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Actions of sl2 on algebras appearing in categorification

Ben Elias and You Qi

Abstract. We prove that many of the recently-constructed algebras and categories which appear
in categorification can be equipped with an action of sl2 by derivations. The sl2 representations
which appear are filtered by tensor products of coVerma modules. In a future paper, we will
address the implications of the sl2 structure for categorification.
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1. Introduction

1.1. sl2 structures

Here are several 2-categories with graded 2-morphism spaces which play fundamental
roles in categorical representation theory in type A:

• The Khovanov–Lauda–Rouquier category UC.gln/, which categorifies the posi-
tive half of the quantum group of gln [15, 31].

• the Lauda’s category U.sl2/, which categorifies the entire quantum group of sl2
[22];

• the thickened category PU.sl2/ of Khovanov–Lauda–Mackaay–Stosic, which also
categorifies the entire quantum group of sl2 [17];
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• the diagrammatic Hecke category H .Sn/, which categorifies the Iwahori–Hecke
algebra of Sn [6].

They are each defined by generators and relations over some base ring, using the tech-
nology of planar diagrammatics. Since the relations only have integral coefficients, we
can and will assume the base ring is the integers.

The first main theorem of this paper says that these categories have a surprising
new structure.

Theorem 1.1. Each of the categories listed above admits an action of sl2 by deriva-
tions, compatible with the graded 2-category structure. Moreover, divided powers of
the raising and lowering operators act on the integral form.

More precisely, we will define three operators ¹d;h; zº on the morphism spaces
in these categories, and each operator x 2 ¹d;h; zº will satisfy the Leibniz rule

x.f ı g/ D x.f / ı g C f ı x.g/; x.f ˝ g/ D x.f /˝ g C f ˝ x.g/

with respect to both vertical (ı) and horizontal (˝) composition. The triple .d;h;�z/

will act as an sl2 triple on each morphism space. A graded preadditive category
equipped with an action of sl2 by derivations will be called an sl2-category. An
sl2-category is analogous to a dg-category, but for an unusual kind of homological
algebra; morphism spaces in both categories are modules over a Hopf algebra. The
concept of an sl2-category does not fit precisely into the framework of Hopfological
algebra [14, 29], but we hope to address this in a follow-up paper.

Let us discuss these three operators in turn.
The degree C2 operator d has been the central topic of study in the recent pro-

gramme which attempts to categorify key objects in representation theory (e.g. quan-
tum groups and Hecke algebras) at a root of unity. For each of the categories above,
the operator d has been defined in previous works [8–10, 18]. There is a large fam-
ily of degree C2 derivations one could place on each of these categories, but d is
unique (up to duality, see Remark 1.2) in satisfying certain key properties important
for categorification. There is still no geometric understanding for the existence and
importance of d, though see [1] for more on the connection to Steenrod operations.
We will not discuss categorification at a root of unity any further in this paper, though
we will have much to say in the next paper.

The degree 0 operator h is the degree operator. It multiplies any homogeneous
morphism by a scalar, equal to its degree. Thus, the weight grading for sl2 matches
the ordinary grading in these categories.

The degree �2 operator z is new in this paper. It is also remarkably easy to define,
once you know that it exists. Most of the generating morphisms of these categories
live in the minimal degree in their respective morphism spaces, and z must send them
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to zero for degree reasons. From these considerations, it is rather simple to verify
Theorem 1.1, and even to prove that z is the unique derivation of degree �2 (up to
scalar). Note that �z is the lowering operator in the sl2 triple, while we prefer to
discuss z because it eliminates many signs from the formulas.

To reiterate, proving Theorem 1.1 is quite easy. However, as far as we are aware
there was no expectation at all that these categories should admit sl2 actions, and no
one had bothered to look for a degree �2 derivation. We discovered it by accident, as
part of an effort to explain certain “hard Lefschetz style” phenomena which appeared
in the study of d.

Remark 1.2. Each of these categories admits a duality functor, a contravariant auto-
morphism f 7! Nf which flips diagrams upside-down. The operators h and z both
intertwine with duality, but d does not. Instead, duality intertwines d with another
derivation Nd, where

Nd.f / WD .d. Nf //:
Then . Nd;h;�z/ is another sl2 triple acting on the category. Readers familiar with the
Jacobson–Morozov theorem might be surprised by the existence of two different sl2
triples which share the same lowering and degree operators, but we should reiterate
that these representations of sl2 are all infinite dimensional.

Remark 1.3. In Section 4, we actually equip the Khovanov–Lauda–Rouquier cate-
gory UC.g/ with an sl2 action for any (oriented) simply laced root datum. Mean-
while, it was proven in [10, Proposition 6.8] that there is no “good” degree C2
derivation on the Hecke category in simply laced types outside of finite and affine
type A, so we do not expect an sl2 action either. We have not yet tried to place an
sl2 action on other categorifications of interest though we expect the phenomenon
to be common in certain categories related to equivariant constructible sheaves, see
Remark 1.6. We certainly expect there to be an sl2 action on U.gln/ and U.sln/ in
general, and it is reasonable to expect that one exists on quantum Heisenberg 2-cate-
gories (see, e.g., [25, Section 4]).

1.2. The polynomial ring

If A and B are algebras equipped with an action of sl2 by derivations, and M and N
are bimodules equipped with a compatible action of sl2, then the space of bimodule
morphisms Hom.M; N / is naturally equipped with an sl2 action as well. This is
analogous to the internal Hom between two chain complexes, which is itself another
chain complex.
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There is a well-known action of sl2 on the ring Rn D ZŒx1; : : : ; xn�, where
deg xi D 2 for all i (which determines the h action), and where

d D
X
i

x2i
@

@xi
; z D

X
i

@

@xi
: (1)

Here, sl2 appears as a subalgebra of the Witt Lie algebra acting on polynomials.1 Note
that z acts trivially on the subring generated by the roots .xi � xj /, and d does not
preserve this subring. For all the categories above, morphism spaces have polynomial
subalgebras which play an important role. In all cases, these polynomial subalge-
bras are preserved by the sl2 action, and the two different sl2 triples .d;h;�z/ and
. Nd;h;�z/ restrict to the same standard sl2 triple on the polynomial ring.

Most of the categories we are discussing have full faithful embeddings into the
category of bimodules over polynomial rings. For example, the Hecke category H is
equivalent (after base change) to the category of Soergel bimodules, certain .Rn; Rn/
bimodules. To give another example, the nilHecke algebra NHn is isomorphic to
End

R
Sn
n
.Rn/. However, we wish to emphasize that this realization in terms of bimod-

ules does not equip NHn or H with an sl2 action! One must still choose an action
of sl2 on the bimodules in question; this choice is not unique and is rather subtle in
practice. Even a free module of rank 1 over Rn admits many compatible sl2 actions.

Example 1.4. In [18, equations (65) and (66), p. 44], a one-parameter family of
degree C2 derivations da is defined on NHn. We define the lowering operator z on
NHn below in (4). For any scalar a, .da;h;�z/ is an sl2 triple. A major point in [18]
is that only two of these raising operators, d˙1, have the desired properties for cat-
egorification. The subtle properties of da are invisible from the perspective of the
polynomial ring Rn, since .da; h;�z/ restricts to the standard sl2 triple on Rn for
all a.

Remark 1.5. In [19], Khovanov and Rozansky use the action of the positive half2 of
the Witt Lie algebra on Rn to place an action of this same algebra on triply graded
knot homology, which is built using Hochschild homology of Soergel bimodules. This
(positive half of the) Witt action is an important precursor to our sl2 action, though

1The Witt Lie algebra is generated by differential operators Lk D xkC1 @
@x

for all k 2 Z,
and it acts on the space of Laurent polynomials ZŒx; x�1�. The subalgebra generated by Lk for
k � �1 preserves the subring of ordinary polynomials ZŒx�. The action on a polynomial ring in
n variables is just the n-fold tensor product of the action on the polynomial ring in one variable.
Note that the operators Lk are quite different from the divided powers d.k/ or z.�k/.

2This positive half includes all operators Lk for k � 0. Their action extends to include L�1

as well, though they did not note this.
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just as in the previous remark, an action on the polynomial ring does not determine a
unique action on the Hecke category itself.

Remark 1.6. The sl2 action (even on the polynomial ring) currently lacks a geomet-
ric motivation. The raising operator is related to general homological operations (e.g.
Steenrod squares), though the connection is subtle, see [1] (and also see [21] for more
on Steenrod operations and Soergel bimodules). However, the lowering operator does
not seem to arise from a general construction. Though a good explanation is missing,
one thing is clear: sl2 acts on the C�-equivariant cohomology of a point. Geometric
constructions of these categories involve perverse sheaves which are equivariant over
an algebraic group. We suspect that there is a relationship between the sl2 action and
the existence of a copy of C� (i.e. Gm) inside the algebraic group which is acting
trivially. Insisting upon equivariance for a trivial action often leads to extra “homo-
logical” operations of higher degree, such as the “log of monodromy” maps from [2].

For example, the Hecke category studies B � B-equivariant sheaves on G, and
any element of Z.G/ \ B will act the same way on both sides, so its antidiagonal
copy in B � B will act trivially. When G D GLn.C/, there is a central copy of C� in
the torus, and there is also an sl2 action on the Hecke category. When G D SLn.C/,
there is no center, and sl2 does not act (cf. [10, Proposition 6.9])! As a shadow of this
fact, the reader can already verify that sl2 acts on ZŒx1; : : : ; xn�, but it does not have a
(non-trivial) Sn-invariant action on the subring generated by .xi � xj / for i < j . This
contrasts the B-equivariant cohomology of a point for the Borel subgroup in GLn.C/
versus SLn.C/.

Remark 1.7. There are a number of (typically non-monoidal) categories which also
play major roles in categorical representation theory in type A, and for which the
operator d has already been studied [20, 30].

• The cyclotomic quotients of Khovanov–Lauda–Rouquier categories, which cate-
gorify irreducible representations of the quantum group.

• Webster’s categories, which categorify tensor products of irreducible representa-
tions.

However, neither the cyclotomic quotients nor Webster’s categories admit actions
of sl2. For example, cyclotomic quotients are quotients by an ideal inside UC.gln/

which is preserved by d but not by z. This suggests some nuance in how one should
interpret modules over sl2-categories.

Remark 1.8. Other important categories are the cell subquotients of H .Sn/, which
categorify the irreducible modules over the Hecke algebra, and the Schur quotients
of quantum group categorifications [26]. They arise from monoidal ideals generated
by identity maps of various objects, and identity maps are killed by the sl2 action.
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Thus, the sl2 action on H .Sn/ descends to its cell subquotients, and the sl2 action on
U.gl2/ descends to the Schur quotient.

1.3. Contrasting algebra and representation theory

Given an sl2-category, we can forget some structure and study it in two ways.

• Forgetting the sl2 action, we can study the category algebraically. We can study
the splitting of objects into direct summands, the Jacobson radical, and so forth.

• Forgetting the algebra structure, we can study Hom spaces as representations of
sl2. We can ask about their characters, their finite-dimensional subrepresentations,
and so forth.

There seems to be an incredible connection between the structure of these categories
as algebras and as sl2 representations. It is so astounding to the authors that it needs
to be showcased immediately. We hope this example will whet the appetite, and drum
up excitement for our sl2 action.

First, we present a toy example. For ease of discussion,3 let us work over a field k

of characteristic zero. The ring kŒx� has graded Jacobson radical .x/, and the quotient
by this ideal is k. So, we have a short exact sequence

0! .x/! kŒx�! k! 0 (2)

of kŒx�-modules, and k is the graded semisimplification of kŒx�. The submodule
.x/ is also preserved by the raising operator d, so this is a short exact sequence of
U.bC/-modules, where bC is the Lie algebra inside sl2 generated by d and h. How-
ever, .x/ is not preserved by z. On the other hand, k � kŒx� is a subalgebra, and is
also preserved by the sl2 action. So, we have a short exact sequence

0! k! kŒx�! Q! 0 (3)

of sl2-modules, where Q is the quotient module. Note that Q is simple, so it has no
finite-dimensional submodules.

The short exact sequences (2) and (3) live in different categories, but they are both
sequences of vector spaces. They split each other, in that the first map of (3) will give
a section for the quotient map of (2). Consequently, we can identify Q with .x/ as a
vector space and as a complementary direct summand to k. In this fashion, the maxi-
mal finite-dimensional sl2-submodule k forms a semisimple subalgebra which maps
isomorphically to the semisimplification (i.e. the quotient by the Jacobson radical).

3We could make most of the same statements over Z, but our use of terms like the Jacobson
radical would be inappropriate.
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Let us reproduce the same behavior in a more interesting example. The nilHecke
algebra NHn is the endomorphism algebra of the object En inside UC.sl2/. Put
together, the nilHecke algebras form a monoidal category with morphism algebra
NH DL

n�0 NHn, which is monoidally generated by morphisms depicted as a dot
and a crossing. The sl2-module structure is defined on the generators below, and is
extended to the whole category using the Leibniz rule:

d
� �

D 2 ; d
� �

D � � ;

z
� �

D ; z
� �

D 0: (4)

It is well known that NHn is the endomorphism algebra of the polynomial ring

R D Rn D kŒx1; x2; : : : ; xn�

over its subalgebra RSn of invariant polynomials. The sl2-action on Rn is Sn-equiv-
ariant and thus descends to an sl2 action on RSn . By the Chevalley theorem, R is free
overRSn of rank nŠ. Choosing a basis, one obtains an isomorphism between NHn and
a matrix algebra

NHn Š MatnŠ.RSn/:

On [18, p. 56] one can find a basis of NHn which corresponds to the basis of matrix
entries, and results about the action of d on this basis.

The (graded) Jacobson radical of RSn is the ideal RSnC spanned by positive degree
elements. The Jacobson radical of NHn is therefore

Jac.NHn/ Š MatnŠ.R
SnC /:

Consequently, there is a short exact sequence

0! Jac.NHn/! NHn ! ss.NHn/! 0; (5)

where ss.NHn/ Š MatnŠ.k/ is the semisimplification of NHn, viewed as a quotient.
This is a short exact sequence of NHn-modules.

Now, let us examine the sl2 structure on NHn. The ideal RSnC � RSn is preserved
by d and h but not by z, since z.e1/D n � id. Consequently, Jac.NHn/ is preserved by
d and h but not by z, so there is no induced sl2 structure on ss.NHn/. The short exact
sequence (5) is not a short exact sequence of sl2 representations. However, MatnŠ.k/
is not just a quotient of NHn Š MatnŠ.RSn/, it is also a subring. See Section 4.3 for
the proof of the following theorem.

Theorem 1.9. The maximal finite-dimensional sl2-subrepresentation of NHn is a
subalgebra, which maps isomorphically onto the semisimplification of NHn. More-
over, under the identification of NHn with MatnŠ.RSn/ used in [18, Proposition 3.24],
this subalgebra is precisely MatnŠ.k/.



B. Elias and Y. Qi 740

Example 1.10. When n D 2, the following morphisms correspond to the matrix
entries in Mat2.k/. 0BB@ �

�

1CCA (6)

The reader should confirm that this four-dimensional subspace of NH2 is preserved
by z and d, and is isomorphic as an sl2-representation to V ˝ V �, where V is the
standard representation of sl2.

Thus, one has a short exact sequence of sl2-representations

0! MatnŠ.k/! NHn ! Q! 0 (7)

where Q is defined as this quotient. This is not a short exact sequence of NHn-mod-
ules, since MatnŠ.k/ is a subring but not an ideal. However, both sequences (5) and (7)
are sequences of k-modules, and split each other. Thus, we can identify Q with the
Jacobson radical as a vector space complementary to MatnŠ.k/. Said another way, the
finite-dimensional part of the sl2-representation NHn is precisely a complement to
the Jacobson radical!

To summarize, there is a splitting of U.bC/-modules

NHn D MatnŠ.RSn/ Š MatnŠ.R
SnC /˚MatnŠ.k/:

When viewed as modules over NHn or its subring R, this is not a splitting but a
filtration, with MatnŠ.R

SnC / being the submodule. When viewed as modules over sl2,
this is not a splitting but a filtration, with MatnŠ.k/ being the submodule.

Remark 1.11. We come across this situation often in this paper. A vector space (resp.
Z-module) X is isomorphic to a direct sum A˚ B ˚ C as vector spaces. However,
when X is equipped with additional structure (e.g. an action of sl2, or of Rn), there
is no longer a direct sum decomposition. Instead, the subspaces A and A ˚ B are
preserved by the action. In this context we use the slightly imprecise phrasing that the
splitting becomes/is a filtration in the presence of the extra structure. We call A the
subobject andC the quotient object. The objectsA,B , andC were not equipped a pri-
ori with any additional structure, and they inherit this structure only by the canonical
identification of vector spaces with subquotients in the filtration 0�A�A˚B �X .

Note that NHn is infinite dimensional and even infinitely generated as an sl2 mod-
ule (when n > 1), so this kind of representation does not conform to most familiar
regimes (though they are direct limits of representations in category O). Thankfully,
NHn has finite-dimensional weight spaces, with weights bounded below. It is easy to
prove that such an sl2-representation contains a unique maximal finite-dimensional
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subrepresentation, which we call its core. Equivalently, the core consists of all vectors
on which d acts nilpotently. From the Leibniz rule, one can see that the core must
be closed under multiplication. Basic facts about the core are proven in Section 2.
The example of NHn is supposed to demonstrate that the core of an sl2-category has
dramatic significance to the algebraic structure of the category.

One nice feature of the core is that it can be found using basic linear algebra. One
need only compute the kernel of d, and then use the lowering operator z to produce
the rest. This can be done in each Hom space independently, and does not involve
the composition of morphisms. This simplicity is in contrast to other attempts to find
complements to the Jacobson radical, by computing inclusion and projection maps to
indecomposable summands. This involves much more complicated linear algebra and
in-depth knowledge of the category.

We do not wish the reader to expect that the core of an sl2-algebra always projects
isomorphically to the semisimplification, as this is false in more complicated exam-
ples, see Section 3.4. However, we conjecture that the map from the core to the
semisimplification is injective, at least in geometrically-motivated 2-categories.

Conjecture 1.12. In the 2-categories discussed in this paper, the core of each mor-
phism space intersects the Jacobson radical trivially (every morphism in the core is
split), so the map from the core to the semisimplification is injective.

For example, one implication of this conjecture is that any degree zero morphism
in the kernel of d must split. If p is the projection map to an indecomposable direct
summand and d acts nilpotently on p, then every non-zero dk.p/ is also a projection
map.

Remark 1.13. This conjecture is already quite deep, indicating the non-degeneracy
of certain “local intersection forms” upon restriction to finite-dimensional sl2 rep-
resentations. One expects the eventual proof of this conjecture to come from a new
kind of Hodge-theoretic argument. In all the examples computed to date, local inter-
section forms have satisfied (an analogue of) the Hodge–Riemann bilinear relations
upon restriction to the core. Note that the raising operator d differs from the Lefschetz
operator of left multiplication studied in [11], and d is not even a Lefschetz operator
in the traditional sense.

1.4. Filtrations on morphism spaces

Hopefully, we have convinced the reader that the study of these categories as sl2-mod-
ules, and in particular the study of their finite-dimensional submodules, is of great
interest. Morphism spaces in these categories are free modules over a polynomial
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ring, as well as being modules over sl2. This is a useful tool in our effort to under-
stand the sl2-module structure on these morphism spaces.

Definition 1.14. The polynomial sl2-algebra .Rn; sl2/ is the polynomial ring Rn D
ZŒx1; : : : ; xn� equipped with the sl2 action given in (1). We also let Rn denote the
base change of Rn to any commutative base ring k.

An .Rn;sl2/-module is an Rn-moduleM which is also an sl2-module, satisfying
a Leibniz rule. For x 2 ¹d;h; zº, if we write xM for the action on M and xR for the
action on Rn, the Leibniz rule states that

xM .r �m/ D xR.r/ �mC r � xM .m/:

Now, we ask: what kinds of .Rn; sl2/-modules appear as morphism spaces in
categories of interest? We know that morphism spaces will be free over Rn, meaning
that they are a direct sum of rank 1 free modules, but one should not expect such a
splitting to be respected by the sl2 structure. The punchline will be: morphism spaces
have .Rn; sl2/-filtrations which are split over U.b�/, whose subquotients are rank 1
free modules overRn. Before stating the result, let us investigate rank 1 free modules,
which are easy to classify.

