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On subspace designs

Paolo Santonastaso and Ferdinando Zullo

Abstract. Guruswami and Xing introduced subspace designs in 2013 to give the first construc-
tion of positive rate rank metric codes list-decodable beyond half the distance. In this paper we
provide bounds involving the parameters of a subspace design, showing they are tight via explicit
constructions. We point out a connection with sum-rank metric codes, dealing with optimal codes
and minimal codes with respect to this metric. Applications to two-intersection sets with respect
to hyperplanes, two-weight codes, cutting blocking sets and lossless dimension expanders are also
provided.

1. Introduction

Guruswami and Xing in [49] introduced a linear-algebraic list decoder which starts by set-
ting the coefficients of the message into a periodic subspace, with some more restrictions
on such coefficients needed in order to get a small list of solutions. This last restriction
was rephrased in finding a sufficiently large set of subspaces with small intersections with
all subspaces of fixed dimension. This led to the definition of a (strong) subspace design.

Definition 1.1 ([49, Definition 7]). An ordered set .V1; V2; : : : ; Vt /, where Vi is an Fq-
subspace of V D V.k; q/, for any i 2 Œt �, is called a strong .s;A/-subspace design in V if
for every Fq-subspace W � V of dimension s,

tX
iD1

dimFq .Vi \W / � A:

Using the probabilistic method, one can show the existence of strong subspace designs
with large size and dimension, see, e.g., [49]. These subspace designs were used to give
a randomized construction of optimal rate list-decodable codes over constant-sized large
alphabets and sub-logarithmic (and even smaller) list size. Moreover, in [45], Guruswami
and Kopparty were able to construct a large explicit strong subspace design, where a strong
.s;A/-subspace design .V1; : : : ; Vt / in Fkq is said to be explicit if there exists an algorithm
which gives a basis for .V1; : : : ; Vt / in time poly.q; k; t/.
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Using such a subspace design, Guruswami and Kopparty gave an explicit construction
of a subcode of a Gabidulin code, which has small intersection with the output of the
linear-algebraic list decoder they introduced. Hence, the code obtained in this way turns
out to be efficiently list-decodable. This was the first explicit example of an efficiently
list-decodable rank metric code.

These techniques have been further investigated to obtain more rank metric codes and
subspace codes which are efficiently list-decodable (see, e.g., [47,48]) to obtain efficiently
list-decodable algebraic-geometric codes [50] and to construct explicit constant degree
dimension expanders over large fields [46].

In all of these constructions, the obtained subspace designs are large and with a small
intersection with the family of subspaces considered. However, explicitly constructing
subspace designs satisfying these properties seems challenging. In [45] explicit construc-
tions of strong subspace designs with parameters close to the probabilistic construction
of [49] were found, by requiring large field size, whereas in [51], using algebraic function
fields, Guruswami, Xing and Yuan constructed strong subspace designs over any field, up
to some restrictions on the total intersection dimension.

More recently, in [58], Liu et al. introduced the notion of almost affinely disjoint sub-
spaces, which is strongly related to the subspace designs we are going to introduce, and
they have been also used to construct primitive batch codes, see [55].

Our aim is to investigate subspace designs.

Definition 1.2. An ordered set U D .U1; U2; : : : ; Ut /, where Ui is an Fq-subspace of
V D V.k; qm/, for any i 2 Œt �, is called an .s; A/q-subspace design in V if

dimFqm .hU1; : : : ; Ut iFqm / � s

and for every Fqm -subspace W � V of dimension s,

tX
iD1

dimFq .Ui \W / � A:

Moreover, if hU1; : : : ; Ut iFqm D V; we say that U is a non-degenerate .s; A/q-subspace
design.

In the above-mentioned applications, the authors did not use the strong subspace
design they constructed directly, but they used the intersection of such strong subspace
designs with a fixed Fq-subspace, obtaining in this way a subspace design as in Defin-
ition 1.2. Moreover, when t D 1, .s; A/q-subspace designs coincide with the notion of
.s; A/q-evasive subspaces, originally introduced in [82] by Pudlák and Rödl.

It is easy to see that for a given subspace design, the following property holds (see
Proposition 3.1). For an .s;A/q-subspace design .U1;U2; : : : ;Ut / in V D V.k;qm/, s �A.

This paper focuses on the following two problems.

Problem 1.3. Investigate subspace designs attaining equality in Proposition 3.1.
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Problem 1.4. Given an .s; A/q-subspace design U, what is the smallest A0 such that U

is an .s; A0/q-subspace design?

In order to study Problem 1.3, we give the following definition.

Definition 1.5. An ordered set .U1; U2; : : : ; Ut /, where Ui is an Fq-subspace of V D
V.k; qm/, for any i 2 Œt �, is an s-design in V if it is an .s; s/q-subspace design in V .

We start by providing some properties of subspace designs and showing some proced-
ures to construct subspace designs from other subspace designs, such as by using direct
sum of subspaces. As a consequence of the bounds proved in [13,19,32], we obtain a first
bound regarding the dimension of the subspaces of a subspace design.

The s-designs are important examples of subspace designs. Indeed, when the dimen-
sion of all the subspaces is at most m, then any .k � 1/-design in V D V.k; qm/ (with
m� k) is an optimal subspace design, that is connected to optimal sum-rank metric codes.
Then we prove that this is also true when considering maximum 1-designs, i.e., 1-designs
for which the dimension of the subspaces is km=2 (when km is even). We investigate the
problem of determining the intersection pattern of the pointsets defined by the subspaces
of an s-design with hyperplanes. For s D 1, we show that if such pointsets do not cover the
entire space, we obtain a two-intersection set with respect to the hyperplanes. We conclude
the section by showing constructions of maximum 1-designs. As we will see, s-designs
give explicit construction of lossless dimension expanders, without any restriction on the
size of the field.

Subsequently, we point out a connection between sum-rank metric codes and subspace
designs, already developed in [77]. The sum-rank metric has been recently investigated
especially because of the performance of multishot network coding based on sum-rank
metric codes, see [78]. This metric extends the Hamming and rank metric and it is still
gaining attention. Indeed, important and fundamental results were achieved not long ago,
see, e.g., [25, 64, 65, 67, 76].

In this paper, we characterize those subspaces defining optimal sum-rank metric codes
(that is the ones satisfying equality in the Singleton bound, known as maximum sum-
rank metric codes) in terms of subspace designs. Since the sum-rank metric generalizes
the Hamming and rank metric, this connection extends the well-known correspondence
between linear maximum distance separable codes and arcs in projective spaces for the
Hamming metric (see [8] for a survey on this topic) and linear maximum rank distance
codes and scattered subspaces/linear sets for the rank metric (see [81]). Those subspace
designs will be called optimal subspace designs (see Section 5.3). By surveying the known
examples of linear MSRD codes, we will show the associated subspace designs. Another
important way of constructing subspace designs from a fixed one is by using two types of
dualities known as ordinary duality and Delsarte duality, the latter one is defined through
the connection with sum-rank metric codes. We will then explore how to obtain subspace
designs from strong subspace designs via subspace evasive subspaces, intermediate fields,
high-degree places and Cameron–Liebler sets. Finally, we will study subspace designs
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with the property of capturing the structure of hyperplanes, that is, their elements contain
a basis of every hyperplane. We call them cutting design, since they represent an extension
of the notion of cutting blocking sets recently introduced by Bonini and Borello in [22].
We then show how to construct cutting designs from known (linear) cutting blocking sets.
Similar to the case of cutting blocking sets, cutting designs are in correspondence with
minimal sum-rank metric codes. Minimal codes attracted attention for their use in secret
sharing schemes (see [70]) and very recently in [2] this notion was extended to the rank
metric. In this paper we introduce minimal sum-rank metric codes, that naturally extend
those in the Hamming and rank metric.

1.1. Organization of the paper

The paper is organized as follows. In Section 2 we briefly describe some preliminaries on
linearized polynomials, linear sets, subspace evasive subspaces and scattered subspaces.
In Section 3 we start by analyzing the first properties, constructions and bounds of sub-
space designs. In Section 4 we present constructions of maximum s-designs, we describe
the intersection pattern between a maximum 1-design and the hyperplanes, and then we
provide some examples. Surprisingly, maximum 1-designs give examples of two-weight
codes and strongly regular graphs. In Section 5 we recall the connection between systems
and linear sum-rank metric codes, which allows us to provide a bound on the parameters
of a subspace design and to define the optimal subspace designs. In Section 6 we describe
two duality operations on a subspace design and in Section 7 we provide more bounds
and constructions. In Section 8 we show some methods to obtain a subspace design from
a strong subspace design. Section 9 is devoted to the study of cutting designs and their
connection with minimal sum-rank metric codes. In Section 10 we apply the developed
theory of maximum s-designs to dimension expanders. We conclude the paper with Sec-
tion 11, in which we list some open problems/questions.

2. Preliminaries

We start by fixing the following notation. Let p be a prime and let h be a positive integer.
We fix q D ph and denote by Fq the finite field with q elements. Moreover, if m is a
positive integer, then we may consider the extension field Fqm of degreem over Fq . Recall
that for the extension Fqm=Fq , the norm of an element ˛ 2 Fqm is defined as

Nqm=q.˛/ WD
m�1Y
iD0

˛q
i

;

and the trace of an element ˛ 2 Fqm is defined as

Trqm=q.˛/ WD
m�1X
iD0

˛q
i

:
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We list some more notation which will be repeatedly used in this paper.

• Œi � D ¹1; : : : ; iº;

• Sn denotes the symmetric group of order n;

• V.k; q/ denotes a k-dimensional Fq-vector space;

• hU iFq denotes the Fq-span of U , with U a subset of a vector space V ;

•
�
a
b

�
q
D

.qa�1/���.qa�bC1�1/

.qb�1/���.q�1/
denotes the number of b-dimensional Fq-subspaces of Faq ;

• x � y WD
Pk
iD1 xiyi , if x D .x1; : : : ; xk/; y D .y1; : : : ; yk/ 2 Fkq ;

• HomFq .V1; V2/ denotes the set of Fq-linear maps between two Fq-vector spaces V1
and V2;

• EndFq .V / D HomFq .V; V /, where V is an Fq-vector space;

• GL.k; q/ denotes the general linear group;

• �L.k; q/ denotes the general semilinear group;

• FqŒx� denotes the set of polynomials in the indeterminate x with coefficients over Fq ;

• FqŒx�<h denotes the set of polynomials in the indeterminate x with coefficients over
Fq and degree less than h;

• PG.k � 1; q/ denotes the projective Desarguesian space of dimension k and order q;

• PG.V;Fq/, with V an Fq-vector space, denotes the projective space obtained by V ;

• hSi denotes the span of the points in S , with S a subset of PG.k � 1; q/.

2.1. Linearized polynomials

Let Gal.Fqm=Fq/ be the Galois group of Fqm over Fq and � a generator of Gal.Fqm=Fq/.
A � -polynomial (or � -linearized polynomial) is a polynomial of the form

F.x/ D f0x C f1x
�
C f2x

�2
C � � � C fdx

�d
2 Fqm Œx�:

The � -degree of a nonzero � -polynomial is defined naturally as max¹i W fi ¤ 0º and it
is denoted by deg� .F.x//. We denote by Lm;� the set of � -linearized polynomials and we
equip it with the usual addition ‘C’ between polynomials of Fqm Œx� and the composition
‘ı’ defined as

ax�
i

ı bx�
j

D a� i .b/x�
iCj

;

and then extended to � -polynomials by associativity and distributivity. With these two
operations and with the multiplication by elements in Fqm , Lm;� is an Fq-algebra and
an Fqm -vector space. For any element F.x/ D

Pd
iD0 fix

� i 2 Lm;� , one can consider
the map

�F W Fqm ! Fqm ; ˇ 7! F.ˇ/ WD

dX
iD0

fi�
i .ˇ/:



P. Santonastaso and F. Zullo 6

Then the map F.x/ 7!�F is an Fq-algebra epimorphishm between Lm;� and EndFq .Fqm/.
So we can identify F.x/ with the map �F , and we will write rkq.F.x// and ker.F.x// to
indicate the rank over Fq of �F and its kernel, respectively.

For � -polynomials, we have the following bound on the number of roots.

Theorem 2.1 (See [43, Lemma 3.2] and [42, Theorem 5]). Consider F.x/ 2 Lm;� with
F.x/ ¤ 0. Then

dimFq .ker.F.x/// � deg� .F.x//:

The ring Lm;� is a right-Euclidean domain with respect to � -degree. This implies that
if F1.x/, F2.x/ are nonzero � -polynomials, then the notions of greatest common right
divisor, which we denote by gcrd.F1.x/;F2.x//, and least common left multiple, denoted
by lclm.F1.x/; F2.x// are well defined.

Let F.x/ D f0x C f1x� C � � � C fdx�
d
2 Lm;� and ˛ 2 F�qm . Denote by F˛.x/ the

� -polynomial

F˛.x/ WD

dX
iD0

fi Ni� .˛/x
� i ;

where Ni� .˛/ D
Qi�1
jD0 �

j .˛/.
For a nonzero � -polynomial F.x/ 2 Lm;� , and � 2 F�q , the �-value for F.x/ is the

integer
d�.F.x// D deg.gcrd.F.x/; x�

n

� �x//;

see [72, Proposition 3] and [76, Definition 2.8]. The �-value of a � -polynomial F.x/
gives information on the number of roots of F˛.x/ with Nqm=q.˛/ D � as stated in the
following result.

Theorem 2.2 (See [76, Theorem 3.10, Proposition 6.1]). Let ˛1; : : : ; ˛t 2 F�qm and let
Nqm=q.˛i /D �i . Suppose that �i ¤ �j if i ¤ j . Let F.x/D f0xC f1x� C � � � C fdx�

d
2

Lm;� be a nonzero � -polynomial with deg� .F.x// D d . We have the following:

(1) dimFq .ker.F˛i .x/// D d�i .F.x// for any i 2 Œt �,

(2)
Pt
iD1 dimFq .ker.F˛i .x/// � deg� .F.x//;

(3) if
Pt
iD1 dimFq .ker.F˛i .x/// D d; then

Nqm=q.f0=fd / D .�1/dm
tY
iD1

�
d�i .F .x//

i :

2.2. Subspace evasive subspaces and scattered subspaces

Let V be any non-empty set. In [82], Pudlák and Rödl introduced the notion of being
evasive for a subset of V with respect to a family F of subsets of V , in order to construct
explicit Ramsey graphs. Later, this notion was adapted to the case in which V is a vector
space and F the family of all subspaces of V with a fixed dimension, since they turn out
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to be very useful in constructing explicit list decodable codes with optimal rate, see, e.g.,
[36, 44, 48]. In this paper we will mainly use the following notion of subspace evasive
subspace, which corresponds to [13, Definition 1.1].

Definition 2.3. An Fq-subspace S � V D V.k; qm/ is said to be .s; r/q-evasive if

dimFqm .hSiFqm / � s and dimFq .S \W / � r;

for every Fqm -subspace W � V of dimension s,

Subspace evasive subspaces have been recently investigated in [13], where several
properties and constructions have been presented. We list some of them, which will be
useful for our purposes.

Proposition 2.4 (See [13, Proposition 2.6]). If U is a .s; r/q-evasive subspace in V D
V.k; qm/, then it is also .s � h; r � h/q-evasive for any h 2 ¹0; : : : ; s � 1º.

Bounds on the dimension of a subspace evasive subspace have been provided.

Theorem 2.5. Let U be an Fq-subspace of V D V.k; qm/ of dimension d . Then the
following hold:

(1) If U is an .s; s/q-evasive subspace andm� sC 1, then d �mk=.s C 1/ (see [19,
Theorem 4.3], [32, Theorem 2.3], [13, Corollary 4.9]).

(2) If U is an .s; s/q-evasive subspace, hU iFqm D V and m < s C 1, then d � k
(see [32, Theorem 2.3]).

(3) If U is an .k � 1; r/q-evasive subspace and r < .k � 1/m, then d � mC r � 1
(see [13, Theorem 4.2]).

(4) If U is an .k � 1; r/q-evasive subspace and r < k � 2C m=.k � 1/, then d �
mC r � 1 � k (see [13, Theorems 4.2]).

(5) If U is an .s; r/q-evasive subspace and r < m, then d � mk � mks=.r C 1/
(see [13, Corollary 4.9]).

(6) If U is an .s; r/q-evasive subspace, then jU j � .qr � 1/.qkm � 1/=.qsm � 1/C 1
(see [13, Theorem 4.3]).

Moreover, we recall the following results from [13].

Proposition 2.6 (See [13, Propositions 4.6 and 4.7]). Let V D V.k; qm/.

(i) If r � .k � 2/.m � 1/C 1, then there exists a .k � 1; r/q-evasive subspace in V
of dimension mC r � 1.

(ii) If km is even and r � km=2 � m C 1, then there exists a .k � 1; r/q-evasive
subspace in V of dimension mC r � 1.

For a .s; r/q-evasive subspaceU , since dimFqm .hSiFqm /� s, it is easy to see that r � s.
A particular class of subspace evasive subspaces is given by the s-scattered subspaces.
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Definition 2.7. An Fq-subspace U of V D V.k; qm/ is called s-scattered 1 � s � k � 1,
if hU iFqm D V and it is also an .s; s/q-evasive subspace.

Scattered subspaces were first introduced by Blokhuis and Lavrauw in [19] for h D 1,
then generalized independently by Lunardon in [61] and Sheekey and Van de Voorde
in [87] for h D k � 1, and then in [32] for general h. Special attention has been paid
for these subspaces because of their connection with maximum rank distance codes, see,
e.g., [81, 86, 92].

There are known constructions of s-scattered subspaces in V D V.k;qm/ of dimension
mk=.s C 1/ in the following cases:

(a) mk is even, see [7, 14, 19, 31],

(b) s C 1 j k and m � s C 1, see [32, 74],

(c) mk0 is even, s D m � 3 and k D k0.m � 2/=2, see [32].

More recently, in [13], a construction of a 1-scattered subspace of dimension 7 in
V.3; q5/, where q D ph and p 2 ¹2; 3; 5º, was exhibited.

Moreover, in [92, Corollary 5.2], s-scattered subspaces were characterized as follows.
If sC 1 j km andm� sC 3, then an Fq-subspaceU of dimension km=.sC 1/ in V.k;qm/
is s-scattered if and only if it is an .k � 1; km=.s C 1/ �mC s/q-evasive subspace.

2.3. Linear sets

Let V be a k-dimensional Fqm -vector space and let ƒ D PG.V; Fqm/ D PG.k � 1; qm/.
Let U ¤ ¹0º be an Fq-subspace of V of dimension n, then the set of points

LU D
®
huiFqm W u 2 U n ¹0º

¯
� ƒ

is said to be an Fq-linear set of rank n.
The weight of a subspace � D PG.W;Fqm/ � ƒ in LU is defined as

wLU .�/ D dimFq .U \W /:

Denote by Ni the number of points of weight i in LU .
The following relations hold:

jLU j �
qn � 1

q � 1
(2.1)

and

N1 CN2.q C 1/C � � � CNn.q
n�1
C � � � C q C 1/ D qn�1 C � � � C q C 1: (2.2)

When jLU j satisfies equality in (2.1), LU is called scattered, or equivalently, if all the
points of LU have weight one. It is easy to see that LU is scattered if and only if U
is .1; 1/q-evasive subspace, that is, a 1-scattered subspace without the assumption that it
spans the entire space.
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Remark 2.8. LetLU1 ; : : : ;LUt be t Fq-linear sets in PG.k�1;qm/ of rankm, with t < q.
Then there exists a point P 2 PG.k � 1; qm/ n .LU1 [ � � � [ LUt /. This immediately fol-
lows from (2.1). Indeed,

jLU1 [ � � � [ LUt j � t
qm � 1

q � 1
� qm � 1;

and qm � 1 is less than the number of the points in PG.k � 1; qm/. As a consequence, if
U1; : : : ; Ut are t Fq-subspaces in V D V.k; qm/ of dimension m, with t < q, then there
exists v 2 V n ¹0º such that Ui \ hviFqm D ¹0º for every i 2 ¹1; : : : ; tº.

We refer to [57,80] for comprehensive references on linear sets and their applications.

3. First properties of subspace designs

In this section we will provide some general properties and examples of subspace designs.

Proposition 3.1. If .U1; U2; : : : ; Ut / is an .s; A/q-subspace design in V D V.k; qm/,
then s � A.

Proof. Let W D hU1; : : : ; Ut iFqm . Since dimFqm .W / � s, there exist®
ui;j W i 2 ¹1; : : : ; tº and j 2 ¹1; : : : ; jiº

¯
� W

such that ui;j 2 Ui , for i 2 ¹1; : : : ; tº, where the ui;j ’s are Fqm -linearly independent
and j1 C � � � C jt � s. This implies that dimFq .Ui \ W / � ji for any i , and so A �Pt
iD1 dimFq .Ui \W / �

Pt
iD1 ji D s.

An .s; A/q-subspace design of V D V.k; qm/ is also an .i; A0/q-subspace design for
any i � s and some integer A0 � A.

Proposition 3.2. If .U1; : : : ; Ut / is an .s; A/q-subspace design in V D V.k; qm/, then it
is also an .s � s0;A� s0/q-subspace design in V , for any s0 2 ¹0; : : : ; s � 1º. In particular,
for s > 1, an s-design is also an i -design for any i � s.

Proof. Let choose s0 D 1. By contradiction, suppose that there exists an Fqm -subspace H
having dimension s � 1 of V such that

Pt
iD1 dimFq .Ui \H/ � A. Since

dimFqm .hU1; : : : ; Ut iFqm / � s;

the unionU1 [ � � � [Ut is not contained inH . Hence, there exists u 2 .U1 [ � � � [Ut / nH
so that
tX
iD1

dimFq .Ui \ hu;H iFqm / �

tX
iD1

.dimFq .Ui \H/C dimFq .Ui \ huiFqm // � AC 1;

a contradiction. The assertion for a general s0 follows by repeating the previous argu-
ment s0 times.
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As a direct consequence, the elements of an .s; A/q-subspace design are related to
.s � s0; A0/q-evasive subspaces for any s0 as follows.

Corollary 3.3. If .U1; : : : ; Ut / is an .s; A/q-subspace design in V D V.k; qm/, then for
every Fqm -subspace H having dimension s � s0 and for any i 2 Œt �,

dimFq .H \ Ui / � A � s
0:

In particular, if dimFqm .hUi iFqm / � s � s
0, then we have that Ui is an .s � s0; A � s0/q-

evasive subspace.

In the next proposition, we show how to extend the subspaces of an .s; A/q-subspace
design and how this reflects on the parameter A.

Proposition 3.4. Suppose that there exists an .s;A/q-subspace design .U1; : : : ;Ut / where
dimFq .Ui / D ni for every i 2 ¹1; : : : ; tº in V D V.k; qm/. Let j1; : : : ; jt 2 N be such
that 0 � ji � mk � ni for every i 2 ¹1; : : : ; tº, and

Pt
iD1 ji D s

0. Then there exists an
.s;AC s0/q-subspace design .U 01; : : : ;U

0
t / in V such that dimFq .U

0
i /D ni C ji , for every

i 2 Œt �.

Proof. Without loss of generality, suppose thatmk�n1>0. Then there existsw 2V nU1.
Replacing U1 by U 01 D hU1; wiFq , we obtain that .U 01; U2; : : : ; Ut / is an .s; A C 1/q-
subspace design in V . Indeed, suppose for the contrary that there exist ui;1; : : : ui;`i 2 Ui
such that `1 C � � � C `t D AC 2 and the sets

D1 D ¹w C u1;1; : : : ; w C u1;`1º � U
0
1

and
Di D ¹ui;1; : : : ; ui;`i º � Ui ; 2 � i � t

are sets of Fq-linearly independent elements contained in the same s-dimensional Fqm -
subspace H of V , for every i . Note that `1 > 0, otherwise

tX
iD1

dimFq .Ui \H/ D

tX
iD2

dimFq .Ui \H/ � AC 2 > A;

that is a contradiction to .U2; : : : ; Ut / being an .s; A/q-subspace design. Then D01 D
¹u1;1 � u1;`1 ; : : : ; u1;`1�1 � u1;`1º � U1 is a set of `1 � 1 Fq-linearly independent ele-
ments of U1 inH and

Pt
iD1 dimFq .Ui \H/ � AC 1, a contradiction. The result follows

by repeating the previous argument s0 times.

We can construct a subspace design by extending a subspace design lying in a hyper-
plane of the entire space.

Proposition 3.5. Let .U1; : : : ;Ut / be a .k � 1;A/q-subspace design in V DV.k;qm/with
dimFq .Ui / D ni . Let ` be a positive integer such that

Pt
iD1 ni � A � ` � m. Then there

exists a .k; AC `/q-subspace design in V 0 D V.k C 1; qm/ with dimFq .Ui / D ni C ei ,
for every i , such that

Pt
iD1 ei D `.
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Another way to construct subspace designs is via the direct sum of subspace designs.

Theorem 3.6. Let V DV1˚V2, where Vi DV.ki ;qm/ and V DV.k;qm/. If .U 01; : : : ;U
0
t /

is an .s; A1/q-subspace design in V1 and .U 001 ; : : : ; U
00
t / is an .s; A2/q-subspace design

in V2, then .U1; : : : ; Ut /, where Ui D U 0i ˚U
00
i , for every i 2 Œt �, is an .s;A1 CA2 � s/q-

subspace design in V with dimFq .Ui / D dimFq .U
0
i /C dimFq .U

00
i / for every i .

Proof. It is easy to see that

dimFqm .hU1; : : : ; Ut iFqm / � s:

Now, suppose that there exists an s-dimensional Fqm -subspace W of V such that

tX
iD1

dimFq .W \ Ui / � A1 C A2 � s C 1: (3.1)

Note that by Proposition 3.1, A1CA2 � sC 1 > A1 and A1CA2 � sC 1 > A2. Clearly,
W cannot be contained in V1, since .U 01; : : : ;U

0
t / is an .s;A1/q-subspace design in V1. Let

W1 WD W \ V1 and h WD dimFqm .W1/. Then h < s and, by Proposition 3.2, the ordered
set of Fq-subspaces .U 01; : : : ; U

0
t / is a .h;A1 � s C h/q-subspace design in V1. We denote

hU 0i ; W \ Ui iFq by SUi . Then Grassmann’s formula and (3.1) imply

tX
iD1

dimFq .
SUi / �

tX
iD1

dimFq .U
0
i / � A1 C A2 � s C 1 � .A1 � s C h/

D A2 C 1 � h: (3.2)

Consider the quotient space V=V1 (which is isomorphic to V2) and consider the subspace
T WD W C V1 of V=V1. Then dimFqm .T / D s � h and T contains the Fq-subspaces

Mi WD SUi C V1;

for every i 2 Œt �. Since Mi is also contained in the Fq-subspace Ui C V1 D U 00i C V1 for
any i , the ordered set .M1; : : : ;Mt / is an .s; A2/q-subspace design in V=V1, and hence,
by Proposition 3.2, .M1; : : : ;Mt / is also an .s � h; A2 � h/q-subspace design in V=V1.
On the other hand,

tX
iD1

dimFq .Mi \ T / D

tX
iD1

dimFq .Mi / D

tX
iD1

dimFq .
SUi / �

tX
iD1

dimFq .
SUi \ V1/

�

tX
iD1

dimFq .
SUi / �

tX
iD1

dimFq .Ui \ V1/

D

tX
iD1

dimFq .
SUi / �

tX
iD1

dimFq .U
0
i /;
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and hence, (3.2) implies

tX
iD1

dimFq .Mi \ T / � A2 � hC 1;

a contradiction to the fact that .M1; : : : ;Mt / is also an .s � h;A2 � h/q-subspace design
in V=V1.

The above result can be generalized as follows.

Corollary 3.7. Let V D V1 ˚ � � � ˚ V`, where Vi D V.ki ; q
m/ and V D V.k; qm/. If

.Ui;1; : : : ; Ui;t / is an .s; Ai /-subspace design in Vi , for every i 2 Œ`�, then .U1; : : : ; Ut /,
where Ui D U1;i ˚ � � � ˚ U`;i is an .s;

P`
iD1 Ai � .` � 1/s/q-subspace design in V with

dimFq .Ui / D
P`
jD1 dimFq .Uj;i /.

As a consequence of Theorem 2.5, we obtain the following bounds on the dimensions
of the subspaces of a subspace design.

Corollary 3.8. Suppose that .U1; : : : ;Ut / is an .s;A/q-subspace design in V D V.k;qm/.
Let ni D dimFq .Ui / for every i 2 Œt � and suppose that dimFqm .hUi iFqm / � s for every i .

(1) If s D k � 1 and A < .k � 1/m, then ni � mC A � 1 for any i , and hence

n1 C � � � C nt � t .mC A � 1/:

(2) If s D k � 1 and A < k � 2Cm=.k � 1/, then ni � mC A � 1 � k, and hence

n1 C � � � C nt � t .mC A � 1 � k/:

(3) If A < m, then ni � mk �mks=.AC 1/, and hence

n1 C � � � C nt � t
�
mk �

mks

AC 1

�
:

(4) More generally, ni � .qA � 1/.qkm � 1/=.qsm � 1/C 1, and hence

n1 C � � � C nt � t
� .qA � 1/.qkm � 1/

qsm � 1
C 1

�
:

However, some of the bounds provided in the above corollary still hold when consid-
ering a subspace design with no assumptions on the Fqm -span of its elements. The proof
follows the same arguments of [32, Theorem 2.3] (see also [13, Corollary 4.9]) with the
aid of Corollary 3.3.

Theorem 3.9. Suppose that .U1; : : : ;Ut / is an s-design in V D V.k; qm/. Then, for every
i 2 Œt �,

dimFq .Ui / �

´
k if m < s C 1;
mk
sC1

if m � s C 1:
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Proof. Let U be in ¹U1; : : : ; Utº and denote by n its dimension. Since .U1; : : : ; Ut / is an
s-design,

dimFq .Ui \W / � s;

for every s-dimensional Fqm -subspace W of V . If hU iFqm D V , then U is an s-scattered
Fq-subspace and the result follows from Theorem 2.5 (1)–(2). Suppose that hU iFqm ¤ V .
Then we can consider U as an s-scattered subspace in hU iFqm and apply again The-
orem 2.5 to get the assertion.

Remark 3.10. The above theorem extends [32, Theorem 2.3] to any subspace which is
part of an s-design. This condition is weaker than the one of being s-scattered, since we
do not require that the subspace spans over Fqm the entire space or an Fqm -subspace of
dimension s as done in [13].

Subspaces attaining the bound of the previous theorem have the property that their
span over Fqm coincides with the ambient space.

Proposition 3.11. Let s be a positive integer with s < k. Let U be an Fq-subspace of
V D V.k; qm/ such that

dimFq .U \W / � s;

for every s-dimensional Fqm -subspace W of V . Suppose that

dimFq .U / D

´
k if m < s C 1;

b
mk
sC1
c if m � s C 1:

Then hU iFqm D V .

Proof. Assume that m < s C 1 and dimFq .U / D k. Since k > s, first we note that U is
not contained in any s-dimensional Fqm -subspace of V . Now, suppose by contradiction
that hU iFqm D T , where T is an Fqm -subspace of V of dimension k0 < k. Then, by
Theorem 2.5, since U is an .s; s/q-evasive subspace contained in T andm< sC 1, we get

k D dimFq .U / � k
0;

a contradiction as k0 < k, so this implies that hU iFqm D V . Assume now that m � s C 1
and dimFq .U / D bmk=.s C 1/c. Since m � s C 1, we get bmk=.s C 1/c > s and that
U is not contained in any s-dimensional Fqm -subspace of V . Suppose by contradiction
that hU iFqm D T , where T is an Fqm -subspace of V of dimension k0 < k. Then, by
Theorem 2.5, since U is an .s; s/q-evasive subspace contained in T andm� sC 1, we get

mk � s

s C 1
�

j mk

s C 1

k
D dimFq .U / �

mk0

s C 1
H) s � m.k � k0/ � m;

a contradiction to the fact that s < m.

Applying the bound of Theorem 3.9 to the elements of an s-design, we obtain the
following.
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Corollary 3.12. Suppose that .U1; : : : ; Ut / is an s-design in V D V.k; qm/. Let ni D
dimFq .Ui / for every i 2 Œt �. If m � s C 1, then

n1 C � � � C nt � t
mk

s C 1
:

As we will see in the next sections, the bounds provided in Corollary 3.8 for subspace
designs are not sharp in general and we will see how to improve them (at least in some
cases). Whereas, for the bound of Corollary 3.12 we will provide some constructions when
m � s C 1 satisfies equality, i.e., we will construct examples of maximum s-design.

Definition 3.13. Let .U1; : : : ; Ut / be an s-design in V D V.k; qm/ such that m � s C 1.
If

tX
iD1

dimFq .Ui / D t
mk

s C 1
;

then .U1; : : : ; Ut / will be called a maximum s-design.

Since each subspace of a maximum s-design has dimension mk=.s C 1/, from Pro-
position 3.11, we get the following.

Proposition 3.14. Every maximum s-design is non-degenerate.

4. Maximum s-designs

This section is mainly devoted to the study of Problem 1.3 under certain assumptions.
Indeed, we investigate maximum s-designs, i.e., s-designs attaining equality in Corol-
lary 3.8. Their interest is also related to the fact they can be seen as an extension of
s-scattered subspaces in the framework of subspace designs.

4.1. Constructions

We start by constructing examples of .k � 1/-designs by partitioning an Fqm -basis of the
ambient space.

Proposition 4.1. Let ˛1; : : : ; ˛k be an Fqm -basis of V D V.k;qm/. Let P D ¹X1; : : : ;Xtº

be a partition of the set ¹˛1; : : : ;˛kº, with t � 2. LetUi be the Fq-subspace of V generated
by the elements of Xi over Fq , for any i 2 Œt �. Then .U1; : : : ; Ut / is a .k � 1/-design.

Proof. Let W � V be a .k � 1/-dimensional Fqm -subspace and assume in addition thatPt
iD1 dimFq .Ui \W / � k. Since

k �

tX
iD1

dimFq .Ui \W / �

tX
iD1

dimFq .Ui / D k;

it follows that dimFq .Ui \W / D dimFq .Ui / and therefore Ui � W for every i , that is,
˛1; : : : ; ˛k 2 W , a contradiction.
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A more involved construction is the following, which turns out to be also maximum.

Theorem 4.2. Let ˛1; : : : ; ˛t 2 F�qm , t < q, and let Nqm=q.˛i / D �i , for any i . Suppose
that �i ¤ �j for every i ¤ j . Let � 2 Fqm be such that Nqm=q.�/.�1/km … G, with G
the multiplicative subgroup of F�q generated by ¹�1; : : : ; �tº. Let Si be an ni -dimensional
Fq-subspace of Fqm for any i 2 Œt �. If k �

P
i ni , then .U1; : : : ; Ut / is a .k � 1/-design

of Fkqm , where

Ui D
®
.xC �Nk� .˛i /�

k.x/; �.x/N1� .˛i /; �
2.x/N2� .˛i /; : : : ; �

k�1.x/Nk�1� .˛i // W x 2 Si
¯

and dimFq .Ui /D ni for every i 2 Œt �. If ni Dm for any i and k �m, then it is a maximum
.k � 1/-design.

Proof. We divide the proof into two steps.

Step 1. We prove that
Pt
iD1 dimFq .H \Ui /� k � 1, for each Fqm -hyperplaneH of Fkqm .

Let H be such a hyperplane and suppose that H is defined by the equation h0x0 C � � � C
hk�1xk�1 D 0. Let FH .x/D h0xC h1�.x/C � � � C hk�1�k�1.x/C h0��k.x/ 2Lm;� .
Observe that for any i , we have

H \ Ui D
®
.x C �Nk� .˛i /�

k.x/; �.x/N1� .˛i /; �
2.x/N2� .˛i /; : : : ; �

k�1.x/Nk�1� .˛i // W

h0.x C �Nk� .˛i /�
k.x//C � � � C hk�1�

k�1.x/Nk�1� .˛i / D 0; x 2 Si
¯
:

In particular, dimFq .H \ Ui / D dimFq .ker.FH˛i .x// \ Si /. Hence,

tX
iD1

dimFq .H \ Ui / D

tX
iD1

dimFq .ker.FH˛i .x// \ Si / � deg� .F
H .x//;

where the last inequality follows by Theorem 2.2 (2). If h0D0, then deg� .F
H
˛i
.x//�k � 1

and we have the desired inequality. Now, suppose that h0 ¤ 0 and so deg� .F
H
˛i
.x// D k.

If
Pt
iD1 dimFq .ker.FH˛i .x/// D k, then by Theorem 2.2 (3), we have

Nqm=q.�/ D .�1/km
tY
iD1

�
d�i .F

H .x//

i ;

a contradiction on the assumptions on �.

Step 2. We show that hU1; : : : ; Ut iFqm D Fkqm . Let ¹ˇi;1; : : : ; ˇi;ni º be an Fq-basis of Si
for every i 2 Œt �. Then

Zi D
®
.ˇi;j C �Nk� .˛i /�

k.ˇi;j /; �.ˇi;j /N1� .˛i /; : : : ; �
k�1.ˇi;j /Nk�1� .˛i // W j 2 Œni �

¯
is an Fq-basis ofUi , for every i 2 Œt �, and so hU1; : : : ;Ut iFqm D hZ1; : : : ;Zt iFqm . Then we
have the assertion if the row span (over Fqm ) or, equivalently, the column span (over Fqm )
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of the following matrix has dimension over Fqm equal to k:

Z D

0BBBBBBBBBBBBBBBBBBBBB@

ˇ1;1 C �Nk� .˛1/�
k.ˇ1;1/ �.ˇ1;1/N1� .˛1/ � � � �k�1.ˇ1;1/Nk�1� .˛1/

ˇ1;2 C �Nk� .˛1/�
k.ˇ1;2/ �.ˇ1;2/N1� .˛1/ � � � �k�1.ˇ1;2/Nk�1� .˛1/

:::
:::

: : :
:::

ˇ1;n1 C �Nk� .˛1/�
k.ˇ1;n1/ �.ˇ1;n1/N

1
� .˛1/ � � � �k�1.ˇ1;n1/N

k�1
� .˛1/

:::
:::

: : :
:::

ˇt;1 C �Nk� .˛t /�
k.ˇt;1/ �.ˇt;1/N1� .˛t / � � � �k�1.ˇt;1/Nk�1� .˛t /

ˇt;2 C �Nk� .˛t /�
k.ˇt;2/ �.ˇt;2/N1� .˛t / � � � �k�1.ˇt;2/Nk�1� .˛t /

:::
:::

: : :
:::

ˇt;nt C �Nk� .˛t /�
k.ˇt;nt / �.ˇt;nt /N

1
� .˛t / � � � �k�1.ˇt;nt /N

k�1
� .˛t /

1CCCCCCCCCCCCCCCCCCCCCA

:

Suppose there exists an Fqm -linear combination of the columns of the matrix Z which
equals the zero vector, with coefficients h0; h1; : : : ; hk�1 2 Fqm and not all of them are
zero. Let F 0.x/D h0x C h1x� C � � � C hk�1x�

k�1
C h0�x

�k . This means F 0˛i .ˇi;j /D 0
for every i 2 Œt � and j 2 Œni �. This implies that Si � ker.F 0˛i .x// for every i and so
ni � dimFq .ker.F 0˛i .x///. Since hi ’s are not all zero, F 0.x/ is not the zero polynomial
and, by Theorem 2.2 (2), we have

tX
iD1

ni � deg� .F
0.x//:

If deg� .F
0.x// � k � 1, we have a contradiction on the assumptions on k. On the other

hand, if deg� .F
0.x// D k, then

Pt
iD1 ni D k and, by Theorem 2.2 (3), we have

Nqm=q.�/ D .�1/km
tY
iD1

�
d�i .F

0.x//

i ;

a contradiction on the assumptions on �. This means that h0 D h1 D � � � D hk�1 D 0 and
so the columns of Z are Fqm -linearly independent.

Remark 4.3. The matrix Z which appears in step 2 of the above proof when � D 0,
t D 1 and ˛1 D 1 coincides with a Moore matrix, which is strongly related to MRD codes,
see [15, 30]. When � ¤ 0, t D 1 and ˛1 D 1, the matrix Z still has similar properties of
the Moore matrix, see [16, Section 3].

Remark 4.4. The condition .�1/kmNqm=q.�/ … G in Theorem 4.2 produces a restriction
on t . Indeed, since the multiplicative group F�q is a cyclic group, there exists a subgroup
of order .q � 1/=r , for every positive divisor r of q � 1. For this reason, we can construct
subspace designs with � ¤ 0 if t is not larger than the size of the biggest proper subgroup
of F�q , that is, .q � 1/=r 0, where r 0 is the smallest prime diving q � 1. IfG D F�q , the only
possibly choice for � is zero.
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Remark 4.5. As seen in the above remark the maximum number of subspaces in the
construction of Theorem 4.2 is obtained when �D 0. For this reason we explicitly describe
them. Let t < q be an integer. Let ˛1; : : : ; ˛t 2 F�qm , let Nqm=q.˛i /D �i , and suppose that
�i ¤ �j for i ¤ j . Let Si be an ni -dimensional Fq-subspace of Fqm for any i 2 Œt �. By
Theorem 4.2, if k �

P
i ni , then .U1; : : : ; Ut /, where

Ui D
®
.x; �.x/N1� .˛i /; �

2.x/N2� .˛i /; : : : ; �
k�1.x/Nk�1� .˛i // W x 2 Si

¯
is a .k � 1/-design of Fkqm and dimFq .Ui / D ni for every i 2 Œt �. If ni D m for any i and
k � m, then it is a maximum .k � 1/-design.

Remark 4.6. The above example is the geometric description of the MSRD codes found
by Neri in [76], known as linearized twisted Reed–Solomon codes, which extends the
family of linearized Reed–Solomon codes found by Martínez-Peñas in [64].

As a consequence of Theorem 3.6 and Corollary 3.7, we obtain a way to construct
s-designs via the direct sum of subspaces.

Theorem 4.7. Let V D V1 ˚ � � � ˚ V`, where Vi D V.ki ; q
m/ and V D V.k; qm/. If

.Ui;1; : : : ; Ui;t / is an s-design in Vi , for every i 2 Œ`�, then .U1; : : : ; Ut /, where Uj D
U1;j ˚ � � � ˚ U`;j , for j 2 Œt �, is an s-design in V . Moreover, if .Ui;1; : : : ; Ui;t / is a
maximum s-design in Vi for every i , then .U1; : : : ; Ut / is a maximum s-design in V .

As a consequence of Theorems 4.2 and 4.7, we prove the existence of a maximum
s-subspace design in V.k; qm/ when s C 1 j k and t � q � 1.

Theorem 4.8. If s C 1 divides k, m � s C 1 and t � q � 1, then there exists a maximum
s-design in V D V.k; qm/.

Proof. Suppose k D `.sC 1/ and let V D V1˚ � � � ˚ V` in such a way that dimFqm .Vi /D

s C 1 for every i 2 Œ`�. In each of this Vi consider a maximum s-design Ui;1; : : : ; Ui;t
whose existence is guaranteed by Theorem 4.2 (all the subspaces involved have dimen-
sionm). Theorem 4.7 implies that .U1; : : : ;Ut /, whereUj DU1;j ˚ � � � ˚U`;j , for j 2 Œt �,
is an s-design in V . Moreover,

dimFq .Ui / D lm D
km

s C 1
;

for every i , and so .U1; : : : ; Ut / is a maximum s-design in V .

In the next section we will construct examples in which s C 1 does not divide k.

4.2. Intersection with hyperplanes

We give some lower and upper bounds on the sum of the dimensions of intersection
with hyperplanes for a maximum s-design. Let .U1; : : : ; Ut / be a maximum s-design
in V.k; qm/, that is, m � s C 1 and dimFq .Ui / D km=.s C 1/.
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Let H be a hyperplane of V . Then, by Grassmann’s formula, we have

dimFq .Ui \H/ �
mk

s C 1
�m;

so that
tX
iD1

dimFq .Ui \H/ � t
� mk

s C 1
�m

�
:

Recall now the following result from [19] and [32].

Theorem 4.9 (See [19, Theorem 4.2] and [32, Theorem 2.7]). If U is an s-scattered Fq-
subspace of V D V.k; qm/ of dimension km=.s C 1/, then for any .k � 1/-dimensional
Fqm -subspace W of V , we have

mk

s C 1
�m � dimFq .U \W / �

mk

s C 1
�mC s:

Remark 4.10. In [75,92], the distribution of the intersections between an s-scattered Fq-
subspace of dimension km=.s C 1/ and the hyperplanes of V have been determined.

Since each element of a maximum s-design in V.k; qm/ satisfies the assumptions of
Proposition 3.11, by applying Theorem 4.9, we can provide the following bounds on the
dimension of intersection of an s-design with the hyperplanes.

Corollary 4.11. Let .U1; : : : ; Ut / be a maximum s-design in V D V.k; qm/. Then for
every hyperplane W of V ,

t
� mk

s C 1
�m

�
�

tX
iD1

dimFq .Ui \W / � t
� mk

s C 1
�mC s

�
:

However, the above upper bound is too large in general. We can improve it for the case
s D 1 by following the techniques developed in [19].

Theorem 4.12. Let .U1; : : : ; Ut / be a maximum 1-design in V D V.k; qm/. Then

tm.k � 2/

2
�

tX
iD1

dimFq .Ui \H/ �
tm.k � 2/

2
C 1;

for every hyperplane H of V .

Proof. By Corollary 4.11, we have that

tm.k � 2/

2
�

tX
iD1

dimFq .Ui \H/ �
tm.k � 2/

2
C t;

for every hyperplane H of V .
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Let LUi � PG.k � 1; qm/ D PG.V;Fqm/ be the Fq-linear set associated with Ui , for
i 2 Œt �. Since .U1; : : : ; Ut / is a 1-design, it follows that

tX
iD1

dimFq .Ui \ hviFqm / D

tX
iD1

wLUi .P / � 1;

for every P D hviFqm 2 PG.k � 1; qm/. In particular, theLUi ’s are pairwise disjoint. Now
let j 2 Œt � and denote by hj the number of hyperplanes H D PG.H;Fqm/ of PG.k � 1;qm/
such that

tX
iD1

dimFq .Ui \H/ D

tX
iD1

wLUi .H / D
tm.k � 2/

2
C j;

and note that this exactly corresponds to qm � 1 multiplied by the number of hyperplanes
of V whose sum of the dimensions of the intersections with the Ui ’s is tm.k � 2/=2C j .
Our aim is to prove that hj D 0 if j > 1. For this purpose, let us give some relations
involving the hj ’s. Clearly,

tX
jD1

hj D
qmk � 1

qm � 1
: (4.1)

Now, we double count the following sets:

S1 D
®
.H ; P / W H is a hyperplane of PG.k � 1; qm/; P 2 H \ .LU1 [ � � � [ LUt /

¯
;

S2 D
®
.H ; .P1; P2// W H is a hyperplane of PG.k � 1; qm/;

Pi 2 H \ .LU1 [ � � � [ LUt /; P1 ¤ P2
¯
:

First observe that if a hyperplane H is such that

tX
iD1

wLUi .H / D
tm.k � 2/

2
C j;

then there exist `1; : : : ; `t�i 2 N such that

wLUh
.H / D

tm.k � 2/

2
for h 2 ¹`1; : : : ; `t�iº

and

wLUh
.H / D

tm.k � 2/

2
C 1 for h 2 Œt � n ¹`1; : : : ; `t�iº:

Then, by double counting S1, we have

tX
jD0

hj

�
.t � j /

qm.k�2/=2 � 1

q � 1
C j

qm.k�2/=2C1 � 1

q � 1

�
D

�
t
qmk=2 � 1

q � 1

��qm.k�1/ � 1
qm � 1

�
; (4.2)
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and by double counting S2, we obtain
tX
iD0

hj

�
.t � j /

qm.k�2/=2 � 1

q � 1
C j

qm.k�2/=2C1 � 1

q � 1

�
�

�
.t � j /

qm.k�2/=2 � 1

q � 1
C j

qm.k�2/=2C1 � 1

q � 1
� 1

�
D

�
t
qmk=2 � 1

q � 1

��
t
qmk=2 � 1

q � 1
� 1

��qm.k�2/ � 1
qm � 1

�
: (4.3)

Let

j D .t � j /
qm.k�2/=2 � 1

q � 1
C j

qm.k�2/=2C1 � 1

q � 1

for any j 2 Œt �. Note that 0 < 1 < 2 < � � � . Then (4.1), (4.2) and (4.3) give the following
system whose unknowns are the hj ’s:8̂̂̂<̂

ˆ̂:
Pt
jD1 hj D

qmk�1
qm�1

;Pt
jD0 hj j D

�
t q

mk=2�1
q�1

��
qm.k�1/�1
qm�1

�
;Pt

jD0 hj j .j � 1/ D
�
t q

mk=2�1
q�1

��
t q

mk=2�1
q�1

� 1
��
qm.k�2/�1
qm�1

�
:

(4.4)

Let

A D

tX
jD0

hj .j � 0/.j � 1/: (4.5)

Since 0 < 1 < 2 < � � � , to get the assertion, it is enough to prove that A D 0.
The coefficient of hj in (4.5) can be written as

j .j � 1/ � .0 C 1 � 1/j C 01;

so that

A D

tX
jD0

j .j � 1/hj � .0 C 1 � 1/

tX
jD0

jhj C 01

tX
jD0

hj :

Then, using (4.4), (4.5) can be rewritten as follows:

A D
�
t
qmk=2 � 1

q � 1

��
t
qmk=2 � 1

q � 1
� 1

��qm.k�2/ � 1
qm � 1

�
�

�
t
qm.k�2/=2 � 1

q � 1

C .t � 1/
qm.k�2/=2 � 1

q � 1
C
qm.k�2/=2C1 � q

q � 1

��
t
qmk=2 � 1

q � 1

��qm.k�1/ � 1
qm � 1

�
C

�
t
qm.k�2/=2 � 1

q � 1

��
.t � 1/

qm.k�2/=2 � 1

q � 1
C
qm.k�2/=2C1 � 1

q � 1

��qmk � 1
qm � 1

�
:

Straightforward computations yield A D 0. Since

A D

tX
jD2

hj .j � 0/.j � 1/

and j > 0 for any j > 1, it follows that hj D 0 for every j > 1.
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We can determine exactly the weight distributions of the hyperplanes with respect to
a maximum 1-design.

Theorem 4.13. Let .U1; : : : ; Ut / be a maximum 1-design in V D V.k; qm/. For any
hyperplane H of V , there exists a positive integer j such that

tX
iD1

dimFq .Ui \H/ D
tm.k � 2/

2
C j: (4.6)

For every positive integer j , denote by hj the number of hyperplanes H of V such
that (4.6) holds. Then

• hj D 0 for any j � 2,

• h0 and h1 are uniquely determined and8<: h1 D t
qmk=2�1
q�1

;

h0 D
qmk�1
qm�1

� h1;
(4.7)

• h1 is nonzero,

• h0 D 0 if and only if t D .q � 1/.qmk=2 C 1/=.qm � 1/.

Proof. The fact that the sum of the dimensions of the intersections between the Ui ’s and
any hyperplane has form (4.6) and the fact that hj D 0 for any j � 2 are consequences
of Theorem 4.12. As pointed out in the proof of Theorem 4.12, h0 and h1 must satisfy
system (4.4) and, in particular, the first two equations8<: h0 C h1 D qmk�1

qm�1
;

0h0 C 1h1 D
�
t q

mk=2�1
q�1

��
qm.k�1/�1
qm�1

�
;

(4.8)

where

0 D t
qm.k�2/=2 � 1

q � 1
and 1 D .t � 1/

qm.k�2/=2 � 1

q � 1
C
qm.k�2/=2C1 � 1

q � 1
:

Since 1 > 0, the system (4.8) is determined, and hence h0 and h1 are uniquely determ-
ined as in (4.7). If h1 were zero, then system (4.8) implies that8<: h0 D qmk�1

qm�1
;

0h0 D
�
t q

mk=2�1
q�1

��
qm.k�1/�1
qm�1

�
;

that is,
qm.k�2/=2 C qmk D qmk=2 C qm.k�1/;

which cannot happen. Now, suppose that h0 D 0. Then (4.7) implies that8<: h1 D qmk�1
qm�1

;

1h1 D
�
t q

mk=2�1
q�1

��
qm.k�1/�1
qm�1

�
;
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that is,

.t � 1/.qm.k�2/=2 � 1/.qmk � 1/C .qmk � 1/.qm.k�2/=2C1 � 1/

D t .qmk=2 � 1/.qm.k�1/ � 1/;

which can be rewritten as follows:

qm.k�2/=2.qmk=2 � 1/Œ.q � 1/qmk=2 � tqm C q C t � 1� D 0;

and this happens if and only if

t D .q � 1/
qmk=2 C 1

qm � 1
:

This concludes the proof.

As a corollary we obtain examples of two-intersection sets with respect to hyperplanes.

Corollary 4.14. Let .U1; : : : ;Ut / be a maximum 1-design in V D V.k; qm/. Consider the
associated Fq-linear sets LU1 ; : : : ;LUt . Then, for any hyperplane H of PG.k � 1; qm/D
PG.V;Fqm/, we have

jH \ .LU1 [ � � � [LUt /j 2
°
t
qm.k�2/=2 � 1

q � 1
;.t � 1/

qm.k�2/=2 � 1

q � 1
C
qm.k�2/=2C1 � 1

q � 1

±
:

In particular,

• LU1 [ � � � [ LUt is a two-intersection set with respect to hyperplanes if and only if
t ¤ .q � 1/.qmk=2 C 1/=.qm � 1/,

• if t D .q � 1/.qmk=2 C 1/=.qm � 1/, then LU1 [ � � � [ LUt D PG.k � 1; qm/,

• t � .q � 1/.qmk=2 C 1/=.qm � 1/.

Proof. Since .U1; : : : ; Ut / is a maximum 1-design, the LUi ’s are scattered and pairwise
disjoint. This means that

jH \ .LU1 [ � � � [ LUt /j D jH \ LU1 j C � � � C jH \ LUt j:

Theorem 4.13 implies that for any hyperplane H of PG.k � 1; qm/, we have the following
two possibilities:

• jLUi \H j D .qm.k�2/=2 � 1/=.q � 1/ for any i 2 ¹1; : : : ; tº,

• jLUi \H j D .qm.k�2/=2 � 1/=.q � 1/ for any i 2 ¹1; : : : ; tº, except for a j 2 ¹1; : : : ; tº
for which jLUj \H j D .qm.k�2/=2C1 � 1/=.q � 1/.

So, the first part of the assertion is proved. Moreover, if t D .q � 1/.qmk=2 C 1/=.qm � 1/,
then

jLU1 [ � � � [ LUt j D jLU1 j C � � � C jLUt j D t
qmk=2 � 1

q � 1
;
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which is equal to .qmk � 1/=.qm � 1/ and LU1 [ � � � [ LUt D PG.k � 1; qm/. Hence, if
t > .q � 1/.qmk=2 C 1/=.qm � 1/, then at least two distinct LUi ’s meets in at least one
point, a contradiction.

We are going to characterize the maximum 1-designs reaching the bound on t provided
in the last item of the above corollary. First we show that .q � 1/.qmk=2 C 1/=.qm � 1/
is an integer if and only if k is odd and m D 2.

Proposition 4.15. Let m and k be two positive integers such that mk is even and let q be
a prime power. Then .q � 1/.qmk=2 C 1/=.qm � 1/ is an integer if and only if k is odd
and m D 2.

Proof. Let r be the greatest common divisor of qmk=2 C 1 and .qm � 1/=.q � 1/ D
qm�1 C � � � C q C 1. Clearly, .q � 1/.qmk=2 C 1/=.qm � 1/ is an integer if and only if
r D .qm � 1/=.q � 1/. Since .qm � 1/=.q � 1/ > 2, if r 2 ¹1; 2º, then it follows that
.q�1/.qmk=2C1/=.qm�1/ is not an integer. So, suppose that r>2 and rDre11 � r

e2
2 � � �r

eg
g

is the decomposition in prime factor of r , with r1; : : : ; rg distinct prime numbers and
e1; : : : ; eg positive integers. Let us start by observing that, since r divides qmk=2 C 1, the
ri ’s are different from p, otherwise r divides 1. This means that r and qj are coprime for
every positive integer j . Since r divides qmk=2 C 1 and qm�1 C � � � C q C 1, r divides
their difference, i.e., qmk=2 � qm�1 � � � � � q D q.qmk=2�1 � qm�2 � � � � � 1/, and so r
divides qmk=2�1 � qm�2 � � � � � 1. Again, since r divides qm�1C � � � C qC 1, we get that
r divides their sum, i.e., qmk=2�1 � qm�1 D qm�1.qm.k�2/=2 � 1/, which implies that r
also divides qm.k�2/=2 � 1. Repeating i times this argument, we get that r also divides

qm.k�2i/=2 � 1 (4.9)

when i � bk=2c. If k is even, then for i D k=2, we have that r divides 2, a contradiction.
Therefore, k is odd and as a consequence m is even. In this case, when i D .k � 1/=2

in (4.9), we get that r divides qm=2 C 1. In this way, r � qm=2 C 1 � .qm � 1/=.q � 1/,
and therefore .q � 1/.qmk=2 C 1/=.qm � 1/ is an integer if and only if r D qm=2 C 1 D
.qm � 1/=.q � 1/, which is possible if and only if m D 2.

In particular, this means that all the elements of a maximum 1-design which have
.qk C 1/=.q C 1/ subspaces define canonical subgeometries. As we will see in the next
section, such subspace designs always exist under the assumptions that m D 2 and k is
odd.

4.3. Examples of 1-design

We now show some examples of maximum 1-design. From a geometric point of view,
to construct 1-subspace design is equivalent to construct a certain number of pairwise
disjoint scattered Fq-linear sets. The first example can be also seen as a consequence of
Theorems 4.2 and 4.7.
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Proposition 4.16. Let s and m be two positive integers such that gcd.s; m/ D 1. Let
�1; : : : ; �q�1 2 F�qm be such that Nqm=q.�i / ¤ Nqm=q.�j /, for i ¤ j . Let also Ui D

¹.x1;�ix
qs

1 ; : : : ;xr ;�ix
qs

r / W x1; : : : ;xr 2Fqmº�F2rqm , for i 2 Œq� 1�. Then .U1; : : : ;Uq�1/
is a maximum 1-design in F2rqm .

Proof. Clearly, dimFq .Ui \ hviFqm / � 1 for every v 2 F2rqm n ¹0º. Suppose by contradic-
tion that there exist i; j 2 Œq � 1� and v 2 F2rqm n ¹0º such that dimFq .Ui \ hviFqm / D

dimFq .Uj \ hviFqm / D 1. Hence, there exists � 2 Fqm such that

�.x1; �ix
qs

1 ; : : : ; xr ; �ix
qs

r / D .y1; �iy
qs

1 ; : : : ; yr ; �iy
qs

r /;

for some x1; : : : ; xr ; y1; : : : ; yr 2 Fqm such that .x1; : : : ; xr /; .y1; : : : ; yr / are not the zero
vector. Suppose that x` ¤ 0. Then y` ¤ 0 and´

�x` D y`;

��ix
qs

`
D �jy

qs

`
:

Putting together the equations of the above system, we obtain

�ix
qs�1

`
D �jy

qs�1

`
;

that is, Nqm=q.�i / D Nqm=q.�j /, a contradiction. So,

q�1X
iD1

dimFq .Ui \ hviFqm / � 1

for every v 2 F2rqm n ¹0º and dimFq .Ui / D rm, i.e., .U1; : : : ; Uq�1/ is a maximum 1-
subspace design.

As a consequence of Corollary 4.14, we obtain examples of two-intersection sets with
respect to hyperplanes.

Corollary 4.17. Let s and m be two positive integers such that gcd.s; m/ D 1. Let also
�1; : : : ; �q�1 2 F�qm be such that Nqm=q.�i / ¤ Nqm=q.�j /, for i ¤ j . Finally, let Ui D

¹.x1; �ix
qs

1 ; : : : ; xr ; �ix
qs

r /W x1; : : : ; xr 2 Fqmº � F2rqm , for i 2 Œq � 1�. The LUi ’s are
pairwise disjoint scattered Fq-linear sets of rank rm in PG.2r � 1; qm/. Moreover, their
union forms a two-intersection set with respect to hyperplanes and

jH \ .LU1 [ � � � [ LUq�1/j 2 ¹q
m.r�1/

� 1; 2qm.r�1/ � 1º;

for every hyperplane H of PG.2r � 1; qm/.

Remark 4.18. The pointset described in Corollary 4.17 is the union of special type of
linear sets known as linear sets of pseudoregulus type, which were introduced in [63] and
studied in [56, 62].
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We will now use subgeometries to construct 1-designs which turn out to be maximum
(and also optimal, see Section 5.3) in some cases.

A canonical subgeometry of PG.k � 1; qm/ is any PG.k � 1; q/ which is embedded
in PG.k � 1; qm/. IfmD 2, we call it a Baer subgeometry. Under some assumptions on k
and m, we can partition PG.k � 1; qm/ into canonical subgeometries.

Theorem 4.19 (See [54, Theorem 4.29]). There exists a partition of PG.k � 1; qm/ into
canonical subgeometries if and only if gcd.k;m/ D 1.

We also refer to the paper of Eisfeld [38] for more constructions of large sets of large
mutually disjoint canonical subgeometries. In particular, we recall the following.

Theorem 4.20 (See [38, Theorem 2.2.6]). If gcd.k;m/ D 2, there exist mutually disjoint
canonical subgeometries of PG.k � 1; qm/ covering the points of PG.k � 1; qm/ except
for the points of two disjoint ..k � 2/=2/-dimensional subspaces of PG.k � 1; qm/.

In [37] (see also [6]), a different way to construct a partition of PG.k � 1; q2/ by
Baer subgeometries when k is odd (i.e., not by taking orbits under a certain subgroup of a
Singer cycle) has been described.

Canonical subgeometries can be characterized as those Fq-linear sets LU belonging
to PG.k � 1; qm/ D PG.V;Fqm/ such that U is an Fq-subspace of V with dimFq .U / D k

and hU iFqmD V . In particular, canonical subgeometries are scattered linear sets of rank k.

Theorem 4.21. If gcd.k;m/ D 1, there exists a 1-design of V D V.k; qm/ consisting of
.qmk � 1/.q � 1/=Œ.qk � 1/.qm � 1/� subspaces. If mD 2 and k is odd, then there exists
a maximum 1-design of V D V.k; q2/ consisting of .qk C 1/=.q C 1/ subspaces.

Proof. By Theorem 4.19, there exist

` D
.qmk � 1/.q � 1/

.qk � 1/.qm � 1/

distinct canonical subgeometries†1 D LU1 ; : : : ;†` D LU` of PG.k � 1; qm/ partitioning
PG.k � 1; qm/. Therefore, for every point P 2 PG.k � 1; qm/, we haveX̀

iD1

wLUi .P / D 1;

and hence for every hviFqm with v 2 V n ¹0º,

X̀
iD1

dimFq .Ui \ hviFqm / D 1:

When m D 2, since the subspaces Ui associated with †i have dimension k, we have that
.U1; : : : ; Ut / is a maximum 1-design.

The 1-design in Theorem 4.21 is the only possible construction that maximizes the
value t of Corollary 4.14.
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Corollary 4.22. Let .U1; : : : ;Ut / be a maximum 1-design in V D V.k; qm/. Consider the
associated Fq-linear sets LU1 ; : : : ; LUt . Then

• t � .q � 1/.qmk=2 C 1/=.qm � 1/,

• t D .q � 1/.qmk=2 C 1/=.qm � 1/ if and only if m D 2, k is odd, LUi is a Baer sub-
geometry of PG.k � 1;q2/ for any i andLU1 ; : : : ;LUt is a partition of PG.k � 1;q2/,

• there exists a maximum 1-design .U1; : : : ; Ut / in Fk
q2

with t D .qk C 1/=.q C 1/, for
any k odd.

Similarly, one can prove the following by making use of Theorem 4.20.

Theorem 4.23. If gcd.k;m/ D 2, there exists a 1-design of V D V.k; qm/ consisting of
.qmk � 2q.k�2/m=2 C 1/.q � 1/=Œ.qm � 1/.qk � 1/� subspaces.

4.4. Linear codes with two weights

We refer to [90] for properties of Hamming metric codes and the well-known connection
between projective systems and linear codes. We just recall that an Œn; k; d �q-linear code
(or Œn; k�q-linear code) is an Fq-linear code C of length n, dimension k and minimum
distance d , and a multiset of points in PG.k � 1; q/ is denoted by a pair .P ;m/, where P

is a subset of PG.k � 1; q/ and m is a multiplicity function.

4.4.1. Linear codes and strongly regular graphs from maximum 1-design. We can
now consider the linear codes associated with the linear sets defined by a maximum 1-
design. These codes turn out to very interesting. Indeed, we can completely determine
their weight enumerator and they are two-weight codes (except for a special case). So, by
Theorem 4.13, Corollary 4.14 and the well-known correspondence between linear codes
and projective systems (see [90]), the following holds.

Corollary 4.24. Let .U1; : : : ; Ut / be a maximum 1-design in V D V.k; qm/. Consider
the associated Fq-linear sets LU1 ; : : : ; LUt . Consider .P ;m/ to be the multiset where
P D LU1 [ � � � [ LUt , and with multiplicity function m as

m.P / D 1 for every P 2 P :

Then .P ;m/ defines an ŒN; k; d �q-linear code C in FNq and it has weight enumerator

1C .qm � 1/h1z
N�w1 C .qm � 1/h0 z

N�w0 ;

where

• w0 D t
qm.k�2/=2�1

q�1
,

• w1 D .t � 1/
qm.k�2/=2�1

q�1
C

qm.k�2/=2C1�1
q�1

,

• N D t q
km=2�1
q�1

,

• h1 D t
.qmk=2�1/.qm.k�1/�1/�.qm.k�2/=2�1/.qmk�1/

.qm�1/.q�1/qm.k�2/=2
,
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• h0 D
qmk�1
qm�1

� h1,

• d D N � w1.

In particular, C is a two-weight code if and only if t ¤ .q � 1/.qmk=2 C 1/=.qm � 1/.
Moreover, if t D .q � 1/.qmk=2 C 1/=.qm � 1/, then C is a one-weight code.

Remark 4.25. One-weight codes correspond to the simplex codes in the Hamming met-
ric, as proved by Bonisoli in [23].

The connection between two-intersection sets with respect to hyperplanes and strongly
regular graphs is also well known, see, e.g., [26].

A regular graph G (that is, a graph in which every vertex has the same number of
neighbors) with v vertices and degree K is said to be strongly regular if there exist two
integers � and� such that every two adjacent vertices have � common neighbors and every
two non-adjacent vertices have � common neighbors. In this case we say that .v;K;�;�/
are its parameters. Now, we describe the connection between a two-intersection set with
respect to hyperplanes and a strongly regular graph.

Let P be a set of points in PG.k � 1; q/ such that hP i D PG.k � 1; q/. Embed the
space PG.k � 1; q/ as a hyperplane H of PG.k; q/. Define �.P / as the graph whose
vertices are the points in PG.k; q/ n H , and two vertices P and Q are adjacent if the
line PQ meets H in a point of P . When P is a two-intersection set with respect to
hyperplanes, �.P / is a strongly regular graph and its parameters are described in the
following result.

Theorem 4.26 (See [26]). Let P be a set of points in PG.k � 1; q/ of size N such that
every hyperplane meets P in either w0 or w1 points, and there exist at least two hyper-
planes H0 and H1 of PG.k � 1; q/ with the property that

jH0 \P j D w0 and jH1 \P j D w1:

If hP i D PG.k � 1; q/, then �.P / is a strongly regular graph whose parameters are
.v;K; �; �/, where

• v D qk ,

• K D N.q � 1/,

• �DK2 C 3K � q.2N �w0 �w1/�Kq.2N �w0 �w1/C q
2.N �w0/.N �w1/,

• �D q2.N �w0/.N �w1/=q
k DK2CK�Kq.2N�w0�w1/Cq

2.N�w0/.N �w1/.

When applying the above result to a maximum 1-design we obtain the following.

Corollary 4.27. Let q be a prime power, let m; k; t be positive integers such that mk is
even and t ¤ .q � 1/.qmk=2 C 1/=.qm � 1/, and let .U1; : : : ;Ut / be a maximum 1-design
in V D V.k; qm/. Let also N D t .qkm=2 � 1/=.q � 1/, w0 D t .qm.k�2/=2 � 1/=.q � 1/
and w1 D .t � 1/.qm.k�2/=2 � 1/=.q � 1/C .qm.k�2/=2C1 � 1/=.q � 1/. Then �.LU1 [
� � � [ LUt / is a strongly regular graph with parameters .v;K; �; �/, where

• v D qmk ,
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• K D N.qm � 1/,

• �DK2C3K�qm.2N �w1�w0/�Kq
m.2N �w1�w0/Cq

2m.N �w1/.N �w0/,

• � D q2m.N � w1/.N � w0/=q
mk .

Remark 4.28. By the constructions in Section 4.3, we always have examples of max-
imum 1-design when k is even, and hence a strongly regular graph with parameters as in
Corollary 4.27 always exist for every even k.

5. Singleton bound for sum-rank metric codes and optimal
subspace designs

In this section we will first recall some definitions and results on sum-rank metric codes
and then we will identify the geometric counterparts of those which are optimal. We will
call them optimal subspace designs.

5.1. Sum-rank metric codes

The sum-rank metric has been recently investigated especially because of the performance
of multishot network coding based on sum-rank metric codes, see [78]. In the following
we will recall some results from [4, 25, 28, 64, 65, 67, 77].

Let t be a positive integer. Letm1; : : : ;mt ; n1; : : : ; nt be positive integers. We consider
the product of t matrix spaces

… WD

tM
iD1

Fmi�niq :

The sum-rank distance is the function

d W … �…! N; d.X; Y / D

tX
iD1

rk.Xi � Yi /;

where X D .X1j � � � jXt /, Y D .Y1j � � � jYt /, with Xi ; Yi 2 Fmi�niq .
We define the sum-rank weight of an element X D .X1j � � � jXt / 2 … as

w.X/ WD

tX
iD1

rk.Xi /:

Clearly, d.X;Y /D w.X � Y /, for every X;Y 2…. A (linear) sum-rank metric code C is
an Fq-linear subspace of… endowed with the sum-rank distance. The minimum sum-rank
distance of a sum-rank metric code C is defined as usual via

d.C/ D min¹w.X/ W X 2 C; X ¤ 0º:

However, for our purposes we will need the description of sum-rank metric codes in
terms of vectors.
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5.2. Vector sum-rank metric codes and the associated subspace designs

In this section we set n D .n1; : : : ; nt / 2 Nt , an ordered tuples with n1 � n2 � � � � � nt ,
and N WD n1 C � � � C nt . We use the following compact notations for the direct sum of
vector spaces:

Fn
qm WD

tM
iD1

Fniqm :

Furthermore, we follow the notation used in [4, Section 3.3].
Let start by recalling that the rank of a vector v D .v1; : : : ; vn/ 2 Fnqm is the dimension

of the vector space generated over Fq by its entries, i.e., rkq.v/ D dimFq .hv1; : : : ; vniFq /.
The sum-rank weight of an element x D .x1; : : : ; xt / 2 Fn

qm is

w.x/ D
tX
iD1

rkq.xi /:

A (linear vector) sum-rank metric code C is an Fqm -subspace of Fn
qm endowed with

the sum-rank distance defined as

d.x; y/ D w.x � y/ D
tX
iD1

rkq.xi � yi /;

where x D .x1; : : : ; xt /, y D .y1; : : : ; yt / 2 Fn
qm . Let C� Fn

qm be a sum-rank metric code.
We will write that C is an Œn; k; d �qm=q code (or Œn; k�qm=q code) if k is the Fqm -dimension
of C and d is its minimum distance, that is,

d D d.C/ D min¹d.x; y/ W x; y 2 C; x ¤ yº:

The matrix and vector settings for the sum-rank metric described above are related
in the following way. For every r 2 Œt �, let �r D .

.r/
1 ; : : : ; 

.r/
m / be an ordered Fq-basis

of Fqm , and let � D .�1; : : : ; �t /. Given x D .x1; : : : ; xt / 2 Fn
qm , with xi 2 Fniqm , define

the element �.x/ D .�1.x1/; : : : ; �t .xt // 2 …, where

xr;i D

mX
jD1

�r .xr /ij 
.r/
j for all i 2 Œnr �:

In other words, the r-th block of �.x/ is the matrix expansion of the vector xr with respect
to the Fq-basis �r of Fqm . As already noted in [77, Theorem 2.7], the map

� W Fn
qm ! …

is an Fq-linear isometry between the metric spaces .Fn
qm ; d/ and .…; d/. For more details

on this two settings, see [25] and [76].
It is possible to define a Singleton-like bound for a sum-rank metric code. It has been

stated and proved in the matrix setting (see [25, Theorem 3.2]), but in what follows we
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adapt it for the vector setting. Let n D .n1; : : : ; nt / 2 Nt with n1 � n2 � � � � � nt , and
let d be a positive integer such that d �

Pt
iD1min¹m;niº. Let j be the minimum positive

integer such that d �
Pj
iD1min¹m;niº. Then there exists a unique non-negative integer ı

such that d D
Pj�1
iD1 min¹m; niº C ı C 1 with 0 � ı � min¹m; niº � 1. This way of

writing d allows us to find the maximum possible size for an Œn; k; d �qm=q code.

Theorem 5.1. Let C � Fn
qm be an Œn; k; d �qm=q code. Let j and ı be the unique integers

satisfying

d � 1 D

j�1X
iD1

min¹m; niº C ı and 0 � ı � min¹m; nj º � 1:

Then
jCj � qm

Pt
iDj ni�max¹m;nj ºı : (5.1)

In particular,

(1) if m � n1, then d � 1 D
Pj�1
iD1 ni C ı, with 0 � ı � nj � 1, and

jCj � qm.N�dC1/;

(2) if nD n1 D � � � D nt � m, then d � 1D m.j � 1/C ı, with 0 � ı � m� 1, and

jCj � qn.tm�dC1/:

A Œn; k; d �qm=q code is called maximum sum-rank distance code (or shortly MSRD
code) if its size attains the bound of Theorem 5.1.

The map

.x; y/ 2 Fn
qm � Fn

qm 7!

tX
iD1

xi � yi 2 Fqm

is a symmetric and non-degenerate bilinear form on Fn
qm . The dual of an Œn; k; d �qm=q

code C is defined as

C? D
°
y D .y1; : : : ; yt / 2 Fn

qm W

tX
iD1

xi � yi D 0 for all x D .x1j � � � jxt / 2 C
±
: (5.2)

The dual of a sum-rank code C is also a sum-rank code and

dimFqm .C
?/ D N � dimFqm .C/:

Also, the MSRD property is invariant under duality.

Theorem 5.2 (See [25, Theorem 6.1], [65, Theorem 5]). Let C be an Œn; k; d �qm=q code.
Then

d.C?/ �

´
N � d C 2 if n1 � m;

tm � d C 2 if m � n1 and n1 D � � � D nt ;

and equality holds when C is an MSRD code. In particular, if C is an MSRD code, then
C? is an MSRD code as well.

The second part of the above result follows by Theorem 5.1.
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Now, we recall the definition of equivalence between sum-rank metric codes. An Fqm -
linear isometry � of Fn

qm is an Fqm -linear map of Fn
qm that preserves the distance, i.e.,

w.x/ D w.�.x//, for every x 2 Fn
qm , or equivalently d.x; y/ D d.�.x/; �.y//, for every

x; y 2 Fn
qm . The Fqm -linear isometries of Fn

qm equipped with sum-rank metric have been
classified in [66, Theorem 2], see also [4, Theorem 3.7].

In order to present such a classification, we introduce the following notation. Let
N .n/ WD ¹n1; : : : ; ntº, and let ` WD jN .n/j. Let ni1 ; : : : ; ni` be the distinct elements
of N .n/. By �.n/ 2 N` we will denote the vector whose entries are

�j WD j¹k W nk D nij ºj for each j D 1; : : : ; `:

So, �j denotes the number of blocks that have the same length nij . For a vector v D
.v1; : : : ; v`/ 2 N`, we define

Sv D Sv1 � � � � � Sv` ;

where Si is the symmetric group of order i . Similarly, we denote by GL.v;Fq/ the direct
product of the general linear groups of degree vi over Fq , i.e.,

GL.n;Fq/ D GL.n1;Fq/ � � � � � GL.nt ;Fq/:

Theorem 5.3 (See [66, Theorem 2]). The group of Fqm -linear isometries of the space Fn
qm

endowed with the sum-rank metric is

..F�qm/
t
� GL.n;Fq// Ì S�.n/;

which acts as

.a;M1; : : : ;Mt ; �/ � .c
.1/
j � � � jc.t// 7! .a1c

.��1.1//M1j � � � jatc
.��1.t//Mt /:

This means that the Fqm -linear isometries of Fn
qm are the Fqm -linear maps that multiply

each block for a nonzero scalar in F�qm and for invertible matrices with coefficients in Fq
and permute blocks of the same length.

We will say that two sum-rank metric codes C1 and C2 are equivalent if there exists
an isometry ' as in Theorem 5.3 such that '.C1/ D C2. We denote the set of equivalence
classes of Œn; k; d �qm=q sum-rank metric codes by CŒn; k; d �qm=q .

Remark 5.4. It is easy to see that two sum-rank metric codes C1 and C2 are equival-
ent if and only if their dual codes C?1 and C?2 are equivalent Indeed, if C1 and C2 are
equivalent, then there exists .a;M1; : : : ;Mt ; �/ 2 .F�qm/

t � GL.n;Fq/ Ì S�.n/ such that
.a;M1; : : : ;Mt ;�/C1DC2. The codes C?1 and C?2 are equivalent via the isometry defined
by .a0; .M>1 /

�1; : : : ; .M>t /
�1;�/, where a0D .a�11 ; : : : ; a�1t /. The converse clearly holds.

Let C � Fn
qm be a linear sum-rank metric code. Let G D .G1j � � � jGt / 2 Fk�Nqm be a

generator matrix of C, with G1; : : : ; Gt 2 Fk�niqm . We say that C is non-degenerate if the
columns of Gi are Fq-linearly independent for i 2 ¹1; : : : ; tº, see [77, Definition 2.11,
Proposition 2.13].
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We will recall now some results from [77] on the connections between sum-rank
metric codes and some sets of subspaces, which will be then rephrased in terms of sub-
space designs.

Theorem 5.5 (See [77, Theorem 3.1]). Let C be a non-degenerate Œn; k; d �qm=q code and
letG D .G1j � � � jGt / be its generator matrix. Let Ui � Fkqm be the Fq-span of the columns
of Gi , for i 2 ¹1; : : : ; tº. The sum-rank weight of an element xG 2 C, with x 2 Fkqm , is

w.xG/ D N �
tX
iD1

dimFq .Ui \ x
?/;

where x? D ¹y 2 Fkqm W x � y D 0º. In particular,

d D N �max
² tX
iD1

dimFq .Ui \H/ W H is an Fqm -hyperplane of Fkqm

³
:

The equivalence classes of Hamming-metric non-degenerate codes are in one-to-one
correspondence with equivalence classes of projective systems. Recently, in [83], it has
been shown that equivalence classes of non-degenerate rank metric codes are in one-to-one
correspondence with equivalence classes of q-systems, where the latter constitute the q-
analogue of projective systems. The following definition extends the notions of projective
systems and q-systems.

Definition 5.6. Let nD .n1; : : : ; nt / 2Nt , with n1 � � � � � nt . An Œn; k; d �qm=q-system U
is an ordered set .U1; : : : ; Ut /, where, for any i 2 Œt �, Ui is an Fq-subspace of Fkqm of
dimension ni such that hU1; : : : ; Ut iFqm D Fkqm and

d D N �max
² tX
iD1

dimFq .Ui \H/ W H is an Fqm -hyperplane of Fkqm

³
:

Moreover, two Œn; k; d �qm=q-systems .U1; : : : ;Ut / and .V1; : : : ; Vt / are equivalent if there
exists an isomorphism ' 2GL.k;Fqm/ and a permutation � 2 �t such that for every i 2 Œt �,

'.Ui / D aiV�.i/:

We denote the set of equivalence classes of Œn; k; d �qm=q-systems by UŒn; k; d �qm=q .

Clearly, such systems naturally define subspace designs with respect to hyperplanes
as follows.

Proposition 5.7. Let .U1; : : : ;Ut / be an ordered set of Fq-subspaces in Fkqm . Then the set
.U1; : : : ;Ut / is an Œn; k;d �qm=q-system if and only if .U1; : : : ;Ut / form an .k�1;N �d/q-
subspace design of Fkqm such that

• dimFq .Ui / D ni ,
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•
Pt
iD1 dimFq .Ui \H/ D N � d for some Fqm -hyperplane H of Fkqm ,

• hU1; : : : ; Ut iFqm D Fkqm .

In [77], it has been proved that there is a one-to-one correspondence between equi-
valence classes of sum-rank non-degenerate Œn; k; d �qm=q code and equivalence classes of
Œn; k; d �qm=q-systems. This correspondence can be formalized by the following two maps:

‰ W CŒn; k; d �qm=q ! UŒn; k; d �qm=q; ˆ W UŒn; k; d �qm=q ! CŒn; k; d �qm=q :

Let ŒC� 2 CŒn; k; d �qm=q and let SC be a representative of ŒC�. Let G D .G1j � � � jGt / be a
generator matrix forSC. Then ‰.ŒC�/ is the equivalence class of Œn; k; d �qm=q-systems ŒU�,
where U D .U1; : : : ; Ut / and Ui is the Fq-span of the columns of Gi for every i 2 Œt �.
In this case, U is also called the system associated with SC. Vice versa, Œ.U1; : : : ; Ut /� 2
UŒn; k; d �qm=q , for every i 2 Œt �. Define Gi as the matrix whose columns are an Fq-basis
of Ui . Then ˆ.Œ.U1; : : : ; Ut /�/ is the equivalence class of the sum-rank metric codes gen-
erated by G D .G1j � � � jGt /. The maps ‰ and ˆ are well posed and they are inverse of
each other.

Remark 5.8. As observed in [77, Remark 3.6], when t D 1, the definition of Œn;k;d �qm=q-
system coincides with the definition of Œn; k; d �qm=q-system introduced in [83], and the
correspondence .‰; ˆ/ gives us a one-to-one correspondence between classes of non-
degenerate Œn; k; d �qm=q rank metric codes and classes of Œn; k; d �qm=q-system; for more
details, see [83] and [2]. When n1 D � � � D nt D 1, the definition of Œ1; k; d �qm=q-system
does not immediately coincide with that of projective system (see [90]), but we can still
identify classes of projective systems and classes of Œ1; k; d �qm=q-systems.

5.3. Optimal subspace designs

We are now ready to give an answer to Problem 1.4 when considering subspace designs
with respect to hyperplanes. The strategy regards the use of Proposition 5.7, which points
out a connection between subspace designs with respect to hyperplanes and systems, and
the use of the connection shown in the previous section between systems and linear sum-
rank metric codes. This allows us to use the Singleton bound to get a lower bound on the
parameter A of a .k � 1; A/-subspace design which is non-degenerate.

Theorem 5.9. Let U D .U1; : : : ; Ut / be a non-degenerate .k � 1; A/q-subspace design
in Fkqm , with ni D dimFq .Ui / for every i , and n1 � � � � � nt , and let

M D max
² tX
iD1

dimFq .Ui \H/ W H is an Fqm -hyperplane of Fkqm

³
and d D N �M , where N D

Pt
iD1 ni . Let j and ı be the unique integers satisfying

d � 1 D

j�1X
iD1

min¹m; niº C ı and 0 � ı � min¹m; nj º � 1:
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Then

A � N �

�
m
Pt
iDj ni �mk

max¹m; nj º
C

j�1X
iD1

min¹m; nj º C 1
�
: (5.3)

In particular,

A �

´
k � 1 if n1 � m;

N � tmC m
n
k � 1 if m � n D n1 D � � � D nt :

Moreover, a sum-rank metric code C 2 ˆ.ŒU�/ is an MSRD code if and only if

M � N �

�
m
Pt
iDj ni �mk

max¹m; nj º
C

j�1X
iD1

min¹m; nj º C 1
�
:

In particular, C is an MSRD code if and only if

M �

´
k � 1 if n1 � m;

N � tmC m
n
k � 1 if m � n D n1 D � � � D nt :

(5.4)

Proof. First, we observe that UD .U1; : : : ;Ut / is an Œn; k;d �qm=q-system. Let C 2ˆ.ŒU�/.
Then C is an Œn; k; d �qm=q code and by (5.1) we have that

mk � m

tX
iDj

ni �max¹m; nj ºı D m
tX
iDj

ni �max¹m; nj º
�
d � 1 �

j�1X
iD1

min¹m; niº
�
:

Since .U1; : : : ; Ut / is a .k � 1;A/q-subspace design,M � A and d � N �A. Then (5.3)
follows. The remaining part follows by the definition of the MSRD code.

The subspace designs, as in Theorem 5.9, satisfying equality in (5.3) will be called
optimal subspace designs, i.e., when the associated sum-rank metric code is an MSRD
code.

Remark 5.10. Let .U1; : : : ; Ut / be a non-degenerate .k � 1; A/q-design in Fkqm with
dimFq .Ui / � m for every i 2 ¹1; : : : ; tº. Then .U1; : : : ; Ut / is an optimal subspace design
if and only if .U1; : : : ; Ut / is an .k � 1/-design.

We will see some examples of optimal subspace designs in the next section.

5.4. Examples of optimal subspace designs

In order to construct optimal subspace designs, we can consider a construction of MSRD
codes in [25], relying on MRD codes, that is rank metric codes whose parameters sat-
isfy equality in the Singleton bound for rank metric codes, and rephrased in the vector
framework.
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The study of MSRD codes started with Martínez-Peñas [64], and since then many
other papers analyzed their structure [68, 69, 79] from the vector point of view. In this
framework, the linearized Reed–Solomon codes represented the first family of MSRD
codes constructed. Neri in [76] extended the family of generalized twisted Gabidulin codes
to a new family of MSRD codes. In Theorem 4.2, we already constructed examples of
.k � 1/-designs in V D V.k; qm/ which turned out to be optimal subspace designs.

Other examples can be provided in [25, Construction 7.2 (a)]. Let m � n1 � n2 �
� � � � nt and let us embed Fniqm in Fn1qm and consider an Fqm -linear MRD-code in Fn1qm . It
is possible to construct an MSRD code whose first block is obtained by considering the
elements of the fixed MRD code.

Theorem 5.11. Letm � n1 � n2 � � � � � nt and let N D n1 C � � � C nt . Let OC � Fn1qm be
an MRD code with minimum distance 2, i.e., OC is an Œn1; n1 � 1; 2�qm=q code. Consider
the map �i WF

ni
qm ! Fn1qm defined by adding n1 � ni zero entries to the given vector. Define

the sum-rank metric code as

C D
²�
v1 �

tX
iD2

�i .vi /; v2; : : : ; vt

�
W v1 2 OC; vi 2 Fniqm

³
� FNqm :

Then C is an Œn; N � 1; 2�qm=q-code, and hence an MSRD code.

Thanks to the previous construction we can define the following optimal design. This
can be obtained by plugging together an .n1 � 1/-scattered subspace of Fn1qm and subgeo-
metries of Fniqm .

Corollary 5.12. Let m; n1; : : : ; nt be positive integers such that m � n1 � � � � � nt , and
let N D n1 C � � � C nt . Let U be an Œn1; n1 � 1; 2�qm=q-system, and let g1 D .g1;1; : : : ;
g1;n1�1/; : : : ; gn1 D .gn1;1; : : : ; gn1;n1�1/ be a basis of U . Let

U1 D
®�
˛1g1;1 C � � � C ˛n1gn1;1; : : : ; ˛1g1;n1�1 C � � � C ˛n1gn1;n1�1j

�˛1; : : : ;�˛n2 j � � � j�˛1; : : : ;�˛nt
�
W ˛i 2 Fq

¯
� FN�1qm

and
Ui D 0F

n1�1
q

tM
jD2

ıi;jF
nj
q ;

for any i 2 ¹2; : : : ; tº and with ıi;j D 1 if i D j and ıi;j D 0 otherwise. Then .U1; : : : ;Ut /
is an Œn;N � 1; 2�qm=q-system with n D .n1; : : : ; nt /. Hence, .U1; : : : ; Ut / is an .N � 2/-
design in FN�1qm such that dimFq .Ui / D ni .

Other examples arise from the maximum 1-design investigated in Section 4.

Corollary 5.13. Let .U1; : : : ; Ut / be a maximum 1-design in V D V.k; qm/. Then it is an
optimal subspace design.

Proof. By Theorem 4.12, the ordered set .U1; : : : ;Ut / is also an .k�1; tm.k�2/=2C1/q-
subspace design. Since the dimensions of the Ui ’s ismk=2, direct computations show that
equality in (5.4) holds, and hence it is an optimal subspace design.
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Remark 5.14. In Theorem 4.21, the linear sets LU1 ; : : : ; LUt associated with the sub-
space exhibited for m D 2 cover the entire space, and hence, by Corollary 4.14, for every
hyperplane H , it follows that

tX
iD1

dimFq .Ui \H/ D .t � 1/
qm.k�2/=2 � 1

q � 1
C
qm.k�2/=2C1 � 1

q � 1
:

Moreover, the system .U1; : : : ; Ut / defines a one-weight MSRD code, see Theorem 5.5.

6. Dualities

6.1. Ordinary dual

Let � W V � V ! Fqm be a non-degenerate reflexive sesquilinear form on V D V.k; qm/
and define

� 0 W .u; v/ 2 V � V ! Trqm=q.�.u; v// 2 Fq :

It is known that � 0 is a non-degenerate reflexive sesquilinear form on V , when V is
regarded as an mk-dimensional vector space over Fq . Let � and � 0 be the orthogonal
complement maps defined by � and � 0 on the lattices of the Fqm -subspaces and Fq-
subspaces of V , respectively. Recall that if W is an Fqm -subspace of V and U is an
Fq-subspace of V , then W � is an Fqm -subspace of V , U �

0

is an Fq-subspace of V ,
dimFqm .W

� / C dimFqm .W / D k and dimFq .U
� 0/ C dimFq .U / D mk. It is easy to see

that � and � 0 coincide when applied to Fqm -subspaces, that is, W � D W � 0 for each Fqm -
subspace W of V . Also, U �

0

is called the dual of U (with respect to � 0). The dual of
an Fq-subspace of V does not depend on the choice of the non-degenerate reflexive ses-
quilinear forms � and � 0 on V . More precisely, consider two non-degenerate reflexive
sesquilinear forms �1 and �2 and then consider � 01 and � 02 as above. Then U �

0
1 and U �

0
2

are �L.k; qm/-equivalent, for any Fq-subspace U of V (see [80, Section 2]). If W is an
s-dimensional Fqm -subspace of V and U is a h-dimensional Fq-subspace of V , then

dimFq .U
� 0
\W � / � dimFq .U \W / D km � h �ms: (6.1)

For more details, see [89, section 7].
Consider an ordered set .U1; : : : ; Ut / of Fq-subspaces in V D V.k; qm/. The ordered

set .U �
0

1 ; : : : ; U
� 0

t / will be called the dual subspaces of .U1; : : : ; Ut /. Furthermore, note
that the dual subspaces of .U �

0

1 ; : : : ; U
� 0

t / coincide with the ordered set .U1; : : : ; Ut /.
From Equation (6.1), the next result immediately follows.

Proposition 6.1. Suppose that .U1; : : : ;Ut / is an .s;A/q-subspace design in VDV.k;qm/,
with dimFq .Ui / D ni for any i , and suppose that

dimFqm .hU
� 0

1 ; : : : ; U
� 0

t iFqm / � k � s:

Then the dual subspaces .U �
0

1 ; : : : ;U
� 0

t / of .U1; : : : ;Ut / is an .k�s;ACt .k�s/m�N/q-
subspace design, where N D

Pt
iD1 ni and dimFq .U

� 0

i / D mk � ni .
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When the assumptions of the above proposition are satisfied, we say that .U �
0

1 ; : : : ;U
� 0

t /

is the dual subspace design of .U1; : : : ; Ut /.
Now we show that the property of being maximum 1-design is preserved via duality.

Theorem 6.2. Let .U1; : : : ; Ut / be a maximum 1-design in V D V.k; qm/. Then the dual
subspace design of .U1; : : : ; Ut / is a maximum 1-design in V D V.k; qm/.

Proof. By Theorem 4.12, it follows that
tX
iD1

dimFq .Ui \H/ 2
° tm.k � 2/

2
;
tm.k � 2/

2
C 1

±
;

for every hyperplaneH of V DV.k;qm/, i.e., .U1; : : : ;Ut / is also an .k�1; tm.k�2/=2C
1/q-subspace design. Since dimFqm .hU

� 0

1 ; : : : ; U
� 0

t iFqm / � 1 (with the above notation),
by Proposition 6.1 the dual subspace design .U �

0

1 ; : : : ; U
� 0

t / of .U1; : : : ; Ut / (seen as a
.k � 1; tm.k � 2/=2C 1/q-subspace design) is a .1; tm.k � 2/=2C 1C tm� tmk=2/q-
subspace design, i.e., the dual subspace design of .U1; : : : ; Ut / is a 1-design. Moreover,
since dimFq .U

� 0

i / D mk=2, .U �
0

1 ; : : : ; U
� 0

t / is a maximum 1-design.

As a corollary, we get a characterization of maximum 1-design as a .k � 1; A/q-
subspace design.

Corollary 6.3. Let .U1; : : : ; Ut / be an ordered set of Fq-subspaces in V D V.k; qm/

having dimension mk=2. Then .U1; : : : ; Ut / is a maximum 1-design in V if and only if it
is a .k � 1; tm.k � 2/=2C 1/q-subspace design in V .

Proof. The if part follows by Proposition 3.11 and Theorem 4.12. For the converse, sup-
pose that .U1; : : : ; Ut / is a .k � 1; tm.k � 2/=2 C 1/q-subspace design. Then its dual
subspace design .U 01; : : : ; U

0
t / of .U1; : : : ; Ut / is a maximum 1-design because of Propos-

ition 6.1. Now, Theorem 6.2 implies the assertion.

Corollary 6.3 gives a one-to-one correspondence between maximum 1-designs and
MSRD codes with certain parameters, i.e., maximum 1-designs are optimal subspace
designs.

Theorem 6.4. Let m; k be two integers such that mk is even with k � 2. Let U D
.U1; : : : ; Ut / be an ordered set of Fq-subspaces in Fkqm of dimension mk=2 such that
hU1; : : : ; Ut iFqm D Fkqm . Then every code in ˆ.ŒU�/ is an Œn; k; d �qm=q MSRD code with
n D .mk=2; : : : ; mk=2/ and

d D t
mk

2
� t

m.k � 2/

2
� 1 D mt � 1

if and only if .U1; : : : ; Ut / is a maximum 1-design.

Proof. Suppose that U defines an MSRD code. Then, by Theorem 5.9,
tX
iD1

dimFq .Ui \H/ � t
mk

2
� tmC 1;
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for every hyperplaneH of Fkqm . It follows that .U1; : : : ;Ut / is a .k�1; tm.k�2/=2C1/q-
subspace design, and hence, by Corollary 6.3, it is also a maximum 1-subspace design.
Conversely, if .U1; : : : ; Ut / is a maximum 1-subspace design, then again, by applying
Corollary 6.3 and Theorem 5.9, we obtain that every code in ˆ.ŒU�/ is an Œn; k; d �qm=q
MSRD code.

We recall an upper bound on the number of blocks of an MSRD code.

Theorem 6.5 (See [25, Theorem 6.12]). Let C be an Œn; k; d �qm=q MSRD code with n D
n1 D � � � D nt � m and d � 3. Then

t �
jd � 3

m

k
C

jqm � qmb.d�3/=mcCm�dC3 C .q � 1/.qn C 1/
qm � 1

k
: (6.2)

Theorem 6.4 gives a new bound on the number of blocks that an MSRD code associ-
ated with a maximum 1-design can have. Indeed, using the connection between maximum
1-design and MSRD code, the number of blocks corresponds to the number of subspaces
in a maximum 1-design. This latter number has been bounded in Corollary 4.14 and we
showed that it is sharp for some set of parameters (see Theorem 4.21).

Corollary 6.6. Let C be an Œn; k; d �qm=q MSRD code with n D .mk=2; : : : ; mk=2/ and
d D tm � 1. Then t � b.q � 1/.qmk=2 C 1/=.qm � 1/c. Moreover, if t � 3, this bound
improves (6.2) of Theorem 6.5.

Proof. Let .U1; : : : ; Ut / be a system associated with C. By Theorem 6.4, .U1; : : : ; Ut / is
a maximum 1-design and so, by Corollary 4.14, we get t � .q � 1/.qmk=2 C 1/=.qm � 1/
that proves the first part. Moreover, since t � 3 we have b.tm � 4/=mc � 1, and so it
follows thatj .q�1/.qmk=2C1/

qm � 1

k
�

j tm�4
m

k
C

jqm�qmb tm�4m cCm�tmC4 C .q�1/.qmk=2C1/

qm � 1

k
;

where the last quantity corresponds to the right-hand side of the bound (6.2). This proves
the last part.

As a consequence, this bound shows that the bound in Theorem 6.5 is not sharp for
these parameters.

6.2. Delsarte dual

In this section we provide another duality acting on subspace designs by using their con-
nection with sum-rank metric codes.

Let UD .U1; : : : ; Ut / be a non-degenerate .s;A/q-subspace design in V D V.k; qm/.
Suppose that ni D dimFq .Ui / for every i 2 Œt �, let nD .n1; : : : ;nt / andN D n1C � � � C nt ,
and, without loss of generality, suppose that n1 � � � � � nt . Up to coordinatize V , we may
assume that V D Fkqm . Consider the class of sum-rank metric codes ŒC� D ˆ.ŒU�/, and
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let SC 2 ŒC�. Let SC? be the dual of SC defined as in (5.2) and suppose that SC? is non-
degenerate. We call ŒU0� D ‰.ŒSC?�/ the Delsarte dual class of ŒU�, and any ordered set
.U 01; : : : ; U

0
t / such that .U 01; : : : ; U

0
t / 2 ‰.Œ

SC?�/ will be called a Delsarte dual design of
.U1; : : : ; Ut /. This definition is well posed because of Remark 5.4.

In order to give a relation on the parameters of a subspace design and its dual, we need
the following property.

Proposition 6.7. Suppose that .U1; : : : ; Ut / is a non-degenerate subspace design in V D
V.k; qm/, with dimFq .Ui / D ni , for any i . Let

M D max
² tX
iD1

dimFq .Ui \H/ W H is an Fqm -hyperplane of V
³
:

Then the Delsarte dual subspace design .U 01; : : : ; U
0
t / of .U1; : : : ; Ut / has the following

properties:

• there exists � 2 St such that dimFq .U
0
i / D n�.i/ for any i ,

• if M 0 D max¹
Pt
iD1 dimFq .U

0
i \H/ W H is an Fqm -hyperplane of V º, then

M 0 �

´
N �M � 2 if m � max¹n1; : : : ; ntº;

2N � tm �M � 2 if m � n1 D � � � D nt ;

where N D n1 C � � � C nt .

Proof. Without loss of generality, we may suppose that n1 � � � � � nt . The assertion fol-
lows by considering a sum-rank metric code C in ˆ.Œ.U1; : : : ; Ut /�/ and then applying
Theorem 5.5, so that .U1; : : : ; Ut / can be seen as an Œn; k; d �qm=q-system with d D
N �M . Clearly, C? 2ˆ.Œ.U 01; : : : ;U

0
t /�/ and then, by applying Theorem 5.5, .U 01; : : : ;U

0
t /

can be seen as an Œn; k; d 0�q-system with d 0 D N �M 0. The assertion then follows by
Theorem 5.2.

As a consequence, taking into account Theorem 5.2, we obtain the following corollary.

Corollary 6.8. Suppose that .U1; : : : ; Ut / is a non-degenerate .k � 1; A/q-subspace
design in V D V.k; qm/, with dimFq .Ui / D ni for any i , and suppose that

A D max
² tX
iD1

dimFq .Ui \H/ W H is an Fqm -hyperplane of V
³
:

Then the Delsarte dual subspace design .U 01; : : : ; U
0
t / of .U1; : : : ; Ut / is an .k � 1; A0/-

subspace design with

A0 �

´
N � A � 2 if m � max¹n1; : : : ; ntº;

2N � tm � A � 2 if m � n1 D � � � D nt ;

where N D n1 C � � � C nt . In particular, the Delsarte dual of an optimal subspace design
is an optimal subspace design.
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7. More bounds and constructions

In this section we will further explore bounds and constructions of subspace designs whose
parameters satisfy equality in the provided bounds.

As a consequence of the definition of subspace evasive subspaces, we obtain that the
ordered set of subspace evasive subspaces form a subspace design with the following
parameters.

Proposition 7.1. Let .U1; : : : ; Ut / be an ordered set of Fq-subspaces of V D V.k; qm/
such that Ui is an .s; ri /q-evasive subspace for every i 2 ¹1; : : : ; tº. Then .U1; : : : ; Ut / is
an .s; A/q-subspace design with A D

Pt
iD1 ri .

Under certain assumptions, the bounds in Corollary 3.8 may be improved.

Theorem 7.2. Let .U1; : : : ; Ut / be a .k � 1; A/q-subspace design of V D V.k; qm/. Let
n D dimFq .Ui / for any i . For n � m, the following hold:

(1) if A < tm.k � 1/, then n � mC A=t � 1,

(2) if A < tm=.k � 1/C k � 2, then tn � tmC A � k C 1.

Proof. By definition, dimFqm .hU1; : : : ; Ut iFqm / � k � 1. We begin by assuming that
dimFqm .hU1; : : : ; Ut iFqm / D k � 1. Then H D hU1; : : : ; Ut iFqm is an Fqm -hyperplane
of Fkqm and so

tn D

tX
iD1

dimFq .Ui \H/ � A � AC tm � t;

proving (1) of the assertion. Since A � k � 1, by the assumption in (2), we have that
tm > k � 1 and so tn � A < AC tm � k C 1, proving also (2) of the assertion. Assume
now that hU1; : : : ;Ut iFqm D Fkqm . Then UD .U1; : : : ;Ut / is an Œn; k; d �qm=q-system, with
n D .n; : : : ; n/ and

d D N �max
² tX
iD1

dimFq .H \ Ui / W H is an Fqm -hyperplane of Fkqm

³
;

where N D tn.
Since .U1; : : : ; Ut / is a .k � 1; A/q-subspace design, it follows that d � tn � A.
Let ŒC� D ˆ.ŒU�/. We can apply the Singleton bound (Theorem 5.1 (2)) on the para-

meters of ŒC�. Indeed, we have

mk � n.tm � d C 1/;

and so
mk � n.tm � tnC AC 1/: (7.1)

To prove the first part, suppose for the contrary n � mC A=t . Substituting in (7.1)
gives mk � n. This implies that Ui D Fkqm , for every i , and then tm.k � 1/ � A, contra-
dicting our assumption on A.
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To prove the second part, first we observe that (7.1) can be rewritten as

mk C n2t � �n.�tm � A � 1/: (7.2)

To the contrary suppose that tn � tmC A � k C 2. Substituting in (7.2), we get

mk C t
�
mC

A � k C 2

t

�2
�

�
�m �

A � k C 2

t

�
.�tm � A � 1/;

which yields

mk C
�
mC

A � k C 2

t

�
.�k C 1/ � 0;

and so
tmC .k � 2/.k � 1/ � A.k � 1/;

from which we obtain
tm

k � 1
C k � 2 � A;

contradicting our assumptions.

In the following we will see some constructions of subspace designs satisfying equality
in the bounds of Theorem 7.2.

We start by constructing examples of subspace designs satisfying equality in (1) of
Theorem 7.2 when A D t˛, with ˛ � .k � 2/.m � 1/C 1.

Proposition 7.3. If A D t˛, with ˛ � .k � 2/.m � 1/C 1, then in V.k; qm/ there exists
a .k � 1; A/q-subspace design whose elements have dimension mC ˛ � 1.

Proof. By Proposition 2.6 (i), if ˛ � .k � 2/.m � 1/ C 1, in V.k; qm/, there exists a
.k � 1; ˛/q-evasive subspace of dimension mC ˛ � 1. The subspace design whose sub-
spaces are t copies of such subspace evasive subspace will give the subspace design with
the desired parameters.

When mk is even, we can prove the sharpness of the first bound of Theorem 7.2 also
for smaller values of A.

Proposition 7.4. If km is even and A D t˛ with ˛ � km=2 �mC 1, then there exists a
.k � 1; A/q-design .U1; : : : ; Ut / in V.k; qm/ such that dimFq .Ui / D mC ˛ � 1.

Proof. By Proposition 2.6 (ii), when ˛� km=2�mC 1, there exists a .k � 1;˛/q-evasive
subspace S with dimFq .S/ D m C ˛ � 1. The subspace design whose elements are t
copies of such subspace evasive subspace will give the subspace design with the desired
parameters.

Remark 7.5. The existence of the above subspace evasive subspace relies on the existence
of scattered subspaces provided in [7, 14, 19, 31].

For the second bound in Theorem 7.2, we have the following construction.
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Theorem 7.6. Let t < q. If k � 1�A< tm=.k � 1/C k � 2 and k �m, then there exists
a .k � 1; A/q-subspace design .U1; : : : ; Ut / in V D V.k; qm/ such that dimFq .Ui / D

mC b.A � k C 1/=tc.

Proof. From the assumptions onA, we getA� tmC k � 1. Let .U 01; : : : ;U
0
t / be a .k � 1/-

design such that dimFq .U
0
i /Dm� k, cf. Theorem 4.2. Since .A � k C 1/=t �m, we can

consider an Fq-subspaceW 0 of dimension b.A � k C 1/=tc contained in a 1-dimensional
Fqm -subspace hviFqm of V , with hviFqm \ Ui D ¹0º for any i 2 ¹1; : : : ; tº. Such a v
exists because of Remark 2.8, since the union of the related linear sets does not cover the
entire space. So, .U 01 ˚ W

0; : : : ; U 0t ˚ W
0/ is a .k � 1; A/q-subspace design such that

dimFq .U
0
i ˚W

0/ D mC b.A � k C 1/=tc.

8. Constructions from strong subspace designs

In most of the applications, strong subspace designs have been used to construct subspace
designs. So, in this section we describe how to obtain a subspace design from a strong
subspace design using different tricks.

8.1. Using subspace evasive subspaces

The first, and probably the most used, subspace design employs subspace evasive sub-
spaces.

Theorem 8.1. Consider a strong .s; A/-subspace design .V1; : : : ; Vt / in V D V.k; qm/.
Let ki D dimFqm .Vi /, for every i 2 ¹1; : : : ; tº. Let S � V be an Fq-subspace of dimension
d with the property that S is a .h; ch/q-evasive subspace for every h� s, with c a positive
number. Let Ui D Vi \ S , for every i . If dimFqm .hU1; : : : ;Ut iFqm / � s, then .U1; : : : ;Ut /
is an .s; cA/q-subspace design and each Ui has dimension at least mki � kmC d .

Proof. By applying Grassmann’s formula to the Ui ’s, we have that dimFq .Ui / � mki �

kmC d . Now, letW be a Fqm -subspace of dimension s in V . By the assumptions we have
tX
iD1

dimFqm .Vi \W / � A: (8.1)

For each i , we have that dimFqm .W \ Vi / D si � s. Then, by the assumptions on S , we
have that

dimFq .W \ Ui / D dimFq ..W \ Vi / \ S/ � csi :

So,
tX
iD1

dimFq .W \ Ui / � c

tX
iD1

dimFqm .W \ Vi / � cA;

and the assertion follows by (8.1).

More generally and following the above proof one gets the following result.
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Theorem 8.2. Consider a strong .s; A/-subspace design .V1; : : : ; Vt / in V D V.k; qm/.
Let ki D dimFqm .Vi /, for every i 2 ¹1; : : : ; tº. Let S � V be an .s; r/q-evasive subspace.
Let Ui D Vi \ S , for every i . If dimFqm .hU1; : : : ; Ut iFqm / � s, then .U1; : : : ; Ut / is an
.s; t.r � s/C A/q-subspace design and each Ui has dimension at least mki � kmC d .

Remark 8.3. When c D 1 in Theorem 8.1, S is an s-scattered subspace in V .

8.2. Intermediate fields

Another way to get subspace designs from strong subspace designs regards the use of
intermediate fields [46].

To see this, first observe that Fkq is an s-scattered subspace in Fkqm for any s.

Proposition 8.4. Let c be an integer such that m j c. Let .V1; : : : ; Vt / be a strong .s; A/-
subspace design in Fkqm . Then .V1; : : : ; Vt / is an .s;mA/q-subspace design in Fkqc .

Proof. Let W be an s-dimensional Fqc -subspace of Fkqc . Since Vi � Fkqm , we have that
W \Vi D .W \Fkqm/\Vi . LetW 0DW \Fkqm . Since Fkqm is an s-scattered Fqm -subspace
of Fkqc , it follows that dimFqm .W

0/ � s and so

tX
iD1

dimFq .Vi \W / D

tX
iD1

m dimFqm .Vi \W / D

tX
iD1

m dimFqm .Vi \W
0/ � mA:

8.3. High-degree places

To construct subspace designs we can also use high-degree places, as done in [46, Sec-
tion 4.2] for a fixed strong subspace design. Consider a real number ı 2 .0; 1/, and let
h D ıkm, with m � q � 1. Let .V1; : : : ; Vt / be a strong .r; A.r//-subspace design (here,
we explicitly write the dependence of A on r by A.r/) in Fhq , with dimFq .Vi / D ni . We
will work in the following framework. There is an Fq-linear isomorphism from Fhq to
FqŒx�<h, so that we can see V1; : : : ; Vt as Fq-subspaces of FqŒx�<h. Now,

• let � be a primitive root of the finite field Fq ,

• let � be the Fq-automorphism of the function field Fq.x/ mapping x to �x,

• let p.x/ be an irreducible polynomial of degree d such that p; �p; : : : ; �k�1p are
pairwise coprime, where � ip WD � i .p.x// D p.�ix/.

Note that .�jp/ is a maximal ideal of FqŒx� (places of the function field Fq.x/). Then
FqŒx�=.�jp/ Š Fqm and FqŒx�=.p/ � � � � � FqŒx�=.�k�1p/ Š Fkqm (as Fq-vector spaces).
Consider the Fq-linear map

� W FqŒX�<h ! FqŒx�=.p/ � � � � � FqŒx�=.�
k�1p/; f .x/ 7! .f .p/; : : : ; f .�k�1p//;

where f .�jp/ is the residue of f in the residue field FqŒx�=.�jp/, i.e., f .�jp/ is the
lateral of f in FqŒx�=.�jp/. Let f .x/ 2 FqŒx�<h such that �.f .x// D 0. Then � ip
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divides f .x/, for any i 2 ¹0; : : : ; k � 1º. Since the ideals .p/; .�p/; : : : ; .�k�1p/ are
pairwise coprime, and deg.f .x// < h < km, we have that f .x/ is the zero polynomial
and so � is injective. We define

Ui D �.Vi / D
®
.f .p/; : : : ; f .�k�1p// W f 2 Vi

¯
� Fkqm ; (8.2)

for i 2 Œt �. Since � is an injective Fq-linear map, it follows that dimFq .Ui /D ni . Now, fol-
lowing the proof of [46, Proposition 4.6] and by replacing the considered strong subspace
design with any strong subspace design, we obtain the following result.

Theorem 8.5. Let ı be a real number in .0; 1/. Let .V1; : : : ; Vt / be a strong .r; A.r//-
subspace design of Fhq . Suppose that there exists a positive integer s such that r D
bs=.1 � ı/c C 1. Define .U1; : : : ; Ut / as in equation (8.2) and assume in addition that
dimFqm .hU1; : : : ; Ut iFqm / � s. Then .U1; : : : ; Ut / forms an .s; A.bs=.1 � ı/c C 1//q-
subspace design in Fm

qk
, with dimFq .Ui / D ni . In particular, if .V1; : : : ; Vt / is a strong

.r;A.r//-subspace design for any r � r 0, then .U1; : : : ;Ut / is an .s;A.bs=.1 � ı/cC 1//q-
subspace design for any s < .1 � ı/r 0.

Remark 8.6. In the statement of [46, Proposition 4.6], r Dbs=.1�ı/c, but when s=.1�ı/
is a positive integer, equation (6) in the proof of [46, Proposition 4.6] does not hold.
However, the asymptotics is the same and hence this does not affect their results.

8.4. Cameron–Liebler sets

We conclude this section by describing a way to obtain strong subspace design from
well-known objects in finite geometry known as Cameron–Liebler sets of n-dimensional
projective subspaces of PG.k; q/D PG.V;Fq/ introduced in [84], generalizing Cameron–
Liebler sets of lines in the projective space PG.3; q/ originally introduced by Cameron
and Liebler in [27]. Indeed, they introduced specific line classes L of size x.q2 C q C 1/
in PG.3; q/ with the property that every line spread in PG.3; q/ has x lines in common
with L; such an x is called the parameter of L.

In [18] several equivalent properties that defines Cameron–Liebler sets are proven. We
choose one that is useful for us.

Definition 8.7 (See [18, Theorem 2.9]). A set of n-dimensional projective subspaces L

of PG.k; q/ with k � 2nC 1 is a Cameron–Liebler set of PG.k; q/ with parameter x D
jLj
�
k
n

�
�1

q
if and only if for a given i 2 ¹1; : : : ;nC 1º and any n-dimensional projective sub-

spaces � of PG.k; q/, the numbers of elements of L, meeting � in a .n � i/-dimensional
projective subspace is given by8<:wi D

�
.x � 1/ q

nC1�1

qn�iC1�1
C qi q

k�n�1

qi�1

�
qi.i�1/

�
k�n�1
i�1

�
q

�
n
i

�
q

if � 2 L;

w0i D x
�
k�n�1
i�1

�
q

�
nC1
i

�
q
qi.i�1/ if � … L:

Since there is a one-to-one correspondence between an i -dimensional projective sub-
space of PG.k; q/ and the .i C 1/-dimensional Fq-subspaces of V , for any i 2 ¹0; : : : ; kº,
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we can revise the definition of Cameron–Liebler sets from a (strong) subspace design
point of view.

Theorem 8.8. Let L D ¹�1; : : : ;�tº be a Cameron–Liebler set of n-dimensional project-
ive subspaces of PG.k; q/D PG.V;Fq/ with parameter x and k � 2nC 1. Let V1; : : : ; Vt
be the Fq-subspaces such that �i D PG.Vi ;Fq/. Then .V1; : : : ; Vt / is a strong .nC 1;A/-
subspace design of V with

A D nC 1C

nC1X
iD1

wi .n � i C 1/

and dimFq .Vi / D nC 1 for any i 2 ¹1; : : : ; tº.

Proof. Let W be an .nC 1/-dimensional subspace of V and let W D PG.W; Fq/. Then
we have

tX
i

dimFq .Vi \W / D

tX
i

.dim.�i \W/C 1/:

In L there are wi subspaces that intersect W in a .n� i/-dimensional projective subspace
in the case in which W 2 L, otherwise there are w0i subspaces that intersect W in an
.n � i/-dimensional projective subspace. This means that

tX
iD1

dimFq .Vi \W / D

´PnC1
iD1 wi .nC 1 � i/C nC 1 if W 2 L;PnC1
iD1 w

0
i .nC 1 � i/ if W … L:

Since w0i � wi , for i � 1, the assertion follows.

Remark 8.9. Note that the .nC 1; A/q-subspace design given by Theorem 8.8, is not an
.nC 1; A0/q-subspace design if A0 < A.

We recall some examples of Cameron–Liebler sets (see, e.g., [84]). For k D 2nC 1,
the following fold:

• The set of all n-dimensional projective subspaces of PG.k; q/ containing a fixed point
of PG.k; q/ is a Cameron–Liebler set with parameter 1.

• The set of all n-dimensional projective subspaces of PG.k; q/ contained in a fixed
hyperplane of PG.k; q/ is a Cameron–Liebler sets with parameter 1.

More examples can be found in, e.g., [41, 84], and also non-existence results are
known, see, e.g., [34, 35, 73].

9. Cutting designs and minimal sum-rank metric codes

In this section we study subspace designs with a special property that involves the hyper-
planes of the ambient space, which we will call cutting designs. The name arises from
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cutting blocking sets, recently introduced by Bonini and Borello in [22], with the aim of
constructing minimal codes. This structure has been also studied before the paper [22],
under other names such as strong blocking sets and generator sets, in connection with
saturating sets and covering codes by Davydov, Giulietti, Marcugini and Pambianco [33]
and higgledy-piggledy line arrangements by Fancsali and Sziklai [39] (see also [40, 53]).
In this section we propose a generalization of this notion to subspace designs which turns
out to be connected with minimal sum-rank metric codes, as we will see later.

Definition 9.1. Let .U1; : : : ; Ut / be an ordered set of Fq-subspaces in V D V.k; qm/. If
for any Fqm -hyperplanes H;H 0 � Fkqm such that

Ui \H � Ui \H
0 for every i 2 ¹1; : : : ; tº

implies H D H 0, then .U1; : : : ; Ut / is called a cutting design.

We now provide an easier to handle characterization of cutting designs, which follows
the proof of [1, Proposition 3.3] (see also [22, Theorem 3.5]).

Proposition 9.2. Consider an ordered set .U1; : : : ;Ut / of Fq-subspaces in V D V.k;qm/.
Then .U1; : : : ; Ut / is a cutting design if and only if for every Fqm -hyperplaneH of V , we
have hU1 \H; : : : ; Ut \H iFqm D H .

Proof. Suppose that .U1; : : : ; Ut / is a cutting design and, by contradiction, suppose that
there exists an Fqm -hyperplane H of V such that hU1 \H; : : : ; Ut \H iFqm D X ¨ H .
Let H 0 be an Fqm -hyperplane of V containing X different from H . So, we have that
Ui \H � Ui \H

0, for every i . Since H 0 ¤ H , this yields a contradiction.
Conversely, assume that for every Fqm -hyperplaneH , hU1\H; : : : ;Ut \H iFqm DH .

Let H and H 0 two hyperplanes such that

Ui \H � Ui \H
0 for every i 2 Œt �:

This implies that

hU1 \H; : : : ; Ut \H iFqm � hU1 \H
0; : : : ; Ut \H

0
iFqm ;

that is, H D H 0.

Remark 9.3. By Proposition 9.2, it follows that a cutting design .U1; : : : ;Ut / of V.k;qm/
is also a non-degenerate .k � 1;A/q-design, for a certainA� k � 1. Actually, it has a more
strong property:

Pt
iD1 dimFq .Ui \H/ � k � 1 for every H hyperplane of V .

As the previous remark suggests, cutting designs are subspace designs with special
pattern of intersections with hyperplanes. In particular, examples of cutting designs can
be obtained from subspace designs with the property that the sum of the dimension of
intersections with hyperplanes is a nonzero constant; this will allow us to give construc-
tions of cutting designs (cf. Construction 9.14).
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Theorem 9.4. Let .U1; : : : ; Ut / be an order set of Fq-subspaces of V D V.k; qm/. Sup-
pose that there exists a positive integer c such that

Pt
iD1 dimFq .Ui \H/ D c for every

hyperplane of V . Then c � k � 1 and .U1; : : : ; Ut / is a non-degenerate cutting design.

Proof. Let ni D dimFq .Ui /. Let us start by proving that .U1; : : : ; Ut / is a non-degenerate
subspace design. Suppose by contradiction that hU1; : : : ;Ut iFqm �H , for a hyperplaneH .
This means that Ui � H for every i , and hence c D

Pt
iD1 dimFq .Ui \H/ D

Pt
iD1 ni .

Suppose, without loss of generality, that n1 > 0 and let v 2 U1 n ¹0º. Let H 0 be a hyper-
plane of V such that v …H 0. Then

Pt
iD1 dimFq .Ui \H

0/ <
Pt
iD1 ni D c, a contradiction

to the fact that
Pt
iD1 dimFq .Ui \H

0/ D c. Now we show that .U1; : : : ; Ut / is a cutting
design. Let H and H 0 be two hyperplanes of V such that

Ui \H � Ui \H
0 for every i 2 Œt �:

So, we get that dimFq .Ui \H/ � dimFq .Ui \H
0/ for every i , and since

c D

tX
iD1

dimFq .Ui \H/ �

tX
iD1

dimFq .Ui \H
0/ D c;

it follows that dimFq .Ui \H/ D dimFq .Ui \H
0/, and therefore Ui \H D Ui \H 0 for

every i . In particular, Ui \H D Ui \H 0 D Ui \H \H 0 �H \H 0 for any i . Suppose
that H ¤ H 0, this means that H \H 0 is a .k � 2/-dimensional Fqm -subspace of V . Let
U 0i D Ui \H D Ui \H

0 for every i . Then there exists an Fq-subspace U 00i of V such that
Ui DU

0
i ˚U

00
i for every i , and note thatU 00i \H DU

00
i \H

0D¹0º. Now, if all theU 00i had
dimension 0 for every i , then Ui � H for every i , a contradiction, since .U1; : : : ; Ut / is a
non-degenerate subspace design. Hence, without loss of generality, suppose thatU 001 ¤ ¹0º
and let u 2 U 001 n ¹0º. Let H 00 be the hyperplane .H \H 0/˚ huiFqm . As a consequence,
dimFq .U

0
1/ D dimFq .U1 \H \H

0/ < dimFq .U1 \H
00/. Hence, we have

c D

tX
iD1

dimFq .Ui \H/ D

tX
iD1

dimFq .U
0
i / < dimFq .U1 \H

00/C

tX
iD2

dimFq .U
0
i /

�

tX
iD1

dimFq .Ui \H
00/ D c;

a contradiction, and so H D H 0.

By Remark 9.3, a cutting design also defines a system and, clearly, if in an equivalence
class of an Œn; k�qm=q system there is a cutting design (that is the set of the entries of the
t -ple is a cutting design), then all the elements of equivalence class are cutting design as
well. Therefore, an Œn; k�qm=q system with the property that the set of its entries forms a
cutting design will be called a cutting Œn; k�qm=q system. This latter notion can be very
useful when we need to enlighten the dimensions of the subspaces of a cutting design.
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9.1. Motivation

We will now show how the notion of cutting design extends previously known notions of
cutting blocking sets. For a survey on blocking sets we refer to [21].

Definition 9.5. Let g; r; k be positive integers with r < k. A g-fold r-blocking set in
PG.k; q/ is a set M � PG.k; q/ such that for every .k � r/-subspace � of PG.k; q/,
we have

j� \Mj � g:

When r D 1, we refer to M as g-fold blocking set. When g D 1, we will refer to it as an
r-blocking set. When r D g D 1, M is simply a blocking set.

A cutting r-blocking set is a blocking set that, roughly speaking, captures the structure
of all the .k � r/-subspaces, see [22, Definition 3.4].

Definition 9.6. Let r; k be positive integers with r < k. An r-blocking set M in PG.k; q/
is cutting if for every pair of .k � r/-subspaces � ; � 0 of PG.k; q/ we have

M \ � �M \ � 0 ” � D � 0:

Proposition 9.7 (See [1, Proposition 3.3]). An r-blocking set M � PG.k; q/ is cutting if
and only if for every .k � r/-space � of PG.k; q/, we have hM \ �i D � .

The q-analogue of the notion of a cutting blocking set is the linear cutting blocking
set, introduced by Alfarano, Borello, Neri and Ravagnani in [2, Definition 5.3].

Definition 9.8. An Œn; k�qm=q system U is called a linear cutting blocking set if for any
Fqm -hyperplanes H;H 0 � Fkqm , we have that U \H � U \H 0 implies H D H 0.

If we need to underline the involved parameters of U , we will also say that U is a
linear cutting Œn; k�qm=q blocking set.

Remark 9.9. If U is a linear cutting Œn; k�qm=q blocking set, then LU is a cutting 1-
blocking set of PG.k � 1; qm/.

9.2. Constructions and bounds

We now list examples of cutting designs which can be obtained from the known examples
of cutting blocking sets. Some of them can be obtained easily, but for others more attention
needs to be paid. However, all of them are consequences of the following result, where we
show that the cutting design property can be required directly on the union of the linear
sets associated with the design.

Proposition 9.10. Consider an ordered set .U1; : : : ;Ut / of Fq-subspaces in VDV.k;qm/.
Then .U1; : : : ; Ut / is a cutting design if and only if LU1 [ � � � [ LUt is a cutting block-
ing set.
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Proof. Suppose that .U1; : : : ; Ut / is a cutting design. Let H D PG.W; Fqm/ be a hyper-
plane of PG.V;Fqm/: By Proposition 9.2, U1 \W [ � � � [ Ut \W contains an Fqm -basis
ofW , and soLU1\W [ � � � [LUt\W contains k � 1 points of H such that their span is H .
Therefore,

H � hH \ .LU1 [ � � � [ LUt /i D hLU1\W [ � � � [ LUt\W i � H :

The assertion follows by Proposition 9.7. Conversely, suppose that LU1 [ � � � [ LUt is
a cutting blocking set. Let W be an Fqm -hyperplane of V . Let H D PG.W; Fqm/. By
Proposition 9.7, we have that LU1\W [ � � � [LUt\W DH \ .LU1 [ � � � [LUt / contains
a set of points ¹P1 D hv1i; : : : ; Pk�1 D hvk�1iº of H such that H D hP1; : : : ; Pk�1i and
vi 2 U1 [ � � � [ Ut for every i . This implies that hW \ U1; : : : ; W \ Ut iFqm D W , and
so the assertion follows by Proposition 9.2.

Construction 9.11 (From a linear cutting blocking set). If the ordered set .U1; : : : ; Ut /
of Fq-subspaces in V D V.k; qm/ is such that at least one of the Ui ’s is a linear cutting
blocking set, then .U1; : : : ; Ut / is a cutting design.

The above example provides a lot of constructions of cutting designs. However, inter-
esting constructions of cutting designs are those in which the cutting property is not
satisfied individually by the elements of the design. The next examples provide construc-
tions of cutting designs not containing any linear cutting blocking sets.

Construction 9.12 (From rational normal tangent set [39]). Suppose p D char.Fq/ � k.
Choose 2k � 1 distinct points on the rational normal curve in PG.k � 1; qm/ and consider
the set ¹`1; : : : ; `2k�1º of the tangent lines at these points. For each line `i , consider its
sets of points ¹hvi;1iFqm ; : : : ; hvi;qmC1iFqm º. Define

Ui;j D hvi;j iFq ;

for every i 2 Œ2k � 1� and j 2 Œqm C 1�. The collection of the Ui;j ’s is a cutting design.

Construction 9.13 (From tetrahedron [1,9,59]). Consider k points P1; : : : ; Pk in general
position in PG.k � 1; qm/, and let `i;j D hPi ; Pj i for any i; j 2 Œk� with i ¤ j . The
collection of the Ui;j ’s defined as in Construction 9.12 is a cutting design.

In the above two constructions all the subspaces of the design have dimension one
and their number is quite large. In what follows, we will focus on showing examples of
shorter cutting design whose elements have higher dimension. The following is an easy
consequence of Theorem 9.4.

Let G be a subgroup of GL.k; qm/, and consider the action �G of G on Fkqm n ¹0º
induced by the one of GL.k; qm/, that is,

�G W G � .F
k
qm n ¹0º/! Fkqm n ¹0º; .A; v/ 7! vA:

For any n and r such that r divides n, this action naturally induces an action also on the
n-dimensional Fqr -subspaces of Fkqm with kernel G \Dqr , where Dqr D ¹˛Ik W ˛ 2 F�qr º.
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In this way, we can consider the action of the group SG D G=.G \ Dqr / on the n-dimen-
sional Fqr -subspaces of Fkqm , that we denote by �r;n

G
. Finally, we say that G � GL.k; qm/

is transitive if the action �m;1
G

is transitive (see [77, Section 6.1]).

Construction 9.14 (Orbital construction [77]). Let U be an Fq-subspace of Fkqm with
dimFq .U /D n. Let G �GL.k; qm/ be a transitive subgroup and let O D .�

1;n
G
.A;U //A2SG

be the orbit (counting possible repetition) of the action of �1;n
G

. When G is the Singer
subgroup of GL.k; qm/, we call the orbit O an n-simplex. The orbit O D .U1; : : : ; Ut /

obtained in the previous way starting by a transitive subgroup G � GL.k; qm/ has the
property that there exists a positive integer c such that

Pt
iD1 dimFq .Ui \H/D c for every

hyperplane H of Fkqm , see [77, Theorem 6.2]. Theorem 9.4 implies that .U1; : : : ; Ut / is a
cutting Œ.n; : : : ; n/; k� system.

Construction 9.15. The ordered set .U1; : : : ; Ut / obtained from Theorem 4.21 when
m D 2 gives a cutting design by Theorem 4.13, as a consequence of Theorem 9.4.

Remark 9.16. We can prove that the ordered set .U1; : : : ; Ut / provided in Construc-
tion 9.14 or Construction 9.15, is a cutting design also by using Proposition 9.10, since
LU1 [ � � � [ LUt D PG.k � 1; qm/ in both the cases. Indeed, Construction 9.14 gives a
cutting design as the group used is transitive, and Construction 9.15 gives a cutting design
since the considered subgeometries form a partition of the entire projective space. It would
be interesting to find an ordered set .U1; : : : ; Ut /, as in the hypothesis of Theorem 9.4,
such that LU1 [ � � � [ LUt ¤ PG.k � 1; qm/ or prove that this is not possible.

The following construction arises again by subgeometries, but in this case they do not
give a partition of the projective space.

Construction 9.17 (From subgeometries [12]). Let†1 D LU1 ;†2 D LU2 ,†3 D LU3 be
three q-order subgeometries in PG.3;q3/ chosen as in [12, Section 2.3]. Then .U1;U2;U3/
is a cutting design.

In the same spirit, more constructions can be obtained using those in [2, 3, 10–12].

9.3. Connection with minimal sum-rank metric codes

In this subsection, we extend the notion of minimal codes in the Hamming metric and the
in rank metric to sum-rank metric such that this definition is consistent with that in the
Hamming and in the rank metric.

In 1979, Blakley and Shamir [17,85] introduced independently secret sharing schemes
that are protocols for distributing a secret among a certain number of participants. Then
McEliece and Sarwate presented in [71] a more general construction based on linear codes
(equipped with Hamming metric), where Reed–Solomon codes were used. In [70], Mas-
sey relates the secret sharing protocol to minimal codewords: the minimal access structure
in his secret sharing protocol is given by the support of the minimal codewords of a linear
code C in Fnq , having first coordinate equal to 1. A codeword x 2 C is said minimal if
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for every y 2 C such that supp.y/ � supp.x/, we have that y D ˛x for some ˛ 2 Fq .
However, finding the minimal codewords of a general linear code is a difficult task. For
this reason, a special class of codes has been introduced: a linear code is said to be min-
imal if all its nonzero codewords are minimal. The analogue in the rank metric has been
recently introduced by Alfarano, Borello, Neri and Ravagnani in [2]. In [1, 59, 88], min-
imal codes in the Hamming metric are geometrically characterized as cutting blocking
sets, whereas in [2] minimal codes in the rank metric are geometrically characterized as
linear cutting blocking sets. In this section we will extend these connections providing a
characterization of cutting designs in terms of sum-rank metric codes, which coincides
with the aforementioned links when the sum-rank metric is either the Hamming or the
rank metric.

9.4. Supports in the sum-rank metric

The interested reader is referred to [65] for a more detailed description of the theory of
supports in the sum-rank metric.

The support of an element of … D
Lt
iD1 Fmi�niq is defined as follows.

Definition 9.18. Let X D .X1; : : : ; Xt / 2 …. The sum-rank support of X is defined as
the space

supp.X/ D .colsp.X1/; colsp.X2/; : : : ; colsp.Xt // � Fn
q ;

where colsp.Xi / is the Fq-span of the columns of Xi and n D .n1; : : : ; nt /.

The notion of support does not depend on the choice of the Fq-basis of Fqm , as shown
by the following result (see, e.g., [2, Proposition 2.1]).

Proposition 9.19. Let � D .�1; : : : ; �t /; ƒ D .ƒ1; : : : ; ƒt / be two tuples of Fq-bases
of Fqm , and let x 2 Fn

qm . Then supp.�.x// D supp.ƒ.x//.

The above definition allows us to give the following definition of support for an ele-
ment of Fn

qm .

Definition 9.20. The sum-rank support of an element x D .x1; : : : ; xt / 2 Fn
qm is the tuple

suppn.x/ D supp.�.x//;

for any (and hence all) choice of � D .�1; : : : ; �t /, where �i is an Fq-basis of Fqm for
each i 2 Œt �.

9.5. Minimal sum-rank metric codes

In this section we propose the notion of minimal code in the sum-rank metric, which
extends the ones of minimal codes in both Hamming and rank metric. We will then charac-
terize geometrically minimal codes as those associated with cutting designs, extending the
previously known connections between minimal codes in the Hamming metric and rank.
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Definition 9.21. Let C be an Œn; k�qm=q code. A codeword x 2 C is said minimal if for
every y 2 C such that suppn.y/ � suppn.x/, we have y D ˛x for some ˛ 2 Fqm . We say
that C is minimal if all of its codewords are minimal.

The following characterization of the inclusion of the supports has been used in [2] to
describe geometrically minimal rank metric codes.

Theorem 9.22 (See [2, Theorem 5.6]). