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The adjoint Reidemeister torsion
for the connected sum of knots

Joan Porti and Seokbeom Yoon

Abstract. Let K be the connected sum of knots K1; : : : ; Kn. It is known that the SL2.C/-
character variety of the knot exterior of K has a component of dimension � 2 as the connected
sum admits a so-called bending. We show that there is a natural way to define the adjoint Rei-
demeister torsion for such a high-dimensional component and prove that it is locally constant
on a subset of the character variety where the trace of a meridian is constant. We also prove that
the adjoint Reidemeister torsion of K satisfies the vanishing identity if each Ki does so.

1. Introduction

LetM be a compact oriented 3-manifold with tours boundary and X.M/ be the char-
acter variety of irreducible representations �1.M/! SL2.C/. It happens very often
that X.M/ has a component of dimension 1. For instance, if the interior ofM admits
a hyperbolic structure of finite volume, then the distinguished component is 1-dimen-
sional [15] and if M contains no closed essential surface, then every component is
1-dimensional [3].

Once we fix a simple closed curve � on the boundary torus @M , the adjoint
Reidemeister torsion is defined as a meromorphic function on each 1-dimensional
component of X.M/ under some mild assumptions [6, 14]. It enjoys fruitful inter-
action with quantum field theory and carries several conjectures consequently. See,
for instance, [5, 7, 12]. Recently, it has been conjectured in [8] that the adjoint Reide-
meister torsion satisfies a certain vanishing identity with respect to the trace function
as follows.

Conjecture 1.1. Suppose that the character variety X.M/ consists of 1-dimensional
components and that the interior of M admits a hyperbolic structure of finite volume.
Then for generic c 2 C we have X

Œ��2Xc
�.M/

1

��.M I �/ D 0 (1)
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where Xc
�.M/ is the pre-image of c 2 C under the trace function X.M/! C of

� � @M and ��.M I �/ is the adjoint Reidemeister torsion associated to � and a rep-
resentation �W�1.M/! SL2.C/.

As mentioned earlier, there are several 3-manifolds satisfying the conditions
required in Conjecture 1.1. However, there are also several examples of 3-manifolds
with torus boundary whose character varieties have high-dimensional components.
The simplest one might be (the knot exterior of) the connected sum of knots. See
[2, 4, 13] for other examples. Two immediate problems when we consider Conjec-
ture 1.1 for such 3-manifolds are that

(P1) the adjoint Reidemeister torsion is not defined for a component of dimension
� 2;

(P2) the sum in equation (1) does not make sense as the level set Xc
�.M/ is no

longer finite.

Related to these problems, we address the following question.

Question 1.2. Is the adjoint Reidemeister torsion defined and locally constant on
Xc
�.M/?

If the answer of Question 1.2 is positive, then the sum in equation (1) makes sense
forM in an obvious way: we understand the sum by taking one representative on each
connected component of Xc

�.M/.
The main purpose of the paper is to investigate Question 1.2 and Conjecture 1.1

for the connected sum of knots. To state our results, let K be the connected sum of
knotsK1; : : : ;Kn in S3 with a meridian�. We denote byM andMj the knot exteriors
of K and Kj , respectively. For technical reasons, we assume that for 1 � j � n

(C) the level set Xc
�.Mj / consists of finitely many �-regular characters with the

canonical longitude having trace other than˙2 for generic c 2 C.

For example, one may choose Kj as a two-bridge knot or a torus knot. It is known
that the character variety X.M/ has a component of dimension � 2 as the connected
sum admits a so-called bending. We refer to [10, 11, 13] for details on the bending
construction. Our main theorems are as follows.

Theorem 1.3. Let K be the connected sum of knots K1; : : : ; Kn in S3 satisfying the
above condition (C) and � be a meridian. Then there is a natural way to define the
adjoint Reidemeister torsion on Xc

�.M/ for generic c 2 C which is locally constant.

Theorem 1.4. Let K be the connected sum of knots K1; : : : ; Kn in S3 satisfying the
above condition (C) and � be a meridian. Then the knot exterior M of K satisfies
equation (1) if each Mj does so.
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It is proved in [18] that every hyperbolic two-bridge knot satisfies equation (1) for
a meridian �, hence we obtain the following corollary.

Corollary 1.5. The knot exterior of the connected sum of hyperbolic two-bridge knots
satisfies equation (1) for a meridian �.

Remark 1.6. Conjecture 1.1 was derived from the 3d–3d correspondence under the
assumption that the interior ofM admits a hyperbolic structure (see [8, Section 3] for
details). It fails without the assumption, since torus knots are non-hyperbolic and do
not satisfy equation (1). However, Theorem 1.4 and Corollary 1.5 suggest that one can
relax the hyperbolicity condition, as the connected sum of knots is never hyperbolic.

The paper is organized as follows. In Section 2, we briefly recall basic definitions
on the sign-refined Reidemeister torsion. We define the adjoint Reidemeister torsion
for the connected sum of knots in Sections 3.1 and 3.2, and prove Theorems 1.3
and 1.4 in Section 3.3.

