zOŒzC�1�! OŒC�1�. Moreover,
the continuation elements become quasi-isomorphisms in OŒC�1� thus this functor
is a quasi-equivalence. Now, if †�;1 and †�;2 are two cofinal sequences for †, then
one can find a cofinal sequence †z� such that †�;i [ †z�, i D 1; 2, are also cofinal
sequences. As †z� and †�;i are subsequences of †�;i [†z�, the Fukaya category con-
structed using the cofinal sequence †z� is quasi-equivalent to the one using †�;i [†z�
which is quasi-equivalent to the one using †�;i .

Then, the fact that the category does not depend (up to quasi-equivalence) on the
choice of representatives of cylindrical at infinity Hamiltonian isotopy classes follows
from the invariance result:

Proposition 13. Let †0 be an exact Lagrangian cobordism and .'s
h
/s2Œ0;1� a cyl-

indrical at infinity Hamiltonian isotopy such that †0 and †1 WD '1h.†0/ are trans-
verse. Then, for any T exact Lagrangian cobordism transverse to †0 and †1, the
complexes CthC.†0; T / and CthC.†1; T / are homotopy equivalent.

Proof. All the ingredients to prove this proposition already appeared in Section 4.
Observe first that if †0 is a cobordism from ƒ�0 to ƒC0 then †1 is a cobordism from
ƒ�1 to ƒC1 with ƒ˙1 Legendrian isotopic to ƒ˙0 . The isotopy from †0 to †1 can be
decomposed as a cylindrical at infinity isotopy of†0 giving a cobordism z†0 fromƒ�1
to ƒC1 , followed by a compactly supported Hamiltonian isotopy from z†0 to †1. The
proof of the proposition now goes as follows.

Start from †0 and wrap its positive, resp. negative, end in the positive, resp neg-
ative, Reeb direction to obtain the cobordism †s0, s � 0, having cylindrical ends over
ƒ�0;�s and ƒC0;s where ƒ˙0;˙s D ƒ˙0 ˙ s@z . Take s big enough so that the Cthulhu
complex CthC.†s0; T / has only intersection points generators.

Denote alsoƒC1;a WDƒC1 C a@z andƒ�
1;�b
WDƒ�1 � b@z for a; b � 0 so thatƒC1;a

lies entirely above ƒCT and ƒ�
1;�b

lies entirely below ƒ�T . Denote CC a concordance
from ƒC0;s to ƒC1;a and C� a concordance from ƒ�

1;�b
to ƒ�0;�s . We can assume that

CC \ .R �ƒCT / D C� \ .R �ƒ�T / D ;. Concatenating the concordances C� and
CC with †s0 gives C� ˇ †S0 ˇ CC which is an exact Lagrangian cobordism from
ƒ�
1;�b

toƒC1;a, satisfying CthC.C�ˇ†s0ˇCC; T /D CthC.†s0; T / by construction,
where it is an equality of complexes. Finally, wrap the ends ofC�ˇ†s0ˇCC in such
a way that it “translates back” ƒC1;a to ƒC1 and ƒ�

1;�b
to ƒ�1 , to obtain a cobordism
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z†0 from ƒ�1 to ƒC1 , Hamiltonian isotopic to †1 by a compactly supported Hamilto-
nian isotopy. Invariance of the Cthulhu complex by wrapping the ends and compactly
supported Hamiltonian isotopy ends the proof.

9. Higher order maps in the concatenation

In case of a .d C 1/-tuple of concatenated cobordisms .V0 ˇW0; : : : ; Vd ˇWd / one
can also define higher order maps mVˇW

d
, which will recover the maps m†

d
defined in

the previous section in the case of concatenation of a cobordism with a trivial cylinder.
We define recursively, for d � 1, the maps

�Wd WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.V0; Vd /;

bVd WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.W0; Wd /

as follows. First, bV1 and �W1 are the transfer maps from Section 3.2, and then for
d � 2 one sets

