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Evaluating TQFT invariants
from G -crossed braided spherical fusion categories

via Kirby diagrams with 3-handles

Manuel Bärenz

Abstract. A family of TQFTs parametrised by G-crossed braided spherical fusion categories
has been defined recently as a state sum model and as a Hamiltonian lattice model. Concrete cal-
culations of the resulting manifold invariants are scarce because of the combinatorial complexity
of triangulations, if nothing else. Handle decompositions, and in particular Kirby diagrams are
known to offer an economic and intuitive description of 4-manifolds. We show that if 3-handles
are added to the picture, the state sum model can be conveniently redefined by translating Kirby
diagrams into the graphical calculus of a G-crossed braided spherical fusion category.

This reformulation is very efficient for explicit calculations, and the manifold invariant is
calculated for several examples. It is also shown that in most cases, the invariant is multiplicative
under connected sum, which implies that it does not detect exotic smooth structures.
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1. Introduction

In the study of 4-dimensional topological quantum field theories (TQFTs), few inter-
esting examples are known, and even fewer are defined rigorously as axiomatic
TQFTs. The fewest are economic to calculate.

Often, families of TQFTs like the Reshetikhin–Turaev model [25], the Turaev–
Viro–Barrett–Westbury state sum [8, 31] or the Crane–Yetter model [10] are indexed
by an algebraic datum such as a fusion category with extra structure. More recently [6,
32],G-crossed braided fusion categories have been studied in Hamiltonian approaches
to topological phases, and a state sum model (and thus, an axiomatic TQFT) was
defined [11]. This G-crossed model is thus defined explicitly, but it is hard to calcu-
late concrete values for the partition function.

The Crane–Yetter model is famously invertible if the input datum is a modular
category, but it had been suspected that it is non-invertible for nonmodular categories,
with a rigorous proof only given more than two decades after its definition [5]. One
reason seems to be that state sum models based on triangulations are easy to define,
but hard to calculate. Once the partition function is defined in terms of handle decom-
positions, it is much easier to calculate concrete values, and indeed the second open
question in [11, Section 7] asks for a description of the G-crossed model in terms of
Kirby diagrams.

This is achieved here, adapting the techniques from [5]. As the central result, we
define for every G-crossed braided spherical fusion category C an invariant IC of
smooth, closed, oriented manifolds and show (Theorem 7.1):

Theorem. Up to a factor involving the Euler characteristic, the invariant IC is equal
to the state sum ZC in [11, (23)]. Explicitly, let M be a connected, smooth, oriented,
closed 4-manifold and T an arbitrary triangulation, then

IC .M/ D ZC .M I T / � d.�C /
1��.M/ � jGj:

The invariant IC is in fact much easier to calculate than the state sum, and several
examples are given. It is also shown that, in most cases, IC does not differentiate
between smooth structures on the same topological manifold.

Triangulations and handle decompositions. As a general theme in many flavours of
topology, spaces are built up from simple elementary building blocks. A large class of
topological spaces can be constructed as simplicial complexes or as CW-complexes.
In the former approach, the elementary building blocks are simpler and the possibilit-
ies of gluing them are fewer, whereas in the latter, spaces can often be described much
more succinctly. In both cases, each building block has an inherent dimension, which
is a natural number. Spaces with building blocks of dimension at most n are usually
said to be n-dimensional.
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For smooth manifolds, the situation is similar. They admit triangulations, which
yield simplicial complexes, but also handle decompositions, which are analogous
to CW-complexes. Triangulations decompose an n-manifold into k-simplices, and
handle decompositions consist of k-handles, respectively for 0 � k � n.

We favour handle decompositions over triangulations here because they are much
more succinct.1 One can specify the 4-dimensional sphere S4 with as little as a
0-handle and a 4-handle, while the standard triangulation coming from the bound-
ary of the 5-simplex contains 20 triangles. It is no surprise that state sum models are
often defined for triangulations, but no values are calculated even for simple man-
ifolds (as in [10, 11]). Evaluating TQFTs on bordisms via handle decompositions is
both conceptually more direct [19] aned computationally more efficient. For example,
the Crane–Yetter model was famously shown to be invertible for modular categories
using handle decompositions [26, Theorem 4.5], and most concrete values for pre-
modular categories have only been calculated more than 20 years after its state sum
definition, again using handle decompositions [5].

The price to pay is the additional complexity when attaching handles to each other.
While the gluing data of simplices is completely combinatorial, handle attachment
data is quite topological in nature, and is best described in diagrams. In contrast to
simplices, handles of all dimensions 0 � k � n must be thickened to n dimensions
before they are glued along their .n � 1/-dimensional boundaries. Consequently, all
of the attachment data can be described diagrammatically in .n � 1/-dimensions. We
thus describe 4-manifolds with 3-dimensional diagrams.

To evaluate the TQFT on them, these diagrams are decorated with data from a
(non-strict) 3-category. In particular, aG-crossed braided category is a special case of
a monoidal 2-category [11, Section 6], and thus a special case of a 3-category. And
indeed, there is a beautiful way to label diagrams of 4-dimensional handle decompos-
itions with G-crossed braided spherical fusion categories (G�-BSFCs), by depicting
3-handles explicitly in the calculus.

Outline. We begin by briefly introducingG-crossed braided spherical fusion categor-
ies in Section 2. Additionally to defining the invariant, this article gives an introduc-
tion to Kirby diagrams with 3-handles, which does not seem to exist in the literature.
Section 3 contains this material, and it should be accessible to TQFT researchers with
a basic background in Kirby calculus of 4-manifolds. The aim of Section 4 is to show

1In higher dimensions, there is another reason: triangulations do not completely specify a
smooth structure, but only a piecewise linear (PL) structure, whereas handle decompositions
exist both in the smooth and in the PL category. In four dimensions, the PL and smooth categor-
ies are still equivalent, which allows us to formulate smooth TQFTs as state sum models over
triangulations.
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that the language of Kirby diagrams with 3-handles is very natural for graphical cal-
culus in G-crossed braided spherical fusion categories. This is the central ingredient
to Section 5, where the invariant IC is defined. Explicit example calculations and gen-
eral properties of the invariant are given in Section 6. The connection to the state sum
model from [11] and the corresponding TQFT is made in Section 7. Further ideas
for generalisations, in the direction of defining spherical fusion 2-categories, are dis-
cussed in Section 8.

2. Introduction to G -crossed braided spherical fusion categories

2.1. Spherical fusion categories

Spherical fusion categories over C are well known, and basic knowledge is assumed.
We will mainly use notation, conventions and graphical calculus from [5, Section 2.1].
For convenience, an overview over the relevant notation is given in Table 1. We will
augment the graphical calculus of fusion categories with “round coupons” for morph-
isms (this is justified because a pivotal structure is assumed to exist) as introduced in
[3, Section 5.3] and explained for example in [4, Section 1]. Essentially, morphisms
do not differentiate between source and target, as these can be interchanged coherently
by means of duals.

Spherical fusion category .C ;˝;	/
Objects A; B; C; : : :

Morphisms � 2 hA˝ B ˝ � � � i WD C.	; A˝ B ˝ � � � /
Simple objects X; Y;Z

Set of representants of isomorphism
classes of simple objects O.C/

Dual object A�

Nondegenerate morphism pairing .�;�/W hA1 ˝ � � �Ani ˝ hA�n ˝ � � �A�1i ! C

Trace trWC.A;A/! C

Categorical dimension d.X/ WD tr.1x/

Fusion algebra
(complexified Grothendieck ring) CŒC �

“Kirby colour” �C WD
L
X2O.C/ d.X/X 2 CŒC �

Table 1. Notation and conventions in spherical fusion categories.
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We briefly revisit the cyclically symmetric definition of morphism spaces:

� 2 hA1 ˝ A2 ˝ � � � ˝ Ani WD C.	; A1 ˝ A2 ˝ � � � /
pivotal structureŠ C.	; AjC1 ˝ � � � ˝ An ˝ A1 ˝ � � � ˝ Aj /

dualisationŠ C.A�j ˝ A�j�1 ˝ � � � ˝ A�1 ˝ A�n ˝ � � � ˝ A�k; Aj ˝ � � � ˝ Ak�1/:

The morphism pairing .�;�/W hA1 ˝ � � �Ani ˝ hA�n ˝ � � �A�1i ! C is defined by
dualisation, composition, and the isomorphism C.	; 	/ Š C. It is nondegenerate,
which implies the existence of dual bases

¹˛iº � hA1 ˝ � � �Ani and ¹ Q̨ iº � hA�n ˝ � � �A�1i

satisfying . Q̨ i ; j̨ / D ıi;j . The choice of ¹˛iº is arbitrary and determines ¹ Q̨ iº com-
pletely.

Definition 2.1. Together, the dual bases define a unique entangled vectorX
i

˛i ˝ Q̨ i 2 hA1 ˝ � � �Ani ˝ hA�n ˝ � � �A�1i:

Especially in the graphical calculus (Figure 1), this vector will often be abbreviated
as ˛ ˝ Q̨ , suppressing the indices.

˛ Q̨

A1A2
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A4 A5

A6

A�
1

A�
2

A�
3

A�
4

A�
5

A�
6

D
X
i

˛i Q̨ i

A1A2

A3

A4 A5

A6

A�
1

A�
2

A�
3

A�
4

A�
5

A�
6

Figure 1. The dual bases convention with round coupons. Compare, e.g., [4, (1.8)].

2.2. G -crossed braided spherical fusion categories

G-crossed braided (spherical) fusion categories (short: G�-BSFCs) were introduced
in [29] as “crossed group categories” and have since received a diversity of names
such as G-crossed braided SFCs, G-equivariant braided SFCs or braided G-crossed
SFCs. We will adopt the nomenclature G�-BSFC, but warn that G�-BSFCs are usu-
ally not braided. Rather, they carry a new structure, the crossed braiding.

Just as fusion categories categorify and vastly generalise finite groups,G�-BSFCs
categorify finite crossed modules. (This viewpoint is implemented explicitly in [11,
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Section 4.2].) A crossed module consists of two groups H and G, a homomorphism
degWH ! G and a group action of G on H . The group H is “crossed commutative,”
that is, commutative up to an action by G. This axiom is usually called the “Peiffer
rule.” G�-BSFCs now categorify finite crossed modules in the following way. The
group H is generalised to a spherical fusion category C , while G stays a group. The
homomorphism deg gives way to aG-grading of C . Just as abelian groups are usually
categorified to braided fusion categories and the commutativity axiom is replaced by
the braiding, the Peiffer rule is now replaced by a crossed braiding.

Writing out the axioms explicitly and following the notation from [11,Section 2.1],
we have the following definitions.

Definitions 2.2. Let G be a finite group and C a spherical fusion category. Denote by

xG the discrete monoidal category whose objects are elements of G and the monoidal
structure matches the group structure.

• A G-grading on C is a decomposition C ŠL
g2G Cg into semisimple linear

categories such that Cg1 ˝ Cg2 � Cg1g2 . This defines a function degWO.C/! G.

• A G-action on C is a monoidal functor .F; �; "/W xG ! Aut˝;piv.C/. Explicitly,
there is a monoidal, pivotal automorphism of C for each group element g. We
will usually abbreviate gX WD F.g/.X/, and thus the coherence isomorphisms

are �.g1; g2/X W g1.g2X/ Š�! g1g2X and "X W eX Š�! X .

• A G-crossed braided spherical fusion category consists of the following structure
and axioms:

– a spherical fusion category C ,

– a G-grading on C ,

– a G-action on C such that g.Cg0/ � Cgg0g�1 ,

– for every g 2 G; X 2 Cg ; Y 2 C , a natural isomorphism cX;Y WX ˝ Y !
gY ˝X , which is called the crossed braiding,

– subject to certain axioms which are detailed, e.g., in [11, Definition 2.2] or
[13, Definition 4.41].

Remark 2.3. A G�-BSFC is usually not braided. c is only a braiding if the G-action
is trivial.

Remark 2.4. The G-grading is not required to be faithful, i.e., Cg may be 0 for some
g ¤ e. In contrast to mere graded fusion categories, such a G�-BSFC is not always
equivalent to a faithfully graded one for a subgroup of G, since the G-action can
contain information about the whole group.
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Examples 2.5. (1) Any ribbon fusion (“premodular”) category is a spherical braided
fusion category, and thus aG�-BSFC forG the universal grading group and the trivial
action.

(2) [13, Section 4.4] explains how a braided inclusion Rep.G/ � D of the rep-
resentations of a finite group into a braided fusion category yields a G�-BSFC.

3. Kirby calculus with 3-handles

3.1. Handle decompositions

In this section, handle decompositions of 4-manifolds and their 3-dimensional dia-
grams are described. (All manifolds will be assumed to be smooth, oriented and
compact.) While handle decompositions and Kirby diagrams are described extens-
ively in the literature [1, 15, 21], 3-handles are rarely described pictorially, the only
case known to the author being [16]. This will turn out to be an important conceptual
clarification and computational simplification in the graphical calculus ofG�-BSFCs,
and is thus introduced here at length, interspersed with a recapitulation of well-known
material.

Definitions 3.1. An n-dimensional k-handle is the manifold with corners2 hk WD
Dk �Dn�k .

• From its corner structure, the boundary of a k-handle @hk D Sk�1 � Dn�k [
Dk � Sn�k�1 is split into the attaching region @ahk D Sk�1 � Dn�k and the
remaining region @rhk D Dk � Sn�k�1.

• Sk�1 � ¹0º � @ahk is called the attaching sphere.

• ¹0º � Sn�k�1 � @rhk is called the remaining sphere, or belt sphere.

We wish to decompose n-manifoldsM n into a filtration ; DM�1 �M0 �M1 �
� � � �Mn ŠM , where eachMk is produced fromMk�1 by attaching k-handles. This
decomposition is then called a handlebody, and it is often used interchangeably with
M , or regarded as extra structure on M .

