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Abstract. We study the Hilbert scheme Hilbd .A1/ from an A1-homotopical viewpoint and obtain
applications to algebraic K-theory. We show that the Hilbert scheme Hilbd .A1/ is A1-equivalent to
the Grassmannian of .d � 1/-planes in A1. We then describe the A1-homotopy type of Hilbd .An/
in a certain range, for n large compared to d . For example, we compute the integral cohomology
of Hilbd .An/.C/ in a range. We also deduce that the forgetful map FFlat! Vect from the mod-
uli stack of finite locally free schemes to that of finite locally free sheaves is an A1-equivalence
after group completion. This implies that the moduli stack FFlat, viewed as a presheaf with framed
transfers, is a model for the effective motivic spectrum kgl representing algebraic K-theory. Com-
bining our techniques with the recent work of Bachmann, we obtain Hilbert scheme models for the
kgl-homology of smooth proper schemes over a perfect field.

Keywords. Hilbert scheme, K-theory, pure Tate motive

1. Introduction

In this paper we analyze the Hilbert scheme of points from the A1-homotopical perspec-
tive, yielding topological information about the Hilbert scheme as well as new geometric
models for algebraic K-theory. For simplicity, schemes in the introduction are assumed
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to be over a perfect field k, even though many of our results hold over an arbitrary base
scheme.

The Hilbert scheme Hilbd .X/ classifies zero-dimensional degree d closed sub-
schemes of a fixed scheme X. For X a smooth surface, the Hilbert scheme is a smooth
variety of dimension 2d . It has led to rich developments in algebraic geometry, geometric
representation theory and string theory [8,24,27,51]. For higher-dimensional varieties X,
the picture is more obscure: the Hilbert scheme is singular (for all d > 3), has many
irreducible components (for large d ), and almost arbitrary singularities (for dim X > 16)
[38, 40, 47]. Many natural questions remain open [1].

Until now, little has been known about the topology of Hilbd .X/ even for X an affine
or projective space. We have an explicit basis for the cohomology of Hilbd .A2/ and its
motive is pure Tate, thanks to the Białynicki-Birula decomposition for a generic Gm-
action on A2; see [33, Appendix A] or [13]. For Hilbd .An/ with n > 2 this method fails
due to the presence of singularities and the motive is not known. The only general results
on the topology of those schemes were that Hilbd .Pn/ and Hilbd .An/ are connected, and
Hilbd .Pn/ is simply connected [29, 32].

We show that the situation simplifies after stabilization with respect to n. We consider
the ind-scheme Hilbd .A1/ D colimn Hilbd .An/ and construct an A1-equivalence1 in
Theorem 2.1:

Hilbd .A1/ ' Grd�1.A1/: (1.1)

This implies that for any oriented cohomology theory A� on k-schemes in the sense of
[12, Example 2.1.4], such as l-adic cohomology, integral cohomology over the complex
numbers, motivic cohomology, homotopy invariant K-theory, algebraic cobordism, etc.,
we have

A�.Hilbd .A1// ' A�.Spec k/ŒŒc1; : : : ; cd�1��; jci j D i:

We also prove stability results, describing the A1-homotopy type of Hilbd .An/ in a
certain range, for n large compared to d ; see Theorem 8.2 and Corollary 8.3. For example,
over the complex numbers, the homomorphism on integral cohomology

H�.Grd�1.A1/.C/;Z/ ' ZŒc1; : : : ; cd�1�! H�.Hilbd .An/.C/;Z/

is an isomorphism in degrees at most 2n � 2d C 2.

Remark 1.2. One can also consider the Hilbert scheme Hilbd .AN/ where

AN
D Spec ZŒx1; x2; : : : �;

which contains the ind-scheme Hilbd .A1/ as a subfunctor. We will show that the inclu-
sion Hilbd .A1/ � Hilbd .AN/ is an A1-equivalence; see Proposition 4.2.

1Here and further in the Introduction, we say that a map of presheaves is an A1-equivalence
if it becomes an A1-equivalence when restricted to affine schemes; in particular, such a map is a
motivic equivalence.
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To prove (1.1), we consider the stack FFlatd of finite flat degree d algebras and the
stack Vectd of rank d locally free sheaves. The forgetful maps

Hilbd .A1/! FFlatd ; Grd .A1/! Vectd

are shown to be A1-equivalences; see Propositions 4.2 and 4.7. For any ring R and
R-module M the R-module R ˚ M has a commutative unital R-algebra structure with
M2 D 0, called the square-zero extension. This construction defines a morphism

˛WVectd�1 ! FFlatd :

We show that ˛ is an A1-homotopy equivalence, with inverse ˇ sending an R-algebra A
to the R-module A=.R � 1A/. The A1-homotopy between ˛ˇ and the identity is obtained
using the Rees algebra, making FFlatd a cone over Vectd�1. On the technical level, this
is the key point to avoid dealing with the singularities of FFlatd .

The stacks FFlat D
`
d FFlatd and Vect D

`
d Vectd are commutative monoids

under direct sum. While the maps ˛ and ˇ do not preserve this structure, we employ
them together with McDuff–Segal’s group completion theorem to deduce that the forget-
ful map FFlat! Vect is an A1-equivalence after group completion; see Theorem 3.1.
As a consequence, we get a new description of algebraic K-theory in terms of Hilbert
schemes: on affine schemes, there is an A1-equivalence

K ' Z � Hilb1.A1/I (1.3)

see Corollary 4.5. Here, K is the presheaf of K-theory spaces, Z is the constant sheaf with
value Z, and Hilb1.A1/ is the colimit of the maps Hilbd .A1/! HilbdC1.A1C1/.

Furthermore, we discuss consequences of these computations for stable motivic
homotopy theory. These results are part of the theory of framed transfers, developed
in [15, 19, 66] and other works. Some of the main results of this theory are as follows:
every generalized motivic cohomology theory acquires a unique structure of framed
transfers [15, Theorem 3.5.12], and certain cohomology theories acquire a universality
property with respect to their transfers. The big picture of various cohomology theories
and the corresponding transfers is given in [36, Section 1.1]. For example, the algebraic
cobordism spectrum MGL represents the universal cohomology theory with finite syn-
tomic transfers, i.e., with pushforwards along finite flat locally complete intersection
morphisms. This is expressed by the equivalence of1-categories

ModMGL.SH.k// ' SHfsyn.k/;

where SHfsyn.k/ is the1-category of motivic spectra with finite syntomic transfers [14,
Theorem 4.1.3].

In Section 5 we work towards an analogous universal property for algebraic K-theory.
We observe that the forgetful map FFlat!Vect is a morphism of presheaves with framed
transfers in the sense of [15], and the framed suspension spectrum of Vect is the effective
motivic K-theory spectrum kgl. We therefore obtain an equivalence of motivic spectra

†1T;frFFlat ' kglI
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see Theorem 5.4. Bachmann employs it in [3] to obtain an equivalence of symmetric
monoidal1-categories

Modkgl.SH.k//Œ1=e� ' SHfflat.k/Œ1=e�;

where e is the exponential characteristic of k. In that sense, kgl represents the universal
generalized motivic cohomology theory with finite locally free transfers.

Some of our results generalize from A1
k

to A1X D X �A1 for a smooth separated k-
scheme X. Answering a question by Rahul Pandharipande, we analyze the Hilbert scheme
of points of A1X and obtain a motivic equivalence

�1T .kgl˝†1T XC/ ' Hilb.A1X /
gp

for X smooth and proper, thus providing a geometric model for the kgl-homology of X;
see Corollary 5.7. Here, the E1-structure on the Hilbert scheme is given by “taking
disjoint unions of closed subschemes”. As we explain in Section 4, this equivalence
is analogous to Segal’s model for ko-homology of a topological space [59, Section 1].
Indeed, the ind-scheme Hilb.A1X / can be thought of as a geometric version of Segal’s
configuration space of points “labeled” by vector spaces: it has a canonical map to the
symmetric power Sym.X/, whose fiber over a k-rational point of the form

P
i di Œxi � is

A1-equivalent to the stack
Q
i Vectdi�1.

We proceed with investigating further the connection between algebraic cobordism
and algebraic K-theory. In [14], it is shown that the algebraic cobordism spectrum MGL is
the framed suspension spectrum of the substack FSyn�FFlat of finite syntomic schemes.
We show in Section 6 that the inclusion FSyn � FFlat induces the standard orientation
map MGL! kgl upon taking framed suspension spectra. Combining the results of this
paper with [5, Theorem 1.1], we obtain the following commutative diagram in PSh.Smk/,
where the symbol ' denotes a motivic equivalence and C a motivic equivalence up to
Quillen’s plus construction:

Z � Hilblci
1.A1/ Z � Hilb1.A1/ Z � Gr1.A1/

Z � FSyn1 Z � FFlat1 Z � Vect1

FSyngp FFlatgp Vectgp

�1T MGL �1T KGL

' ' '

C

'

' '

'

'

'

Here Hilb1.A1/ D colimd;n Hilbd .An/ is the stabilization of the Hilbert scheme of
affine space, and Hilblci

1.A1/ is the local complete intersection locus. The bottommost
arrow in the diagram is the standard orientation of KGL, and all the other horizontal
arrows are the obvious forgetful morphisms. Moreover, the bottom rectangle is one of
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commutative monoids in presheaves with framed transfers (in particular, of presheaves of
E1-ring spaces).

One reason for our interest in Hilbd .A1/ is a conjecture of Mike Hopkins stating that
the motive of �1T MGL is pure Tate. As observed in [5, Corollary 1.7], this conjecture
is equivalent to showing that Hilblci

1.A1/ has a pure Tate motive. While this problem
remains open, we prove in Section 7 that Hilblci

3 .A1/ has a pure Tate motive. In contrast,
Hilblci

3 .An/ is not pure Tate for finite n [5, Remark 1.8].

Notation and terminology. Sch denotes the category of schemes. If S is a scheme, SchS

denotes the category of S-schemes, SmS that of smooth S-schemes, H.S/ the1-category
of motivic spaces over S, and SH.S/ that of motivic spectra [6, Sections 2.2 and 4.1]. The
Tate sphere T in H.S/ is defined as A1=.A1 � 0/ ' †Gm ' .P1; 1/.