Definition 1.15. Let p D P
aixi be a linear polynomial in Rn, and let †.p/ 2 Z

be an integer whose image in k agrees with
P
ai . There is a free rank one graded

Rn-module Rnhpi with generator 1p living in degree †.p/. We define an .Rn; sl2/-
module structure on Rnhpi by setting

d.g � 1p/ D d.g/ � 1p C gp � 1p; z.g � 1p/ D z.g/ � 1p (8)

for any (homogeneous) g 2 R.

The formulas (8) are determined by the Leibniz rule from the action on the gener-
ator 1p:

d.1p/ D p � 1p; z.1p/ D 0:
Note that †.p/ D zR.p/, though † is more descriptive notation. In Proposition 2.26
we prove that every .Rn;sl2/-module which is free of rank one as a graded Rn-mod-
ule is isomorphic to Rnhpi for some p. If p ¤ p0, then Rnhpi and Rnhp0i are
non-isomorphic.

Definition 1.16. Let M be an .Rn; sl2/-module which is free and finitely generated
as a gradedRn-module. Thus, there is a finite set I such thatM DLi2IMi as graded
Rn-modules, and each Mi is free of rank 1 over Rn. A downfree filtration on M is a
splitting into free rank one Rn-modules as above, where

(1) each Mi is preserved by z;
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(2) the indexing set I can be equipped with a partial order, so that d.Mi / �L
j�i Mj for all i 2 I .

A homogeneous basis ofM as an Rn-module is called downfree if it induces a down-
free filtration.

Definition 1.17. Let M be an .Rn; sl2/-module equipped with a downfree filtra-
tion. In particular,

L
j�i Mj is an .Rn; sl2/-submodule, and M is equipped with an

I -indexed filtration by .Rn;sl2/-submodules, where the subquotients are free of rank
1 over Rn. Each subquotient must be isomorphic as an .Rn; sl2/-module to Rnhpi i
for some unique pi 2 Rn. The multiset of linear polynomials ¹piºniD1 will be called
the downfree character of M , with respect to this filtration.

The second main theorem of this paper says that well-known bases of morphism
spaces in the categories of interest are actually downfree, and computes their downfree
characters.

Example 1.18. The nilHecke algebra NH2 on two strands is free of rank .1C q�2/
as a left R2-module, spanned by the identity and the crossing. Since id is killed by d

and z, it generates an sl2-submodule R � id Š Rh0i. Now

d
� �

D � 2 :

In the quotient by R � id, d will send the crossing X to �2x1X . So, the basis ¹id; Xº
is downfree, and the downfree character of NH2 is ¹0;�2x1º. Note that

¹†.0/;†.�2x1/º D ¹0;�2º

which matches the degrees of this graded basis. If instead we had chosen the raising
operator Nd, we would have gotten downfree character ¹0;�2x2º.

Note that NH2 is also free as a right R2 module, with the same basis. Because

d
� �

D � � 2 ;

the basis is downfree with character ¹0; �2x2º. The right module character for d

matches the left module character for Nd because they are related by duality, which
also swaps the left and right action of Rn.

Remark 1.19. For the Hecke category, morphism spaces will also be Rn-bimodules,
but the duality functor will not interchange these actions. A given basis may induce
four different characters, based on whether one selects the left or right action of Rn,
and whether one chooses d or Nd.

More generally, associated to any element w 2 Sn and any reduced expression
of w, one can construct the corresponding diagram in NHn built from crossings, and
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this element in NHn is independent of the choice of reduced expression. We denote
it  w 2 NHn. Then the elements ¹ wºw2Sn

form a basis of NHn as a left or right
Rn-module, which we call the nilCoxeter basis. It is not hard to compute that

d.Rn �  w/ �
M
y�w

Rn �  y ; z.Rn �  w/ � Rn �  w :

Theorem 1.20. The nilCoxeter basis of NHn overRn is a downfree basis, with partial
order given by the Bruhat order on Sn.

This is proven in Theorem 4.5, which also contains an explicit formula for the
downfree character, and the generalization to all simply-laced KLR algebras.

Similarly, we can study the Hecke category H .Sn/. Now,Rn is the endomorphism
ring of the monoidal identity, so all morphism spaces are naturally Rn-bimodules.
Following ideas of Libedinsky [24], Elias and Williamson in [12] define the double
leaves basis, a basis of morphism spaces as left Rn-modules, which is indexed by
coterminal Bruhat strolls. Let us summarize Theorem 5.25, which contains an explicit
formula for the downfree character.

Theorem 1.21. The double leaves basis of morphism spaces in H .Sn/ over Rn is
downfree, with partial order given by the lexicoBruhat order on coterminal Bruhat
strolls.

The natural bases of morphism spaces of U.sl2/ and PU.sl2/ are also downfree
(conjecturally, since we do not prove it here), though over a different base ring. Any
given (non-zero) morphism space in U.sl2/ has 2n points on the boundary (n oriented
in and n oriented out). This morphism space is free of rank nŠ over Rn ˝ ƒ, where
ƒ is the ring of symmetric functions acting by bubbles, and Rn acts by dots on the
inward-oriented strands. We place an sl2 structure on ƒ in Section 6.2; the lowering
operator z depends on the choice of ambient weight. The combinatorics involved in
describing the downfree character have not been developed.

1.5. What kinds of sl2-modules appear?

Having just described the kinds of .Rn;sl2/-modules which appear in practice, we can
ask about what these modules look like as sl2-representations, with an eye towards
understanding their cores.

In this paper, all sl2 representations have weights which are bounded below rather
than above, so Verma modules �.k/ are defined by inducing from U.b�/ rather than
U.bC/. Let Lk denote the irreducible weight representation of lowest weight k for
all k, a quotient of �.k/ and submodule of r.k/. Note that Lk is finite dimensional
if and only if k � 0.
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Example 1.22. Consider ZŒx� as an sl2-module. With its usual basis of monomials,
the module looks like this:

�
0

�
x

� � � �
xm�1

�
xm

� � � :

 !dD0

 !

zD1

 !dD1

 !

zD2

 !dDm�2

 !

zDm�1

 !dDm�1

 !

zDm

 !dDm

 !

zDmC1

Hence, ZŒx� Š r.0/. This is a coVerma module, with the trivial module (spanned by
the identity element) as a submodule. The quotient by the trivial submodule is isomor-
phic to�.2/. Note that�.2/ 6Š r.2/ when we work over Z or in finite characteristic.

As both a ring and as an sl2-module, we have ZŒx1; : : : ; xn� Š ZŒx�˝n. The
following proposition is very easy to prove.

Proposition 1.23 (See Proposition 2.26). For p DP aixi 2 Rn, there is an isomor-
phism of sl2 modules

Rnhpi Š r.a1/˝ � � � ˝ r.an/:

In particular, Core.Rnhpi/ is non-zero if and only if ai 2 Z�0 for all i , in which case

Core.Rnhpi/ Š La1
˝ � � � ˝ Lan

:

Example 1.24. Suppose M D Rnhpi is generated in degree �2. If p D �2x1, then
Core.M/ is three dimensional; if p D �x1 � x2, then Core.M/ is four dimensional;
and if p D �3x1 C x2, then Core.M/ D 0. This illustrates why the character of an
.Rn; sl2/-module is more useful than the graded degree.

Suppose one has an .Rn; sl2/-module with a downfree filtration, and one knows
the downfree character. By the proposition above, one knows the core of the asso-
ciated graded module. A priori, this does not make it any easier to determine the
core of M , because a finite-dimensional submodule of a subquotient of M need not
lead to a finite-dimensional submodule of M itself. However, extensions between
.Rn; sl2/-modules are even more limited than extensions between their underlying
sl2-modules, and sometimes the downfree character of M will determine the core of
M ! Let us illustrate this with the following result.

Theorem 1.25. Let n D 1, so that Rn D ZŒx�. Let M D ZŒx�haxi ˚ ZŒx�hbxi be
a .ZŒx�; sl2/-module with a downfree filtration, where ZŒx�hbxi is the submodule. If
the downfree filtration does not split, then b D a C 2. Unless a D 0 and b D 2, we
have Core.M/ Š Core.ZŒx�haxi/˚ Core.ZŒx�hbxi/.
Proof. (Sketch) Let 1a denote the generator of ZŒx�haxi, living in degree a. Then

z.1a/ D 0; d.1a/ D ax1a Cm (9)
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for some m 2 ZŒx�hbxi. For the sl2 relations to hold, we need z.m/ D 0. But the
kernel of z inside ZŒx�hbi is just the span of the generator 1b . Thus, m is a scalar
multiple of 1b , and for degree reasons b D aC 2.

Even the associated graded has no core unless a � 0, so assume a � 0. There are
no extensions betweenr.a/ andr.aC 2/ unless aD 0, by the usual theory of central
characters.

Remark 1.26. The lack of extensions between r.a/ and r.a C 2/ does not mean
that the downfree filtration splits. The splitting as an sl2-module and the splitting as
an R1-module are not compatible.

Remark 1.27. When a D 0 and b D 2, one can find an extension of ZŒx�h0i by
ZŒx�h2xi with zero core, whereas the core of the associated graded would be one-
dimensional.

This theorem implies that, for a two-step downfree filtration in one variable, the
difference between the core of the original module and its associated graded is at most
one copy of the trivial module. Similarly, one can prove that a three-step filtration can
remove a copy of L0 or L�1, but not L�k for k � 2.

Remark 1.28. The situation is more complex in more than one variable, because
polynomials in the roots .xi � xj / are killed by z, and this allows for more exten-
sions (such polynomials times 1b are valid choices for m in (9)). See Section 5.2 for
an example. Interestingly, many of these extensions do not admit integrally-defined
divided powers! Keeping track of divided powers and integrality properties does seem
to rigidify the possible extensions.

The .Rn; sl2/-modules admitting a downfree filtration form a reasonably nice
category which we feel is important to study. We hope to provide a methodical study
of .Rn; sl2/-modules in future work, and provide only the basics in this paper.

1.6. Conclusion

In Section 2 we provide some basic results and definitions related to sl2-categories
and their modules, and the special case of polynomial rings. In the subsequent sections
we examine the categories UC.g/ (in simply laced type), H , U.sl2/, and PU.sl2/

in turn, constructing the derivation z, establishing the sl2 action, and verifying the
claims made in this introduction about downfree filtrations. In Section 6.1 and Sec-
tion 6.2 we discuss the sl2 action on symmetric polynomials and symmetric functions,
which may be of independent interest.

In Section 5, in order to prove results about the downfree filtration on the Hecke
category, we need to establish some basic properties of light leaves and double leaves.
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Aside from this, the proofs in this paper are all relatively straightforward computa-
tions.

We find this new sl2 structure to be extremely tantalizing. In a follow-up paper
we will introduce an sl2-enrichment of the categories of interest, where multiplicity
spaces are naturally finite-dimensional sl2 representations. We also introduce a con-
jectural approach to defining a triangulated category from an sl2-category, analogous
to the derived categories associated to p-dg algebras in [14,29], whose Grothendieck
group is naturally a module over ZŒq C q�1�, the Grothendieck ring of finite-dimen-
sional sl2 representations. We will state a number of conjectures about cores and
Jacobson radicals, which translate into the existence of nice bases for the triangu-
lated Grothendieck group. If true, these conjectures would produce a new kind of
categorification and a new kind of canonical basis, where structure coefficients are
naturally unimodal, being the graded dimensions of sl2 representations. For exam-
ple, the Grothendieck group of the diagrammatic Hecke category would be a variant
of the Hecke algebra with base ring ZŒq C q�1�. Our conjectures would also imply
several open conjectures about categorification at a root of unity, e.g., that the p-dg
Grothendieck group of the diagrammatic Hecke category is the Hecke algebra at a
root of unity.

While some aspects of the material developed in the follow-up paper are quite
technical and lengthy to explain, other aspects are accessible and directly computa-
tional. We continue our introduction in Section 3 by explaining the basics of the theory
of sl2 decompositions. In particular, this discussion further motivates the study of the
core, and of iterated cores that one obtains by combining the algebra structure and
the sl2 structure on an sl2-category. We discuss examples in the diagrammatic Hecke
category in Section 3.4, and state our new sl2-adapted Soergel categorification con-
jecture in Section 3.5.

Remark 1.29. This final remark is for those readers familiar with p-dg algebras and
categorification at a root of unity. By forgetting the lowering operator and restricting
from U.sl2/ to U.bC/, one obtains a p-dg structure on these categories. The biggest
problem in computing the p-dg Grothendieck group is to prove that any object has a
fantastic filtration whose subquotients are certain p-dg-indecomposable objects. His-
torically this has been done by computing idempotent decompositions explicitly, but
this method becomes intractable quickly.

Our sl2-adapted Soergel categorification conjecture essentially states that Bott–
Samelson objects have sl2-fantastic filtrations, whose subquotients are “indecompos-
able objects” tensored with a multiplicity space which is a finite-dimensional sl2
representation. Because a finite-dimensional sl2 representation has a filtration by
one-dimensional U.bC/-modules, this will yield a filtration by p-dg indecomposable
objects (with multiplicity one); an sl2-fantastic filtration will be a p-dg fantastic filtra-



B. Elias and Y. Qi 748

tion. However, sl2-fantastic filtrations are more restrictive and include more structure,
which ironically makes them easier to find. Once you compute the highest weight vec-
tor, you can apply z to find a basis for the rest of the representation; this was a tool
which was not previously available.

2. Representations of polynomial sl2-algebras

Most of the results in this section are relatively straightforward, but because we are
not aware of any literature on the topic, we provide some details.

2.1. g-algebras and Leibniz exercises

Definition 2.1. Let k be a commutative domain, and let g be a Lie algebra over
k. A g-algebra is a k-algebra A equipped with an action of g by derivations. We
sometimes write .A;g/ for this structure. One can define a g-category similarly, and g

will act on each Hom space. A monoidal g-category is a g-category with the additional
requirement for each x 2 g that

x.f ˝ g/ D x.f /˝ g C f ˝ x.g/:

By the interchange law, it is equivalent to require that

x.f ˝ 1/ D x.f /˝ 1; x.1˝ f / D 1˝ x.f /:

By default, in this paper k D Z. Before continuing, let us address the practical
question of what it takes to place a g-algebra structure on A. Here are two simplifying
lemmas. The first reduces the data required to define a single derivation.

Lemma 2.2. Let A be a k-algebra given by generators and relations. To define a
derivation x on A, it suffices to specify x.a/ for each generator of A, and to check
that x preserves all the relations ofA (what this means precisely is stated in the proof).

Proof. Let S be the generating set of A, and F hSi the free algebra on these genera-
tors. Any assignment xWS ! F hSi will extend to a unique derivation on F hSi, using
the Leibniz rule to define the action of x on a word in S . If I is the ideal in F hSi
generated by the relations, and x sends the generating relations to elements of I , then
x preserves I by the Leibniz rule. Thus, x descends to a derivation on A.

The second lemma reduces the work required to check that a collection of deriva-
tions gives an action of a particular Lie algebra g.
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Lemma 2.3. Let x; y ; z be three derivations on an algebra A, and suppose that

Œx; y �.a/ D z.a/ (10)

holds for a generating set of elements a 2 A. Then it holds for all a 2 A.

Proof. The equation (10) is clearly linear in a, so it remains to check that if (10) holds
for a and b, then it holds for the product ab. We compute

Œx; y �.ab/ D x.y.a/b C ay.b// � y.x.a/b C ax.b//

D xy.a/b C y.a/x.b/C x.a/y.b/C axy.b/

� yx.a/b � x.a/y.b/ � y.a/x.b/ � ayx.b/

D Œx; y �.a/b C aŒx; y �.b/ D z.a/b C az.b/

D z.ab/:

Here is one more practical consideration.

Definition 2.4. Let x be a derivation on a Z-algebra A. The divided powers of x are
the operators

x.k/ WD xk

kŠ
;

which a priori send A to A˝Z Q. We say that the divided powers x.k/ are defined
over k or just defined integrally4 if there are operators x.k/ defined in A (without any
base change) such that

kŠ � x.k/ D xk; x.k/x.`/ D
�
k C `
k

�
x.kC`/:

Lemma 2.5. Let x be a derivation on a Z-algebra A, and suppose that x.k/.a/ is
defined integrally for a generating set of elements in A. Then x.k/ is defined integrally
(on all of A).

Proof. Again, x.k/ is a linear operator. It is an easy exercise in the Leibniz rule (and
the binomial theorem) that

x.k/.ab/ D
X
iCjDk

x.i/.a/x.j /.b/:

In particular, if x.k/ is defined on a and b for all k, then it is defined on ab.

We write˝ for˝k.

4We use the words “defined integrally” in general, but for most of our applications in this
paper k D Z.
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Corollary 2.6. Let A and B be g-algebras. Then the tensor product algebra A˝ B ,
with its tensor product g-action, is a g-algebra. If the divided powers of x 2 g are
defined integrally on A and on B , then they are defined integrally on A˝ B .

Proof. Since A˝ B is generated by elements of A and elements of B , Lemmas 2.3
and 2.5 imply the result.

Remark 2.7. The g-action on an algebra A can be more conceptually understood
in the language of a module-algebra over a Hopf algebra H (see, e.g., [28] for more
details). LetH be a Hopf algebra over k. We will always assume thatH is a projective
k-module. The comultiplication on H is denoted � in Sweedler’s notation:

�.h/ D
X

h1 ˝ h2;

for any h2H , and the counit map is denoted "WH!k. A k-algebraA is called anH -
module algebra if A is an H -module, and the multiplication map of A is compatible
with the H -action: for any a; b 2 A and h 2 H

h � .ab/ D
X

.h1 � a/.h2 � b/; h � 1A D ".h/1A;

where 1A is the identity element of A. WhenH and A are graded (super)algebras, the
notions should be adapted so that theH action onA respects the graded (super)algebra
structures.

As a particular case, for a g-algebra A, one may take H to be the universal
enveloping algebra of a Lie algebra g over k, with the H -action on A induced by
derivations of g on A. Similarly, taking H D kŒd �=.d2/ to be the graded superalge-
bra of dual numbers, where the degree of d is set to be 1 and

�.d/ D d ˝ 1C 1˝ d; ".d/ D 0;

one recovers the usual notion of a differential graded algebra as an H -module alge-
bra.

2.2. Modules over g-algebras

Definition 2.8. Let .A;g/ be a g-algebra. An .A;g/-module is anA-moduleM which
is equipped with a g action. For x 2 g write xM for the action of x onM . We require
the compatibility

xM .a �m/ D xA.a/ �mC a � xM .m/
for any a 2 A andm 2M . A morphism of .A;g/-modules is an A-module morphism
M ! N which intertwines the action of g. These morphisms form a space denoted
Hom.A;g/.M;N /.
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This definition is completely analogous to the definition of a dg-module over a
dg-algebra. Instead of just one differential, we keep track of a g action. Just as for
dg-modules, we can consider the internal Hom space.

Definition 2.9. Let M and N be two .A; g/-modules. Then the space of A-module
maps HomA.M;N / can be equipped with the structure of a g-module, where

xHom.�/.m/ WD xN .�.m// � �.xM .m//:

Proposition 2.10. If A is commutative, then HomA.M;N / is also an A-module. The
actions of A and g are compatible, making HomA.M;N / into an .A;g/-module.

Proof. We only need to check the Leibniz rule. We compute

xHom.a � �/.m/ D xN .a�.m// � a�.xM .m//
D xA.a/�.m/C axN .�.m// � a�.xM .m//
D .xA.a/ � �/.m/C .a � xHom.�//.m/:

The result follows.

Lemma 2.11. LetM be an A-module with a presentation. To giveM the structure of
an .A;g/-module, it suffices to define xM .m/ for all generatorsm 2M and all x 2 g,
and to check the relations. For a given x 2 g, the divided powers of xM are defined
integrally if and only if they are defined integrally on the generators of M .

Proof. This is entirely analogous to Lemmas 2.2, 2.3, and 2.5. We leave the proof to
the reader.

Remark 2.12. Let A be an H -module algebra as in Remark 2.7, one may form the
smash product ring A#H , which, as an algebra, is isomorphic to the tensor product
algebra A˝k H , whose multiplication is given by

.a˝ h/ � .b ˝ k/ D
X

a.h1 � b/˝ h2k;

for any a; b 2 A and h; k 2 H . The abelian category of A#H -modules is acted upon
by the abelian monoidal category of k-projective H -representations. Let us denote
this action by �. Given an A#H -module M and a k-projective H -representation
V , M � V is isomorphic to M ˝k V , with any element a ˝ h 2 A#H acting on
x ˝ v 2M � V by

.a˝ h/ � .x ˝ v/ WD
X

..a˝ h1/ � x/� h2v:

By construction, .-/� V is an exact functor on A#H -modules.
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In this language, an .A; g/-module is no other than a module over A#H , where
H is the universal enveloping algebra of g over k. It follows readily that the category
of .A;g/-modules constitute an abelian category, with a categorical module structure
over the monoidal category of projective H -representations.

2.3. Weights

When g D sl2 we change notation to impose one additional condition: that h acts
semisimply.

Definition 2.13. A (weight) sl2-algebra (over k) is a k-algebra A equipped with an
action of sl2 by derivations, on which the Cartan element h 2 sl2 acts diagonaliz-
ably (with eigenvalues in k). A (weight) .A; sl2/-module is an A-module M with
a compatible sl2 action, on which the Cartan element h 2 sl2 acts diagonalizably.
A divided powers sl2-algebra is an sl2-algebra where the divided powers of d and z

are integrally defined, and similarly for a divided powers .A; sl2/-module.

We let .d;h;�z/ be the standard sl2 triple, and we write xA or xM for the action
of x on A or M , where x 2 ¹d;h; zº.
Lemma 2.14. Equip A (resp.M ) with a k-grading by the eigenvalues of h, the usual
weight grading. Then A is a graded algebra (resp. and M is a graded module).

Proof. For homogeneous elements a1 and m2 of weights d1 and d2 respectively, the
Leibniz rule for h implies that a1m2 has weight d1 C d2.

Most often in this paper the eigenvalues of h will be integers, and our rings and
modules will be Z-graded. Only in this section on generalities, and to some extent in
Section 6.2, will we care about more general weights.

Remark 2.15. For all the examples we study in this paper, the eigenvalues live in
the image of the map Z! k. Even when this map is not injective, all our examples
can be compatibly Z-graded. In this context, a few statements need to be modified
in the obvious way. For example, for an element a 2 k we will often write “a 2 Z”
to indicate that a is in the image of Z! k, but in the Z-graded context one should
instead choose a preimage a 2 Z. Without further ado, we assume that our examples
are Z-graded even in finite characteristic.

Let us make one remark about divided powers.

Definition 2.16. Let U D UZ.sl2/ denote the idempotented divided powers form of
the enveloping algebra of sl2. A definition can be found, for instance, in [17, Sec-
tion 3.1] (by specializing the q to be 1 in the quantum setting). All modules over U
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will be assumed to be weight modules, so that the idempotent 1n acts by multiplica-
tion by n for n 2 Z.

Note that U acts on any sl2-module where divided powers exist and the weights
are integers. An action ofU onA andB extends to an action onA˝B (Corollary 2.6)
since U is a Hopf algebra. The proof that U is a Hopf algebra is essentially the same
as the proof of Lemma 2.5. A divided powers sl2-algebra over Z is the same thing as
an algebra in the category of (weight) U -modules.

2.4. On representations of sl2 over the integers

The reader may be familiar with the properties of category O, but many things are dif-
ferent and slightly unfamiliar when working over the integers. The goal of this section
is to make precise what we mean by Verma and coVerma modules, and to warn the
reader of some pitfalls. Because we study z instead of �z, and bounded-below mod-
ules rather than bounded-above modules, some signs may differ from expectations.

Definition 2.17. For k 2 k we will define modules �.k/ and r.k/ over sl2 as fol-
lows:

�.k/W �
0

�
1

� � � �
m�1 �

m
� � � ;

 !dD1

 !
zDk

 !dD2

 !
zDkC1

 !dDm�1

 !
zDkCm�2

 !dDm

 !
zDkCm�1

 !dDmC1

 !
zDkCm

(11.1)

r.k/W �
0

�
1

� � � �
m�1 �

m
� � � :

 !dDk

 !

zD1

 !dDkC1

 !

zD2

 !dDkCm�2

 !

zDm�1

 !dDkCm�1

 !

zDm

 !dDkCm

 !

zDmC1
(11.2)

Let us rephrase these pictures in formulas. The module �.k/ has a free Z-basis
¹vk;mºm�0, corresponding to the dots labeled by m in the picture above, where vk;m
has weight k C 2m. Set vk;m WD 0 for m < 0. We have

d.vk;m/ D .mC 1/vk;mC1; z.vk;mC1/ D .mC k/vk;m: (12)

Similarly, r.k/ has a free Z-basis ¹wk;mº, where wk;m has weight k C 2m. Set
wk;m WD 0 for m < 0. We have

d.wk;m/ D .mC k/wk;mC1; z.wk;mC1/ D .mC 1/wk;m: (13)

Lemma 2.18. When a 2 Z, divided powers are defined integrally on�.a/ and r.a/.
More generally, divided powers are defined in k whenever the a-binomial coefficients
are defined in k for all l 2 Z and m 2 Z�0: these are the elements�

aC l
m

�
WD .aC l/.aC l � 1/ � � � .aC l C 1 �m/

mŠ
:
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Proof. It is a simple computation that

d.l/vk;m D
�
mC l
l

�
vk;mCl ; z.l/wk;m D

�
m

l

�
wk;m�l ; (14.1)

z.l/vk;m D
�
mC k � 1

l

�
vk;m�l ; d.l/wk;m D

�
mC k C l � 1

l

�
wk;mCl : (14.2)

For example, suppose k D ZŒy� and a D y. Then�
aC 7
3

�
D .y C 7/.y C 6/.y C 5/

3Š
;

is not an element of k, so divided powers are not defined integrally on �.a/ or r.a/.
For the rest of this section, kDZ, so we can think of Verma and coVerma modules

as U -modules.
Let vk WD vk;0 and wk WD wk;0. Note that

d.m/.vk/ D vk;m; z.m/.wk;m/ D wk :

The module �.k/ is generated by vk over U , and the divided powers d.m/ applied to
this generator give the basis. Meanwhile, r.k/ is infinitely-generated over U , but it
is “co-generated” by wk , as the divided powers z.m/ bring every basis element to wk .

Given any U -module M which is free as a Z-module, 2M �M will be a proper
submodule. Simplicity, in its naive sense as when working over a field, is not as useful
a concept.

Definition 2.19. A morphism of U -modules is called h-split if it is a split morphism
of Z-modules for each weight space. Let U -spmod denote the category whose objects
areU -modules where weight spaces are free over Z, and whose morphisms are h-split
maps. If M is a module in U -spmod, a U -submodule is called h-split if the inclusion
map is h-split, and similarly for quotient modules.

Note that any isomorphism, or more generally any genuinely split map (over U ),
is automatically h-split. However, U -spmod is not an additive category, as the sum
of h-split morphisms need not be h-split. After all, idC id D 2 id. Nonetheless, if f
is any h-split morphism, then its kernel and cokernel naturally live in U -spmod, so
U -spmod shares some features with an abelian category.

When restricting to h-split morphisms, Verma and coVerma modules have fea-
tures which resemble those in the familiar category O.
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Proposition 2.20. The modules �.k/ and r.k/ are indecomposable for all k 2 Z.
When k > 0, the modules �.k/ and r.k/ have no h-split submodules or quotients.
There are h-split short exact sequences for all k � 0 given by

0! r.�k C 2/! �.k/! W.k/! 0; (15.1)

0! W _.k/! r.k/! �.�k C 2/! 0; (15.2)

where W.k/ and W _.k/, the so-called Weyl and dual Weyl modules, are defined by
these short exact sequences. Aside from those given in (15), there are no other h-split
submodules or quotients of �.k/ and r.k/ for k � 0.

Proof. Since all weight spaces are free of rank 1 over Z, an h-split submodule is
determined by which weight spaces it includes. Now, the usual arguments (analyz-
ing which arrows have zero coefficient) imply that only certain collections of weight
spaces can give a submodule. One need only verify that when k � 0 the submodule
of �.k/ generated in degree �k C 2 is r.�k C 2/, which one can do directly from
the pictures (11) or the corresponding formulas.

What is more interesting is the following observation.

Proposition 2.21. If k contains Q as a subring, then r.k/ Š �.k/ if and only if
k > 0. Otherwise, r.k/ Š �.k/ if and only if k D 1.

Note a major difference between this setting and the usual category O in charac-
teristic zero. Normally,�.k/Š r.k/ for all k > 0, and one reverses the placement of
�.�k C 2/ and r.�k C 2/ in (15); they are isomorphic, so it does not matter, but it
is often done to help illustrate the Verma and coVerma resolutions of simple modules.
Over Z, one is not permitted to swap �.�k C 2/ and r.�k C 2/, and the Weyl and
dual Weyl modules do not have Verma or coVerma resolutions. This fact will be of
great importance in the sequel.

Proof. Clearly, r.1/ Š �.1/ by sending w1;m 7! v1;m, since the formulas (12)
and (13) agree. When k � 0, clearly r.k/ 6Š�.k/ since one has a finite rank submod-
ule and the other does not. So, suppose k > 0. What happens over Q is well known, so
assume that there is some a � 1 such that ¹1; : : : ; aº is invertible in k and aC 1 is not
invertible. We claim that the image of z.a/ in degree k is different when comparing
r.k/ to �.k/, which implies they are non-isomorphic. Clearly, wk is in the image of
z.a/ inside r.k/, whereas only the span of .a C 1/vk is in the image of z.a/ inside
�.k/.

Remark 2.22. If M is any module with a lowest weight vector v in weight k, then
there is a morphism�.k/!M sending vk 7! v. This morphism will not necessarily
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be h-split. For example, the natural morphism �.k/ ! r.k/ is not h-split except
when k D 1.

2.5. Rank-one modules over polynomial rings

Let R1 D kŒx�, equipped with its standard sl2 structure from (1), where d D x2 @
@x

and z D @
@x

. By our choice of convention, h D 2x @
@x

.

Proposition 2.23. As an sl2-module, R1 Š r.0/. In particular, divided powers are
well defined, so R1 is a U -module.

Proof. If we send w0;m 7! xm, we can confirm (13) easily.

Remark 2.24. One is tempted to say that the ideal .x/ is isomorphic to�.2/, but one
must be careful with this statement. Ideals are usually thought of as submodules, so
that .x/ is identified with a subset of R1. This subset is an R1-submodule but not a
U -submodule, because it is not preserved by z. This was discussed at more length in
the introduction, see the toy example from Section 1.3.

Definition 2.25. Let a 2 k and let R1hai denote the free rank one graded R1 module
with generator 1a. We give it an .R1; sl2/-module structure by setting

d.1a/ D ax � 1a; z.1a/ D 0; h.1a/ D a1a;

and extending these operators to all of R1hai by the Leibniz rule.

That R1hai is well defined is a consequence of the following proposition.

Proposition 2.26. The following statements hold.

(i) Any .R1; sl2/-module structure on the rank-one free module R1 is isomor-
phic to R1.a/ for a unique a 2 k.

(ii) As an sl2-module, R1hai Š r.a/. In particular, divided powers are well
defined when a 2 Z.

Proof. For a rank-one module, denote by v a generator as an R1-module. Then, the
module is also generated by v as an .R1;sl2/-module. For degree reasons, there must
be a; a0 2 k such that

d.v/ D axv; h.v/ D a0v; z.v/ D 0:

The commutation relation Œd;�z� D h applied to the generator v shows that

a0v D hv D zdv � dzv D av;

implying that a0 D a.
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For the second statement, if we send wa;m 7! xm � 1a, we can confirm (13) easily.

Now, we let Rn D kŒx1; : : : ; xn� be the polynomial sl2-algebra, as in Defini-
tion 1.14.

Lemma 2.27. As an algebra and an sl2-module we have Rn Š R1 ˝ � � � ˝ R1. In
particular, divided powers are well defined.

Proof. The isomorphism with the tensor product is obvious. See Corollary 2.6 for the
rest.

We recall a definition from the introduction.

Definition 2.28. Let pDPaixi be a linear polynomial inRn, and let †.p/DPai 2
k. Note that †.p/D zR.p/, though † is more descriptive notation. There is a free rank
one graded Rn-module Rnhpi with generator 1p . We define an .Rn; sl2/-module
structure on Rnhpi by setting

d.1p/ D p � 1p; z.1p/ D 0; h.1p/ D †.p/1p;

and extending by the Leibniz rule.

Proposition 2.29. As an sl2-module,

Rnhpi Š R1ha1i ˝ � � � ˝R1hani Š r.a1/˝ � � � ˝ r.an/: (16)

In particular, divided powers are well defined when ai 2 Z for all i .

Proof. It is easily verified that the map 1p 7! 1a1
˝ � � �˝ 1an

induces an isomorphism.

Proposition 2.30. Every .Rn; sl2/-module which is free of rank one as a graded
Rn-module is isomorphic to Rnhpi for some p.

Proof. Let M be such a module, and name the generator 1M . Then z.1M / D 0, and
d.1M / D p � 1M for some linear polynomial p, both for degree reasons. The remain-
ing structure follows from the Leibniz rule. The fact that the degree of 1M must be
†.p/ follows from the fact that

zd.1M / D z.p/ � 1M D †.p/1M :

Remark 2.31. For more examples of sl2-algebras, see Section 6.1 and Section 6.2.
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2.6. The core

We will eventually be interested in settings where the base ring k is Z or Q or ZŒy� or
of finite characteristic. Thus, we are careful in this section to make general statements.

Definition 2.32. An sl2.k/ module is called bounded if

• it is a weight module, with weights in Z,

• the set of weights with non-zero weight spaces is bounded below,

• and each non-zero weight space is free of finite rank over k.

Proposition 2.33. Suppose that Z! k is injective and k is Noetherian. Any bounded
sl2 representation M will have a maximal submodule which is finitely generated
over k, which we call the core of M and denote Core.M/. It satisfies

Core.M/ D ¹m 2M j dN .m/ D 0 for some N 2 Nº: (17)

Note that the core may be zero.

Proof. For the sake of this proof, define Core.M/ using (17). Note that Core.M/

is a weight module. Clearly, d acts nilpotently on any submodule which is finitely
generated as a k-module, so Core.M/ contains all such submodules. We need only
prove that Core.M/ is finitely generated over k.

We now argue that Core.M/ is locally finitely generated, i.e., any element is con-
tained in an sl2 submodule which is finitely generated over k. Suppose that m 2 M
homogeneous is acted upon nilpotently by d. By the PBW theorem, the span of
¹zahbdc � mºa;b;c�0 is an sl2 subrepresentation containing m. Only finitely many
pairs .a; c/ will give a non-zero result, and the span of ¹zahbdc �mºb�0 agrees with
the span of the single vector zadc � m. Thus, m is contained in a subrepresentation
which is finite rank over k.

If Core.M/ is not finitely generated over k, then by the Noetherian hypothesis it
must have non-zero elements in infinitely many weight spaces (lest it be contained in
a finite rank k-module). Because Core.M/ is locally finitely generated, it must have
highest weight vectors in arbitrarily high weights. We now argue that Core.M/ also
has (lowest weight) vectors in arbitrary low weights, a contradiction because M is
bounded. This last argument is standard, we are just being careful because we have
placed very few assumptions on k.

Suppose that Core.M/ has a highest weight vector v in weight k > 0. Let �0.k/
be the bounded-above Verma module with highest weight k. Then v induces a non-
zero map of sl2.k/-modules �W�0.k/! Core.M/. Since the target is a submodule
of a free k-module, it is torsion free over k. Since each weight space in �0.k/ is free
of rank 1 over k, the kernel of � is divisible, so it is spanned by a subset of the weight
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spaces in�0.k/. Now, standard arguments imply that the kernel of � is zero in weight
�k, so Core.M/ is non-zero in weight �k.

Remark 2.34. When k is a PID, one can use Smith normal form to deduce that the
kernel of a map between free (finite rank) modules is a split summand of the source.
One can use this to prove that Core.M/ is a h-split submodule ofM . We imagine this
is always true (even when k is a Dedekind domain or something unusual) but we do
not have the knowledge or examples to say one way or another.

Lemma 2.35. There is a left-exact functor Core from bounded sl2-modules to
sl2-modules which are finitely generated over k, sendingM to Core.M/, and restrict-
ing any morphism to the core.

Proof. The image under an sl2-intertwiner of a finitely generated module is a finitely
generated submodule. Thus, the core is sent to the core under any sl2-intertwiner.
Injective maps restrict to injective maps, so Core is left-exact.

Remark 2.36. Note that Core is not right exact. For example, for a � 0 the canonical
map�.a/! W.a/ is surjective, but Core.�.a// D 0 while Core.W.a// D W.a/. In
this sense, the core of a quotient can be larger than the core of the original module. Of
course, the core of a quotient can be smaller too, as the quotient map could kill part
of the core.

Proposition 2.37. Let p D P
aixi 2 Rn with ai 2 Z. If ai > 0 for some i , then

Core.Rnhpi/ D 0. If ai � 0 for all i , then

Core.Rnhpi/ Š W _a1
˝ � � � ˝W _an

: (18)

Proof. We use the identification (16) of Rnhpi with a tensor product of coVermas.
Let M be any sl2 module and consider r.a/˝M . Any vector v in this tensor

product can be written uniquely asX
j�0

wa;j ˝mj

for somemj 2M , with finitely manymj being non-zero. Let J be the maximal value
of j for which mj ¤ 0. Then

dN
�X
j�0

wa;j ˝mj
�
D dN .wa;J /˝mJ C

X
j 0<JCN

wa;j 0 ˝ nj 0

for some nj 0 2 M . So, long as dN .wa;J / ¤ 0, dN .v/ ¤ 0. But by the formula
from (14), dN .wa;J / is never zero when a > 0. In fact, it is never zero when J > �a.
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As a consequence, we deduce that r.a/˝M has zero core when a > 0. Similar
arguments prove that �.a/˝M has no core for any a 2 Z. This also follows from
the familiar idea that tensoring a Verma module with anything yields a module with
a Verma filtration, and modules with a Verma filtration have no finite-dimensional
submodules.

This proves that Core.Rnhpi/D 0 if any ai > 0. If ai � 0 for all i , then the tensor
product of the submodulesW _ai

clearly lives inside Core.Rnhpi/. Sincer.ai /=W _ai
Š

�.�ai C 2/, the quotient of Rnhpi by the tensor product of coweyl modules has a
filtration whose subquotients are isomorphic to M ˝ �.a/ for some a. If d has no
nilpotents on the associated graded of a filtered module, it has no nilpotents on the
whole module. This proves that the core of Rnhpi is not bigger than expected.

Corollary 2.38. Let p DP aixi . Then the elements

B WD ¹xb1

1 x
b2

2 � � � xbn
n j 0 � bi � �aiº

form a basis for the core of Rnhpi.
Proof. This follows from the case n D 1, where it is straightforward.

Finally, we mention one more useful result. The same argument will show that the
core of a tensor product contains the tensor product of the cores.

Proposition 2.39. In an sl2-category where all morphism spaces are bounded sl2
representations, the core is a subcategory. In a monoidal sl2-category with this prop-
erty, the core is a monoidal subcategory.

Proof. We need to prove that the core contains all identity maps (which is obvious)
and is closed under composition (both horizontal and vertical). We use the descrip-
tion of the core as those elements on which d acts nilpotently. If dN1.f / D 0 and
dN2.g/ D 0, then dN1CN2.f ı g/ D 0 and dN1CN2.f ˝ g/ D 0, by the Leibniz
rule.

3. On decompositions in the presence of sl2

In this quasi-introductory section we discuss the nature of direct sum decompositions
in the presence of an sl2 action, and the possible implications for the Grothendieck
group. Afterwards, we will reconnect these ideas to the concept of the core. For sim-
plicity, we work with categories over a field k rather than the integers.
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The idea has already arisen in categorification at a root of unity (which studies
categories with a derivation d) to study a direct sum decomposition not with the tradi-
tional use of idempotents, but by studying filtrations on representable functors instead.
This is a guiding principle below.

3.1. Actions on partial idempotent completions

It is traditional when studying (pre)additive categories over a field to take (the addi-
tive closure and then) the Karoubi envelope. One obtains a Krull–Schmidt category,
whose split Grothendieck group is spanned by isomorphism classes of indecom-
posable objects. Then one uses direct sum decompositions to find relations in the
Grothendieck group. One way to motivate the Karoubi envelope is that it naturally
appears when studying modules over the category: representable modules Hom.X;�/
are projective, and thus so are their direct summands Hom.X;�/ ı e for any idempo-
tent e 2 End.X/.

However, for a category with an sl2 action, there is no induced action of sl2 on
the Karoubi envelope!

Let X be an object and e 2 End.X/ an idempotent. The subspace

Hom.X;�/ ı e � Hom.X;�/
is not closed under sl2 in general. For each x 2 ¹d; z; hº one can try to define an
operator Nx on Hom.X;�/ ı e by truncating the usual action, to wit

Nx.f / WD x.f /e for f 2 Hom.X;�/ ı e: (19)

Each operator Nx satisfies the Leibniz rule. However, these operators will not necessar-
ily satisfy the sl2 relations.

Definition 3.1. An sl2 submodule idempotent is an idempotent satisfying ex.e/ D 0
for all x 2 ¹d;h;zº. An sl2 quotient idempotent instead satisfies x.e/eD 0. An object
which has no non-trivial sl2 submodule idempotents is called sl2-indecomposable.

By applying the Leibniz rule to x.e2/ D x.e/, one deduces that e is an sl2 sub-
module idempotent if and only if x.e/ D x.e/e. Hence, Hom.X;�/ ı e is closed
under x, and the formula (19) is another way to write the restriction of the sl2 action
to this submodule.

It is also easy to deduce that e is an sl2 submodule idempotent if and only if
.1� e/ is an sl2 quotient idempotent. In this case, Hom.X;�/ ı .1� e/ is not closed
under the sl2 action. However, using the identification

Hom.X;�/ ı .1 � e/ Š Hom.X;�/=Hom.X;�/ ı e;
the sl2 action induced on this quotient agrees with the formulas from (19).
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Let e be an sl2 submodule idempotent. Looking at representable functors out of
the partial idempotent completion which adjoins the images of e and 1 � e, we have
a short exact sequence of sl2 representations

0! Hom.X;�/ ı e ! Hom.X;�/! Hom.X;�/ ı .1 � e/! 0; (20)

which splits as modules for the underlying additive category. In this way, the direct
sum decomposition X Š Im.e/˚ Im.1 � e/ in the additive category becomes a fil-
tration for sl2. We still refer to the idempotents e and .1 � e/ as complements.

Definition 3.2. An sl2 decomposition of an objectX is an ordered sequence of idem-
potents e1; e2; : : : ; en such that

(1) the set ¹e1; : : : ; enº is a complete collection of orthogonal idempotents: eiej D
ej ei D 0 for i ¤ j , and

Pn
iD1 ei D idX ;

(2) for any k � n, the idempotent e1 C e2 C � � � C ek is an sl2 submodule idem-
potent.

In this case, the idempotents ei are called sl2 subquotient idempotents.

Similarly, the formula (19) defines an sl2 action on Hom.X;�/ ı e for any sl2
subquotient idempotent. For the analogous definition in the context of p-dg algebras,
see [9, Section 4].

3.2. Future goals, and cofibrance

The goal is to find a setting where certain idempotent decompositions give rise to rela-
tions on the Grothendieck group, much as they did in the split Grothendieck group of
the underlying additive category. Another goal is for this Grothendieck group to be
naturally a module over the Grothendieck ring of finite-dimensional sl2 representa-
tions. Not every idempotent decomposition should give rise to a relation. For a general
idempotent, the subspaces Hom.X;�/ ı e and Hom.X;�/ ı .1� e/ are entangled by
the sl2 action, and no filtration (20) is present; one does not expect a relation in the
Grothendieck group. However, even for submodule idempotents, one does not always
expect a relation, because of a technical point we now address.

The program of categorification at a root of unity, which accounts for the action
of d but not z, has an established framework for Grothendieck groups like the one
we seek. There is a triangulated category associated to a category with an action of d,
constructed using Hopfological algebra [14,29]. In this triangulated category, the short
exact sequence (20) does not always give rise to a distinguished triangle, but it does
when the module Hom.X;�/ ı e is cofibrant. In particular, the appropriate category
to study is not the partial idempotent completion which adjoins all sl2 subquotient
idempotents, but only those which are cofibrant.
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There are typically two ways to prove that the image of an idempotent is cofibrant.
The first is to show that it is isomorphic to a representable module, which happens
when the idempotent factors compatibly with d:

e D i ı p; p ı i D idY for some object Y; d.p/ ı i D 0: (21)

The second method, the two-out-of-three principle, uses the fact that if two out of
three terms in (20) are cofibrant, then so is the third. Thus, the complement of a
representable module in a representable module is cofibrant. Adjoining its image, one
can assume it is representable for future decompositions.

So, to summarize, one expects relations on the Grothendieck group coming from
cofibrant short exact sequences like (20), and cofibrance can be confirmed by factoring
the idempotent as a projection and inclusion, and checking d.p/ ı i D 0. For a longer
discussion of these thorny issues, see [9, Section 4].

Everything below in this section should be taken with a grain of salt. The authors’
expectation is that there is a triangulated category one can build from any category
with sl2 action, where short exact sequences coming from cofibrant sl2 submodule
idempotents give rise to distinguished triangles. If one can factor an idempotent as
e D i ı p, where i and p have degree zero, then it will be cofibrant if x.p/ ı i D 0 for
all x 2 sl2. However, there are additional cofibrant objects coming from representable
modules in the enriched category.

Definition 3.3. Let C be an sl2-category. The sl2-enriched category is the sl2-cat-
egory Cenrich defined as follows. Its objects are formal tensor products B � V (see
Remark 2.12 for an explanation of the notation), for an object B of C and a finite-
dimensional representation V of sl2. We set

HomCenrich.B � V;B 0 � V 0/ WD HomC .B;B
0/˝ Homsl2

.V; V 0/ (22)

as an sl2-module. Composition is given by .f ˝ �/ ı .g˝ /D .f ı g/˝ .� ı /.
There is a monoidal action of the category of finite-dimensional sl2 representations
on Cenrich, where on objects one has .B � V /˝ V 0 WD B � .V ˝ V 0/.

One should think about B � V as though it were the direct sum of dim.V / copies
of B in C (with the appropriate grading shifts). Then HomCenrich.B � V;B 0� V 0/ can
be viewed appropriately as matrices of morphisms between B and B 0. However, the
action of sl2 on V and V 0 is used to twist the action on these matrices of morphisms. If
dim.V / > 1, then B � V is decomposable as an object in the underlying category C ,
but can be sl2-indecomposable when V is indecomposable.

We develop the enriched category more formally in the sequel. This method
of enrichment is similar to techniques one encounters when studying the equivari-
antization–deequivariantization principle, see, e.g., [3, Section 4]. In the next section
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we discuss a practical method to find an sl2 submodule idempotent whose image is
B � V , generalizing the equations in (21).

Representable modules from the enriched category should also be considered as
cofibrant. Taking the sl2-enriched category is analogous to taking the additive clo-
sure of a preadditive category, and adjoining the images of cofibrant sl2 subquotient
idempotents is analogous to taking the Karoubi envelope. Both are operations one
typically does before attempting to take a Grothendieck group. Below, we refer to the
partial idempotent completion which adds cofibrant sl2 subquotient idempotents as
the cofibrant Karoubi envelope.

At the moment, there are only conjectural ideas for how to build a triangulated
category from an sl2-enriched category with an appropriate Grothendieck group.
These ideas (sl2-omological algebra) will be explored in the sequel. However, one
can explicitly state conjectures for the expected behavior of the 2-categories stud-
ied in this paper, which would be required for this triangulated category to be well
behaved, such as our sl2-adapted Soergel categorification conjecture in Section 3.5
below.

3.3. Decompositions and the core

For sanity, throughout this section we work over a field of characteristic zero. Recall
the divided powers operators x.k/ WD xk

kŠ
for k � 1. It may help the reader to read

this section concurrently with the following one, which gives examples of the general
phenomena discussed here.

Suppose we have objects X and B in an sl2 category, and we wish to construct
an sl2 submodule idempotent whose image is B � V where, for example, V is the
three-dimensional irreducible module for sl2. In the underlying additive category, we
would need to prove that

B.�2/˚ B.0/˚ B.C2/ ˚� X;

which we would do by constructing inclusion and projection maps. Specifically, we
would find maps pj WX ! B of degree j for j 2 ¹�2; 0; 2º, and inclusion maps ij of
degree �j , satisfying

pj ı ik D ıjk idB : (23)

We set ej D ij ı pj and e DP ej .
Suppose can find maps p�2 and i2 of degree �2, satisfying the equations

z.p�2/ D 0 D z.i�2/; d3.p�2/ D 0; d.2/.p�2/ ı i�2 D idB : (24)

Let us set
p0 D d.p�2/; p2 D d.2/.p�2/:
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Then d.p2/D 0, and ¹p�2; p0; p2º is the standard basis for V (styled as a Weyl mod-
ule) sitting isomorphically inside the core of Hom.X;B/. Similarly, one can define

i0 D �1
2

d.i2/; i�2 D d.2/.i2/:

However, we make no assumption that d3.i2/ D 0! Were this true, then ¹i2;�i0; i�2º
would be the dual standard basis for V (styled as a dual Weyl module) sitting inside
Hom.B; X/. In practice, Hom.B; X/ may have no finite-dimensional sl2 subrepre-
sentations.

Applying d to the equality p2i2 D idB we obtain

�2p2i0 D d.p2/i2 C p2d.i2/ D 0;

so p2i0 D 0. Similarly, applying d and z repeatedly we can deduce that (23) holds.
Moreover, let � D d.i�2/, which measures the failure of the span of ¹i2; i0; i�2º to

be a finite-dimensional subrepresentation. Again, using the Leibniz rule, we deduce
that

pj ı � D 0 for all j 2 ¹�2; 0; 2º.
We leave the reader to verify that

e2d.e2/ D i2p2d.i2/p2 D �2i2p2i0p2 D 0;
e2z.e2/ D i2p2i2z.p2/ D i2p0 ¤ 0:

In particular, e2 is a d-submodule idempotent and a z-quotient idempotent, but not
an sl2 subquotient idempotent. Similarly, e�2 is a d-quotient idempotent and a z-
submodule idempotent, and e0 is a subquotient for both, but neither of these are sl2
subquotient idempotents. However, recalling that e DP ej , we have

ed.e/ D 0; ez.e/ D 0:

Thus, e is an sl2 submodule idempotent. We claim that Hom.X;�/ ı e is a submodule
of Hom.X;�/ which is isomorphic as an sl2-module to Hom.B;�/� V .

Remark 3.4. The inclusion and projection maps ij and pj form an Fc-filtration on
B � V for d in the sense of [9, Section 4.7]. They also form an Fc-filtration for z,
with the opposite order.

The reader may imagine how this generalizes to other irreducible representa-
tions of sl2. Finding projection and inclusion maps of negative-most degree which
satisfy the analogue of (24) is our primary tool for constructing cofibrant sl2-sub-
module idempotents. As one can see, this is intimately related with finding the core
of Hom.X;B/, and proving that the maps within are split.
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Remark 3.5. It is not obvious that every sl2-submodule idempotent of X whose
image is isomorphic to B � V should be constructible in this fashion, and this is a
slightly thorny and technical issue, not suitable for this brief overview. We explore
this question in the sequel.

Remark 3.6. That projection and inclusion maps of negative-most degree are in the
kernel of z is a relatively ubiquitous phenomenon. Maps of negative-most degree are
constructed from diagrams without polynomials, which by the formulas in this paper
are in the kernel of z. Also, maps of negative-most degree often split when this degree
is non-positive (for the diagrammatic Hecke category in characteristic zero, this is
related to the Soergel conjecture, and further to hard Lefschetz on multiplicity spaces,
see [13]).

Remark 3.7. One can define a Lefschetz form on degree �k elements of Hom.X;B/,
which sends .f; g/ 7! f ı dk. Ng/, where Ng is the vertical flip of g. This form is valued
in End.B/. If B is absolutely indecomposable, then End.B/ is local with maximal
ideal m and quotient field End.B/=m Š k. In this case one can define a Lefschetz
form valued in k.

In the prototypical example above, when i2 D p�2, then the assumption that i2
pairs non-trivially against d2.p�2/ is the non-degeneracy of a Lefschetz form. In the
examples we have computed, this Lefschetz form satisfies the Hodge–Riemann bilin-
ear relations. Thus, the existence of cofibrant sl2 subquotient idempotents is related
to the Hodge theory of the operator d, when restricted to the core of Hom.X;B/.

The entire discussion above relates to proving that an sl2 subquotient idempotent
has the appropriate factorization behavior, which implies it is cofibrant. What about
the other sl2 subquotient idempotents in an sl2 decomposition?

If we wish to continue decomposing X , we need to examine the complement of
B � V . If it is not sl2-indecomposable, we seek a cofibrant sl2 submodule summand
isomorphic to B 0 � V 0 in this complement, which would be an sl2 subquotient sum-
mand of X . To apply our techniques above one does not necessarily need the core
of Hom.X; B 0/ to be non-trivial; one needs the core of Hom.Im.1 � e/; B 0/ to be
non-trivial instead. In other words, we want a projection map p0j W X ! B 0 of non-
positive degree for which z.p0j /D 0, and while d�jC1.p0j /might not be zero, it must
be zero modulo Hom.X;�/ ı e. These secondary projection maps p0j live in the core
relative to e, while e was generated by projection maps in a genuine core. Thus, these
projection maps live in an iterated core: the core of some morphism space, consid-
ered modulo an sl2-invariant ideal generated by elements in the core of some other
morphism space (and so forth).

In the sequel, we will carefully define the notion of an sl2-antastic filtration,
which is effectively an sl2 decomposition where each subquotient idempotent ei is
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constructed using projection maps which are in the core modulo the ideal gener-
ated by e1 C � � � C ei�1. For an sl2-antastic filtration, the subquotient idempotents
ei have cofibrant images. We also permit sl2-antastic filtrations where all but one of
the idempotents factors as above. The remaining idempotent will be cofibrant by the
two-out-of-three principle.

3.4. Behavior in examples

To elaborate on the ideas of the previous section, and on the relationship between
the core and the semisimplification, we discuss several miracles which occur in the
diagrammatic Hecke category H .Sn/, and try to avoid distracting the reader with
the details. All these examples were computed explicitly in [10], and we give more
precise references for each example. Only the raising operator d was studied in [10],
but adding z into the mix is relatively easy (often it is zero for degree reasons). We
work over a field k.

We begin with an example where everything is as easy as possible, studied in
[10, Sections 4.3 and 4.4].

Example 3.8. There is an object Bs (for any simple reflection s) satisfying

BsBs Š Bs.�1/˚ Bs.C1/ (25)

in H .Sn/. Since the endomorphism ring of Bs is a local ring with quotient field k, the
semisimplification of End.BsBs/ is isomorphic to Mat2.k/. The degree�1 projection
map p1WBsBs ! Bs.�1/ is uniquely determined up to scalar, and the miracle is that
d2.p1/ D 0.

In close analogy to Example 1.10, the core of the sl2 action on End.BsBs/ is a
subalgebra isomorphic to Mat2.k/, which is isomorphic to V ˝ V � as an sl2 repre-
sentation. The matrix entries have the form ijpk for j; k 2 ¹1; 2º, where ij and pk
are particular inclusion and projection maps for the decomposition (25). Moreover,
the core of Hom.BsBs; Bs/ is precisely the span of p1 and p2, with d.p1/ D p2

and d.p2/ D 0. Similarly, the core of Hom.Bs; BsBs/ is the span of i1 and i2 with
d.i2/ D i1 and d.i1/ D 0.

Note however that neither primitive idempotent e1 D i1p1 nor e2 D i2p2 D 1� e1
is an sl2 submodule idempotent. We have e1z.e1/D 0 but e1d.e1/¤ 0, and vice versa
for e2. Thus, BsBs is sl2-indecomposable.

In the enriched category, there is an isomorphism BsBs Š Bs � k2, where k2 is
the standard representation of sl2.

The next example was done in great detail in [10, Sections 6.4 and 6.5, clarified
further in Section 6.8].
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Example 3.9. In the Hecke category of S3, there is a specific object5 X which splits
as a direct sum of two non-isomorphic indecomposable objects Y and Z. Let J
denote the Jacobson radical of the category. It is the case that End.Y /=J Š k and
End.Z/=J Š k, so that End.X/=J is two dimensional, spanned by the two idempo-
tents which project to these summands. However, the core of End.X/ is one-dimen-
sional, spanned by the identity map, and neither primitive idempotent is killed by d.

The decomposition X Š Y ˚Z implies that

Hom.X;�/ Š Hom.Y;�/˚ Hom.Z;�/;

or more precisely

Hom.X;�/ Š Hom.Y;�/ ı pY ˚ Hom.Z;�/ ı pZ ; (26)

where pY and pZ are the projection maps.
Consider Hom.X; Y / and Hom.X; Z/. Both are supported in non-negative

degrees, and are spanned in degree zero by their respective projection maps pY
and pZ . Thus, for degree reasons, z.pY / D 0 and z.pZ/ D 0, and if either Hom
space has a non-zero core, it must be a trivial module spanned by the projection map.

The first miracle is that
d.pY / D 0:

As a consequence, Hom.Y;�/ ı pY � Hom.X;�/ is preserved by the sl2 action,
making the decomposition (26) a filtration with respect to sl2. In particular, this sub-
module Hom.Y;�/ ı pY is generated by the core of Hom.X; Y /.

Meanwhile, d.pZ/ ¤ 0, and Core.Hom.X;Z// D 0. The second miracle is that

d.pZ/ 2 Hom.Y;Z/ � pY : (27)

We have already observed by Hom.Y;Z/ � pY is preserved by sl2 inside Hom.X;Z/,
and (27) implies that the image of pZ spans the core of the quotient module
Hom.X;Z/=.Hom.Y;Z/ � pY /.

Hence, the splitting of (26) as modules over H becomes a filtration with respect
to the sl2 action, with Hom.Y;�/ ı pY being the submodule. Moreover, each layer of
the filtration is generated by its core modulo the ideal generated by the previous part
of the filtration.

In contrast, if iY is the corresponding inclusion map in Hom.Y; X/, we have
d.iY / ¤ 0. This explains why the corresponding idempotent eY D iY pY is not killed
by d. However, we have the miracles

d.iZ/ D 0; d.iY / 2 iZ ı Hom.Y;Z/:

5Here X D BsBtBs , Y D Bs , and Z D Bsts .
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Working with contravariant representable functors instead, we see that the decompo-
sition

Hom.�; X/ D iY ı Hom.�; Y /˚ iZ ı Hom.Z;�/
of functors is a filtration for sl2, where this time iZ ı Hom.Z;�/ is the submodule.

Another consequence of these miracles is that eYd.eY / D 0, so eY is an sl2
subquotient idempotent with complement eZ . This equips X with an sl2-antastic fil-
tration.

In the above example, one could not find sufficiently many projection maps in the
core to split X into indecomposable direct summands. However, one could construct
iterated cores by taking the core, quotienting by the ideal it generates, taking the
core of what remains, quotienting by the ideal it generates, and so forth. One could
find sufficiently many projection maps for X within the iterated cores. Similar to
Conjecture 1.12, we conjecture that iterated cores do not intersect the Jacobson radical
(in the 2-categories we consider in this paper). A thorough development of iterated
cores and a formal statement of this conjecture will be found in the sequel to this
paper.

Iterated cores are still insufficient to split any object into indecomposable direct
summands, as seen in the next example, which is studied in [10, Section 9].

Example 3.10. In the Hecke category of S8, there is an object6 X which splits as
a direct sum of two non-isomorphic indecomposable objects Y and Z. The object
Z is technically not in the category but in the Karoubi envelope. However, there is
no splitting of Hom.X; �/ or Hom.�; X/ into direct summands as a left module
over H which is filtered with respect to sl2; neither eY nor eZ is an sl2 subquotient
idempotent. These two additive summands are entangled by the sl2 action. At the
same time, the cores of both Hom.X; Y / and Hom.Y; X/ are zero. We cannot even
define an sl2 structure on Hom.Z;�/ or Hom.�; Z/.

In the example above, the sl2 structure cannot be used to find a complement for
the Jacobson radical, and X is sl2-indecomposable. This may be a feature rather
than a bug! In characteristic 2 the splitting X Š Y ˚ Z does not hold, and X is
indecomposable; perhaps this is detected by the sl2 action.

3.5. The sl2-adapted Soergel categorification conjecture

We assume the reader is familiar with the ordinary Soergel categorification theorem,
see [7, Sections 5.5 and 11] or [12, Theorems 3.15 and 6.25].

6Here X is the Bott–Samelson bimodule associated to the sequence 35246135724635, with
top summand Z, and Y is the indecomposable Soergel bimodule associated to the element
232565.
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Conjecture 3.11. Let us work in the sl2-enriched category of H .Sn/. There are
objectsDy in the cofibrant Karoubi envelope, which satisfy and are inductively defined
by the following properties.

(1) Let xw be a reduced expression for an element w 2 Sn. The Bott–Samelson
object BS.xw/ has an sl2-antastic filtration, and all but one subquotient in
the filtration is isomorphic to Dy � V for some finite-dimensional sl2 repre-
sentation V and some y < w in Sn. The remaining subquotient is therefore
cofibrant. This last subquotient is sl2-indecomposable and not isomorphic to
Dy � V for any y < w and any V , and we denote it by D

xw
.

(2) The morphisms known as rex moves produce isomorphisms between D
xw

and
D
xw
0 for any two reduced expressions for the same element w. We let Dw

denote an object in this isomorphism class.

(3) Any Bott–Samelson object BS.Nx/, whether the expression Nx is reduced or not,
has an sl2-antastic filtration whose subquotients are isomorphic to Dy � V

for various finite-dimensional V and various y 2 Sn.

The ordinary Soergel categorification theorem can be stated in almost identi-
cal fashion, except using ordinary direct sum decompositions (with grading shifts)
rather than sl2-antastic filtrations. This is used to define the indecomposable Soergel
bimodule Bw for w 2 Sn. Note thatDw need not be isomorphic to Bw in the underly-
ing additive category. In example 3.10, letting w D 35246135724635 which is short
for s3s5s2 : : : ; the Bott–Samelson bimodule X D BS.xw/ is sl2-indecomposable, so
Dw DX . However,Dw is not indecomposable, and its top indecomposable summand
Bw was called Z above.

If this conjecture holds, then, in some conjectural triangulated category, we expect
that the objectsDw will descend to a basis in the triangulated Grothendieck group, as
a free module over the Grothendieck ring of finite-dimensional sl2 representations.
Because an sl2-antastic filtration descends to an Fc-filtration for d, we will obtain an
analogous result for the p-dg Hecke category, as a free module over the cyclotomic
ring ZŒ�� where �2 is a primitive p-th root of unity.

The Grothendieck ring of this triangulated category should provide a ZŒqC q�1�-
form of the Hecke algebra. The structure coefficients for the basis ŒDw � are unimodal
polynomials, because they are the graded dimensions of finite-dimensional sl2 repre-
sentations. This does not imply the unimodality of Kazhdan–Lusztig structure coeffi-
cients, since Dw ¤ Bw .

We think of Conjecture 3.11 as stating that the Hecke category “has enough”
sl2-antastic filtrations, or that it “has enough” split maps in the iterated cores. When
trying to generalize this conjecture to the other 2-categories studied in this paper,
it is not easy to rigorously state what it means to “have enough,” without pinning
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down implicitly some suspected collection of objects, like ¹Dwº, which generate the
category. We have failed to find a concise way to discuss the generalizations of Con-
jecture 3.11, so we leave further discussion to the next paper where these ideas are
developed more formally.

4. sl2 action on the KLR algebra

4.1. Definition of the action

Definition 4.1. Let UC.g/ denote the Khovanov–Lauda–Rouquier category associ-
ated to an oriented simply laced root datum. A presentation by generators and relations
can be found in [18, Section 4.1].

For the reader familiar with KLR algebras: a KLR algebra is determined by the
polynomials Qij in the double crossing relation, for each pair of vertices i and j in
the (oriented) Dynkin diagram. If i and j are not connected by an edge, Qij D 0 as
usual. If an edge is oriented from i to j , then Qij D xi � xj . In our action of sl2
below, we will have

d.xi / D x2i ; z.xi / D 1; (28)

for all7 i . It is crucial here that z.Qij / D 0, so one cannot use the alternative choice
Qij D xi C xj .

Remark 4.2. The original definition of Khovanov and Lauda [15] used Qij D xi C
xj , while the signed variant was introduced in [16, p. 15]. It was correctly predicted
on [16, p. 17] that this signed variant matches Lusztig’s geometric categorification of
the quantum group. As shown explicitly by Lauda in [23, Proposition 3.4], different
choices of Qij yield isomorphic categories when the Dynkin diagram is simply con-
nected. This isomorphism will rescale the polynomials xi by various signs. Evidently
one could transfer our sl2 action along Lauda’s isomorphisms, but they would no
longer satisfy (28).

Definition 4.3. Equip UC.g/ with an sl2 action as follows. The derivation d is the
derivation @1 defined in [18, Definition 4.13]. The derivation z sends a dot to 1, and
kills all crossings. In formulas, where red and blue are adjacent colors and red and

7Do not confuse the index i , which represents a node in the Dynkin diagram, with the
indices in Rn D kŒx1; : : : ; xn�. For each node i one has an i -colored nilHecke algebra, contain-
ing a polynomial ring Rn which is the n-fold tensor product of kŒxi �.
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green are distant, we have

d
� �

D 2 ; d
� �

D � � ;

d
� �

D ; d
� �

D 0;

z
� �

D ; z
� �

D 0;

z
� �

D 0; z
� �

D 0:

One extends the derivation to all diagrams using the monoidal Leibniz rule.

Theorem 4.4. The action of sl2 on UC.g/ given in Definition 4.3 is well defined.
The divided power operators d.k/ and z.k/ are well defined in the integral form for
all k � 0, making UC.g/ into a divided powers sl2-algebra.

Proof. First we need to check that the derivations d and z are well defined. By
Lemma 2.2, we need only check that they satisfy the relations of UC.g/. That d pre-
serves the relations was checked8 in [18, Section 4.1]. Let us check that z preserves
the relations.

Any diagram without dots is sent to zero by z. Any relation which is a linear
combination of diagrams without dots is therefore preserved by z. The remaining
relations are these:

D � : (29)

Applying z will kill the identity map, and send the other diagrams to the crossing,

z
� �

D D z
� �

;

so this relation is preserved. The vertical flip is also a relation, and preserved for the
same reason.

Similarly, z will preserve the relation

D ; (30)

because
z
� �

D D z
� �

:

8In [18, end of Section 4.1], a multiparameter family of degree C2 derivations is defined,
and it is checked throughout the entirety of that section that the relations are preserved by each
derivation in this family. The differentials in [18, Definition 4.13] are special members of this
family, cf. [18, Proposition 4.11].
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Variants of this relation (e.g., when colors are distant, or the vertical flip) are preserved
by z for the same reason.

The final relation with dots involves two adjacent colors:

D ˙
 

�
!
: (31)

The sign is determined by the orientation of the edge connecting these two colors,
and will not affect the rest of the computation. Applying z to the left-hand side yields
zero. The right-hand side is Qij D ˙.xi � xj /, and z.xi � xj / D 0.

Hence, z is a well-defined derivation. Now, we wish to check that .d;h;�z/ is an
sl2 triple, and also that divided powers are well defined integrally. By Lemmas 2.3
and 2.5, we need only check this on the generators.

Certain Hom spaces are clearly identified as .R; sl2/-modules for various poly-
nomial rings R. For example, when i and j are adjacent colors, Hom.EiEj ;EjEi / Š
ZŒxi ; xj � as left ZŒxi ; xj �-modules. By construction, z kills the generator of the free
rank 1 module, and d multiplies it by xj , so the result is precisely the module
ZŒxi ;xj �hxj i. (We should also confirm that the generator lives in degreeC1D †.xj /.)
We have already proven in Proposition 2.29 that this is a well-defined sl2-representa-
tion with integrally-defined divided powers. Here are several such isomorphisms (here
i and j are adjacent colors, and i and k are distant):

End.Ei / Š ZŒxi �h0i;
Hom.EiEk;EkEi / Š ZŒxi ; xk�h0i;
Hom.EiEj ;EjEi / Š ZŒxi ; xj �hxj i:

This takes care of all generators but the crossing in End.EiEi /.
It is easy to verify that

zd
� �

D �2

as desired. It is easy to verify that

d2
� �

D 2 and d3
� �

D 0:

One can see this also from the matrix of (6). In particular, when acting on the .i; i/
crossing, d.2/ is well defined integrally and d.k/ D 0 for all k � 3.

4.2. Action on the basis of crossings

It was proven by in [15, Theorem 2.5] that each morphism space in UC.g/ is a free
left (or right) module over the polynomial subring generated by dots, and that a basis
can be constructed using diagrams built entirely out of crossings.
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More precisely, let Ni D .i1; : : : ; in/ and
N
j D .j1; : : : ; jn/ be sequences of colors,

both having length n. Let .Sn/N
j

Ni
denote the subset of Sn consisting of those permu-

tations w for which ik D jw.k/ for all 1 � k � n. This subset is empty unless the
number of strands of each color agrees in Ni and

N
j . If this happens, and there are am

strands with the colorm, then restricting w 2 .Sn/Nj
Ni

to the strands of colorm we get a
permutation in Sam

. This induces a bijection between .Sn/N
j

Ni
and Sa1

� � � � � Sad
, and

this bijection preserves the Bruhat order. In each case, the Bruhat order is generated
by the operation which removes a single crossing between two same-colored strands,
when the result is still a reduced expression.

Pick a reduced expression of w 2 .Sn/Nj
Ni

, and let  w denote the crossing dia-
gram for that reduced expression, with the strands colored to represent a morphism in
Hom.E

Ni
;E
N
j /. Then, as a left module over R

N
j (dots acting on the target sequence

N
j ),

or as a right module over R
Ni

(dots acting on the source sequence Ni ), we have

¹ wº
w2.Sn/N

j

Ni
is a basis for Hom.E

Ni
;E
N
j /:

Theorem 4.5. For any w 2 .Sn/Nj
Ni

we have

z. w/ D 0; d. w/ 2 Span¹ vº
v2.Sn/N

j

Ni
;v�w :

Thus, ¹ wº induces a downfree filtration of Hom.E
Ni
;E
N
j /, parametrized by .Sn/N

j

Ni
with

its Bruhat order. In the associated graded, the span of  w is a copy of Rnhp.w/i,
where a formula for p.w/ is given in (33) or (34), depending on whether we study the
left R

N
j -action or the right R

Ni
-action.

Proof. Let us first prove the statement in the context of left modules overR
N
j . Clearly,

z kills  w as desired. The result is easiest to see using a different formula for the
action of d on same-colored crossings, namely

d
� �

D � 2 : (32)

We also recall
d
� �

D ; d
� �

D 0:
When we apply d to  w , we take the sum of d applied to each crossing: up to linear
combinations, this will either add a dot to the northwest of a crossing, or remove the
crossing.

The first term on the right and side of (32) says to remove a same-colored crossing.
This produces an expression for an element v < w which is smaller in the Bruhat
order. Note that this may not be a reduced expression for v, and even if it is, it may
not be the chosen reduced expression  v , so relations (such as (31)) must be applied
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to rewrite this as a linear combination of basis diagrams. This rewriting process may
produce diagrams which are even lower in the Bruhat order (cf. the adjacent-colored
Reidemeister III relation [15, (2.8)]), but it is well known that the relations of the KLR
algebra can be used to simplify an arbitrary diagram to a basis diagram without ever
going upwards in the Bruhat order. We state this as Lemma 4.7 below. So, whenever
we remove a crossing, we get something in the R

N
j -span of  v0 for v0 < w in the

Bruhat order.
Now, suppose a dot is placed to the northwest of a crossing. This dot should be

forced to the top of the diagram (using (29) or (30)). On its way up, (29) can produce
an error term where a same-colored crossing is removed; once again, this will be in
the span of diagrams which are smaller in the Bruhat order. To see what polynomial
remains on the top, we need only count the number of times a dot appeared on each
strand.

For the k-th strand on top (colored jk), we count the ways a dot can be added
to that strand. We get coefficient �2 each time that strand is the northwest strand of
a same-colored crossing, and C1 each time that strand is the northwest strand of an
adjacent-colored crossing. Note that the k-th strand on top will cross the `-th strand
on top, and be the northwest strand, if and only if k < ` and w�1.`/ < w�1.k/.
Consequently, let

p.w/ D
nX
kD1

xk �
� � 2 � #¹` > k j w�1.`/ < w�1.k/; j` D jkº
C #¹` > k j w�1.`/ < w�1.k/; j` adjacent to jkº

�
: (33.1)

Hence, p.w/ represents the action of d on the associated graded in the downfree
filtration. We may write p.w/ more succinctly using the dot product on the set of
colors (see [15, top of p3]) by the formula

p.w/ D
nX
kD1

� X
`>k;w�1.`/<w�1.k/

�jk � j`
�
xk : (33.2)

Suppose we instead study this morphism space as a rightR
Ni
-module. Now, it helps

to use the following formulas instead:

d
� �

D � � 2 ;

d
� �

D :

The k-th strand on bottom receives a dot whenever it is the southeast strand in a
crossing, and if it crosses the `-th strand on bottom, then ` < k and w.`/ > w.k/. So,
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let

p.w/ D
nX
kD1

xk �
� � 2 � #¹` < k j w.`/ > w.k/; i` D ikº
C #¹` < k j w.`/ > w.k/; i` adjacent to ikº

�
; (34.1)

p.w/ D
nX
kD1

� X
`<k;w.`/>w.k/

�i` � ik
�
xk : (34.2)

Then this p.w/ describes the associated graded as a right R
Ni
-module.

Remark 4.6. Applying the anti-involution which flips each diagram upside-down,
we get the analogous result for the sl2-triple . Nd;h;�z/. This will swap the left and
right action, so it will also swap (34) and (33).

In the proof above, we used the following statement.

Lemma 4.7. Let D be a crossing diagram corresponding to a subexpression of a
reduced expression for w 2 Sn, where we remove one crossing. Then D is in the left
R
N
j -span (or the right R

Ni
-span) of ¹ vºv�w .

This lemma is considered obvious by most people in the field (including us), for
which reason it is difficult to cite. The result is stated without proof in [15, (2.33)],
for example. It would not be hard to prove this lemma directly, but it would be several
annoying pages without much payoff. We will continue the tradition and not prove
the lemma. One could also deduce the result from the main theorem in [4].

While Theorem 4.5 gives control over the associated graded, it does not describe
the upper-triangular terms in d explicitly. This was because rewriting non-reduced
expressions or the wrong reduced expression in terms of the basis can be complicated.
However, for the nilHecke algebra it is easy: non-reduced expressions are zero, and
all reduced expressions for the same element are equal. For the nilHecke algebra it is
not hard to give a precise formula for d. w/.

Theorem 4.8. Inside NHn we have

d. w/ D p.w/ w C
X
v<1w

.1C 2mv;w/ v: (35)

Here, v <1 w means that v <w in the Bruhat order and `.v/D `.w/� 1. The integers
mv;w will be described in the proof.

Note that we study the left action of Rn in this proof. We leave the adaptations for
the right action to the reader.



Actions of sl2 on algebras appearing in categorification 777

Proof. To any element w 2 Sn, one can associate its inversion set, the set of pairs
.a; b/ with 1 � a < b � n such that w.a/ > w.b/. Each crossing in a reduced expres-
sion for w produces a single inversion .a; b/, and we refer to it as the .a; b/-crossing.
In other words, if .a; b/ is in the inversion set of w then the ath strand and the bth
strand (on bottom) will eventually cross exactly once, and this crossing can be identi-
fied with the pair .a; b/. Note that b will be the strand on the northwest of the .a; b/
crossing; we always write our inversions .a; b/ in order so that a < b.

Pick a triple a < b < c and consider the ordered set ¹.a; b/ < .a; c/ < .b; c/º,
called the packet of the triple .a; b; c/. A quick examination (try to draw it) should
convince the reader that the inversion set of w intersected with this packet is either
a prefix or a suffix. Moreover, for any reduced expression for w, the crossings in a
packet either appear in lexicographic order (if a prefix) or antilexicographic order
(if a suffix). Only when the entire packet is contained in the inversion set of w can
they appear in either lexicographic or antilexicographic order (because the full set is
both a prefix and a suffix), and the braid relation sts D tst swaps lexicographic for
antilexicographic. For example, if .b; c/ is not an inversion, but .a; c/ is, then .a; b/
must also be an inversion, and .a; b/ must occur below .a; c/ in a reduced expression
for w. These ideas are the start of Manin–Schechtmann’s theory of higher Bruhat
orders, see [27].

If v <1 w then the inversion set of v is equal to that ofw with exactly one inversion
removed. Let .a; b/ be this inversion. Then (with regard to the left action of Rn) we
set

mv;w WD #¹c j a < c < b and w.b/ < w.a/ < w.c/º:
In this formula, the condition that w.c/ > w.a/ is equivalent to the condition that
w.c/ > w.b/. After all, if w.b/ < w.c/ < w.a/ then the packet of .a; c; b/ will be
entirely contained in the inversion set of w, and removing .a; b/ will not yield either
a prefix or a suffix, so it will not yield a reduced expression.

We now argue that (35) holds.
Applying d to  w as in the proof of Theorem 4.5, we get a sum of diagrams

where either a dot is added or a crossing is removed. We have already computed that
when all dots reach the top, the overall polynomial is p.w/. We need to compute the
coefficient with which the .a; b/ crossing is removed, for some .a; b/ in the inversion
set of w. Any crossing which occurs lower down in  w , and for which the a or b
strand is the northwest-southeast strand, will produce a dot which will eventually be
forced through the .a; b/ crossing. Thus, the coefficient involved in the removal of the
.a; b/ crossing is

• C1 from (32),

• C2 if some .c; b/ crossing occurs below the .a; b/ crossing,

• �2 if some .c; a/ crossing occurs below the .a; b/ crossing.
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So, let c be any other strand. If some .c; a/ crossing occurs below the .a; b/
crossing, then clearly c < a < b. Since both .c; a/ and .a; b/ crossings appear, so
must .c; b/, and since .c; a/ happens before .a; b/, they come in lexicographic order.
So, .c; b/ also occurs below .a; b/. Then the overall contribution to the coefficient
is �2C 2 D 0. Thus, no contribution of �2 can occur without being canceled by a
contribution of C2. Conversely, if c < a < b and a .c; b/ crossing occurs before an
.a; b/ crossing, then the crossings appear in lexicographic order, meaning that a .c; a/
crossing must have come first.

If some .c; b/ crossing occurs below the .a; b/ crossing, but a .c; a/ crossing does
not also occur below the .a; b/ crossing, then we must have a < c < b. This will
contributeC2 to the coefficient, and mv;w is exactly counting such contributions.

4.3. The nilHecke algebra and the matrix algebra

We wish to justify some of the claims made in the introduction. For sake of sanity we
work in characteristic zero. Let n � 1.

Theorem 4.9. Let kDQ. As an sl2 representation, MatnŠ.k/ is a finite-dimensional
subrepresentation of NHn, and is isomorphic to EndQ.L0˝L1˝ � � � ˝Ln�1/, where
Lk is the irreducible representation of sl2 of dimension k C 1. It is the core of NHn.

Most aspects of this theorem were proven in [18, Proposition 3.24 and preceding].
We give three proofs, mostly for pedagogical reasons. The example of n D 3 is done
explicitly after the proofs, and it may help the reader to look at the proofs and the
example simultaneously.

Proof. Let V denote the cohomology ring of the flag variety, thought of as the quo-
tient of Rn by the ideal generated by positive degree elements of RSn

n . Then V
is an nŠ-dimensional graded vector space, equipped with a natural action of d. By
[15, Example 2.2.3] there is a ring isomorphism NHn Š MatnŠ.R

Sn
n /, and hence a

vector space isomorphism NHn Š MatnŠ.k/ ˝k R
Sn
n , where we identify MatnŠ.k/

with Endk.V /. It was proven in [18, Proposition 3.24] that the action of d respects
this tensor product decomposition. From this we can immediately deduce that d acts
nilpotently on MatnŠ.k/ � NHn, so this subalgebra is contained in the core of NHn.

There are a number of ways to confirm that the core of NHn is not bigger than
MatnŠ.k/. Using the tensor decomposition NHnŠ End.V /˝RSn

n , one can verify that
nothing else is acted on nilpotently by d. Alternatively, the core of a (bounded below)
sl2-algebra is a subalgebra by Proposition 2.39, and any subalgebra of MatnŠ.R

Sn
n /

which properly contains MatnŠ.k/ is infinite dimensional.
Note that V is not naturally an sl2-representation: sl2 acts on Rn but does not

preserve the ideal generated by positive degree elements of RSn
n , so it does not act on
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the quotient. However, we know that the core is some finite-dimensional sl2-repre-
sentation, so its isomorphism class is determined by its graded dimension.

Here is a second, more computational proof.

Proof. Let

ı D .n � 1/x1 C .n � 2/x2 C � � � C 2xn�2 C 1xn�1 2 Rn:

Consider the .Rn; sl2/-module Rnh�ıi. As an sl2 representation, Proposition 2.37
states that

Core.Rnh�ıi/ Š Ln�1 ˝ Ln�2 ˝ � � � ˝ L0;
which is a representation of dimension nŠ. The same is true for Rnh�ı0i where

ı0 D 1x2 C 2x3 C � � � C .n � 1/xn;

though it may be nicer to order the tensor products in a fashion respecting the indices
on the polynomials:

Core.Rnh�ı0i/ Š L0 ˝ � � � ˝ Ln�2 ˝ Ln�1:

In fact, a basis for Core.Rnh�ıi/ is also a basis forRn as a free module overRSn
n .

From Schubert theory, it is well known that the polynomials

B D ¹xa1

1 � � � xan
n j 0 � ai � n � i for all iº

form a basis for Rn over RSn
n . Meanwhile, by Proposition 2.37 and Corollary 2.38,

they also form a basis for the core of Rnh�ıi. In similar fashion, for Core.Rnh�ı0i/
we can use the basis

B0 D ¹xb1

1 � � � xbn
n j 0 � bi � i � 1 for all iº:

There is a map of Rn-bimodules

Rn ˝k Rn ! NHn; f ˝ g 7! f  w0
g:

To make this a map of graded Rn-bimodules, we need to shift the source so that 1˝ 1
lives in degree �n.n� 1/. Keeping track of the action of d, we get an sl2-intertwiner

�WRn ˝k Rnh�ıl � ı0ri ! NHn : (36)

Here we think of Rn ˝k Rn as a polynomial ring in 2n variables, the left variables
and the right variables, where ıl uses the left variables and ı0r uses the right variables.
This map � is known to be surjective, see e.g. the matrix basis of NHn described in
[17, Proposition 2.16] or [18, Proposition 3.3]. It is not injective, because it factors
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through the quotient Rn ˝RSn
n
Rn, though Ker � must be an sl2-submodule. In fact,

by counting graded dimensions, one can verify that

Rn ˝RSn
n
Rnh�ıl � ı0ri ! NHn

is an isomorphism.
Again, by Proposition 2.37 and Corollary 2.38, we know that

Core.Rn ˝k Rnh�ıl � ı0ri/ Š End.Ln�1 ˝ Ln�2 ˝ � � � ˝ L0/

as sl2-representations, being spanned by B ˝ B0. However, we are interested in the
core of the quotient Rn ˝RSn

n
Rn, and the core of a quotient module can be both

bigger and smaller than the original, see Remark 2.36. Thankfully, we also know that
B˝ B0 is a basis of Rn ˝RSn

n
Rn as an RSn

n module, and goes to a basis of NHn over

R
Sn
n , see again [17, Proposition 2.16]. So, the map � from (36) is injective on the

core.
As in the other proof, once one knows that the core of NHn contains B ˝ B0 or

MatnŠ.k/, there are a number of ways to confirm that it is not bigger.

Remark 4.10. Note that B˝ B0 is not quite the matrix basis of

MatnŠ.k/ � MatnŠ.RSn
n /;

though it has the same span. To get the matrix basis one must use dual bases for Rn
over RSn

n , such as the Schubert and dual Schubert bases.

Here is a sketch of a third proof that the core contains

EndQ.L0 ˝ L1 ˝ � � � ˝ Ln�1/:

We ignore the remaining parts of the theorem.

Proof. (Sketch) By restricting from Rn to RSn
n , Rnh�ıi is an .RSn

n ; sl2/-module of
rank nŠ with the sl2-stable basis B. As was shown in [18, Section 3.1] (see the dis-
cussion there around equations (63) and (64)), the isomorphism

NHn Š End
R

Sn
n
.Rnh�ıi/;

equips the nilHecke algebra with an sl2-action, which agrees with Definition 4.3.
We have already argued in Section 2.6 that the core of a tensor product contains

the tensor product of the cores. Since endomorphism rings are particular kinds of
tensor products (though one must be careful when taking tensor products of infinite-
dimensional representations in this way), one deduces that the core of an endomor-
phism ring contains the endomorphism ring of the cores. Thus, Core.NHn/ contains
EndQ.Core.Rnh�ıi//, which is EndQ.L0 ˝ L1 ˝ � � � ˝ Ln�1/.
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Example 4.11. Let n D 3. Here is a basis of Core.R3h�2x1 � x2i/, making it clear
the isomorphism with L2 ˝ L1:

1 x1 x21

x2 x1x2 x21x2

 !dD�2

 

!

dD�1

 !dD�1

 
!

dD�1

 !

zD1  

! dD�1

 !

zD2

 !dD�2 

!
zD1

 !dD�1

 !

zD1

 
!

zD1  

!

zD1

 !

zD2

Here is another basis making clear the isomorphism with L3 ˚ L1:

1 2x1 x2 x2
1 C 2x1x2 x2

1x2

x1 x2 x2
1 x1x2

dD1

z 3

dD2

z 2

dD3

z 1

dD1

zD1

˚

!! !!

!!

!!

For those interested in integral structure, this second basis is not a Z-basis, as
the determinant of the change of basis matrix is 3. To obtain analogous bases of
R3h�x2 � 2x3i just swap x1 and x3.

Now, NH3 is isomorphic to a 6� 6matrix algebra overRS3

3 , and the matrix entries
correspond to w0

with certain polynomials on top and on bottom, see e.g. [18, Propo-
sition 3.3]. The polynomials on top and those on bottom must be dual bases for R3
over RS3

3 with respect to the Demazure operator @w0
. However, one can get a basis

over RS3

3 (not necessarily a matrix basis) but choosing any two bases for R3 over
R
S3

3 , and placing them on top and bottom of  w0
. Choosing your favorite bases for

Core.R3h�2x1 � x2i/ and Core.R3h�x2 � 2x3i/ respectively for the top and bot-
tom, the sl2 structure is transparent.

5. sl2 action on the Hecke category

5.1. Definition of the action

Definition 5.1. Let H DH .Sn/ denote the diagrammatic Hecke category associated
to the action of Sn on Rn D ZŒx1; : : : ; xn�. A presentation by generators and relations
can be found in [6].

Definition 5.2. Equip H with an sl2 action as follows. The derivation d is the deriva-
tion defined in [10, Theorem 2.5], where gi D xi . The derivation z kills all diagrams
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without polynomials, and sends xi to 1. In the formulas below, blue represents the
simple reflection si D .i; i C 1/. Red represents siC1, and green represents some color
distant from blue:

d

 !
D xi ; d

 !
D xiC1 ; (37.1)

d

0B@
1CA D � xi

; d

0B@
1CA D �

xiC1

; (37.2)

d

 !
D ; d

 !
D � ; (37.3)

d

 !
D 0; d

0B@
1CA D 0; (37.4)

d

0B@
1CA D � ; (37.5)

d

 
xi

!
D x2

i ; z

 
xi

!
D ; (37.6)

z

 !
D 0; z

 !
D 0; z

0B@
1CA D 0; z

0B@
1CA D 0;

(37.7)

z

 !
D 0; z

 !
D 0; (37.8)

z

 !
D 0; z

0B@
1CA D 0; z

0B@
1CA D 0: (37.9)

One extends the derivation to all diagrams using the monoidal Leibniz rule.

Theorem 5.3. The action of sl2 on H given in Definition 5.2 is well defined. The
divided power operators d.k/ and z.k/ are defined integrally for all k � 0, making H

into a divided powers sl2-algebra.

Proof. As in the proof of Theorem 4.4, we will use the lemmas of Section 2.1 to
reduce the amount of work we need to do. This time we do it tacitly.
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First we need to check that the derivations d and z preserve the relations of H .
That d preserves the relations was checked in [10, Theorems 2.1, 2.3]. Let us check
that z preserves the relations.

Any diagram without polynomials is sent to zero by z. Any relation which is
a linear combination of diagrams without polynomials is therefore preserved by z.
There is only one relation that remains, the polynomial forcing relation. Below, blue
represents si , and j is arbitrary:

j � si .xj / D @i .xj / : (38)

Note that @i .xj / is a scalar. This relation is preserved by z since z.xi / D 1 for all i ,
so z kills the left-hand side, and the right-hand side is a diagram without polynomials
so is also killed by z. Hence, z is a well-defined derivation.

Now, we wish to check that .d;h;�z/ is an sl2 triple, and also that divided powers
are defined integrally. We can check these properties on the generators. Since d and z

raise or lower the degree appropriately, we need only check that Œz;d� D h. For each
of the non-polynomial generators �, z.�/ D 0, and it is very easy to confirm that

z.d.�// D .deg�/ � � D h.�/:

Meanwhile, for End.1/ D Rn, the action of sl2 is the standard one. This confirms
that the sl2 action is well defined. That d.k/ is defined integrally was checked in
[10, Section 8]. That z.k/ is defined integrally on the polynomial ring End.1/ was
checked in Lemma 2.27. That z.k/ is defined integrally on the other generators is
easy, since it is zero for k � 1.

5.2. Reminders: Rex moves and lower terms

Definition 5.4. For w 2 Sn, let I<w denote the two-sided ideal spanned by all mor-
phisms which factor through reduced expressions for elements v 2 Sn with v < w.

Given two reduced expressions xw; xw
0 for the same element w 2 Sn, Matsumoto’s

theorem states that they can be connected by a sequence of braid relations. To such a
sequence of braid relations there is a corresponding diagram built from 4-valent and
6-valent vertices, having source xw and target xw

0, which we call a rex move. There are
many potential sequences of braid relations which go from xw to xw

0, and the corre-
sponding rex moves in H are not equal.

Lemma 5.5. Let xw; xw
0 be reduced expressions for w 2 Sn. For any two rex moves

xw ! xw
0, their difference lies in I<w .

Proof. This is proven in [12, Lemma 7.4].
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Rex moves are always in the kernel of z, as any diagram is, but are not always in
the kernel of d, see (37.5). Two different rex moves with the same source and target
can have different values of d. For example, let s D si and t D siC1, and consider
the reduced expression .s; t; s/. The identity map of this reduced expression is a rex
move which is killed by d. Meanwhile, the path .s; t; s/! .t; s; t/! .s; t; s/ gives
the doubled 6-valent vertex, which is not in the kernel of d. The reader versed with
this diagrammatic calculus should have no trouble verifying that

d

0BBB@
1CCCA D � D �

0BBB@ C

1CCCA : (39)

Note at least that d sends the doubled 6-valent vertex to the ideal I<sts of lower terms.

Remark 5.6. The right-hand side of (39) is a left Rn-linear combination of double
leaves, and double leaves form a basis for morphisms as a left (or right) Rn-module.
Note the non-trivial root ˛t which appears. This gives an example of the kind of
behavior discussed in Remark 1.28.

5.3. Reminders: Subexpressions and light leaves

Let Nx D .sx1
; : : : ; sxd

/ be an expression of length d , and e � Nx be a subexpres-
sion. To e we associate a Bruhat stroll .1 D w0; w1; : : : ; wd / as in [12, Section 2.4],
where to get from wi�1 to wi we multiply by either sxi

or by 1 depending on e. Note
that the Bruhat stroll determines the subexpression, and vice versa. We refer to wd
as the terminus of e. We let E.Nx; w/ denote the set of subexpressions e � Nx with
terminus w. Following ideas of Libedinsky [24], to each e 2 E.Nx; w/ we associate
in [12, Construction 6.1] a morphism LLeW Nx ! xw called a light leaf, whose target is
some reduced expression forw (depending on e). Flipping this light leaf upside-down,
we get a morphism ��eW xw ! Nx.

Let us remark on some important features of the light leaf construction. If Nv is a
reduced expression for some v 2 Sn, then it has a unique subexpression with termi-
nus v, the top subexpression. Any rex move starting at Nv, including the identity map,
is a valid light leaf for the top subexpression, and all light leaves for the top subex-
pression are rex moves. Let us note that any other subexpression of Nv has terminus
v0 < v, so its light leaf lies in the ideal I<v .

If Nx D NvNz is a concatenation of two smaller sequences, we can restrict a subse-
quence e� Nx to a subsequence f � Nv. Suppose that Nv is a reduced expression for some
v 2 Sn, and e restricts to the top subsequence f � Nv. Then we refer to LLe as a light



Actions of sl2 on algebras appearing in categorification 785

tail, and since it is determined by the restriction of e to Nz, we may use the notation
LTenf .

Finally, suppose that Nx D N
yNz is a concatenation of two smaller sequences, and

e 2E.Nx;w/ restricts to f 2E.
N
y; v/. Then LLf is a map from

N
y to Nv for some reduced

expression for v. Meanwhile, there is a light tail NvNz ! xw determined by the subex-
pression e n f of Nz. The inductive construction of light leaves states that

LLe D LTenf ı.LLf ˝ id
Nz
/: (40)

Schematically, we draw

LLe D

N
y

Nz

xw

Nv
LLf

LTenf

(41)

When Nz has length 1, we think of LTenf as being a single tier of the light leaf algo-
rithm. When Nz has length d , the light tail is built inductively from the last d tiers. This
is discussed in [12, Remark 6.4].

Because light tails will be important in some proofs below, let us introduce some
terminology.

Definition 5.7. Let w 2 Sn. Relative to w, we call a sequence of simple reflections

NzD .sz1
; : : : ; szm

/ a tail expression, and a sequence e� Nz of 0s and 1s a tail subexpres-
sion. A tail (sub)expression is the same thing as a (sub)expression, but we interpret its
Bruhat stroll differently, and we decorate the subsequence with U s and Ds accord-
ingly. There is a unique v 2 Sn such that vse1

z1
s

e2
z2
� � � sem

zk
D w. The tail Bruhat stroll

associated to w and e � Nz is the Bruhat stroll which starts at v rather than 1, and
wends its way to w. We call v the start of the tail Bruhat stroll.

Fix v; w 2 Sn and a reduced expression Nv for v. For a tail expression Nz, there is
a bijection between ordinary subexpressions e � NvNz whose restriction to Nv is the top
subsequence f � Nv, and tail subexpressions .e n f / � Nz with start v and terminus w.
This bijection is natural over the choice of reduced expression for Nv, in the obvious
sense. Henceforth (and unlike the previous paragraph), we always use .e n f / � Nz as
notation for a tail subexpression, even though e and f themselves need not have been
chosen. Whenever we choose another sequence

N
y and consider the concatenation

N
yNz,

and whenever f 2 E.
N
y; v/, we will then set e to be the subexpression of

N
yNz whose

restriction to
N
y is f and whose restriction to Nz is e n f .
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5.4. Reminders: Double leaves

For two sequences Nx and Nx
0, subexpressions e � Nx and f � Nx

0 are called coterminal
if they have the same terminus w, and we refer to .e; f ; w/ as a coterminal triple
subordinate to .Nx; Nx

0/. Sometimes we omit w from the triple, writing only .e; f /. To
each coterminal triple we associate a double leaf morphism in Hom.Nx; Nx

0/,

DLe;f WD ��f ıN ı LLe; (42)

where N is some rex move from the target of LLe to the source of ��f , both being
reduced expressions for w. By taking one double leaf for each coterminal triple, one
obtains a basis for Hom.Nx; Nx

0/ as a left (or right)Rn-module. Double leaves are always
diagrams without polynomials, so they are killed by z.

Light leaves and double leaves are not determined only by the subexpressions e

and f . There are many choices of rex moves in the construction of each light leaf, as
well as the choice of rex move N in (42). In particular, the composition N ı LLe of
a rex move with a light leaf is, itself, another valid choice of a light leaf associated to
e. In this way, we could remove the rex move N from (42), absorbing it into the light
leaf LLe (or into the upside-down light leaf ��f ).

When one speaks about the double leaves basis, one must choose one amongst the
many possible double leaves for each coterminal triple to be a basis element. There are
many different double leaves bases. When we speak of light leaves or double leaves,
we typically refer to the set of all possible maps produced by the algorithm, with the
flexibility of using arbitrary rex moves. When we speak of a distinguished light leaf
or double leaf, we must have fixed one for each subexpression, and we refer to that
one. In this way we can separate in our language between the rigid choices one must
make to get a basis, and the flexible choices which are sufficient for a spanning set.

There is a filtration by the spans of certain double leaves with regard to a certain
partial order, for which the image of a double leaf in the associated graded does not
depend on the choice of rex moves! This result will be proven in the next section.
Thankfully, d will preserve this (downfree) filtration, and one can easily compute
its action on the associated graded. One cannot expect much more from the combi-
natorics of subexpressions: since d acts non-trivially on rex moves, one should not
expect a formula for the d action on a double leaf which is independent of the choice
of rex move.

5.5. The lexicoBruhat order

In this section we develop some technology for working with light leaves and double
leaves. This technology is not original to this paper: it is part of work in progress [5]
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by the first author, and much was known (but not written in the literature) previously
to the experts.9

To study double leaves it helps to first study light leaves. From the fact that distin-
guished double leaves form a basis for Hom.Nx; xw/, we deduce10 that distinguished in
E.Nx; w/ form a basis for Hom.Nx; xw/=I<w . Until further notice, we will be studying
this Hom space, modulo lower terms. In the following proposition we discuss not the
span of particular light leaves, but the span of all light leaves which are constructible
by the non-deterministic algorithm of [12, Construction 6.1]. In other words, in this
proposition we are agnostic to the choice of rex moves.

Proposition 5.8. Let xw be a reduced expression for some w 2 Sn. Let Nx D N
yNz be the

concatenation of a sequence
N
y of length k and a sequence Nz of length d � k. Each

subexpression of Nx restricts to a subexpression of
N
y. For v 2 Sn, let X�v � E.Nx; w/denote the subset which restricts to E.

N
y; v0/ for some v0 � v. Let H�v denote the

subspace of Hom.Nx; xw/ spanned (over the left action of Rn) by all possible light
leaves corresponding to subexpressions in X�v .

Let f W
N
y! Nv be any morphism whose target is a reduced expression Nv for v 2 Sn.

Then
g ı .f ˝ id

Nz
/ 2 H�v mod I<w (43)

for all g 2 Hom.NvNz; xw/. Schematically, we have

f

g

Nv

N
y

Nz

xw

D
X

Rn �

N
y

Nz

xw

Nv
0

LL

LT

C I<w ;

where v0 � v.

Proof. We suppose the result is true for all elements less than v in the Bruhat order,
and deduce the result for v. Then, by induction, the result will be true for any v 2 Sn

9The technology we present is closely related to ideas developed by Elias and Williamson in
their early attempts to prove that double leaves span. The eventual proof in [12] used a different
inductive proof of spanning. In the proof that double leaves are linearly independent, [12] used
the path dominance order on triples, which is a stronger partial order than the lexicoBruhat
order.