2. Review on the sign-refined Reidemeister torsion

2.1. The Reidemeister torsion of a chain complex

Let C� be a chain complex of vector spaces over a field F

C� D .0! Cn
@n�! � � � �! C1

@1�! C0 ! 0/

and H�.C�/ be the homology of C�. For a basis c� of C� and a basis h� of H�.C�/
the Reidemeister torsion is defined as follows. Here and throughout the paper, every
basis and tuple is assumed to be ordered. For 0 � i � n, we choose a lift Qhi of hi
to Ci and a tuple bi of vectors in Ci such that @ibi is a basis of @iCi . Then the tuple
c0i D .@iC1biC1;ehi ; bi / is another basis of Ci . LettingAi be the basis transition matrix
taking ci to c0i , we have

tor.C�; c�; h�/ D
nY
iD0

detA.�1/
iC1

i 2 F�:

Also, the sign-refined Reidemeister torsion is defined as

Tor.C�; c�; h�/ D .�1/jC�j tor.C�; c�; h�/ 2 F�; jC�j D
nX
iD0

˛i .C�/ˇi .C�/

where ˛i .C�/ D
Pi
jD0 dimCj and ˇi .C�/ D

Pi
jD0 dimHj .C�/.
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Suppose that we have a short exact sequence of chain complexes

0! C 0� ! C� ! C 00� ! 0 (2)

with bases c�; c0�; and c00� of C�; C 0�, and C 00� , respectively. It is proved in [17,
Lemma 3.4.2] that if c�; c0�; and c00� are compatible with respect to sequence (2), i.e.,
c� D .c0�; c00�/, then

Tor.C�; c�; h�/ D .�1/vCu Tor.C 0�; c
0
�; h
0
�/ Tor.C 00� ; c

00
�; h
00
�/ tor.H / (3)

where h�; h0�; and h00� are bases of H�.C�/;H�.C 0�/, and H�.C 00� /, respectively. Here

v D
X
i

˛i�1.C
0
�/˛i .C

00
� /; (4)

u D
X
i

..ˇi .C�/C 1/.ˇi .C 0�/C ˇi .C 00� //C ˇi�1.C 0�/ˇi .C 00� //; (5)

and tor.H / is the Reidemeister torsion of the long exact sequence induced from (2)
with respect to h�; h0�, and h00�. We refer to [16, 17] for details.

2.2. The adjoint Reidemeister torsion of a CW-complex

Let g be the Lie algebra of SL2.C/ and fix a basis of g as

e1 D
�
0 1

0 0

�
; e2 D

�
1 0

0 �1
�
; e3 D

�
0 0

1 0

�
:

Note that the Killing form h�; �i on g is given by��
b a

c �b
�
;

�
b0 a0

c0 �b0
��
D 8bb0 C 4ac0 C 4ca0:

Let X be a finite CW-complex and �W�1.X/! SL2.C/ be a representation. We con-
sider a cochain complex

C �.X Ig�/ D HomZŒ�1X�.C�.
zX IZ/;g/

where zX is the universal cover ofX . Here g is viewed as a ZŒ�1.X/�-module through
the adjoint action Ad�W�1.X/! Aut.g/ associated to �. We denote the cohomology
of C �.X Ig�/ byH�.X Ig�/ and call it the twisted cohomology. Note thatH 0.X Ig�/
coincides with the set of invariant vectors in g under the �1.X/-action.

Let c1; : : : ; cn be all the cells of X and fix their order by cX D .c1; : : : ; cn/. We
assume that each cell ci has a preferred orientation and a lift Qci to zX . We define an
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element c.k/i 2 C �.X I g�/ for 1 � i � n and 1 � k � 3 by assigning Qci to ek and
every cell of zX that is not a lift of ci to 0. Then the tuple

cX D .c.1/1 ; c
.2/
1 ; c

.3/
1 ; : : : ; c.1/n ; c.2/n ; c.3/n /

is a basis of C �.X Ig�/. We refer to it as the geometric basis.
Let C�.X IR/ be the ordinary chain complex of X with the real coefficient. Note

that the tuple cX is a basis of C�.X IR/. For an orientation oX of the R-vector space
H�.X IR/ we define

".oX / D sgn.Tor.C�.X IR/; cX ; hX // 2 ¹˙1º

where hX is any basis of H�.X IR/ positively oriented with respect to oX and sgn.x/
is the sign of x 2 R�.

Definition 2.1. For a basis hX of H�.X Ig�/ and an orientation oX of H�.X IR/ the
adjoint Reidemeister torsion is defined as

�.X I �;hX ; oX / D ".oX / � Tor.C �.X Ig�/; cX ;hX / 2 C�:

The above definition does not depend on the order, orientations, and lifts of ci ’s.
Moreover, it does not depend on the choice of a basis of g if the Euler characteristic
of X is zero.

Note that every notion in this section associated to � is invariant under conjugating
� up to an appropriate isomorphism. In particular, the adjoint Reidemeister torsion is
invariant under the conjugation.

Example 2.2. Let† be a 2-torus with a usual CW-structure: one 0-cell p, two 1-cells
� and �, and one 2-cell † as in Figure 1 (left). We choose their lifts (to the universal
cover of †) as in Figure 1 (right) and fix an order of the cells by c† D .p; �; �; †/.
Let o† be the orientation of H�.†IR/ induced from c† so that ".o†/ D 1.