Definitions 3.2. • A k-handle attachment map � on an n-manifoldM is an embed-
ding of the attaching region @ahk of an n-dimensional k-handle into @M .

• The result of a handle attachment �W@ahk ,! @M is the manifoldM [� hk , where
the handle is glued along the embedded attaching region.

• A .�1/-handlebody is the empty set.

2Details and references about manifolds with corners and their boundaries can be found in
Appendix A.
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• A k-handlebody is a .k � 1/-handlebody and successive k-handle attachments
on it.

• A handle decomposition of a manifold M n is a diffeomorphism to an n-handle-
body.

Remark 3.3. When attaching a k-handle to a manifold M along �, the attaching
boundary is removed and the remaining boundary added. The boundary of the result
of a handle attachment is thus

@.M [� hk/ D @Mn�.@ahk/ [ @rhk :

This operation is known as performing surgery on @M along �.

Remark 3.4. By definition, the attaching regions of the attached handles are in the
interior of the resulting manifold, therefore further handles are always attached to the
remaining regions of previous handles, explaining the naming choice “remaining.”

Theorem 3.1 (Well known, e.g., [15, Section 4.2]). Smooth manifolds have handle
decompositions. In particular, smooth compact manifolds have decompositions with
finitely many handles.

The proof of this theorem is usually via Morse theory. Given a self-indexing Morse
function, every critical point of index k corresponds to a k-handle.

Since arbitrarily many different handle decompositions may describe the same
manifold up to diffeomorphism, it is important to relate them. Luckily, there is a
simple complete set of moves to translate from any two diffeomorphic handle decom-
positions.

Definition 3.5. A k-handle hk and a .k C 1/-handle hkC1 are cancellable if the
attaching sphere of hkC1 intersects the remaining sphere (the belt sphere) transversely
in one point.

The terminology stems from the fact that M [ hk [ hkC1 Š M if hk and hkC1
are cancellable. This diffeomorphism is called cancelling the handle pair.

Theorem 3.2 (E.g., [15, Theorem 4.2.12]). Two handle decompositions of the same
manifold are related by a finite sequence of handle attachment map isotopies, attach-
ment sequence reorderings, and handle pair cancellations.

Remark 3.6. A k-handle can be isotoped over another k-handle in a canonical way,
this is called a handle slide [15, Definition 4.2.10]. Since the attaching order for
handles of the same level can be changed arbitrarily, any k-handle can be slid over
any other k-handle.

Theorem 3.3 (E.g., [15, Proposition 4.2.13]). A connected, closed, smooth n-mani-
fold has a handle decomposition with exactly one 0-handle and exactly one n-handle.
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The idea of the proof is to cancel all 0-1-pairs until a single 0-handle remains, and
dually for the n-handle.

In general, it is not clear how to visualise intricate handle attachment maps. In four
dimensions though, all attachments happen inside three-dimensional spaces, which
allows us to depict them diagrammatically.

3.2. Kirby diagrams

For the remainder of the article, we will assume handle decompositions to be in
dimension n D 4. The relevant special cases for 4-dimensional handles and their
boundaries are listed in Table 2.

k Handle hk Attaching region @ahk Remaining region @rhk

0 D0 �D4 ; S3 Š R3 [ ¹1º
1 D1 �D3 S0 �D3 Š ¹�1; 1º �D3 D1 � S2 Š Œ�1; 1� � S2
2 D2 �D2 S1 �D2 D2 � S1
3 D3 �D1 S2 �D1 D3 � S0

Table 2. 4-dimensional k-handles and their boundary, for k � 3.

3.2.1. Remaining regions as canvases. It is possible to visualise handle decompos-
itions of 4-manifolds as Kirby diagrams by thinking of the remaining regions of the
handles as drawing canvases. In fact, the remaining region of a 0-handle can be visu-
alised as R3 with an additional point at infinity (Figure 2). Since @ahk [ @rhk Š S3,
the remaining regions of higher handles can be visualised in the same way, although
with the attaching region removed from the canvas.

Initially, it is always possible to attach a 0-handle to the empty manifold, which
instantiates a new, empty drawing canvas. Higher handles for 1 � k � 3 are attached
to the existing handlebody by drawing their attaching region (Figure 3) on the existing
canvases, which corresponds to embedding it onto the boundary of the handlebody.
Here, it will be enough to simply draw the attaching sphere, as will be justified shortly.

As in Theorem 3.3, a 1-handle which is attached to two different 0-handles can
cancel one of them (Figure 4), merging the two canvases. If further handles are
attached to the cancelling 0-handle, their attachment maps can be isotoped across
the (remaining boundary of the) 1-handle into the (remaining boundary of the) other
0-handle. We will therefore usually assume handle decompositions to have exactly
one 0-handle, and omit the coordinate axes. (By the same theorem, we will assume
exactly one 4-handle to be present, and never explicitly specify it.) Examples of higher
cancellations and slides will be reviewed in Section 3.3.
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x

y

z

@rh0

[¹1º

Figure 2. The remaining region of a 0-handle as a drawing canvas.

Handle index k Attaching region @ahk

0 ;

1

2

3

C

Figure 3. Attaching regions of 1-, 2- and 3-handles.

A handle can be attached onto several other handles of smaller index, in which
case its attaching sphere is spread over several remaining regions, as for example in
Figure 5.

3.2.2. Attaching spheres and framings. Up to isotopy, 1-handle and 3-handle
attachments are determined by the embedding of the attaching sphere: an embedding
of @ah1 D S0 �D3 is, up to isotopy, specified by the embedding of the two points
of S0.

Similarly, a 3-handle attachment is essentially specified by the embedding of an
S2 [15, Example 4.1.4 c]. Since usually further handles are attached to 1-handles, but
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Figure 4. The handles h0;B and h1;ˇ cancel each other. The 0-1-cancellation move merges two
drawing canvases.
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@rh0 @rh2@rh1
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∂ahh1,α,α

∂∂ah1,α,α,α
∂∂ahhh2,a
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Figure 5. A handle decomposition of Œ�1; 1� � RP3 where each k-handle is attached to every
j -handle for j < k. In particular, the single 3-handle is attached to h1 and h2: its attaching
sphere touches the attaching spheres of h1 and h2 in @h0 (and h2’s attaching sphere further in
@rh1), and enters their respective remaining regions, partitioning it into six pieces.
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not to 3-handles, we will draw the complete attaching regions of 1-handles, but only
the attaching spheres of 3-handles, as in Figure 3.

Furthermore, it is sometimes helpful to mark the orientation of S0 in @ah1 D
S0 �D3 by denoting one point as C and the other as �, and consequently denoting
@ah1 Š @Ca h1 t @�a h1 D D3

C tD3
�.3 Similarly, the attaching S2 of a 3-handle may

carry an orientation. The result of the attachment does not depend on the choice of
orientation.

A 2-handle is attached along @ah2DS1 �D2, and an embedding S1 ,!R3 can be
knotted, or even linked to other 2-handles. The attachment carries more information
than the mere embedding of its attaching S1, though. It may be framed, that is, theD2

component can be twisted by any integer multiple of a full turn. It is possible to denote
framings by labelling 2-handle attachments with integers, but for our purposes it is
more pragmatic to stipulate the blackboard conventions: our diagrams are not truly
drawn in R3, but in a projection onto R2, and this projection specifies a canonical
framing on every curve. For further details, we refer to Appendix B.2.

3.2.3. Kirby conventions. Drawing the attaching spheres inside all remaining
regions is uneconomical, but fortunately not necessary. Assume we have already
attached a k-handle hk to a manifold (k 2 ¹1; 2º), and then attach a j -handle hj for
j > k gradually, starting to draw the attaching sphere in @rh0 and aiming to continue
into @rhk . Then the attaching sphere of hj will eventually intersect the boundary of
the attaching region of hk , @@ahk Š Sk�1 � S3�k . This intersection already canonic-
ally determines an attachment inside @ahk , as we will see shortly. By always assuming
this convention, the part of the diagram inside @rh0 completely determines the handle
attachment.

Definition 3.7. A handle decomposition is regular if

(1) the attachment of a k-handle is outside the remaining regions of other
k-handles;

(2) no attachment intersects with1 2 @rh0 Š R3 [ ¹1º.
Remarks 3.8. (1) This condition is equivalent to the requirement k-handles are
attached only onto the remaining regions of j -handles for j < k (strictly).

(2) This condition ensures that the diagram can be drawn in a bounded region
of R3.

Definition 3.9. A handle decomposition satisfies the single-picture conventions if

2-1 inside the remaining region of any 1-handle @rh1 D D1 � S2 D Œ�1; 1� � S2,
images of attaching maps of 2-handles are of the form Œ�1; 1� � ¹p1; : : : ; pN º
with pi 2 S2;

3This is not to be confused with the independent notion of relative handle decompositions.
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3-1 inside the remaining region of any 1-handle @rh1 D D1 � S2 D Œ�1; 1� � S2,
images of attaching maps of 3-handles are of the form Œ�1; 1� � A with A � S2
a compact 1-dimensional submanifold;

3-2 inside the remaining region of any 2-handle @rh2DD2 � S1, images of attaching
maps of 3-handles are of the form D2 � ¹p1; p2; : : : ; pN º, where pi 2 S1.

Remark 3.10. These two conditions have intuitive geometrical interpretations, on
which we will expand.

2-1 A 2-handle entering one attaching ball D3
C of a 1-handle at a set of points must

leave the corresponding ball D3
� on the mirror positions. This is a standard

assumption which is usually made in text books.

3-1 Analogously, a 3-handle entering one attaching ball D3
C of a 1-handle at a sub-

manifold A must leave the corresponding ball D3
� on the reflection of A.

3-2 A 3-handle enters a 2-handle along S1 � ¹p1; p2; : : : ; pN º � S1 � S1, where
each S1 � ¹piº follows the framing of the 2-handle attachment. To the author’s
knowledge, this convention is unmentioned in the literature, although it is straight-
forward.

Definition 3.11. A regular handle attachment satisfying the single-picture conven-
tions is called a Kirby diagram.

It is natural to ask whether essentially every handle decomposition can be drawn
as a Kirby diagram. This is ensured by the following lemma.

Lemma 3.12. Given any handle decomposition, a succession of isotopies of the indi-
vidual handle attachments can be applied to arrive at a Kirby diagram.

Proof. When disregarding 3-handles, this is a standard fact. See Figure 6 for an illus-
tration. The full proof, covering the 3-handle case, is given in Appendix B.

3.2.4. Kirby diagrams and 3-handles. Usually, 3-handles are not depicted in Kirby
diagrams, due to the following theorem.

Theorem 3.4 (Well known, e.g., [15, Section 4.4]). Let M and N be smooth, closed,
oriented 4-manifolds, with handle decompositions containing precisely one 0-handle
and one 4-handle. Assume that their 2-handlebodies agree. Then M Š N .

In essence, the 3-handle attachments contain no information in a handle decom-
position of a closed manifold. 4-dimensional differential topology usually concerns
itself with closed manifolds, and 3-handles are typically excluded from most dis-
cussions. Standard references for Kirby diagrams such as [15] and [1] emphasise
1-handle and 2-handle attachments on a single 0-handle.
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Figure 6. Pushing a 2-handle attachment outside the 1-handle remaining region. After the
isotopy, the 2-handle attaching sphere runs along a canonical interval inside of @rh2. (Other
canonical intervals are drawn dashed.) It is then easy to see that the 2-handle cancels the
1-handle, since it intersects the belt sphere (the y � z-plane compactified at 1) transversely
in one point.

While it is true that the 2-handles contain the main complexity of a handle decom-
position, 3-handles will still turn out to contain useful information for the computation
of the invariant defined in Section 5.

As a further reason whose ramifications are beyond the scope of this article, The-
orem 3.4 does not hold for manifolds with nonempty boundary. When our aim is to
describe the whole TQFT directly with handle decompositions (without taking the
detour over the state sum model), we will eventually have to regard bordisms, and
there are indeed non-diffeomorphic manifolds with boundary that have handle decom-
positions with the same 2-handlebody4 Thus, 3-handles may indeed contain relevant
information in this situation. This viewpoint is discussed briefly in Section 7.2.

4The author is grateful to Marco Golla and Andrew Lobb to point this fact out here:
httpsW//mathoverflow.net/questions/288246/are-there-kirby-diagrams-with-3-handles

https://mathoverflow.net/questions/288246/are-there-kirby-diagrams-with-3-handles
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3.3. Handle moves

Handle decompositions are by far not unique. Fortunately, Theorem 3.2 ensures that
every two finite handle decompositions of the same closed manifold are related by a
finite sequence of handle moves. There are three kinds of moves to consider: (1) handle
cancellations, (2) (ambient) isotopies of handle attachments; (3) reorderings of attach-
ments of the same index. Moves of the kind (1) are described below in Section 3.3.1.
Moves of the kind (2) and of the kind (3) are described in Section 3.3.2.

From here on, we will not draw the coordinate grids of the remaining regions
anymore, and assume that all diagrams take place in @rh0 (unless specified otherwise).

3.3.1. Cancellations. In our Kirby diagrams, cancellable pairs (Definition 3.5) of a
k-and a .kC 1/-handle are relevant for k 2 ¹1;2º. (We have described 0-1-cancellation
already in Figure 4 in Section 3.2.1, and assume that there is a single 4-handle.)

A 2-handle cancels a 1-handle if the attaching circle attaches in exactly one point
for each 3-ball of the 1-handle. This can be seen in Figure 6, where it was argued
that any such attachment can be isotoped to one that intersects the belt sphere in one
point. If further handles are attached to the handle pair, they can be slid off first before
cancelling [15, Figure 5.13].

A 3-handle cancels a 2-handle if the 2-handle is attached along an unframed
unknot, and (the visible part of the) 3-handle attachment forms a disc which is bounded
by said unknot. (The second half of the attaching S2 is inside the remaining region
of the 2-handle, where it intersects the belt sphere in one point.) The situation can be
seen in Figure 7. As for the 1-2-cancellation, it is sometimes necessary to first slide
off other handles before cancelling.