�Wd D
dX
sD2

X
1�i1;:::;is
i1C���CisDd

�Ws .b
V
is
˝ � � � ˝ bVi1/;

bVd D
dX
sD1

X
1�i1;:::;is
i1C���CisDd

bVs .�
W
is
˝ � � � ˝�Wi1 /:

Using the maps�Ws ; b
V
s from Section 8.1. Observe that the maps bV2 and�W2 already

appeared in Section 6.3. Given this, we define

mVˇW
d

WCthC.Vd�1 ˇWd�1; Vd ˇWd /˝ � � � ˝ CthC.V0 ˇW0; V1 ˇW1/
! CthC.V0 ˇW0; Vd ˇWd /

by

mVˇW
d

D
dX
sD1

X
1�i1;:::;is
i1C���CisDd

mW;C0
s .bVis ˝ � � � ˝ bVi1/CmV;0�

s .�Wis ˝ � � � ˝�Wi1 /:

We will first prove that the maps �Wj and bVj satisfy the A1-functor equations, and
then we will prove that the maps mVˇW

j satisfy theA1 equations. We start by proving
the following.
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Lemma 7. For all d � 1,

dX
jD1

X
i1C���CijDd

bVj .�
W
ij
˝ � � � ˝�Wi1 /C�Wj .bVij ˝ � � � ˝ bVi1/ D 0:

Proof. This holds by definition of the maps. Observe that we have already made use
of the case d D 1 in Section 6.2. For d � 2, one has

dX
jD1

X
i1C���CijDd

bVj .�
W
ij
˝ � � � ˝�Wi1 /C�Wj .bVij ˝ � � � ˝ bVi1/

D bV1 ı�Wd C�W1 ı bVd

C
dX
jD2

X
i1C���CijDd

bVj .�
W
ij
˝ � � � ˝�Wi1 /C�Wj .bVij ˝ � � � ˝ bVi1/:

Observe that�Wij ˝ � � � ˝�Wi1 takes values in CthC.Vd�ij ;Vd /˝ � � � ˝CthC.V0;Vi1/

and bVij ˝ � � � ˝ bVi1 takes values in CthC.Wd�ij ;Wd /˝ � � � ˝ CthC.W0;Wi1/, hence

the maps bVj and �Wj are the one corresponding to one cobordism only and not the
concatenation, as defined in Section 8.1. So, the sum above equals

�Wd C bV1 ı�Wd C bVd

C
dX
jD2

X
i1C���CijDd

bVj .�
W
ij
˝ � � � ˝�Wi1 /C�Wj .bVij ˝ � � � ˝ bVi1/

D �Wd C bVd C
dX
jD1

X
i1C���CijDd

bVj .�
W
ij
˝ � � � ˝�Wi1 /C�Wj .bVij ˝ � � � ˝ bVi1/;

where note that in the sum on the right we have �W1 ı bVd D 0. Then, this gives 0 by
definition of bVd and�Wd .

Now, we can prove the following.

Lemma 8. For all d � 1
dX
sD1

X
i1C���CisDd

mV
s .�

W
is
˝ � � � ˝�Wi1 /

C
dX
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id„ ƒ‚ …

n

/ D 0
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and
dX
sD1

X
i1C���CisDd

mW
s .b

V
is
˝ � � � ˝ bVi1/

C
dX
jD1

d�jX
nD0

bVd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id„ ƒ‚ …

n

/ D 0:

Proof. We prove it by recursion on d . For d D 1, the relations above means that bV1
and�W1 are chain maps, which is the content of Proposition 3 and Proposition 4. Note
that we have also proved the case d D 2 in Section 6.3. For d � 2, we have

