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Fully extended r-spin TQFTs

Nils Carqueville and Lóránt Szegedy

Abstract. We prove the r-spin cobordism hypothesis in the setting of (weak) 2-categories for
every positive integer r : the 2-groupoid of 2-dimensional fully extended r-spin TQFTs with
given target is equivalent to the homotopy fixed points of an induced Spinr2-action. In particular,
such TQFTs are classified by fully dualisable objects together with a trivialisation of the r th
power of their Serre automorphisms. For r D 1, we recover the oriented case (on which our
proof builds), while ordinary spin structures correspond to r D 2.

To construct examples, we explicitly describe Spinr2-homotopy fixed points in the equivari-
ant completion of any symmetric monoidal 2-category. We also show that every object in a
2-category of Landau–Ginzburg models gives rise to fully extended spin TQFTs and that half
of these do not factor through the oriented bordism 2-category.

1. Introduction and summary

The spin group Spinn in dimension n is by definition the double cover of the group of
rotations SOn in Euclidean space Rn. A spin structure on an n-dimensional oriented
manifold is a lift of its tangent bundle along the covering Spinn ! SOn. Such geo-
metric structures and their close cousins in Lorentzian geometry are fundamental in
theoretical physics, since, e.g., electrons are classically modelled as sections of spin
bundles.

More generally, for any continuous group homomorphism �WG! GLn, a tangen-
tial structure on an n-dimensional manifoldM is a principalG-bundle onM together
with a bundle map to the frame bundle of M that is compatible with � (see Sec-
tion 2.1 for details). The case of spin structures is precisely when � is the covering
map Spinn ! SOn post-composed with the inclusion SOn � GLn; in the case of ori-
entations, � is just that inclusion, while in the case of framings, � is the inclusion of
the trivial group into GLn.

Given the relevance of spin structures in physics and the motivation to study func-
torial topological quantum field theories (TQFTs) as a means to gain insight into
physics, it is natural to consider spin TQFTs. These are (higher) symmetric monoidal
functors on (higher) categories of bordisms with prescribed spin structures. The case
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of closed spin TQFTs in dimension n D 2 was first considered in [1, 7, 33, 37], and
in [1, 39], it was classified1 in terms of “closed ƒ2-Frobenius algebras” (see Sec-
tion 2.2 for the definition). Such algebraic structures formalise the relation between
topological Neveu–Schwarz and Ramond sectors, examples of which can be obtained
as a Z2-graded version of the centre construction of [30]. In particular, there is a .1j1/-
dimensional example in VectZ2C whose associated TQFT computes the Arf invariant
of spin surfaces. Not many other explicit examples have been studied in the literat-
ure, and all previously known classes of examples are constructed from semisimple
algebraic data.

In the setting of symmetric monoidal .1; n/-categories, fully extended TQFTs
with G-structure are widely believed to be classified by homotopy fixed points of
a G-action (induced from the G-action on framed bordisms) on the maximal 1-
subgroupoids of fully dualisable objects in the target .1; n/-categories. This is de-
scribed in significant, yet non-exhaustive, detail in [31]. To our knowledge, this gen-
eral version of the cobordism hypothesis, originally put forward in [3], is established
as a theorem only up to a completion of the extended proof sketch in [31], or up to a
conjecture on the relation between factorisation homology and adjoints; see [2, Con-
jecture 1.2].

On the other hand, in dimension n D 2 and in the setting of (weak) 2-categories,
the cobordism hypothesis for the framed and oriented case was proved explicitly
in [34] and [25–27], respectively: for any symmetric monoidal 2-category B, the
2-groupoid of fully extended framed TQFTs Bordfr

2;1;0!B is equivalent to the max-
imal sub-2-groupoid .Bfd/� of fully dualisable objects in B, while fully extended
oriented TQFTs Bordor

2;1;0 ! B are described by SO2-homotopy fixed points. The
latter are objects of a 2-groupoid

Œ.Bfd/��SO2

and correspond to pairs .˛; �/, where ˛ 2Bfd and �WS˛ Š 1˛ is a trivialisation of the
Serre automorphism of ˛. In Sections 3.1.4 and 3.3.1–3.3.3, we recall the notions just
mentioned, in particular how the Serre automorphism S˛W ˛ ! ˛, defined in (3.4),
corresponds to one full rotation of frames.

r-spin cobordism hypothesis. In the present paper, we classify fully extended spin
TQFTs valued in an arbitrary symmetric monoidal 2-category B (Section 3), and
we construct a number of examples (Section 4). More precisely, we consider r-spin
TQFTs for any positive integer r . Recall that while for n > 3, the double cover
Spinn ! SOn is also the universal cover, this is not true for n 6 2. Hence, there

1In fact, [39, Theorem 5.2.1] provides a classification of open/closed r-spin TQFTs, of
which the closed case for r D 2 discussed here is a special case.
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is less reason to single out double covers of SO2 and instead consider the r-fold cover
Spinr2 ! SO2 for all r 2 Z>12. Note that necessarily

Spinr2 Š SO2

as groups, and that by definition,

Spin2 D Spin22 and Spin12 D SO2 :

Following [38], in Section 3.2, we describe a 2-category Bordr-spin
2;1;0 of bordisms

with r-spin structure related to �W Spinr2 ! SO2 ,! GL2, and in Section 3.3.3, we
construct a 2-category 2Dr.Bfd/ whose objects are pairs .˛; �/, where ˛ 2 Bfd and
� WS r˛ Š 1˛ . Then, we prove Lemma 3.18 and Theorem 3.19.

Theorem (r-spin cobordism hypothesis). Let B be a symmetric monoidal 2-category,
and let r 2 Z>1. The 2-groupoid of fully extended r-spin TQFTs valued in B is
equivalent to the homotopy fixed points Œ.Bfd/��Spinr

2 . This in turn is equivalent to
2Dr..Bfd/�/, and under these equivalences, we have

Funsm
�
Bordr-spin

2;1;0 ;B
� �

.Bfd/�
�Spinr

2 2Dr
�
.Bfd/�

�
Z̄

�
Z̄.C/; S r

Z̄.C/
Š 1Z̄.C/

�
:

Š Š

Put differently, (fully) extended r-spin TQFTs are classified by what they assign
to the positively framed point C 2 Bordr-spin

2;1;0 together with a trivialisation of the r th
power of the associated Serre automorphism. The main ingredients of the proof are a
generators-and-relations presentation of Bordr-spin

2;1;0 , inspired by the work [27], and an
explicit description of r-spin bordisms in terms of holonomies, following [36].

Examples. The choice of target 2-category B is essential for extended TQFTs. To
broaden the class of known r-spin TQFTs, in Section 4, we explicitly describe Spinr2-
homotopy fixed points in the “equivariant completion” Beq of any given symmetric
monoidal 2-category B. As introduced in [16] and reviewed in Section 4.1, objects
in Beq are pairs .˛; A/, where ˛ 2 B and A 2 B.˛; ˛/ is endowed with the structure
of a �-separable Frobenius algebra, while 1- and 2-morphisms are bimodules and
bimodule maps. We show the following proposition (see Corollary 4.9, and (4.1) for
the definition of the Nakayama automorphism 
AWA! A).

Proposition. Let .˛;A/ 2Beq be such that ˛ 2Bfd as well as S r˛ Š 1˛ and 
 rA D 1A
in B. Then, there is an r-spin TQFT:

Z̄WBordr-spin
2;1;0 �! Beq

C 7�! .˛; A/:

2For n D 1, we have SO1 D ¹1º, and its r-fold cover is the unique map ¹1; : : : ; rº ! ¹1º.
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Moreover, in Section 4.1.5, we explain how to compute the invariants such that
TQFTs associate to r-spin surfaces, by explicitly constructing the closed ƒr -Froben-
ius algebras which classify the underlying non-extended TQFTs.

An advantage of considering Beq-valued (as opposed to B-valued, for a given B)
TQFTs is as follows. As explained in Remark 3.28, r-spin TQFTs valued in a pivotal
2-category B cannot detect all r-spin structures if r > 3. However, the equivariant
completion Beq of a pivotal 2-category B is itself not pivotal.

As a specific example of a target B, in Section 4.2, we consider the symmet-
ric monoidal 2-category LG of Landau–Ginzburg models, constructed in [13, 15].
(Examples of extended 2-spin TQFTs were first considered in [22].) Objects of LG

are “potentials” W 2 kŒx1; : : : ; xn� that describe isolated singularities, and Hom cat-
egories are homotopy categories of matrix factorisations. In [13], it was observed that
every object in LG is fully dualisable and that precisely those potentials W.x1; : : : ;
xn/ that depend on an even number of variables give rise to fully extended oriented
TQFTs. Moreover, these oriented TQFTs indeed extend the closed TQFTs associated
to the (generically non-semisimple) Jacobi algebras JacW to the point. In light of the
r-spin cobordism hypothesis proved in Section 3, it is straightforward to extend these
results as follows (Theorem 4.17)3.

Theorem. Every object W.x1; : : : ; xn/ 2 LG gives rise to an extended 2-spin TQFT
valued in LG . These TQFTs factor through the oriented bordism 2-category iff n is
even.

Explicitly, the 2-spin TQFT associated to an object W 2 LG with an odd number
of variables consists of the even Neveu–Schwarz sector JacW 2 Vectk � VectZ2k and
the odd Ramond sector JacW Œ1� 2 VectZ2k , together with the structure maps described
in general in Section 3.1.5. Moreover, in Example 4.18, we illustrate how to apply our
results on equivariant completion (Section 4.1) to a variant of

B D LG

and explicitly compute the invariants of r-spin tori in the simplest non-trivial (and
novel) example.

Examples not treated in this paper. We close this introductory section with a few
comments on potential further applications of the r-spin cobordism hypothesis. Be-
sides the 2-categories Algk and LG (as well as their variants with additional Z2-,
Z- or Q-gradings), it is natural to consider the 2-category Var of [11] of smooth

3In the case of Landau–Ginzburg models, the vector space of automorphisms of the identity
1-morphism on any object is 1-dimensional. Hence, the choice of trivialisation of the square of
the Serre automorphism is unique up to a non-zero scalar.
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projective varieties and derived categories (see also Example 3.3), which appears in
the study of B-twisted sigma models. The 2-category Var has a natural symmet-
ric monoidal structure [5]. As explained in [11, 31], the Serre automorphism SX of
X 2 Var can be identified with the Serre functor of the derived category associated
to X .

In [29], Kuznetsov constructs “fractional Calabi–Yau categories” AX as the ad-
missible subcategories of semiorthogonal decompositions of derived categories of
certain varieties X 2 Var. This means in particular that AX is a triangulated cat-
egory with suspension functor † such that AX has a Serre functor S which satisfies
Sq Š †p for some p; q 2 Z with q ¤ 0. It follows that the orbit category AX=Z has
a Serre functor whose .p � q/-th power is trivialisable; see, e.g., [21, Theorem 5.14].

It is tempting to expect that some of the fractional Calabi–Yau categories con-
structed in [29, Section 4] classify .p � q/-spin TQFTs whose target is Var up to the
Z-action quotiented out in orbit categories. This is possible only if one can identify
the Serre functor of AX=Z with the Serre automorphism of some other object in the
target 2-category. More generally, we could work in the 2-category of smooth and
proper triangulated differential graded categories described in [4, Appendix A]. In
this setting, both the geometric constructions of [29] and the representation theoretic
examples of fractional Calabi–Yau categories in [21, Section 6] may lead to interest-
ing r-spin TQFTs.

2. Non-extended r-spin TQFTs

In this section, we review the classification of non-extended closed r-spin and framed
TQFTs following [39], to which we refer for details. We recall the relevant categories
of 2-dimensional bordisms as well as the notion of a closed ƒr -Frobenius algebra,
and we state the main classification result: 2-dimensional r-spin and framed (r D 0)
TQFTs are equivalent to closed ƒr -Frobenius algebras in the target category.

2.1. Framed and r-spin TQFTs

By a surface, we mean a 2-dimensional compact smooth manifold. Let G be a topo-
logical group, and let

�WG �! GL2

be a continuous group homomorphism, and recall that the frame bundle F†! † of
a surface † is a principal GL2-bundle. A G-structure (more precisely: a tangential
structure for �WG ! GL2) on † is a principal G-bundle � WP ! † together with a
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bundle map q intertwining the group actions via �:

P F†

†
�

q

A map of surfaces with G-structure is a bundle map which is a local diffeomorphism
of the underlying surfaces. Such a map is called a diffeomorphism if its underlying
map of surfaces is a diffeomorphism, and an isomorphism ofG-structures if the under-
lying map of surfaces is the identity.

We will consider the following tangential structures:

• A framing is a tangential structure for the trivial group:

? �! GL2 : (2.1)

• An orientation is a tangential structure for the inclusion:

SO2 ' GLC2 ,! GL2; (2.2)

where GLC2 is the subgroup of elements in GL2 with positive determinant.

• For r 2 Z>0, an r-spin structure is a tangential structure:

eGLC2
r GLC2 ,! GL2;
pr (2.3)

where pr W eGLC2
r ! GLC2 is the r-fold covering for r > 0, while for r D 0, it is

the universal cover.

By a trivial r-spin structure on a surface †, we mean an r-spin structure iso-
morphic to the r-spin structure with trivial bundles

P D † � eGLC2
r ; F† D † � GL2

and trivial bundle map q.C/ D id†�pr (positive orientation) or q.�/ D id†�.T ıpr/
(negative orientation), where T is composition with the matrix .C1 0

0 �1 / 2 GL2.