We only consider the Hilbert scheme of points in this paper. That is, for a morphism
of schemes X! S and any S-scheme T,

Hilbd .X=S/.T/ D
²

Z � XT closed subscheme such that
Z! T is finite locally free of degree d

³
:

This defines a scheme over S whenever X is affine or quasi-projective over S [64, Remark
0B9B] (more generally, it is an algebraic space over S when X is separated over S [28,
Theorem A (i)]). We denote by Hilblci

d .X=S/ the open subscheme of Hilbd .X=S/ given by
the locus of local complete intersections. We write Hilb.X=S/ D

`
d>0 Hilbd .X=S/. We

sometimes omit S from the notation when it is clear from the context.
We denote by PSh.C/ the1-category of presheaves of spaces on C and by PSh†.C/�

PSh.C/ the full subcategory of presheaves that transform finite sums into finite prod-
ucts [44, Section 5.5.8]. If C is a suitable category of schemes, LA1 W PSh.C/! PSh.C/
(resp. LmotWPSh.C/! PSh.C/) is the localization functor onto the full subcategory of A1-
invariant presheaves (resp. of A1-invariant Nisnevich sheaves). A morphism f in PSh.C/
is called an A1-equivalence (resp. a motivic equivalence) if LA1.f / (resp. Lmot.f /) is
an equivalence. Thus, if C D SmS, a motivic equivalence means an isomorphism in the
1-category of motivic spaces H.S/; this should not be confused with an isomorphism in
the derived category of motives, DM.S/, which is a weaker condition. Explicitly, a mor-
phism f WX! Y in PSh.C/ (e.g., a morphism of stacks) is an A1-equivalence if for every
scheme T the morphism X.T � A�/! Y.T � A�/ induces an equivalence on geometric
realizations.

2. The stacks FFlatd and Vectd�1 are A1-equivalent

We say that a morphism of schemes pWY!X is finite locally free if it is finite, flat, and of
finite presentation, or equivalently if it is affine and p�OY is a locally free OX-module of
finite rank. We denote by Vect.X/ the groupoid of finite locally free OX-modules and by
FFlat.X/ the groupoid of finite locally free X-schemes, or equivalently of finite locally
free OX-algebras. For d > 0, write FFlatd � FFlat for the subfunctor of finite locally
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free commutative OX-algebras of rank d , and Vectd � Vect for the subfunctor of vector
bundles of rank d , which is the classifying stack of the group scheme GLd .

The presheaves of groupoids Vectd and FFlatd are algebraic stacks of finite type
over Z. In particular, Poonen observed that FFlatd is the quotient stack by GLd of the
affine scheme Yd of commutative algebra structures on Ad , with Ad viewed as a free
module of rank d over Z [54, Definition 3.2]. The singularities of the stack FFlatd are
known to be almost arbitrarily bad: namely,

`
d>0 FFlatd satisfies Murphy’s law up to

retraction [40, after Theorem 1.3].
For d > 1, we define morphisms ˛WVectd�1 ! FFlatd and ˇW FFlatd ! Vectd�1

as follows. Given a vector bundle V of rank d � 1 over a scheme X, let ˛.V/ be the
sheaf of OX-algebras OX ˚ V, with V a square-zero ideal. Given a sheaf of algebras A

which is locally free of rank d over X, let ˇ.A/ be A=OX, which is a vector bundle of
rank d � 1. (Indeed, the global section 1 of A is nonzero at every point of X, so locally
we can complete it to a basis of A and find that OX ! A! A=OX is locally split exact.)

Theorem 2.1. For each d > 1, the morphism ˛WVectd�1 ! FFlatd in PSh.Sch/ is an
A1-equivalence, with inverse ˇ up to A1-homotopy.

The proof uses a degeneration of commutative algebras which we formulate in terms
of the Rees algebra construction (Lemma 2.2). Poonen considered a closely related degen-
eration [54, Proposition 7.1].

The following is standard when R is a field, a recent reference being [58, Remark
2.6.5].

Lemma 2.2. Let R be a commutative ring, and A an associative R-algebra with an
increasing filtration by R-submodules A0 � A1 � � � � with 1 2 A0, Ai � Aj � AiCj , and
A D

S
i Ai . Assume that the R-modules gri .A/ D Ai=Ai�1 are flat for all i > 0 .where

A�1 D 0/. Let
Rees.A/ D

M
i>0

Ai t i � AŒt �

be the corresponding Rees algebra. Then Rees.A/ is a flat RŒt �-algebra with

Rees.A/=.t/ ' gr�.A/ and Rees.A/=.t � 1/ ' A:

If gri .A/ is finite locally free as an R-module for each i and zero for i sufficiently large,
then Rees.A/ is finite locally free as an RŒt �-module.

Proof. It is immediate that Rees.A/=.t/ ' gr�.A/ and Rees.A/=.t � 1/ ' A. The con-
clusions about flatness are also straightforward; we only write out the proof in the case
needed below, where gri .A/ is finite locally free as an R-module for each i and zero
for i sufficiently large. In this case, gri .A/ is projective as an R-module for each i [64,
Lemma 00NX], and so each inclusion Ai�1 ! Ai has an R-linear splitting. These split-
tings determine an isomorphism Rees.A/ ' gr�.A/Œt � of RŒt �-modules. Here gr�.A/ is a
finite locally free R-module, and so Rees.A/ is a finite locally free RŒt �-module.
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Proof of Theorem 2.1. The composition Vectd�1 ! FFlatd ! Vectd�1 is isomorphic
to the identity. It remains to show that the composition FFlatd ! Vectd�1 ! FFlatd is
A1-homotopic to the identity. We define an explicit A1-homotopy as follows.

Let R be a ring and let A be a finite locally free R-algebra of rank d . The point is that
A has a canonical increasing filtration given by A0 D R � 1A and A1 D A. The R-modules
gri .A/ are locally free, and so Lemma 2.2 applies. The associated Rees algebra Rees.A/
is locally free of rank d over RŒt �, with Rees.A/=.t/' gr�.A/ and Rees.A/=.t � 1/' A.
Here gr�.A/ is the square-zero extension R˚ A=.R � 1/.

The operation A 7! Rees.A/ is functorial in A and hence defines a morphism of stacks
over Z,

A1 � FFlatd ! FFlatd :

At t D 1 in A1, this is the identity, while at t D 0 it is isomorphic to the composition
FFlatd !Vectd�1!FFlatd , sending A to the square-zero extension OX˚A=.OX � 1A/.
This is the desired A1-homotopy.

Remark 2.3. The stacks Vect and FFlat>1 are the Zariski sheafifications of the disjoint
unions

`
d>0 Vectd and

`
d>1 FFlatd in PSh.Sch/. Since disjoint unions and sheafi-

fication preserve A1-homotopies, Theorem 2.1 implies that ˛W Vect ! FFlat>1 is an
A1-equivalence in PSh.Sch/, with inverse ˇ up to A1-homotopy.

3. A1-equivalence between the group completions of the stacks FFlat and Vect

The direct sum and tensor product of OX-modules define an E1-semiring structure on the
stack Vect. Similarly, the disjoint union and cartesian product of schemes define an E1-
semiring structure on FFlat. In order to reduce the technical burden here, we postpone
the formal construction of these semirings to Section 5. We denote by Vectgp and FFlatgp

the corresponding group completions, which are presheaves of E1-ring spaces on the
category of schemes.

Forgetting the algebra structure on a finite locally free OX-algebra defines a morphism
of E1-semirings �WFFlat! Vect. The main result of this section is the following theo-
rem:

Theorem 3.1. The map �gpWFFlatgp
! Vectgp is an A1-equivalence.

Let � W FFlat ! FFlat be the map that adds a disjoint point over the base, and let
� WVect! Vect be the map that adds a trivial line bundle. We denote by FFlatst the colimit
of the sequence

FFlat
�
�! FFlat

�
�! FFlat! � � � :

We similarly define Vectst as the colimit of the sequence

Vect
�
�! Vect

�
�! Vect! � � � :
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The maps FFlat!FFlatgp, A 7!A� nO, for n> 0 form a cone over the above sequence,
which induces a canonical map FFlatst

! FFlatgp. There is similarly a canonical map
Vectst ! Vectgp.

Note that there is a commutative square

FFlat Vect

FFlat Vect

�

� �

�

inducing a map �stWFFlatst
! Vectst in the colimit. We shall deduce Theorem 3.1 from

the following variant, which does not involve group completion:

Theorem 3.2. The map �stWFFlatst
! Vectst is an A1-equivalence.

To prove Theorem 3.2, we consider the algebraic stack FFlatmrk of finite locally free
schemes with a distinguished point. More precisely, for every scheme X, the groupoid
FFlatmrk.X/ is given by

FFlatmrk.X/ D ¹.f; s/ j f WZ! X finite locally free, sWX! Z a section of f º :

We will refer to the section s as the marking and to such pairs .f; s/ as marked schemes.
There is a forgetful map � W FFlatmrk

! FFlat that discards the marking (which is the
universal finite locally free family).

Let FFlatnu be the stack of finite locally free sheaves of nonunital commutative
algebras. There is an equivalence

FFlatnu
' FFlatmrk

sending a nonunital algebra A to its unitalization O ˚ A, with inverse sending an aug-
mented algebra to its augmentation ideal. Let �WVect! FFlatnu be the functor sending a
finite locally free sheaf V to V regarded as a nonunital algebra with zero multiplication.

The following table summarizes the various maps we will use in the proof of Theo-
rem 3.2, some of which are introduced below:

Name Description

�WFFlat! Vect forgets the algebra structure
� WFFlatmrk

! FFlat forgets the marking
� WVect! Vect adds a trivial line bundle
� WFFlat! FFlat adds a disjoint point
�mrkWFFlatmrk

! FFlatmrk adds a disjoint point without changing the marking
"WFFlatmrk

! FFlatmrk adds a new tangent direction at the marked point
�WVect! FFlatnu equips a module with zero multiplication
˛WVect! FFlat forms the trivial square-zero extension
� WFFlatnu

! Vect forgets the algebra structure

Proposition 3.3. The map �WVect! FFlatnu is an A1-equivalence.
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Proof. Let � WFFlatnu
! Vect be the forgetful functor. Then � ı � is the identity, and the

map
FFlatnu

! Maps.A1;FFlatnu/; A 7! tAŒt �;

is an A1-homotopy from � ı � to the identity of FFlatnu.

Proposition 3.4. The map � WFFlatmrk
! FFlat>1 is an A1-equivalence.

Proof. We have a commutative square

Vect FFlat>1

FFlatnu FFlatmrk

˛

�

'

�

The map ˛ is an A1-equivalence by Remark 2.3 and the map � is an A1-equivalence by
Proposition 3.3. By the 2-out-of-3 property, � is an A1-equivalence.

Let �mrkW FFlatmrk
! FFlatmrk be the map that adds a disjoint point over the base

without changing the marking. We then have a commutative square

FFlatmrk FFlat

FFlatmrk FFlat

�

�mrk �

�

inducing in the colimit a map

� st
WFFlatmrk;st

! FFlatst:

Corollary 3.5. The map � stWFFlatmrk;st
! FFlatst is an A1-equivalence.

Proof. This follows immediately from Proposition 3.4 and the observation that the inclu-
sion FFlat>1 � FFlat becomes an equivalence after stabilization along � .

Lemma 3.6. Let S be a scheme and let Z! X and Z! Y be morphisms between finite
locally free S-schemes with Z! X a closed immersion. Then the pushout X tZ Y in the
category of schemes exists and is finite locally free over S.

