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Witten—Reshetikhin—-Turaev invariants for 3-manifolds from
Lagrangian intersections in configuration spaces

Cristina Ana-Maria Anghel

Abstract. In this paper, we construct a topological model for the Witten—Reshetikhin—Turaev
invariants for 3-manifolds coming from the quantum group Uy (sl(2)), as graded intersection
pairings of homology classes in configuration spaces. More precisely, for a fixed level &' € N,
we show that the level &' WRT invariant for a 3-manifold is a state sum of Lagrangian intersec-
tions in a covering of a fixed configuration space in the punctured disc. This model brings a new
perspective on the structure of the level & Witten—Reshetikhin—Turaev invariant, showing that
it is completely encoded by the intersection points between certain Lagrangian submanifolds in
a fixed configuration space, with additional gradings which come from a particular choice of a
local system. This formula provides a new framework for investigating the open question about
categorifications of the WRT invariants.

1. Introduction

After the discovery of the Jones polynomial for [5] knots, the world of quantum
invariants encountered a powerful development, provided by constructions due to Wit-
ten, Reshetikhin, and Turaev. More precisely, Witten [17] predicted the existence of
an extension of the Jones polynomial to 3-manifolds, and Reshetikhin—Turaev [14]
provided an algebraic construction of such invariants. They showed that the rep-
resentation theory of the quantum group Uy (s1(2)) leads to invariants for links col-
oured with finite-dimensional representations of this quantum group, called coloured
Jones polynomials. Further on, for any level & € N, one can use linear combin-
ations of coloured Jones polynomials with colours less than A in order to get a
3-manifold invariant 7. However, there are open questions about the geometry and
topology which are contained in the Witten—Reshetikhin—Turaev invariants. An active
research area concerns categorifications for invariants of links and 3-manifolds. For
instance, Khovanov homology, which is a categorification for the Jones polynomial
for knots, was proved to be a powerful tool which contains much information [6,7,9,
12,13, 15]. The story is different for the analogous invariants for 3-manifolds. There
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is an important open question about the existence of categorifications for Witten—
Reshetikhin—Turaev invariants.

Our aim is to describe these invariants as intersection pairings between homology
classes in coverings of configuration spaces. We refer to such a description as “topolo-
gical model”. The first topological model was constructed for the Jones polynomial by
Bigelow [4], based on the work of Lawrence [8]. The main result of the paper shows
that the level & WRT invariant is a state sum of graded intersections between Lag-
rangian submanifolds in a fixed configuration space. This provides a new framework
for the study of these invariants and a starting point in investigating categorification
questions.

In the first part of this article, Theorem 1.3, we generalise the author’s previous
work [1,2] constructing a topological model for coloured Jones polynomials coloured
with different colours. Then, the translation of the algebraic definition of the WRT
invariant using Theorem 1.3 would show that the WRT invariant t is a linear com-
bination of Lagrangian intersections in various configuration spaces. Further on, the
main part of the paper is geometric. We encode the coefficients of the coloured Jones
polynomials coming from the Kirby colour by adding certain circles to the supports of
the Lagrangian submanifolds as well as adding extra punctures to the punctured disc.
Then, we show that we can move the whole intersection formula—which a priori
would be in different configuration spaces—in a fixed configuration space, as presen-
ted in Theorem 1.6.

1.1. Homological tools

Forn,m € N, we define C,, ,, = Conf,,,(D,) to be the unordered configuration space
of m points in the n-punctured disc D,,. We use two extra parameters k,/ € N and
define a local system:

O 71 (Cppyyaim) = L' DL B L.

The definition of this local system depends on the parameter k. Roughly speaking, the
monodromy around each puncture gives us one variable, and the last Z-component
counts the winding of particles in the configuration space. The parameter k is used
for orientation purposes: the monodromies of ® around the first n—k punctures and
the last £ punctures are counted with opposite orientations. In our model, / will be the
number of link components. The extra 3/ punctures will play an important role in the
model for the WRT-invariants. We define 6Jf1+3i,m to be the covering of Cy, ,, cor-
responding to . We use the homology of a quotient of this covering space (quotient-
ing the first n components of the local system towards / variables, for / <n), as follows:

* Lawrence representations H _fl i which are
n ,m,

Z[xfcl, el xlil, ylil, e yl-il, dil]-modules.
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They come from the Borel-Moore homology of C* 143 and have an action of

coloured braids on n + 1 + 31 strands (Definition 3.15, Proposition 3.16).

* Dual Lawrence representations H* (Deﬁn1t10n 3.15) (using the homology

+1
relative to the boundary of the same coverlng space)

* QGraded intersection pairing (Proposition 3.17):

k —k,d +1 £1 | +1 +£1 g1
(,): Hn+1ml® ] = ZIXT XYL ey L dT]

Homology classes. We will construct certain classes in these homology groups, given
by lifts of Lagrangian submanifolds in the base configuration space. These subman-
ifolds are encoded by “geometric supports” which are sets of arcs in the punctured
disc. The product of these arcs quotiented to the unordered configuration space gives
the Lagrangian submanifolds. Then, the lifts in the covering will be encoded by sets
of “paths to the base points” which are collections of arcs in the punctured disc, from
the base point towards the geometric support.

Remark 1.1. The pairing is encoded in the base configuration space, and it is parame-
trised by the intersection points between the geometric supports of the homology
classes, graded by monomials which are prescribed by the local system ®.

1.2. Topological model coloured Jones polynomials

In the author’s earlier work [1, 2], a topological model for the coloured Jones polyno-
mial for links coloured with the same colour was constructed (i.e., each component is
coloured with the same colour). In the first part of this paper, we generalise this result
and construct a topological model for coloured Jones polynomials for links coloured
with different colours. Let L be an oriented framed link with framings f1,..., f; € Z.
We consider 8, € By, a braid such that L = //3; by braid closure. Now, let us fix a set
of colours Ny, ..., N; € N\ {0} for the strands of the link. This colouring induces a
colouring of the strands of the braid: (Cy, ..., Cy).

We use the configuration space of 1 + >/ (C; — 1) particles in the (2n + 1)-
punctured disc and a Z2"™1 @ Z local system constructed as above, with k = n and
I = 0. Then, we have the homologies

—n —n,d
H2n+1,1+Z§-’=1(Ci—1),0 and H2n+11+2, 1(Ci—1),0°
which are
Z[xfcl,...,xlil,dil]-modules.

Definition 1.2 (Coloured homology classes). With the procedure described above,
for any indices i1,...,i, € N suchthat 0 < i < Cr —1forall k € {1,...,n}, we
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define two Lagrangian submanifolds and consider the classes given by their lifts in
the covering, as presented in Figure 4.2:

(Cl, C/z n ‘(C|,...,C,,) —n,0
F; eH,’ 1437 (Ci—1),0 and  L; € H2n+l,l+Z;~':l(C,~fl),O'

The set of such sequences of indices is denoted by C(N).

Theorem 1.3 (Topological state sum model for coloured Jones polynomials for
coloured links). Let us fix a set of colours Ny, ..., Ny € N. Then, the coloured Jones
polynomial of L coloured with colours Ny, ..., Nj has the following model:

Ing..N(L.q) =q S (fi=X i Tk ) (N;=1)

( Z (l—[xC(l)) (,BnU]I,H_ )jr(Cl, »Cn) L(Cl““’c”)))

ieC(N) i=1

In this expression, wqc NivuN, is the specialisation of variables to one variable from
Sformula (2.2), and
C:{1,....2n} —>{l,...,1}

is the colouring presented in Definition 2.4.

Note that this formula is a state sum of intersections in a configuration space where
the number of particles depends on the choice of individual colours Ny, ..., N; for
colouring the link.