10This was actually proven first, and used to deduce that distinguished double leaves form a
basis, see [12, Proposition 7.6].
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(without the need to check any base case). Note that everything else (i.e.
N
y, Nz, xw, k)

is unchanging in this induction.
We know that f 2 Hom.

N
y; Nv/ and g 2 Hom.NvNz; xw/ are both in the left Rn-span

of double leaves. So, up to taking left linear combinations over Rn, our morphism has
the following form:

LL1

1

LL2

2

Nv

Nv
0

xw
0
xw

The source xw
0 of ��2 is a reduced expression for some element w0 � w. Thus, either

��2 2 I<w , or ��2 is a rex move, and can be absorbed into LL2. We assume hence-
forth that ��2 is the identity map, and xw

0 D xw.
The source Nv

0 of ��1 is a reduced expression for some element v0 � v. If v0 < v,
then we can replace g with LL2 ı.��1˝ id

Nz
/ and f with LL1, and we have a diagram

of the form (43) but for v0 instead of v. By induction, this lives in H�v0 modulo I<w .
So, we reduce to the case when v0 D v, in which case ��1 is a rex move, and can be
absorbed into LL1. Thus, we have reduced to the following case:

LL1

LL2

Nv

xw

D
LL1

LLf

LTenf

(44)

Now, LL2 is associated to some subexpression e � NvNz, which restricts to some
subexpression f � Nv. If f is the top subexpression (the unique subexpression with
terminus v) then (44) is itself a light leaf by (41). If f is any other expression, then LLf

sends Nv to a reduced expression for an element v0 < v. Now, we again can refactor our
diagram, letting f D LLf ıLL1, and letting g denote LTenf , and can use the inductive
hypothesis for v0.

Our main application of Proposition 5.8 will be to a mistaken light leaf, or a light
leaf with error. Suppose that Nx D N

yNz is a concatenation, and e � Nx. In order to con-
struct LLe as in (40), we have already constructed the light leaf LLf associated to the
restriction of e to

N
y, and the light tail LTenf associated to the restriction of e to Nz.

However, instead of gluing these together (along the reduced expression Nv) as in (40),
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we make an error and insert some morphism E 2 I<v as in the following picture:

LLf

LTenf
E (45)

The result is a mistaken light leaf; if
N
y has length k, we say the mistake happened in

the k-th tier of the light leaf, and we denote the mistaken light leaf by LLoops;k
e .

Lemma 5.9. With the same setup as for (45), the mistaken light leaf lies in the sub-
space H<v of Hom.Nx; xw/=I<w .

Proof. This is immediate from Proposition 5.8.

This lemma implies that LLoops;k
e is in the span of light leaves LLe0 which, at the

k-th step, factor through elements < v rather than through v. However, we have not
yet proven that the Bruhat stroll of e0 does not go much higher than e ever went.
Below we will get more control on mistaken light leaves, asserting that e0 is less than
e in some partial order on subexpressions. To get this additional control, we cannot
merely apply Proposition 5.8, but must produce a more subtle version. The reader
should think of Proposition 5.8 as a warm-up exercise; the same ideas factor into the
proof of Theorem 5.13.

Definition 5.10. Let Nx D .sx1
; : : : ; sxd

/ be an expression of length d , and let e and
e0 be two subexpressions of Nx. Let .1 D w0; w1; : : : ; wd / and .1 D w00; : : : ; w0d / be
their associated Bruhat strolls, see [12, Section 2.4]. If e ¤ e0, then let 1 � k � d
be the index such that wk ¤ w0k and wj D w0j for all j > k; we call k the index of
last difference. We say that e � e0 if wk < w0k in the Bruhat order. We write e � e0 if
either e D e0 or e � e0. We call this the lexicoBruhat order on subexpressions.

Lemma 5.11. The lexicoBruhat order is a total order on the set of subexpressions
of Nx.

Proof. Clearly, this relation is transitive, and e � e0 � e implies eD e0. Suppose that
e¤ e0, and let k be the index of last difference. Then wk D w0ksxk

, so wk and w0
k

are
comparable in the Bruhat order. Hence, e and e0 are comparable in the lexicoBruhat
order.

Remark 5.12. Fixw, and consider a tail expression Nz. Clearly, the lexicoBruhat order
on subexpressions can be extended to a total order on tail subexpressions of Nz relative
to w, in the obvious way.
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Theorem 5.13. Fix w 2 Sn with a rex xw, and let Nz be a tail expression of length m
relative to w. Let e n f � Nz be a tail subexpression with start v; choose a rex Nv for v,
and a light tail LTenf W NvNz ! xw. Let f W

N
y ! Nv be any morphism to Nv which lives in

I<v . Then
LTenf ı.f ˝ id

Nz
/ 2 H�enf mod I<w ;

where H�enf is the left Rn-span of light leaves LLe0 W N
yNz ! xw whose tail subexpres-

sions e0 n f 0 � Nz satisfy .e0 n f 0/ � .e n f / in the lexicoBruhat order.

Pictorially, we have

f

LTenf

N
y

Nz

Nv
xw

< v 2 H�enf mod I<w : (46)

Before giving the proof, here is the immediate corollary.

Corollary 5.14. Fix Nx D N
yNz, where

N
y has length k. Let e 2 E.Nx; w/, and let f be

the restriction of e to
N
y. Let LLoops;k

e be any mistaken light leaf where the mistake
happens in the k-th tier of the light leaf. Then

LLoops;k
e 2 H�enf mod I<w :

Proof of Theorem 5.13. We prove this by induction on the length m of Nz, and within
each m, by induction on v. If m D 0 then f 2 I<w and the result is trivial. If m D 1
then the result actually follows easily Proposition 5.8, but we will use essentially the
same argument below for the inductive step.

Suppose that the result holds for Nz, and let us extend Nz by prepending a simple
reflection s. Suppose we have .e � f / � sNz, with start v. Let e n f 0 be its restriction
to Nz, which has start x. The associated light tail has a first tier LT1 associated to s, and
the remaining light tail LT2 associated to Nz. Write f D f1 ı f2 where the source of f1
is a reduced expression for some element v0 < v. We are analyzing the composition

f

LT1
LT2

N
y

v0
v

xw

s Nz
1

f2

:
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Now, apply Proposition 5.8 to the subdiagram which is LT1 ı.f1 ˝ ids/. We get

f2

f1

LT1
LT2

N
y

v0
v

xw

s Nz

D
f2

LL

LT0
1

LT2

Nzs
N
y

v0
v00

x
Nz

C

f2

LT2
x

< x : (47)

The right-hand side is supposed to schematically represent a linear combination (over
the left action of Rn) of morphisms of two kinds. In the second diagram on the right-
hand side of (47), the curvy red morphism is supposed to represent the “lower terms”
of Proposition 5.8. Note that f2 can be absorbed into the lower terms, and the result
exactly has the form (46) but for Nz rather than sNz. By induction, this morphism is in
the span of H�enf 0 , which is a subspace of H�enf , modulo I<w .

In the first diagram in (47), v00 is some element < v, but since it is the target of a
light leaf whose source is a rex for v0, we must also have v00 � v0 < v. Meanwhile, the
composition of the two light tails LT2 ı.LT01˝ id

Nz
/ is a light tail whose associated tail

subexpression agrees with e n f on Nz, but disagrees on s, going to a lower term. Let
us resolve LL ıf2, noting that light leaves span the maps to Nv

00 modulo lower terms.

f2

LL

LT enf

v00 D
LL0

LT enf

v00 C
LT enf

v00

< v00
: (48)

The first diagram on the right-hand side of (48) is a light leaf and lives in H�enf . The
second diagram is in H�enf by induction on v, since v00 < v. This proves (46) for sNz,
completing the inductive step.

Corollary 5.15. Any two light leaves associated to the same subexpression
e 2 E.Nx; w/ are equal in the space Hom.Nx; xw/=I<w , modulo the left Rn-span of
light leaves for smaller subexpressions in the lexicoBruhat order.

Proof. Let LL and LL0 be the two light leaves associated to e. The only difference
between LL and LL0 is the choice of rex moves at various tiers in the light leaves
algorithm. Let Nx have length m. We can write LL�LL0 as a telescoping sum

LL�LL0 D LL0�LL1CLL1�LL2C � � � C LLm�1�LLm;
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where LL0 D LL, LL0 D LLm, each LLk is a light leaf for e, and LLk�1 differs from
LLk in the choice of rex move made at the k-th tier of the algorithm. For example,
LLm�1 uses the first m � 1 tiers of LL0, but uses the last tier from LL.

The difference between two rex moves (between two reduced expressions for
some v 2 Sn) consists of lower terms (i.e. lives in the ideal I<v). Thus, each difference
LLk �LLk�1 is a mistaken light leaf, where the mistake happened in the k-th tier. By
Corollary 5.13, LLk �LLk�1 is in the span of light leaves LLe0 with e0 � e.

Remark 5.16. This corollary gives an alternate route to proving that distinguished
light leaves span the space Hom.Nx; xw/=I<w . Once one proves that light leaves span,
this corollary proves that a single distinguished light leaf LLe will have the same span
as all light leaves associated to e, modulo I<w and modulo light leaves for e0 � e. By
induction on the lexicoBruhat order, one deduces that distinguished light leaves have
the same span as all light leaves modulo I<w .

Let us quickly remark on the difference between the left Rn-span and the right
Rn-span. Modulo lower terms, there is none! Thus, all the results above also apply to
the right Rn-span.

Lemma 5.17. The left Rn-span of any set of morphisms in Hom.Nx; xw/ agrees with
the right Rn-span modulo I<w .

Proof. Any polynomial p can be forced through the reduced expression for w at the
top of the diagram, using (38). The result is w�1.p/ on the right-hand side, plus error
terms where strands are broken. These error terms are all in I<w .

Now, we bootstrap these results about light leaves to results about double leaves.

Definition 5.18. Let Nx and
N
y be expressions. Suppose that .e; f ; w/ and .e0; f 0; w0/

are two coterminal triples subordinate to .Nx; N
y/. We say that .e; f ; w/ � .e0; f 0; w0/ if

e � e0 and f � f 0. We call this the lexicoBruhat order on triples.

Suppose w < w0. If Nx has length m then the index of last difference between e

and e0 is m, and w < w0, so e � e0. Similarly, f � f 0. Thus .e; f ; w/ � .e0; f 0; w0/
whenever w < w0. If particular, the span of all double leaves associated to triples less
than .e; f ; w/ in the lexicoBruhat order will have I<w as a subspace.

The definition of a mistaken double leaf DLoops
e;f is similar to that of a mistaken

light leaf. At one tier in either LLe or ��f , one inserts an error term which goes
lower in the Bruhat order than it should.

Theorem 5.19. Any mistaken double leaf DLoops
e;f is in the left Rn span of double

leaves associated to triples .e0; f 0; w0/ which are smaller than .e; f ; w/ in the lexico-
Bruhat order.
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Proof. The error in DLoops
e;f is made either in LLe or in ��f , and the arguments are the

same either way, so let us assume the error is made in LLe. Thus,

DLoops
e;f D ��f ı LLoops

e :

By Corollary 5.13,
LLoops

e 2
� X

e0�e

Rn � LLe0
�
C I<w : (49)

Since I<w is a two-sided ideal, ��f ı I<w � I<w . Also, I<w lies in the span of
smaller double leaves (as discussed a few paragraphs ago). Meanwhile,

��f ı LLe0 D DLf ;e0 ;

and .f ; e0; w/ � .f ; e; w/ when e0 � e. Thus, every term in the sum (49), when com-
posed with ��f , is in the span of lower double leaves in the lexicoBruhat order on
triples.

Corollary 5.20. Any two double leaves associated to the same triple .e; f ; w/ are
equal in Hom.Nx; N

y/ modulo the span of double leaves for smaller triples in the lexi-
coBruhat order.

Proof. The proof is the same as Corollary 5.15.

Remark 5.21. Once one proves that double leaves span, one deduces from Corol-
lary 5.20 that distinguished double leaves have the same span. This gives an alternative
proof of some of the results from [12, Chapter 7].

To obtain an analogue of Theorem 5.19 for the right Rn-action, one can either
use Lemma 5.17 and modify the proof of the theorem accordingly, or one can use the
following lemma.

Lemma 5.22. For any coterminal triple .e; f ; w/, the left and right Rn spans of
¹DLe0;f 0º.e0;f 0/�.e;f / agree.

Proof. Consider any coterminal triple .e0; f 0; w0/ � .e; f ; w/. Clearly, w0 � w. Using
(38) to push a polynomial p across the reduced expression for w0 in the middle of the
double leaf, we get

DLe0;f 0 �p � w0.p/ � DLe0;f 0 2 I<w0 : (50)

However, I<w0 � I<w is already in the (right or left) span of lower double leaves.
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5.6. Double leaves and the raising operator

The key result of this section will be that d.DLe;f / is equal to pDL.e; f / � DLe;f for
some polynomial p.e; f /, plus a linear combination of mistaken double leaves. By
Theorem 5.19, this means that d preserves the span of double leaves (or distinguished
double leaves) associated to triples � .e; f ; w/.
Definition 5.23. Let

N
y D .sy1

; : : : ; syd
/ have length d , and let e �

N
y be a subexpres-

sion, with associated Bruhat stroll .1Dw0;w1; : : : ;wd /. Recall from [12, Section 2.4]
that each index of e can be decorated as eitherU0,U1,D0, orD1. Define linear poly-
nomials

pLL.e/ D
X

ekDU0
wk.xyi

/ �
X

ekDD0
wk.xykC1/;

p��.e/ D
X

ekDU0
wk.xykC1/ �

X
ekDD0

wk.xyk
/:

For a coterminal triple .e; f ; w/, let

pDL.e; f / D pLL.e/C p��.f /:

Proposition 5.24. Let .e; f ; w/ be a coterminal triple subordinate to .Nx; N
y/, and let

DLe;f be any double leaf for this triple. Then

z.DLe;f / D 0; d.DLe;f / D pDL.e; f / � DLe;f CE;

where E is a linear combination of mistaken double leaves for .e; f ; w/. Working
instead with right Rn-modules we have

z.DLe;f / D 0; d.DLe;f / D DLe;f �w�1.pDL.e; f //CE:

Proof. Clearly, z kills any double leaf, because it is a diagram without polynomials.
Let us apply d to a double leaf. This is a linear combination of terms where we have
applied d to each generator in the double leaf, and we analyze each term individually.
We prove the result for the left Rn action, as the result for the right action follows by
the proof of Lemma 5.22, see (50).

When we apply d to a 2m-valent vertex in a rex move, it produces either zero
(37.4), or a rex move with broken strands (37.5). A rex move with broken strands, in
the context of the larger diagram, yields a mistaken double leaf.

WheneverU0 appears in e, there is a dot colored si in LLe for some 1� i � n� 1.
When we apply d to this dot, it gets multiplied by xi , see (37.1). If U0 appears at the
k-th step, then this polynomial xi can then be forced to the left through the reduced
expression for wk , using (38). The result will be wk.xi / on the left, plus terms with
broken strands. These broken strands yield mistaken double leaves.
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Similarly, whenever U0 appears in f , there is a dot colored si in ��f . This time
d multiplies the dot by xiC1, see (37.1). The rest of the argument is the same.

Whenever D0 appears in e, there is a trivalent vertex colored si in LLe. The
raising operator d places �xiC1 below this trivalent vertex, see (37.2). This can then
be pulled left through a reduced expression for wk , yielding �wk.xiC1/ on the left,
together with broken strands. Whenever D0 appears in f , the argument is the same
except that d places �xi above the trivalent vertex in ��f instead. Together, these
contributions from U0 and D0 add up to pDL.e; f /.

Whenever U1 appears in e or f , the corresponding part of the light leaf is the
identity map, which is killed by d.

Whenever D1 appears in e or f (at the k-th step), the corresponding part of the
light leaf is a cap or cup colored si . Caps and cups are sent to broken caps and cups
by d, see (37.3). Equivalently, one can break the si -colored line at the end of the
reduced expression for wk�1, and then apply a cap or cup. Thus, the result is a mis-
taken double leaf.

Theorem 5.25. Pick a distinguished double leaf for each coterminal triple subordi-
nate to .Nx; N

y/. For any such triple .e; f ; w/ we have

z.DLe;f / D 0; d.DLe;f / 2 Span¹DLe0;f 0º.e0;f 0/�.e;f /:

Note that, by Lemma 5.22, this span does not depend on whether we work with left
or right Rn-modules. Thus, distinguished double leaves induce a downfree filtration
of Hom.Nx; N

y/ as a left or right Rn-module, parametrized by coterminal triples with
the lexicoBruhat order. In the associated graded, the left span of DLe;f is a copy of
RnhpDL.e; f /i, see Definition 5.23. Working instead with right modules, the span of
DLe;f is a copy of Rnhw�1.pDL.e; f //i.
Proof. This follows immediately from Proposition 5.24 and Theorem 5.19.

Remark 5.26. Replacing d with Nd will effectively swap the roles of e and f , obtain-
ing the polynomial pLL.f /C p��.e/ for the left action of Rn.

6. sl2 action on Lauda’s categorification of Uq.sl2/

6.1. Actions on symmetric polynomials

The standard action of sl2 on Rn (see (1)) is Sn equivariant, so it descends to an
action of sl2 on RSn

n . Recall that @i is the Demazure operator,

@i .f / D f � sif
xi � xiC1 ;

which sends Rn to Rsin .
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Lemma 6.1. For any f 2 Rn and any 1 � i � n � 1 we have

@i .z.f // D z.@i .f //: (51)

Remark 6.2. Note that the corresponding statement for d is false! This lemma holds
for z effectively because z kills the crossing in the nilHecke algebra, while d does not
kill the crossing.

Proof. Let us compute in NHn, with its sl2 structure from Definition 4.3. If Xi
denotes the i -th crossing in NHn, then we have

Xif � si .f /Xi D @i .f /: (52)

Applying z to both sides, and using the fact that z kills Xi , we get

Xiz.f / � z.si .f //Xi D z.@i .f //:

However, z commutes with si , so we can apply (52) with f replaced by z.f / to get

Xiz.f / � si .z.f //Xi D @i .z.f //:

Combining these two equations, we deduce (51).

Corollary 6.3. The operator z commutes with the Demazure operator @w0
associated

to the longest element of Sn.

Proof. The Demazure operator @w0
can be defined as a composition of operators @i

along a reduced expression for w0. Now, apply (51).

Lemma 6.4. Let ek (resp. hk , pk) denote the elementary (resp. complete, power sum)
symmetric polynomials in n variables, living in RSn

n . Set enC1 D 0. Then

d.ek/ D eke1 � .k C 1/ekC1; (53.1a)

d.hk/ D .k C 1/hkC1 � hkh1; (53.1b)

d.pk/ D kpkC1; (53.1c)

and

z.ek/ D .nC 1 � k/ek�1; (53.2a)

z.hk/ D .n � 1C k/hk�1; (53.2b)

z.pk/ D
´
kpk�1 if k ¤ 1;
np0 if k D 1:

(53.2c)
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Moreover, let s� denote the Schur polynomial, where � is a partition with at most n
rows, and let s� D 0 when � has more than n rows. Then

d.s�/ D
X

�D�C�

c.�/s�; z.s�/ D
X

�D�C�

.c.�/C n/s�: (53.3)

Here, �C� is any partition obtained by adding a single box to �, and c.�/ is the
content of that box.

Proof. The formulas for d can be found in [9, (2.7)-(2.9)], except for d.pk/ which is
easy to check. The formula for z.pk/ is also easy to check.

Let us compute z.hk/. Suppose that
Pn
iD1 ai D k � 1. There are contributions

to the coefficient of xa1

1 � � � xan
n inside z.hk/ coming from xi � xa1

1 � � � xan
n for each

1 � i � n. We have

z.xi � xa1

1 � � � xan
n / D .ai C 1/xa1

1 � � � xan
n C terms with different monomials: (54)

So, the overall contribution to the coefficient of xa1

1 � � � xan
n is

nX
iD1
.ai C 1/ D k � 1C n:

We leave the computation of z.ek/ to the reader.
To compute z.s�/, recall that one can define the Schur polynomial as

s� WD @w0
.x
�1

1 x
�2

2 � � � x�n
n � xn�11 xn�22 � � � x0n/:

By the above Corollary, z commutes with @w0
. Applying z to the monomial inside the

Demazure operator, we obtain

nX
iD1
.�i C n � i/x�1

1 � � � x�i�1
i � � � x�n

n � xn�11 xn�22 � � � x0n: (55)

If removing a box from the i -th row of � yields a partition �, then �i � i is the content
of that box. Applying @w0

to the sum in (55), such terms yieldX
�D�C�

.c.�/C n/s�

which is the desired answer. We need only prove that all the other terms in (55) are
killed by @w0

.
If removing a box from the i -th row of � is not a partition, it is because �i D �iC1,

in which case �i � 1C n � i D �iC1 C n � .i C 1/. Thus, the coefficients of xi and
xiC1 in the i -th monomial from the sum in (55) will be equal. Thus, this monomial is
invariant under si , and killed by @i and hence by @w0

.
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Lemma 6.5. Divided powers d.k/ and z.k/ are defined integrally onRSn
n for all k� 0.

Proof. These divided powers are defined on Rn, and RSn
n is an sl2-invariant subring.

6.2. Actions on symmetric functions

It was observed in [9, end of Section 2.2] that the formulas for d acting on symmetric
polynomials were independent of the number of variables n, and could be extended to
a derivation on the ringƒ of symmetric functions (in infinitely many variables). How-
ever, it is clear from (53.2) that the formulas for z acting on symmetric polynomials
are not independent of n. If we let the number of variables go to infinity, where should
z send e1 D x1 C x2 C � � � , given that z.xi / D 1 for all i? The appropriate answer is
to treat n as a formal variable; this was suggested to the authors by M. Khovanov.

Definition 6.6. Let ƒŒy� denote the ring of symmetric functions, extended by a for-
mal variable y of degree zero. That is, ƒŒy� D ZŒy; e1; e2; : : :� is a polynomial ring
in infinitely many variables, where ek has degree 2k. We define an sl2 action on the
generators of ƒŒy� as follows:

d.ek/ D eke1 � .k C 1/ekC1; d.y/ D 0;
z.ek/ D .y C 1 � k/ek�1; z.y/ D 0: (56)

We extend this action to all of ƒŒy� using the Leibniz rule.

Lemma 6.7. Definition 6.6 gives a well-defined sl2 action by derivations. The sl2
action also satisfies the following formulas on familiar elements of ƒŒy�:

d.ek/ D eke1 � .k C 1/ekC1; (57.1a)

d.hk/ D .k C 1/hkC1 � hkh1; (57.1b)

d.pk/ D kpkC1; (57.1c)

z.ek/ D .y C 1 � k/ek�1; (57.2a)

z.hk/ D .y � 1C k/hk�1; (57.2b)

z.pk/ D
´
kpk�1 if k ¤ 1;
yp0 if k D 1;

(57.2c)

and
d.s�/ D

X
�D�C�

c.�/s�; z.s�/ D
X

�D�C�

.c.�/C y/s�: (57.3)
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For all n � 1 there is a surjective sl2-equivariant quotient map

‰nWƒŒy�! RSn
n ; ek 7!

´
ek if k � n;
0 if k > n;

y 7! n:

Proof. The existence of ‰n for all n is immediate from the formulas for the actions
of d and z. We can use this to efficiently check (57) using (53). For an example of
this argument, consider z.hk/ 2 ƒŒy�. This will be some ZŒy�-linear combination of
polynomials in the variables ¹hiº. Because‰n is equivariant, the coefficient of hk�1 is
some polynomial which evaluates to n� 1C k after specializing y 7! n for all n� k.
Thus, this coefficient is precisely y � 1C k. Similarly, the coefficient of h1hk�2 is
some polynomial which evaluates to zero after specializing y 7! n for all n� k. Thus,
this coefficient is zero.

Remark 6.8. For any n 2 Z, there is a quotient ofƒŒy� which sends y 7! �n. It is an
sl2-algebra over Z. When n > 1, the ideal in this quotient generated by ek for k > n
is sl2-invariant, and the further quotient by this ideal gives the map ‰n. When n � 0,
there are no non-trivial sl2-invariant ideals in the quotient.

Sadly, divided powers of z are not defined integrally on ƒŒy�. For example, we
have z.2/.e5/ D .y�3/.y�4/

2
e3, and

�
y�3
2

� WD .y�3/.y�4/
2

is not in ZŒy�. The follow-
ing lemma will imply that divided powers of z are defined integrally whenever y is
specialized to an integer, even a negative integer.

Lemma 6.9. On ƒŒy�, the divided powers d.m/ are defined integrally, but z.m/ are
not defined integrally. However, if we base change over ZŒy� to a larger base ring
containing

�
yCk
m

�
for any k 2 Z and m � 0, then z.m/ is defined after base change.

Proof. We need only check that divided powers are well defined on the generators.
The formula for d does not involve the variable y, so the fact that d.m/.ek/ is defined
integrally can be checked after applying ‰n for sufficiently large n. Using (56) it is
easy to verify that

z.m/.ek/ D
�
y C 1 � k

m

�
ek�m:

Remark 6.10. Note that the divided powers z.m/ are always defined integrally on
power sums pk , without the need for binomial coefficients. However, power sums
generate a different integral form for ƒŒy� than do the elementary or complete sym-
metric functions.
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6.3. Rank-one modules and their cores

In Section 2.5 we examined .Rn; sl2/-modules which were free of rank 1 over Rn.
Now, we do the same for .RSn

n ;sl2/-modules andƒŒy�-modules. As before, the rank-
one free modules are parametrized by degree two elements in the corresponding ring.

For each a 2 Z, define a rank-one module over RSn
n called RSn

n hae1i, with gener-
ator 1a living in degree an. Equip it with an sl2 action by the formulas

d.1a/ D ae11a; z.1a/ D 0: (58)

For each a 2 Z, define a rank-one module over ƒŒy� called ƒŒy�hae1i, with gen-
erator 1a living in degree ay. Equip it with an sl2 action by the same formulas (58).
Note that this sl2-representation has weights not in Z but in ZŒy�. After specializing
y to an integer, this yields an sl2-representation with weights in Z.

Proposition 6.11. If a > 0, then Core.RSn
n hae1i/ D 0. If a � 0, then

Core.RSn
n hae1i/ D Zhei11 : : : einn j i1 C � � � C in � �ai: (59.1)

On the other hand, Core.ƒŒy�hae1i/ D 0 whenever a ¤ 0, and

Core.ƒŒy�/ D ZŒy�: (59.2)

Proof. That Core.RSn
n hae1i/ D 0 when a > 0 follows from Proposition 2.37 and the

left exactness of taking cores:

Core.RSn
n hae1i/ � Core.Rnhe1i/ D 0:

The core computation (59.1) when a < 0 essentially follows from the proof of
[9, Corollary 2.12]. There, we worked only with d in the context of p-dg algebras,
but exactly the same computation shows that the right-hand side of (59.1) is closed
under d. It is clearly closed under z, making it a finite rank submodule. We also
showed that the remainder of RSn

n hae1i is acyclic as a p-complex, or in other words,
after specialization to finite characteristic it splits into free modules over FpŒd�=.dp/.
We get the result here by taking the limit p !1. More concretely, let v be some
element in RSn

n hae1i not in the suspected core; it will be in the core if and only if
there is someN > 0 such that dN .v/D 0. However, when p is sufficiently large (e.g.
p > deg.v/C N , p does not divide any coefficients of v), v descends to a non-zero
element in a free module over FpŒd�=.dp/, and hence dN .v/ ¤ 0.

Similarly, (59.2) in the context of p-dg algebras was studied in [8, Proposition 3.8].
There, it is shown thatƒhae1i is acyclic as a p-complex whenever a¤ 0. When aD 0,
the augmentation ideal was proven to be acyclic. A similar argument to the previous
paragraph, letting p !1, will imply the desired results.
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6.4. Action on U

Definition 6.12. Let UDU.sl2/ denote the categorification of quantum sl2, defined
by Lauda in [22]. We will follow the review given in [8, Section 4.1].

Definition 6.13. Place an sl2 action by derivations on U as follows. The raising oper-
ator d was defined11 in [8, Definition 5.9]. The lowering operator z kills all generators
except for dots, and as usual, z sends a dot to the identity map.

Theorem 6.14. The action of sl2 on U given in Definition 6.13 is well defined.
The divided power operators d.k/ and z.k/ are well defined in the integral form for
all k � 0, making U into a divided powers sl2-algebra. Moreover, inside a region
labeled by � 2 Z, the subalgebra of End.1�/ generated by bubbles is preserved by the
sl2 action, and is isomorphic as an sl2-algebra to the specialization ƒŒy�=.y � �/.
Under this isomorphism, the clockwise bubble of degree 2k is matched with the sym-
metric function hk , and a counterclockwise bubble of degree 2k is matched with
.�1/kek .

Proof. First we confirm the action of sl2 on bubbles. That d acts by the formulas
in (57.1) was already proven in [8, Corollary 4.8]. Inside a region labeled �, the clock-
wise bubble with no dots has degree 2.1� �/. Thus, a degree 2k bubble has �C k � 1
dots. Applying z to a bubble with �C k � 1 dots, we get .�C k � 1/ times a bubble
with �C k � 2 dots. This matches the formula

z.hk/ D .y C k � 1/hk�1
after specializing y D �. Note that a real bubble of negative degree is sent to another
real bubble of negative degree, which is still zero.

The computation for counterclockwise bubbles is similar. Consequently, z pre-
serves the bubble relations: positivity of bubbles, normalization of bubbles, and the
infinite Grassmannian relations. We already know that z preserves the nilHecke rela-
tions, since the action on the nilHecke algebra is the same as that in Definition 4.3.
We need to check the remaining relations.

The biadjointness relations [8, (4.1)] are easy to check.
Consider the “reduction to bubbles” or the “curl relation” [8, (4.6a)]. Up to a

sign, the right-hand side is
P
aCbD�� haxb where the clockwise bubble ha appears

in region �. We compute that

z
� X
aCbD�

hax
b
�
D
X

aCbD��
bhax

b�1 C .�C a � 1/ha�1b

D
X

aCbD���1
hax

b.b C 1C �C a/ D 0:

11In [8, Definition 5.9] the raising operator was called @1.
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Since z kills the left-hand side (it has no dots), z preserves the reduction to bubbles
relation. The other curl relation [8, (4.6b)] is proved similar.

Consider the identity decomposition relation [8, (4.7b)]. Using very similar argu-
ments, we compute that

z
� X
aCbCcD���1

xa1hbx
c
2

�
D

X
aCbCcD���2

xa1hbx
c
2.aC 1C �C b C c C 1/ D 0:

Hence, z preserves the identity decomposition relation. That handles all the relations
of U.

We need to check that Œz; d� D h on each of the generating morphisms of U,
which is immediate from the formulas of [8, Definition 5.9].

We need to check that divided powers are defined integrally on the generating
morphisms of U. For the generators inside a nilHecke algebra, this was already done
in Theorem 4.4. The cups and caps are killed by z. All that remains to check is that
d.k/ is well defined on the cups and caps. A related question was pursued in [8,
Lemma A.3 and preceding], which proves that dp D 0 in characteristic p. The proof
was to argue that all the coefficients appearing in dk were multinomial coefficients
times kŠ, and this is the same proof12 needed to show that d.k/ is defined integrally.

6.5. Remarks on a downfree filtration

Let E denote the upward strand, an object in U, and F the downward strand. Through-
out this section we fix � 2 Z and let ƒ denote the specialization of ƒŒy� at y D �.

In [22, Section 8], Lauda proves that HomU.1�En; 1�En/ is isomorphic to
ƒ˝NHn, where bubbles appear on the left of crossing diagrams. We can view cross-
ing diagrams as a basis of this Hom space overƒ˝Rn, whereRn acts on the bottom.
Then this is a downfree filtration over the base ring ƒ˝Rn, with the same downfree
character computed in (34). This is because applying d to a crossing diagram will not
create any bubbles.

Using adjunction, every morphism in the space HomU.E
nF n1�; 1�/ is obtained

by taking a morphism in HomU.1�En;1�En/ and placing caps on top. Thus, crossing
diagrams will form a basis for HomU.E

nF n; 1/ under the action of ƒ on the left and
Rn acting on the inwardly-pointing boundary strands. This basis is again in bijection
with Sn. However, the differential of a cap does introduce bubbles. We expect that
this produces a downfree filtration over ƒ ˝ Rn, but the formula for the downfree
character is currently unknown, and will involve e1 2 ƒ.

12Admittedly, the proof in [8, Lemma A.3] is rather hand-wavy, but the result is still a rela-
tively easy exercise.
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For example, HomU.EF 1�; 1�/ has a basis with one diagram, given by the cap.
By [8, Definition 5.9], d sends this cup to itself with a dot minus itself with a degree
two bubble. Thus, this Hom space, as a module over the sl2-algebra R1 ˝ƒ, is iso-
morphic to .R1 ˝ƒ/hx1 � e1i.

Similar arguments to those used in [22, Section 8] will produce a basis for any
morphism space in U. The basis will be a collection of reduced diagrams for oriented
planar matchings with 2n boundary points (n oriented in, and n oriented out). It is a
basis over the left action of ƒ and the action of Rn by placing dots on the inwardly-
pointing boundary strands. The basis is in bijection with Sn, though this bijection does
not preserve the number of crossings in a diagram. We expect that this is a downfree
basis, with a partial order coming from crossing removal; in this case, the partial
order does not coincide with the usual Bruhat order on Sn. The downfree character is
currently unknown.

7. sl2 action on the thick calculus PU

Definition 7.1. Let PU denote the 2-category defined in [17, Section 4].

It can be hard to determine from [17] what precisely the generators and relations
of PU are, over and above the presentation of U, as it is not stated explicitly there.
We give the answer in [9, Proposition 5.2]. There are two new generators for each
thickness a:

• the splitter

E.a/ ! E˝a

• and the merger

E˝a ! E.a/;

that is

and :

They compose in one direction to be the endomorphism  w0
inside NHn, this is [9,

(5.4a)]:

D (60)
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In the other direction, they compose to the identity if sufficiently many dots are placed
in between, which is [9, (5.4b)]. A more general version of [9, (5.4b)] is

f D @w0
f : (61)

Definition 7.2. We place an sl2 structure on PU, extending the operator d from [9,
Definition 5.3], by asserting that z kills the new generating splitter and merger.

Theorem 7.3. The sl2 action on PU is well defined, and divided powers are defined
integrally.

Proof. We need to check that z preserves the relations. Clearly, it preserves (60) since
both sides go to zero. Since z commutes with @w0

, it is easy to verify that it pre-
serves (61) as well.

We need to check that Œz;d� D h on the new generators. This is straightforward,
since z.�ı/D z.�ı0/ agrees with the degree of the splitter. In fact, Hom.E.a/;E˝a/ is
isomorphic to Rah�ıi as a left .Ra;sl2/-module, and Hom.E˝a;E.a// is isomorphic
to Rah�ı0i as a right .Ra; sl2/-module. Thus, divided powers are well defined by
Proposition 2.29. For more on ı and ı0 see the second proof of Theorem 4.9.
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categorified quantum sl.2/. Mem. Amer. Math. Soc. 219 (2012), no. 1029
Zbl 1292.17013 MR 2963085

[18] M. Khovanov and Y. Qi, An approach to categorification of some small quantum groups.
Quantum Topol. 6 (2015), no. 2, 185–311 Zbl 1352.81038 MR 3354331.

[19] M. Khovanov and L. Rozansky, Positive half of the Witt algebra acts on triply graded link
homology. Quantum Topol. 7 (2016), no. 4, 737–795 Zbl 1376.57015 MR 3593567

[20] M. Khovanov, Y. Qi, and J. Sussan, p-DG cyclotomic nilHecke algebras. 2017,
arXiv:1711.07159

[21] N. Kitchloo, Soergel bimodules, the Steenrod algebra, and triply graded link homology.
2018, arXiv:1305.4725

[22] A. D. Lauda, A categorification of quantum sl.2/. Adv. Math. 225 (2010), no. 6,
3327–3424 Zbl 1219.17012 MR 2729010

https://doi.org/10.1007/s00029-010-0017-z
https://zbmath.org/?q=an:1201.18005
https://mathscinet.ams.org/mathscinet-getitem?mr=2609644
https://doi.org/10.1090/tran/8554
https://zbmath.org/?q=an:1497.20044
https://mathscinet.ams.org/mathscinet-getitem?mr=4378083
https://doi.org/10.1155/2010/978635
https://zbmath.org/?q=an:1219.18003
https://mathscinet.ams.org/mathscinet-getitem?mr=3095655
https://doi.org/10.1007/978-3-030-48826-0
https://zbmath.org/?q=an:1507.20001
https://mathscinet.ams.org/mathscinet-getitem?mr=4220642
https://doi.org/10.1016/j.aim.2015.10.009
https://zbmath.org/?q=an:1329.81238
https://mathscinet.ams.org/mathscinet-getitem?mr=3436383
https://doi.org/10.1016/j.aim.2016.06.002
https://zbmath.org/?q=an:1355.81096
https://mathscinet.ams.org/mathscinet-getitem?mr=3519482
https://doi.org/10.1090/tran/8908
https://arxiv.org/abs/2005.03128
https://doi.org/10.4007/annals.2014.180.3.6
https://zbmath.org/?q=an:1326.20005
https://mathscinet.ams.org/mathscinet-getitem?mr=3245013
https://doi.org/10.1090/ert/481
https://zbmath.org/?q=an:1427.20006
https://mathscinet.ams.org/mathscinet-getitem?mr=3555156
https://doi.org/10.4171/jems/1061
https://zbmath.org/?q=an:1475.20006
https://mathscinet.ams.org/mathscinet-getitem?mr=4269421
https://doi.org/10.1142/S021821651640006X
https://zbmath.org/?q=an:1370.18017
https://mathscinet.ams.org/mathscinet-getitem?mr=3475073
https://doi.org/10.1090/S1088-4165-09-00346-X
https://doi.org/10.1090/S1088-4165-09-00346-X
https://zbmath.org/?q=an:1188.81117
https://mathscinet.ams.org/mathscinet-getitem?mr=2525917
https://doi.org/10.1090/S0002-9947-2010-05210-9
https://doi.org/10.1090/S0002-9947-2010-05210-9
https://zbmath.org/?q=an:1214.81113
https://mathscinet.ams.org/mathscinet-getitem?mr=2763732
https://doi.org/10.1090/S0065-9266-2012-00665-4
https://doi.org/10.1090/S0065-9266-2012-00665-4
https://zbmath.org/?q=an:1292.17013
https://mathscinet.ams.org/mathscinet-getitem?mr=2963085
https://doi.org/10.4171/QT/63
https://zbmath.org/?q=an:1352.81038
https://mathscinet.ams.org/mathscinet-getitem?mr=3354331
https://doi.org/10.4171/QT/84
https://doi.org/10.4171/QT/84
https://zbmath.org/?q=an:1376.57015
https://mathscinet.ams.org/mathscinet-getitem?mr=3593567
https://arxiv.org/abs/1711.07159
https://arxiv.org/abs/1305.4725
https://doi.org/10.1016/j.aim.2010.06.003
https://zbmath.org/?q=an:1219.17012
https://mathscinet.ams.org/mathscinet-getitem?mr=2729010


B. Elias and Y. Qi 806

[23] A. D. Lauda, Parameters in categorified quantum groups. Algebr. Represent. Theory 23
(2020), no. 4, 1265–1284 Zbl 1495.17026 MR 4125578

[24] N. Libedinsky, Sur la catégorie des bimodules de Soergel. J. Algebra 320 (2008), no. 7,
2675–2694 Zbl 1196.20005 MR 2441994

[25] A. Licata and A. Savage, A survey of Heisenberg categorification via graphical calculus.
Bull. Inst. Math. Acad. Sin. (N.S.) 7 (2012), no. 2, 291–321 Zbl 1281.20005
MR 3024895
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