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Quantized representations of knot groups

Jun Murakami and Roland van der Veen

Abstract. We propose a new non-commutative generalization of the representation variety and
the character variety of a knot group. Our strategy is to reformulate the construction of the
algebra of functions on the space of representations in terms of Hopf algebra objects in a braided
category (braided Hopf algebra). The construction works under the assumption that the algebra
is braided commutative. The resulting knot invariant is a module with a coadjoint action. Taking
the coinvariants yields a new quantum character variety that may be thought of as an alternative
to the skein module. We give concrete examples for a few of the simplest knots and links.

1. Introduction

The discovery of the Jones polynomial brought us a new method to study knots and
links, but its relation to the geometric properties of the knot complement was unclear
at that moment. After Witten’s interpretation in terms of SU(2) Chern—Simons’s the-
ory, R. Kashaev [10] observed a precise relation between quantum invariants and
the hyperbolic volume of the knot complement. This was reinterpreted as a relation
between the colored Jones invariant and the hyperbolic volume by H. Murakami and
the first author in [16]. Moreover, it was observed by Q. Chen and T. Yang in [4]
that such relation also holds for the Witten—Reshetikhin—Turaev invariant of closed
3-manifolds. These relations between quantum invariants and hyperbolic volumes are
not rigorously proved yet in general and are known as the volume conjecture. In some
sense, the volume conjecture means that the colored Jones invariants represent a quan-
tization of the hyperbolic volume. Viewing the hyperbolic structure as a particular flat
SL(2, C) connection, the above was given an interpretation in terms of topological
quantum field theory with gauge group SL(2, C); see [6].

Once we got a relation like the volume conjecture, it is natural to think about
quantization of other geometric properties. For example, if the knot is hyperbolic, its
complement will be isometric to a quotient of hyperbolic space H3/T". The discrete
subgroup I is isomorphic to the fundamental group of the knot complement (the
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knot group). Using a suitable quantization of the Lie group SL(2, C) and its discrete
subgroup I', then the geometric structure of the complement of K may be quantized.
More generally, we construct a quantum deformation of the space of representations
of the knot group into some linear algebraic group.

Our construction is not 3-dimensional but (2 + 1)-dimensional, as the construc-
tion of quantum invariants including the Jones polynomial and the Kontsevich invari-
ant [17]. For a knot K, these invariants are obtained from a braid b whose closure
is isotopic to K. The braid b is interpreted as an isotopy of a punctured disk, where
the punctured disk is 2-dimensional and the deformation parameter is 1-dimensional.
For the Jones polynomial, the braid group action is given by the quantum R-matrix,
which comes from the monodromy matrix of conformal field theory. For the Kontse-
vich invariant, the braid group action is given by the Kontsevich’s iterated integral. In
both cases, we first consider such action of b, and then take the “quantum trace” of
these actions to get an invariant of K.

The starting point for this paper is the space of G representations of the knot
group, where G is a linear algebraic group whose coordinate ring has a natural cocom-
mutative Hopf algebra structure. Presenting the knot as a closed braid and interpreting
the braid group action in terms of Hopf algebra, we get a description of the represen-
tation space that is suitable for generalization. Replacing the coordinate ring of G by
a braided Hopf algebra and redoing the exact same construction while taking care of
the braiding allows us to quantize the space of representations. To construct a certain
“trace”, we need evaluation and coevaluation maps, which we do not know how to
construct for our case with Hopf algebras and braided Hopf algebras because they
might be infinite dimensional. Instead of taking a trace, we just take the b invariant
part of the algebra corresponding to the thickened punctured disk and then show that
it is independent of the choice of b.

We start by briefly recalling the construction of the space of representations of the
knot group 'k into a group G that we aim to generalize/quantize in this work. The
space of representations is described by an ideal in a tensor power of the coordinate
algebra C[G]. The coordinate algebra is generated by the matrix entries, and any
presentation of I'x allows us to express the relations as polynomial equations in these
matrix entries.

This construction works for any finitely presented group and any affine algebraic
group and is independent of the chosen presentation; see [2, Proposition 8.2]. How-
ever, it is not clear how to generalize this ideal in a non-commutative deformation
(i-e., quantizing) because one would need some way to order the variables that no
longer commute.

For a knot K, presented as the closure of a braid b, the Wirtinger presentation
tells us all relations are given by conjugation. Viewing the relations as equations on
the matrix elements of our representation defines an ideal [ as follows. To prepare our
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Figure 1. Dual of the relations of the Wirtinger presentation at crossings and their diagrammatic

presentations, read top to bottom.

generalization to the non-commutative world, we construct the submodule /5 using

the commutative Hopf algebra structure of the coordinate ring C[G]:

A : C[G] — C[G]®? with A(f) (a1 ® az) = f(aaz) (comultiplication),

S : C[G] = C[G] with S(f)(a) = f(a™h) (antipode),
¢ :C[G] — C withe(f) = f(e) (e : the identity of G)  (counit).