Remark 2.1. A 1-spin structure is the same as an orientation, and a 2-spin structure is
usually called a spin structure. Moreover, we can identify framings with 0-spin struc-
tures by noting that the fibres of a 0-spin bundle are contractible; see [37, Proposition
2.2]. This is consistent with the fact that, for any r 2 Z>0, an r-spin structure is a
Zr -bundle over the oriented frame bundle.
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Let r 2 Z>0. There is a symmetric monoidal category of 2-dimensional r-spin
bordisms Bordr-spin

2;1 as follows. An object S is a 1-dimensional closed manifold s
embedded in a cylinder s � .�1; 1/, together with an r-spin structure on the cylinder.
For an object S , we write

S .C/ WD s � Œ0; 1/ and S .�/ WD s � .�1; 0�

with the restricted r-spin structures. The morphisms of Bordr-spin
2;1 are diffeomorphism

classes of r-spin bordisms: for S; S 0 2 Bordr-spin
2;1 , an r-spin bordism S ! S 0 is a

compact surface † with r-spin structure, together with a boundary parametrisation
map S .C/ t S 0.�/ ,! †, i.e., a map of r-spin surfaces that identifies the boundary of
† with the 1-dimensional embedded manifolds

s � ¹0º � S and s0 � ¹0º � S 0:

Finally, a diffeomorphism of r-spin bordisms is a diffeomorphism of r-spin surfaces
compatible with the boundary parametrisations. We usually refer to a morphism in
Bordr-spin

2;1 by a bordism that represents it.
A particular class of r-spin bordisms are deck transformation bordisms. These are

cylinders whose boundary parametrisations are given by deck transformations of the
r-spin bundle on the source or target object.

The composition of morphisms in Bordr-spin
2;1 is given by gluing along bound-

ary parametrisations; hence, the unit morphisms are given by cylinders with trivial
boundary parametrisations. Taking disjoint unions endows Bordr-spin

2;1 with its stand-
ard symmetric monoidal structure. In light of Remark 2.1, we write

Bordfr
2;1 D Bord0-spin

2;1 ; Bordor
2;1 D Bord1-spin

2;1 :

Definition 2.2. Let Cc be a symmetric monoidal category. A (closed) r-spin TQFT
valued in Cc is a symmetric monoidal functor

Z̄WBordr-spin
2;1 �! C :

The case of 2-dimensional closed spin TQFTs (r D 2) was first described and
classified in [1], including concrete examples in terms of Clifford algebras viewed as
objects in the category of super vector spaces

C D VectZ2C :

Spin TQFTs were further discussed from the perspective of extended TQFTs in [22],
and spin state sum constructions were given in [7, 33]. TQFTs with r-spin structure
for arbitrary r were introduced in [32] and further studied in [37]. The classification of
general r-spin TQFTs appears in [39], in terms of the algebraic structures we review
next.
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2.2. Classification in terms of closed ƒr -Frobenius algebras

A closed ƒr -Frobenius algebra C in a symmetric monoidal category C consists of a
collection of objects Ca 2 C for all a 2 Zr as well as morphisms

�a;b D a;b
WCa ˝ Cb �! CaCb�1; �1 D W 1 �! C1;

�a;b D
a;b

WCaCbC1 �! Ca ˝ Cb; "�1 D WC�1 �! 1

for all a; b 2 Zr . The Nakayama automorphisms of C are

Na WD

a;�a

a;�a

WCa �! Ca (2.4)

for all a 2 Zr . These data by definition satisfy the following conditions:

(co)associativity:

a;b

aCb�1;c

D
b;c

a;bCc�1

;

a;b

aCbC1;c D

b;c

a;bCcC1 ; (2.5)

.co/unitality W

1;a
D D

a;1
;

�1;a

D D
a;�1

; (2.6)

Frobenius relation:

c;a�c�1

d�bC1;b

D

b�d�1;d

a;c�aC1

; (2.7)

commutativity:

N 1�a
b

b;a D a;b D
N b�1
a

b;a ; (2.8)

twist relations:

N a
a D 1Ca ; N b

a

a;�a

a;�a

D N b
aCb�1

aC b� 1;�a� bC 1

aC b� 1;�a� bC 1

; (2.9)
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deck transformation relations: N r
a D 1Ca : (2.10)

A map of closed ƒr -Frobenius algebras 'WC ! D is a collection of morphisms
'aWCa!Da preserving the structure morphisms. Analogously to the case of ordinary
Frobenius algebras, maps of closed ƒr -Frobenius algebras are always isomorphisms.

Example 2.3. (i) One class of closed ƒr -Frobenius algebras in a given symmetric
monoidal category C can be constructed from ordinary Frobenius algebras A in C

whose ordinary Nakayama automorphism 
A satisfies 
 rA D 1A (see Section 4.1.1
and (4.1) below for details). Indeed, as explained in [37] and [39, Section 4.2], the
construction of commutative Frobenius algebras as the centres of certain types of
non-commutative Frobenius algebras in [30, Section 2.7] is naturally the special case
of r D 1 of a construction of “Zr -graded centre” for any r 2 Z>0.

(ii) In the category Bordr-spin
2;1 , r-spin circles, pair of pants, cups, and caps naturally

assemble into a closed ƒr -Frobenius algebra C . The precise presentation is given
in [39, Section 5.1] in terms of a combinatorial description of r-spin structures. In
particular, it follows from [39, equation (5.2)] that the Nakayama automorphisms of
C are deck transformation bordisms.

The closed ƒr -Frobenius algebra C of Example 2.3 (ii) is not just any example.
As proven in [39, Theorem 5.2.1], Bordr-spin

2;1 is generated as a symmetric monoidal
category by the data of C , subject to relations given by the defining properties (2.5)–
(2.10). This implies the following theorem.

Theorem 2.4 ([39, Corollary 5.2.2]). There is an equivalence of symmetric monoidal
groupoids between the groupoid of r-spin TQFTs with target C and the groupoid of
closed ƒr -Frobenius algebras in C .

For this reason, we will refer to the objects Ca of a closed ƒr -Frobenius algebra
in any given symmetric monoidal category C (not necessarily equivalent to Bordr-spin

2;1 )
as the a-th circle spaces. The a-th circle space in Bordr-spin

2;1 is simply the circle with
“framing number” a, and we denote it by S1a . Below in Sections 3.1.5, 4.1.5 and 4.2,
we will use Theorem 2.4 to construct examples of closed r-spin TQFTs beyond those
mentioned in Section 2.1.

2.3. Computing invariants

The above classification theorem provides a way to compute invariants of r-spin sur-
faces from r-spin TQFTs in terms of the algebraic data of a closed ƒr -Frobenius
algebra. As the number of diffeomorphism classes of r-spin structures on a connected
oriented surface of genus g > 2 is, if non-zero, either one (r odd) or two (r even), we
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are mainly interested in surfaces of genera 0 and 1; see, e.g., [40, Section 3] and the
references therein for a detailed account.

The sphere S2 admits an r-spin structure only if r 2 ¹1; 2º, in which case it is
unique up to isomorphism; hence, the torus T 2 is of most interest. Any torus with
r-spin structure can be presented in terms of the closed ƒr -Frobenius algebra in
Bordr-spin

2;1 as

T .a; b/ WD N 1�b
�a

�a;a

�a;a

2 EndBordr-spin
2;1

.¿/

for some a; b 2 Zr . Moreover, as shown in [39, Proposition 4.1.4], the r-spin torus
T .a; b/ is diffeomorphic to the r-spin torus T .gcd.a; b; r/; 0/, and in fact, diffeo-
morphism classes of r-spin tori are in bijection with divisors of r . Hence, we write

T .d/ D T .d; 0/

for the class of r-spin tori corresponding to the divisor d .

Proposition 2.5 ([39, Proposition 4.1.4]). The invariant of the r-spin torus T .d/
computed by a C -valued closed r-spin TQFT Z̄ classified by a closed ƒr -Frobenius
algebra C is the quantum dimension of Cd :

Z̄.T .d// D dim.Cd / D evCd ı bC�d ;Cd ı coevCd ;

where b is the braiding of C .

3. Fully extended r-spin TQFTs

In this section, we describe fully extended r-spin TQFTs and prove the correspond-
ing cobordism hypothesis in the 2-categorical setting. In Section 3.1, we recall some
aspects of symmetric monoidal 2-categories B, their Serre automorphisms, and we
construct canonical closedƒ0-Frobenius algebras. Section 3.2 describes the 2-catego-
ry Bordr-spin

2;1;0 of r-spin bordisms. Then, in Section 3.3, we define the 2-groupoid of
fully extended r-spin TQFTs Bordr-spin

2;1;0 ! B and explain that it is equivalent to the
2-groupoid of Spinr2-homotopy fixed points.

3.1. Dualisability in symmetric monoidal 2-categories

In this section, we present our notational conventions for dualisability in symmetric
monoidal 2-categories. Moreover, we construct a closedƒ0-Frobenius algebra (in the
sense of Section 2.2) for every fully dualisable object.
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For complete definitions, we refer to [8, 34, 38] and references therein; with an
eye towards examples in Section 4, below we mostly use the same conventions as
in [13, Section 2].

3.1.1. Conventions for 2-categories. By a 2-category we mean a (possibly non-
strict) bicategory B in the sense of [38, Appendix A.1]. For objects ˛; ˇ 2 B, we
denote the category of 1-morphisms ˛ ! ˇ by B.˛; ˇ/; for 1-morphisms X; Y 2
B.˛; ˇ/, we write HomB.X; Y /, or simply Hom.X; Y /, for the set of 2-morphisms
X ! Y . Horizontal and vertical compositions are denoted by˝ and ı, respectively:

˝WB.ˇ; 
/ �B.˛; ˇ/ �! B.˛; 
/

.X 0; X/ 7�! X 0 ˝X;

ıWHom.Y;Z/ � Hom.X; Y / �! Hom.X;Z/

. ; '/ 7�!  ı ':

We read string diagrams from right to left and from bottom to top. For instance,
for 1-morphisms X 2 B.˛; ˇ/, X 0 2 B.ˇ; 
/, and V 2 B.˛; 
/, a 2-morphism ' 2

Hom.X 0 ˝X; V / is represented by

V

XX 0

'

˝-composition

ı
-c

om
po

si
tio

n

˛

ˇ




However, sometimes, we will suppress object labels in string diagrams, as, e.g., in
(3.1) below.

3.1.2. Adjoints. Let B be a 2-category. A 1-morphismX 2B.˛;ˇ/ has a left adjoint
if there exists a 1-morphism �X 2 B.ˇ; ˛/ together with adjunction 2-morphisms

X�X

D evX W �X ˝X �! 1˛;

X �X
D coevX W 1ˇ �! X ˝ �X (3.1)
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such that the Zorro moves

D D 1X ; D D 1�X

are satisfied. Similarly, a right adjoint for X consists of X� 2 B.ˇ; ˛/ with

X�X

D zevX WX ˝X� �! 1ˇ ;

X� X
D ecoevX W 1˛ �! X� ˝X

that satisfy analogous Zorro moves.
IfX;Y 2B.˛;ˇ/ have left and right adjoints (with chosen adjunction maps), then

we write

�' WD

�X

�Y

' ; '� WD

X�

Y �

'

for the left and right adjoints of ' 2 Hom.X; Y /, respectively. We call B pivotal if
every 1-morphism X comes with chosen left and right adjunction data such that

�X D X�; �' D '�

for all 2-morphisms ', and

Y �X�

.Y ˝X/�

D

Y �X�

.Y ˝X/�

for all composable 1-morphisms X; Y .
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3.1.3. Symmetric monoidal structure. Let B be a 2-category. A monoidal structure
on B consists of a 2-functor

�WB �B �! B

called monoidal product, a unit object

1 2 B;

a pseudonatural transformation aW� ı .� � IdB/! � ı .IdB ��/ called associator,
a weak inverse a� for a, as well as unitors, 2-unitors, and a pentagonator (which we
will usually suppress), subject to the coherence axioms in [38, Section 2.3].

Viewing a monoidal 2-category B as a 3-category with a single object and using
the strictification results of [23, 24], we can use the 3-dimensional graphical calculus
of [6,41]. For this, we extend our diagrammatic conventions by reading 3-dimensional
diagrams from front to back. For instance, for 1-morphisms X 2 B."� ı; ˛/, Y 2
B.
 � �; "/, Z 2 B.1; � � ı/, X 0 2 B.ˇ; ˛/, and Y 0 2 B.
; ˇ/, the diagram

"




�

Y

ı

Z

ˇ

˛

X

Y 0
X 0

'

�-compositio
n˝-composition

ı
-c

om
po

si
tio

n

represents a 2-morphism ' 2 Hom.X 0 ˝ Y 0; X ˝ .Y � 1ı/˝ .1
 � Z//; compare
[12, Section 3.1.2].