2-3-cancellation

Figure 7. The visible part of the 2-3-handle cancellation. The 3-handle attaching sphere is split
into two discs, one of which vanishes inside the 2-handle remaining region.

3.3.2. Slides. Applying an isotopy to a constituent of a Kirby diagram (tautologic-
ally) applies an isotopy to the corresponding handle attachment, but there may be
isotopies of handle attachments that do not conform to the Kirby conventions in the
intermediate stages of the isotopy. Indeed, isotopies of handle attachment between
two non-isotopic Kirby diagrams exist. They are commonly called “handle slides,”
and they can be decomposed into elementary j -k-slides where j � k. A j -k-slide
is an isotopy of a j -handle over the remaining region of a k-handle that changes the
Kirby diagram.
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If an l-handle is attached to a j -handle, the j -k-slide can still be performed sim-
ultaneously with an l-k-slide.

In order to allow for arbitrary k-k-slides, the attachment order of k-handle attach-
ments has to be changed sometimes. Subtly, Kirby diagrams do not specify the order
since the attachments always commute due to the first regularity condition (Defini-
tion 3.7), and thus resulting manifolds for different orders are diffeomorphic. When
isotoping a k-handle hk over another, the latter has to be attached first, thus a reorder-
ing may be necessary.

j -k-slides for j � 2 are treated at length in the literature, see, e.g., [15, Sec-
tion 5.1]. For completeness, they are briefly described in the following, enumerated
as j -k.

j -1 To slide any handle hj over a 1-handle h1, choose a path from the attached
@ahj to @ah1 that does not intersect with any other attachments (in particular no
3-handle attachments) and move hj ’s attaching sphere along into @rh1, entering
at one of the S2s bounding an attaching ball of h1.

Since the two attaching balls D3
C and D3

� can be situated in two regions of
the drawing canvas that are separated by a 3-handle attachment, it is possible to
move attachments between separated regions by means of this move.

1-1 Here, regularity requires the attachment to move all the way through the remain-
ing boundary, leaving the opposite attaching ball again.

2-1 To establish the Kirby conventions, the 2-handle attachment needs not move
completely through @rh1, instead its ends can protrude from the attaching balls
of h1 at mirror positions. The situation is displayed in Figure 5.

2-2 The pair of pants surface is defined as a two-dimensional disc D2
c with two open

discs D2;ı
a and D2;ı

b
removed, its boundary is thus S1a t S1b t S1c . Given an

embedding of the pair of pants in a Kirby diagram K, its boundary embedding
defines three 2-handle attachments h2;a, h2;b and h2;c . The 2-2-slide transforms
K together with the attachments h2;a and h2;b into K with h2;c and h2;b , and
one says that h2;a has been slid over h2;b .

For any two 2-handles, it is always possible to slide one over the other. (If
they are in different regions separated by 3-handles, it is still possible to perform
the 2-2-slide after a series of 2-1-slides, assuming the manifold is closed.) The
resulting handle h2;c may depend on the choice of the pair of pants, but the
resulting manifold does not (up to diffeomorphism).

Figures 8 and 9 display these slides, but also include analogous 3-k-slides, which are
described in the following.
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Figure 8. 1-1-handle slide with simultaneous 2-1-slide and 3-1-slide. The red 3-handle attach-
ment separates the two components @ah1 ŠD3C tD3� of the 1-handle attachments, butD3C˛
can still “tunnel” through the remaining region of h1ˇ .

@ah3A

@ah3B

@ah2a

@ah2b

j -2-slide7�����! @ah3A

@ah3B

@ah2a

@ah2b

Figure 9. 2-2-handle slide of h2a over h2b , simultaneously with a 3-2-slide of h3A over h2b .
The grey area can contain arbitrary handles, and may share 3-handles with h2b . Furthermore,
h2b may be arbitrarily knotted, and linked to other 2-handles. h2a then follows those knots and
links.

3-1 As in any j -1-slide, a 3-handle attachment can be isotoped through the remain-
ing region of a 1-handle. And as in the 2-1-slide, the attachment can protrude
from the attaching balls of the 1-handle at mirror positions.
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For an explicit model of this situation, realise that the attaching sphere of the
3-handle can be split in three parts, consisting of two caps and a cylinder:

S2 Š D2
C [S1C .S

1 � ŒC1;�1�/ [S1� D2;�:

Choose an embedding S1 � @D3
C on the boundary of one ball of the 1-handle

attachment. This induces a mirror embedding on the other ball. The 3-handle
can attached as follows. The caps D2

˙
of the attaching sphere are in the draw-

ing canvas of the 0-handle, bounding S1 on D3
C and its mirror circle on D3

�,
respectively. The cylinder S1 � ŒC1;�1� vanishes inside the remaining region
of the 1-handle, conforming to the Kirby conventions.

3-2 It is helpful to visualise the 3-2-slide by realising the attaching sphere of h3
as the “double pancake” S2 Š D2 [S1 D2, which consists of two discs glued
along their boundary. The gluing S1 is then slid over the attaching S1 of the 2-
handle, as in the 2-2-move, dragging the discs along. This is illustrated in Figure
10.

For an explicit model, assume that the 2-handle h2 is attached to the handle-
bodyH along @ah2 D S1 �D2. Choose an embedded interval Œ�1;C1�� @D2.
This defines a strip S1 � Œ�1;C1� on the boundary of @ah2, and a thickened disc
D2 � Œ�1;C1� inside the remaining region @rh2. The 3-handle now isotopes
from the old attaching sphere S2o to the new attaching sphere S2n , and we seek
the image of this isotopy in the drawing canvas, which is a ball with a thickened
disc and a ball removed:

M WD .D3
n nD2 � Œ�1;C1�/nD3

o :

The D2 � Œ�1;C1� is understood to be embedded such that the end discs D2 �
¹�1; C1º are embedded in the boundary of D3

n, one on each “pancake.”
M has as boundary two components, .S2n n.D2

C t D2
�// [ S1 � Œ�1; C1�,

and S2o . Assuming that the 3-handle is initially attached along S2o , it can be
isotoped such that it is partially in the remaining region of the 2-handle, and the
part staying visible in the main drawing canvas is S2nn.D2

C tD2
�/. It vanishes

into @rh2 at S1 times the endpoints of Œ�1;C1�.
3-3 One attaching S2 of a 3-handle can “engulf” another one. In analogy to the

2-2-slide, the three-dimensional pair of pants is defined as a ball D3
C with two

open balls D2;ı
A and D2;ı

B removed. Its boundary is S2A t S2B t S2C . Again, an
embedding of the three-dimensional pair of pants in the boundary of a handle
body defines three 3-handle attachments h3;A, h3;B and h3;C . The handle h3;A
can be slid over h3;B , which replaces it by h3;C . This is illustrated in Figure 11.
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@ah3

@ah2

3-2-slide

Figure 10. The 3-2-slide. Graphically, we can imagine the fold arc of the 3-handle attachment
slides over the 2-handle. The 3-handle is understood to be extended past the dashed lines, to
form a whole sphere.

h3A h3B

3-3-slide
h3C h3Bhhhh3C3C3C3C h3BBBB

Figure 11. In the 3-3-slide, one 3-handle attachment can slide over the other.

3-1
C C

Figure 12. Two Kirby diagrams arising from the same handle decomposition of S1 � S3,
related by the 3-1-move.

3-1 Regularity requires handle attachments not to intersect with the point at infinity
of @rh0 D S3 Š R3 [ ¹1º. While any isotopy of 1-handles and 2-handles can
be deformed away from this point such that the attachment never intersects with
it, this is not always possible for 3-handles. The fundamental move that isotopes
the attaching S2 over this point is called the 3-1-move.

When a 3-handle is only attached to h0, its attaching S2 separates the drawing
canvas into an inside region and an outside region. The 3-1-move interchanges
the roles of the two regions, as illustrated in Figure 12.

Remark 3.13. The 3-1-move is technically not a handle slide, but shares enough
similarity in order to list it with the other slides. It is helpful to visualise the move
applied to a 3-handle h3 as the following procedure:
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(1) attach a new 3-handle h13 such that its attaching S2 surrounds the whole
diagram, or equivalently the point at1;

(2) slide h3 over h13 ;

(3) remove h13 .

Remark 3.14. Often it is possible to perform slides along existing handles. For
example, sliding a 1-handle h1;˛ over h1;ˇ requires a path from @ah1;˛ to @ah1;ˇ .
If there is a 2-handle h2 attached to both these 1-handles, a segment of its attach-
ing circle provides such a path, and the 1-1-slide can be performed along it, while
simultaneously sliding h2 over h1;ˇ as well.

Similarly, a 2-2-slide can sometimes be performed along a 3-handle attachment,
while simultaneously sliding the 3-handle. This is illustrated in Figure 9.

3.4. Examples

3.4.1. S 1 � S 3. There is a standard handle decomposition of Sn as a single 0-handle
and a single n-handle. Since handle decompositions have products, and hk1 � hk2 Š
hk1Ck2 , there is a decomposition of S1 � S3 into h0 [ h1 [ h3 [ h4. Two possible
Kirby diagrams of this handle body are shown in Figure 12. They are related via the
3-1-move. See also [15, Figure 4.15].

3.4.2. S 1 � S 1 � S 2. For 3-dimensional manifolds, Heegard diagrams are a stand-
ard depiction of handle decompositions. [15, Example 4.6.8] explains how to con-
struct a handle decomposition of S1 � M 3 from a Heegard diagram of M 3.
In [5, Section 6.2.1], a Kirby diagram of S1 � S1 � S2 is derived, but 3-handles
are suppressed. Figure 13 shows the same Kirby diagram with 3-handles.

The reader might be surprised about the apparent lack of symmetry betweenD3C
˛

and D3�
˛ (and similarly D3C

ˇ
and D3�

ˇ
), with the 3-handle spheres covering only one

of the 1-handle balls. (After all, each 1-handle corresponds to an S1 factor, and mir-
roring the diagram such that, e.g., D3˙

˛ are preserved and the D3˙
ˇ

are interchanged
results in orientation reversal of the S1 corresponding to the 1-handle h1ˇ , which is an
isomorphism.) This asymmetry stems from the second regularity condition in Defin-
ition 3.7, which stipulates that no handle attachment intersect with1. If we remove
that restriction, we can slide a point on @ah2b to1 and end up with a symmetric dia-
gram like the one given in [16, Figure 4.1a], where h2b is attached along the y-axis,
and h3A and h3B are attached along the y � z-plane and the x � y-plane, respectively.

3.4.3. Fundamental group. It is well known that the 2-handlebody of a handle
decomposition gives a presentation of the fundamental group [15, Solution of Exer-
cise 4.6.4(b)], [5, Section 2.3.3], where each 1-handle is a generator and each 2-handle
a relation.
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For example, it is a good exercise to verify that in Figure 13, the two 1-handles
h1˛ and h1ˇ constitute two generators ˛ and ˇ each, and the 2-handle h2a results in
the relation ˛ˇ˛�1ˇ�1 (after having oriented the attaching spheres arbitrarily). h2b is
not attached to any 1-handles and thus yields the trivial relation. We have shown that
�1.S

1 � S1 � S2/ Š Z˚ Z, as expected.
Turning a handle decomposition upside down [15, Section 4.2] shows that it is

possible to present the fundamental group with the 3-handles as generators and again
the 2-handles as relations. Each 2-handle yields a relation where the generators cor-
responding to all attached 3-handles are multiplied in cyclical order.5 A generator is
inverted if the boundary orientation deriving from the (arbitrarily chosen) orientation
of the attaching sphere S2 of h3 does not match the (again arbitrarily chosen) orient-
ation of the attaching S1 of h2.

@ah3A

@ah3B

@ah2a

@ah2b

@ah3A

@ah3B

D3C
˛ D3

˛

D3C
ˇ

D3
ˇ

Figure 13. Handle decomposition of S1 � S1 � S2 with two 3-handles, two 2-handles and two
1-handles. Choosing an arbitrary orientation and start point, the attaching S1 of h2a attaches
to h1˛ at D3�˛ , runs through the remaining region @rh1˛ , leaves at D3C˛ , attaches to h1ˇ at
D3C
ˇ

, runs through @rh1ˇ , leaves at D3�
ˇ

, attaching a second time to h1˛ and h1ˇ each, and
finally closing the loop. The attachment of h3A starts (invisibly) inside the remaining region of
h2b , extends to a D2 and leaves it at @ah2b , proceeding as a cylinder around @ah2a and D3C˛ ,
attaching to h1ˇ at D3C

ˇ
, leaving again at D3�

ˇ
and attaching a second time to h2b , closing off

inside its remaining region.

5To see this, visualise that for each 3-hande, a noncontractible S1 starts in the interior of
the single 4-handle, passes through the first of the twoD3s constituting the remaining region of
the 3-handle, and becomes visible as pt. � Œ�1;C1� � S2 � Œ�1;C1� in the thickened attach-
ing sphere of the 3-handle, and enters the second D3 of the remaining region, back into the
4-handle. It can be contracted in the remaining region of a 2-handle if the 3-handle is attached
to it.
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Again, Figure 13 offers a good exercise to compute the fundamental group in this
presentation. The two 3-handles yield generators A and B . None of the 3-handles
is attached to h2a, so its relation is trivial. Both 3-handles are attached twice to
h2b , though. Choosing arbitrary orientations and taking care that the orientations on
both parts of the attaching spheres of the 3-handles match, we read off the relation
ABA�1B�1 and arrive at the same group.

4. Graphical calculus in G -crossed braided spherical fusion categories

Our strategy to define an invariant of 4-manifolds from a G-crossed braided spherical
fusion category C (short: G�-BSFC) is to choose a Kirby diagram of the manifold,
and to interpret and evaluate this diagram in a graphical calculus of C . As will be
shown in this section, this calculus is conveniently similar to Kirby calculus with
3-handles.