If the braid b is a product of the standard generators o1, . .., 0,, say
_ Ek Ek—1 €2 &1
b= i k-1 ip iy’

the ideal I} is generated by
Vp —id : C[G]®" — C[G]®" (i =1,2,...,n),
where v, is given by

Up(1 @02 ® -+ @ y) = (Y, ex oY _ex—1 00 20 o1 )(a) Qo2 ®
'k i 1

tk—1

and ¥_+, is given by

Vo, (@1 @ Q@i @iy @ Q atp)

= (01 ® - 0e>? @S ))elY @ ® ),

Wal.—l(al R QU1 @ Qay)

= (al ® e ® ai(3’1)S(ai(3,3))ai+1 ® ai(352) ® e ® an)

(1.1)

Here, we use Sweedler’s notation, i.e., the tensor « 3V @ «®? ® ¢33 means (A ®

ld)(A(O[)) = Za(3,l) ® Ol(3’2) ® Ol(3’3),

As already mentioned, each generator just acts by conjugation as in the Wirtinger
presentation. A diagrammatic interpretation of (1.1) is given in Figure 1. The diagrams
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read bottom to top) or interpreted in C[G] (right, read top to bottom).

interpreted as a Hopf diagram in the group algebra of w1 (left,

/7
/

flip braiding

—

Figure 3. Generalize the flip to the braiding.

should be read top to bottom where each strand represents a copy of the algebra, the
Y -shape represents the multiplication, the upside-down Y represents the coproduct,
and the S represents the antipode; see also Figure 6. In Figure 2, we showed what
happens in the case of the braid (o207 1)2 whose closure is the figure eight knot.
Notice that reading the diagrams bottom to top and interpreting the Y -shape as the
coproduct in the group algebra of the knot group recovers the corresponding Wirtinger
presentation.

The construction of I, which we sketched above works not only for C[SL(2, C)]
but also for any commutative Hopf algebra. Our main result is that it also works for
braided commutative (braided) Hopf algebras.

A braided Hopf algebra A is a generalization of a Hopf algebra where the braiding
is used instead of the usual flip sending x ® y to y ® x as in Figure 3. Braided com-
mutativity is a generalization of the commutativity property of usual Hopf algebras,
which is given in Definition 2.4.

To generalize the above construction of the ideal I to get a space of A represen-
tations, we modify the relation at the crossing as in Figure 4. Our main result is to
define a module /5 and show that the quotient of A®" divided by I; only depends
on the knot K; see Theorem 4.3. In the final example at the end of the paper, we will
return to the figure eight knot and show what our construction amounts to in this case.
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Figure 4. Relations of the braided Wirtinger presentation, read top to bottom.

An important example of a braided Hopf algebra is BSL(2); it is the braided one-
parameter deformation of the coordinate ring of SL(2, C); see [12]. By applying the
above construction, we get the space of BSL(2) representations which is a quantiza-
tion of the SL(2, C) representation space of K.

Let AbA be the Ad invariant subspace, i.e.,

AbA = {x € A®n/]d(b) | Ad(x) = x ® 1}.

We call Ap4 the quantum A character variety of K. If A = BSL(2), we also call
it the quantum SL(2) character variety. Note that A, is not an algebra but an Ad-
comodule. So, the quantum character variety is not a variety in the usual sense.

In the special case of SL(2), the quantum character variety which we just defined
seems to be equal to the skein module of the knot complement, which is often viewed
as a quantization of the SL(2) character variety [11].

Our construction of quantum SL(2, C) character variety seems to be generated by
quantum traces as in [7]. A more detailed discussion of our quantization of the quan-
tum SL(2, C) character variety will appear in a forthcoming paper. More generally,
it seems plausible that our construction is related to the skein module defined for any
ribbon category and any 3-manifold in [8, Definition 2.2].

A similar definition of a quantum analogue of the character variety is given by
Habiro [9]. It would also be interesting to compare our quantization with the quantiza-
tion based on ideal triangulations given in [5] and also with the quantization procedure
of [1].

This paper is organized as follows. In Section 2, we introduce braided Hopf alge-
bras with a focus on the braided commutative case. We also introduce braided Hopf
diagrams to visualize morphisms between tensor powers of a braided Hopf algebra.
In Section 3, we construct a representation of the braid group B, in End(A4%®") for any
braided Hopf algebra A. Here we use the braided version of the Wirtinger presentation
given in Figure 4.

In Section 4, we define the space of A representations of (the group of) a knot K
for any braided Hopf algebra A satisfying braided commutativity. Let b be a braid in
B, whose closure b is isotopic to K, and add n strands to represent elements of the
fundamental group twined to b as in the Hopf diagram d; shown in Figure 5. Let I
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Figure 5. Braided Hopf diagrams of dq and d», where the space of A representations Ay =
A®n /Im(d1 — dz).
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antipode S s—! unit 1 counit &

Figure 6. The operations of the braided Hopf algebra A.

be the image of the map corresponding to di — d»; the space of A representations is
defined as A®" /I},. We show that this space only depends on the isotopy type of b.

In Section 5, we illustrate our constructions by applying them to the trefoil knot,
the Hopf link, and the figure eight knot.

2. Braided Hopf algebra and braided commutativity

2.1. Braided Hopf algebra

A braided Hopf algebra is a version of a Hopf algebra having an extra operation called
braiding. It may also be viewed as a Hopf object in a braided monoidal category. Such
algebras are quite common in that they can be produced from any quasi-triangular
Hopf algebra by transmutation [15]. These structures also go by the name braided
group.