dX
sD1

X
i1C���CisDd

mV
s .�

W
is
˝ � � � ˝�Wi1 /

C
dX
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id„ ƒ‚ …

n

/

D
dX
sD1

X
i1C���CisDd

mV
s .�

W
is
˝ � � � ˝�Wi1 /C�W1 ımVˇW

d

C
d�1X
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id„ ƒ‚ …

n

/I

but, by definition of mVˇW
d

,

�W1 ımVˇW
d

D �W1 ı
� dX
sD1

X
i1C���CisDd

mW;C0
s .bVis ˝ � � � ˝ bVi1/CmV;0�

s .�Wis ˝ � � � ˝�Wi1 /
�

D
dX
sD1

X
i1C���CisDd

�W1 ımW;C0
s .bVis ˝ � � � ˝ bVi1/CmV;0�

s .�Wis ˝ � � � ˝�Wi1 /

So, we get

dX
sD1

X
i1C���CisDd

mV
s .�

W
is
˝ � � � ˝�Wi1 /

C
dX
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id/
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D
dX
sD1

X
i1C���CisDd

mV;C
s .�Wis ˝ � � � ˝�Wi1 /

C
dX
sD1

X
i1C���CisDd

�W1 ımW;C0
s .bVis ˝ � � � ˝ bVi1/

C
d�1X
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id/:

Then one has

d�1X
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id/

D
d�1X
jD1

d�jX
nD0

d�jC1X
sD2

X
i1C���CisDd�jC1

�Ws .b
V
is
˝ � � � ˝ bi1/.id˝ � � � ˝ id˝mVˇW

j ˝ id
˝ � � � ˝ id/

D
d�1X
jD1

d�jX
nD0

d�jC1X
sD2

X
i1C���CisDd�jC1

sX
lD1

�Ws
�
bVis ˝ � � �
˝ bVil .id˝ � � � ˝mVˇW

j ˝ � � � ˝ id/
˝ � � � ˝ bVi1

�
D

dX
sD2

X
i1C���CisDd

sX
lD1

ilX
jD1

il�jX
nD0

�Ws
�
bVis ˝ � � � ˝ bVil .id˝ � � � ˝mVˇW

j ˝ : : : id/
˝ � � � ˝ bVi1

�
D

dX
sD2

X
i1C���CisDd

sX
lD1

�Ws

�
bVis ˝ � � � ˝

ilX
jD1

il�jX
nD0

bVil .id˝ � � � ˝mVˇW
j ˝ : : : id/
˝ � � � ˝ bVi1

�
:

Observe that il � d � 1 so by recursion we have that

d�1X
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id/

D
dX
sD2

X
i1C���CisDd

sX
lD1

�Ws

�
bVis ˝ � � � ˝

ilX
uD1

X
t1C���CtuDil

mW
u .b

V
tu
˝ � � � ˝ bVt1/
˝ � � � ˝ bi1

�
:

So, we get

dX
sD1

X
i1C���CisDd

mV
s .�

W
is
˝ � � � ˝�Wi1 /
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C
dX
jD1