4.1. From manifolds to morphisms

Our general guiding principle to arrive at a graphical calculus is that G�-BSFCs are
special degenerate (weak) 3-categories, and thus monoidal 2-categories [11]. View-
ing them as 3-categories, there is a single object, the 1-morphisms correspond to
group elements, the 2-morphisms correspond to objects of the fusion category, and the
3-morphisms correspond to morphisms of the fusion category. The diagrams should
thus be 3-dimensional, with group elements labelling 2-dimensional sheets, objects
of the fusion category labelling 1-dimensional ribbons, and morphisms of the fusion
category labelling points.

Here, a similarity can already be seen to the elements of Kirby diagrams, which
are the S2s corresponding to 3-handles, 1-dimension curves for 2-handles, and D3s
(thick points) for 1-handles. Kirby diagrams themselves are not flexible enough for
arbitrary graphical calculus in a G�-BSFC. This leads us to the definition of planar
diagrams, which are an intermediate step between Kirby diagrams and the desired
graphical calculus. Figure 14 gives an overview over all steps necessary to compute
the invariant from a manifold, which are an intermediate step between Kirby diagrams
and the desired graphical calculus.

4.2. Unlabelled planar diagrams

Definition 4.1. An unlabelled, closed diagram D (see Figure 15) consists of the fol-
lowing data:

(0) a finite set D0 of embeddings pWD3 ! R3, called (thickened) points,
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(1) a finite set D1 of framed embeddings of lines Œ�1; 1� and circles S1 (collect-
ively called ribbons) into R3 such that the boundaries (endpoints) of each line
are embedded in the boundaries of the thickened points,

(2) a finite set D2 of smooth embeddings of n-gons (see Definition A.1), called
sheets, or sometimes discs (when n > 0) and spheres into R3 such that each
boundary component of each disc is either a line or embedded on a boundary
of a thickened point.

4-manifold

Handle decomposition

Existence of Morse functions
Handle cancellations,
regular isotopies of attaching maps

Kirby diagram

Lemma 3.12 n-k handle slides, 3-1-move

Unlabelled (regular) planar diagram

Definition 4.12 Remark 4.13

Labelled (regular) planar diagram

Definition 4.16 Proposition 4.22

Invariant morphism

Definition 5.3 Theorem 5.1

Figure 14. In order to define the invariant, a 4-manifold is translated to a morphism in aG-BSFC
through various intermediate steps. For each of these steps, additional data has to be added, or
additional properties assumed. The arrows pointing down illustrate this additional structure,
while the arrows pointing up justify it through a proof of independence on the specific structure
chosen.

p

Figure 15. An unlabelled closed diagram with a single point, a single line, and a single disc.
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Remark 4.2. n-gons are manifolds with corners, likewise their embedded image will
have corners.6 The n-gons will always be 2k-gons, in fact, where k is the number of
times the sheet attaches to a thickened point (or equivalently the number of lines it
attaches to). The corners of the sheet will always be attached to an endpoint of a line
embedding.

The reader may be concerned at this point that neither sheets nor ribbons were
required to be thickened, or framed. The reason is that discs and spheres contain no
framing information, and the framing of a ribbon can be canonically chosen to be the
blackboard framing by choosing a projection into the plane. (For further details, also
see Appendix B.2.) Since we will ultimately want to evaluate diagrams in monoidal
categories (which have a diagrammatic calculus in the plane), we shall make sure that
the projection of a diagram contains all essential information. This is encoded in the
following definition.

Definition 4.3 (Blackboard framing). We single out a projection into the plane onto
the first two components of a vector:

� WR3 Š�! R2 ˚R
�R2���! R2;

.x; y; z/ 7! .x; y/:

A diagram D is compatible with the blackboard framing if the following conditions
are satisfied.

• Each thickened point D3 can be split in half along an equator S1 such that its
boundary is split into “upper” and “lower” discs, S2 DD2

u [S1 D2
l

and each disc
D2
¹u;lº

is embedded into R2 by � .

• Lines attach to thickened points transversely in the equator.

• On sheets, � is an immersion except at a finite set of 1-dimensional compact
embedded piecewise smooth manifolds, the fold graphic [27, Section 1.3]. The
non-smooth points of the fold graphic are called cusp points, and the smooth parts
fold arcs.

• On the union of fold arcs and ribbons, � is an embedding except at a finite set of
points, the crossings.

Remark 4.4. In the projection, a thickened point is given by simply an embeddedD2.

6Instead of smooth embeddings of manifolds with corners, one may imagine a piecewise
smooth embedding of a disc or sphere instead. The formulation with corners appears cleaner
though, particularly in the light of Definition 3.1, where handles are defined as manifolds with
corners.
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Remark 4.5. The embedded diagram data are understood to be oriented. The res-
ulting data is sometimes depicted graphically, which manifests depending on the
dimension on the datum:

(0) the orientation of points can either agree with the orientation of R3, or be
opposite, specifying a sign;

(1) the orientation on a ribbon manifests as a direction along the ribbon, often
depicted with a little arrow;

(2) the orientation of a sheet can coincide locally with the orientation of the plane
R2, or be opposite, specifying a sign per noncritically embedded stratum.

Remark 4.6. Ribbons (and borders of thickened points) locally partition the plane
into two “sides.” � being an immersion on sheets outside of fold arcs implies that
sheets incident to ribbons never change the side locally.

This may be confusing at first when recalling that we emphasised in Remark 3.10
that the single picture conventions (Definition 3.9) imply that in a 3-2-handle attach-
ment, the 3-handle must follow the framing of the 2-handle. But since any ribbon also
follows the blackboard framing, it does not “turn” in the plane, so these two conditions
conform.

The parts where � is critical on the diagram, the fold graphic and the crossings,
will later correspond to structure morphisms of theG-crossed fusion category. Certain
regularity conditions need to be imposed in order to make the diagrams suitable for
graphical calculus.

Definition 4.7 (Regular diagrams). A diagram D is regular if the following condi-
tions are satisfied:

• it is compatible with the blackboard framing;

• the projections of ribbons and fold arcs do not intersect projections of thickened
points;

• the projections of exactly two ribbons, two fold arcs, or a ribbon and a fold arc,
intersect transversely at a crossing;

• the projections of different crossings and cusp points never coincide.

Remark 4.8. One can convince oneself that one can perturb any planar diagram with
an isotopy to a regular diagram. They are thus also often said to be in general position,
and we will usually assume that a diagram is regular.

Definition 4.9. A regular planar isotopy is an isotopy of planar diagrams, such that
they are regular, and each intermediate diagram is regular.
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Lemma 4.10. Two regular planar diagrams are framed isotopic if and only if they are
related by a finite sequence of regular planar isotopies and planar moves, illustrated
in Figures 16 and 17.

Proof. For points and ribbons, this is standard, e.g., [17, Theorem 3.7] [28, The-
orem 6.1]. For sheets, this is an exercise in Cerf theory, carried out in detail, e.g.,
in [27, Chapter 1.5].

Remark 4.11. The Reidemeister I move, which equates a single twist by 2� of one
ribbon to an untwisted ribbon, does not appear among the list of moves. This is inten-
tional. While it is important for unframed knot and link invariants, it is not admissible
in framed invariants since it changes the framing. The manifold invariant developed
here is sensitive to the framing (otherwise it would not be able to distinguish CP2

and S4), and thus cannot validate the Reidemeister I move.
In ribbon categories, this is mirrored algebraically by the fact that in the non-

symmetric case, the twist is not trivial. In G�-BSFCs, the twist is not even an endo-
morphism canonically. For a g-graded object X 2 Cg , it types as �X WX ! gX , and
there is in general no coherence isomorphism to compare it to. (While X and gX are
isomorphic, they are not canonically isomorphic if g is nontrivial.)

We have drawn diagrams of Kirby diagrams before in Section 3. They are indeed
diagrams in the sense of Definition 4.1.

Definition 4.12. A Kirby diagram K (in the sense of Definition 3.11) of M straight-
forwardly gives rise to an unlabelled planar diagram D , the derived planar diagram.
It is computed by translating the attaching spheres to elements of the diagram.

(1) Every 1-handle h1 gives rise to two thickened points D3
˙

, for each ball of the
attaching region of h1.

(2) A 2-handle gives rise to an embedded circle (a knot) if it is not attached to
any 1-handles, or else to one or several lines incident on the thickened points
corresponding to the 1-handles it is attached to. Possibly, an isotopy has to be
applied such that the blackboard framing of the embedding matches the given
framing of the attachment.

(3) A 3-handle gives rise to an embedded sphere if it is not attached to any
handles, or else to one or several discs incident on the thickened points and
ribbons corresponding to the 1-handles and 2-handles it is attached to. Pos-
sibly, an isotopy has to be applied such that in the projection, no disc “changes
the side” of a 2-handle it is attached to (see Appendix B for details).
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Remark 4.13. Isotopies of Kirby diagrams correspond to isotopies of planar dia-
grams, so Lemma 4.10 again applies: two Kirby diagrams are isotopic if they are
related by regular isotopies and planar moves.

4.3. Labelled diagrams

If a regular diagram is labelled appropriately with data from aG�-BSFC C , a morph-
ism in C can be extracted. This situation is set up in the following two definitions.

Definition 4.14. A sheet with boundary on a ribbon r is called incident to r . All sheets
¹.si ;˙/º incident to r are written as ır . They form an ordered multiset, starting at the
top (viewed from the projection) right-hand (viewed from the ribbon orientation) sheet
and going completely around the ribbon with the right-hand rule (starting, at first, into
the drawing plane). The sign isC if the boundary orientation of the sheet matches the
orientation of the ribbon, and � otherwise.

Analogously, the ribbons ¹.ri ;˙/º incident to a thickened point p are denoted
as ıp. This is a cyclically ordered set, starting anywhere on the boundary S1 of the
projected disc of p and proceeding counter-clockwise. The sign encodes with which
endpoint the ribbon attaches to the point. (It may attach with both ends.)

Definition 4.15. A labelling of a diagram D with a G-crossed fusion category C

consists of three functions with the following signatures:

gWD3 ! G; X WD2 ! O.C/; �WD1 ! mor C :

They need to satisfy the following typing relations:

deg.X.r// D
Y

.s;˙/2ır

g.s/˙; �.p/ 2
D O
.r;˙/2ıp

X.r/˙
E
:

Here, g.s/˙ denotes either g.s/ or g.s/�1, depending on the sign of .s;˙/. Similarly,
byX.r/˙ we meanX.r/ forC andX.r/� for�. The product is performed in the order
specified in the previous definition.

Informally, a labelling attaches group elements to sheets, simple objects to rib-
bons, and morphisms to the points. The degree of the objects on a ribbon is given by
the sheets incident to the ribbon, and the morphism of a point must be in the morphism
space of the objects labelling the incident ribbons.

To extract a morphism from a labelled diagram, we project the diagram into the
plane and mostly apply the well-known diagrammatic calculus of pivotal fusion cat-
egories, treating the crossings and sheets as additional data. These translate directly
to G-crossed structures.
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Name Left-hand side Right-hand side

Point isotopy pp p

Reidemeister I0 (twist move)

Reidemeister II
(cancellation of
inverse crossings)

Reidemeister III
(crossing isotopy)

Cusp isotopy

Cusp moves. Shown here:
cancellation/inversion.
Also relevant:
Other inversion side, flip,
swallowtail.

Figure 16. Different kinds of planar moves. Note that on each ribbon, there are infinitely many
possibilities of attaching further 3-handles, for which only one example per move is shown.
Furthermore, each move that occurs for a ribbon can also occur for a fold line.
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Regular: sheet above ribbon Critical point Regular: sheet beside ribbon

r r r

ss s ss

Figure 17. By changing the projection, a regular diagram can change into one that does not
satisfy the regularity condition. In this case, the intersection of the projection of a fold arc and
a ribbon is not transverse. A further change leads again to a regular diagram, but one that is not
regularly isotopic to the original one. They are related by a planar move though, in this case the
Reidemeister II move.

Definition 4.16. A labelled, regular diagram D can be evaluated to an endomorphism
of 	 (a complex number). To evaluate the diagram for given g, X and �, follow this
algorithm.

(1) Starting from the back of the drawing plane, whenever a sheet s covers ribbons
or points, g.s/˙ acts on objects and morphisms labelling them. (The sign
specifies whether the projection maps the sheet orientation onto the canonical
orientation of the plane.)

(2) Insert a crossed braiding for an intersection point of two ribbons (Figure 18),
and appropriate G-crossed coherence isomorphism for every sheet incident
on the right-hand side of the overcrossing ribbon. (Figure 19).

(3) Insert appropriate G-crossed coherence isomorphisms at intersections
involving at least one sheet fold arc. (Figure 20). (For cusps, no morphism
has to be inserted.)

(4) Interpret the resulting diagram in the graphical calculus of pivotal fusion cat-
egories.

The resulting endomorphism of 	, and equivalently the corresponding number, is
denoted as hD.g;X; �/i.
Remark 4.17. Without difficulty, this definition can be generalised to open diagrams
as in Section 2.1. The result is then in a morphism space hA ˝ B ˝ � � � i, where
A; B; : : : , are the open-ended ribbons in the diagram.
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r2r1

s1

s2

evaluation7�����! c

X.r1/ X.r2/

g.s1/X.r2/ X.r1/

Figure 18. Evaluating the crossed braiding for the sheet labelling g and the ribbon labelling X .
The typing constraints demand that deg.X.r1// D g.s1/ and deg.X.r2// D g.s2/.

r2r1

s1s2
evaluation7�����!

c

" ı �

X.r1/ g.s1/X.r2/

X.r2/ X.r1/

Figure 19. For sheets on the right-hand side of an overcrossing ribbon, an additional coherence
has to be inserted. Note that here, deg.X.r1//D g.s1/�1, as becomes apparent when consider-
ing a coordinate patch in which s1 and r1 are mapped on the upper half plane and the x-axis.

r

s =

r

s
evaluate7����!