Definition 2.1. An algebra A over a field k is called a braided Hopf algebra if it is
equipped with following linear maps described by the diagrams in Figure 6, satisfying
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Figure 7. The relations of a braided Hopf algebra, read from top to bottom.

the relations given in Figure 7:

multiplication p@:A® A — A, comultiplication A: A — AR A,
unit 1:k — A, counit ¢: A4 —k,
antipode S :4 — A, braiding V:A® A —> AQ A.

Definition 2.2. A diagram expressing a linear mapping from A®™ to A%®” built from
a combination of the Hopf algebra operations given in Figure 6 is called a braided
Hopf diagram. Let BHD(m, n) denote the set of braided Hopf diagrams expressing
linear homomorphisms from A®™ to 4®".

2.2. Adjoint coaction

A k-vector space M is called a right A-comodule if there is a linear map
A:M—>MQ A,
satisfying the coassociativity

(A ®id)(A) = (id ® A)(A).
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(2.2): Adjoint and multiplication.

Figure 8. Graphical proof of Proposition 2.3.

Then, A itself is a right A-comodule with the following adjoint coaction ad : A —
A® A:
ad(x) = (d @ w)(¥ ®id)(S ® A)A(x),

A-4

where 4 : A ® A — A is the multiplication of A4, i.e., u(x ® y) = xy.

Proposition 2.3 (Cf. [14, Proposition A.1]). Adjoint coaction satisfies the following

relations:
(d®id® u)(id® ¥ ®id)(ad ® ad)A(x) = (A ® id)ad(x), 2.1)
(ad ® id)ad = (id ® A)ad, 2.2)
(e®id)ad=1o¢ (id ® ¢)ad = id, 2.3)

e =M

Proof. Relations (2.1) and (2.2) are proved by the graphical computation in Figure 8.
Relations (2.3) come from the properties of the unit 1 and the counit ¢. |
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4

Figure 9. Braided commutativity in terms of braided Hopf diagrams.

2.3. Braided commutativity

We introduce the notion of braided commutativity, which implies the compatibility
of the adjoint coaction with respect to the multiplication u, the braiding W, and the
antipode S.

Definition 2.4. The braided Hopf algebra A is braided commutative if it satisfies
(1d®@ p) (¥ ®id)(id ® ad)¥V = (id ® u)(ad ® id).
This relation is explained graphically in Figure 9.

Braided commutativity was introduced in [13], and it is shown there that many
interesting braided Hopf algebras have this property. For example, transmutation pro-
cedure always produces braided commutative braided Hopf algebras. In the remainder
of this section, we assume that A4 is braided commutative.

Proposition 2.5. The adjoint coaction commutes with the multiplication, i.e.,

(adopw) = (L ® u)(id® ¥ ® id)(ad ® ad). 2.4)

Proof. Relation (2.4) is proved by the graphical computation in Figure 10. At the
second to last equality, we use braided commutativity. In the rest of this paper, an
equality using braided commutativity is denoted by (: . |

bc)
Proposition 2.6. The adjoint coaction commutes with the braiding WV as follows:
(d®id® u)(id® ¥ ® id)(ad ® ad)¥
=V Q®id)(id®id® 1)(id ® ¥ ® id)(ad ® ad).

Proof. This relation comes from braided commutativity as explained in Figure 11. m
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Figure 10. Adjoint is an algebra homomorphism.

Figure 11. The adjoint coaction is commutative with the braiding.

Proposition 2.7. The adjoint coaction commutes with the antipode S, i.e.,
ado § = (S ®id) o ad.

Proof. This relation comes from braided commutativity as explained in Figure 12.
Braided commutativity is used in the second equality. In the fourth equality, we used
the antipode axiom, and in the final equation, the axiom relating S and multiplication
are used. |

Proposition 2.8. The adjoint ad and the antipode S satisfy i o (id ® S) o ad = S2.

Proof. This comes from the equalities of diagrams in Figure 13. |

3. Representation of braid groups

In this section, we recall the representation of the braid group B, to End(A®") con-
structed by using the adjoint action of A. To construct representations of braid groups,
A is not required to be braided commutative. However, for the distributivity of the rep-
resentation given by Proposition 3.3, A has to be braided commutative.

3.1. Representation of generators
The braid group B, is defined by the following generators and relations:

By =(01,02,...,0n—1 | 0i0i410i = 0i1+10i0i+1,

0i0j = 0j0;(li — j| = 2)).
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AR

Figure 12. The adjoint ad commutes with S.

$44

Figure 13. Proof for 1 o (id ® §) o ad = S2.

Figure 14. R, R~ for crossings.

We define a braided Hopf diagram corresponding to the braid generators by gener-
alizing the definition of R,q in [3], which is based on [18]. These are braided versions
of the Wirtinger presentation for the fundamental group of a knot complement. For

+1
0" € By, let

p(oit!) = id®ED @ R*! ©1d®"1~1) € End(4A®"), 3.1)

where RT! : 4®2 — A%2 is given in Figure 14.
In the rest, we use the maps A;, ;, S;, ¥;, and &; acting on A®". They are given
by the following:
A =id '@ A®id", wi =id ' @ p@id" L,
Si=id'®S®id,  ¥=id'®Uveid ",
e =id7 ' @e@id" .
We also use the generalized multiplication ™ : A®™ @ A®™ — A®™ and the gen-
eralized coproduct A ™ : A®m _s 4®m @ 4®m given by the diagrams in Figure 15.