Proof. The pushout exists and is affine over S by [64, Tag 0E25]. Now, local freeness
translates into an algebraic statement: if M ! P and N ! P are morphisms of finite
locally free modules with M! P surjective, then M �P N is finite locally free. This is
true, since the module M �P N is an extension of the locally free module ker.M! P/ by
the locally free module N.

Proof of Theorem 3.2. Consider the finite locally free ZŒt �-scheme

R D Spec ZŒx; t �=..x � t /x/



M. Hoyois, J. Jelisiejew, D. Nardin, B. Totaro, M. Yakerson 10

whose fibers over 0 and 1 are R0 D Spec ZŒx�=.x2/ and R1 D Spec Zt Spec Z. There is a
section i WSpecZŒt �!R sending x to 0, which defines an element .R; i/ in FFlatmrk.ZŒt �/.

Let "WFFlatmrk
! FFlatmrk be the map that sends .f WZ! S; sWS! Z/ to ZtS .R0/S

with section the canonical map S!ZtS .R0/S. The map " is well-defined by Lemma 3.6.
In plain words, the transformation " adds a new tangent direction at the marked point of
the finite scheme. Similarly, let HWFFlatmrk

!Maps.A1;FFlatmrk/ be the map that sends
.f WZ! S; sWS!Z/ to the pushout A1Z tA1S

RS. It is then clear that H0D " and H1D �mrk,
i.e., H is an A1-homotopy from " to �mrk.

We now have commutative squares

Vect FFlatnu
' FFlatmrk FFlatmrk FFlat Vect

Vect FFlatnu
' FFlatmrk FFlatmrk FFlat Vect

�

� "

�

�mrk �

�

�

� � �

with the following properties:

(1) �WVect! FFlatnu is an A1-equivalence, by Proposition 3.3;

(2) there is an A1-homotopy HW " �mrk;

(3) � stWFFlatmrk;st
! FFlatst is an A1-equivalence, by Corollary 3.5;

(4) the A1-homotopy � ı � ı H ı � is constant if we identify its endpoints using the iso-
morphism

� ı � ı � ı � ' � ı �
swap
' � ı � ' � ı � ı � ı �:

Assertion (4) is a straightforward verification from the definition of the A1-homotopy H.
Assertion (2) allows us to define a map �stWLA1Vectst!LA1FFlatmrk;st, which is an equiv-
alence by (1). Assertion (4) implies that LA1.�

st ı � st/ ı �st ' LA1�
st, where � stWVectst!

Vectst is the action of O 2 Vect on the Vect-module Vectst. Note that � st is not an equiv-
alence, but it is an A1-equivalence by [5, Proposition 5.1] since the cyclic permutation
of O3 is A1-homotopic to the identity. From this and (3) we deduce that �st is an A1-
equivalence.

Proof of Theorem 3.1. Let FFlatŒ�1� and VectŒ�1� be the commutative monoids
obtained from FFlat and Vect by inverting O. We have a commutative square

FFlatst FFlatŒ�1�

Vectst VectŒ�1�

The cyclic permutation of O˚3 becomes homotopic to the identity in LA1Vect, since
it is a product of elementary matrices. It thus follows from [5, Proposition 5.1] that
the lower horizontal map is an A1-equivalence. By Theorem 3.2, the left vertical map
is an A1-equivalence. It then follows from [5, Proposition 5.1] that the upper horizon-
tal map is also an A1-equivalence. Hence, the right vertical map is an A1-equivalence.
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Since the functor LA1 commutes with group completion [34, Lemma 5.5], we deduce that
FFlatgp

! Vectgp is an A1-equivalence.

Remark 3.7. It follows from Theorem 3.2 and [5, Proposition 5.1] that the cyclic per-
mutation of three points in FFlat becomes A1-homotopic to the identity in FFlatst. In
fact, one can directly show that it is A1-homotopic to the identity in FFlat as follows.
Let X D ZŒx; y; z�=.xy; xz; yz/ be three affine lines glued together at the origin. There
is a finite flat morphism X ! A1 D Spec ZŒt � given by t 7! x C y C z, which is an
A1-homotopy between three points and the finite flat Z-scheme

X0 D Spec ZŒx; y; z�=.xy; xz; yz; x C y C z/:

The cyclic group C3 acts on X=A1 by permuting the three lines, so it remains to show
that the induced automorphism c of X0 is A1-homotopic to the identity. Note that X0 is
a square-zero extension Spec Z ˚ V where V D Z¹x; y; zº=Z¹x C y C zº. Hence the
group GL.V/ acts on X0, and the matrix of c in the basis .x; y/ of V is

�
0 �1
1 �1

�
, which has

determinant 1. We conclude using the fact that .LA1SL2/.Z/ is connected, since SL2.Z/
is generated by elementary matrices of row additions.

4. Consequences for the Hilbert scheme of A1

Fix a base scheme S. For a separated S-scheme X we write Hilb.A1X =S/ for the colimit
colimn Hilb.AnX=S/ taken in PSh.SchS/. For a set E, we also consider Hilb.AE

X=S/, the
Hilbert scheme of points of the scheme AE

X D Spec ZŒxe j e 2 E� � X over S.
Let us recall a useful lemma from [15]. A presheaf FW Schop

S ! Spc satisfies closed
gluing ( for affine schemes) if it sends the empty scheme to the point and it sends pushouts
of closed embeddings (of affine schemes) to pullbacks [15, Definition A.2.1]. Presheaves
parametrizing embeddings often satisfy closed gluing.

We shall say that a morphism f in PSh.SchS/ is a universal A1-equivalence on affine
schemes if any base change of f in PSh.SchS/ is an A1-equivalence on affine schemes.

Lemma 4.1. (1) Let FWSchop
S ! Spc be a presheaf of spaces that satisfies closed gluing

for affine schemes and assume that for every affine scheme Spec A over S and finitely
generated ideal I � A the morphism

F.Spec A/! F.Spec A=I/

is surjective on �0. Then F is A1-contractible on affine schemes.

(2) Let f WF ! G be a map of presheaves of spaces on SchS such that for every affine
scheme T 2 SchS the fiber over every T-point T! G satisfies closed gluing for affine
schemes .as a presheaf on SchT/. Suppose that for every affine scheme Spec A over S
and every finitely generated ideal I � A the morphism

F.Spec A/! F.Spec A=I/ �G.Spec A=I/ G.Spec A/

is surjective on �0. Then f is a universal A1-equivalence on affine schemes.
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Proof. (1) We will use the same strategy as in the proof of [15, Lemma 2.3.22]. Recall
that .LA1F/.Spec A/ is the geometric realization of the simplicial space

Œn� 7! F.�nA/ D F
�
Spec AŒt0; : : : ; tn�=

�P
i ti � 1

��
:

Since F satisfies closed gluing, [15, Lemma A.2.6] implies that

Maps.@�n;F.��A// ' F.@�nA/

where @�nA is the zero locus of t0 � � � tn in �nA. In particular, the map

Maps.�n;F.��A//! Maps.@�n;F.��A//

is surjective on �0. Therefore the geometric realization of F.��A/ is contractible [45,
Lemma A.5.3.7].

(2) This follows from (1) by the universality of colimits. Namely, any presheaf H

on affine schemes in SchS can be written as a colimit of representables T, and any base
change F �G H! H of f is correspondingly the colimit of the projection maps F �G T
! T. By the assumption and (1), F �G T is A1-contractible on affine schemes, as a
presheaf on SchT. Since A1-equivalences on affine schemes are preserved by the for-
getful functor PSh.SchT/! PSh.SchS/ and by colimits, we conclude that F �G H! H

is an A1-equivalence on affine schemes.

For an S-scheme X, let hfflat
S .X/ (resp. hfsyn

S .X/) be the presheaf of groupoids that sends
an S-scheme U to the groupoid of spans U Z! X where Z! U is finite locally free
(resp. finite syntomic) and the morphisms are over S. In particular, hfflat

S .S/ is the presheaf
FFlat restricted to S-schemes. There is a forgetful map Hilb.A1X =S/! hfflat

S .X/ sending
a closed subscheme Z ,! A1X �S U to the span U Z! X.

Proposition 4.2. Let X be a separated S-scheme.

(1) The forgetful map Hilb.A1X =S/! hfflat
S .X/ is a universal A1-equivalence on affine

schemes.

(2) If E is an infinite set and X! S is affine, the forgetful map Hilb.AE
X=S/! hfflat

S .X/
is a universal A1-equivalence on affine schemes.

Proof. The presheaves Hilb.A1X =S/, Hilb.AE
X=S/, and hfflat

S .X/ all satisfy closed gluing,
since they are ind-representable by algebraic stacks (alternatively, one can verify closed
gluing for each of them by hand using closed gluing for finite locally free sheaves [17,
Théorème 2.2 (iv)]).

So Lemma 4.1 (2) applies. Suppose U D Spec A is an affine scheme over S and let
U0D SpecA=I for some finitely generated ideal ID .i1; : : : ; ir /. Let U ZD SpecB!X
be a span in hfflat

S .X/.U/ and let Z0 D Z �U U0. To prove (1), we must show that every
closed embedding Z0 ,! ArX�SU0 over X �S U0 can be extended to a closed embedding
Z ,! ArCmX�SU over X �S U, for some m > 0:
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Z0 ArX�SU0 ArCmX�SU0

Z ArCmX�SU

X �S U

inj

Here, inj is the canonical map adding zero coordinates.
We construct the embedding Z! ArCmX�SU D ArCm � X �S U as follows. The map to

X �S U is already given, and we lift the map Z0 ! Ar to any map Z! Ar . It remains to
fix m and the map Z! Am. Such a map corresponds to a tuple of global functions on Z.

Let i1; : : : ; ir be generators of the ideal I � A and let b1; : : : ; be be generators of the
A-module B. LetmD re and take them-tuple of functions given by all possible products
¹ir 0be0ºr 06r; e06e . By assumption, the scheme Z is finite over U, hence over ArCmU . Since
X is separated over S, the scheme Z is finite over ArCmX�SU as well [23, Remark 9.11].
Therefore to prove that f W Z ! ArCmX�SU is a closed immersion it remains to show that
f ] W OArCmX�SU

! f�.OZ/ is a surjection of sheaves. Both sheaves are OArCmX�SU
-modules of

finite type, and so we can use Nakayama’s lemma and check the condition on the fibers
over the image of any point of Z. The statement is obvious for the points of Z0, since we
know that Z0!ArCmX�SU0 is a closed immersion. Every point z 2 Z�Z0 has a distinguished
open neighborhood in Z where one of the generators of I, say is , is invertible. But then
the image of f ] contains isb1; : : : ; isbe which generate OZ;z as an OArCmX�SU;f .z/

-module.

Therefore f ] is surjective at z as well. This concludes the proof of (1).
We now prove (2). By the assumption, X �S U is affine; denote it by Spec C. We must

then prove that every generating family .xbe/e2E of the C-algebra B=IB can be lifted to a
generating family .be/e2E of B. Since B=IB is a finitely generated C-algebra, there exists
a finite subset E0 � E such that .xbe/e2E0 generates B=IB; to construct it, fix a set of finitely
many generators of B=IB over C and then pick E0 indexing the elements of .xbe/e2E that
appear in expressions for these generators. Choose arbitrary lifts be 2 B of xbe for e 2 E0.

Since B is a finite C-algebra and I is finitely generated, IB is a finite C-module. Let
h1; : : : ; hm be generators of IB as a C-module. Note that the elements hi and be for e 2 E0

generate B as a C-algebra. Since E is infinite, there exist distinct elements ei 2 E� E0 for
1 6 i 6 m. For every such i , choose an element ri lifting xbei in the C-subalgebra of B
generated by be for e 2 E0. Then bei WD ri C hi is also a lift of xbei , and the elements bei
and be for e 2 E0 generate B as a C-algebra. Choosing the remaining lifts be arbitrarily,
we thus obtain a generating family .be/e2E as desired.

Remark 4.3. The separatedness assumption in Proposition 4.2 is necessary for the fol-
lowing reason. Let X be an affine line with doubled origin and i WA1 ,! X be one of the
inclusions. View A1 as a degree 1 family over itself. Then there does not exist a closed
immersion A1 ,! AmC1X whose projection is i .
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Proposition 4.2 implies that for every affine S-scheme X the inclusion Hilbd .A1X =S/
� Hilbd .AN

X=S/ is an A1-equivalence on affine schemes, so we concentrate on the former
space.

Corollary 4.4. The forgetful map Hilb.A1/! FFlat is a universal A1-equivalence on
affine schemes.

Proof. Take X D S D Spec Z in Proposition 4.2.

Corollary 4.5. The forgetful map

Z � Hilb1.A1/! K

is an A1-equivalence on affine schemes, where K is the presheaf of K-theory spaces. In
particular, if R is a regular noetherian commutative ring, then

K.R/ ' ZSpec R
� jHilb1.A1/.��R/j :

Proof. This map factors as

Z � Hilb1.A1/! FFlatst
! Vectst

! K:

The first map is an A1-equivalence on affine schemes by Corollary 4.4, and the second
map is an A1-equivalence by Theorem 3.2. The third map is also an A1-equivalence on
affine schemes; see for example [5, Example 5.2]. The last statement follows because
K ' LA1K on regular noetherian schemes.

Corollary 4.6. Let X be a separated S-scheme. Then the forgetful map Hilblci.A1X =S/!
h

fsyn
S .X/ is a universal A1-equivalence on affine schemes.

Proof. We have a tautological pullback square

Hilblci.A1X =S/ h
fsyn
S .X/

Hilb.A1X =S/ hfflat
S .X/

so the claim follows from Proposition 4.2 (1).

It is well known that the forgetful map Grd .A1/! Vectd is an A1-equivalence on
affine schemes. We give a proof in Proposition 4.7 below, since we could not locate a
reference. In fact, we consider the following slightly more general situation, which is the
linearized version of Proposition 4.2. For X! S an affine morphism of schemes and F

a quasi-coherent sheaf on X, the scheme Quotd .X=S;F/ parametrizes quotients of F that
are finite locally free of rank d over S [25, Theorem 4.7]. We denote by Cohd .X=S/ the
presheaf of groupoids on S-schemes parametrizing quasi-coherent sheaves on X that are
finite locally free of rank d over S (which is an algebraic stack at least when X! S is of
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finite type [28, Section 4]). There is a forgetful map Quotd .X=S;F/! Cohd .X=S/ that
for X D S becomes Grd .F/! Vectd . We define

Quotd .X=S;O1X / D colim
n

Quotd .X=S;OnX/:

Proposition 4.7. Let S be a scheme, X an affine S-scheme, and d > 0. Then the forgetful
map

Quotd .X=S;O1X /! Cohd .X=S/

is a universal A1-equivalence on affine schemes.

Proof. By Lemma 4.1 (2), it suffices to show that for any affine scheme Y D Spec A and
any finitely presented closed subscheme Y0 D Spec A=I, the map

Quotd .X=S;O1X /.Y/! Quotd .X=S;O1X /.Y0/ �Cohd .X=S/.Y0/ Cohd .X=S/.Y/

is surjective. Concretely, if Y �S X D Spec B, we must show that for any B-module M
that is finite locally free of rank d over A and any generators .xx1; : : : ; xxr / of M=IM as
a B=IB-module, we can find generators .x1; : : : ; xrCs/ of M as a B-module such that
x1; : : : ; xr lift xx1; : : : ; xxr and xrC1; : : : ; xrCs live in IM. This is indeed possible, since we
can take any lifts x1; : : : ; xr and any family .xrC1; : : : ; xrCs/ of generators of the finitely
generated B-module IM.

Remark 4.8. As in Proposition 4.2, one can also show that the map Quotd .X=S;OE
X/!

Cohd .X=S/ is a universal A1-equivalence on affine schemes for any infinite set E.

There is a canonical map Grd�1.An/! Hilbd .An/ sending a surjection OnT ! E to
the surjection SymOT

.OnT/! OT ˚ E, where OT ˚ E is the square-zero extension of OT

by E.

Corollary 4.9. The map Grd�1.A1/ ! Hilbd .A1/ is an A1-equivalence on affine
schemes.

Proof. There is a commutative square

Grd�1.A1/ Hilbd .A1/

Vectd�1 FFlatd
˛

The vertical maps are A1-equivalences on affine schemes by Propositions 4.7 and 4.2, and
the lower horizontal map is an A1-equivalence by Theorem 2.1.

In [59, Section 1], Segal constructs for a compact topological space X its “labeled”
configuration space F.XC/, which is an E1-space whose points are finite sets of points
of X, labeled by jointly orthogonal real vector spaces embedded into R1. The space
F.XC/ has a canonical forgetful map to the total symmetric power of X, which sends
¹Vxºx2S to

P
x2S dim.Vx/ � Œx�, where S is a finite set of points of X.
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For a smooth quasi-projective variety X over a field k, the ind-scheme Hilb.A1X /
can be thought of as a geometric analogue of Segal’s labeled configuration space of X,
with vector spaces replaced by finite algebras. To see this, recall the Hilbert–Chow mor-
phism [9, Theorem 2.16]

�XWHilbd .X/! Symd .X/;

where Symd .X/ is the quotient of Xd by the naturally acting symmetric group on d
letters. On points, the morphism �X sends a finite closed subscheme Z � X to the support
of Z counted with multiplicities. Fix another quasi-projective k-scheme Y and consider
the composition

�X�Y=X WD pr1 ı �X�YWHilbd .X � Y/! Symd .X � Y/! Symd .X/:

For x 2 X a closed point, denote by Hilbd .X � Y; x/ the fiber ��1X�Y=X.d Œx�/. This is
the scheme parametrizing subschemes of X � Y of degree d supported on ¹xº � Y. By
construction [9, Theorem 2.16, (2.34)], for every quasi-projective X and Y the morphism
�X�Y=X factors through hfflat

d
.X/.

Lemma 4.10. Let � D
Pr
iD1�i Œxi � be a k-point of Symd .X/, where x1; : : : ; xr 2 X are

nonsingular k-points. Then the fiber ��1X�Y=X.�/ is isomorphic to

rY
iD1

Hilb�i .A
dimxi X

� Y; 0/:

Proof. First let us reduce to the case where r D 1. Choose for every point xi an open
neighborhood Ui that does not contain the other points. Then for every k-scheme T and a
family Z � X � Y � T corresponding to a T-point of the fiber we can write Z as

Z '
a
i

Z �X Ui ;

where Z �X Ui is supported on ¹xiº � Y � T. Therefore

��1X�Y=X.�/ '
Y
i

��1X�Y=X.�i Œxi �/:

For the rest of the proof we assume that � D dŒx�, so that the fiber is equal to
Hilbd .X � Y; x/. We need to prove

Hilbd .X � Y; x/ ' Hilbd .Adimx X
� Y; 0/:

To do so we will prove a stronger statement. Let e D d � dimx.X/ and let

Xx;e D SpecOX;x=m
e
X;x

be the e-thickening of x 2 X. We will prove

Hilbd .X � Y; x/ ' Hilbd .Xx;e � Y; x/:
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The claim then follows from the fact that Xx;e ' Adimx X
0;e since x is a nonsingular point

of X. Without loss of generality we can replace X by an open neighborhood of x and we
thus assume X is affine.

Summing up, we need to show that for every k-scheme T and every T-family Z� X�
Y�T of degree d supported on ¹xº �Y�T, the subscheme Z in fact lies in Xx;e �Y�T.
It is enough to show that the d -th power of every f 2 mX;x vanishes when pulled back
to Z. Shrinking X further if necessary, we may view such an f as a map f WX! A1 with
f .x/ D 0. Consider the composition

f 0 D Symd .f / ı �X�Y=XWHilbd .X � Y/! Symd .X/! Symd .A1/ ' Ad ;

where the last isomorphism is given by elementary symmetric polynomials and maps dŒ0�
to 0 2 Ad . Since f .x/ D 0, the map f 0 restricted to Hilbd .X � Y; x/ is zero.

Let T! Hilbd .X�Y/ be a map classifying a family Z � X�Y� T. By the descrip-
tion of the Hilbert–Chow morphism in terms of linearized determinants (see [9, Corol-
lary 2.18] and [39, Equation 2.4, p. 9]), the restriction of f 0 to T computes exactly the
non-leading coefficients of the characteristic polynomial of the OT-linear endomorphism
of OZ given by multiplication by f 2 O.X/. Applying this to a family Z in the fiber
Hilbd .X � Y; x/, we see that all these coefficients are 0 and so f d D 0 on Z by the
Cayley–Hamilton theorem.

Let Hilbd .An � A1; 0/ be the ind-scheme colimm Hilbd .An � Am; 0/. We deduce
from Lemma 4.10 that for a smooth quasi-projective n-dimensional k-scheme X, the fiber
of

�A1X =XWHilbd .X � A1/! Symd .X/ (4.11)

over a k-point
Pr
iD1 �i Œxi � is isomorphic to

Qr
iD1 Hilb�i .A

n � A1; 0/.
The restrictions of the forgetful maps Hilbd .An � Am/! FFlatd induce a forgetful

map
Hilbd .An � A1; 0/! FFlatd :

Lemma 4.12. The forgetful map Hilbd .An �A1; 0/! FFlatd is an A1-equivalence on
affine schemes.

Proof. As remarked before Lemma 4.10, the map �An�A1=An factors through hfflat
d
.An/.

Denote by hfflat
d
.An; 0/ ,! hfflat

d
.An/ the fiber over dŒ0� 2 Symd .An/ of the induced map.

By Proposition 4.2 (1) we know that

Hilbd .An � A1; 0/! hfflat
d .An; 0/

is an A1-equivalence on affine schemes. It remains to prove that the forgetful map

˛0W hfflat
d .An; 0/! FFlatd

is an A1-equivalence. The map ˛0 has a natural section ˇ0W FFlatd ! hfflat.An; 0/ that
equips a family with a constant map to 0 2 An. The monoid .A1; �/ acts on An and so
induces a map

A1 � hfflat
d .An/! hfflat

d .An/ (4.13)
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that sends .t; U  Z
'
�! An/ to U  Z

t'
�! An. Since dŒ0� is an A1-fixed point, the

map (4.13) restricts to a map A1 � hfflat
d
.An; 0/! hfflat

d
.An; 0/ which gives an A1-homo-

topy ˇ0˛0 ' idFFlatd . This shows that ˇ0 is an inverse of ˛0 up to A1-homotopy.

Corollary 4.14. Let X be a smooth quasi-projective k-scheme. Then the fiber of the map

�A1X =XWHilb.A1X /! Sym.X/

over a k-point
P
i di Œxi � 2 Sym.X/ is A1-equivalent on affine schemes to

Q
i FFlatdi ,

and hence also to
Q
i Vectdi�1.

Proof. Combine Lemma 4.10, Lemma 4.12, and Theorem 2.1.

5. The effective motivic K-theory spectrum

Fix a base scheme S. Let Corrfflat.SchS/ be the .2; 1/-category whose objects are S-
schemes and whose morphisms are spans X Z! Y with Z! X finite locally free.
It is semiadditive and has a symmetric monoidal structure given by the cartesian product
of S-schemes. We equip the 1-category PSh†.Corrfflat.SchS// with the induced sym-
metric monoidal structure given by Day convolution. Recall that commutative monoids
for the Day convolution are precisely right-lax symmetric monoidal functors [22, Propo-
sition 2.12]. The unit of this symmetric monoidal structure is the presheaf FFlatS (the
restriction of FFlat to SchS), which therefore has a unique structure of commutative
monoid.

We claim that the presheaf VectS also has a structure of commutative monoid in
PSh†.Corrfflat.SchS//, with transfers given by the pushforward of finite locally free
sheaves and multiplication given by the tensor product. To see this, we apply the sym-
metric monoidal unfurling construction of [7, Corollary 7.8.1] to the category of finite
locally free sheaves fibered over Schop

S to obtain a right-lax symmetric monoidal func-
tor VectSWCorrfflat.SchS/

op ! Spc.2 The forgetful map �W FFlatS ! VectS can then be
promoted to a morphism of commutative monoids in PSh†.Corrfflat.SchS//, namely the
unique such morphism.

Let Corrfr.SchS/ be the symmetric monoidal1-category of framed correspondences
constructed in [15, Section 4]. Its objects are S-schemes and its morphisms are spans

Z

X Y

f g

2The unfurling construction in loc. cit. requires a symmetric monoidal Waldhausen bicartesian
fibration over .Schop

S ; fflat/ as input. The symmetric monoidal bicartesian fibration is here the fibered
category of finite locally free sheaves with the external tensor product. One can equip it with the
minimal Waldhausen structure, whose cofibrations are summand inclusions of locally free sheaves,
but in fact the Waldhausen structure is not used to construct the unfurling.
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where f is finite syntomic and equipped with a trivialization of its cotangent complex Lf
in the K-theory space K.Z/. There is a symmetric monoidal forgetful functor Corrfr.SchS/

! Corrfflat.SchS/ [15, Section 4.3.15], allowing us to regard �W FFlatS ! VectS as a
morphism of commutative monoids in PSh†.Corrfr.SchS//. Below we also denote by
FFlatS and VectS the restriction of these presheaves to Corrfr.SmS/, which is the full
subcategory of Corrfr.SmS/ spanned by the smooth S-schemes.

Recall that any presheaf with framed transfers on SmS gives rise to a motivic spectrum
via the functor

†1T;frWPSh†.Corrfr.SmS//! SHfr.S/ ' SH.S/;

where the equivalence is [35, Theorem 18].
Let ˇW .P1;1/! Vectgp be the morphism corresponding to the formal difference of

locally free sheaves OP1 � OP1.�1/. For any scheme S, ˇ induces a canonical element
in �2;1.†1T;frVectS/. Following [34, Section 3], we shall say that a Vectgp

S -module F in
some presentable1-category with an action of PSh†.Corrfr.SmS// is ˇ-periodic if the
morphism

F! �P1F

induced by ˇ is an equivalence. For example, algebraic K-theory (as a pointed presheaf
on SmS) is ˇ-periodic, by the projective bundle formula.

Proposition 5.1. For any scheme S, there is an equivalence of E1-ring spectra

KGLS ' .†
1
T;frVectS/Œˇ�1� in SH.S/ ' SHfr.S/.

Proof. By [34, Proposition 3.2], the functors �1T and �1T;fr restrict to equivalences of
symmetric monoidal1-categories of ˇ-periodic modules

PˇModVectgp.H.S/�/ ' PˇModVectgp.SH.S//;
PˇModVectgp.Hfr.S// ' PˇModVectgp.SHfr.S//:

Under the former equivalence, the E1-ring spectrum KGLS corresponds to the pointed
motivic space �1KH [11, Proposition 2.14], which is the ˇ-periodization of LmotVectgp

[34, Proposition 4.10].
For F a Vectgp-module in either H.S/� or Hfr.S/, its ˇ-periodization PˇF is computed

as a sequential colimit of the presheaves �nTF [34, Theorem 3.8 and Lemma 4.9]. Since
the forgetful functor Hfr.S/! H.S/� commutes with sequential colimits and with �nT,
the square

ModVectgp.Hfr.S// PˇModVectgp.SHfr.S//

ModVectgp.H.S/�/ PˇModVectgp.SH.S//

Pˇ

Pˇ

of right-lax symmetric monoidal functors commutes. The commutativity of this square on
the framed motivic space LmotVectgp gives the desired equivalence.
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Let kglS 2 SH.S/veff denote the very effective cover of KGLS [62, Definition 5.5].
We shall only consider the spectrum kglS when S is regular over a field (i.e., regular and
equicharacteristic), in which case it coincides with the effective cover of KGLS (this is
equivalent to the vanishing of the negative K-theory of fields, by the characterization of
very effectivity in terms of homotopy sheaves [2, Section 3]).

Corollary 5.2. If S is regular over a field, there is an equivalence of E1-ring spectra

kglS ' †
1
T;frVectS in SH.S/ ' SHfr.S/.

Proof. By Theorem 5.1, there is a canonical E1-map †1T;frVectS ! kglS. The assertion
that it is an equivalence is local on S, so we may assume S affine. By Popescu’s theorem
[64, Tag 07GC], S is then a cofiltered limit of smooth k-schemes for some perfect field k.
Since pro-smooth base change preserves very effective covers, we can assume that S is
the spectrum of a perfect field k. In this case, by the motivic recognition principle [15,
Theorem 3.5.14], the very effective cover of a motivic spectrum E is †1T;fr�

1
T;fr.E/, and

for X a framed motivic space we have �1T;fr†
1
T;frX ' Xgp. Since LmotVectgp is already

ˇ-periodic on regular schemes (as it agrees with the K-theory presheaf K), we deduce
that †1T;frVectk is the very effective cover of .†1T;frVectk/Œˇ�1�, so the corollary follows
from Proposition 5.1.

Remark 5.3. By [6, Proposition B.3], Corollary 5.2 holds for a finite-dimensional
scheme S if and only if, for every s 2 S, the canonical map s�.kglS/ ! kgl�.s/ is an
equivalence. One expects this to be true at least if S is smooth over a Dedekind scheme.

Theorem 5.4. If S is regular over a field, there is an equivalence of E1-ring spectra

kglS ' †
1
T;frFFlatS in SH.S/ ' SHfr.S/.

Proof. Combine Corollary 5.2 and Theorem 3.1.

Remark 5.5. One can lift the Bott element ˇW .P1;1/! Vectgp to FFlatgp (for example,
by taking the formal difference of square-zero extensions O˚ O � O˚ O.�1/). Com-
bining Proposition 5.1 and Theorem 3.1, we then have an equivalence of E1-ring spectra

KGLS ' .†
1
T;frFFlatS/Œˇ�1�

for any scheme S.

Let Hfflat.S/ � PSh†.Corrfflat.SmS// be the full subcategory spanned by the
A1-invariant Nisnevich sheaves, and let SHfflat.S/ be the 1-category of T-spectra
in Hfflat.S/�. Theorem 5.4 formally leads to an adjunction

Modkgl.SH.S//� SHfflat.S/;

where the left adjoint is symmetric monoidal. In [3, Corollary 4.3], Bachmann proves that
this adjunction induces an equivalence

Modkgl.SH.k//Œ1=e� ' SHfflat.k/Œ1=e�;

for k a perfect field of exponential characteristic e.
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The results in [3] (which in turn depend on Theorem 5.4) have the following conse-
quence.

Proposition 5.6. Let k be a perfect field of exponential characteristic e and X a smooth
k-scheme. Then there is an equivalence

�1T .kgl˝†1T XC/Œ1=e� ' LZarLA1h
fflat.X/gpŒ1=e�:

If moreover kgl˝†1T XC is a dualizable kgl-module . for example if X is proper /, there
is an equivalence

�1T .kgl˝†1T XC/ ' LZarLA1h
fflat.X/gp:

Proof. By the cancellation theorem for finite locally free correspondences [3, Theo-
rem 3.5 and Proposition 2.13], for every F 2 Hfflat.k/ there is a natural equivalence

Fgp
' �1T †

1
T F

in Hfflat.k/. Moreover, if F 2 PSh†.Corrfflat.Smk//
gp, then LmotF ' LZarLA1F by [15,

Theorem 3.4.11]. The first statement now follows from the equivalence of1-categories
Modkgl.SH.k//Œ1=e� ' SHfflat.k/Œ1=e� [3, Corollary 4.3]. Without inverting e, the unit
of the adjunction Modkgl.SH.k//� SHfflat.k/ is an equivalence on the unit object [3,
Theorem 4.2], hence on any dualizable object. This implies the second statement.

Corollary 5.7. Let k be a perfect field and X a smooth separated k-scheme. Suppose that
kgl ˝ †1T XC is a dualizable kgl-module . for example X is proper/. Then there is an
equivalence

�1T .kgl˝†1T XC/ ' .LZarLA1Hilb.A1X //
gp:

Proof. Combine Propositions 5.6 and 4.2.

In light of Corollary 4.14, we can think of Corollary 5.7 as a geometric analogue of
Segal’s result [59, Proposition 1.1], expressing ko-homology of a topological space X as
the homotopy groups of the labeled configuration space F.X/ (see Section 4). Here ko is
the connective cover of the real topological K-theory spectrum KO.

Remark 5.8. Let k be a perfect field and HZ 2 SH.k/ the motivic Eilenberg–Mac Lane
spectrum over k. Since s0.1/ ' s0.kgl/ ' HZ [43], there is a unique morphism of E1-
ring spectra kgl! HZ. Let Cor.k/ be Voevodsky’s category of finite correspondences
over k [46, Definition 1.5]. By [15, Section 5.3], there is a symmetric monoidal functor

Corrfflat.Smft;sep
k

/! Cor.k/

sending a span X
f
 � Z

g
�! Y to the cycle .f; g/�ŒZ� on X � Y. It induces an adjunction

SHfflat.k/� DM.k/;

where the left adjoint is symmetric monoidal. Recall that HZ is by definition the image
of the unit object of DM.k/ by the forgetful functor DM.k/! SH.k/. The unit of the
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above adjunction therefore induces the (unique) morphism of E1-ring spectra kgl! HZ,
and we obtain a commutative square of adjunctions

Modkgl.SH.k// ModHZ.SH.k//

SHfflat.k/ DM.k/

The vertical adjunctions are known to be equivalences after inverting the exponential
characteristic e (see [57] and [37, Theorem 5.8]). For X 2 Smft;sep

k
, the canonical map

�1T .kgl˝†1T XC/! �1T .HZ˝†1T XC/ (5.9)

can thus be identified, after inverting e (or if X is proper), with the motivic localization of
the map

hfflat.X/gp
! hCor.X/;

where hCor.X/ is the presheaf represented by X on Cor.k/. Furthermore, if X is quasi-
projective, there is a commutative diagram

Hilb.A1X / Sym.X/gp

hfflat.X/ hCor.X/

�A1X =X

where �A1X =X is the Hilbert–Chow morphism (4.11), Hilb.A1X /! hfflat.X/ is a motivic
equivalence (Proposition 4.2), and hCor.X/! Sym.X/gp is an isomorphism after invert-
ing e [63, Theorem 6.8]. Altogether, the map (5.9) corresponds, up to inverting e, to the
group completion of the Hilbert–Chow morphism �A1X =XWHilb.A1X /! Sym.X/.

6. Comparison with algebraic cobordism

Let FSynS be the presheaf with framed transfers on SmS associating to X the groupoid of
finite syntomic X-schemes. The forgetful map FSynS! VectS induces a map of E1-ring
spectra

†1T;frFSynS ! †1T;frVectS:

By [14, Theorem 3.4.1], †1T;frFSynS ' MGLS is the algebraic cobordism spectrum of
Voevodsky. By Proposition 5.1, .†1T;frVectS/Œˇ�1� is identified with KGLS, so we get an
E1-map MGLS ! KGLS. The goal of this section is to prove that this map is an E1-
refinement of the usual orientation of KGLS.

Let PMGLS be the spectrum
L
n2Z †

2n;nMGLS with the E1-ring structure from
[6, Theorem 16.19]. The commutative monoid structure on PMGLS in the homotopy cat-
egory hSH.S/ is determined by that of MGLS, and it classifies periodic oriented ring
spectra, i.e., oriented ring spectra E with a given unit in �2;1.E/.
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By [14, Theorem 3.4.1], there is an equivalence of (Z-graded) E1-ring spectra

.†1T;frFQSmS/Œu
�1� ' PMGLS; (6.1)

where u 2 �2;1.†1T;frFQSm1
S/' �2;1.†

2;1MGLS/ is the suspension of the unit of MGLS.
Here, FQSmS.X/ is the1-groupoid of finite quasi-smooth derived X-schemes, with the
E1-semiring structure given by the sum and the product of X-schemes. Recall that a mor-
phism of derived schemes f WY! X is quasi-smooth if it is locally of finite presentation
with perfect cotangent complex Lf of Tor-amplitude 6 1, and finite if the underlying
morphism of classical schemes is finite. Recall also that f WY ! X is quasi-smooth if
and only if, locally on Y, it is the vanishing locus of finitely many functions on a smooth
X-scheme [41, Section 2.3.13]; in particular, quasi-smooth morphisms are locally of finite
Tor-amplitude.

Under the equivalence (6.1), Thom classes of vector bundles have the following geo-
metric description. If E is a locally free sheaf of rank n over a smooth S-scheme X,
its Thom class in MGL2n;nX .V.E// is represented by the zero section X ,! V.E/ in
FQSmn

S.V.E//. Indeed, this holds by construction of the equivalence †1T;frFQSmn
S '

†2n;nMGLS; cf. [14, Construction 3.1.1].

Proposition 6.2. Let S be a scheme. The E1-map MGLS! KGLS induced by FSynS!

VectS is the standard orientation of KGLS.

Proof. By [45, Theorem 6.1.3.2], the structure sheaf of any finite quasi-smooth S-scheme
is a perfect OS-module, since quasi-smooth morphisms are locally of finite presentation
and locally of finite Tor-amplitude. There is therefore a commutative square of commuta-
tive monoids in presheaves with framed transfers

FSynS FQSmS

VectS PerfS

where PerfS.X/ is the 1-groupoid of perfect complexes on X and the right vertical
morphism FQSmS ! PerfS forgets the algebra structure. By Proposition 5.1, there is
an E1-map of presheaves with framed transfers VectS ! �1T;frKGLS, which factors
through LNisVectgp

S (since Nisnevich sheafification is compatible with framed transfers
[15, Proposition 3.2.4]). On the other hand, the algebraic K-theory presheaf K has finite
locally free transfers induced by the pushforward functors between the1-categories of
perfect complexes, which extend the pushforwards of vector bundles. Since Vectgp ! K
is a Nisnevich-local equivalence, we deduce that the E1-map VectS ! LNisVectgp

S fac-
tors through PerfS in PSh†.Corrfr.SmS//. Hence, the composite FSynS ! VectS !
�1T;frKGLS factors through FQSmS. By adjunction and [14, Theorem 3.4.1], we obtain
a sequence of E1-maps

MGLS !
M
n>0

†2n;nMGLS ! KGLS:
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Recall that the standard periodic orientation of KGLS is such that the Thom class of a
finite locally free sheaf E over X is represented by the perfect OV.E/-module OX, which is
precisely the image of the zero section X ,! V.E/ by the forgetful map FQSmS.V.E//!
PerfS.V.E//. Hence, the map †2n;nMGLS ! KGLS constructed above preserves Thom
classes of locally free sheaves of rank n. In particular, †2;1MGLS ! KGLS sends u to
the Bott element ˇ, which is the Thom class of OS, and we obtain an induced E1-map

PMGLS ! KGLS:

This map preserves Thom classes by construction, i.e., it induces the standard periodic
orientation of KGLS.

Remark 6.3. For SD Spec C, the E1-map PMGLS! KGLS constructed above realizes
to the folklore E1-map MUP! KU alluded to in [26, p. 1841]. In particular, it differs
from the Gepner–Snaith E1-map PMGLS ! KGLS constructed in [21], which uses a
different E1-ring structure on PMGLS [6, Remark 16.20].

Corollary 6.4. Suppose that S is regular over a field. Under the equivalence kglS '
†1T;frFFlatS of Theorem 5.4, the standard orientation MGLS ! kglS is †1T;fr of the for-
getful map FSynS ! FFlatS.

7. The Hilbert scheme of finite lci schemes of degree 3

The open subset of lci subschemes in the Hilbert scheme has a rich homotopy type. In
particular, in positive characteristic, the limiting space Hilblci

1.A1/ has the A1-homotopy
type of the unit component of the infinite loop space associated to algebraic cobordism,
�1T MGL [5, Theorem 1.2]. In characteristic zero, these two spaces at least have isomor-
phic motives in the derived category of motives, DM.k/. Hopkins conjectured that the
motive of �1T MGL is pure Tate, but that remains open. By definition, a pure Tate motive
is a direct sum of the motives Z¹aº WD Z.a/Œ2a� for integers a.

A possible approach to Hopkins’ conjecture is through the space Hilblci
1.A1/. In that

direction, we have the following result.

Theorem 7.1. The motive of Hilblci
3 .A1/ over Z is pure Tate in DM.Z/. The Chow ring

of Hilblci
3 .A1/ is

ZŒc1; c2�=.c2.�2c21 C 9c2//;

where jci j D i .

Remark 7.2. As observed in [5, Remark 1.8], the motive of Hilblci
3 .An/ is not pure Tate

for any finite n > 2.

Here, DM.Z/ denotes Spitzweck’s 1-category of motives over Spec Z [61,
Chapter 9]. If S is a regular scheme of dimension 6 1, then the 1-category
DM.S/ categorifies Bloch–Levine motivic cohomology, in the sense that the presheaf
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X 7! MapsDM.S/.M.X/; Z¹nº/ on smooth S-schemes is the Zariski sheafification of
Bloch’s cycle complex X 7! zn.X;�/. By [20, Theorem 1.2 (5)], we have

�0 MapsDM.S/.Z¹aº;Z¹bº/ D

8̂̂<̂
:̂

Z if a D b,

Pic.S/ if aC 1 D b,

0 otherwise.

In particular, the homotopy category of pure Tate motives over Spec Z is equivalent to the
category of free graded abelian groups. For X 2 PSh.SmS/, we will write

CHa.X/ D H2a.X;Z.a// D �0 MapsDM.S/.M.X/;Z¹aº/:

These are the classical Chow groups when S is semilocal and X is a smooth S-scheme
of finite type (since Bloch’s cycle complex is already a Zariski sheaf in this case [42,
Theorem 1.7]). By [61, Proposition 10.1] and [52, Proposition 6.2], we have a canonical
isomorphism

CH�.BGLn/ ' ZŒc1; : : : ; cn�

with ci in degree i .

Proof of Theorem 7.1. Let Xn D Hilb3.An/ over Z, and let Yn � Xn be the closed com-
plement of Hilblci

3 .An/. Let X D colimn Xn and Y D colimn Yn; we want to describe the
motive of X � Y D colimn.Xn � Yn/. For an algebraically closed field k, every non-lci
finite k-scheme of degree 3 is isomorphic to Spec kŒx; y�=.x; y/2 [53, Table 1], and any
two embeddings into An

k
differ by an affine transformation. It follows that the obvious

morphism f WWn WD Gr2.An/ � An ! Xn is injective on k-points with image Yn.k/ for
every algebraically closed field k. In particular, f is quasi-finite; by definition, it suffices
to check this over fields, and then it suffices to prove this over algebraically closed fields
by descent [64, Tag 02VI].

Also, f is proper, as it is the restriction over Hilb3.An/ of a Gr2.An/-bundle over Pn

mapping to Hilb3.Pn/. Since f is proper and quasi-finite, it is finite [64, Tag 02OG]. It is
also unramified, meaning that the sheaf of relative differentials �1Wn=Xn

is zero. Indeed,
the sheaf is coherent, and so this can be checked over fields by Nakayama’s lemma. After
reducing further to an algebraically closed base field, one can check that f is injective on
tangent spaces using the calculation below of the tangent space to the Hilbert scheme Xn;
so f is unramified. Since f is finite, unramified, and injective on points over algebraically
closed fields, f is a closed immersion [64, Tag 04DG]. That is, Yn with reduced scheme
structure is isomorphic to Gr2.An/ � An.