1.3. Topological model for WRT invariants

The second part of the paper is devoted to the construction of a topological model for
the Witten—Reshetikhin—Turaev 3-manifold invariants. Let us fix a level &' € N, and
let us consider the 2./ th root of unity & = ¢35 . We will use the description of closed
oriented 3-manifolds as surgeries along framed oriented links. In turn, we will look at
links as closures of braids. Suppose that the corresponding link has / components and
the braid has » strands.

We start with the construction of the homology classes in this context. This time
we use a covering of the configuration space of n(N — 2) 4+ / + 1 particles in the
(2n + 31 + 1)-punctured disc and a Z2"+! @ Z3! @ Z local system constructed as
above, with k = n and [ = /. We consider the homology groups

—n n,0
2n+1,n(N—-2)+1+1,] and H2n+1 (N =2)+1+1,01°

which are
Z[xlil, . ,xlil,ylil, e, ylil,dil]—modules.
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aN —n ~ N _naa
‘TE € Mop i1 n(N=2)+141,] LZ EH2n+l,n(=N—2)+l+l,l

(Definition 5.2) (Definition 5.4)

// /:/// -
/ o
(1 /‘/ /i
NS UG &)
Confy2 Conf (‘\n]l',y,,('om”x*: &

Figure 1.1. WRT homology classes.

Definition 1.4 (Homology classes). Let us fix a set of indices i, ...,i, € {0, ...,
N — 2} and denote by

lT = (il, ce ,in).
We consider the classes given by the geometric supports from Figure 1.1.

Denote by p1,. .., p; asequence of strands of the braid that correspond to different
components of the link, and denote by f,; the framing of the component associated

to p;.

Definition 1.5 (Lagrangian intersection in the configuration space). For a multi-index
i1,...,in €{0,..., N — 2}, we consider the following Lagrangian intersection:

A;(Bn) € ZIxEY, . xFLyEL L yEL dEY,

I U= Uiy ) _ .
A;(Bn) = Hi=1xc(ppi) R Tz xcly (B U Lngarin) T, £2).

i
The main result shows that the Nth WRT invariant 7,4 (M) comes from a state
sum of specialisations of these intersections, which take place in the configuration
space

Confy(w—2)+1+1(D2n+31+1)-

Theorem 1.6 (Topological state sum model for the Witten—Reshetikhin—Turaev quan-
tum invariants). Let N € N be a fixed level and M a closed oriented 3-manifold.
We consider L a framed oriented link with | components such that M is obtained
by surgery along L. Also, let B, € By such that L = B; as above. Then, the Nth
Witten—Reshetikhin—Turaev invariant has the following model:

oY (%
M) = ——F—- ( A;(Bn)
Db AT A T 0 i<y <1
ir<Cr—1
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.....

(see relation (2.2)). The coefficients that appear in the above formula are presented in
Notation 5.7.

Remark 1.7 (Intersections in various configuration spaces). For a fixed colour -,
the algebraic definition of the WRT invariant t (M) is given by a certain linear com-
bination of Jy, .. .~,(L,§) forall Ny,...,N; € {1,..., N — 1}. Then, Theorem 1.3
would interpret this invariant as follows:

Tu (M) is a linear combination over all Ny,...,N; € {1,..., N — 1}
andalli = (iy,...,i,) with0 <iy < Cx — 1,k €{l1,...,n}of

Each term above is an intersection in the configuration space of 1 + Y ;/_;(C; — 1)
particles in the (2n + 1)-punctured disc, which depends on the choice of colours
Ni,..., N

This means that the translation of the algebraic definition of the WRT invariant
following Theorem 1.3 shows that 7, (M) is a linear combination of Lagrangian
intersections in different configuration spaces Cy,, 41 k, where the number of particles
k varies between 1 and (n — 1)(N — 1) + 1.

Remark 1.8 (Intersection in a fixed configuration space). A feature of the model
presented in Theorem 1.6 is that it globalises all these intersections from above, show-
ing that the N'th WRT invariant is given by states of certain Lagrangian intersections
in a fixed ambient space, as follows:

T (M) is a scalar times the state sum over all multi-indices
i1,...,in €40,..., N — 2} of specialisations of the intersection
Az (Bn) associated to Ny, ..., N; € {1,..., N — 1} such that
ix < Cr— 1,k €{l,...,n}; namely, A;(,Bn)}wglvl

All the intersections A;(B,) above are constructed from the classes
(Bn U ]In+3l+1)3'~§N and L;f/v

and take place in the fixed configuration space of n(N — 2) + [ 4+ 1 points in the
(2n + 3/ + 1)-punctured disc.

Remark 1.9 (Encoding the Kirby colour). Now, we discuss the coefficients which
appear in the algebraic definition of the Witten—Reshetikhin—Turaev invariant for a 3-
manifold. This formula is given as linear combinations of coloured Jones polynomials
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N=2—i, N—1—ip,

—1—ip,

Figure 1.2. Lagrangian intersection encoding the Kirby colour.

of the underlying link L, and the coefficients come from the so-called Kirby colour
and they are quantum integers.

Theorem 1.6 provides a globalised formula for 74 (M) and does not require indi-
vidual coloured Jones polynomials. For each multi-index i bounded by the level, we
consider the intersection form A;(B,) between globalised classes in a covering of the
configuration space, which does not depend on any colouring. Then, we have to add
up its specialisations, corresponding to colours which are “bigger” than the index i.

The coefficients coming from the Kirby colour are encoded in the homology
classes. Geometrically, they are given precisely by the special / purple circles and
[ blue figure eights from the supports of the homology classes, and they correspond
to the orange intersection points in Figure 1.2.

1.4. Structure of the WRT invariants

Following this remark together with the fact that the intersection pairing is encoded
by graded geometric intersections in the base configuration space (Remark 1.1), we
conclude that we have a topological formula for the WRT invariant which is obtained
from the intersection points between the following geometric supports:

(Bn U lLq3141) ?Z;N N L;—,N

for all choices of indices iy, ...,i, €{1,..., N —2}, graded using the local system ®.

Remark 1.10. In this way, we see that the WRT invariant at level N is completely
encoded by the set of intersection points between certain Lagrangian submanifolds in
the configuration space of n(N — 2) + [ + 1 points in the (2n + 3/ + 1)-punctured
disc. The number of particles is fixed, and it is determined by the level of the invariant
N, the number of components of the link /, and the number of strands of the braid .
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1.5. Questions underlying topological information

Our main motivation for this work is the understanding of the underlying topology
which is carried by the Witten—Reshetikhin—Turaev invariants. The structural descrip-
tion presented above, provided by intersections between Lagrangians in a fixed con-
figuration space, brings a new approach to investigating further questions concerning
categorifications for these quantum invariants. Two questions that need to be solved
for such categorifications concern the symplectic setup that one decides to choose and
also how to take care of the denominator that appears in the intersection formula for
the WRT-invariant 7 from Theorem 1.6.

Structure of the paper. This article has four main parts. In Section 3, we introduce
the homological setting that we use as well as the particular choice of a local system
and the corresponding covering space and homology groups. Then, in Section 4, we
construct certain homology classes, and using those, we prove the topological inter-
section formula for the coloured Jones polynomials for links. After that, Section 5 has
two parts. First, in Section 5.1, we construct a sequence of homology classes in a fixed
covering space and use them to define a state sum formula. Then, we prove in Sec-
tion 5.2 that it leads to a topological model for the N th Witten—Reshetikhin—Turaev
invariant. In the last part, Section 6, we present the formula for these invariants in the
particular case where we have 3-manifolds which are given by surgeries along knots.

2. Notations
In the next sections, we will change the variables from the ring of Laurent polynomials
using certain specialisations of coefficients. For this, we use the following definition.

Notation 2.1 (Specialisation). Let N be a module over a ring R. Let R’ be another
ring, and suppose that we have a specialisation of the coefficients, meaning a morph-
ism:

¥v:R—R.

We denote by
Nly :=NQ®grR

the specialisation of the module N by the function .
Definition 2.2 (Quantum numbers). Let us define the following quantum numbers:

qx_q—x
g—q~'’

X

Xlg =g —q7", [xlg:=
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Definition 2.3 (Specialisations of coefficients). For a set of / colours Ny,..., N; €
N and a colouring C : {1,...,n} — {1,...,[}, we consider the specialisation of
coefficients as follows:

fc 3.3)
+1 +1 ,+1 +1 g+1 +1 +1 ,,+1 +1 41
LIxi oo X , 7 e V7 AT —— Z[xT, . x yE RS ,d*]

n

C 4
YN N, B4

.AZ[qi‘]

Definition 2.4 (Our setting: specialisation corresponding to a braid closure). We will
use this change of coefficients in the situation where 7 is replaced by 2, and these 2n
points inherit a colouring with / colours coming from a braid closure of a braid with
n strands:

C:{1,....2n} > {1,...,1}. 2.1

For our model, we will use the function f¢ associated to the colouring from (2.1).
Further on, we define the specialisation of coefficients:

Ve Ty L o 2]
VEp ) =gV el
qu:N] ..... N] (yl) = qua (22)

wq(/:Nl ,...,N/ (d) = q_z'

Notation 2.5. In the formulas from the paper, we denote by C; := Nc¢).

3. Definition of the local system and homology groups

In order to construct the classes that will lead to the 3-manifold invariants, we will use
the homology of certain coverings of the configuration space in the punctured disc.
The construction of the covering space will be more involved than the one used in [2].
More specifically, we will consider two types of punctures and use a subtle local
system which counts the monodromies around these punctures in different manners.
For the following part, let us fix ] ,k € N. Also, we consider a “weight” m € N.
We start with the unordered configuration space of m points in the punctured disc with

n + 1 + 3/ punctures D, 11437 denoted by

Cn+1+3i,m'
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N O I
z m y.l.[
2y;

. .
Vi

Figure 3.1. Local system.

Also, we fix

dy,... dm €D, | a0,

and letd = (dy, ..., dy) to be our base point in the configuration space. Now, we
define a certain local system on this configuration space. For this, we use the homo-

logy of this configuration space, which has the following description.
Proposition 3.1. Let us suppose that m = 2. Let us consider [] : 71(C, 1 43
H(C, +3i,m) be the abelianisation map. Then, the homology has the following
form:

) —

Hy(C, Y~z g7zl o7l 07

+1+30,m
(foa)) A D) () (8D, i €{0,...on+ 1} jefl,... 0}
The five types of generators are presented in Figure 3.1.

We continue with the augmentation map

e: Hi(Cop143im) > 2" S L ©Z
(xi) (v} (d)

given by
e(op) =0,

e(o;) =2x;, i€{l,....n—k},
(o) = —2x;, ie{n—k+1,... .n}
e(yj) =2y, jell,....l}
e(7;) = =2y, jell,....l}

e(nj) ==y, Jell,....I},

e(8) =4d’.
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Definition 3.2 (Local system). We use the local system given by the composition of
the above morphisms:

Y Z"eZ ez
(x;) (y) (@), i e{l,....n}, jefl,....]}

@11y 43lm

d=cof].

Definition 3.3 (Covering of the configuration space). Let C*

of C, 1437 m

Also, let us fix a base pointd € C*

- be the covering
n+1+31,m

corresponding to the local system .

- in the fibre over the base point d.
n+1430,m

3.1. Input of the construction

We will use the homologies of this covering space.

Remark 3.4. The morphism & is not surjective, and its image is the following:
m@®) =z)y ezt ez eozcrer? 07 o7

So, the group of deck transformations of the covering C* ot 1430m is

ez ez oz oz,
and the homology of the covering is given by modules over its group ring:
s X

ZIx?, . x oy d

We consider the inclusion:

+2 L E2 +1 g+l +1 yE1 +1 grE1
L ZIxi, . X, ,y1 ,...,yl— AT C LT, X, ,y1 sees Vi d="]

and from now on, we work with the homology of the covering tensored over ¢ with the

group ring Z[xlil ey X il , y1 - ,yl:JEl ,d'*1]. So, these homology groups become
modules over
+1 S +1 £l
VAR T ,y1 ,...,yl— ,d'™*.
Also, for computational purposes, we will use the variable d := —d’. We recall

that our intersection pairing involves homology classes that are given by submanifolds
in configuration spaces. In the next part, we will use a property that allows one to
encode the sign of the geometric intersections in the configuration space by signs of
the local intersections in the punctured disc, if we replace the variable d’ by —d in
our formulas (see [2, Remark 3.4.3] and [4, Section 3] for a detailed explanation of
this sign computation).
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Figure 3.2. Local system via the group ring.

We define the following:

. +1 +1 ,+1 +1 +1 +1 +1 ,+1 +1 ;+1
VOLIXT X YT Y AT S LT xy vy d T

n > n >

y(xi) = x;
y(vj) = yj
y(d') = —d.

Using this notation, the homology groups of the covering become modules over

Z[xlﬂ,... xil,yfcl,...,y—il,dil]. 3.1)

*'n

Remark 3.5. Since we passed from groups to group rings, in the multiplicative nota-
tion, the local system evaluates the loops using the monodromies from Figure 3.2.
The five types of generators are presented in Figure 3.2.

3.2. Homology groups

We will use a version of the relative homology of this covering space. First, let us fix
ST cCadD, 11437 to be the semicircle on the boundary of the punctured disc given by

points with negative x-coordinate. Also, let w € S~ € 9D, 57 be a point on the
boundary of the disc. We will use part of the Borel-Moore homology of the covering

space 5;f1+31-m which comes from the Borel-Moore homology of the base space
C

i 1437.m Which is twisted by the local system.

Let us define C~ to be the part of the boundary of the configuration space

Cn+1+3i,m

belongs to the set S™. Also, let P~ be the part of the boundary of én_f:1+3l_ m which
is given by the fibre over the subset C . ’

which is given by configurations of points where at least one of them
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Notation 3.6. We will split the infinity part of the configuration space into two sub-
sets. The complete definition and details of this construction are presented in [3,
Remark 7.5], for the case where the surface that we use is the closed 2-disc minus
half of its boundary and minus n + 1 + 3l open discs (with pairwise disjoint clos-
ures) from its interior. Then, we consider two homology groups, as follows:

o Let Hy Lf.00 (C , P Z) be the homology relative to part of the infinity

n+1+30,m

which is given by the open boundary of C* containing the configurations that

n+1+30m
project in the base space to a multipoint which touches a puncture from the punctured

disc and also relative to the boundary part P~.

o Let Hy, Lra (C , 0; Z) be the homology which is relative to the bound-

+1+31

ary of the covering C* which is not in P~ and Borel-Moore with respect to

n+1430,m
collisions of points in the configuration space.

Remark 3.7. In general, the Borel-Moore homology of a covering space is different
from the twisted Borel-Moore homology of the base space. In our situation, we will
work with the homology of the covering space rather than the twisted homology of
the base space, and for this, we will use the following properties.

Proposition 3.8 ([3, Theorem E]). There are natural injective maps:

LS . Hlfos, -

L H T (Co g paf e €T3 L0) = HOT(CE L r P,
.glf,A If,A .

O HAC, e 0 L0) = HIPACE 82,

where Lo is the rank 1 local system associated to ® [3, Definition 2.7].

In the next part, we use the subspaces of these homologies of the covering which
come from the twisted homology of the base configuration space, using Proposi-
tion 3.8.