��1

�

X.r/

g.s/�1.g.s/X.r//

X.r/

=

X.r/

X.r/

Figure 20. An s D S2 sheet covers the ribbon r . The covered interval of the ribbon is acted
upon twice, with g.s/�1 and g.s/. (Uniquely determined)G-coherence morphisms are inserted
at the crossings of fold arc and ribbon. Once isotoped away, s does not cover any other part of
the diagram and thus acts as the identity.



TQFT invariants from G�-BSFCs via Kirby diagrams 631

X.r/

X.r/

g.s/X.r/

evaluate

r
s

Figure 21. The twist is an isomorphism, but not canonically an automorphism. This can be seen
from the different covering of sheets on the ends of the ribbon: when the ribbon performs a full
twist, the sheet wraps it once fully. This adds a group action on the target object.

Remark 4.18. SinceG�-BSFCs satisfy a coherence theorem ([24], see also [11, The-
orem 2.3]), the choice of coherence isomorphism is always uniquely defined, given
all group labellings g and object labellings X .

Remark 4.19. A sheet incident on a point does not act on the morphism that labels
the point, but only on the objects (resp. morphisms) labelling the ribbons (resp. points)
which are covered by the sheet in the projection.

Remark 4.20. Fold lines play a surprisingly small role in this calculus. It is usually
helpful to imagine fold lines to be labelled with the monoidal unit I of the category.
This makes it more intuitive why they do not influence the evaluation.

Examples are found in Section 6.

Lemma 4.21. The evaluation of a labelled diagram is invariant under isotopies of
regular diagrams (Definition 4.9).

Proof. Regular isotopies do not change the topology of the projected diagram in the
plane. By coherence of the diagrammatic calculus of pivotal fusion categories, the
evaluation is invariant.

Proposition 4.22. The evaluation of a diagram is invariant under arbitrary (framed)
isotopies of diagrams.

Proof. By Lemma 4.10 and the previous lemma, we need to prove invariance of the
diagram evaluation from Definition 4.16 under each planar move.

Point isotopy. Naturality of the crossed braiding.

Reidemeister I0. By definition of the twist, see, e.g., [11, Figure 4a] for a definition
and Figure 21 for its evaluation.
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Reidemeister II. By the definition of the graphical representation of the inverse braid-
ing (in the case of ribbons), or the inverse of the coherence �, as seen in Figure 20.

Reidemeister III. By theG-crossed braid axiom, sometimes also called the “heptagon
axiom,” as in [11, Definition 2.2.2].

Cusp isotopy. The left-hand side of this move evaluates to two cancelling coherence
isomorphisms.

Cusp cancellation. When the folded sheet parts do not cover any other part of the dia-
gram (as can be achieved with a combination of other moves such as cusp isotopies),
then these parts do not change the diagram.

Remark 4.23. Once a sheet labelling g and a ribbon labellingX are fixed, a labelling
� of points with morphisms gives rise to an elementary tensor in the tensor product of
all morphism spaces in the diagramO

p2D1

�.p/ 2
O
p2D1

D O
.r;˙/2ıp

X.r/˙
E
:

It will turn out that arbitrary vectors in the right-hand side vector space are often rel-
evant, so we will generalise the notion of morphism labellings to arbitrary vectors, not
just elementary tensors. The evaluation from the previous definition can be general-
ised uniquely to such vectors, by the universal property of the tensor product.

Similarly, object labellings X are generalised to a labelling with elements from
the fusion algebra CŒC �. From now on, we will often implicitly make use of these two
generalisations.

4.4. Kirby colours and sliding lemmas

Let us fix some notation and prove the essential lemmas for the invariant definition in
Section 5. For this section, assume C to be a G�-BSFC.

4.4.1. G -graded fusion categories. Recall that the set of (chosen representatives of
equivalence classes of) simple objects in C is denoted by O.C/, and the same notation
applies to any semisimple linear category. Set cardinality is denoted as jO.C/j.
Definition 4.24 ([29, Definition 6.6]). The Kirby colour of degree g is defined as the
following element of the fusion algebra CŒC �:

�g WD �Cg D
M

X2O.Cg/

d.X/X:

Remark 4.25. Note that �C D
L
g2G �g .
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Remark 4.26. Unlike �C , �g is not self-dual. In fact, sphericality implies ��g Š
�g�1 . This implies that in the graphical calculus, the orientation of ribbons labelled
�g needs to be specified.

Lemma 4.27. Let Cg 6' 0. Then d.�g/ D d.�e/.
Proof. Jumping slightly ahead and using Lemma 4.31, we slide a loop labelled with
�g over an�e-loop and find d.�g/2 D d.�g/d.�e/. Then d.�g/ can be cancelled
since it is nonzero. For the analogous lemma with Frobenius–Perron dimensions, see
[14, Proposition 8.20].

Remark 4.28. For a faithful grading (Cg 6' 0 for every g 2 G), the previous lemma
is equivalent to d.�g/ � jGj D d.�C /. But since a non-faithful G-grading on C is
always given by a subgroup ofH � G and a faithfulH -grading, we can still leverage
the equation d.�g/ � jH j D d.�C / if this subgroup is known.

4.4.2. The G -crossed braiding and encirclings.

Definition 4.29. Let h;g 2G. The double braiding of two objectsA 2Ch andB 2Cg

is defined as

ˇA;B WA˝ B ! hgh�1A˝ hB; ˇA;B WD .�B ˝ 1B/ ı cB;A ı cA;B :

�B is the unique coherence of the G-action. Note that ˇA;B is, up to G�-coherences,
an automorphism if h D g D e.

Definition 4.30. Let g 2 G. The encircling of an object A 2 Ce by an object B 2 Cg

is defined by the following partial trace:

�A;B WA! gA; �A;B WD trB..1A ˝ "B/ ı ˇA;B/WA! gA:

B can be generalised to (g-graded) elements of the fusion algebra straightforwardly,
and we will freely make use of this generalisation.

Lemma 4.31. AssumeA 2 Ce , h;g 2G andB 2 Cg . There is a graded sliding lemma
for G�-BSFCs, which changes the grade of the encircling:

�A;�h ˝ 1B D .�A ˝ 1B/ ı cB;A ı ."B ˝�A;�g�1h/ ı cA;B : (4.1)

The encirclement may be arbitrarily linked or knotted, as far as this is possible with
regard to the grading.

Proof. In analogy to usual proofs of sliding lemmas (e.g., [22, Corollary 3.5] and
[5, Lemmas 3.3 and 3.4]),B� and�h are fused to a single strand, but sinceB 2 obCg ,
this strand has to be labelled �g�1h. We have used [29, Lemma 6.6.1].
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Remark 4.32. To see why the previous lemma is called “sliding lemma,” revisit Fig-
ure 9, which contains graphical representations of the two sides of (4.1) if the 3-handle
h3A is labelled with g�1h, h3B with h, h2a with B , and the gray area is replaced by a
ribbon labelled with A.

Definition 4.33 (Well known, e.g., [5, Definition 2.41]). Let D be a braided fusion
category. Then D 0 is the full symmetric subcategory spanned by trivially braiding
objects, called the symmetric centre.

LetA be an object in D . ThenA0 is defined (up to isomorphism) to be the maximal
subobject of A in D 0, and �AWA! A the idempotent defined as projection onto A0

followed by inclusion into A (not depending on the choice of A0). If �A D 1A, or
equivalently A Š A0, or A 2 ob D 0, then is A is said to be transparent.

Lemma 4.34 (Well known, e.g., [5, Lemma 2.46]). Let D be a ribbon fusion cat-
egory and A an object therein. Then �A;�D

D �A � d.�D/. In particular, let X be a
simple object in D . Then �X;�D

D 1X � d.�D/ if and only if X is transparent, and
0 otherwise.

This lemma is called the killing lemma, since nontransparent X are “killed off”
by an encircling with �D .

Lemma 4.35. To the knowledge of the author, this generalisation of the killing lemma
has not been discussed in the literature before.

Assume that g 2 G and Cg 6' 0. Then the G�-killing lemma holds for any A 2
ob Ce:

�A;�
g�1 ı�A;�g D �A � d.�e/2:

Proof. The left-hand side is represented diagrammatically by a closed cylinder encirc-
ling an A-labelled ribbon, with the sheet labelled g. The �g�1-encircling can be slid
off the �g -encircling, yielding factor d.�g�1/ D d.�g/. This changes the grade of
the remaining encircling to �e , thus we can apply the killing lemma (Lemma 4.34).

Corollary 4.36. Let X 2 Ce be simple. Then encircling �X;�g is an isomorphism
X ! gX if and only if X is transparent (the inverse being �X;�

g�1 � d.�e/�2), and
0 otherwise. This justifies generalising the name “killing lemma.”

5. The invariant

In this section, we will define an invariant of closed, smooth, oriented 4-manifolds
by labelling Kirby diagrams (Section 3) with data from G�-BSFCs (Sections 2.2
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and 4.3), and show its independence of the chosen Kirby diagram by means of the
lemmas from Section 4.4.

Fix again a G�-BSFC C , a manifold M , and a Kirby diagram K for M . Recall
from Definition 4.12 that K gives rise to an unlabelled planar diagram D . The 1-, 2-,
and 3-handles of K can be labelled appropriately to yield a labelling of the derived
diagram D . In detail, we require the following data.

Definition 5.1 (Labelling of Kirby diagrams). Denote by Kj the set of j -handles.
A labelling of K by C is specified by

• a function gWK3 ! G,

• a function X WK2 ! CŒC � such that the derived labelling of D type-checks,

• a function �WK1 ! mor C ˝mor C into type-checking dual morphism spaces:

�.h1/ 2 h˝.h2;˙/ıh1X.h2/˙i ˝ h˝.h2;˙/ı�1h1X.h2/�i:

Here, ıh1 denote the attached 2-handles, and ı�1 denotes the reverse cyclical
ordering.

Remark 5.2. Crucially, the handles of the Kirby diagrams receive labels, and not
each individual element of the diagram. It is important that the different lines stem-
ming from a single 2-handle are labelled with the same data, and the same is true for
the different discs from a single 3-handle.

The invariant is now defined as a sum of diagram evaluations over all possible
3-handle labellings, assigning the appropriately graded Kirby colour to every 2-handle
and the dual bases from Definition 2.1 to every 1-handle.

Definition 5.3. Making full use of the generalisations from Remark 4.23, the invari-
ant assigned to a G�-BSFC C is defined as

IC .K/ WD
X

gWK3!G

D
K
�
g; h2 7! �deg.h2/;

O
h1

X
i

�h1;i ˝ Q�h1;i
�E
d.�C /

jK1j�jK2j:

By abuse of notation, we have used deg.h2/ WD
Q
.g;˙/2ıh2

g˙;which is the degree of
a type-checking object labelling a 2-handle h2.

P
i �h1;i ˝ Q�h1;i denotes the sum over

the dual bases of hs.h1/i and hs.h1/�i. Writing out the sums explicitly is possible:

IC .K/ D
X

gWK3!G

X
X WK2!O.C/

deg.X.h2//Ddeg.h2/

X
�h1;i ;

Q�h1;i
8h12K1

D
K
�
g;X;

O
h1

�h1;i ˝ Q�h1;i
�E

� d.�C /
jK1j�jK2j �

Y
h22K2

d.X.h2//: (5.1)
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Theorem 5.1. For a given manifold M , IC does not depend on the choice of Kirby
diagramK, in other words, it is an invariant of smooth, closed, oriented 4-manifolds.

Proof. We have to prove the following lemmas about IC :

• independence of orientation choices (Lemma 5.4);

• invariance under isotopies of the diagram (Lemma 5.5);

• invariance under handle slides (Lemma 5.7);

• invariance under handle cancellations (Lemma 5.9).

Lemma 5.4. The invariant does not depend on the choice of orientations of the
attaching spheres.

Proof. Let us verify the statement for the attaching spheres of k-handles for all relev-
ant values of k.

(1) A change in orientation of S0 results in the exchange of the two attaching discs
of a 1-handle. In Definition 2.1, we can simply exchange the roles of � and Q� without
changing the diagram.

(2) Changing the orientation of an attaching S1 of a 2-handle h2 dualises its
labelling object, but also inverts the grade deg.h2/ of the incident 3-handles (reusing
the notation from Definition 5.3). From Remark 4.26, we know that

��deg.h2/
Š �deg.h2/�1 ;

thus the evaluation is independent of this choice.
(3) Since inversion is an involution on G, we can reindex the summation over

3-handle labellings g and redefine g.h3/ 7!g.h3/
�1 for the 3-handle h3 whose attach-

ing sphere was reoriented.

Lemma 5.5. The invariant does not change if an isotopy is applied to a k-handle.

Proof. Essentially, this is Proposition 4.22, but translated to the labelled planar dia-
gram derived from a Kirby diagram. If the isotopy is regular, the diagram in the pivotal
category does not change.

Let us retrace the proof for planar moves occurring from a k-handle isotopy, for
any value of k.

(1) Isotopy on a 1-handle (possibly with attachments) may cause point isotopies,
which are covered by naturality of the crossed braiding.

(2) The braid, or heptagon, axioms (e.g., [11, (6) and (7)]) and naturality of the
crossed braiding ensure invariance under isotopies involving or changing the cross-
ings.

(3) Sliding an attachment of a 3-handle h3 under a part of the diagram does not
change the extracted diagram. Sliding it over a part of the diagram acts on said part
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with g.h3/�1, followed by an action with g.h3/. G�-coherences and their inverses
are inserted where the fold arcs of the attaching sphere crosses the remaining diagram.
We can cancel these natural isomorphisms and recover the original diagram. (See, e.g.,
Figure 20, where the two coherences � and ��1 can be cancelled.)

It is useful to keep the following fact in mind for further proofs and calculations.

Remark 5.6. Recall thatG acts on C via monoidal automorphisms. This implies that
on a closed diagram, the group action from a 3-handle attachment is trivial, since a
closed diagram corresponds to an endomorphism of the monoidal unit 	.

Lemma 5.7. The invariant does not change if any handle slide is applied to the Kirby
diagram.

Proof. We prove invariance under each j -k-slide.
(1-1) Invariance under this slide is already satisfied for each 3-handle- and 2-

handle-labelling individually. It is proven by Corollary C.4 in the appendix, with f
the label of the 1-handle attachment being slid, and ˛ the 1-handle to be slid over.

(2-1) Assume, without loss of generality, that the 2-handle S1 is only slid through
halfways. This is again Corollary C.4, where X D X.h2/

� ˝ X.h2/ and f is the
duality coevaluation.

(2-2) This is the graded sliding lemma, 4.31.
(3-1) This does not change the extracted diagram in C , since attaching a 3-handle

to a 1-handle has no effect in the evaluation. (If, in the process of sliding, the 3-handle
attachment moves above another part of the diagram, Lemma 5.5 applies.)

(3-2) Up to G�-coherences, this does not change the extracted diagram.
(3-3) Assume h3 slides over h03. Up to G�-coherences, this simply multiplies the

labelling g.h03/ by g.h3/. Therefore, we can reindex the sum over 3-handle-labellings
accordingly (since group multiplication is a set isomorphism) and recover the original
value.

(3-1) Recall Remark 3.13 to visualise this move. Attaching a new 3-handle at
infinity that acts on the whole diagram leaves the evaluation invariant (Remark 5.6).
Sliding over it is an invariant again, as we just proved. Removing the 3-handle at
infinity again does not change the evaluation.

In order to prove invariance under handle cancellations, the following lemma is
useful.

Lemma 5.8. Let K1 and K2 be Kirby diagrams. IC is multiplicative under disjoint
union of diagrams

IC .K1 tK2/ D IC .K1/ � IC .K2/:
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Proof. Evaluating the disjoint union of two diagrams results in the monoidal product
of the evaluations. Since both diagrams are closed, they evaluate to endomorphisms
of 	, so the product is simply the multiplication in C. This shows

h.K1 tK2/.g;X; �/i D hK1.g;X; �/i � hK2.g;X; �/i;

from which the claim follows readily.

Lemma 5.9. The invariant does not change if cancelling handle pairs are removed
from, or added to the Kirby diagram.

Proof. Perform all necessary handle slides such that the cancelling handle pair is
disconnected from the remaining diagram. By Lemma 5.8, we only need to show that
the diagram of the cancelling pair evaluates to 1. This is done in the following for the
two relevant cancellations.

(1-2) For a simple object X 2 ob C labelling the 2-handle, the morphism space
hXi assigned to a 1-handle attaching disc is C if and only if X D 	, and 0 otherwise.
In the case it is 	, the basis consists of a single vector, so the sum ranges over a
single summand of value 1 (after having noted that the exponent of the normalisation
cancels).

(2-3) After consulting Figure 7 and recalling that the closed loop is a diagram for
the categorical dimension, it is apparent that the diagram evaluates to

P
g d.�g/ D

d.�C /, cancelling the normalisation.

Note that we assume all 0-1-cancellations and 3-4-cancellations to have taken
place already.

6. Calculations

As an advantage over state sum models and Hamiltonian formulations (to which
the connection will be made in Section 7), it is much easier to calculate explicit
values of the invariant. This is mainly because handle decompositions are a very suc-
cinct description for smooth manifolds, but also because the graphical calculus of
G�-BSFCs matches Kirby diagrams closely.

This observation was already made in [5] for Kirby diagrams without 3-handles,
where the Crane–Yetter invariant was calculated for several 4-manifolds. Due to the
following proposition, several results can be recovered for the invariant presented
here.

Proposition 6.1. Let M be a 4-manifold with a handle decomposition that does not
contain any 3-handles, and let K be a Kirby diagram for this decomposition. Then
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Manifold Invariant value � � �1

S4 (incl. exotic candidates) 1 2 0 1
S1 � S3 jGj � d.�C / 0 0 Z

S2 � S2, CP2 # CP2 d.�0e/ � d.�e/ � d.�C /
�2 4 0 1

CP2
P
X2O.Ce/

d.X/2�X � d.�C /
�1 3 1 1

CP2
P
X2O.Ce/

d.X/2��1
X
� d.�C /

�1 3 �1 1
S1 � S1 � S2 (faithful gr.) jGj2 � jO.C 0e/j � d.�e/ 0 0 Z˚ Z

S1 � S3 # S1 � S3 # S2 � S2 jGj2 � d.�0e/ � d.�e/ 0 0 Z � Z

Table 3. Example values for the invariant, in comparison with several classical invariants. � is
the Euler characteristic, � is the signature, �1 the fundamental group. Z � Z denotes the free
product of Z with itself, i.e., the free group on two generators.

its invariant from Definition 5.3 is equal to its renormalised Crane–Yetter invariantcCY [5, Proposition 6.1.1] for the trivial degree, up to a factor involving the Euler
characteristic:

IC .M/ D cCYCe .M/ �
� d.�C /

d.�Ce /

�2��.M/

:

In particular, if C is concentrated in the trivial degree, they coincide.

Proof. Without 3-handles, all 2-handles are labelled with�e , and there is noG-action
on any part of the diagram. Reminding ourselves that the number of 3-handles jK3j is
zero, furthermore jK0j D jK4j D 1, and therefore here

�.M/ D jK0j � jK1j C jK2j � jK3j C jK4j
D 2 � jK1j C jK2j;

we compare to Definition 5.3 and [5, Propositions 4.13 and 6.1.1].

6.1. Example manifolds

The following perspective was pointed out to the author by Ehud Meir: if we fix a
particular manifold M 4 and vary C , the quantity IC .M/ becomes an invariant of
G�-BSFCs. We will show here that many known invariants of fusion categories can
be recovered by choosing the correct manifold. Table 3 summarises the results.

6.1.1. S 1 � S 3. Recall the Kirby picture for this manifold from Figure 12. The
attaching sphere of the 3-handle, labelled with a group element g, acts trivially in
the diagram according to Remark 5.6. There is a single 1-handle and no 2-handle
present. Summing over the 1-dimensional morphism space of the monoidal identity
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yields

IC .S
1 � S3/ D

X
g2G
�2h	i

� Q� � d.�C / D
X
g2G

d.�C / D jGjd.�C /:

6.1.2. S 2 � S 2. Since S2 admits a standard handle decomposition with a single
0-handle and a single 2-handle, the product handle decomposition of S2 � S2 only
consists of a 0-handle, two 2-handles and a 4-handle, so Proposition 6.1 is applicable
and we can follow the calculation from [5, (6.1.3)] to arrive at

IC .S
2 � S2/ D

d.�0
Ce
/d.�Ce /

d.�C /2
:

For the details of the calculation, assume as Kirby diagram for S2 � S2 the Hopf link
of two 2-handle attachments [15, Figure 4.30]. Both 2-handles are labelled with�Ce .
Then by the killing lemma 4.34, one of them only contributes with the symmetric
centre �0

Ce
. Then the diagram unlinks (since any object in �0

Ce
braids trivially with

any other object), and we arrive at the desired value after including the normalisation.

6.1.3. Complex projective plane and Gauss sums. The complex projective plane
CP2 has a handle decomposition with a single 0-handle, 2-handle and 4-handle, so
again Proposition 6.1 is applicable and we can reuse the results from [5, Section 3.4].
The 2-handle is attached along the 1-framed unknot (see the equation below), and
accordingly the evaluation of this diagram is the trace over the twist, whose eigenvalue
on a simple, trivially graded object X we will denote by �X here:

I
� �

D
X

X2O.Ce/

d.X/2�X � d.�C /
�1:

Flipping the orientation famously results in a non-diffeomorphic manifold, CP2. Not
surprisingly, the Kirby diagram is the mirror diagram of the above, and its invariant is
the same with � replaced by ��1. The values

P
X2O.Ce/

d.X/2�˙X are known as the
Gauss sums of the ribbon fusion category Ce .

6.1.4. S 1 � S 1 � S 2. To study an example where the presence of 3-handles influ-
ences the manifold, we turn to S1 � S1 � S2, borrowing several calculational steps
from [5, Section 6.2.1]. For now, we assume that the G-grading on C is faithful (i.e.,
Cg 6' 0 for any g), which is quite restrictive in the context of G�-BSFCs; compare
Remark 2.4 and note that Corollary 4.36 implies that any faithfully gradedG�-BSFC
has natural isomorphismsX ! gX for every group elementG on the transparent sub-
category X 2 C 0. Completing this calculation for non-faithfully graded G�-BSFCs
requires a deeper study of the group action and would probably yield an interesting
invariant of the category.
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Recall the Kirby diagram from Figure 13 and note that h2a does not have any
3-handle attached to it and will thus be labelled Ce , while h2b has both 3-handles
attached twice with opposite boundary orientation and will be labelled by �Œg1;g2�,
where Œg1; g2� WD g1g2g

�1
1 g�22 . The number of 1-handles equals the number of

2-handles, cancelling the normalisation, and we can begin to evaluate the diagram

I.S1 � S1 � S2/ D
X

g1;g22G
X2O.Ce/
˛;ˇ

d.X/ �

g1˛

Q̨ Q̌

g2ˇ
g1g2Xg2g1X

g2X

X

g1X

�Œg1;g2�

(6.1)

We are using the dual basis convention from Figure 1 when summing over ˛ and ˇ.
The contribution from h2b is an encircling where Lemma 4.35 is applicable, so we can
restrict the sum over X to C 0e , since CŒg1;g2� 6' 0. The morphism spaces of the form
h.g2X/� ˝ Xi 3 Q̨ may not be familiar at first, but recall that Corollary 4.36 defines
a canonical isomorphism X ! g2X , the encircling by �g2 . The morphism space
hX� ˝Xi is inhabited by the coevaluation coevX W	! X� ˝X , and h.g2X/� ˝Xi
is spanned by the coevaluation precomposed with the mentioned isomorphism. We
thus insert the encircling with �g2 graphically where g2X enters Q̨ , and insert the
inverse of the isomorphism (which is encircling with �g2 and prefactors detailed in
Corollary 4.36) at ˛. The analogous computation can be done for ˇ and Q̌. These
four new encirclings can be slid off the original encircling from h2b , by the sliding
lemma (Lemma 4.31). This changes its grade to Ce , and unlinks the encirclings from
the diagram. They can thus be evaluated and result in dimensional factors. Including
all prefactors, we have

D
X

g1;g22G
X2O.C 0e/
˛;ˇ

d.X/ �

˛

Q̨ Q̌

ˇ
X

X

X

X

�e

� d.�g1/d.�g2/d.�g�1
1
/d.�g�1

2
/

� d.X/�2d.�e/�2d.�g1/�1d.�g1/�1:
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By Lemma 4.27, all factors of the form d.�g/ are equal if they are nonzero. The
remaining calculation follows [5, Section 6.2.1]. The ordinary killing lemma
(Lemma 4.34) is applied, and evaluations and coevaluations with the correct prefact-
ors inserted for the dual bases:

D jGj2 � jO.C 0e/j � d.�e/:

Variant: trivial grading on Z3. To see the effect of the group action in a non-
faithfully graded G�-BSFC C , we choose explicit examples for the category. First,
set G D Z2 and C

Z2
Z3
D VectZ3 , which denotes Z3-graded finite-dimensional vector

spaces, with simple objects 	; !; !�. Let the grading be concentrated in the trivial
degree, and equip the category with the trivial Z2-action, and the trivial braiding.
Second, define zCZ2

Z3
with the same data as C

Z2
Z3

, but alter the group action such that
the nontrivial element � 2 Z2 acts as �! D !�, and �!� D !.

For C
Z2
Z3

we jump ahead slightly to Proposition 6.8 and learn:

I
C

Z2
Z3

.S1 � S1 � S2/ D j¹�WZ˚ Z! Z2ºj � cCYVectZ3
.S1 � S1 � S2/

D 4 � 9 D 36:

For zCZ2
Z3

, we have to follow the calculation from (6.1). Since Z3 is abelian, we get
�Œg1;g2� D �e throughout. The encircling unlinks and contributes as a global factor
of d.�e/ D 3. We do not have natural isomorphisms X Š gX and need to perform
the sums over the morphisms explicitly. Luckily, the morphism spaces hgX� ˝ Xi
are only C for g D e or X D 	, and 0 otherwise. The diagram evaluates to 1 if
both morphism spaces are C, which leaves us to merely count the admissible labels
.X; g1; g2/:

I
zC

Z2
Z3

D j¹.	; g1; g2/jg1; g2 2 Z2º t ¹.!; e; e/; .!�; e; e/ºj � d.�e/ D 6 � 3 D 18:

6.2. Connected sum, smooth structures, and simply-connectedness

It is a natural question to ask how strong the invariant is, and in particular whether it
can detect smooth structures. In this subsection, we demonstrate that generically, this
is not the case.

Proposition 6.2. The invariant is multiplicative under connected sum. Explicitly, let
M1 and M2 be two manifolds, and M1 #M2 their connected sum. Then,

IC .M1 #M2/ D IC .M1/ � IC .M2/:

Proof. Given two Kirby diagrams forM1 andM2, respectively, their disjoint union is
a diagram for M1 #M2. Then the statement follows from Lemma 5.8.
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This proposition has far-reaching consequences for generic G�-BSFCs.

Corollary 6.3. Assume furthermore that the Gauss sum of C 0e is invertible. Then IC

does not detect exotic smooth structures.

Proof. By [13, Proposition 6.11], the Gauss sums of Ce are invertible, and thus also
IC .CP2/ and IC .CP2/, by the results of Section 6.1.3. We can apply the remark
from [20, Section 1.4] to infer that I.M/ for any M depends only on the signature,
the Euler characteristic, the fundamental group and the fundamental class of M .

Corollary 6.4. Assume again that the Gauss sum of C 0e is invertible. For a simply-
connected manifold M with Euler characteristic �.M/ and signature �.M/, the
invariant readily computes as

IC .M/ D IC .CP2/
�.M/C�.M/

2 �1 � IC .CP2/
�.M/��.M/

2 �1: (6.2)

Proof. See, e.g., [5, Lemma 3.12].

Example 6.5. Under the same assumptions as before, we have IC .CP2 # CP2/ D
IC .S

2 � S2/.
Remark 6.6. The invariant in its generic form does not seem to be helpful in the
search for exotic smooth 4-manifolds, nor does it depend directly on the 3-type of the
manifold (as was hoped, e.g., in [32, Section 5]).

In line with what we noted at the beginning of Section 6.1, the more fruitful
viewpoint is to study the resulting invariants for G�-BSFCs when fixing a particu-
lar manifold. By Table 3, we could recover the global dimensions of C , Ce and C 0e ,
as well as the rank of C 0e , and the Gauss sums. By the next subsection we will be
able to recover most information about the group G. It remains an interesting open
question whether there is a finite set of manifolds such that the corresponding set of
invariants is complete on G�-BSFCs, i.e., can distinguish any two G�-BSFCs up to
equivalence.

6.3. Untwisted Dijkgraaf–Witten theory

Definition 6.7. Let G be a finite group. The untwisted Dijkgraaf–Witten invariant
DWG.M/ is defined as the number of G-connections on the manifold M :

DWG.M/ WD j¹�W�1.M/! Gºj:

This normalisation is not the most common in the literature, but it is simpler for our
purposes.
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Proposition 6.8 (Compare [11, Proposition 4.5]). Let C be concentrated in the trivial
degree, i.e., g¤ e H) Cg ' 0 (or equivalently C 'Ce as fusion categories), and the
G-action be trivial. Then the invariant is a product of the Dijkgraaf–Witten invariant
and the renormalised Crane–Yetter invariant [5, Proposition 6.1.1]:

IC .M/ D DWG.M/ � cCYCe .M/:

Proof. AnyG-labelling on 3-handles for which any 2-handle is labelled with�g such
that g ¤ e does not contribute to the invariant since �g D 0 in that case. Recall the
presentation of the fundamental group from Section 3.4.3. The 3-handles are gener-
ators of �1.M/, while the 2-handles give relations. A homomorphism from �1.M/

to G is presented by an assignment of a G-element for every 3-handle, such that the
relations of �1.M/ are satisfied. The former is given by a G-labelling, the latter is
implemented by the fact that only thoseG-labellings contribute to the invariant where
all 2-handles are labelled by �e . Thus, the contributing G-labellings indeed run over
all possible homomorphisms �W�1.M/! G. As in the proof of Proposition 6.1, it is
easy to see that each such contribution is just cCYCe .M/.

7. Recovering the state sum model

The main motivation for this work was the second open question in [11, Section 7].
There, a state sum model is defined for G�-BSFCs in terms of triangulations, but it is
noted that the model is impractical to compute. We will show now that the invariant
defined here is equal to the state sum up to a classical factor, giving an economical
way to calculate the state sum.

The state sum takes a G�-BSFC C and a manifold M with compatible triangula-
tion T , labels 1-simplices with group elements, 2-simplices with simple objects and
3-simplices with morphisms. For every 4-simplex, a local partition function is defined.

There is a well-known procedure called chain mail to turn an invariant defined on
Kirby diagrams into a state sum model. A smooth triangulation gives rise to a handle
decomposition, and we have to pull back the definition along this procedure. Chain
mail has been described already in [26, Section 4.3]. As we go through the steps, we
refer to [5, Section 5] for details, which matches our conventions and notation to a
large degree.

Definition 7.1 (Well known). Every triangulation T of a smooth manifold M gives
rise to a handle decomposition, where the k-simplices are thickened to .n � k/-
handles. This is called the dual handle decomposition. The set of k-simplices is
denoted as Tk .
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Theorem 7.1. Up to a factor involving the Euler characteristic, the invariant from
Definition 5.3 is equal to the state sum ZC from [11, (23)]. Explicitly, let M be a
connected manifold and T an arbitrary triangulation, then

IC .M/ D ZC .M I T / � d.�C /
1��.M/ � jGj:

Proof. We begin with the dual handle decomposition of T . It does not have a single
0-handle and 4-handle, thus we cannot directly calculate I of this decomposition.
The strategy is to slightly modify the manifold until we can calculate the invariant,
and recover the original value from there. Each 0-handle can be regarded as a drawing
canvas which contains the Kirby diagram of the corresponding 4-simplex � . Propos-
ition 7.2 will show that the evaluation of such a diagram (denoted here as h�i) is just
the quantity Z˙F .�/ from [11, Section 3.1].

In order to join all drawing canvases by cancelling the excessive 0-handles, we
attach jT4j � 1 1-handles (recall that the handle decomposition had jT4j 0-handles to
begin with). Since the resulting manifold is not closed, we attach jT4j � 1 3-handles
to cancel the boundary. The resulting manifold isN WDM #jT4j�1 S1 � S3, for which
we know from Proposition 6.2

IC .M/ D IC .N / � jGj1�jT4jd.�C /
1�jT4j:

We know that still jT0j � 1 3-handles will be cancelled by excessive 4-handles, then
we can calculate IC .N / diagrammatically. Since the diagram forN is a disjoint union
of diagrams for each 4-simplex � 2 T4 (with jT4j � 1 3-handles added and jT0j � 1
removed, each incurring a factor of jGj), it factors as a product like in the proof of
Lemma 5.8, and we can infer from (5.1)

IC .N / D
X
g;X

d.�C /
jT3j�jT2jjGjjT4j�jT0j

Y
h2

d.Xh2/
Y
�2T4

h�i:

We compare with [11, (23)], which uses the notationD2 D d.�C / and labels objects
with f , and defines (in our notation)

ZC .M I T / D
X
g;X

d.�C /
jT0j�jT1jjGj�jT0j

Y
h2

d.Xh2/
Y
�2T4

h�i:

We combine all three equations and recall that the Euler characteristic is �.M/ D
jT0j � jT1j C jT2j � jT3j C jT4j to verify the claim.

Proposition 7.2. The Kirby diagram of a 4-simplex � evaluates to the quantityZ˙F .�/
from [11, Section 3.1].
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Figure 22. The Kirby diagram of a 4-simplex, showing only the nontrivially acting 3-handle.

Proof. The only novelty over [26, Section 4.3] and [5, Section 5] is the appearance of
3-handles in the Kirby diagram of a 4-simplex. Each 3-handle is given by a 1-simplex,
or edge, in the triangulation, and is thus specified by its two end vertices. For any third
vertex (of which there exist three), a 2-simplex, or triangle, exists such that the edge is
part of the boundary of the triangle, and thus the 3-handle attaches to the correspond-
ing 2-handle. There are five 3-simplices (each opposite a vertex) which are thickened
to five 1-handles. These connect the 4-simplex to any neighbouring 4-simplex, and
thus only one of the attaching D3 is visible in the diagram. Since a 3-simplex has
four boundary triangles, four 2-handles attach to each 1-handle. The resulting dia-
gram is shown in Figure 22, but not all 3-handles are shown, for clarity. The diagram
is not unique since any 3-dimensional isotopy can be applied to it, but it is favour-
able to minimise the number of crossings to keep calculations simple. Similarly, it
is desirable to minimise the number of 3-handles covering a 1-handle attaching disc.
The minimum number is one each, and it is achieved in the diagram, following the
convention of [11, Figure 13 (left)].

7.1. From state sum models to TQFTs

There is a well-known recipe to define a TQFT ZC from a topological state sum
model [31] such that ZC .M

4/ D ZC .M
4/ for a 4-manifold, where M 4 is regarded

as a cobordism from the empty manifold to itself. The dimensions of the state spaces
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ZC .N
3/ assigned to boundary 3-manifolds are of interest and can be calculated as

dim ZC .N
3/ D tr 1ZC .N

3/ D ZC .S
1 � N 3/ D ZC .S

1 � N 3/. Using Theorem 7.1,
this calculation is now much easier than directly from the state sum.

Corollary 7.3. The dimension of the state space assigned to a 3-manifold N is

dim.ZC .N // D IC .S
1 �N/ � d.�C /

�1 � jGj�1:

Proof. Note that the Euler characteristic is multiplicative and �.S1�M/D�.S1/D0.
We continue the calculation of ZC .S

1 �M/ to arrive at the result.

Examples 7.4. (1) One readily verifies that dim.ZC .S
3// D 1. It is well known that

such a TQFT is, up to a factor of ZC .S
4/�1, multiplicative under connected sum, in

agreement with Proposition 6.2.
(2) For a faithfully graded G�-BSFC, we calculate

dim.ZC .S
1 � S2// D jGj � jO.C 0e/j � d.�e/ � d.�C /

�1 D jO.C 0e/j;

showing that the theory is non-invertible when Ce is not modular.
(3) For the two examples from Z2 acting on VectZ3 , we get

dim.Z
C

Z2
Z3

.S1 � S2// D 6 and dim.Z
zC

Z2
Z3

.S1 � S2// D 3:

7.2. Discussion: defining a TQFT directly from handle decompositions

Manifolds with nonempty boundary are described by handle decompositions as well
[15, Section 5.5]. In fact, handle attachments can be seen as the fundamental generat-
ors of bordisms, and TQFTs can be defined naturally in terms of them [19].

An arbitrary Kirby diagram (one that does not necessarily correspond to a closed
manifold) specifies both a boundary 3-manifold N and a bordism M W ; ! N . The
boundary N is constructed via surgery, as per Remark 3.3. It is in principle possible
to define a TQFT directly from handle decompositions of bordisms, but doing so
rigorously is beyond the scope of this article and is left as future work.

In Atiyah’s axiomatisation of TQFTs [2], a vector space Z.N / is assigned to every
boundary manifold N , and a vector Z.M/ 2 Z.@M/ is assigned to every top-dimen-
sional manifold. We informally propose these two constructions for a G�-BSFC C .
(It should also be possible to generalise the approach to functorial TQFTs, and repeat
the constructions for bordisms M WN1 ! N2 with a nonempty domain N1 by using
relative Kirby calculus.)

In analogy to the Turaev–Viro model [22], one would define a string net space,
or “skein space,” for Z.N /. Essentially, it would be defined as the vector space over
C -labelled diagrams (as in Definition 4.15) embedded in N , modulo local relations
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in C (the evaluation from Definition 4.16). For S3, this space is then tautologically
1-dimensional since the labelled diagrams are defined to be evaluated on it. But for
a more complicated manifold N , the dimension of its state space should be higher,
and should in particular coincide with the values IC .S

1 �N/ derived in the previous
subsection.

For a given Kirby diagram K, the manifold S3.K/ is defined as surgery on S3

along the spheres in K. The string net space Z.S3.K// has then an easier descrip-
tion as C -labelled diagrams embedded in S3nK, modulo local relations and Kirby
moves. (The latter are a complete set of moves that relate any two surgery diagrams
of diffeomorphic 3-manifolds.)

The vacuum state assigned to S3.K/ (i.e., the vector corresponding toM W ;!N ,
where K is a Kirby diagram for M ) should then simply be the empty diagram. This
could confuse at first since different M potentially give rise to different vacua, but
note that the vacuum state is only the empty diagram in the particular surgery dia-
gram K, and would usually not be mapped to the vacuum state of S3.K 0/ under
a diffeomorphism S3.K/ Š S3.K 0/, for a different diagram K 0 corresponding to a
non-diffeomorphic bordism M 0W ; ! N .

8. Spherical fusion 2-categories and related work

This section is kept in an informal discussion style. One reason to adopt the graphical
calculus presented in Section 4 was to stay close to the language of Kirby diagrams
with 3-handles, but another reason was to imitate the graphical calculus of Gray cat-
egories (semistrict 3-categories) with duals [7]. The main reason not to translate Kirby
diagrams into Gray category diagrams is to take advantage of the graphical calculus
of pivotal categories, which is a considerable shortcut.

G�-BSFCs can be seen as monoidal 2-categories [11, 12], which in turn can
be seen as one-object 3-categories, this approach is thus natural. The translation of
G�-BSFCs into monoidal 2-categories is summarised in Table 4.

Since [23], there is a search for a good categorification of spherical fusion cat-
egories to the world of monoidal 2-categories. The definition proposed there was
soon found to be too restrictive, but it was long an open problem to find a more gen-
eral and still well-behaved definition. It is shown in [11] explicitly that G�-BSFCs
already yield more general monoidal 2-categories, but still a good definition of spher-
ical fusion 2-category is expected to be much more general.

[12] offers a detailed and promising definition, relates it to [11], and defines a
state sum model. It is to be expected that the invariant based on Kirby diagrams
with 3-handles presented here can be generalised to that notion of spherical fusion
2-categories, and that it will coincide with that state sum. Some elements of this art-
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Datum in a G�-BSFCs Notation Datum in the monoidal 2-category

Group element g 2 G Object
Grade Cg Endocategory
Object A 2 C 1-morphism
Morphism f WA! B 2-morphism
Group multiplication g1g2 Monoidal product
Group inverse g�1 Duality
Group action gA 1-morphism composition
Monoidal product A˝ B 1-morphism composition
Crossed braiding cX;Y WX ˝ Y ! gY ˝X Interchanger

Table 4. The translation of G�-BSFCs to monoidal 2-categories. Summarised from [11, Sec-
tion 6] and [12, Constructions 2.1.23 and 2.3.6].

icle that played no role in the invariant, such as the fold lines of sheets, are then less
trivial to handle. The details of this correspondence are left for future work, but one
can speculate that the handle picture will once again allow for much more efficient
computations.

In the following discussion, we want to informally discuss such a generalisation,
and digress on a good “higher spherical axiom.”