† z†

p Qp Q

Q

Figure 1. The cells of a 2-torus and their lifts.
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Let �W�1.†/! SL2.C/ be a representation with tr�.�/¤˙2. Up to conjugation
we have

�.�/ D
�
m 0

0 m�1

�
; �.�/ D

�
l 0

0 l�1

�
for somem¤˙1 and l 2C�. With respect to the geometric basis, the boundary maps
ı0WC 0.†Ig�/! C 1.†Ig�/ and ı1WC 1.†Ig�/! C 2.†Ig�/ are given by

ı0 D
�

Ad �.�/ � I3
Ad �.�/ � I3

�
;

ı1 D .Ad �.�/ � I3 I3 � Ad �.�//:

Here Ik is the identity matrix of size k. It follows that dimH i .†Ig�/D 1 for i D 0;2,
dimH i .†Ig�/D 2 for i D 1, and dimH i .†Ig�/D 0 otherwise. Note thatH 0.†Ig�/
is spanned by e2 2 g, as it is invariant under the actions of � and �. Let P D 1

8
e2 2

H 0.†Ig�/ and define maps

 0WC 0.†Ig�/! C; ˛ 7! h˛. Qp/; P i;
 1WC 1.†Ig�/! C2; ˛ 7! .h˛. Q�/; P i; h˛. Q�/; P i/;
 2WC 2.†Ig�/! C; ˛ 7! h˛.z†/; P i:

One easily checks that i induces an isomorphismH i .†Ig�/!C for i D 1;3 and '2

induces an isomorphism H 2.†I g�/! C2. For simplicity, we use the same notation
 i for these isomorphisms. We choose a basis hi† of H i .†I g�/ by the pre-image
of the standard basis of C (C2 if i D 2) under  i . Explicitly, we have h0† D p.2/,
h1† D .�.2/; �.2//, and h2† D †.2/. Choosing a tuple bi of vectors in C i .†I g�/ as
b0 D .p.1/; p.3//, b1 D .�.1/; �.3//, and b2 D ;, we obtain

�.†I �;h†; o†/ D �1 � .m2 � 1/.m�2 � 1/ � .�.m2 � 1/.m�2 � 1//�1 D 1:

Note that a different choice of P 2 H 0.†Ig�/ changes the basis h† but still we have
�.†I �;h†; o†/ D 1.

2.3. The adjoint Reidemeister torsion of a knot exterior

Let M be the knot exterior of a knot K � S3 with any given triangulation. It is
well known that dimHi .M IR/ D 1 for i D 0; 1 and dimHi .M IR/ D 0 otherwise.
We choose the orientation oM of H�.M IR/ induced from a basis hM D .pt; �/ of
H�.M IR/ where pt is a point in M and � is a meridian of K oriented arbitrarily.

Let �W �1.M/! SL2.C/ be a representation of the knot group. For the sake of
simplicity, we assume that

m ¤ ˙1 and �K.m
2/ ¤ 0;
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where m is an eigenvalue of �.�/ and �K is the Alexander polynomial of K. It
follows that if � is reducible, then it should be abelian (see e.g. [1]). Therefore, � is
either irreducible (Section 2.3.1) or abelian (Section 2.3.2).

2.3.1. Irreducible representations. Suppose that � is irreducible. In this case we
further assume that � is �-regular [14, Definition 3.21], i.e., dimH 1.M Ig�/ D 1 and
the inclusion� ,!M induces an injective mapH 1.M Ig�/!H 1.�Ig�/. We choose
an element P 2 H 0.†Ig�/, where † D @M , and define maps

 1WC 1.M Ig�/! C; ˛ 7! h˛. Q�/; P i;
 2WC 2.M Ig�/! C; ˛ 7! h˛.z†/; P i;

where Q� and z† are lifts of � and† (to the universal cover ofM ) respectively satisfy-
ing Q� � z†. Here the boundary torus † is oriented as in Stokes’ theorem. It is proved
in [14] that the �-regularity implies that i induces an isomorphismH i .M Ig�/!C

for i D 1; 2. We define

��.M I �/ D �.M I �;hM ; oM / (6)

where hiM is a basis of H i .M Ig�/ given by the pre-image of the standard basis of C

under  i . Note that a different choice of P 2 H 0.†I g�/ changes the basis hM but
not the value of ��.M I �/.
2.3.2. Abelian representations. Suppose that � is abelian. This case might not be
that interesting, as it essentially reduces to the Alexander polynomial. However, we
present it explicitly as a setup for Section 3.

Lemma 2.3. We have dimH i .M I g�/ D 1 for i D 0; 1 and dimH i .M I g�/ D 0

otherwise.

Proof. We choose any Wirtinger presentation of the knot group

�1.M/ D hg1; : : : ; gn j r1; : : : ; rn�1i:

Recall that the corresponding 2-dimensional cell complex X consists of one 0-cell
p, n 1-cells g1; : : : ; gn, and n � 1 2-cells r1; : : : ; rn�1. It is known that X is simple
homotopy equivalent to M and thus we may use X instead of M . We choose a lift of
the base point p arbitrarily and the lifts of other cells accordingly. Then with respect
to the geometric basis, the boundary maps

ı0WC 0.X Ig�/! C 1.X Ig�/
and

ı1WC 1.X Ig�/! C 2.X Ig�/
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are given as

ı0 D

0B@ˆ.g1 � 1/:::

ˆ.gn � 1/

1CA
and

ı1 D

0B@ ˆ.@r1=@g1/ � � � ˆ.@r1=@gn/
:::

: : :
:::

ˆ.@rn�1=@g1/ � � � ˆ.@rn�1=@gn/;

1CA
where ˆ is the Z-linear extension of Ad � and @rj =@gi denotes the Fox free differen-
tial. Similarly, as in Example 2.2, we have

�.g1/ D � � � D �.gn/ D
�
m 0

0 m�1

�
; m ¤ ˙1

up to conjugation. It is clear that Im ı0 ' C2, Ker ı0 ' C and dimH 0.X I g�/ D 1.
On the other hand, ı1 is surjective since �K.1/ ¤ 0 and �K.m˙2/ ¤ 0. It follows
that dimH 2.X Ig�/ D 0 and dimH 1.X Ig�/ D 1, since the Euler characteristic of X
is zero. Explicitly, the twisted cohomology of X is generated by

˛ 2 C 0.X Ig�/ such that ˛. Qp/ D e2; (7a)