d�jX
nD0

�Wd�jC1.id˝ � � � ˝ id˝mVˇW
j ˝ id˝ � � � ˝ id/

D
dX
sD1

X
i1C���CisDd

mV;C
s .�Wis ˝ � � � ˝�Wi1 /

C
dX
sD1

X
i1C���CisDd

�W1 ımW;C0
s .bVis ˝ � � � ˝ bVi1/

C
dX
sD2

X
i1C���CisDd

sX
lD1

�Ws

�
bVis ˝ � � � ˝

ilX
uD1

X
t1C���CtuDil

mW
u .b

V
tu
˝ � � � ˝ bVt1/

˝ � � � ˝ bi1
�

D
dX
sD1

X
i1C���CisDd

mV;C
s .�Wis ˝ � � � ˝�Wi1 /

C
dX
sD1

X
i1C���CisDd

sX
lD1

�Ws

�
bVis ˝ � � � ˝

ilX
uD1

X
t1C���CtuDil

mW
u .b

V
tu
˝ � � � ˝ bVt1/
˝ � � � ˝ bi1

�
where we have used the fact that �W1 ımW;�

s D 0. By definition of mV;C
s , it gives

D
dX
sD1

X
i1C���CisDd

sX
uD1

X
t1C���CtuDs

�ƒu .b
V
tu
˝ � � � ˝ bVt1/.�Wis ˝ � � � ˝�Wi1 /

C
dX
sD1

X
i1C���CisDd

sX
lD1

�Ws

�
bVis ˝ � � � ˝

ilX
uD1

X
t1C���CtuDil

mW
u .b

V
tu
˝ � � � ˝ bVt1/

˝ � � � ˝ bi1
�

and finally, using Lemma 6 which states in this case that

dX
jD1

d�jX
nD0

�Wd�jC1.id
˝d�j�n˝mW

j ˝ id˝n/

C
dX
jD1

X
i1C���CijDd

�ƒj .�
W
ij
˝ � � � ˝�Wi1 / D 0

and Lemma 7, one obtains that the sum vanishes and that the maps �Wj satisfy the
A1-functor equations.

One proves analogously that the maps bVj satisfy the A1-functor equations.

Proposition 14. The maps mVˇW
d

satisfy the A1-equations.
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Proof. For all d � 1, one has

dX
jD1

d�jX
nD0

mVˇW
d�jC1

.id˝ � � � ˝ id˝mVˇW
j ˝

n‚ …„ ƒ
id˝ � � � ˝ id/

D
X
j;n

� d�jC1X
kD1

X
i1C���CikDd�jC1

mW;C0
k

.bVik ˝ � � � ˝ bVi1/

CmV;0�
k

.�Wik ˝ � � � ˝�Wi1 /
�
.id˝ � � � ˝mVˇW

j ˝ � � � ˝ id/

D
dX
kD1

X
i1C���CikDd

kX
sD1

isX
jD1

is�jX
nD0

mW;C0
k

�
bVik ˝ : : :
˝ bVis�jC1.id˝ � � � ˝mVˇW

j ˝ � � � ˝ id/

˝ � � � ˝ bVi1
�

CmV;0�
k

�
�Wik ˝ � � � ˝�Vis�jC1.id˝ � � � ˝mVˇW

j ˝ � � � ˝ id/˝ � � � ˝�Wi1
�

D
dX
kD1

X
i1C���CikDd

kX
sD1

mW;C0
k

�
bVik ˝ : : :

˝
isX
jD1

is�jX
nD0

bVis�jC1.id˝ � � � ˝mVˇW
j ˝ � � � ˝ id/

˝ � � � ˝ bVi1
�

C
dX
kD1

X
i1C���CikDd

kX
sD1

mV;0�
k

�
�Wik ˝ : : :

˝
isX
jD1

is�jX
nD0

�Vis�jC1.id˝ � � �˝
mVˇW
j ˝ � � � ˝ id/˝ � � � ˝�Wi1

�
:

Using Lemma 8, the sum above is equal to

dX
kD1

X
i1C���CikDd

kX
sD1

mW;C0
k

�
bVik ˝ � � � ˝

isX
uD1

X
t1C���CtuDis

mW
u .b

V
tu
˝ � � � ˝ bVt1/

˝ � � � ˝ bVi1
�

C
dX
kD1

X
i1C���CikDd

kX
sD1

mV;0�
k

�
�Wik ˝ � � � ˝

isX
uD1

X
t1C���CtuDis

mV
u .�

W
tu
˝ � � � ˝�Wt1 /
˝ � � � ˝�Wi1

�
D

dX
jD1

X
r1C���CrjDd

jX
uD1

j�uC1X
sD1

mW;C0
j�uC1.id˝ � � � ˝ id„ ƒ‚ …

k�s

˝mW
u ˝ id˝ � � � ˝ id„ ƒ‚ …

s�1

/

� .bVrj ˝ � � � ˝ bVr1/
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C
dX
jD1

X
r1C���CrjDd

jX
uD1

j�uC1X
sD1

mV;0�
j�uC1.id˝ � � � ˝ id„ ƒ‚ …

k�s

˝mV
u ˝ id˝ � � � ˝ id„ ƒ‚ …

s�1

/

� .�Vrj ˝ � � � ˝�Vr1/
D 0

as the maps mW
j and mV

j satisfy the A1-equations.
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