Let B be a monoidal 2-category. Writing � WB � B ! B � B for the strict 2-
functor that acts as .�; �/ 7�! .�; �/ on objects, 1- and 2-morphisms, a symmetric
braided structure on B consists of a pseudonatural transformation

bW� �! � ı �

called braiding, a weak inverse b� for b, and an invertible modification � W 1� !
b� ı b, as well as two further invertible modifications between compositions of a,
a�, b, b�, subject to the coherence axioms of [38, Section 2.3].
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The braiding b consists of 1-morphism components

b˛;˛0

˛0 ˛

˛ ˛0

bD b˛;˛0 W˛ � ˛0 �! ˛0 � ˛

for all ˛;˛0 2B and of 2-morphism components bX;Y W .Y �X/˝ b˛;ˇ �! b˛0;ˇ 0 ˝

.X � Y / for all X 2 B.˛; ˛0/ and Y 2 B.ˇ; ˇ0/. Graphically, the 2-morphism com-
ponents are depicted as

Y

X

b˛;ˇ

b˛0;ˇ0

X

Y

bX;Y

ˇ0 ˛

˛0 ˇ

:

3.1.4. Duality and Serre automorphism. Let B be a symmetric monoidal 2-catego-
ry. An object ˛ 2 B has a dual if there exists an object ˛# together with adjunction
1-morphisms

˛#

˛

bD zev˛W˛ � ˛#
�! 1

˛

˛#

bD ecoev˛W 1 �! ˛# � ˛
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and cusp 2-isomorphisms

˛

cl
D clW

�
zev˛ � 1˛

�
˝
�
1˛ � ecoev˛

�
�! 1˛; (3.2)

˛#

cr
D crW

�
1˛# � zev˛

�
˝
�ecoev˛ � 1˛#

�
�! 1˛# : (3.3)

More precisely, these data witness ˛# as the right dual of ˛. Using the symmetric
braiding of B, the object ˛# is also the left dual of ˛, with adjunction maps

ev˛ D zev˛ ˝ b˛#;˛; coev˛ D b˛#;˛ ˝ ecoev˛:

If ˛; ˇ 2 B have duals ˛#; ˇ# with chosen adjunction 1-morphisms

zev˛; ecoev˛; zevˇ ; ecoevˇ ;

the associated dual X# of a 1-morphism X 2 B.˛; ˇ/ is

X ˛ˇ

˛#

ˇ#

bD X#
2 B.ˇ#; ˛#/:
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For another 1-morphism Y 2 B.˛; ˇ/ and a 2-morphism ' 2 Hom.X; Y /, its dual '#

is

Y

X

'

˛ˇ

˛#

ˇ#

D '#
2 Hom.X#; Y #/:

An object ˛ in a symmetric monoidal 2-category B is called fully dualisable if it
has a dual ˛# such that the 1-morphisms zev˛; ecoev˛ have both left and right adjoints
(as in Section 3.1.2). The full sub-2-category of fully dualisable objects is denoted by
Bfd, and we call B fully dualisable if B Š Bfd.

Convention 3.1. Whether or not a symmetric monoidal 2-category B is fully dualis-
able is a property of B. If it is fully dualisable, we will assume that we have chosen
explicit duality data .˛#; zev˛; ecoev˛/ and adjunction data .� zev˛; ev zev˛ ; coev zev˛ /, . zev�˛ ,
zev zev˛ ; ecoev zev˛ /, .

�ecoev˛; evfcoev˛ ; coevfcoev˛ /, and .ecoev�˛; zevfcoev˛ ; ecoevfcoev˛ / for all
˛ 2 B. Put differently, we then view B as “fully dualised”.

As shown in [34], the adjunction 1-morphisms zev˛; ecoev˛ of a fully dualisable
object ˛ do not only have left and right adjoints, but these again have left and right
adjoints, and so on infinitely. The relations between multiple adjoints are negotiated
by the Serre automorphism:

S˛ D
�
1˛ � zev˛

�
˝
�
b˛;˛ � 1˛#

�
˝
�
1˛ � zev�˛

�

bD
b˛;˛

˛#

˛ ˛

˛˛
zev˛ zev�˛ (3.4)
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with inverse

S�1˛ D
�
1˛ � zev˛

�
˝
�
b˛;˛ � 1˛#

�
˝
�
1˛ � �

zev˛
�

bD
b˛;˛

˛#

˛ ˛

˛˛
zev˛ �zev˛

: (3.5)

The general result [34, Theorem 3.9] on multiple adjoints in Bfd implies, in particular,

zev�˛ Š .S˛ � 1˛#/˝ b˛#;˛ ˝ ecoev˛;
�
zev˛ Š .S�1˛ � 1˛#/˝ b˛#;˛ ˝ ecoev˛:

(3.6)

Let .Bfd/� be the maximal sub-2-groupoid of Bfd. Then, as shown in [27, Pro-
position 2.8], for all X 2 .Bfd/�.˛; ˇ/, there are 2-morphisms

SX WX ˝ S˛ �! Sˇ ˝X;

which together with the components S˛ assemble into a pseudonatural transformation
Id.Bfd/� ! Id.Bfd/� . This can be slightly generalised as follows.

Proposition 3.2. Let B be a symmetric monoidal pivotal 2-category such that Bfd

has adjoints for all 1-morphisms. Then, the Serre automorphisms S˛ together with
the 2-morphisms (expressed in terms of the graphical calculus of [6] for symmetric
monoidal pivotal 2-categories)

SX D
bX;X

X

X

˛#

ˇ ˇ

˛

˛

ˇˇ

for all X 2 Bfd.˛; ˇ/

(3.7)
form a pseudonatural transformation S W IdBfd ! IdBfd .
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Proof. If X 2 Bfd.˛; ˇ/ has a quasi-inverse X�1, then X�1 is isomorphic to the
(chosen) adjoint X�, and we have .X#/�1 Š .X�1/# Š .X�/#. Substituting this into
the proof of [27, Proposition 2.8], we find that specifying SX amounts to filling the
diagram

˛ Š ˛ � 1 ˛ � ˛ � ˛# ˛ � ˛ � ˛# ˛ � 1 Š ˛

ˇ Š ˇ � 1 ˇ � ˇ � ˇ# ˇ � ˇ � ˇ# ˇ � 1 Š ˇ

1˛ � zev�˛ b.˛;˛/�1˛# 1˛ � zev˛

1ˇ � zev�
ˇ

b.ˇ;ˇ/�1ˇ# 1ˇ � zevˇ

X X �X � .X�/# X �X � .X�/# X

This is precisely what the expression of SX in (3.7) does.

Example 3.3. We sketch a few fully dualisable symmetric monoidal 2-categories that
appear in connection with 2-dimensional TQFT:

(i) There is a 2-category Bordfr
2;1;0 of 2-framed points, 1-dimensional bordisms

and 2-dimensional bordism classes, that we review below in Section 3.2.
The Serre automorphism SC of the positively framed point C 2 Bordfr

2;1;0

generates an action of �1.SO2/Š Z and corresponds to a twist of the inter-
val over the pointC.

(ii) State sum models: for k field, there is a 2-category Algfd
k of separable k-

algebras, bimodules, and bimodule maps [31,38]. The Serre automorphism
of A 2 Algfd

k is the A-A-bimodule Homk.A;k/.

(iii) Landau–Ginzburg models: there is a 2-category LG of isolated singularit-
ies, matrix factorisations, and their maps up to homotopy [13,15], which we
briefly review in Section 4.2 below. The Serre automorphism of W 2 LG

is isomorphic to 1W up to a shift.

(iv) B-twisted sigma models: there is a 2-category Var of smooth projective
varieties, Fourier–Mukai kernels and Ext groups [5, 11]. The Serre auto-
morphism of X 2 Var is given by tensoring with the canonical line bundle
of X shifted by � dim.X/.

(v) Topologically twisted models: there is a 2-category DGSatk of essentially
small, smooth, proper, and triangulated differential graded k-categories and
their derived categories of bimodules [4, Appendix A]. The Serre auto-
morphism of C 2 DGSatk is given in terms of the k-linear dual composed
with the canonical trace functor associated to C . The 2-categories of parts
(iii) and (iv) are equivalent to sub-2-categories of DGSatk.
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3.1.5. A Frobenius algebra. Let B be a symmetric monoidal 2-category. For a fixed
fully dualisable object ˛ 2 Bfd with ˛## D ˛, we now consider the a-th circle spaces

C ˛a WD zev˛ ˝ .1˛ � S1�a˛# /˝ �
zev˛

Š zev˛ ˝ .S1�a˛ � 1˛#/˝ �
zev˛ 2 B.1; 1/ for all a 2 Z; (3.8)

where the isomorphism in (3.8) is induced by

S˛

˛#

˛

Š
S˛#

˛#

˛

which in turn is the cusp isomorphism (3.2) combined with S#
˛ Š S˛# .

If B is the 2-category Algfd
k of Example 3.3 (ii), then for an algebra A 2 Algfd

k the
zeroth and first circle spaces are the zeroth Hochschild homology and cohomology
of A, respectively: CA0 Š HH0.A/ and CA1 Š HH0.A/. If B is the 2-category LG of
Example 3.3 (iii), then the circle spaces of a given object are (shifts of) the associated
Jacobi algebra, as we will explain in Section 4.2 below. In the following, we will
sometimes treat the isomorphism in (3.8) as an identity, and we usually drop the index
“˛” in C ˛a .

Next, we set

�1 WD

zev˛ �zev˛

coevzev˛

W 11 �! C1; (3.9)

"�1 WD

zev�˛

�zev˛zev˛

zevzev˛

S2
˛#

WC�1 �! 11; (3.10)
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�a;b WD

S1�a
˛# S1�b

˛#

S2�a�b
˛#

zev˛ zev˛

zev˛

�zev˛ �zev˛

�zev˛

evzev˛

WCa ˝ Cb �! CaCb�1;

(3.11)

�a;b WD

S1�b
˛#S1�a

˛#

S�a�b
˛#

S�1�a
˛#

S�2
˛#

zev˛zev˛

zev˛

�zev˛�zev˛

�zev˛

ecoevzev˛

zev�˛

WCaCbC1 �! Ca ˝ Cb

(3.12)

for all a; b 2 Z, where in the expressions for "�1 and �a;b , we use the isomorphisms

.S2˛ � 1˛#/˝ �
zev˛ �! zev�˛; .1˛ � S�2˛# /˝ zev�˛ �!

�
zev˛ (3.13)

obtained from (3.6). The above data have a familiar structure. (Recall the definition
of closed ƒ0-Frobenius algebras in Section 2.2.)

Proposition 3.4. The data ¹Caºa2Z and �1; "�1; ¹�a;b; �a;bºa;b2Z have the proper-
ties of a closed ƒ0-Frobenius algebra in the symmetric monoidal category B.1; 1/.

Proof. The fact that �1; "�1; ¹�a;b; �a;bºa;b2Z satisfy the (co)associativity, (co)uni-
tality, and Frobenius conditions is straightforward to check using the diagrammatic
calculus for monoidal 2-categories. The remaining defining relations (2.8)–(2.10) of a
closed ƒ0-Frobenius algebra are more difficult to verify directly. Instead, we use the
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framed cobordism hypothesis (see Theorem 3.8 below) to argue indirectly: to ˛ 2Bfd

corresponds a symmetric monoidal functor Z̄WBordfr
2;1;0 ! B with Z̄.C/ D ˛ such

that the data �1; "�1; ¹�a;b; �a;bºa;b2Z are the images under Z̄ of 2-morphisms in
Bordfr

2;1;0. The latter in turn are generators of the framed bordism 1-category and sat-
isfy all the relations of a closedƒ0-Frobenius algebras, which follows from the special
case r D 0 of [39, Theorem 5.2.1]. Hence, also their images �1; "�1;¹�a;b;�a;bºa;b2Z

in B satisfy these relations.

Together with the r-spin cobordism hypothesis proved in Section 3.3 below, this
implies the following.

Corollary 3.5. For r 2 Z>1, every isomorphism S r˛ Š 1˛ induces a closed ƒr -
Frobenius algebra structure on ¹Caºa2¹0;1;:::;r�1º.

Proof. Combine [39, Theorem 5.2.1] for r 2 Z>1 with Theorem 3.19 below. This in
particular guarantees the existence of isomorphisms Ca Š CaCr for all a 2 Z.

3.2. The 2-category of r-spin bordisms

3.2.1. 2-categories of bordisms with tangential structure. Here, we briefly recall
2-categories of bordisms withG-structure. For more background and details, we refer
to [38, Sections 3.1–3.3].

We begin by fixing conventions for double categories. A double category D con-
sists of a category of objects D0, a category of horizontal morphisms D1, unit hori-
zontal morphisms, a composition functor, and natural transformations that imple-
ment associativity and unitality of the composition. The morphisms of D1 are called
2-morphisms. The horizontal 2-category of a double category D is the 2-category
consisting of the objects of D0, horizontal 1-morphisms and 2-morphisms between
parallel 1-morphisms.

We continue with a sketch of the double category of bordisms with tangential
structure for a chosen group homomorphism �WG ! GL2, which we denote BordG .
A (2-)halo of a d -dimensional manifold (d 6 2) is loosely speaking a stratified 2-
dimensional manifold in which the d -manifold is embedded. We will not need the
precise definition, but we refer to Figure 3.1 for illustrative examples of the cases
d D 0 and d D 1. A d -bordism between two .d � 1/-dimensional manifolds with
haloes S and T is a d -dimensional compact manifoldM together with an embedding
S t T ,!M that identifies the boundary ofM with the .d � 1/-dimensional manifold
underlying the halo S t T . We writeM WS! T . A diffeomorphism of such a bordism
is a diffeomorphism which is compatible with the boundary parametrisation maps.

The objects of .BordG/0 are compact 0-dimensional manifolds with haloes with
G-structure, and morphisms are diffeomorphisms of these haloes with G-structure.



N. Carqueville and L. Szegedy 488

,�!

T

 �-

S

,�
!

M

,�
!

,�
!

Figure 3.1. 0- and 1-dimensional manifolds (below) and their (vertical) inclusions into 2-haloes
(above). The horizontal embeddings give a 1-bordism M WS ! T .

The objects of .BordG/1 are 1-bordisms with G-structure (recall Section 2.1), and
its morphisms are diffeomorphism classes of 2-bordisms with G-structure. The com-
position functor is given by gluing of bordisms.

The double categories BordG are symmetric monoidal via the disjoint union. The
2-category of bordisms with G-structure BordG2;1;0 is defined to be the horizontal 2-
category of BordG . We will use the notation

Bordfr
2;1;0; Bordor

2;1;0; Bordr-spin
2;1;0

for the 2-categories of framed, oriented, and r-spin bordisms, respectively. By [42,
Theorem 1.1], these categories inherit a symmetric monoidal structure from the re-
spective double categories.

3.2.2. Functors from group homomorphisms. Consider the following commutat-
ive diagram of homomorphisms of topological groups:

G G0

GL2
�

�

� 0

For a G-structure .P; q/ on a surface †, the group homomorphism � induces a G0-
structure on † via the associated bundle construction:

P �� G
0 F†

†

q�

��
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This construction is compatible with gluing of bordisms with tangential structure and
with disjoint union. Hence, it gives rise to symmetric monoidal functors of double
categories and of 2-categories:

BordG BordG
0

;
�

BordG2;1;0 BordG
0

2;1;0 :
ƒ� (3.14)

The group homomorphisms in (2.1)–(2.3) fit into the commutative diagram

? eGLC2
r GLC2

GL2

Q� � WD pr

� ı pr
�

(3.15)

and induce symmetric monoidal functors:

Bordfr
2;1;0

zƒWDƒ Q�
������! Bordr-spin

2;1;0

ƒWDƒpr
������! Bordor

2;1;0;

where we use the notations of (3.14) and (3.15). The functor zƒ assigns to a framed
manifold the manifold with the trivial r-spin structure corresponding to the orientation
induced by the framing, and ƒ assigns to a haloed r-spin surface the haloed surface
with the underlying orientation.

3.3. Fully extended r-spin TQFTs

In this section, we consider 2-dimensional extended TQFTs with tangential structure
and the cobordism hypothesis for r-spin structures, r 2 Z>0. For this, we first recall
the framed cobordism hypothesis, homotopy group actions on 2-categories, and their
homotopy fixed points. The latter are expected to describe TQFTs with tangential
structures, as is known to be the case for oriented (or equivalently: 1-spin) TQFTs.
After a review of earlier results in the oriented case, we give a presentation of all
r-spin bordism 2-categories in terms of fully dualisable objects and prove the r-spin
cobordism hypothesis (for 2-categories, not for .1; 2/-categories).

Definition 3.6. Let B be a symmetric monoidal 2-category. A fully extended 2-dimen-
sional TQFT with G-structure valued in B is a symmetric monoidal functor

Z̄WBordG2;1;0 �! B:

We write Funsm.BordG2;1;0;B/ for the symmetric monoidal 2-groupoid of fully
extended TQFTs with G-structure and values in B.
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3.3.1. The framed cobordism hypothesis. Denote by 2D0 the symmetric monoidal
2-category freely generated by a single 2-dualisable objectC; cf. [34,38]. Our slightly
ambiguous notation for the generating object in 2D0 draws justification from the fol-
lowing fact.

Theorem 3.7 ([34, Theorem 7.1]). There is an equivalence of symmetric monoidal
2-categories

�0W 2D0 �! Bordfr
2;1;0

C 7�! C;
(3.16)

sending the objectC 2 2D0 to the positively framed (halo of a) pointC.

The framed cobordism hypothesis classifies framed fully extended TQFTs in terms
of fully dualisable objects.

Theorem 3.8 ([34, Theorem 8.1]). The 2-groupoid of framed fully extended TQFTs
with target B is equivalent to the core of the 2-category of fully dualisable objects in
B as a symmetric monoidal 2-groupoid:

Funsm.Bordfr
2;1;0;B/ Š .B

fd/�:

3.3.2. Homotopy G -actions on 2-categories. In order to state the cobordism hypo-
thesis with orientation and more generally with r-spin structure, we will need the
notion of homotopy action of a group on a 2-category, as well as its fixed points.

LetG be a topological group. The homotopy action ofG on a symmetric monoidal
2-category B is a monoidal functor

�W
Y
62

.G/ �! Autsm.B/

from the fundamental 2-groupoid of G to the 2-category of symmetric monoidal
autoequivalences of B. On

Q
62.G/, the monoidal structure comes from the group

structure on G; on Autsm, it is the composition of functors. Equivalently, a homotopy
G-action on B is a functor

B
Y
62

.G/ �!
®
symmetric monoidal 2-categories

¯
? 7�! B

(3.17)

from the delooping of
Q
62.G/ to the 3-category of symmetric monoidal 2-categories.

ForG DGLC2 ' SO2, the fundamental 2-groupoid is equivalent to the 2-groupoid
BZ with a single object ?with automorphism group, the free abelian group on a single
generator Z, and only identity 2-morphisms. Below we will identify

Q
62.GLC2 / with

the 2-groupoid BZ.
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To define an action � of GLC2 on a 2-category, we only need to specify the value
of � on the generator �1 2 Z. Recall from Proposition 3.2 the Serre automorphism
S W IdBfd ! IdBfd . We define the homotopy action of GLC2 on fully dualisable objects
as follows:

�W
Y
62

.GLC2 / �! Autsm.Bfd/

? 7�! IdBfd

Z 3 �1 7�! S

1 7�! 1:

(3.18)

Similarly, the homotopy action of the r-spin group is defined through the r th power
of the Serre automorphism:

�r W
Y
62

.eGLC2
r/ �! Autsm.Bfd/

? 7�! IdBfd

Z 3 �1 7�! S r

1 7�! 1:

Note that this action is the GLC2 -action (3.18) composed with the functor induced

from the covering map pr W eGLC2
r ! GLC2 in (2.3).

3.3.3. Presentations of r-spin bordism 2-categories. The 2-category of homotopy
fixed points BG of a homotopy action � as in (3.17) is defined to be the 2-category of
natural transformations of functors of 3-categories:

BG
D Nat.�?; �/;

where the constant functor �?W B
Q
62.G/ ! ¹sym. mon. 2-cat.º sends the unique

object in B
Q
62.G/ to the 2-category ? with a single object and only identity morph-

isms, see [26, Remark 3.11–3.14]. It is expected that BG is the 3-limit of the functor
(3.17), but we are not aware of a rigorous development of the theory of 3-limits.

By the cobordism hypothesis, it is expected that 2-dimensional fully extended
TQFTs with G-structure and target B are classified by homotopy fixed points of a
G-action on .Bfd/�, originating from the G-action on Bordfr

2;1;0. To our knowledge,
there is no complete proof for arbitrary G available in the literature, but in the case of
orientations this is a known theorem.

Theorem 3.9 ([25, Corollary 5.9]). The 2-groupoid of oriented fully extended TQFTs
with target B is equivalent to the 2-groupoid of homotopy fixed points of the SO2-
action on the core of fully dualisable objects in B:

Funsm.Bordor
2;1;0;B/ Š

�
.Bfd/�

�SO2 :
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The proof in [25] of this uses the presentation of Bordor
2;1;0 from [38], which is not

in terms of 2-dualisability data. We also mention that the equivalence as stated is one
of 2-groupoids, but later we will see that this can be extended to an equivalence of
symmetric monoidal 2-groupoids.

Let n 2 Z>1. Given a symmetric monoidal 2-category B, we define a 2-category
2Dn.Bfd/. For n D 1, this reduces to the 2-category in [27, Theorem 4.3] which is
equivalent to the SO2-homotopy fixed points of .Bfd/�. Later, we will consider the
case n D r for r-spin TQFTs with r > 2.

• Objects of 2Dn.Bfd/ are pairs .˛; �/, where ˛ 2 Bfd, and � W Sn˛ ! 1˛ is a 2-
isomorphism in Bfd.

• A 1-morphism .˛; �/! .˛0; � 0/ in 2Dn.Bfd/ is a 1-morphism X W˛ ! ˛0 in Bfd

such that the following diagram commutes:

X ˝ Sn˛ X ˝ 1˛

X

Sn˛0 ˝X 1˛0 ˝X

1X ˝ �

� 0 ˝ 1X

Sn
X

Š

Š

(3.19)

• A 2-morphism X ! Y in 2Dn.Bfd/ is a 2-morphism X ! Y in Bfd.

• Composition and units of 2Dn.Bfd/ are induced from Bfd.

To keep the cases nD 1 and n¤ 1 separate, for a given object .˛; �/ 2 2Dn.Bfd/,
we write � WD � if n D 1, and for n D r … ¹0; 1º, we write # WD � .

Theorem 3.10 ([27, Theorem 4.3]). There is an equivalence of 2-categories:

ŒBfd�SO2 Š 2D1.Bfd/:

In the following, we will determine a presentation of Bordor
2;1;0 and Bordr-spin

2;1;0 in
terms of 2-dualisability data. The results are collected in Theorems 3.14 and 3.17, but
first we need some preparation.

Lemma 3.11. Let G be a topological group, and let �WG ! GL2 be a continuous
group homomorphism.

(i) Every object in BordG2;1;0 is isomorphic to a disjoint union of points with
trivial G-structure.

(ii) Every object in BordG2;1;0 is fully dualisable.

Proof. Every connected component c of the underlying manifold of an object in
BordG2;1;0 is contractible; hence, the G-structure on c is trivialisable. The mapping
cylinder for a trivialisation gives an isomorphism in BordG2;1;0. This proves part (i).
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To prove part (ii), consider the commutative diagram of group homomorphisms:

? G

GL2

incl.

�

from which we get the induced functor ƒincl as in (3.14). Composing this with the
functor in (3.16) provides a symmetric monoidal functor:

2D0
�0

��! Bordfr
2;1;0

ƒincl:
����! BordG2;1;0:

This composition sends C 2 2D0 to the haloed point with trivial G-structure, and
symmetric monoidality implies that the image of C is fully dualisable. The claim of
part (i) then completes the proof.

A deck transformation on an r-spin surface .P; q; †/ is an automorphism of the
r-spin structure .P; q/ which permutes the elements of each fibre of the Zr -bundle
qWP ! F†. We also refer to an r-spin bordism as a deck transformation if it is a
mapping cylinder of a deck transformation. The 1-morphism components Sp for p 2
Bordr-spin

2;1;0 of the Serre functor on Bordr-spin
2;1;0 are isomorphic to deck transformations

([17, Remark 1.3.1]):

,�!

C

 �-

SC

Š

C

,�!

C

 �-

1C C C

deck transformation

(3.20)
For later use, we recall from Example 2.3 (ii) the relation between deck transforma-
tions and Nakayama automorphisms.

Lemma 3.12. The Nakayama automorphismsNaWCa!Ca of the closedƒr -Froben-
ius algebra in Bordr-spin

2;1;0 .¿;¿/ are deck transformations.

Another way to express this relation is as follows.
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Lemma 3.13. There are invertible modifications:

�WS
Š
��! 1IdBordor

2;1;0

and # WS r
Š
��! 1Id

Bord
r-spin
2;1;0

:

Proof. In Bordor
2;1;0, the 1-morphism components of the Serre automorphism S are

diffeomorphic to the identity, and mapping cylinders of these diffeomorphisms assem-
ble into the modification �. In Bordr-spin

2;1;0 , the r th power of the 1-morphism compon-
ents of S are diffeomorphic to the r th power of a deck transformation, which in turn
is isomorphic to the identity, thus providing # .

This motivates the following definition of a symmetric monoidal 2-category 2Dn

via generators and relations for every n 2 Z>1. The generators of 2Dn are the objects
1- and 2-morphisms of 2D0 (cf. Section 3.3.1) together with additional 2-morphisms:

�˛WS
n
˛ �! 1˛; ��1˛ W 1˛ �! Sn˛

for all ˛ 2 2Dn. The relations of 2Dn are

• the relations of 2D0,

• �˛ ı �
�1
˛ D 11˛ and ��1˛ ı �˛ D 1Sn˛ ,

• the commutativity of the diagram

X ˝ Sn˛ X ˝ 1˛

X

Sn˛0 ˝X 1˛0 ˝X

1X ˝ �˛

�˛0 ˝ 1X

Sn
X

Š

Š

(3.21)

for all ˛; ˛0 2 2D0 and X 2 2D0.˛; ˛0/.

We note that the condition in (3.21) expresses the naturality of S . Furthermore, the
�a are components of an invertible modification � WSn ! 1Id2Dn . For n D 1, we write
�˛ WD �˛ , and for n D r , we write #˛ WD �˛ .

Theorems 3.9 and 3.10 together with the 3-categorical Yoneda lemma [10, The-
orem 2.12] imply the following theorem.

Theorem 3.14. There is an equivalence of symmetric monoidal 2-categories:

�1W 2D1
Š
��! Bordor

2;1;0:

Proof. We have a chain of equivalences:

Funsm.Bordor
2;1;0;B/ Š Œ.B

fd/��SO2 Š 2D1..Bfd/�/ Š Funsm.2D1;B/; (3.22)
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all natural in B. The first equivalence is from Theorem 3.9, the second is from The-
orem 3.10. To explain the last equivalence, we will define functors

Funsm.2D1;B/ 2D1..Bfd/�/

F

F�1

and then show that F �1 is in fact a weak inverse of F .
The functor F is the evaluation on the generating objectC 2 2D1 and the corres-

ponding generating 2-morphism �C. In detail,

• for a functor Y 2 Funsm.2D1;B/, we set F.Y / WD .Y.C/; Y.�C//;

• for a natural transformation f WY ! Y 0, we set

F.f / WD
�
fCW .Y.C/; Y.�C// �! .Y 0.C/; Y 0.�C//

�
I

• for a modification 'Wf ! f 0, we set F.'/ WD .'CWfC ! f 0C/.

We need to show that F indeed lands in 2D1..Bfd/�/; i.e., the diagram (3.19) com-
mutes for X D fC and n D 1. The 2-morphism component of f for U W ˛ ! ˛0 is
fU Wf˛0 ˝ Y.U /! Y 0.U /˝ f˛ . Substituting ˛ D ˛0 and U D S˛ , we get

fS˛ Wf˛ ˝ SY.˛/ �! SY 0.˛/ ˝ f˛;

where we used monoidality of Y to obtain Y.S˛/ Š SY.˛/, etc. The key observation
is that by functoriality and monoidality of f we have fS˛ D Sf˛ . Naturality, of f
implies that (3.19) then indeed commutes:

f˛ ˝ SY.˛/ f˛ ˝ 1Y.˛/

f˛

SY 0.˛/ ˝ f˛ 1Y 0.˛/ ˝ f˛

1f˛ ˝ Y.�˛/

Y 0.�˛/˝ 1f˛

fS˛ D Sf˛

Š

Š

(3.23)

Now, we construct the functor F �1. Since 2D1 is defined in terms of generators
and relations, in order to define a symmetric monoidal functor Y W 2D1 ! B it is
enough to specify the value of Y on the generating objects and morphisms. Then, one
needs to check that relations in 2D1 are sent to relations in B. The same holds for
defining natural transformations and modifications, where we only need to specify
their components on generators.
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• For .˛; �/ 2 2D1..Bfd/�/, we let F �1.˛; �/ be the functor Y with values Y.C/D
˛ and Y.�C/ D � . This determines the value of Y on all of 2D1.

• ForX W .˛;�/! .˛0; � 0/, we let F �1.X/ to be the monoidal natural transformation
f W Y ! Y 0 with 1-morphism component fC D X . This determines all 1- and 2-
morphism components of f .

• For �WX ! X 0, we let F �1.�/ be the modification 'Wf ! f 0 with 2-morphism
component 'C D �. This determines all 2-morphism components of '.

We need to check that F �1 is well defined. First, we note that Y D F �1.˛; �/ is
indeed a functor 2D1 ! B because the relations in 2D0 are satisfied by definition of
Y , and so are the relations on � and its inverse. By symmetric monoidality, Y sends
SC in 2D1 to S˛ in 2D1..Bfd/�/; hence, naturality is satisfied as well. F �1.X/ is a
natural transformation, since its components satisfy (3.23). For modifications, there
are no further conditions to check.

By construction, we have
F ı F �1 D Id :

Moreover, we also have F �1 ı F Š Id, since two functors out of 2D1 are isomorphic
if they agree on generators [38, Theorem 2.78]. This shows that F is an equivalence.

Finally, we observe that the functor �1 respects the symmetric monoidal structures
on 2D1 and Bordor

2;1;0 and hence, it can canonically be promoted to a symmetric mon-
oidal functor. Thus, the claim follows from the 3-categorical Yoneda lemma of [10,
Theorem 2.12].

By looking at the chain of equivalences in (3.22), we can read off the value of �1

on generators of the 2-category 2D1:

• �1 sends C 2 2D1 together with its 2-dualisability data to the positively oriented
point with its 2-dualisability data (cf. Lemma 3.11);

• �1.�C/ D �C from Lemma 3.13.

Remark 3.15. Using the symmetric monoidal equivalence �1, one also obtains a sym-
metric monoidal structure on the equivalence in Theorem 3.9.

In line with the above presentation of �1, we now define a symmetric monoidal
functor

�r W 2Dr �! Bordr-spin
2;1;0 (3.24)

on generators of 2Dr for r 2 Z>2 as follows:

• �r sends C 2 2Dr , together with its 2-dualisability data, to the point with trivial
r-spin structure in Bordr-spin

2;1;0 , with its 2-dualisability data as in Lemma 3.11;

• �r.#C/ D #C from Lemma 3.13.
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Proposition 3.16. We have a strictly commutative diagram of symmetric monoidal
functors:

Bordfr
2;1;0 Bordr-spin

2;1;0 Bordor
2;1;0

2D0 2Dr 2D1

zƒ ƒ

zK K

�0 �r �1

where the functors zK and K by definition act as the identity on objects as well as on
1- and 2-morphism generators of 2D0, while on the other generators, we have

K

 
S rC 1C

!
#C

#�1
C

D

 
S rC 1rC 1C

!
:

�r
C

��r
C

Š

Š
(3.25)

By Theorems 3.7 and 3.14, the functors �0 and �1 are equivalences. In Section 3.3.4
below, we will prove the following theorem.

Theorem 3.17. The functor in (3.24) is an equivalence for all r 2 Z>1,

�r W 2Dr
Š
��! Bordr-spin

2;1;0 :

We also have the analogous statement of Theorem 3.10, which follows immedi-
ately by applying [27, Theorem 4.3] to the natural transformation S r .

Lemma 3.18. The homotopy fixed points of the r-spin action on Bfd are

ŒBfd�Spinr
2 Š 2Dr.Bfd/:

Theorem 3.17 and Lemma 3.18 imply the 2-categorical cobordism hypothesis
with r-spin structure.

Theorem 3.19. The 2-groupoid of fully extended r-spin TQFTs with target B is equi-
valent to the homotopy fixed points of the r-spin action:

Funsm.Bordr-spin
2;1;0 ;B/ Š Œ.B

fd/��Spinr
2 :

Proof. We have a chain of equivalences:

Funsm.Bordr-spin
2;1;0 ;B/ Š Funsm.2Dr ;B/ Š 2Dr..Bfd/�/ Š Œ.Bfd/��Spinr

2 :

The first equivalence is from Theorem 3.17, the last equivalence is from Lemma 3.18,
and the proof of the second equivalence is completely analogous to the n D 1 case in
the proof of Theorem 3.14.
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Remark 3.20. The proof of the oriented cobordism hypothesis in [25] (Theorem 3.9)
uses the presentation of Bordor

2;1;0 of [38], which is not in terms of 2-dualisability
data, and a direct computation of the SO2-homotopy fixed points Œ.Bfd/��SO2 (The-
orem 3.10). In order to prove the r-spin cobordism hypothesis (Theorem 3.19), we
need a presentation of Bordr-spin

2;1;0 (Theorem 3.17) in terms of 2-dualisability data and
a direct computation of Spinr2-homotopy fixed points Œ.Bfd/��Spinr

2 (Lemma 3.18).

It is straightforward to check the following factorisation of r-spin TQFTs.

Proposition 3.21. Let ˛ 2 Bfd and k < r be such that there are 2-isomorphisms
'WSk˛ ! 1˛ and  WS r˛ ! 1˛ . Then,

(i) there is a 2-isomorphism �WS
g
˛ ! 1˛ , where g D gcd.k; r/;

(ii) the diagram

Bordr-spin
2;1;0 Bordg-spin

2;1;0

B

ƒr;g

Z̄ Z̄�

commutes up to a natural isomorphism, where ƒr;g is the functor from

(3.14) for the group homomorphism eGLC2
r !

eGLC2
g , while Z̄ and Z̄�

denote the r-spin and g-spin TQFTs from Theorem 3.19 corresponding to
.˛;  / 2 2Dr.Bfd/ and .˛; �/ 2 2Dg.Bfd/, respectively.

Remark 3.22. Let us assume that the adjoints of 1-morphisms in B satisfyX� D �X ,
which is, for example, the case when B is pivotal. Then, by the definition of the
Serre automorphism (3.4) and its inverse (3.5), we have S D S�1. Hence, under this
assumption, r-spin TQFTs with target B factorise through oriented TQFTs (r odd),
or through 2-spin TQFTs (r even).

3.3.4. Proof of the r-spin cobordism hypothesis. Here, we prove Theorem 3.17. To
do this, we will check the conditions listed in the following Whitehead-type theorem
for the functor �r in (3.24).

Theorem 3.23 ([38, Theorem 2.25]). A functor F WC !B of 2-categories is an equi-
valence iff it is essentially surjective on objects and 1-morphisms and fully faithful on
2-morphisms.

Lemma 3.24. The functor �r is essentially surjective on objects.

Proof. This follows from Lemma 3.11 (i).

Lemma 3.25. The functor �r is essentially surjective on 1-morphisms.
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Proof. For every connected component c of a 1-morphism P ! FX in Bordr-spin
2;1;0 ,

we obtain an element ı.c/ 2 Zr as follows. If the 1-manifold of which c is a halo
is closed, set Nc WD c; otherwise, let Nc be the r-spin surface with closed embedded 1-
manifold defined by identifying the two boundary points of the embedded 1-manifold
in c via the boundary parametrisation maps. This identification is possible by choosing
a trivialisation of the r-spin structures of the objects parametrising the boundary of c.
Consider a curve �WS1! Nc parametrising the 1-manifold in Nc and its lift z�WS1! F Nc

to the frame bundle defined by picking at every point a tangent vector to � and another
vector so that the induced orientation agrees with the orientation underlying the r-spin
structure of c. This lift is unique up to homotopy. There is a unique lift y�WS1 ! P j Nc

of z� after fixing it at one point, as the fibres are discrete. We define ı.c/ 2 Zr to be
the holonomy of y� , which only depends on c; for more details on this construction,
we refer to [36] or [37, Section 5.2].

Recall that, by (3.20), SC is isomorphic to a deck transformation with holonomy
�1 2 Zr . If c D Nc, then

c Š Cı.c/ 2 Bordr-spin
2;1;0 .¿;¿/

from (3.8). Otherwise, c is isomorphic either to the endomorphism S
�ı.c/
˙

, or to
S
�ı.c/
C pre- or post-composed with one of the adjunction 1-morphisms of C; for

example,
c Š zevC ı .S

�ı.c/
C t 1�/:

Lemma 3.26. The functor �r is full on 2-morphisms.

Proof. LetX;X 0W˛! ˛0 be parallel 1-morphisms in 2Dr , and let†W �r.X/! �r.X 0/

be a 2-morphism in Bordr-spin
2;1;0 . Without loss of generality, we can assume that † is

connected of genus g. We write ƒ.†/ for the oriented surface underlying †. Hence,
the r-spin structure on† is represented by a bundle P !ƒ.†/ and a Zr -bundle map
qWP ! Fƒ.†/.

The strategy of our proof is as follows. We describe the r-spin structure on† up to
diffeomorphisms of r-spin surfaces with underlying diffeomorphism of surfaces the
identity, which we refer to as isomorphisms of r-spin structures. Then, we consider
a decomposition of the oriented surface ƒ.†/ suitable for our description of r-spin
structures. Finally, we lift the oriented generators to r-spin generators and restore the
r-spin structure up to isomorphism in the above sense. Therefore, the r-spin surface
we build from the generators is in particular diffeomorphic to†, thus representing the
same 2-morphism in Bordr-spin

2;1;0 .

Step 1. Following [36], we describe the r-spin structure of † in terms of holonom-
ies along curves in the underlying oriented surface ƒ.†/ in the Zr -bundle qWP !
Fƒ.†/.
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a3

b3

a2

b2

a1

b1

Figure 3.2. Curves on a closed surface.

Step 1.1. If ƒ.†/ is a closed surface (i.e., if ˛ D ˛0 D ¿ and X D 1¿ D X 0), then
r-spin structures up to isomorphism on ƒ.†/ are in (non-canonical) bijection with

H 1.ƒ.†/;Zr/ Š Z2gr :

The latter bijection is given by picking simple closed curves inƒ.†/ which represent
a basis ofH1.ƒ.†//. For each handle, we choose two curves ak; bk which intersect at
precisely one point and which do not intersect with the curves associated to the other
handles; see Figure 3.2.

Step 1.2. Ifƒ.†/ is not a closed surface, we introduce a new surface z† and additional
curves on ƒ.†/.

Step 1.2.1 (definition of z†). We define the new oriented surface z† using the boundary
parametrisation maps. Let @i , i 2 ¹1; : : : ; j�0.@†/jº, denote the parametrised bound-
ary components of ƒ.†/, which may be circles or intervals. We arbitrarily single out
the component @1, and we choose a connected subset Uj of an open neighbourhood
of @1 for each remaining boundary component @j , j 2 ¹2; : : : ; j�0.@†/jº, so that the
Uj are pairwise disjoint. Furthermore, we choose a connected subset Vj of an open
neighbourhood of @j in each remaining boundary component (j ¤ 1). We illustrate
such choices in Figure 3.3.

Using the boundary parametrisation maps, we glueUj \ @1 to Vj \ @j . Finally, we
retract each remaining boundary component to a single point. The surface z† obtained
in this way is a closed surface, whose genus is the sum of g and the number of closed
parametrised boundary components of ƒ.†/, with a point Qpi removed for each para-
metrised boundary component @i ; see Figure 3.4.

Step 1.2.2 (additional curves). We extend our collection of curves in ƒ.†/ by defin-
ing curves in z†: we pick a simple closed curve zuj for each @j , j 2 ¹2; : : : ; j�0.@†/jº,
encircling Qpj , and not intersecting with each other, as well as a simple closed curve Qdi
for each boundary component “parallel” along the boundary curve, see Figure 3.4 (b).
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@1

@4

@2

@5@3

u2
u3

u4

u5

U2 U3 U4 U5

V2 V3

V4

V5

Figure 3.3. An example of an oriented surface ƒ.†/ with non-empty boundary, together with
choices of open neighbourhoods near parametrised boundary components (Ui and Vj ) and their
identification (from Step 1.2.1) along the boundary indicated by thick grey lines. The curves uj
(from Step 1.2.2) are shown in blue.

Then, we obtain the following curves in ƒ.†/ corresponding the curves in z†; see
Figure 3.5 (a):

• two closed curves ak; bk , k 2 ¹1; : : : ; gº, for each handle, k 2 ¹1; : : : ; gº,

• one curve di for each boundary component @i , i 2 ¹1; : : : ; j�0.@†/jº,

• one curve uj for each boundary component @j , j 2 ¹2; : : : ; j�0.@†/jº.

Since near each Uj and Vj the r-spin surface is trivial, we obtain an r-spin struc-
ture on z†. Also note that the set of r-spin structures on ƒ.†/ with prescribed r-spin
structure near the boundary and the set of r-spin structures on z† with prescribed r-
spin structure near its punctures are in bijection by construction. These sets are in
bijection with the set®

ı 2 H 1.z†;Zr/ j ı.di / D xi for all i I ı.uj / D yj for all j with @j © S1
¯
;

where xi is the holonomy along di and yj is the holonomy along uj , which are fixed
by the boundary parametrisation.
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ea1
eb1

(a) (b)

ep2 ep3 ep5ep1 ep4
eu2

eu3 eu4
eu5ed2

ed5ed4ed1 ed3
ep2 ep3 ep5ep1 ep4

eu2

eu4
eu5

eu3

Figure 3.4. (a) The surface z† obtained from ƒ.†/ as in Figure 3.3 in Step 1.2.1, and the
additional curves Quj from Step 1.2.2. (b) The surface z† with all the curves eak ; ebk ; Quj ; Qdi from
Step 1.2.2.

d2 d3 d5

d1

d4

@1

@4

@2

@5@3

u2
u3 u4

u5

d2 d3 d5

d1

d4

@1

@4

@2

@5@3

u3

a1

b1

a1

b1

(a) (b)

Figure 3.5. (a) All curves on ƒ.†/ obtained in Step 1.2.2. (b) Only those curves on ƒ.†/
whose images in z† form a minimal generating set of �1.z†/.

In order to describe the r-spin structure on †, it is enough to remember the holo-
nomies along a set of curves that generate �1.z†/. Therefore, we reduce the set of
curves ak; bk; di ; uj by discarding the curves uj with @j 6Š S1. The remaining curves
are illustrated in Figure 3.5 (b).

Step 2. We pick a decomposition of ƒ.†/ into oriented generators so that

• for each handle we have the decomposition as in Figure 3.6 (a);

• for each boundary component we have the decomposition as in Figure 3.6 (b).

Note that we can require that 1-morphism components of the Serre automorphism
only appear at the boundary of generating 2-morphisms in Bordor

2;1;0 and not in their
interior, as in Bordor

2;1;0 there is a trivialisation of the Serre automorphism; cf. Lemma
3.13. We furthermore require that the curves ak , bk , uj , di cross the generating 2-
morphisms as in Figure 3.7.
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(a) (b)

Figure 3.6. Decomposition of a surface into oriented generators. (a) Decomposition of a handle.
(b) Decomposition near a closed parametrised boundary component.

Step 3. Recall from Lemma 3.12 that the Nakayama automorphismsNaWCa!Ca are
deck transformations. We lift the oriented generators to r-spin generators by inserting
(i.e., by replacing a neighbourhood of ak and dj with)

• N
1�ı.bk/

ı.ak/
at the intersection of ak and bk; see Figure 3.7 (a),

• N
�ı.uj /

ı.dj /
at the intersection of dj and uj ; see Figure 3.7 (b),

• ��ı.ak/;ı.ak/ and ��ı.ak/;ı.ak/ from (3.11)–(3.12) at the saddles crossed by bk ,

• identity 2-morphisms where no intersections occur.

The r-spin structure given by this construction has the same holonomies along the
above mentioned curves as the r-spin structure of †. Note that a full circle along a
positively oriented simple closed loop, where no insertions of Nı.ak/ appear, contrib-
utes +1 to the holonomy. Hence, the two r-spin structures are isomorphic, and thus,
the two r-spin surfaces represent the same 2-morphisms.

Lemma 3.27. The functor �r is faithful on 2-morphisms.

Proof. Let �; � 0 2 2Dr.˛; ˇ/.X; Y /. Assume that �r.�/ D �r.� 0/, and that these are
connected bordisms. By Proposition 3.16, we have

.ƒ ı �r/.�/ D .�1 ıK/.�/;

and analogously for � 0. Hence, since �1 is an equivalence (Theorem 3.14), we have

K.�/ D K.� 0/:

This means that there is a sequence of relations in 2D1 relating K.�/ and K.� 0/.
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uj

dj

ak

bk

N
1�ı.bk/

ı.ak/
N
�ı.uj /

ı.dj /

(a) (b)

Figure 3.7. Insertion of the Nakayama automorphism at the intersection of curves.

By (3.25), the numbers of � and ��1 in K.�/ and K.� 0/ are each divisible by r .
Using the coherence theorem for 2-categories, we can bundle together the relations
in the sequence involving � in tuples of r . These can be lifted to relations in 2Dr via
(3.25). Noting that all other relations in 2D1 and 2Dr are the same (to wit, those of
2D0) and that they can hence also be lifted, it follows that

� D � 0:

3.3.5. Computing invariants of r-spin bordisms with closed boundary. With the
r-spin cobordism hypothesis at hand, we can describe the closedƒr -Frobenius algebra
which classifies the non-extended r-spin TQFT associated to a fully extended r-spin
TQFT. In particular, we can explicitly describe the values of the non-extended r-spin
TQFT on r-spin surfaces with closed boundary. For convenience, we also present the
corresponding results for framed TQFTs.

Recall from Sections 2 and 3.2 that

Bordfr
2;1 Š Bordfr

2;1;0.¿;¿/ and Bordr-spin
2;1 Š Bordr-spin

2;1;0 .¿;¿/ :

Consider the fully extended framed and r-spin TQFTs:

Y WBordfr
2;1;0 �! B and ZWBordr-spin

2;1;0 �! B

C 7�! ˛ C 7�! ˛

#C 7�!
�
# WS r˛

Š
��! 1˛

�
:
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The corresponding non-extended TQFTs

Y jWBordfr
2;1 �! B.1; 1/ and ZjWBordr-spin

2;1 �! B.1; 1/

S1a 7�! C ˛a S1a 7�! C ˛a

are classified by the closed ƒ0- and ƒr -Frobenius algebras in Proposition 3.4 and
Corollary 3.5, respectively.

In particular, the invariants assigned to the framed and r-spin tori T .d/ introduced
in Section 2.3 are quantum dimensions of the circle spaces in B.1; 1/:

T .d/ 7�! dim.C ˛d /:

Remark 3.28. (i) Assume that, as in Remark 3.22, the left and right adjoints of 1-
morphisms in the target 2-category B agree. In this case, we effectively have oriented
TQFTs (r odd) with all the circle spaces being isomorphic, or 2-spin TQFTs (r even)
with

C ˛a Š C
˛
aC2

for every a 2 Z. Accordingly, the invariants associated to framed and r-spin tori may
take at most two distinct values if left and right adjoints agree in B.

(ii) For oriented and 2-spin surfaces, there already exist TQFTs which compute
complete invariants (the oriented TQFT of [35] with target Vectk computed from the
relative Euler characteristic and the 2-spin TQFT of [1, 37] with target VectZ2k com-
puting the Arf invariant). For r > 2, TQFTs with pivotal 2-categories as targets cannot
distinguish all r-spin structures, but other targets may allow for more interesting r-
spin TQFTs.

4. Examples

By the main result of the previous section, constructing extended r-spin TQFTs
amounts to finding fully dualisable objects whose Serre automorphisms are such
that their r th power is trivialisable. In Section 4.1 we increase our chances to find
such objects by passing from a given target 2-category to its “equivariant comple-
tion”, where we translate the condition on the Serre automorphism to a condition on
the Nakayama automorphism of certain Frobenius algebras (Corollary 4.9), and we
study the associated circle spaces and hence torus invariants in detail (Section 4.1.5).
Then in Section 4.2 we show that every object in the 2-category of Landau–Ginzburg
models LG gives rise to an extended 2-spin TQFT, and we illustrate how to do com-
putations in the equivariant completion of LG and its variants.
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4.1. Equivariant completion

In this section, we consider the representation 2-category Beq of certain Frobenius
algebras internal to a given symmetric monoidal pivotal 2-category B. In particu-
lar, we explicitly determine the Serre automorphisms and circle spaces associated to
objects in Beq, from which invariants of extended r-spin TQFTs with values in Beq

can be computed with the help of Theorem 3.23. We stress that even if the original
2-category B is pivotal, its completion Beq need not be pivotal, which in light of
Remark 3.28 is a desired feature.

Throughout this section, we fix a symmetric monoidal pivotal 2-category B which
satisfies the condition .�/ below. (The symmetric monoidal structure will not be rel-
evant before Section 4.1.3.)

4.1.1. Equivariant completion of a 2-category. A �-separable Frobenius algebra
on an object ˛ 2 B consists of

A 2 B.˛; ˛/; �A D ; �A D ; �A D ; "A D

such that

D ; D D ;

D ; D D ;

D ; D :

Recall, e.g., from [16, Section 2.2], the notions of (bi)modules and (bi)module
maps over the underlying algebra .A;�A; �A/. IfX is a right A-module and Y is a left
A-module, then the relative tensor productX ˝A Y is the coequaliser of the canonical
maps X ˝ A˝ Y X ˝ Y . Since A is a�-separable Frobenius algebra, the map

�
X;Y
A D

X Y

is an idempotent. If �X;YA splits, then X ˝A Y can be identified with Im.�X;YA /; see,
e.g., [16, Lemma 2.3]. Hence, we will make the following assumption.



Fully extended r-spin TQFTs 507

(�) For all �-separable Frobenius algebras A on all objects of B, the idempotents
�
X;Y
A split for all modules X; Y , and we choose adjunction data for A such that
�A D A� as well as �� D �� and �� D ��.

Thus, we have splitting maps

X ˝A Y X ˝ Y

�X;Y
A

#X;Y
A

with
�
X;Y
A ı #

X;Y
A D �

X;Y
A and #

X;Y
A ı �

X;Y
A D 1X˝AY :

Note that every Frobenius algebra is self-dual, so there always exist adjunction data
such that �A D A�. The conditions

�� D �� and �� D ��

automatically hold if B is pivotal, but we do not make this stronger assumption on B.

Definition 4.1. The equivariant completion Beq of B is the 2-category whose

• objects are pairs .˛; A/ with ˛ 2 B and A 2 B.˛; ˛/, a �-separable Frobenius
algebra;

• 1-morphisms .˛; A/! .ˇ; B/ are 1-morphisms ˛ ! ˇ in B together with a B-
A-bimodule structure;

• 2-morphisms are bimodule maps in B;

• horizontal composition is the relative tensor product, and 1.˛;A/ is A with its
canonical A-A-bimodule structure;

• vertical composition and unit 2-morphisms are induced from B.

Equivariant completion was introduced in [16] in connection with generalised
orbifold constructions of oriented TQFTs. The attribute “equivariant” derives from
the fact that an action �WG ! B.˛; ˛/ of a finite group G (viewed as a discrete mon-
oidal category G) gives rise to a �-separable Frobenius algebra structure on

AG WD
M
g2G

�.g/

if B.˛; ˛/ has finite direct sums and that G-equivariantisation can be described in
terms of categories of AG-modules.

The assignment B 7�! Beq is a completion in the sense that .Beq/eq Š Beq;
see [16, Proposition 4.2]. Equivariant completion is the same as (unital and counital)
“condensation completion” in dimension 2, as introduced in [20] for arbitrary dimen-
sion in the context of fully extended framed TQFTs and topological orders.
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4.1.2. Adjoints. Recall that we assume that every �-separable Frobenius algebra
A 2 B.˛; ˛/ comes with chosen adjunction data such that �A D A�. Hence, we can
define the Nakayama automorphism and its inverse as follows:


A D ; 
�1A D : (4.1)

Since we also assume that �� D �� and �� D ��, the Nakayama automorphism is a
map of the underlying algebra and coalgebra structures of A, and A is a symmetric
Frobenius algebra iff 
A D 1A; see, e.g., [19].

Remark 4.2. Let C be a symmetric monoidal 1-category with left duals, and let A 2
C be a Frobenius algebra. We can endow C with right duals by setting

X� WD �X; zevX WD evX ı bX�;X ; ecoevX WD bX;X� ı coevX

using the braiding b. In this case, the inverse Nakayama automorphism of A is


�1A D :

Comparing this to the definition (2.4) of the Nakayama automorphisms of a closed
ƒ0-Frobenius algebra C , we see that the conventions for these two different Nakay-
ama structures 
 andN , for two different algebraic entities A and C , respectively, are
not maximally aligned.

Given aB-A-bimoduleX 2B.˛;ˇ/ together with algebra automorphisms 'WA!
A and  WB ! B , the  -'-twisted bimodule  X' is given by

 X'

 X'

AB

D

X

X

AB

 
'
;

where the unlabelled vertices on the right-hand side correspond to the original bimod-
ule structure on X .
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If the 2-category B has adjoints for 1-morphisms, then, as shown in [16, Pro-
position 4.2], its equivariant completion Beq inherits this property, by twisting with
Nakayama automorphisms. This implies that even if B is pivotal, Beq typically is not.

Proposition 4.3. Let B be a 2-category, and letX 2Beq..˛;A/; .ˇ;B// be such that
the underlying 1-morphism X W ˛ ! ˇ in B has left and right adjoints �X and X�,
respectively. Then, X also has left and right adjoints:

?X D 
�1
A
.�X/; X? D .X�/
B (4.2)

in Beq, witnessed by the adjunction maps

evBeq
X D

A

X�X

ı �
�X;X
B ; coevBeq

X D #
X;�X
A ı

B

X �X

;

zevBeq
X D

B

X X�

ı �
X;X�

A ; ecoevBeq
X D #

X�;X
B ı

A

XX�

:

As a consistency check, we recall that

�A

�A A

;

�A

�AA

are the canonical A-actions on �A, and the A-A-bimodule structure on A� is obtained
as the mirror images of the above diagrams. These actions agree by assumption on A.
From this, it is straightforward to verify that

W 
AA
Š
��!

�A; WA�
Š
��! A
�1

A
(4.3)

are bimodule maps. Since �A D A� by assumption, it follows that


AWA
�1
A

Š
��! 
AA (4.4)
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in Beq. Moreover, the special case X D A D B in (4.2) reads

?A D 
�1
A
.�A/ Š 
�1

A
.
AA/ Š A and A? D .A�/
A Š .A
�1

A
/
A Š A

in Beq, which is consistent with 1.˛;A/ D A.

4.1.3. Symmetric monoidal structure. As explained in [42, Corollary 6.12], the
equivariant completion Beq is the horizontal 2-category of a symmetric monoidal
double category Beq, which satisfies the conditions under which the symmetric mon-
oidal structure of Beq is passed on to Beq.

Proposition 4.4. Beq has a symmetric monoidal structure induced from B.

Here, we collect the ingredients of the symmetric monoidal structure on Beq in
graphical presentation, using the conventions of Section 3.1. The monoidal product
on objects .˛; A/; .˛0; A0/ 2 Beq is given by

.˛; A/�Beq .˛0; A0/ D .˛ �B ˛0; A�B A0/;

where the �-separable Frobenius structure on A� A0 � A�B A0 is as follows:

�A�A0 D
�

�0
; �A�A0 D

�

�0
;

�A�A0 D
�

�0 ; "A�A0 D
"

"0 :

It follows that the Nakayama automorphism of A� A0 factorises with respect to�,


A�A0 D D 
A � 
A0 :
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On 1-morphisms X 2 Beq..˛; A/; .ˇ; B// and X 0 2 Beq..˛
0; A0/; .ˇ0; B 0//, the

monoidal product is X �B X 0 with the left .A � A0/- and right .B � B 0/-action
induced from B. On 2-morphisms, we have

�Beq D �B :

From now on, we will denote the monoidal product of both B and Beq simply by�.
The braiding in Beq has 1-morphism components

b
Beq

.˛;A/;.˛0;A0/
D .A0 � A/˝ bB

˛;˛0 Š b
B
˛;˛0 ˝ .A� A

0/

for .˛; A/; .˛0; A0/ 2 Beq, with left .A0 � A/-action given by �A0�A and right .A�
A0/-action given by

A

A0

A0A

bA;A0

˛0 ˛

˛ ˛0

:

The 2-morphism components of bBeq are

b
Beq
X;X 0 D

X 0

X

A0

B 0

b˛;˛0

bˇ;ˇ0

X

X 0

bX;X 0

A

B

ˇ0 ˛

ˇ ˛0

for all X 2 Beq..˛; A/; .ˇ; B// and X 0 2 Beq..˛
0; A0/; .ˇ0; B 0//.
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Remark 4.5. It follows that B � Beq is an embedding of symmetric monoidal 2-
categories. In particular, the braiding components of 1-morphisms in Beq..1; 11/,
.1; 11// are those in B.1; 1/.

4.1.4. Duality and Serre automorphism. If ˛ 2 B is dualisable with duality data
.˛#; zev˛; ecoev˛/, then every object .˛; A/ 2 Beq is dualisable with

.˛; A/# D .˛#; A#/;

zev.˛;A/ D zev˛ ˝ .A� 1˛#/ Š zev˛ ˝ .1˛ � A#/;

ecoev.˛;A/ D .1˛# � A/˝ ecoev˛ Š .A# � 1˛/˝ ecoev˛;

where we used the isomorphism

A

A#

˛#

˛

W zev˛ ˝ .A� 1˛#/
Š
��! zev˛ ˝ .1˛ � A#/

induced by the inverse cusp isomorphism c�1l in (3.2), and similarly with ecoev.˛;A/
and c�1r . These isomorphisms together with�A also give the above adjunction morph-
isms their bimodule structures.

The Frobenius algebra structure .A#; �A# ; �A# ; �A# ; "A#/ on A# is by definition
.A#; �#

A; �
#
A; �

#
A; "

#
A/ up to cusp isomorphisms as needed. We illustrate this with the

multiplication

�A# D �A

A# A#

A#
˛#

cr

c�1r

� (4.5)
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where the last expression is shorthand for the defining Gray diagram in the middle.
Note that there is a canonical isomorphism A Š A## in B (see [6, Figure 32]), which
we leave implicit. Similarly, we denote the other structure maps of A# as

�A# D ; �A# D ; "A# D : (4.6)

The enveloping algebra of A is

Ae
D A� A#:

The cusp isomorphisms together with �A give a canonical right Ae-module structure
on zev.˛;A/ and a left .Ae/#-module structure on ecoev.˛;A/.

Lemma 4.6. If ˛ 2 B is dualisable, then for .˛; A/ 2 Beq we have that


A# D .
#
A/
�1

up to cusp isomorphisms in B.

Proof. Up to cusp isomorphisms, zevA# WA# ˝ .A#/� ! 1˛# agrees with ev#
A,

ev#
A D

A# �A#

�

.A#/�A#

D zevA# ;

and similarly for the coevaluations,

ecoev#
A D

.A�/#A#

�
A# �A#

D coevA# :

Hence, together with (4.5) and (4.6), we find


�1A# D D D 
#
A:
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We now turn to full dualisability, which is another property that is compatible with
equivariant completion.

Proposition 4.7. Let ˛ 2 B be fully dualisable. Then, every .˛; A/ 2 Beq is fully
dualisable.

Proof. If zev˛; ecoev˛ witness ˛# as a dual of ˛ in B, then

zev.˛;A/ D zev˛ ˝ .A� 1˛#/; ecoev.˛;A/ D .1˛# � A/˝ ecoev˛

witness .˛#; A#/ as a dual of .˛; A/ in Beq. Moreover, by Proposition 4.3, these
adjunction 1-morphisms have adjoints themselves since A 2 B.˛; ˛/ has adjoints
thanks to its Frobenius algebra structure, while zev˛ , ecoev˛ have adjoints by assump-
tion.

In particular, according to (4.2), we have

zev?.˛;A/ D . zev�
.˛;A/

/
11 D Œ zev˛ ˝ .A� 1˛#/�� Š .A� � 1˛#/˝ zev�˛:

Hence, the Serre automorphism of .˛; A/ 2 Beq is

S.˛;A/ D .A� zev.˛;A//˝ .b.˛;A/;.˛;A/ � A#/˝ .A� zev?.˛;A//

bD
b˛;˛A A�

AA
zev˛ zev�˛ :

Applying the 2-isomorphisms bA;A and b�1
A�;1˛

, the inner A-line can be moved to the

right and the A�-line can be moved to the left, respectively. Alternatively, the A�-line
can be moved to the left of the b˛;˛-line with the help of two cusp isomorphisms and
then to the right by bA�;1˛ . Thus, we have shown the following proposition.

Proposition 4.8. Let ˛ 2 Bfd. Then, .˛; A/ 2 Bfd
eq, and

S.˛;A/ Š A
�
˝ S˛ ˝ A Š A˝ S˛ ˝ A

�: (4.7)
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Below we will frequently not display A D 1.˛;A/ and simply write

S.˛;A/ Š A
�
˝ S˛ Š S˛ ˝ A

�:

Corollary 4.9. Let r 2 Z>1, ˛ 2Bfd, and .˛;A/ 2Beq such that S r˛ Š 1˛ and 
 rA D
1A in B. Then, there is an r-spin TQFT

Z̄WBordr-spin
2;1;0 �! Beq

C 7�! .˛; A/:

Proof. Combining (4.7) with A� Š A
�1
A

, Lemma 3.18 and Theorem 3.19, we see
that any choice of isomorphism S r˛ Š 1˛ determines a Spinr2-homotopy fixed point in
.Bfd/�.

4.1.5. A Frobenius algebra. For .˛; A/ 2 Bfd
eq and a 2 Z, the a-th circle space

(recall (3.8)) is

C .˛;A/a Š zev.˛;A/ ˝Ae .S1�a.˛;A/ � 1.˛;A/#/˝Ae
?
zev.˛;A/: (4.8)

By Proposition 4.3, we have

?
zev.˛;A/ Š 
�1

Ae
.�A� 1˛#/˝ �

zev˛ Š .1˛ � 
�1
A
.�A#/
A/˝ zev˛;

and by Proposition 4.8 together with (4.3) and �A D A�, we have

S1�a.˛;A/ � S
˝A.1�a/

.˛;A/
Š 
1�a

A
A˝ S1�a˛ ˝ A: (4.9)

Our next goal is to explicitly describe the closed ƒ0-Frobenius structure on the
circle spaces C .˛;A/a in Beq. This means that we will determine the (co)multiplication
and (co)unit of (3.9)–(3.12) of C .˛;A/a directly in terms of data in B. In doing so, we
will frequently use the fact that the 2-morphism


x
A
A Sx˛ A 


y
A
A S

y
˛ A



xCy
A

A S
xCy
˛ AS

xCy

.˛;A/
Š

Sx
.˛;A/

˝ S
y

.˛;A/
Š



y

A
; x; y 2 Z;

(4.10)
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in B induces the identity

Sx.˛;A/ ˝A S
y

.˛;A/
! S

xCy

.˛;A/
;

up to the isomorphism in (4.9). From now on, we will no longer display all A-lines in
diagrams that represent 2-morphisms in Beq, since

A D 1.˛;A/:

Accordingly, we abbreviate (4.10) and its inverse as

S
xCy

.˛;A/

Sx
.˛;A/ S

y

.˛;A/

D

Sx
.˛;A/ S

y

.˛;A/

S
xCy

.˛;A/



y

A

;

S
xCy

.˛;A/

Sx
.˛;A/

S
y

.˛;A/

D

Sx
.˛;A/

S
y

.˛;A/

S
xCy

.˛;A/



�y

A
: (4.11)

With the above preparations, we can present the isomorphism (3.13) in the case
of the equivariant completion.

Lemma 4.10. Let ˛ 2 Bfd. Then, for any .˛; A/ 2 Beq, there are mutually inverse
isomorphisms

�
1.˛;A/ � S2.˛;A/#

�
˝Ae ? zev.˛;A/ zev?.˛;A/

fA

f 0
A
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given by

fA D

˛

˛#

S2
.˛;A/#


�1A
.�A#/
A

.A#/�

S2
˛#

zev�˛

�zev˛

;

f 0A D

˛

˛#

S2
.˛;A/#

�A#

.A�/#

zev�˛

�zev˛

S�2
˛#

: (4.12)

Proof. Repeated use of (4.3) together with standard manipulations of string diagrams
for�-separable Frobenius algebras shows that fA; f 0A are indeed bimodule maps, and
that fA ı f 0A D 1�A# . Since their source and target are isomorphic, it follows that fA
and f 0A indeed represent mutually inverse 2-morphisms in Beq.

We have now expressed all the ingredients of the closed ƒ0-Frobenius structure
on ¹C .˛;A/a º in Beq directly in terms of data in B. With this, the Nakayama auto-
morphisms N .˛;A/

a can be computed.
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Proposition 4.11. Let ˛ 2 Bfd. Then, for any .˛; A/ 2 Beq, we have

N .˛;A/
a D

zev˛ zev�˛A#

2�a
A#

A# S1�a˛


A#

C
.˛;A/
a

C
.˛;A/
a

:

Proof. Our task is to computeN .˛;A/
a as defined in (2.4) in Beq. We will first compute

"�1 ı �a;�a and �a;�a ı �1

in Beq, starting with "�1 ı �a;�a. Using the notation introduced in (4.11), we have

�a;�a D

S�aC1
.˛;A/#

SaC1
.˛;A/#

S2
.˛;A/#

�A# A#

A# �A#

zev˛ zev˛

zev˛

�zev˛ �zev˛

�zev˛

evzev˛

;
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and inserting the expression for fA in (4.12) into (3.10), we have

"�1 D

S2
.˛;A/#


�1A
.�A#/
AA#

S2
˛#

zev�˛

�zev˛

:

In the composition "�1 ı �a;�a, we first use

S2
.˛;A/#

S�aC1
.˛;A/#

SCaC1
.˛;A/#

�A# �A#

D


aC1
A#


�1
A#

S�aC1
.˛;A/#

SCaC1
.˛;A/#

�A# �A#

;
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where here and below we suppress S˛-strands. This expression cancels with another
subdiagram of "�1 ı �a;�a, leaving

"�1 ı �a;�a �


aC1
A#


�1
A#

A# S�aC1
.˛;A/#

�A# A# SCaC1
.˛;A/#

.A#/�

D


aC1
A#


�1
A#


�1
A#

A# S�aC1
.˛;A/#

�A# A# SCaC1
.˛;A/#

.A#/�

: (4.13)

The second step uses the properties of �-separable Frobenius algebras and (4.1);
moreover, here and below we suppress zev˛ and its adjoints (as they are only spectators
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in our string diagram manipulations). Analogously, we arrive at

�a;�a ı �1 �

A#
1�a

A#


A#

A# S�aC1
.˛;A/#

.A#/� A# SCaC1
.˛;A/#

�A#

: (4.14)

Combining (4.13) with (4.14) into (2.4), we employ the relation

' D

'�

to see that N .˛;A/
a is given by pre-composing the twist

C
.˛;A/
a

C
.˛;A/
a

(4.15)
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with (where we continue to suppress zev˛)


A#
1�a
A#


A#


�1
A#


�1
A#

A# S�aC1
.˛;A/#

�A#

A# S�aC1
.˛;A/#

�A#

:
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Repeatedly using the defining properties of �-separable Frobenius algebras as well
the properties of the Nakayama automorphism 
A# collected in Section 4.1.2, a
straightforward but lengthy computation shows that the above string diagram is equal
to


A# 
A# 
A#


1�a
A#


A#

A# S�aC1
.˛;A/#

�A#

A# S�aC1
.˛;A/#

�A#

: (4.16)

Putting zev˛; zev�˛; S
1�a
˛ back in, a final application of the isomorphisms (4.4) and (4.9)

allows us to identify (4.16) with

zev˛ zev�˛A#

2�a
A#

A# S1�a˛


A#

C
.˛;A/
a

C
.˛;A/
a

:

Post-composing with (4.15) thus completes the proof.
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Combining Proposition 4.11 with the isomorphisms (4.7) and (4.9), we obtain
closed ƒr -Frobenius algebras from �-separable Frobenius algebras A on fully dual-
isable objects if the r th power of the Nakayama automorphism of A is the identity.

Corollary 4.12. If for r 2 Z>1 there is an isomorphism S r˛ Š 1˛ in Bfd and for
.˛; A/ 2 Beq we have


 rA D 1A;

then there is an induced closed ƒr -Frobenius algebra structure on

¹C .˛;A/a ºa2¹0;1;:::;r�1º:

If B has internal Homs, as is the case in the examples related to TQFTs of state
sum, sigma model, and Landau–Ginzburg type, then the computation of both C .˛;A/a

and N .˛;A/
a can be simplified. For ease of presentation, we further assume that

S˛ Š 1˛I

in Section 4.2 below, we will see how this restriction can be lifted in practice.

Lemma 4.13. Let ˛ 2 Bfd with S˛ Š 1˛ , and assume that for .˛;A/ 2 Beq, we have

C .˛;A/a Š B.11; C
.˛;A/
a /:

Then

C .˛;A/a Š

´
' 2 B.1˛; A/

ˇ̌̌̌
ˇ '

1�a
A

D
'

µ
; (4.17)

and N .˛;A/
a corresponds to post-composition with 
A.

Note that the above result further elucidates the relation between the two different
notions of “Nakayama morphism” N and 
 .

Proof of Lemma 4.13. We have

C .˛;A/a Š Beq
�
1.1;11/; C

.˛;A/
a

�
Š Beq

�
zev.˛;A/; zev.˛;A/ ˝Ae

�
S1�a.˛;A/ � 1˛#

��
Š Beq.A; S

1�a
.˛;A//

Š Beq.A; 
1�a
A

A/

Š

´
' 2 B.1˛; A/

ˇ̌̌̌
ˇ '

1�a
A

D
'

µ
:
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In the second step, we used (4.8) and adjunction for zev.˛;A/; the third step is the
isomorphism

'

˛#

˛

7�! '˛#

˛

˛

Š
7�! '

˛

I

the fourth step is (4.9) together with the assumption S˛ Š 1˛; the fifth step is a stand-
ard computation with �-separable Frobenius algebras along the lines of [9, Section
3.2].

4.2. Landau–Ginzburg models

In this section, we briefly review the 2-category of Landau–Ginzburg models LG

and note that every object in LG gives rise to an extended 2-spin TQFT. Then, we
apply the results of Section 4.1 to a closely related 2-category LG �=2 and consider
the simplest non-trivial example.

Recall from [15] that, for every fixed field k, there is a 2-category LG whose
objects are pairs .kŒx1; : : : ; xn�;W /, where n 2 Z>0 and W D 0 2 k if n D 0, while
for n > 0, W 2 kŒx� � kŒx1; : : : ; xn� is such that the Jacobi algebra

JacW D kŒx1; : : : ; xn�
ı
.@x1W; : : : ; @xnW /

is finite-dimensional over k. We refer to such polynomialsW as potentials. The Hom
categories of LG are idempotent completions of homotopy categories of finite-rank
matrix factorisations. Hence, up to technicalities with idempotents (which will not
be relevant to our discussions below), a 1-morphism .kŒx�;W /! .kŒz�; V / is a free
Z2-graded kŒx; z�-module X D X0 ˚ X1 together with an odd kŒx; z�-linear endo-
morphism dX WX ! X such that d2X D .V �W / � 1X . The Hom sets of 2-morphisms
.X;dX /! .X 0;dX 0/ consist of the even cohomology classes of the differential defined
on Z2-homogeneous maps as

ıX;X 0 WHomkŒx;z�.X;X
0/ �! HomkŒx;z�.X;X

0/

� 7�! dX 0 ı � � .�1/
j� j� ı dX (4.18)

and extended linearly to all of HomkŒx;z�.X;X
0/.
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Given .X; dX /W .kŒx�; W1/! .kŒy�; W2/ and .Y; dY /W .kŒy�; W2/! .kŒz�; W3/,
their horizontal composition is .Y ˝kŒy� X; dY ˝ 1X C 1 ˝ dX /, and the unit 1-
morphism of .kŒx1; : : : ; xn�; W / is 1W D .IW ; dIW / with

IW D
^� nM

iD1

kŒx; x0� � �i

�
; dIW D

nX
iD1

�
@
x0;x
Œi�

W � �i C .x
0
i � xi / � �

�
i

�
;

(4.19)
where ¹�iº is a chosen kŒx0; x�-basis of kŒx; x0�˚n, and

@
x0;x
Œi�

W D
W.x1; : : : ; xi�1; x

0
i ; : : : ; x

0
n/ �W.x1; : : : ; xi ; x

0
iC1; : : : ; x

0
n/

x0i � xi
:

A straightforward computation shows that End.1W / Š JacW in LG .
Every 1-morphism X � .X; dX / 2 LG ..kŒx1; : : : ; xn�; W /; .kŒz1; : : : ; zm�; V //

has a left adjoint �X and a right adjoint X�, and �X Š X� iff m D nmod 2. The asso-
ciated adjunction 2-morphisms are explicitly known; see [15, Theorem 6.11], or [14]
for a concise review.

The 2-category LG has a natural monoidal structure, with the monoidal product
on objects given by .kŒx�; W /� .kŒz�; V / D .kŒx; z�; W C V /, while on 1- and 2-
morphisms, it is basically ˝k; see [13, Section 2.2]. Hence, 1 WD .k; 0/ is the unit
object. Every .kŒx�; W / 2 LG has a (left and right) dual .kŒx�; W /# D .kŒx�;�W /
whose associated adjunction 1-morphisms have 1W as their underlying matrix factor-
isation; see [13, Proposition 2.6]. Thus, as every 1-morphism in LG has an adjoint,
every object in LG is fully dualisable.

The monoidal 2-category LG has a symmetric braiding, whose 1-morphism com-
ponents bV;W are given by 1VCW (up to a reordering of variables), while the 2-
morphism components are compositions of canonical module isomorphisms and
structure maps of the underlying 2-category LG . For details, we refer to [13, Sec-
tion 2.3]. In summary, we have the following theorem.

Theorem 4.14 ([13,15]). For every field k, the 2-category of Landau–Ginzburg mod-
els LG has a symmetric monoidal structure such that LG D LG fd.

Remark 4.15. A variant of LG is the symmetric monoidal 2-category LG �=2, which
is defined analogously to LG , but 2-morphisms are given by both even and odd
cohomologies of the differentials ıX;X 0 in (4.18), but with classes �� and C� iden-
tified. This ad hoc Z2-quotient allows to stay within the realm of 2-categories (as
opposed to super 2-categories) while allowing odd 2-morphisms; compare [28] and
[13, Remark 3.11 (ii)].

Theorem 4.14 also holds for LG �=2, i.e.,

LG �=2 D .LG �=2/fd:



Fully extended r-spin TQFTs 527

The Serre automorphism ofW �.kŒx1; : : : ; xn�;W /was computed in [13, Lemma
3.8] to be

SW Š 1W Œn�; (4.20)

where Œn� denotes the n-fold application of the shift functor Œ1�, which sends a matrix
factorisation .X0 ˚ X1; dX / to .X1 ˚ X0;�dX /. It follows that Œ2� is the identity
functor, and one finds that Hom.1W ; 1W Œn�/ Š ın;0mod2 � JacW in LG , as LG has
only even cohomology classes as 2-morphisms, while Hom.1W ; 1W Œn�/ Š JacW Œn�
is purely odd in LG �=2 if n is odd. As a consequence, .kŒx1; : : : ; xn�;W / determines
an extended oriented TQFT with values in LG iff n is even, and it determines an
extended oriented TQFT with values in LG �=2 for every value of n.

Remark 4.16. As shown in [13, Section 3], fully extended oriented TQFTs with val-
ues in LG are indeed extensions of closed Landau–Ginzburg models to the point:
Applying the cobordism hypothesis of [25, 38] to the duality data of an object .kŒx�;
W / in LG or in LG �=2, one recovers the (non-semisimple) commutative Frobenius
algebra JacW from the circle, the pair of pants, and the disc.

As an immediate consequence of Theorem 3.19, Lemma 3.18, (4.20), and the
isomorphism Aut.1W /Š k, we find that every potential depending on an odd number
of variables gives rise to a proper extended spin TQFT.

Theorem 4.17. Every object W � .kŒx1; : : : ; xn�; W / 2 LG gives rise to a unique-
up-to-isomorphism extended 2-spin TQFT valued in LG . These TQFTs factor through
the oriented bordism 2-category iff n is even.

It is straightforward to compute that

CWa � C
.kŒx1;:::;xn�;W /
a Š JacW Œn � .1 � a/� in LG .1; 1/ Š vectZ2k

for a 2 ¹0; 1º. Hence, these circle spaces are the zeroth Hochschild homology and
cohomology, respectively, of the differential graded category of matrix factorisations,
first computed in [18]. Moreover, for the Nakayama automorphisms, we have

NW
a D .�1/

n�.1�a/
� 1CWa :

We now turn to the equivariant completion of LG �=2 to look for r-spin TQFTs that
can detect more r-spin structures than oriented TQFTs. One type of example+ of �-
separable Frobenius algebras with trivialisable r th power of its Serre automorphism
is the algebra AG mentioned in Section 4.1.1, in the case G D Zr .

Recall from [16, Section 7.1] that if a finite group G acts on kŒx1; : : : ; xn� such
that a given W 2 kŒx1; : : : ; xn� is invariant, this induces a �-separable Frobenius
structure on

AG WD
M
g2G

g.1W /;
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where the g-twisted matrix factorisation g.1W / is obtained from (4.19) by replacing
x0i 7�! g�1.x0i /. Its Nakayama automorphism is


AG D
X
g2G

det.g/�1 � 1
g.1W /; (4.21)

where det.g/ is the determinant of the g-action on x1; : : : ; xn; cf. [9, Section 3.1].

Example 4.18. For r 2 Z>3, we consider .kŒx�; xr/ 2 LG �=2 with the Zr -action
Zr ! Autk.kŒx�/, 1 7�! .x 7�! � � x/, where

� WD e2�i=r :

Hence, W WD xr is invariant, and we have

g.1W / D .kŒx� � 1/˚ .kŒx� � �/

with

d
g.1W / D

x0r � xr

��gx0 � x
� � C .��gx0 � x/ � ��

for g 2 ¹0; 1; : : : ; r � 1º. Setting

AZr D
M
g2G

g.1W /;

we have an object
..kŒx�; xr/; AZr / 2 .LG �=2/eq:

For g D 0, we have

Hom.1W ; 1W / Š k � ¹1; x; : : : ; xr�2º

as a purely even Z2-graded vector space, while for g¤0 one finds that [9, Appendix 2]

Hom.1W ; g.1W // Š k �

�
x0r � xr

.x0 � x/.��gx0 � x/
� � C ��

�
Œ1�

is a purely odd, 1-dimensional Z2-graded vector space. Moreover, by (4.20) we have
SW Š 1W in LG �=2, and according to (4.21), the Nakayama automorphism of AZr is


AZr
D

r�1X
gD0

��g � 1
g.1W /: (4.22)

We will use Lemma 4.13 to compute the circle spaces

Ca � C
..kŒx�;xr /;AZr /
a :
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Hence, we have to identify the image of the projector

Hom.1W ; AZr / �! Hom.1W ; AZr /

'
7�!

'

1�a
AZr

:

Expanding 'W 1W ! AZr as
Pr�1
gD0 'g with 'g W 1W ! g.1W / and using (4.22), a

variant of (4.17) reads

Ca Š

r�1M
gD0

´
'g

ˇ̌̌̌
ˇ 1r r�1X

hD0
'g

��h.1�a/ D
'g

µ
Œ1 � a�; (4.23)

where we used (4.20) and the isomorphism Homi .X; Y Œ1�/ Š HomiC1.X; Y / in
LG �=2. A direct computation along the lines of [9, Appendix 2] then reveals that

'g
��h.1�a/ Š

8<: �h.a�1/�hj � 'g if g D 0 and 'g D xj ;

�ha � 'g if g ¤ 0:

Hence, the summand for gD 0 in (4.23) is 0 for aD 0, and equal to the 1-dimensional
Z2-graded vector space k � xa�1Œ1 � a� otherwise, while the summands for g ¤ 0

contribute only if a D 0, namely, a term Hom.1W ; g.1W //Œ1� Š kŒ2� D k:

Ca Š ıa>1 � kŒ1 � a�˚ ıa;0

r�1M
gD1

k: (4.24)

It follows that the quantum dimension of Ca (as an object in LG .1; 1/ Š vectZ2 , i.e.,
as a super vector space) is r � 1 for a D 0, C1 for a 2 Z n ¹0º even, and �1 for a
odd. However, in LG �=2 the 2-morphisms .C1/ � 1Ca and .�1/ � 1Ca are identical.
Recalling Proposition 2.5, this means that the .LG �=2/eq-valued TQFT associated to
AZr can only distinguish two r-spin structures on the torus (for r ¤ 2), while there
are as many non-diffeomorphic r-spin structures on T 2 as there are divisors of r .

We emphasise that this example works for arbitrary r > 3, whereas the example
computing the Arf invariant mentioned in Remark 3.28 (ii) is defined only for r even.

The computational techniques used in Example 4.18 can analogously be applied to
more involved examples. For instance, there are Zr -actions on kŒx1; x2� which leave
W D xr1 C x

2r
2 invariant, and the associated .LG �=2/eq-valued TQFTs may detect

more than two r-spin structures on the torus. We leave such computations as well as
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the application of the theory developed in Section 4.1 to the 2-category of Q-graded
Landau–Ginzburg models LG gr (see [15] or [13, Section 2.5]) to future work.
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