˛ 2 C 1.X Ig�/ such that ˛.egi / D e2 for all 1 � i � n: (7b)

Once again, we choose an element P 2 H 0.†Ig�/ D H 0.M Ig�/ and define

 0WC 0.M Ig�/! C; ˛ 7! h˛. Qp/; P i;
 1WC 1.M Ig�/! C; ˛ 7! h˛. Q�/; P i;

where Qp and Q� are lifts of p and� (to the universal cover ofM ) respectively satisfying
Qp � Q�. It is clear from equation (7) that  i induces an isomorphismH i .M Ig�/!C

for i D 0; 1. We define

��.M I �/ D �.M I �;hM ; oM /

where hiM is a basis of H i .M Ig�/ given by the pre-image of the standard basis of C

under  i . In fact, one can compute that

��.M I �/ D �K.m
2/�K.m

�2/

.m �m�1/2

up to sign, but we would not use this fact in this paper.
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3. The connected sum of knots

Let K be the connected sum of knots K1; : : : ; Kn in S3. We denote by M and Mj
the knot exteriors of K and Kj , respectively. It is known that the JSJ decomposition
of M consists of a composing space and M1; : : : ;Mn.

3.1. A composing space

Let D1; : : : ;Dn be mutually disjoint discs in the interior of a disc D2 and let

W D D2 n int.D1 t � � � tDn/
be a planar surface. Here int.X/ denotes the interior of X . Let Y D W � S1, called
a composing space, having n C 1 boundary tori †j D @Dj � S1 .1 � j � n/ and
† D @D2 � S1. Letting � D ¹ptº � S1 and �j D @Dj � ¹ptº, we have

�1.Y / D h�; �1; : : : ; �n j Œ�; �1� D � � � D Œ�; �n� D 1i:
One can check thatH0.Y IR/' R is generated by a point p 2 Y ,H1.Y IR/' RnC1

is generated by �; �1; : : : ; �n, and H2.Y IR/ ' Rn is generated by †1; : : : ; †n. We
choose the orientation oY ofH�.Y IR/ induced from a basis hY D .p;�; �1; : : : ; �n;
†1; : : : ; †n/ of H�.Y IR/. Here we orient �, �j , and †j as in Example 2.2 and
Stokes’ theorem.

Let �W�1.Y /! SL2.C/ be a representation with tr�.�/¤˙2 and tr�.�j /¤˙2
for some 1 � j � n. Since � commutes with all �j ’s, we have up to conjugation

�.�/ D
�
m 0

0 m�1

�
; �.�j / D

�
lj 0

0 l�1j

�
(8)

for some m ¤ ˙1 and lj 2 C�. Note that there is no relation among m, l1; : : : ; ln.

Proposition 3.1. We have

dimH i .Y Ig�/ D

8̂̂̂̂
<̂
ˆ̂̂:
1 if i D 0;
nC 1 if i D 1;
n if i D 2;
0 otherwise.

Proof. We first compute the twisted cohomology ofW . SinceW retracts to the wedge
sum V of n circles �1; : : : ; �n (with the basepoint p), we may consider V instead
of W :

g ' C 0.V Ig�/ ı
0

! C 1.V Ig�/ ' gn; ı0 D

0B@Ad �.�1/ � I3
:::

Ad �.�n/ � I3

1CA :



J. Porti and S. Yoon 10

From equation (8) with the assumption that tr �.�j / ¤ ˙2 for some 1 � j � n, we
see

dimH i .W Ig�/ D dimH i .V Ig�/ D

8̂̂<̂
:̂
1 if i D 0;
3n � 2 if i D 1;
0 otherwise.

Without loss of generality, we assume that l1 ¤ ˙1 and choose a basis hiW of
H i .W Ig�/ as

h0W D p.2/; h1W D .�.2/1 ; : : : ; �.2/n„ ƒ‚ …
n

; �
.1/
2 ; : : : ; �.1/n„ ƒ‚ …

n�1

; �
.3/
2 ; : : : ; �.3/n„ ƒ‚ …

n�1

/:

Here we choose a lift of p arbitrarily and determine the lifts of other cells accordingly.
Recall (see Section 2.2) that the notations p.k/ and �.k/j make sense after we fix lifts
of p and �j .

We decompose Y into two copies Y1 and Y2 ofW � I where I is an interval. It is
clear that both Y1 and Y2 retract to W and Y1 \ Y2 D W tW . From the short exact
sequence

0! C �.Y Ig�/! C �.Y1Ig�/˚ C �.Y2Ig�/
! C �.W Ig�/˚ C �.W Ig�/! 0; (9)

we obtain

H W 0! H 0.Y Ig�/
f0�! H 0.W Ig�/˚H 0.W Ig�/

g0�! H 0.W Ig�/˚H 0.W Ig�/
d0�! H 1.Y Ig�/

f1�! H 1.W Ig�/˚H 1.W Ig�/
g1�! H 1.W Ig�/˚H 1.W Ig�/

d1�! H 2.Y Ig�/! 0: (10)

The map gi in the above sequence sends .x; y/ 2 H i .W I g�/ ˚ H i .W I g�/ to
.x � y; y � ��.x// where �� denotes the action on H i .W I g�/ induced from � D
¹ptº � S1. More precisely, fixing identifications H 0.W Ig�/ ' C and H 1.W Ig�/ '
C3n�2 with respect to hW , the matrix expressions of g0 and g1 are given by

g0 D
�
1 �1
�1 1

�
; g1 D

0BBB@ I3n�2

�In 0 0

0 �m2In�1 0

0 0 �m�2In�1
�I3n�2 I3n�2

1CCCA
where Ik is the identity matrix of size k. In particular, Kerg0 is generated by e1 C e2
and Kerg1 is generated by e1C e3n�1; : : : ;enC e4n�1. Here ek is a unit vector whose



The adjoint Reidemeister torsion for the connected sum of knots 11

coordinates are all zero, except one at the k-th coordinate. It follows that

dim Img0 D 1; dim Img1 D 5n � 4;

and

dimH 0.Y Ig�/ D dim Imf0 D dim Kerg0 D 1;
dimH 2.Y Ig�/ D 2 dimH 1.W Ig�/ � dim Img1 D n:

Furthermore, we have dimH 1.Y Ig�/ D nC 1, since the Euler characteristic of Y is
zero.