Definition 3.9 (Homology groups). We consider the submodules in the homologies of

the covering space (which, as above, are modules over Z[xf—Ll, CoxEL y1 e yl-il,

d*1)):

. g_c—k - C HlfaOO, (
n+1,m,l

o R gAGK L0, 7)
n+1,m,l +1+3l

given by the images of the homology with twisted coefficients in the homology of the

,P~1:7Z) and
n+1+3l

covering space via the inclusions ¢ and ¢? respectively.

The definition of these homology groups is rather subtle, but for our situation we
will work with very precise classes given by submanifolds in the configuration space.
Moreover, in the next part we will see that there is a geometric intersection pairing
between these homologies of the covering space with respect to different parts of
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its boundary. This geometric pairing comes from a Poincaré-Lefschetz-type duality
for twisted homology [3, Proposition 3.2] combined with a relative cap product for
twisted homology [3, Lemma 3.3]. They induce an intersection pairing at the level of
these homology groups, following [3].

Proposition 3.10 ([3, Proposition 7.6]). There exists a topological intersection pair-
ing:

.k —k,0 +1 +1 _+1 +1 ;+1
«’»'j{n+1,m,i®g{n+1,m,1’_>z[x1 e Xy VT e Yp L dT

3.3. Computing the intersection pairing

In the next section, we will use the precise form of this intersection pairing, so we
will briefly explain its formula, which is presented in [3, Section 7]. We will work
with the coefficients that belong to the group ring from (3.1). For this, we introduce
the following notation.

Notation 3.11. Let ® be the morphism induced by the local system ®, which takes
values in the group ring of Z" & 7' Z:
&3 LT (Cn

’n

+1 +1 +1 +1 gl
1aaim) = LI Xy Y PR /- ,d'=.

Then, taking into account the change of variables y, we define

@ mi(Cop i t3im

d=yod.

>'n

+1 +1 | *1 +1 j+1
)—)Z[Xl ,...x ’yl ,---,yl' 9d ]’

This morphism will be used for the computation of the intersection pairing, as

follows. Let us consider two classes H; € H ¥ -and H, € H* We sup-
n+1,m,l n+1,m,l

pose that these classes are given by the lifts X1. X, of two immersed submanifolds

X1, X2 C Cn+1+3i,m

in a finite number of points.

. Also, we assume that X; and X, have a transverse intersection,

Proposition 3.12 (Intersection pairing from intersections in the base space and the
local system). For each intersection point x € X1 N X3, we define a certain loop and

denote it by [, C Cn+1+3i,m'

(a) Construction of I
We suppose that we have the paths yx,, yx, which start in d, they end on X1, X»
respectively and that yx, (1) € X1 and yx,(1) € X,. Further on, we choose two paths

5)(1 s 5}(2 : [O, 1] - Cn+3l_,m

with the property:
{Im(5xl) C X1:8x,(0) = yx, (1) 8x, (1) = x.

Im(8x,) € X2:8x,(0) = yx,(1); x,(1) = x.
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The composition of these paths gives us the loop:
Iy = yx, o 8x, 08)}21 ) )/;21.

Also, let ay be the sign of the geometric intersection between My and M> in the base
configuration space at the point x.

(b) Intersection form
Then, the intersection pairing can be computed from the set of loops I and the
local system:

(Hy, Ha))

ZV( Z ax'qD(lx))EZ[xitl"--7xr:ltl’yit1"'-ﬂylztladil]' (32)
xeX1NX>

Remark 3.13 (Our situation). For actual computations, in the case where the homo-
logy classes come from products of one-dimensional submanifolds quotiented in the
configuration space, one can directly compute the previous intersection from a sum
without the change of coefficients given by y. More precisely, in this case, we will
replace the local system @ by @ in the previous formula, and for the sign contribu-
tion, count just the product of local orientations in the disc around each component
of the intersection point x (instead of keeping track of the sign of orientations in the
configuration space o).
We will see such an example of such computation in Section 5.2.

3.4. Specialisations given by colourings

Definition 3.14 (Change of coefficients). For the next part, we suppose that we have
a colouring C of the n punctures of the disc {1, ...,n} into [ colours:

C:{l,....,n}—>{1,...,1}.
We will work in the situation where
[=0 or [=1I.

Let us fix / components 1, ..., pr €l ... n}.

In our situation, the 3/ blue points will be split into groups of 3 points, each group
being positioned underneath a puncture labelled by p;, fori € {1, ..., ! }. Then, the
colouring C induces a colouring of the 3/ blue points.

We define the corresponding change of variables, where we change the first n + ]
components

xl,...,xn,yl,...,yl-
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from the ring Z[x!, ..., xF1, yit! ylil d*' to [ + [ variables, denoted by
X1sees X[ Y15+ -, Vi as follows:
fc :Z[xiﬂ,..., ﬂﬂ,y1 ,...,ylftl,dil] — Z[xftl,...,xlil,yftl,...,yl—il,dil]

{fc(xi)zxca» iefl,....n}, (3.3)

fe(j) =yew). Jell... 0}
Now, we will change the coefficients of the homology groups using the function

fc.

Definition 3.15 (Homology groups). Let us define the homologies which correspond
to these coefficients, given by

—k .
L] - .=
Hn+1,m,l ’ n+1m l|fC’
. kD gk
n+1m,l ° n+1,m,l fc-
They are modules over Z[xit1, . .. ,xlil,ylil, e, yl-il, d*1].

Now, we look at braids with n + 1 + 3] strands whose action on the punctured
disc preserves the colouring of the punctures (given by C). We denote the set of such

braids by B¢ 13l

Proposition 3.16 ([3]). There is a braid group action (which comes from the mapping
class group action) which is compatible with the action of deck transformations at the
homological level:

C —k +1 +1 | +1 +1 j+1
n+1+3l'Q’Hn+1,m,l_ (as a module over Z[x7™", ..., x; ", y{ N ,d=)).

Proposition 3.17 ([3]). There is also a topological intersection pairing:

k —k,0 +1 _ +1 +1 +1
(,): Hn+1ml®Hn+1ml Z[x e X VT e )] ,d=1,

whose method of computation is the same as the one presented in Proposition 3.12,
specialised using the change of coefficients fc:

() =0 Mre-

Definition 3.18 (Specialisation of coefficients). Let Ny,..., N; € N a sequence of
natural numbers. We define the specialisation of coefficients given by

WgNl,...,N, CZIXE L xEL YEL L .,yl-il,dil] — Zlg*"]
VSN N, ) =g e (1,0,
Wq Ny, i) = l]Ni ief{l,....1}, (3.4)
quNl ..... Nl(d) - q
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Figure 4.1. Colouring of the braid.

4. Coloured Jones polynomials for framed links

In this section, we show a topological intersection formula for coloured Jones poly-
nomials for links whose components are coloured with different colours.

Let us start with L = K; U --- U K}, a framed oriented link with framings f1,...,
f1 € Z. Let us choose B, € By, abraid such that L = B; We also fix a set of colours
Ni,...,N; e N.

Notation 4.1. For a natural number M € N, we denote by Vjs the M -dimensional
representation of the quantum group Uy, (s1(2)).

We colour the components of the link L with the representations Vy,, ..., Vy,
and denote the coloured Jones polynomial of this framed link by Jy, .. ~, (L, g) (as

in [16]). Also, for the further notations, we consider
N := (N1,...,N)).

Definition 4.2 (Induced colourings). (a) Colourings of the braid. The colouring of
the link given by N induces a colouring of the strands of the braid, and we denote the

corresponding colours by (Cy, ..., Cy,), as presented in Figure 4.1.

Now, we look at the link as the closure of the braid 8, together with n straight
strands, and so, we have an associated colouring of 2n points C : {1,...,2n} —
{1,...,[}. This means that we have the following colours on the 2n points:

CN = (C1,...,Cy,Cp,...,C1).
(b) Set of states. We consider the following indexing set:

C(N):={i =(i1.....in) e N" |0 < iy < Cr—1,Yk €{1.....n}}.
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4.1. Homology classes

Now that we have the induced colouring of the braid and the corresponding indexing
set C(N), we can present the homology groups that we will use. More specifically,
we will use the configuration space of 1 + Y ;_;(C; — 1) points on the (2n + 1)-
punctured disc. Then, we consider the covering coming from the local system @
associated to the parameters:

n
n— 2n; m—>1+Z(C,-—1); | -0; k— —n.

i=1
We use the corresponding homology groups

—n —n,d
H2n+1,1+2,’-‘=1(c,~—1),0 and 1L12n+1,1+z;’=1 (C;—1),0°

For the following part, since the third component is zero, we will just erase it from the
indices of the homology groups. Now, we are ready to define the homology classes
that will be used in the intersection model. The classes will be prescribed by a couple
given by the following:

* A geometric support, meaning a set of arcs in the punctured disc. The image of
the product of these arcs in the configuration space gives us a submanifold which
has half of the dimension of the configuration space.

* A setof paths to the base point, which start in the base points from the punctured
disc and end on these curves. The set of these paths gives a path in the configura-
tion space, from d to the submanifold mentioned above.

Then, we lift the path to a path in the covering space, starting from d, and then we lift
the submanifold through the end point of this path. The detailed construction of such
homology classes is presented in [2, Section 5].

Definition 4.3 (Homology classes). For any set of indices i = (i1, ...,i,) € C(N),
we define two homology classes, given by the geometric supports from Figure 4.2.

Proposition 4.4. The geometric support for the dual class, shown in the right-hand
side of Figure 4.2, leads to a well-defined homology class in the covering.

Proof. We notice that the local system ® counts the monodromy around the sym-
metric points (i,2n 4+ 1 — i) with opposite signs. Also, the relative winding of con-
figurations of C; — 1 particles on a loop around a figure eight vanishes, as shown in
Figure 4.3. This means that the configuration space on a figure eight around these
punctures lifts to a submanifold in the covering. On the other hand, the local sys-
tem @ is chosen to have trivial monodromy around the puncture labelled by 0, so the
circle which goes around this has a well-defined lift. Using this argument for all the
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(ClonCi) o pp—n - (CrrCn) ¢ gm0
3"; € (Ci—1) and L,‘» eHzn+1,1+2?=1(C,-—l)

2n+1,1+37—,

| lifts

inn o n+l

d;,

Figure 4.2. Lagrangians for link invariants coloured with different colours.

Figure 4.3. Monodromy of configurations on a figure eight.

figure eights and the little circle around the puncture O, we conclude that we have a
well-defined lift which gives a homology class in the covering

—n,0

(Cl»--~,Cn)
LZ € H2n+1,1+z;’=1(c,~—1)‘

In the next part, we use the specialisation of coefficients:
Vo 20X dF ) > Z[g ]
{w,iNl,...,N,(x,-) =gNiTl, ie{l...1),
lpqc,‘l\ll,...,]\/[ (d) = q_z’
4.2. Intersection model

Now, we show that the coloured Jones polynomial of a link coloured with the colours
N1, ..., Ny can be obtained from an intersection pairing which uses the classes

?ISCI""’C”) and LISC"""C”) foralli € C(N),

as stated in Theorem 1.3. We recall the formula below.
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Theorem 4.5 (Topological state sum model for coloured Jones polynomials for
coloured links). We have the following intersection model for the coloured Jones
polynomials of a link L:

i L S ) T L
JNl, ,N[(L q)qu:l:l(fl Zj#zlkl._/)(Nt 1)

(Z (l_[xca)) (B U Ty T {Croe C’”))

ieC(N) i=1

In this formula, we denote by (1k; ;)i jef1,....1y the linking matrix of the link L.

Proof. The proof of this intersection formula is a generalisation of the strategy used
in the model for coloured Jones polynomials coloured with the same colour, presented
in [2], based on arguments from [1]. We outline the main steps as follows.

Step 1. We consider the homology classes

(C1,.--,Cn) n (C1,..-,Cn) —n,0
rf EHznz _1(Ci—1) and L GHZ oi=1(Ci=1)

which have the same geometric support as the classes Er'";(c1 """ Cn)

except that we remove the 1-dimensional part which is supported around the puncture
labelled by 0, namely, the purple segment and the blue circle (see a similar argument
in [2, Step 2, Section 6]). Then, we have that

((,Bn U ]In+1)3"§cl"“’c”),LISC‘”“’C”)) — 4 Xk=1 ik((ﬂn U HH)S_T’;C‘""’C”),ﬁlgcl"“’c”)).
This means that we want to prove the following:

1 N L ks .
Ingn, (L.q) :quzl(ft > i lki j)(N;i—1)

Step 2. For the next part of the proof, we follow step by step the correspondence to the
Reshetikhin—-Turaev definition of the coloured Jones polynomials More specifically,

(CroeCn) Gyerall 7 e

the caps of the diagram correspond to the sum of the classes 3"
C(N). Further on, the braid action on the quantum side and on the homological side

correspond, using the identification due to Martel [10].

Step 3. In the end, the caps of the diagram require that, after the braid group action,
we evaluate just the components which are symmetric with respect to the middle of
the disc. More precisely, this means that the indices corresponding to the points k& and
2n + 1 — k should sum up to the colour Cy — 1. This is encoded geometrically by the
intersection with the dual class E;C‘ reiCr),
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On the algebraic side, one should also encode an extra coefficient which corres-
ponds to the caps of the diagram. We refer to the details of the argument for a single
colour as they are presented in [, Section 5 and Section 7], except that here we have
a different local system. The fact that the change of the local system does not affect
the flow of the proof follows by a similar computation as the one from [2, Step 3,
Section 6]. The main points are as follows.

This coefficient is given by the pivotal structure, more specifically by the action
of the element K~! from the quantum group. Now, for a set of indices i1, ..., iy, the
K1 action on the corresponding tensor monomial is given by

n
g~ St (C=D=2i) _ ( I q—<ck—1)) g k= 20k
k=1

This coefficient is precisely the specialisation:
‘ n
wlgl,.--,Nl (( H xE(li)) -d™Xk=1 lk).
i=1

The remaining coefficient which appears in the formula comes from the framing con-
tribution of the components of the link L. ]

5. WRT from intersections in configuration spaces

In this part, we pass towards invariants for 3-manifolds and aim to construct the
intersection model for the Witten—Reshetikhin—Turaev invariants, as presented in The-
orem 1.6. Let us fix a level /' € N. As in the previous section, we start with a framed
oriented link with / components, which is the closure of a braid with n strands.

Definition 5.1 (Choice of / points). Let us choose / strands of the braid 8,, which
all belong to different components of the link, and denote their indices by pq,..., p;.
Also, we look at the 2n 4 1 punctured disc and denote the symmetric images of these
points with respect to the middle axis by py, ..., p;.

This time we will use the homology of the covering of the configuration space
of n(N —2) + [ + 1 particles in the punctured disc with 2n + 3/ 4+ 1 punctures,
associated to the parameters

n—-2n+1;, m—onWN-2)+1+1;, I=1; k——n.

More precisely, we will work with the homology groups

—n —n,8
antin(N—2)+1+1, and Hyy i1 n(W=2)+1+1,1"
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(N —n
Ii € Hypp1nv—2) 41411

N=2—iy N=2—ip N—2—ip N-2-i

In

noo ntl D1 pi o

0

Figure 5.1. Homology classes for level N WRT invariants.

On the picture, we consider 3/ blue punctures in the punctured disc such that they
are split into triples which lie below the privileged punctures py, ..., p;, as in Fig-
ure 5.1. Now, we are ready to define the main tools in our construction, which are the
homology classes in the above homologies.

5.1. Homology classes

Definition 5.2 (First homology class). For a set of indicesiy,...,i, €{0,..., N —2},
we denote i := (iy,...,i,), and we consider the class given by the geometric support
from Figure 5.1.

Remark 5.3. When we take one of the circles from the above picture, its lift has a
non-trivial monodromy, so this corresponds to an arc which starts and ends in the fibre
over w. This shows that the lift of the geometric support from Figure 5.1 will lead to
a well-defined homology class in the homology relative to the fibre P71,

Definition 5.4 (Second homology class). Also for each choice of indices i1, ...,i, €
{0, ..., N — 2}, we consider the geometric support given by the product of configur-
ation spaces on the figure eights (and of the circle from the middle of the disc) from
Figure 5.2. We define the associated homology class as shown in Figure 5.2.

Proposition 5.5. The homology class L;T’V is well defined.

Proof. First of all, the figure eights from the above picture have trivial monodromy
around the punctures. This comes from the fact that the local system has opposite
monodromies around the symmetric points of the punctured disc. Also, it has opposite
monodromies around two blue punctures which are displayed on the vertical direction
(and lie in one of the discs bounded by a figure eight). Secondly, since we are working
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N —n,0
L€ Hyy ) nn—2)+1411

N—2—i)

; - - N—=1—ip,
Lpi In N—2—i, N—1—ip,

Figure 5.2. Dual homology classes for level N WRT invariants.

on a figure eight, the relative winding of configurations of & — 1 (or N — 2) particles
vanishes when we do a loop around this figure eight, as shown in Figure 5.3.

On the other hand, we recall that ® is chosen to have trivial monodromy around
the puncture labelled by 0, so the circle which goes around this has a well-defined
lift. Using this argument for all the configurations on figure eights and the little circle
around the puncture 0, we conclude that we have a well-defined lift which gives the
homology class L;TN . ]

We recall the definition of the specialisation of coefficients which is associated to
this context:

C . +1 +1 _ +£1 +1 +1 +1
1//q,1\,l,m’]\,l.Z[x1 e XV ey AT = g

VSN N @) =N e {1,
VSN, i) =M,

wq(/:Nl ,...,Nl (d) = q_z'

5.2. WRT from intersections in configuration spaces

Definition 5.6 (Kirby colour). For & € N, the Kirby colour corresponding to the
quantum group Ug(sl(2)) (see [16]) is given by

N—1 N—1
Q:=> qdim(Vy)-Vy = Y [Nl V.
N=1 N=1
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Figure 5.3. Monodromy of configurations on a figure eight.

Notation 5.7. We denote by b, b_, and b the number of positive, negative, and zero
eigenvalues of the linking matrix of L. Also, we consider

Ay =Jo(Uy,8),
A_=Jo(U-,§),
D = [A4],

where U4 and U_ are the unknot with framing +1 and —1, respectively [16].

We will use the homological classes constructed above together with the special-
isation of coefficients in order to prove the main result, which we recall below.

Theorem 5.8 (Topological state sum model for the Witten—Reshetikhin—Turaev quan-
tum invariants). Let M be a closed oriented 3-manifold and L a framed oriented link
with | components such that M is obtained by surgery along L. Let us choose a braid
Bn such that L = B; Now, foriy,...,in €{0,..., N — 2}, we consider the following
Lagrangian intersection:

A;(Bn) € ZIxEY, . xFLyEL L yEL dEY,

L Uni=Sn tepy ) _
A;(By) i= ]_[izlxc(';i) ASCEEC A | Xty (B U Lyyarn) T, LY.

Then, the N th Witten—Reshetikhin—Turaev invariant has the following model.:

{I}E_l N—2
(M) = ——— 5 Z( S A

by '
DAL AP T 1SN, N SN —1
iGC(Nl,...,N/)

Proof. The Witten—Reshetikhin—Turaev quantum invariant at level N is defined using
the coloured Jones polynomials of the link L whose components are coloured with
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the Kirby colour €2 (see [11, 16]):

wiM)=———F—-
Db AP AL~

This means that the invariant is given by the following linear combination of coloured
Jones polynomials, with colours less than N — 1:

1
wM)=——g——— 3 Vil Nl Iy (L)
Db . A++ - Ab- 1<Ny,...N;<SN—1

Step I (WRT invariant as a sum of intersections in various configuration spaces)

Now, we remind the topological formula for the coloured Jones polynomials, which
is presented in Theorem 1.3:

JNI, ,N/(L q) :qzl‘=1(fl Zj;éz lkl._/)(Nl 1)

ieC(N) "i=l1 1pq Ni..ooNJ
We notice that the variables xc(p,), ..., Xc(p,) correspond to the special strands of
the braid py, ..., p; which are all associated to different components of the link. More

precisely, we have that

(CpyoiCp) = (N1 ... N))

as unordered families. We recall the notation C,, = N¢(p,). Further on, the variables
are specialised in the following manner:

N, = - .
VSN N ey) = g™ =gl Vil

This remark allows us to encode the framing correction, and we obtain the following
formula:

1

Upi =X jsp; thp;. )
INp i (L q) :( Yoy R chu)
i=1 i=1

(here, we used the notations from the statement of Theorem 1.6 for the framings).
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This means that the 3-manifold invariant is given by the expression presented
below:

1
wM)= —— . > [Ni]g - ... - [Ni]e
Db . Al:“ - Ab- 1<Ny,..,N;<N—1

!
Ui =727 Yoy )
( C(Tv, SR HxC(i)' Z ((Bn ULng1) (5.1
i=1

i=1 ieC(N)

. ‘{T{(CI %~~'5C11)’ ngcl ~,~~-;C11)))

Step II (Construction of homology classes in a fixed configuration space)

In this part, we focus on each intersection pairing which occurs in the above formula.
Such intersection is given by the following expression:

((,Bn U ]In-{—l) ?ZT(CI,...,Cn)’ L;Cl’m’C")).

This pairing comes from an intersection in the configuration space of 1 + > ;_, (C; —
1) points in the (2n + 1)-punctured disc, and the homology classes belong to the
homology groups:
(C1,.,Cn) —n (C1>sCn) n,d
g{ € 2n+1, 1+Z”_1(C,—1)’ Li H2n+1 1+ (Ci—1)°
We would like to arrive at an intersection in a configuration space where the number of
particles does not depend on the individual components given by the set (Cy, ..., Cp).
In order to achieve this, we use the property that all components of this set are
bounded by the level of the 3-manifold invariant; more precisely, we have that

Osik§Ck—1§N—2, Vke{l,...,n}.

Now, let us investigate the geometric supports of the two classes. For any k, we

remark that the geometric support of 9’ (C1o:Cn) hag

* i curves ending in the kth puncture,
*  Cy —ix — 1 curves ending in the (2n — k + 1)st puncture.

Based on these remarks, we will “complete” each index, which is associated to a
colour C; — 1, up to N — 2. We will do this using the property that the action of the
braid (8, U I,,41) is trivial on the right-hand side of the (2n + 1)-punctured disc.
More precisely, for each k € {1,...,n}, letus add &N — Cr — 1 extra segments/
configuration points on the part of the geometric supports of the classes

GECLln)  yoq £ (CrenCi)
i i ’
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FN e Hyr and LY e H P

2n+1,n(N—2)+1 2n+1,n(N—-2)+1

d

d;,

Figure 5.4. Classes corresponding to the level & and multi-index 7.

which end/go around the puncture 2n + 1 — k. Thanks to this change, the new geo-
metric supports have in total N — 2 curves/configuration points which end/go around
symmetric punctures of the punctured disc.

Definition 5.9 (Level & homology classes). Following this procedure, we consider
the homology classes given by the geometric supports which are presented in Fig-
ure 5.4 and denote them by

N —n N —n,d
F e Hy' g yv—ay+1 and L € Hy 0o oy

Further on, we show that the change of the classes does not affect the outcome of
the intersection pairing.

Proposition 5.10 (Equality of intersection pairings in different configuration spaces).
For any choice of indices

0<ip<Cr—1, kell,...,n},
we have the following relation between intersection pairings:
Ci,....Cn Ci,....Cn
((BnU ]In—i-l)SFlT( b ),ng ! )> =((Bn U Hn+1)F;‘N, L;—’v)

Proof. This relation can be seen from the formula of the graded intersection form.
The pairing is encoded by the intersection points between the geometric supports of
the classes in the base configuration space, which are graded by certain coefficients
coming from the local system.

We denote the geometric support of a class € by s€. Further on, we notice that
the intersections

((Bn U Lng1)s Ty £ 1), (5.2a)
((Bn Uln)sFY) NsLY (5.2b)



C. A.-M. Anghel 720

have the same support in the left-hand side of the disc, and they differ by the fact that
the second pair has more intersection points in the right-hand side of the disc. This
establishes a bijection between the intersection points from (5.22) and the intersection
points from (5.2b).

For the next part, let us fix an intersection point P from (5.2a) and denote by P
its correspondent in (5.2b). Now, we look at the monomials which are associated to
these points. The loop in the configuration space which is associated to P is obtained
from the loop associated to P union with other

DN =Ce—1)

k=1

loops which pass through the extra intersection points in the right-hand side of the
disc. However, we see that the extra loops are evaluated trivially by the local system
since they do not twist or go around any puncture, and so they contribute with coef-
ficients which are all 1. This concludes that the two intersection pairings lead to the
same result. |

Proposition 5.10 together with formula (5.1) show that we can obtain WRT invari-
ant from intersections between the new homology classes, as follows:

1
TW’(M):b—‘ Z [N]]{:m..-[Nl]{:
Db A+Jr - Ab- 1<SNip,..,N;SN—1
1 n
o =2Xj#p; tkp; i) 1
' ( Xy [1xci (5.3)
i=1 i=1
Z ((IBn U Hn—i—l) F;‘N, L;N)) ¢
ieC(N) Ve N ....N

We arrived at a state sum model for 7,y as intersections between homology classes
which are given by geometric supports in a fixed ambient manifold, namely, the con-
figuration space of n(N — 2) + 1 points on the 2n + 1 punctured disc. Then, the
“individual colours” from the initial formula appear in the specialisations of coeffi-
cients and also in the quantum numbers coming from the Kirby colour.

Encoding the coefficients of the Kirby colour. Pursuing this line, in the following
parts, we aim to understand geometrically the coefficients which come from the Kirby
colour and encode them by intersections between the homology classes.

For the moment, we have an intersection in the (2n + 1)-punctured disc D3y 41
which takes values in the ring Z[xfcl, e ,xlil, d*1] (Definition 3.15). Let us look
at the terms which appear in formula (5.3). For a fixed set of colours Ny, ..., N;, we
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FN e grn and L;f“ e H O

i 2n+1,n(N—-2)+1,] 2n+1,n(N—-2)+1,]

N—2—ipn

Figure 5.5. Homology classes from the disc with extra punctures.

have a state sum which is given by

ieC(N)

D Vil [N - ({(Bn U Ln) F2Y, Lfv>)|qu]
ieC(N)

Now, we want to understand topologically the term

in a unified way which does not depend on the choice of individual colours Ny, ...,
N;. More precisely, we would like to see this term as a 1//50 Nyl specialisation of
an intersection which does not depend on the individual colours.

Step III (Add extra punctures to the punctured disc)

We do this by adding 3/ points to our punctured disc and work in D5, 4374+1. In
this manner, we have a richer local system which carries monodromies around these
additional punctures.

Definition 5.11 (Homology classes using the (2n 4+ 3/ 4+ 1)-punctured disc). We con-
sider the homology classes given by the geometric supports which are presented in
Figure 5.5, in the configuration space in the (2n + 3/ + 1)-punctured disc.

We recall that the homologies

—n —n,d
Hyinv—y+10 and Hy o v o1

are modules over Z[xT!, ... ,xlil, yEL ., ylil, d*1], and in the next part, we will
use the new variables yq, ..., y;. We remember that the monodromy of ® around the
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extra blue punctures corresponding to pi, ..., p; is evaluated through fc with the
variables (using Definition 3.2 and relation (3.3)):

y: yi
yl_2 v | Yy 2
' !

The order of these evaluations might vary, but the columns correspond exactly to
the above triples. Then, these monodromies get evaluated through WEC N to the
following values:

s NS

SZNI EZN[
§—2N1 e, E—2N]
g g

Based on this remark, we notice that we can encode the quantum numbers using the
variables y1, ..., y;, and we have the following relation:

(5.4)

Nile .. [Nl = {1} (H(yl ; 1))

i=1

Lemma 5.12. Using this property, we obtain a new intersection pairing, and the fol-
lowing relation holds:

[NiJe - [N - (B U ) 7Y L))

(5.5
= {l}g’(l"[(y, TO(Bn U Lngargn) FVL LY ”))

i
i=1

Proof. Following equation (5.4), we have the equality of the coefficients which appear
in both terms from above. Now, we notice that the addition of the extra punctures does
not change the intersection forms, and so, we have

(B Ulnet) Y LY) = ((Bn U Lygzin) EV L),

1

We can see this from the fact that the supports of the homology classes have the same
intersection points, and so, the only question that we have concerns their gradings. The
second intersection belongs to a covering where there could be potential monodromies
around the 3/-blue punctures. However, we remark that the loops which are associated
to the intersection points in the right-hand side of the disc do not wind around the blue
punctures, and so, they have trivial monodromies. [
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Using this lemma together with the formula from equation (5.3), we conclude the
following formula:

-1
{1);
Db . Aljj . Ab-

/
(fpl Z F* i ’71 /)
> ( Xegn chu) (5.6)
i=1

1<Ny,...,NjSN—1 i=1

I
JT0i =97 32 (Bn Ulsars) BV LY ”))

i=1 ieC(N) VeEN... N,

(M) =

We remark that we arrived at an expression given by graded intersections (the terms
between the brackets) which do not depend anymore on the choice of colours
N1, ..., N;. After that, we have to specialise them using the change of coefficients

C
wE,Nl,...,N/'

Step IV (Coefficients of the Kirby colour encoded by circles in the supports of
the homology classes)

In the last part, we will show that we can encode the coefficients of the Kirby colour
by adding / points to our configuration space and considering the classes which are
obtained from the supports of the classes F-‘N Iand L;TN < by adding / extra circles.
More specifically, we prove that the palrlng that arises from the homology classes
C}'Iifv and L;TN captures precisely the extra coefficients from equation (5.5). We recall

that

N c H- .
# anrin—2)+i+1,  (Figure 5.1),

N —n,0 .
L € H2n+1n(,A/’ —2)4i+41,] (Figure 5.2).

Proposition 5.13 (Encoding the Kirby colour). For any index i, we have

1
( 1_[ (Ve — yk_l))<(,3n Ulyt3r41) F{N’l» L;N’l)

k=1
=((Bn U ]In+3l+1)3r;-N,L;-.N)- (5.7)

Proof. For the computation of these intersections, we will use the formulas for the
intersection pairing presented in equation (3.2) and Remark 3.13, where for each inter-
section point we count the product of local orientations in the disc and multiply it with
the evaluation of the local system ® on the associated loop in the configuration space.
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Figure 5.6. Colouring.

We notice that the two families of classes which lead to these intersection pairings
have similar geometric supports except the fact that

. s&"lé/v is constructed from sFl-,‘N’l by adding [ extra circles;
. sL;-N comes from sL%N ’l, but it has / extra points, one on each figure eight which
goes around the punctures py fork € {1,...,1}.

Now, we look at the intersection points between the geometric supports which are
obtained after we act with the braid:

((Bn UTnparrn)s V) ns (5.8a)
((Bn UTnga40)sFY) Nt (5.8b)

These two intersections have the same components in the left-hand side of the punc-
tured disc. The difference occurs in the right-hand side of it.
Let us denote by

(QI,VI),---,(QZJ"I)

the intersection points between the purple circles from s&"l;N and the blue figure eights

from sLl‘T’v which intersect them (they are the orange points from Figure 5.6).
Also, let us look at the first pairing (5.8a); consider the set of intersection points
between the supports of the homology classes and denote then as follows:

(Bn ULng)s VD s LY = (i), (5.9)

Here, each element is a multipoint in the configuration space, which has n(N —2) + 1
components.

Remark 5.14. The set of intersection points between the new classes (from (5.8b))
is obtained from the intersection points defined in (5.9), together with a choice of /
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orange points which belong to different circles:
((Bn Ulngaip)sFY) 5L = {imy, .. ong) x qu.rm} x - x {qr.r}. (5.10)
Proof. Let P be a multipoint which belongs to the intersection
((Bn U ]In+3l+1)5?l:~/v) N SL;TN-

This means that it has exactly one component on each red curve and purple curve
from (8, U H,,+3l+1)s3rl;N . In particular, it has exactly one point on each purple circle,
which should be at the intersection with the dual support sL;-,N .

We notice that for any fixed k € {1, ...,/} the kth purple circle intersects only
one component from the dual support (given by the configuration space of N — 1
points on the blue figure eight), and this is exactly in the two orange points which we
denote by

{9k Tk}

This means that P has exactly one component from each of these sets with two ele-
ments. Then, for the rest of the components of P, we should use the configuration
space of N — 2 points on the blue figure eights. So, the rest of the components of P
belong to the red curves from the support

((Bn U Hn+3l+1)53’~§/\/)

which are not circles intersected with the configuration spaces of & — 2 particles on
the figure eights. This intersection gives precisely a point belonging to

((Bn U Lps)s ™) 05 L5
This procedure establishes the desired bijection. |

So far, we saw the correspondence at the level of sets. Now, we are interested in
the coefficients coming from the local system. For this, we turn our attention towards
the coefficients which are carried by the orange points.

In order to compute these coefficients, for each k € {1, ..., [}, we have to look
at the chosen point on the purple circle (gx or ri) and to evaluate the monodromy of
the path associated to this point around the punctures of the disc. We have drawn in
Figure 5.7 the paths associated to gx and ri (coloured in yellow). We recall that the
counter-clockwise monodromies around the three blue punctures which are situated
underneath py are evaluated by the variables
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Using this for the two paths from the picture, we see that the points {q, r} carry the
following coefficients:

@) Y e = vk
(re)  — i

The yellow loops associated to the orange intersection points will not add extra d
components when we evaluate a loop corresponding to an intersection point in the
configuration space. This is because these loops do not contribute to the relative
winding in the configuration space. Also, the opposite sign comes from the local inter-
sections in these two orange points.

We conclude that for any k € {1,...,/} the two points {g, rx} contribute to the
grading with the coefficients {y;, — yk_1 }. This property together with the correspond-
ence presented in relation (5.10) shows that the extra coefficients that appear in the
second intersection are precisely

/
[Tk =5H.
k=1

which concludes the relation between the intersection pairings from (5.7). |

Now, using this property together with the expression from equation (5.6), we

obtain
{17
w(M) = bE
@b-A++ Ab—
1
Ui =S oy D 1T 1
Z X Xc@)
1<Ny,..,Nj<N—1 Vi=1 i=

Z ((ﬁn U lnt3141) f;NL;_N))

ieC(N)
-l
__ W
Db ADF L AL~

I
(i =2j#p; tkp;.j)
> ) Y
i=1

ISNyp,....NySN—=1jeC(N)

n
Tty (B ULasar 52.22))

i=1
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—1—i .
ok ~1—ipk

Figure 5.7. Paths associated to the intersection points.

Exchanging the two sums and taking care of the conditions which the colouring
imposes on the multi-indices, we obtain the following formula:

-1
{1}
Db . A}f . Ab-
N—2

Y, (e
i=1

[15005in=0 ]\7=(N1 ..... Np)
1$N1_,...,N1_$e/\/'—l
ieC(N)

nx {(Bn U]In+3l+1)?‘ ; ))

i=1

{1}5—1 N—2 (
=——g— ) . A
Db AT AP 0 <Ny N <1
ITGC(Nl,...,Nl)

(M) =

This relation concludes the proof of the main formula.

Corollary 5.15 (Detailed formula for the invariant). We have the following topolo-
gical model for the WRT invariant:

s -~ T Tt )
won=——gt— Y % (TIsd
T i=1

i1,00in=0  N=(Ny,...,N;)
1SNy, N SN =1
ieC(N)

l—[xc(l) (Bn U]In+3l+1)3r;N,L;N))

i=1
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6. Topological model for the WRT invariants of 3-manifolds obtained
as surgeries along knots

This section is devoted to the topological model constructed above, for the particular
case where the link is actually a knot (this means that / = 1). Let us consider a knot
K which is the closure of a braid with n strands 8, € B,.

In this case, we work in the covering of the configuration space of n(N —2) + 2
particles in the punctured disc with 2n + 4 punctures, and we will use the homology
groups

o LN —2)+2.1
and
-n,d
H2nn+1,n(N—2)+2,l (as Z[xE!, y£!, d*]-modules).

This means that we have 3 privileged blue points in the punctured disc.
Further on, we use the specialisation of coefficients associated to a colouring with
one colour N € N, given by

Yy Ty a* - zig*)
YN ) =g,
1ﬂqC:N(yi) =q",
yEnd) =q2

6.1. Homology classes

Definition 6.1. (a) First homology class. For any set iy,...,i, € {0,..., N —2}, we
consider the class given by the geometric support from Figure 6.1.

(b) Second homology class. The second homology class is given by the geometric
support from Figure 6.2.

Corollary 6.2 (Topological model for the Witten—Reshetikhin—Turaev invariants of
knot surgeries). Let M be a closed oriented 3-manifold obtained by surgery along a
knot K with framing f € Z. We choose a braid B, such that

K = B,.

Further on, for iy, ... i, €{0,..., N — 2}, we consider the following Lagrangian
intersection:

A7(Bn) € ZIx*! y*! d*1),
A7(Bn) = x 0B x((By U L) T, L),
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FN e HI"
i

2n+1,n(N—-2)+2,1

Figure 6.1. Homology classes for WRT invariants of surgeries along knots.

N —n,0
£’Z’ € H2n+l,n(N—2)+2,1

Ipy in N—2—i, N—1—ip,

Figure 6.2. Dual homology classes for WRT invariants of surgeries along knots.

Here, w(By,) is the writhe of the braid. Then, the Nth Witten—Reshetikhin—Turaev
invariant is obtained from these intersections as follows:
ng)

{l}gl N—2 N—1
rrrcavesip Y WD VI
tAy Al i1500in=0 > N=max{i;+1,...,i+1}
Remark 6.3. This tells as that the level & WRT invariant of a surgery along a knot
which is the closure of a braid with n strands is obtained from states of graded inter-
sections in the configuration space of n(N — 2) + 2 points in the (2n + 4)-punctured
disc.

(M) =
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