4-cocycles and pentagonators. The Dijkgraaf–Witten model is usually defined for
the datum of a finite group G and a 4-cocycle ! 2 C 4.G;U.1// (with cohomologous
cocycles giving rise to equivalent theories). If Œ!� ¤ 0, the theory is called twisted,
but in Section 6.3, only the untwisted Dijkgraaf–Witten model occurred. In [11, Sec-
tion 4.4], the state sum model is generalised to include a 4-cocycle, and the twisted
Dijkgraaf–Witten model is recovered.

The reason seems to be that the monoidal 2-category defined from a G�-BSFC
is very strict. In a general monoidal bicategory (see, e.g., [27, Appendix B.4]), there
exist associators for the monoidal product, and even these do not satisfy the pentagon
axiom on the nose, but rather up to an invertible modification, the pentagonator. In a
monoidal 2-category from a G�-BSFC, the monoidal product is associative though,
and the pentagonator is trivial. This seems quite restrictive, and we would want to
allow for a weaker structure.

Still with an associative monoidal product, the pentagonator can contain nontrivial
data. It consists of an invertible automorphism of the identity 1-morphism for the
tensor product of every four objects, satisfying the “associahedron equation.” For the
case of monoidal 2-categories from G�-BSFCs, one can verify that pentagonators in
fact correspond to 4-cocycles of G. It would be interesting to study to what data all
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further coherences of monoidal 2-categories correspond, and to define the invariant,
or the state sum model, in terms of it.

Note though that in [12, Definition 3.3.8], no pentagonator occurs as structure of
the monoidal category, but it is strictified, as in Gray categories.

The 3-spherical axiom. The 3-dimensional Turaev–Viro–Barrett–Westbury model
([8,31]) is most generally defined for a spherical fusion category. The spherical axiom
demands that the left and right traces defined by the pivotal structure are equal. Given
a diagram in R2 of a morphism in a spherical fusion category, this axiom is equival-
ent to embedding the diagram in S2 Š R2 [1 and allowing any line to be isotoped
past1. Unsurprisingly, this is the lower-dimensional analogon of the 3-1-move from
Section 3.3.2: 3-manifolds have handle decompositions, and when depicting them in
the plane, there is a “2-1-move” between different diagrams of the same decomposi-
tion. The graphical calculus in the category must correspondingly validate this move.
(One might argue that the move should thus be called the “2-spherical” move, since it
takes place on a 2-sphere.)

It is only natural to require a “3-spherical axiom” in any suitable definition of
spherical fusion 2-categories which corresponds to the 3-1-move. In those 2-cat-
egories which come from G�-BSFCs, this move is trivially true [12, Example 2.3.6],
since group elements act trivially on the tensor unit of the category.

Spherical fusion 2-categories satisfy precisely this move [12, Definition 2.3.2],
justifying its name and its relevance. In this greater generality, it becomes a necessary
ingredient to define dimensions of objects of 2-categories. In the graphical calculus,
a trivially attached 3-handle (Figure 3) would evaluate to the dimension of its label.
In G�-BSFCs, these dimensions are always 1, and thus irrelevant, but in general,
3-handles would play a bigger computational role.

Defect theories and orbifold data. It seems fruitful to compare to orbifold theories
of defect theories. The Turaev–Viro–Barrett–Westbury model is an orbifold TQFT
of the trivial 3d defect theory [9], and the parametrising spherical fusion categories
are algebras in a tricategory. Gray categories are naturally objects in a (yet to be
rigorously defined) tetracategory, and one would hope that the Gray category derived
from a G�-BSFC as well as the orbifold data of the trivial 4d defect theory carry the
appropriate algebra structure satisfying the correct higher sphericality axiom.

A. Manifolds with corners

A closed n-manifold is defined to be locally homeomorphic to Rn, whereas a manifold
with boundary is locally homeomorphic to (a neighbourhood in) Rn�1 � RC, with
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RC WD Œ0;1/. Closed manifolds have products, but defining a product for manifolds
with boundary is not straightforward since corners arise.

A (smooth) n-manifold with k-corners is locally homeomorphic to Rn�k � RkC.
A closed manifold thus has 0-corners, a manifold with boundary has 1-corners, and
the product of two manifolds with boundaries is naturally a manifold with 2-corners.

Since as topological spaces Rn�1 � RC Š Rn�k � RkC, the notion of corners
only becomes relevant in the context of smooth manifolds. The boundary of a smooth
n-manifold with k-corners is subtle to define. The naive definition, in which a point
is on the boundary whenever any of the last k coordinates is 0, does not yield a
smooth manifold, only a topological manifold. In a sensible definition like [18, Defin-
ition 2.6], the boundary is a smooth .n � 1/-manifold with .k � 1/-corners, but it is
in general not a submanifold. Rather, j disjoint copies are made for every j -corner
point, and the boundary is immersed in the n-manifold. For example, the archetypal
corner manifold R2C has as boundary RC � ¹0º t ¹0º � RC, where the origin .0; 0/
appears twice.

In this light, handles and their diverse regions are much easier to understand
conceptually. The k-disc Dk is a manifold with boundary for k � 2, and thus an
n-dimensional k-handle hk DDk �Dn�k is generally an n-manifold with 2-corners.
Its boundary is the disjoint union Sk�1 �Dn�k tDk � Sn�k�1, and we have called
the former “attaching region” and the latter “remaining region.” It is an .n � 1/-man-
ifold with 1-corners, or simply with boundary.

As a topological manifold, all n-dimensional k-handles are homeomorphic toDn,
reflecting the fact that we can glue the attaching region and the remaining region
together along their common boundary Sk�1 � Sn�k�1 to arrive at the sphere Sn�1.

Glueing two handles along their boundary regions results in a manifold with
corners, but usually these corners are of index 2. There is a canonical way to
“smoothen” these corners [15, Remark 1.3.3], so a handle body again becomes a
manifold with boundary after the handle attachment.

As a simple example, we define n-gons:

Definition A.1. The n-gon Gn is the unique oriented, simply connected 2-manifold
with corners whosel boundary @Gn consists of n copies of the interval. In particular,

• G0 D S2 is the 2-sphere;

• G1 is the “teardrop” manifold (see, e.g., [27, Section 3.1, Figure 1]);

• G3 is the 2-simplex.

For n > 0, the underlying topological manifold is the 2-discD2, but its smooth corner
structure is different.
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B. Details on Kirby calculus and diagrams

B.1. Kirby convention

Proof of Lemma 3.12. We have to show that any handle decomposition with a single
0-handle and 4-handle can be isotoped such that it is regular (Definition 3.7) and
satisfies the single picture conventions (Definition 3.9).

Regularity can always be achieved by isotoping the attaching regions, see, e.g.,
[15, Proposition 4.2.7].

Let us show the two conditions for the single picture conventions.
(2-1, 3-1) This has been illustrated in Figure 6. Inside the remaining region @rh1 D

Œ�1;C1� � S2 of a 1-handle, apply an isotopy such that all attachments intersect
¹0º � S2 transversely in a finite subset (for a 2-handle attachment) or a 1-dimensional
manifold (for a 3-handle attachment). By transversality, this can be extended to a
small neighbourhood .�";C"/ � S2, and then pushed out of @rh1 with an isotopy
into the main drawing canvas.

(3-2) Analogously to the situation for 1-handles, focus on ¹0º � S1 �D2 � S1 D
@rh2 inside the remaining region of a 2-handle, and isotope any 3-handle attachment
such that it intersects this circle transversely in a finite set of points. Extend to the
thickening D2

" � S1 (where D2
" is a disc around 0 with radius ") and isotope out of

the remaining region by enlarging this disc, possibly pushing all folds outside into the
drawing canvas.

B.2. Blackboard framing

An embedded thickened ribbon is given, up to isotopy, by a framed ribbon, which is
a ribbon with a nonvanishing normal vector field. Immersing an oriented ribbon into
an oriented surface defines a framing by arbitrarily choosing a vector field into the
left-hand side of the surface, as viewed from the ribbon direction.

A regular diagram as in Definition 4.7 defines a blackboard framing on its rib-
bons and fold arcs. Similarly, a Kirby diagram defines a blackboard framing for its
2-handle attachments. For any given framing, it is always possible to match it with
the blackboard framing by repeatedly applying the first Reidemeister move.

The notion of blackboard framing is standard for Kirby diagrams without
3-handles, but has not been described yet for diagrams with 3-handles. The projec-
tion of the diagram onto the plane locally defines a right-hand side and a left-hand
side for every ribbon. To assume the blackboard framing for at 3-handle attachment
means to require that it may not change the side, so the 3-handle attaching sphere
must stay parallel to the plane close to where it attaches to a 2-handle.

As with any convention, it must be shown that later constructions do not depend on
the choices made. Here, we have to show that the invariant does not depend on whether
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a particular 3-handle is attached on the right-hand side or the left-hand side. Assume
that 3-handles labelled g1; g2; : : : ; gK are attached to a 2-handle on the right-hand
side (from top to bottom) and gKC1; : : : ; gN ; g on the left-hand side (from bottom to
top), which implies that the 2-handle is labelled with �g0g , where g0 WD g1g2 � � �gN .
If the 3-handle labelled g is isotoped around to the right side, the grade changes from
g0g to gg0, and the 3-handle attaching sphere now covers the 2-handle circle. Since
g�g0g Š �gg0 , the diagram still evaluates to the same quantity.

B.3. Related graphical calculi

A standard reference for graphical calculus is [29, Sections 3 and 4]. Like the one
presented here, it also resembles the calculus of braided categories, but instead of
using 2-dimensional sheets, it implements the G-crossed structure by means of a
group homomorphism from the diagram complement toG. We chose a slightly differ-
ent route in this article and defined a more elaborate diagram language which matches
Kirby calculus with 3-handles more closely, but is also similar to the graphical cal-
culus of semistrict 3-categories with duals [7], as mentioned in Section 8. Turaev’s
calculus can be recovered soundly from the one presented here in Section 4, as will
be shown now.

First, we will paraphrase the relevant definitions from [29, Sections 3 and 4] in
our conventions.

Definition B.1. Let G be a group, and C a G�-BSFC. A C -coloured G-link consists
of

• a chosen base point z 2 S3,

• a framed link L 2 S3,

• a group homomorphism gW�1.S3nL/! G,

• for every homotopy class of paths 
 from z to some point in L, an objectX
 in C .

The objects X
 are subject to certain coherence laws detailed in [29, Section 3.1]. For
example, the action of a loop ˇW S1 ! S3nL on a path 
 corresponds to the group
action of g.Œˇ�/ on the labelling object X
 .

Whenever a diagram (Definition 4.1) is in particular a link, a C -colouring can be
recovered from a labelling (Definition 4.15).

Definition B.2. Let D be a labelled diagram with no points. Construct the associated
C -coloured G-link as follows.

• The base point is1.

• The link is given by the ribbons D1, which necessarily are all circles.
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• The group homomorphism is defined on a loop around a circle as the product of
group elements of the incident sheets on the circle, just as in the typing relations
of 4.15.

• For each circle r , choose one path from1 to it, running below the diagram in the
projection onto the plane. Its homotopy class is assigned the labelling objectX.r/.
Other homotopy classes of paths to the same circle are assigned objects according
to the conditions in [29, Section 3.1].

It is a tedious exercise to see that the group homomorphism and the path coulorings
are indeed well defined.

The calculus of C -coloured links is generalised in [29, Section 4] to graphs with
coupons labelled with morphisms in the category. The definition can then be repeated
with general labelled diagrams, i.e., with points.

Lemma B.3. The evaluation of labelled diagrams (Definition 4.16) extends to a func-
tor of G�-BSFCs.

Proof. This is a routine generalisation where the definition of diagrams has to be
extended to include ribbons with open ends. Functoriality then follows directly from
the graphical calculus of pivotal fusion categories.

Corollary B.4. Given a labelled diagram, its evaluation (Definition 4.16) coincides
with the action of the unique functor defined in [29, Theorems 3.6 and 4.5] on the
associated C -coloured graph.

Proof. The translation of the ribbons to (crossed) braidings is well known, see [30,
Chapter I] and [29, Theorem 4.5]. It remains to check whether the group action eval-
uates the same. The group action of the calculus in this work differs by the one from
[29] just by the extra flexibility arising from folds of the sheets. This gives rise to
isomorphic, but different group actions, and thus to different placements of the coher-
ence isomorphisms. An example is Figure 20. But from the coherence theorem of
G�-BSFCs [11, 24] we know that the whole morphism, and thus the evaluation is
invariant with respect to these choices.

C. 1-handle slide lemmas in fusion categories

To the knowledge of the author, the following lemmas are not mentioned explicitly in
the literature.

Definition C.1. Let C be a pivotal fusion category and A 2 C an object. Assuming
the summation conventions from Figure 1, the projection onto the monoidal unit

�	
A WA! A
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is defined as the following morphism:

�	
A WD

˛

Q̨

A

A

Lemma C.2. The projection onto the monoidal unit is a natural transformation, i.e.,
�	
A is natural in A.

Proof. Explicitly, let f WA! B be a morphism in C . Then the following is valid:

f

˛

Q̨

B

A

A

D
X

X2O.C/

d.X/

ˇ

Q̌

f

˛

Q̨

B

X

B

A

A

D

ˇ

Q̌

f

˛

Q̨

B

B

A

A

D
X

X2O.C/

d.X/

ˇ

Q̌

f

˛

Q̨

B

B

A

X

A

D

ˇ

Q̌

f

B

B

A

Remark C.3. For G�-BSFCs, the identity holds even if there is a group action on Q̨
or ˛. In the middle diagram, the disconnected part ˛ ı f ı Q̌ forms a closed diagram,
and by Remark 5.6 it can be moved freely from into or out of a group action.
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Corollary C.4. The 1-1-handle slide is valid in the graphical calculus of pivotal
fusion categories. Explicitly, let f W	 ! A. Then the following is true:

f

˛

Q̨

A B

B

D

f

ˇ

Q̌
A

A B

B

Proof. Apply the previous lemma to f ˝ 1B .
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