3.2. Adjoint coaction

We define an adjoint coaction Ad : A®”" — A®" ® A as in Figure 16.
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Figure 15. The generalized multiplication ") : A®" @ A®¥™ — A®™ and the generalized

coproduct A A®M _, g®m @ g@m
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Figure 17. Commutativity of Ad and R.

Proposition 3.1. The adjoint coaction Ad commutes with p(b) for b € By, i.e.,

Ado p(b) = (p(b) ®id) o Ad.

Proof. This comes from the following commutativity of R and Ad:

Ado R = (R ®id) o Ad.

This is proved by the graphical computation in Figure 17.

3.3. Representation of braid groups

Now, we construct a representation of braid groups in End(A%").

3.2)

3.3)

Theorem 3.2 ([ 18, Proposition 1]). The map p defined for generators of By, in (3.1)

extends to an algebra homomorphism from the group algebra C By, to End(A®").
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Figure 18. RR~! = id ® id.

Figure 19. R~'R = id ® id.

Proof. We first show that p(0;)p(0; ') = p(o; )p(0;) = 1 by proving
RR'=R'R=id®id

using the graphical computation in Figures 18 and 19. The braid relation 0;0;4+10; =
0i+1030i+1 comes from

(R ®id)(id ® R)(R ® id) = (id ® R)(R ® id)(id ® R).

which is shown by the graphical computation in Figure 20. We also have o;0; = 0;0;
for j —i > 2 since

RiR; =id® "V ® R®id®" /"2 @ R®id®" /=D = R;R;,

where R; = id®0D) @ R @ id®"—1—D, Hence, the relations of B,, are all satisfied.
[

3.4. Distributivity of p(b)
The representation p(b) is distributive over the multiplication as follows.

Proposition 3.3. Assume that A is braided commutative. For x,y € A®", we have

pB)™(x ® y) = ™ (p(b)x ® p(b)y).
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Figure 20. Braid relation (R ® id)(id ® R)(R ® id) = (id ® R)(R ® id)(id ® R).
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Figure 21. The representation p is distributive.

é /
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( ( [

Figure 22. R is distributive over the multiplication.

This relation is visualized in Figure 21.
Proof. 1t is enough to show that
RuP(x®y)=p® R R)(x®y)

for the multiplication @ : 4A®2 @ A®2 — A®2andx = x; ® X2, y = V1 ® V2 €
A®2_ which is proved graphically in Figure 22. n

4. Space of braided Hopf algebra representations of a knot
Throughout this section, A is a braided Hopf algebra that is braided commutative. For

any knot K, we construct the space of A representations of K as a quotient of A®” by
amodule [, determined by a braid b € B, whose closure is K. The number n and the
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A

b b: the closure of b
Figure 23. Braid closure.

&

Figure 24. The braided Hopf diagrams for d(b) and &, ® id®".

db): . ¥ id®"

module I, depend on the choice of the braid b, but it is shown that if » and 5’ have
isotopic closures, then A®" /I, and A®" / I}, are isomorphic as Ad comodules.

4.1. Knots as braid closures

Let K be a knot in S3; then it is known that there is a braid b € B,, for certainn € N
such that K is isotopic to the closure of b. The closure of b is obtained by connecting
the top points and bottom points of b as in Figure 23 and is denoted by b.

4.2. Space of A representations

For b € By, let d(b) be the braided Hopf diagram given in Figure 24 (left). Then, d(b)
is an element in Hom(A®2", A®™"). Let us assign X1, X2, ..., Xn, Y1+...,Yn € A t0
the top points of d(b);letx = X1 ® -+ @ Xp, y = Y1 Q - ® Yp, and d(b)(x ® y)
be the image of x ® y by d(b), which is an element in A®". Let

Ly = Im(d(b) —®"® id®n).

Definition 4.1. A submodule / of A®" is called an Ad-comodule it Ad(I) C I ® A.
A morphism between two Ad-comodules / and J is a module map f : I — J that
commutes with Ad in the sense that Ado f = (f ® id4) o Ad.
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Proposition 4.2. ;) is an Ad-comodule of A®".

Proof. From (2.1), (2.4) and (3.2), we have
Adod(b) = (d(b) ®id) o Ad and Ado (¢®" ® id®") = (¢®" ® id®" V) o Ad.
Therefore,

Ado (d(b) — e®" ®id®") = (d(b) — £®" ® id®" D)o Ad

and the image of Ad o (d(b) — ¢®" ® id®") is contained in /) ® A. [

Let Ap = A®"/144); then Ap is an Ad-comodule of A®" and it satisfies the
following.

Theorem 4.3. If the closures of two braids by € By, and by € B, are isotopic, then
Ap, and Ap, are isomorphic Ad-comodules. In other words, Ap is an invariant of the
knot (or link) b.

Definition 4.4. The Ad-comodule A, is called the space of A representations of the
closure b.

The Ad-comodule structure on Ap allows us to pass to the coinvariants. This
should generalize the conjugation invariant functions on the representation variety,
and hence, we introduce the following definition.

Definition 4.5. We say the quantum A character variety of K is the module of coin-
variants Ap4 under the coaction of Ad on Ap.

It should be noted that our quantum A character variety is not an algebra but only
a module.

4.3. Equivalent pairs

To prepare our proof of the main theorem, Theorem 4.3, we introduce the notion of
equivalent pairs of Hopf diagrams.

Definition 4.6. Suppose that b € B, is a braid. The braided Hopf diagrams d;, d» €
BHD(m, n) are called b-equivalent if A®"/(dy — d2)(A®™) is isomorphic to A4 as
Ad-comodules. When d; and d; are b-equivalent, we will denote this by d; ~j d».

For example, we always have d(b) ~;, ¢®" ® id®". Let M), be the kernel of £®”
in A®". For d € BHD(2n, n), we denote the induced map from (4%"/M,) @ A®"
t0 A®" /d(M,, @ A®") by d.

Lemma 4.7. If d € BHD(2n, n) satisfies d(1®" ® y) =y, then the image of d —
£®" ® id®" is equal to d(M, ® A®"). Especially, 155y = d(b)(M, ® A®").
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Proof. The assumption d(1%" ® y) = y implies that

(d - %" ®id®"H)(1®" ® y) = 0.

Since A®" = C(1®") @ M,, and £®"(M,) = 0, we get

(d _8®n ® id®n)(A®n ® A®n) — (d _8®n ® 1d®n)(Mn ® A®n)

=d(M, ® A®").

The last statement comes from the fact that d(b)(1®" ® y) = y. [

4.4. Equivalences at the top of braided Hopf diagrams (BHD)

Let d be an element of BHD(2#, n) which is b equivalent to £¢®" ® id®". The fol-
lowing proposition shows that we can modify d at certain kinds of multiplications,

adjoints, and braidings near the top of the diagram d so that the corresponding d does

not change.

Proposition 4.8. Let dq, d; € BHD(2n,n) be a pair of braided Hopf diagrams shown
below. Assuming that d; (18" ® y) = y for j = 1, 2, we have dy ~p €®¥" ® id®" if

and only if dy ~p €®" ® id®". In the pictures, the index i isin{l1,2,...,n}.
|® X,»®|... QX R
HmL dp '~ : d, ‘L
a\ a(a).
®x; ® --|-®x,®~-
HmR 4, l ; | A VA
Y « le@)
|®Xi®| "|‘®l’;®|~~~
Ha d . . d, . H
1 ' .\‘. 2 ' .\‘.
RxX Q Qx; ®
1] | ]|
HmL’ dq (% ' d, % '
A (
R X ® e R X ® e
L 1.
HmR’ d ' d2 ' )
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QX R
...! !...

<> d2

! !
HcL dll(/. (—)dz(\'

) !
HcR dq h <> d> .“\.

Lo x o | | -

Proof. HmL, HmR: Let d;, d, be the braided Hopf diagrams of HmL, /; =
di(M, ® A®") and I, = d>(M, ® A®"). Let d; be the map from A®2"/ ker &
to A®" /I, induced by d;. The multiplication of x; by a in the diagram d is the mul-
tiplication of ¥; € A/ M, by a, which is equal to £(a)X;. Therefore, d; = d,, where
d, is the map from A®2" /kere; to A®" /I given by d. This implies that I, C I;.

On the other hand, let d, be the map from A®?"/kere; to A®"/I, induced
by d». The multiplication of ¢ and x; in the diagram d; is the multiplication of
X; € A/M; by a, which is equal to e(a)x;. Therefore, d2 = dl, where d1 is the
map from A®2" / kere; to A®" /I, given by d. This implies I; C I,. Hence, we get
Iy = I. This means that Iy = I, if and only if I = I4@), which implies that
dy ~p %" ® id®" if and only if dp ~ €2 ® id®" by Lemma 4.7. The proof for d;,
d> in HmR is similar.

Ha: Let d, d» be the braided Hopf diagrams of Ha, I; = dy (M, ® A®") and
I, = d2(Mn X A®n)-

Since (¢ ® id)ad(M;) = (1 ® 1)e(M;) = 0, ad(M;) is contained in M; ® A.
Hence, ad induces the map ad from A /M to (A/M;) ® A. On the other hand, 4/ M,
is spanned by 1 and ad(1) = 1 ® 1, ad(X) = ¥ ® 1 for X € A/M,. This relation
means that d; = d5 as a map from A®2" / ker¢; to A®" /1. Therefore, I, C 1. By
exchanging the role of d; and d; as in the case of HmL, we get I; C I>. Hence,
Iy = I. Therefore, d; ~p ¢®" @ id®" if and only if

dy ~p 2" ® id®".

HmL’, HmR’: Let d;, d, be the braided Hopf diagrams of HmL’. Assume that
dy ~p €®" ® id®". In the pictures, the symbol @ <> b means that a and b are both b
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RN ® RN @

R X Qe RN ® LR R
' o H s ' o o H
HmL /

Figure 25. Proof for HmL’.

RN @ R X ® e RN ®

Figure 26. Proof for Ha’.

de”

equivalent to ¢®" ® id®”. By HmL, we have a sequence of equalities as in Figure 25
as a map from (A4%" /M,) ® A®" to Ap. Hence,

di(M,, @ A®") = dy(M,, @ A®") and dp ~p %" ® id®".

The proof for HmR?’ is similar.
Ha’: Let d;, d> be the braided Hopf diagrams of Ha’. Assume that

dy ~p " ® id®".

By Ha, we have a sequence of equalities in Figure 26 as a map from (4®"/M,) ®
A®" to Ap. In the third and fourth equalities, we used Proposition 2.3. Hence,

di(M, @ A®™) = dpy(M, @ A®") and  dp ~p 2" @ id®".

The opposite direction is proved similarly.
HcL, HcR: Let dy, d» be the braided Hopf diagrams of HcL. Assume that

dy ~p 2" ® id®".

We have a sequence of equalities as in Figure 27 as a map from A®" /M, ®@ A®"
to Ap. Hence, di (M,, ® A®") = dp(M,, @ A®") and dy ~p £®" ® id®". The proof
for HeR is given in Figure 28.

Hf: The relation Hf comes from the facts that ¥ is an automorphism of A®2 and
920 U = ¢®2, n
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. 'ERY . e
. P . .
.

§ <« =
h Ha ( . (be)

Figure 27. Proof for HeL. Recall that be stands for braided commutativity.

N " N " " " N " ’ ),* " ' /' '
A % N & N = N

Figure 28. Proof for HcR.

Proposition 4.9. Let d be an element of BHD(2n, n) which is b-equivalent to " @
id®". Let d' be an element of BHD(2n, 2n) which gives an isomorphism from A®2"
to A®?" such that

(€®n ® id®n) ° d/ — S®n ® id®n.

Then, d o d’ ~p, €®" @ id®". Especially, for the diagram d;j having an arc connecting
the (n + j)-th strand to the i-th strand as in Figure 29, then

d o dij ~p 8®n ®id®n.

Moreover, for the diagrams dy and d» in Figure 29, di ~p €®" @ id®" if and only if
d> ~p ¥ @ 1d®".

Proof. Since d’ is an isomorphism, the image of (d — %" ® id®")od’ =d od’ —
£®" ® id®" is equal to I,(). Therefore, d o d’ is b equivalent to £®" ® id®”. The
diagram d;; is an isomorphism since adding the antipode S to the arc connecting the
(n + j)-th strand to the i-th strand of d;;, we get the inverse of d;;.

By adding d;; to the top of d», we get dy. This implies the last statement of the
proposition. ]

4.5. Another expression of d (b)

Below we will show an alternative way of expressing the braided Hopf diagram d ()
viewed as a map d(b) : A®" /M, ® A®" — Ap. Although this expression for d(b)
will not be used in this text, we include it because it corresponds more naturally to the
closed braid of b. It also suggests that the construction given here for a closed braid
may extend to a plat presentation of a knot. We will elaborate on this point in a future
publication.
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i n+j i n4+j i n4+j

dij € BHD(2n,n)

Figure 29. The diagram d;; having an arc connecting the (n 4 j)-th strand to the i-th strand
and the move comes from this diagram.

Figure 30. Cancellation of the topmost Uz_nl_z and the bottom-most 02,,—»>.

Proposition 4.10. For b € By, the map d(b) induced by d(b) satisfies

W = (L1H3 " f2n—1)
° ((UZn—ZUZn—4 -++02)(027—302p—5 "+ 03) * - (Un+10n—1)0n)
o (ﬂ(n) ® id®") ° (id®" ® \IJ(”)) o(b® sen @ id®”)
o (0n(0,210,41) - (03 05!
o (Azp—1A2p—3-++ A1)

-1 -1, -1 -1
1 0p,-3)(05 0y "‘Uzn—z))

as a map from A®" | M, @ A®" to Ay, where W™ is defined as
W = (U Wy W) (W Wy o+ W2) oo+ (W Wap -+ W),
v s q composition of n*> maps W see also Figure 37.

Proof. We first remove the first and last 0,,—, as in Figure 30. Then, remove 05,_3,
O2n—4, - .. ,02, Similarly along the rightmost string. After doing these operations, do
similar operations along the string next to the rightmost string. Repeat these opera-
tions for all o”’s along the strings with the antipode S. |
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d(o;b) d’
Figure 31. Deform d(bo;) to d’ as a map from A®" /M), to Apo; -

4.6. Markov moves

It is known that the closures of two braids b; € B,, and b, € B,, are isotopic in
S3 if and only if there is a sequence of the following two types of moves connecting
b1 to by. These moves are called the Markov moves, and such b; and b, are called
Markov equivalent.

First Markov move (MI). bb’ <> b'b for b, b’ € B,,.
Second Markov move (MII). b € B, < anilb € By+1.

Theorem 4.11. The quotient algebras Ay, and Ap, are isomorphic if by and b, are
Markov equivalent.

The proof of this theorem consists of Propositions 4.12, 4.14, and 4.15 in the
following two subsections.

4.7. Invariance under the MI move

First, we show that the quotient algebra keeps its structure when we apply an MI
move.

Proposition 4.12. For by, by € By, Ap,p, is isomorphic to Ap p,.
This comes from the following lemma.