By Corollary 4.9, the inclusion Y! X is a motivic equivalence. Both Yn and Xn are
smooth over Z, with Yn of codimension 4 in Xn. So we have a cofiber sequence

M.X � Y/! M.X/! M.Y/¹4º

in DM.Z/, where M.Y/¹4º and M.X/ are pure Tate. So, to show that M.X � Y/ is pure
Tate as well, it suffices to show that the morphism M.X/! M.Y/¹4º is the projection
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onto a summand. A morphism between pure Tate motives is determined by what it does
on Chow groups CH�, so it suffices to show that the pushforward homomorphism

CH��4.Y/! CH�.X/

is a split injection of abelian groups. Since the restriction CH�.X/! CH�.Y/ is an iso-
morphism, it suffices to show that the composed map

CH��4.Y/! CH�.X/! CH�.Y/

is split injective. This composition is multiplication by the top Chern class of the normal
bundle, c4.NY=X/ [18, Corollary 6.3]. So it suffices to show that this class is nonzero
modulo every prime number p in CH�.Y/ D CH�.BGL2/ D ZŒc1; c2�. (Indeed, then
multiplication by c4.NY=X/ is injective modulo p for every prime number p, and (look-
ing at each graded piece) a homomorphism of finitely generated free abelian groups
which is injective modulo every prime is split injective.) We will show that c4.NY=X/

is c2.�2c21 C 9c2/; which will complete the proof.
Let Un be the open subset of Xn of degree 3 subschemes not contained in any affine

line. Then Yn is contained in Un, and so the normal bundle of Yn in Xn can also be viewed
as its normal bundle in Un. The point is that each point of Un, viewed as a degree 3 sub-
scheme of An, spans an affine plane, and so Un is fibered over the scheme of affine planes
in An with fiber U2. More precisely, let Affn be the group scheme of affine automor-
phisms of An, and let A.m; n/ be the scheme of affine embeddings Am ,! An. Then
Affn acts on Xn, the subschemes Un and Yn are Affn-invariant, and the closed immersion
Yn ,! Un can be identified with

Y2 �Aff2 A.2; n/ ,! U2 �Aff2 A.2; n/:

Hence, the normal bundle of Yn ,! Xn is extended from the Aff2-equivariant normal
bundle of Y2 ,! U2. In other words, it is the pullback of NY2=X2 by the projection

Yn ' Y2 �Aff2 A.2; n/! ŒY2=Aff2�:

Since Y2 ' A2, there is an equivalence of stacks ŒY2=Aff2� ' BGL2. Moreover, the
induced map Y D colimn Yn ! BGL2 is a motivic equivalence, inducing the canonical
motivic equivalence Gr2 ! BGL2 (by Proposition 4.7). So our goal is to compute the
top Chern class of the GL2-representation given by the (rank 4) normal bundle to Y2 in
X2 D Hilb3.A2/ at the Z-point S D Spec ZŒx; y�=.x2; xy; y2/ � A2 in Y2.

Classically [60, Section 3.2.1] the tangent bundle to Hilb3.A2/ at ŒS� is

H0.S;NS=A2/ D HomOS.I=I2;OS/;

where ID .x2; xy;y2/�ZŒx;y� and OSDZŒx;y�=I. By direct inspection, this Z-module
is free of rank 6 and isomorphic to

HomZ.Z¹x2; xy; y2º;Z¹x; yº/ D Hom.S2.V�/;V�/;

where V D A2, so V� is the space of linear functions on A2, with basis x; y.
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To compute the Chern classes of this representation of GL2, we can work over C, so
GL2 becomes linearly reductive. The Clebsch–Gordan formula implies that the tangent
space of X2 D Hilb3.A2/ at ŒS� is V˚ .S3.V/˝ det.V/�/ as a GL2-representation [10,
Proposition II.5.5]. In particular, its only 2-dimensional subrepresentation is V, which
thus coincides with the tangent space to Y2. So the normal space to Y2 in X2 at ŒS� is
S3.V/˝ det.V/� as a representation of GL2. The top Chern class c4 of S3.V/˝ det.V/�

is c2.�2c21 C 9c2/ in CH�.BGL2/ D ZŒc1; c2�, as one checks by the splitting principle
(the fact that the Chow ring of BGL2 injects into that of BG2

m). That is what we want.

8. Stability theorems for the Hilbert scheme

We have shown that Hilbd .A1/ has the A1-homotopy type of BGLd�1. We now prove
corresponding stability theorems for the inclusion Hilbd .An/ � Hilbd .A1/. There are
several notions of connectivity available in A1-homotopy theory, and we shall prove
that the inclusion Hilbd .An/ � Hilbd .A1/ is highly connected in various senses (Theo-
rem 8.2). In particular, we show that it induces an isomorphism in motivic cohomology in
weights 6 n � d C 1 (Corollary 8.3).

Remark 8.1. We use the convention that, for n > �1, a morphism f in Spc is n-con-
nected if its fibers are n-connected (meaning that �i D 0 for i 6 n). It follows, in par-
ticular, that f is surjective on �0. In the older literature, such a map would be called
.nC 1/-connected. Our numbering is becoming more common, as in [49, Definition 6.55]
or [56, Remark 1.6].

We will say that a morphism f WY! X in PSh.SmS/ is A1-n-connected if Lmot.f / is
n-connected as a morphism of Nisnevich sheaves (i.e., n-connected on Nisnevich stalks).
We will frequently use Morel’s A1-connectivity theorem [49, Theorem 6.38], which states
that if k is a perfect field and X 2 ShvNis.Smk/ is n-connected, then X is A1-n-connected.
Recall also that a motivic spectrum is very n-effective if it can be obtained using colimits
and extensions from the image of the functor †nT†

1
T .

Theorem 8.2. Let n > d > 0.

(1) The morphism
Hilbd .An/.C/! Hilbd .A1/.C/

is .2n � 2d C 2/-connected and the morphism

Hilbd .An/.R/! Hilbd .A1/.R/

is .n � d/-connected.

(2) If k is a field, the morphism

†Hilbd .Ank/! †Hilbd .A1k /

is A1-.n � d C 1/-connected. Here, †X denotes the pushout � tX � in PSh.Smk/.
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(3) If k is a field, the cofiber of

†1T Hilbd .Ank/C ! †1T Hilbd .A1k /C

in SH.k/ is very .n � d C 2/-effective.

The proof of Theorem 8.2 is given at the end of this section.

Corollary 8.3. Let k be a field and A an abelian group.

(1) The homomorphism of motivic cohomology groups

H�.BGLd�1;A.a//! H�.Hilbd .An/;A.a//

is an isomorphism for all a 6 n � d C 1.

(2) Let i > 0. The homomorphism of Milnor–Witt motivic cohomology groups

H2aCi .BGLd�1; QA.a//! H2aCi .Hilbd .An/; QA.a//

is an isomorphism if aC i 6 n � d and injective if aC i D n � d C 1.

Proof. Both statements follow from Theorem 8.2 (3) and the following facts: if E2 SH.k/
is very r-effective, then H�.E;A.a//D 0 for a < r and H2aCi .E; QA.a//D 0 for i > 0 and
aC i < r . The former is because the 1-effective cover of the motivic Eilenberg–MacLane
spectrum HA is zero, since motivic cohomology vanishes in negative weights. The latter
is because the very 1-effective cover of H QA is zero, since in negative weights Milnor–Witt
motivic cohomology is given by the cohomology of the Witt sheaf, which vanishes in
negative degrees [4, Chapter 2, Example 6.1.5].

Remark 8.4. In Theorem 8.2 (2, 3) and in Corollary 8.3, we regard Hilbd .Ank/ as
a presheaf on smooth k-schemes. Since Hilbd .Ank/ is in fact a scheme, one can also
define its motivic cohomology and Milnor–Witt motivic cohomology more intrinsically
by working in SH.Hilbd .Ank//. By standard arguments using resolution of singularities or
alterations, these two ways of defining the cohomology of nonsmooth schemes are known
to agree with ZŒ1=e�-linear coefficients, where e is the exponential characteristic of k.

Let Zd ! FFlatd be the universal finite locally free scheme of degree d and let
Vd .An/ be the vector bundle over FFlatd defined by

Vd .An/ D HomFFlatd .Zd ;A
n
FFlatd /:

Then Hilbd .An/ � Vd .An/ is the open substack of closed immersions Zd ! AnFFlatd
.

The key geometric input to all our stability theorems is the following observation:

Lemma 8.5. The closed complement of Hilbd .An/ in Vd .An/ has codimension at least
n � d C 2 in every fiber over FFlatd .

Proof. Let k be a field and S D Spec R a finite k-scheme of degree d . We must show
that the closed complement of Embk.S;Ank/ in Homk.S;Ank/ ' And

k
has codimension at



The Hilbert scheme of infinite affine space and algebraic K-theory 29

least n � d C 2. A k-morphism S! An
k

can be viewed as a k-algebra homomorphism
kŒx1; : : : ; xn�! R, or as a k-linear map k¹x1; : : : ; xnº ! R. Such a morphism S! An

k

is an embedding if and only if the corresponding homomorphism kŒx1; : : : ; xn� ! R
is surjective. In particular, Embk.S; An

k
/ contains the open subset of k-linear maps

k¹x1; : : : ; xnº ! R such that k¹x1; : : : ; xnº ! R=.k � 1/ is surjective. The subset of non-
surjective linear maps kn! kr has codimension n� r C 1; indeed, the space of all linear
maps has dimension nr , whereas any nonsurjective map lands in some hyperplane in kr

(corresponding to a point in Pr�1), and so the subset of nonsurjective maps has dimen-
sion n.r � 1/C .r � 1/ D nr � .n � r C 1/. Thus the complement of Embk.S;Ank/ in
Homk.S;Ank/ has codimension at least n � .d � 1/C 1 D n � d C 2, as we want.

Remark 8.6. The bound in Lemma 8.5 is optimal for n > d � 2, the worst case being
the square-zero extension algebra

R D kŒx1; : : : ; xd�1�=.xixj W all i; j /

over a field k. In that case, a k-algebra homomorphism kŒx1; : : : ; xn�! R is surjective
if and only if the k-linear map k¹x1; : : : ; xnº ! R=.k � 1/ is surjective. As a result, the
subset of nonsurjective k-algebra homomorphisms kŒx1; : : : ; xn�! R has codimension
equal to n � .d � 1/C 1 D n � d C 2.

Proposition 8.7. Let k be a subfield of C, X an algebraic stack of finite type over k,
V! X a vector bundle, and r > 0. Let U � V be an open substack whose complement
has codimension at least r in every fiber of V ! X. Then U.C/ ! X.C/ is .2r � 2/-
connected in the classical topology. If moreover k � R and X is an algebraic space, then
U.R/! X.R/ is .r � 2/-connected in the classical topology.

Proof. Let X� ! X be a smooth hypercover where each Xi is an affine scheme. Then
X.C/ is the colimit of X�.C/ in Spc. If X is an algebraic space, we can choose X� ! X
to be a Nisnevich hypercover by [55, Proposition 5.7.6], in which case also X.R/ is the
colimit of X�.R/ in Spc. Since simplicial colimits preserve connectivity, we can assume
that X is an affine scheme.

We give the rest of the proof for C, but exactly the same argument applies to R. Let
0 6 j < 2r ; we need to show that �jU.C/! �jX.C/ is surjective (for any base points
u0 in U.C/ and x0 in X.C//, and that �j�1U.C/! �j�1X.C/ is injective. Let h be a
continuous map Sj ! X.C/; we will show that h has arbitrarily small perturbations that
lift to U.C/. Although the perturbations we construct need not keep the base point fixed,
they will send the base point s0 of Sj near u0 in U.C/; this implies the surjectivity of
�j .U.C/; u0/! �j .X.C/; x0/, since U.C/ is locally contractible.

By the triangulation of real semialgebraic sets, there are semialgebraic triangulations
of Sj and X.C/ [30, Section 1]. By simplicial approximation, after subdividing the trian-
gulation of Sj , we can perturb h to a simplicial map (still called h), which in particular
is semialgebraic. By [16, Theorem 6], we can perturb h to a C1 semialgebraic map. (This
makes sense even though X.C/ is singular, using local embeddings of X.C/ into affine
space. Any two embeddings are equivalent by complex analytic maps, and so the notion
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of “C1” is well-defined.) The pullback of a C1 vector bundle on X.C/ along h is a C1

vector bundle on Sj , for example by considering transition functions: a composite of C1

maps is C1. As a result, the pullback of the map U.C/! X.C/ to Sj is an open subset
of a C1 semialgebraic real vector bundle pWW! Sj , with complement a semialgebraic
closed subset Z �W that has real codimension at least 2r in every fiber. It follows that Z
has real codimension at least 2r in W. Here W is a C1 manifold, and Z is a finite union
of (possibly noncompact) C1 submanifolds of real codimension at least 2r . (The smooth
locus of Z is a (possibly noncompact) C1 manifold, and its complement has lower dimen-
sion; so we can decompose Z by induction on dimension.) Choose a C1 section e of the
vector bundle W! Sj such that e.s0/ D u0. Since j < 2r , the transversality theorem
for C1 manifolds [31, Theorem 3.2.1] implies that e can be perturbed to a C1-section
disjoint from Z. That is, the map hW Sj ! X.C/ lifts to U.C/, as we want. The same
argument (transversality applied to the pullback vector bundle) also proves, for j < 2r ,
that every continuous map Sj�1 ! U.C/ such that the composed map to X.C/ extends
to Dj has arbitrarily small perturbations that extend to a continuous map Dj ! U.C/. So
U.C/! X.C/ is .2r � 2/-connected, as we want.

Lemma 8.8. Let k be a perfect field, f WY! X a morphism in PSh.Smk/, and n > �1.
If f is A1-n-connected, then cofib.f / is A1-.nC 1/-connected. The converse holds if X
and Y are A1-1-connected.

Proof. Let C be the cofiber of Lmot.f / in ShvNis.Smk/. The class of n-connected maps
is closed under cobase change [44, Corollary 6.5.1.17]. Therefore, if Lmot.f / is n-con-
nected, then �! C is n-connected, which is equivalent to C being .nC 1/-connected [44,
Proposition 6.5.1.20]. By the A1-connectivity theorem, C is A1-.nC 1/-connected. Con-
versely, suppose that X and Y are A1-1-connected and that C is A1-.nC 1/-connected.
Let F be the fiber of Lmot.f /. We will prove that C is in fact .nC 1/-connected, which
implies (by considering the Nisnevich stalks) that F is n-connected [67, Theorem IV.7.13].
Note that C is 1-connected since Lmot.X/ and Lmot.Y/ are. By induction, we may assume
that C is n-connected and F is .n� 1/-connected. By Blakers–Massey, the canonical map
F ! �C is then n-connected. In particular, �nC1.C/ is isomorphic to �n.F/, hence is
strictly A1-invariant. By [49, Corollary 6.60], we have �nC1.C/ ' �nC1Lmot.C/ D 0, as
desired.

Lemma 8.9. Let k be a perfect field, X a smooth k-scheme, and Z � X a closed sub-
scheme of codimension > r . Then †.X=.X � Z// is A1-r-connected.

Proof. We can assume X quasi-compact. If Z is smooth, then X=.X � Z/ is A1-.r � 1/-
connected by the purity isomorphism [50, Section 3, Theorem 2.23]. In general, the result
is trivial if r D 0. If r > 1, then X=.X � Z/ is A1-connected by [48, Lemma 6.1.4]. We
can therefore assume r > 2. Since k is perfect, there exists a filtration

¿ D Z0 � Z1 � � � � � Zn D Z

by closed subschemes such that Zi � Zi�1 is smooth. We prove the result by induction
on the length n of the filtration, the case n D 0 being trivial. We therefore assume that
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†.X=.X� Zn�1// is A1-r-connected. Since†.X=.X� Z// and†..X� Zn�1/=.X� Z//
are A1-1-connected, Lemma 8.8 and the cofiber sequence

X � Zn�1
X � Z

!
X

X � Z
!

X
X � Zn�1

imply that the morphism †..X � Zn�1/=.X � Z// ! †.X=.X � Z// is A1-.r � 1/-
connected. Since the source is A1-r-connected (by the smooth case), it follows that
†.X=.X � Z// is A1-r-connected.

Proposition 8.10. Let k be a perfect field, XW Smop
k
! Spc a presheaf, V! X a vector

bundle, and r > 0. Let U � V be an open subpresheaf such that, for every finite field
extension k0=k and every ˛ 2 X.k0/, the closed complement of ˛�.U/ in ˛�.V/ has codi-
mension at least r .

(1) The morphism †2U! †2X is A1-r-connected. If moreover U and X are A1-con-
nected, then the morphism †U! †X is A1-.r � 1/-connected.

(2) The cofiber of †1T UC ! †1T XC in SH.k/ is very r-effective.

Proof. (1) By Lemma 8.8, it suffices to show that † cofib.U! X/ is A1-r-connected.
Colimits of pointed objects preserve connectivity, hence A1-connectivity by the A1-con-
nectivity theorem, so we are reduced by universality of colimits to the case X 2 Smk .
Since V ! X is an A1-equivalence and V � U has codimension > r in V, the result
follows from Lemma 8.9.

(2) As in the proof of (1), we can assume X 2 Smk . Let Z be the closed complement
of U in V. If Z is smooth, the claim follows from the purity isomorphism. In general, since
k is perfect, one can stratify Z by smooth subschemes of codimension > r in V (cf. the
proof of Lemma 8.9), thereby reducing to the case Z smooth.

Lemma 8.11. Let k be a field and n > d � 1 > 0. Then Hilbd .Ank/ is A1-connected.

In fact, Hilbd .Ank/ is A1-connected for all n and d , at least when k is infinite, as Totaro
shows by a more elaborate argument [65, Theorem 6.1]. Since A1-connectedness implies
connectedness, this result recovers Hartshorne’s theorem that Hilbd .Pn/ is connected [29]
(although Hartshorne’s theorem also applies to nonconstant Hilbert polynomials).

Proof. By [48, Lemma 6.1.3] and [50, Section 2, Corollary 3.22], it suffices to show that
Hilbd .An/.k/ is nonempty and that any two points of Hilbd .An/.F/ can be connected by
a chain of affine lines over F, for every separable finitely generated field extension F=k.
It is clear that Hilbd .An/.k/ is nonempty.

Fix coordinates AnF D Spec FŒx1; : : : ; xn�. Consider an F-point ŒA� 2 Hilbd .An/.F/
corresponding to a surjection � WFŒx1; : : : ; xn�! A. We claim that � can be connected by
a chain of affine lines to a surjection such that the images of 1; x1; : : : ; xd�1 are linearly
independent. We prove this by adjusting � as necessary. If 1; x1; : : : ; xi�1 are linearly
independent while 1; x1; : : : ; xi are dependent, then

�jOi WFŒx1; : : : ; xi�1; xiC1; : : : ; xn�! A
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is a surjection. For a 2 A consider the FŒt �-algebra homomorphism �W FŒx1; : : : ; xn; t �
! AŒt � defined by �.xj / D �.xj / for j ¤ i and �.xi / D ta C .1 � t /�.xi /. For
every � 2 F, the map �� is surjective since it extends �jOi . Hence, � itself is surjec-
tive and it defines an A1-homotopy from � D �0 to �1 in Hilbd .An/. If we choose
a 2 A � F¹�.1/; �.x1/; : : : ; �.xi�1/º, then the images of 1; x1; : : : ; xi by �1 are lin-
early independent. Continuing by induction we prove the claim. Having � such that
1; x1; : : : ; xd�1 span A, we use another A1-homotopy to ensure �.xj / D 0 for j > d .

As in the proof of Theorem 2.1, consider the algebra Rees.A/ WD F˚ tAŒt � � AŒt �
which is finite locally free over FŒt �. Define an FŒt �-algebra homomorphism

Q� WFŒx1; : : : ; xn; t �! Rees.A/

by Q�.xi / D t�.xi / for every i . Since 1; x1; : : : ; xd�1 span A as an F-vector space, the
image of Q� contains t as well as tA, and so Q� is surjective. Geometrically, Q� corresponds
to a morphism Q� WA1F ! Hilbd .An/ that links ŒA� D Q�.1/ with Q�.0/. The latter F-point
corresponds to an embedding of Spec of the square-zero extension F˚ Fd�1 at the origin
of the .d � 1/-dimensional subspace xd D � � � D xn D 0 in An. In particular, it is inde-
pendent of ŒA�, which proves that every F-point can be connected to a fixed one by a chain
of affine lines over F, as we want.

Proof of Theorem 8.2. In (2) and (3), we may replace the field k by a perfect subfield,
since the conclusions are preserved by essentially smooth base change. Recall that the
forgetful map Hilbd .A1/ ! FFlatd is a motivic equivalence (Corollary 4.4). For the
connectivity on complex points and for (2) and (3), we apply Propositions 8.7 and 8.10
with X D FFlatd , V D Vd .An/, U D Hilbd .An/, and r D n � d C 2, see Lemma 8.5.
For (2), note that both Hilbd .An/ and FFlatd are A1-connected by Lemma 8.11. To
prove the connectivity on real points, we pull back the above situation to the scheme
Xm D Hilbd .Am/. By Proposition 8.7, .U �X Xm/.R/! Xm.R/ is .n � d/-connected.
Taking the colimit overm proves the result, using the fact that Hilbd .A1/! FFlatd is a
universal A1-equivalence on affine schemes (Corollary 4.4).

Remark 8.12. Note that the assumptions of Propositions 8.7 and 8.10 are preserved
by any base change X0 ! X. For example, by considering the open substack FSynd �
FFlatd , we see that Theorem 8.2 holds with Hilbd replaced by Hilblci

d .
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