It is geometrically natural to choose a basis hiY of H i .Y Ig�/ as

h0Y D p.2/;
h1Y D .�.2/; �.2/1 ; : : : ; �.2/n /;

h2Y D .†.2/1 ; : : : ; †.2/n /:

Alternatively, we may describe the basis hY as follows (as in Example 2.2). Let P D
1
8
e2 2 H 0.Y Ig�/ and consider the isomorphisms

 0WH 0.Y Ig�/! C; ˛ 7! h˛. Qp/; P i;
 1WH 1.Y Ig�/! CnC1; ˛ 7! .h˛. Q�/; P i; h˛. Q�1/; P i; : : : ; h˛. Q�n/; P i/;
 2WH 2.Y Ig�/! Cn; ˛ 7! .h˛.z†1/; P i; : : : ; h˛.z†n/; P i/:

Then the basis hiY maps to the standard basis of C, CnC1, or Cn under i accordingly.

Proposition 3.2. �.Y I �;hY ; oY / D .�1/n�1.m �m�1/2n�2.

Proof. Recall that Y decomposes into two copies Y1 and Y2 ofW � I with Y1 \ Y2D
W tW and thatW retracts to V , the wedge sum of n circles �1; : : : ; �n with the base
point p.

We construct V � I from two copies of V (regarding them as V � @I ) by adding
cells p � I , �1 � I; : : : ; �n � I . Choose cell orders of V , V � I; and V � S1 as

• cV D .p; �1; : : : ; �n/,
• cV�I D .cV ; cV ; c zV / where c zV D .p � I; �1 � I; : : : ; �n � I /,
• cV�S1 D .cV ; cV ; c zV ; c zV /.
Then the basis transition between .cV�I ; cV�I / and .cV ; cV ; cV�S1/ is an even per-
mutation. On the other hand, for

hV�S1 D .p; �; �1; : : : ; �n; †1; : : : ; †n/ .D hY /
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a straightforward computation shows that

Tor.C�.V � S1IR/; cV�S1 ; hV�S1/

D .�1/jC�.V�S1IR/j det
�
In 0

In In

��1
det

0BBB@
�In 0 In 0

In 0 0 0

0
1

1
0

0

1

1CCCA det
�
1 1

�1 0

��1
D 1: (11)

Note that jC�.V � S1IR/j is obviously even.
We choose any triangulation of Y and cell orders cY , cYi , and cW according to

cV�S1 , cV�I , and cV , respectively. Applying formula (3) to the short exact sequence
(9), we obtain

1 D .�1/vCu Tor.C �.Y Ig�/; cY ;hY / tor.H /

after canceling out the torsion terms for W ' Yi . Here tor.H / is the Reidemeister
torsion of the long exact sequence (10) with respect to hY and hW . Note that the basis
transition between .cY1 ; cY2/ and .cY ; cW ; cW / is an even permutation. One easily
checks from definitions (4) and (5) that v � 0 and u �P

i ˇi .C
�.Y I g�// � n � 1

in modulo 2. To simplify notations, we rewrite sequence (10) as

0 H0 H1 H2 H3 H4 H5 H6 0

C C2 C2 CnC1 C6n�4 C6n�4 Cn

 !  !f0

 ! '

 !g0

 ! '

 !d0

 ! '

 !f1

 ! '

 !g1

 ! '

 !d1
 ! '

 !
 ! '

 !f0  !g0  !d0  !f1  !g1  !d1

where the two rows are identified with respect to hY and hW . We choose a tuple bi of
vectors in H i as

b0 D e1;

b1 D e1;

b2 D e1;

b3 D .e2; e3; : : : ; enC1/;
b4 D .enC1; enC2; : : : ; e6n�4/;
b5 D .e1; e2; : : : ; en/;
b6 D ;

where ek is a unit vector whose coordinates are all zero, except one at the k-th coor-
dinate. Then the basis transition matrix Ai at H i (see Section 2.2) is given by
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A0 D I1;

A1 D
�
1 1

1 0

�
;

A2 D
�
1 1

�1 0

�
;

A3 D InC1

A4 D

0BBB@
In 0

0 I2n�2
0

In 0

0 0
I3n�2

1CCCA ;

A5 D

0BBBBB@
0

I2n�2

�In 0 0

0 �m2In�1 0

0 0 �m�2In�1
In

0

0

�I2n�2 I3n�2 0

1CCCCCA ;
A6 D In:

It follows that

tor.H / D � detA�15

D .�1/n�1 det

0BBB@
I2n�2

0 �m2In�1 0

0 0 �m�2In�1
0

�I2n�2 I3n�2

1CCCA
�1

D .�1/n�1 det
�
.1 �m2/In�1 0

0 .1 �m�2/In�1

��1
D .m �m�1/2�2n:

Note that the third equation follows from the determinant formula for a block matrix.
We conclude that

Tor.C �.Y Ig�/; cY ;hY / D .�1/nC1.m �m�1/2n�2:

This completes the proof, since we have ".oY / D 1 from equation (11).

Remark 3.3. We have �.Y I �; hY ; oY / D 1 for n D 1. This agrees with the compu-
tation given in Example 2.2, as Y retracts to a 2-torus when n D 1.
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3.2. The knot exterior of the connected sum

The composing space Y has nC 1 boundary tori†1; : : : ;†n and†. For 1� j � nwe
glue the knot exterior Mj of Kj � S3 to Y by using a homeomorphism @Mj ! †j

that maps the meridian and canonical longitude of Kj to � and �j , respectively. The
resulting manifold M is a compact 3-manifold with @M D † and is the knot exterior
of the connected sum of K1; : : : ; Kn. We refer to [9, Example IX.21] for details. We
choose the orientation oM of H�.M IR/ as in Section 2.3, i.e., the one induced from
the basis hM D .pt; �/ of H�.M IR/.

Let �W �1.M/! SL2.C/ be an irreducible representation. We denote by m and
lj eigenvalues of �.�/ and �.�j / respectively as in equation (8). For simplicity we
assume that

m ¤ ˙1 and �Kj .m
2/ ¤ 0 for all 1 � j � n; (12)

where �Kj is the Alexander polynomial of Kj . It follows that each restriction
�j W�1.Mj /! SL2.C/ of � is either irreducible or abelian. We further assume that if
�j is irreducible, then

lj ¤ ˙1 and �j is �-regular. (13)

Without loss of generality, we assume that �1; : : : ; �k are abelian and �kC1; : : : ; �n are
irreducible where k should be less than n, otherwise � becomes abelian. In particular,
lj ¤ ˙1 for some 1 � j � n.

Proposition 3.4. We have

dimH i .M Ig�/ D
´
n � k if i D 1; 2;
0 otherwise.

Proof. From the short exact sequence

0! C �.M Ig�/!
nM

jD1

C �.Mj Ig�/˚ C �.Y Ig�/!
nM

jD1

C �.†j Ig�/! 0; (14)

we have

G W 0! H 0.M Ig�/
F0�!

nM
jD1

H 0.Mj Ig�/˚H 0.Y Ig�/
G0�!

nM
jD1

H 0.†j Ig�/

D0�! H 1.M Ig�/
F1�!

nM
jD1

H 1.Mj Ig�/˚H 1.Y Ig�/
G1�!

nM
jD1

H 1.†j Ig�/

D1�! H 2.M Ig�/
F2�!

nM
jD1

H 2.Mj Ig�/˚H 2.Y Ig�/
G2�!

nM
jD1

H 2.†j Ig�/

D2�! H 3.M Ig�/! 0: (15)
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With respect to the bases h†j , hMj , and hY given in Example 2.2 and Sections 2.3
and 3.1, the map G0 in sequence (15) can be identified with

G0WCkC1 ! Cn; .x1; : : : ; xk; y/ 7! .x1 � y; : : : ; xk � y; �y; : : : ;�y„ ƒ‚ …
n�k

/: (16)

It follows that

dim ImG0 D dim KerD0 D k C 1
and

dim ImD0 D n � k � 1:

Also, the matrix expression of

G1WC2nC1 ! C2n

is given by

G1 D

0BBBBBB@
1 � � � 0 �1 0 � � � 0

�1 0 0 �1 0
:::

: : :
:::

:::
:::

: : :
:::

0 1 �1 0 0

0 � � � �n 0 0 � � � �1

1CCCCCCA
where �j D hh1Mj .e�j /; P i. Since we obtain an invertible matrix (of size 2n) from
G1 by deleting the .nC 1/-st column, we have dim ImG1 D 2n and dim KerG1 D
dim ImF1 D 1.

We let P D 1
8
e2 2 H 0.Y Ig�/ and define maps

 1WH 1.M Ig�/! C; ˛ 7! h˛. Q�/; P i;
 2WH 2.M Ig�/! Cn�k; ˛ 7! .h˛.z†kC1/; P i; : : : ; h˛.z†n/; P i/:

Lemma 3.5.  1 induces an isomorphism H 1.M I g�/= ImD0 ! C and  2 is an
isomorphism.

Proof. It is clear that  1 is compatible with the isomorphism H 1.Mj I g�/ ! C,
˛ 7! h˛. Q�/; P i for 1 � j � n. In particular,  1 is surjective. On the other hand,
it follows from sequence (15) that an element of ImD0 maps to the trivial ele-
ment in H 1.Mj I g�/ under the restriction map H 1.M I g�/! H 1.Mj I g�/. There-
fore,  1 induces a map H 1.M I g�/= ImD0 ! C which is an isomorphism since
dimH 1.M I g�/ D n � k and dim ImD0 D n � k � 1. The second claim that  2 is
an isomorphism is obvious from sequence (15).
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Recall that the basis h0†j of H 0.†j Ig�/ gives us an isomorphism

nM
jD1

H 0.†j Ig�/ ' Cn:

Denoting by .e1; : : : ; en/ the standard basis of Cn, we choose a basis of ImD0 as

.D0.ekC1/; : : : ;D0.en�1//:

Note that equation (16) shows that the above tuple is indeed a basis of ImD0. We
then extend it to a basis h1M ofH 1.M Ig�/ by adding an element � at the first position
which maps to the standard basis of C under  1:

h1M D .�;D0.ekC1/; : : : ;D0.en�1//:

We also choose a basis h2M of H 2.M I g�/ by the pre-image of the standard basis of
Cn�k under  2. With the above choice of hM , we define the adjoint Reidemeister
torsion for the connected sum as follows.

Definition 3.6. LetM be the knot exterior of the connected sum of knotsK1; : : : ;Kn
in S3 and �W �1.M/ ! SL2.C/ be an irreducible representation satisfying condi-
tions (12) and (13). We define the adjoint Reidemeister torsion (associated to � and
the meridian �) as

��.M I �/ D �.M I �;hM ; oM /: (17)

Note that it reduces to the standard definition (6) of a knot exterior when n D 1.

Lemma 3.7. Equation (17) does not depend on the choice of P 2H 0.Y Ig�/ and the
order of indices of †kC1; : : : ; †n.

Proof. If we replace P by cP for some c 2 C�, then the basis transition matrices
for H i .M I g�/ is 1

c
In�k for both i D 1; 2 and thus ��.M I �/ does not change. If we

exchange two indices other than n, then the basis transition is clearly an odd permu-
tation for both H 1.M Ig�/ and H 2.M Ig�/. Therefore, ��.M I �/ does not change. If
we exchange the index n with another one, then the basis transition forH 2.M Ig�/ is
an odd permutation. On the other hand, since ekC1C � � � C en 2 ImG0 D KerD0 (see
equation (16)), we have D0.en/ D �D0.ekC1/ � � � � �D0.en�1/. It follows that the
basis transition matrix for H 1.M I g�/ has determinant �1 and thus ��.M I �/ does
not change.

Theorem 3.8. ��.M I �/ D .m �m�1/2n�2��.M1I �1/ : : : ��.MnI �n/:
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Proof. Choose any triangulation of M with any cell order cM . We denote by cY
(resp., cMj and c†j ) the cell order restricted to Y (resp., Mj and †j ). Note that the
Euler characteristics of M , Mj , Y , †j are even. Consequently, we may assume that
the number of i -dimensional cells in each of M , Mj , Y , and †j is even by applying
the barycentric subdivision once. Let e D 1 (resp., �1) if the basis transition between
.c†1 ; : : : ; c†n ; cM / and .cM1 ; : : : ; cMn ; cY / is an even (resp., odd) permutation.

Applying formula (3) to the short exact sequence (14), we obtain

e �
nY

jD1

Tor.C �.Mj Ig�/; cMj ;hMj / � Tor.C �.Y Ig�/; cY ;hY /

D .�1/vCu Tor.C �.M Ig�/; cM ;hM / �
nY

jD1

Tor.C �.†j Ig�/; c†j ;h†j / � tor.G /:

where tor.G / is the Reidemeister torsion of the long exact sequence (15) with respect
to hMj , hY , h†j , and hM . It is clear from definition (4) that v is even since the number
of i -dimensional cells in each of M , Mj , Y and †j is even for all i . Also, a direct
computation from definition (5) gives that u � n in modulo 2. Recall Proposition 3.4
that there are two trivial termsH 0.M Ig�/ andH 3.M Ig�/ in G . Ignoring these trivial
terms, we rewrite G as

0 G 0 G 1 G 2 G 3 G 4 G 5 G 6 G 7 0

CkC1 Cn Cn�k C2nC1 C2n Cn�k C2n�k Cn

 !  !G0

 ! '

 !D0

 ! '

 !F1

 ! '

 !G1

 ! '

 !D1

 ! '

 !F2

 ! '

 !G2
 ! '

 !

 ! '

 !G0  !D0  !F1  !G1  !D1  !F2  !G2

where the two rows are identified with respect to hMj , hY , h†j , and hM . We choose
a tuple bi of vectors in G i as

b0 D .e1; e2; : : : ; ekC1/;
b1 D .ekC1; ekC2; : : : ; en�1/;
b2 D e1

b3 D .e1; e2; : : : ; en; enC2; enC3; : : : ; e2nC1/;

b4 D ;;
b5 D .e1; e2; : : : ; en�k/;
b6 D .en�kC1; en�kC2; : : : ; e2n�k/;
b7 D ;

where ek is a unit vector whose coordinates are all zero, except one at the k-th coor-
dinate. Then the basis transition matrix Ai at G i (see Section 2.2) is given by
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A0 D IkC1;

A1 D

0BBBBBBBBB@
Ik

�1
:::
�1

0

0

�1
:::
�1

In�k�1

0 �1 0

1CCCCCCCCCA
;

A2 D
�

0 1

In�k�1 0

�
;

A3 D

0BBBBBBBBB@

1
:::
1

In 0

1 0 0

�1:::
�n

0 In

1CCCCCCCCCA
;

A4 D

0BBBB@
1 � � � 0 0 � � � 0
�1 0 �1 0
:::

: : :
:::

:::
: : :

:::
0 1 0 0
0 � � � �n 0 � � � �1

1CCCCA ;
A5 D In�k;

A6 D

0B@ In�k 0

0

In�k
In

1CA ;
A7 D �In:

It follows that

tor.G / D .�1/n�k .�1/n�k�1.�1/n.�1/n.nC1/2 .�1/n D .�1/n.nC1/2 C1:

Therefore, we conclude that

e �
nY

jD1

Tor.C �.Mj Ig�/; cMj ;hMj / � Tor.C �.Y Ig�/; cY ;hY /

D .�1/n.nC1/2 CnC1 Tor.C �.M Ig�/; cM ;hM /
nY

jD1

Tor.C �.†j Ig�/; c†j ;h†j /:

(18)
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On the other hand, applying formula (3) to the short exact sequence

0!
nM

jD1

C�.†j IR/!
nM

jD1

C�.Mj IR/˚ C�.Y IR/! C�.M IR/! 0; (19)

we have

e �
nY

jD1

Tor.C�.Mj IR/; cMj ; hMj / � Tor.C�.Y IR/; cY ; hY / (20)

D .�1/u0Cv0
nY

jD1

Tor.C�.†j IR/; c†j ; h†j / � Tor.C�.M IR/; cM ; hM / � tor.G 0/;

where tor.G 0/ is the Reidemeister torsion of the long exact sequence induced from (19)
with respect to the bases h†j , hMj , hY , and hM . Repeating similar computations, we

have u0 � v0 � 0 mod 2 and tor.G 0/ D .�1/n.nC1/2 . Then, from equation (20) we
have

e �
nY

jD1

".oMj / � ".oY / D .�1/
n.nC1/
2

nY
jD1

".o†j / � ".oM /: (21)

Combining equations (18) and (21) with Example 2.2 and Proposition 3.2, we obtain
the desired formula.

3.3. Proofs of Theorems 1.3 and 1.4

Recall that X.M/ is the character variety of irreducible representations �1.M/!
SL2.C/ and Xc

�.M/ is the pre-image of c 2 C under the trace function X.M/! C

of �. We use the notations X.Mj / and Xc
�.Mj / similarly for 1 � j � n. Since we

assumed that

(C) the level set Xc
�.Mj / consists of finitely many �-regular characters with the

canonical longitude having trace other than˙2 for generic c 2 C,

conditions (12) and (13) in Section 3.2 are satisfied for generic c 2 C. It follows that
the adjoint Reidemeister torsion is well defined on the level set Xc

�.M/ for generic
c 2 C.

Lemma 3.9. The connected components of Xc
�.M/ are the pre-images of the restric-

tion map (i.e., induced by the inclusions Mj !M ):

ˆWXc
�.M/!

nY
jD1

.Xc
�.Mj / t ¹Œ j̨ �º/ n ¹.Œ˛1�; : : : ; Œ˛n�/º

where j̨ W�1.Mj /! SL2.C/ is the abelian representation with tr. j̨ .�// D c, and
Œ j̨ � denotes its character.
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Proof. We first prove that ˆ is surjective. Let �j be a representation �1.Mj / !
SL2.C/ satisfying tr.�j .�//D c for 1� j � n. Since we assume that c ¤˙2, we can
conjugate each �j so that �1.�/ D �2.�/ D � � � D �n.�/. This is sufficient to extend
these representations to �W�1.M/! SL2.C/ which is irreducible since at least one
of �j ’s is irreducible.

For a point p in the image of ˆ, without loss of generality, we may assume p D
.Œ˛1�; : : : ; Œ˛k�; Œ�kC1�; : : : ; Œ�n�/, where ˛1 : : : ; ˛k are abelian and �kC1; : : : ; �n are
irreducible. To analyze the pre-image ˆ�1.p/, consider two characters in ˆ�1.p/,
those are conjugacy classes of irreducible representations � and �0 of �1.M/. As
tr.�.�//D tr.�0.�//¤˙2, after conjugating we may assume that �.�/D �0.�/. Let
D � PSL2.C/ denote the centralizer of �.�/ D �0.�/. Since tr.�.�// D tr.�0.�// ¤
˙2, the groupD is conjugate to the group of diagonal matrices and thusD ŠC�. Let
�j and �0j denote the respective restrictions of � and �0 to �1.Mj /. The assumption
�.�/ D �0.�/ implies that

• for j D 1; : : : ; k, �j D �0j . It is because of that the genericity assumption (12)
implies that �j and �0j are abelian, and an abelian representation of a knot exterior
is determined by the trace of �;

• for j D k C 1; : : : ; n, �0j and �j are conjugate by some matrix of D, because an
irreducible representation is determined by its character.

Namely, � and �0 differ by bending along some of the tori †kC1; : : : ; †n. Note that
bending along all tori†kC1; : : : ;†n simultaneously by the same matrix inD does not
change the conjugacy class. It follows that the pre-image ˆ�1.p/ is homeomorphic
to

.D � � � � �D/„ ƒ‚ …
n�k

=D Š .C� � � � � �C�/„ ƒ‚ …
n�k

=C� Š .C�/n�k�1:

As the pre-images of ˆ are connected and the image is discrete, those pre-images are
the connected components.

From Theorem 3.8 and Lemma 3.9, we obtain Theorem 1.3: the adjoint Reide-
meister torsion is locally constant on Xc

�.M/. Note that the term .m �m�1/2n�2 in
Theorem 3.8 is the constant .c2 � 4/n�1 on Xc

�.M/.
On the other hand, we have

.c2 � 4/n�1
X

Œ��2Xc
�.M/

1

��.M I �/

D
nY

jD1

� X
Œ��2Xc

�.Mj /

1

��.Mj I �/ C
1

��.Mj I j̨ /
�
�

nY
jD1

1

��.Mj I j̨ /

D
X

J¨¹1;:::;nº

�Y
j…J

X
Œ��2Xc

�.Mj /

1

��.Mj I �/
�
�
Y
j2J

1

��.Mj I j̨ / ;
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where J runs on all subsets of ¹1; : : : ; nº different from the whole set (J is the subset
of indexes j such that the restriction to �1.Mj / is abelian, hence J may be empty but
not the whole set). Note that each connected component of Xc

�.M/ is homeomorphic
to .C�/l for some 0 � l � n � 1 and that we understand the sum †Œ��2Xc

�.M/ by
taking one representative on each connected component of Xc

�.M/, which agrees
with the ordinary sum for Mj . This completes the proof of Theorem 1.4, because we
have assumed that for each j D 1; : : : ; n:X

Œ��2Xc
�.Mj /

1

��.Mj I �/ D 0:
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