Lemma 4.13. For b € By, Ag,p is isomorphic to Apg,. Also, A1), is isomorphic to
A, 1. l
bo;

Proof. As a map from A®" /M, ® A®" to Ape,, d(0;b) is deformed as in Figures 31
and 32, whereas R and R™! are given in Figure 14. In Figure 32, R™! in Figure 31
is moved upward and switched to the left strands by using the moves in Proposi-
tion 4.8. After we apply the transformation suggested in Figure 32 to Figure 31, we
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Figure 33. Result of the deformation of d (o, b) in Figure 32.

get Figure 33. It follows that 0;d (b0;)(id®" ® 0,71) ~4.5 £®" ® id®". Since 0,71 is
an automorphism of A®", we have 0;d(bo;) ~po, £€®" ® id®". This implies that
Li;p) = (0:d(boi) — e®" @ id®")(A®" @ A®")
= (0:d(bo;) — 0;6®" ® id®")(A®" ® A®")
= 0 (d(bo;) — e®" ®1d®")(A®" ® A®") = 6iliboy)-

Hence, the left multiplication of ai_l

A®"  Labey)-
For 0, b, we have

induces an isomorphism from A®" /1, 5) to

Abai_l = Aaiai_lbai_l = Aoi_lboi_lai = Aai_lb

since Apg;, = Ag;p- ]
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Figure 34. The map f o d(o,b) is equal to d(b) o &, 41 o (d®" TV @ f).

4.8. Invariance under MII move

We show that the quotient algebra keeps its structure by MII move. We first compare
Ap and Ay, p.

Proposition 4.14. For b € B, the Ad-comodules Ap and Ag,p are isomorphic.

Proof. Let f be the linear surjection from A®®+D to A®” defined by
f=pno ¥
We first show that f(/4(s,5)) C la(»)- From Figure 34, we know that
fd(onb)(x ® y)) = d(b)(ent+1(x) ® f(¥)),

and this means that f(14(c,5)) C la@)- So, f induces a map f_ from Ag(s,p) 10 Aa(p)-

Next, we show that f is an isomorphism. Since f is surjective, it is enough to
show that f is injective. For this, we check that ker f is contained in /4, ). For
x € A®*D and y € ker f, Figure 35 shows that

d(0nb)(x ® y) —d(0aD)(x ® f(y) ® 1) € Li(o,b)-

and hence, d(0,b)(x ® y) € 14(,5) since y € ker f. Moreover, d(0,0)(x ® y) —
(e®0 D) (x)y € Li(s,p) by the definition of 1,(s,5), hence we get (2T D) (x)y €
14(5,p)- Here x is an arbitrary element of A®C+D 5o y must be an element of
Li(o,b)- L]
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= d(oxb) 0 (id®"TV @ f ®1)

Figure 35. The two maps d(0,b) and d(0,b) o id®"T1D ® f ® 1) are equal as maps from
A®2(n+1) o Ao, b

Next, we compare Ap and 4 o b

Proposition 4.15. For b € By, the Ad-comodules Ap and A olp are isomorphic.
Proof. Let g be the linear surjection from A®®+1 to A®" defined by
g=pnoS; 2o,

Then, Figure 36 shows that g(/ (o) b)) C La()- To obtain the second equality in that
figure, we slide down through the g part at the bottom to cancel the strand containing
the right-most antipode, using the antipode axiom and anti-multiplicativity of S~!.
The third equality similarly slides the top-rightmost strand through g.

Next, Figure 38 shows that ker g C / d(oi by using an argument similar to that
of the previous proposition. It follows that g induces an isomorphism from A,—1,
to Ap. ]

Instead of 14(3), we could also consider the Ad-comodule J4(z) given by the image
of
1™ o (WM) o (id®" @ (p(b) 0 (07) " 0 (§72)")) — ™, @.1)
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Figure 37. ¥ and 9 .

where U™ is the braiding of two bunches of 7 strands and 6 @ is the full twist given
in Figure 37. The following proposition shows these are in fact isomorphic.

Proposition 4.16. 1;4) = J44) as Ad-comodules of A®",

Proof. The deformation of Figure 39 shows that J;) C 14(). On the other hand, the
deformation of Figure 40 shows that the image of

1o (n™ ®id®") o (id®” @ W) o (b @ S®" @ id®")
o (A™ ®id®") — ¢®" ® id®"

is contained in Jd(b)- This means that Id(b) C Jd(b)- |
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Figure 38. The map d(o,, 'b) is equal to d(o,, 'b) o (d®" D @ ¢ ®1).

4.9. Spanning set of I

Theorem 4.17. Let X be a set of generators of A, and x; = 120~ @ x @ 19"~
for x € X. Then, the Ad-comodule 14y in A®" is spanned by

{db)(xi ®y)—e(x)y |xeX, i=1,....n, y€ A®"}.

Proof. Let I’ be the Ad-comodule spanned by {d(b)(x; ® y) —e(x)y | x € X, i =
1,....n, y € A®"}. Since I’ C 14(p) is obvious, we show that 154y C 1. If (d (D) —
£®" ®id®")(x ® y) and (d(b) — £®" ® id®")(x’ ® y) are contained in I’ for any
x, x" and y in A®"; then Figure 42 shows that d(b)(p " (x ® x’) ® y) is equal to
e®" (™ (x ® x’))y modulo I'. Hence, (d(b) — ¢®" ® id®")(u ™ (x @ x') ® y) is
contained in /’, and this implies that /43y C I’. In the figure, d(b)" means the part of
d(b) given by Figure 41. [

5. Examples

Let A be a finitely generated braided commutative braided Hopf algebra, and let X
be a set of generators of A. We construct explicit equations describing the space of A
representations for the trivial knot, the Hopf link, the trefoil knot, and the figure eight
knot.
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Figure 39. Deformations to show that £ (x ® y) is equal to £ o (W)~ 6 (d®" ®
(p(b) 0 (8")™1 0 S72))(x ® y) modulo I4(p).

)
U
4 mo?]b

Figure 40. Deformations to show that d(b)(x ® ) is equal to (¢®” ® id®")(x ® y) modulo
Jp. In the third equality, we applied the antipode axiom to cancel the right-most antipode after
shifting the box with the n — 1 twist of the way to the far right.

5.1. Trivial knot

Let I = I4(1) be the image of d(1) — & ® id. Then, the space of A representations
for the trivial knot A is given by A; = A/I. Since d(1) can be deformed as in
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Figure 42. Computation of d(b) (" (x ® x’) ® y) modulo I’.

Figure 43, we have d(1)(x ® y) —d(1)(x ® S™2(y)) € 1. We also have d(1)(x ®
y) —e(x)y € I and d(1)(x ® S2(y)) — e(x)S2(y) € I;hence, y — S 2(y) € I.
So, in the quotient space Ay, S 2 acts trivially. Moreover, from relation (4.1), we have

px®y)=po¥(x®y).

This implies that 4, is a commutative algebra.

5.2. Hopf link
The Hopf link is the closure of b = o7 in By. Let
I = (d(o}) —e®? ®1d®}) (4 ® 1) ® 4%?)

and
I, = (d(o7) — 22 ® id®?)((1 ® ) ® 4%?).

Then, 1012 = I + I, by Theorem 4.17. Figure 44 shows that I, = o - I, and so, we
get Aglz =A ®A/(11 + 01 11)
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G-§- =8
d(l): = = ng .

Figure 43. Deformation of d(1) to show that d(1)(x ® y) —d(1)(x @ ST2(y)) € I.

Figure 45. The modules /] and /> for the trefoil knot.

5.3. Trefoil knot

The trefoil knot is the closure of b = 013 in Bs, so it can be treated like the Hopf link
that we considered above. In fact, a similar computation is valid for all closures of
two strand braids. Let

Iy = (d(0]) — %> ®id®?*) (4 ® 1) ® A®?)

and
I = (d(07) — %> ®1d®?)(1 ® 4) ® A%?).

Then, 1012 = I + I, by Theorem 4.17. Figure 45 shows that I, = o - I, and so, we
get
Aai"; = A®A/(11 +01 11)
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Figure 46. Deformation of d(b) and the braided Hopf diagram d’.

5.4. Figure eight knot

1

The figure eight knot 4, is isotopic to the closure of the braid b = 05 "0105 lo1.

Let d’ the braided Hopf diagram assigned in Figure 46, and let I’ be the image of
d’' — &®3 ®id®3. Then,

02_1011’ = oz_lallm(d’ — %3 ®id®?)
= Im((d(h) — e*" ® id®?) 0 ([d®* ® 05 '01)) = I

1

since o5, !y is an automorphism of A®3. Hence, A, is isomorphic to A®3/1’. Let

L=d(AR1¥22 4%3%), L=d(1A431x A%,
13 — d/(1®2 ® A ®A®3);

then [’ = I+ 1, + Is.
We first look at /3. Let ¢3 be the map from A®3 to A®? defined by

@3(X1 ® X2 ® x3) = 11 o i3 o W5 0 (id®? ® ad) o ¥, 0 SZ(x; ® X2 ® X3).
See Figure 47. The same figure shows that
X1 ® X2 ®x3 —@3(x1 ®x2 ®x3) €1, (5.1

Therefore, Ay = A®?/(p3(11) + @3(12) + ¢3(I3)), where A%? = A ® C ® A.
Next, we look at /5. Let ¢, be a map from A%®3 to 4%2 defined by

P2(X1 ® X2 ® x3) = pp 0 W0 Wy opuzops0W30Wy ! opzos;!
o (id ® ad ® id®?) 0 S5 0 S7 o (ad ® id®?)(x; ® X2 ® x3)

as in Figure 48. The same figure shows that x; ® X2 @x3—1®@2(x1 ®x2 ®x3) € I'.
Combining (5.1), we get

X1 ®@x2 ®x3 —@3(1 ® pa(x1 ® x2 ® x3)) € 1.
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T

Figure 48. The subspace /5.

This relation is presented graphically in Figure 49. Reading the diagram bottom to
top and interpreting it in the group algebra, we find the following presentation of
m1(S?\ 41):

m(S*\41) = (g1.83 1 83818387 838185 &1 8381 )-
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85218387 "8:8,85 "7 g5
g

—1

g1 82 83 3 8183 Relations of 771 (S3 \ 41) obtained

83 from the picture:
=, >/ = ol -1 —1,-1

mod 1 g1 =83 £18381 838183 & &3
82 =293'8,8;
[/ g3 = g3
18283 g1 82 83

Figure 49. x; ® x2 ® x3 = ¢3(1 ® p2(x] ® x2 ® x3)) mod I’.

O
R

I, is spanned by

Figure 50. The subspace /.

Finally, the subspace I is spanned by the image of the map given in Figure 50.
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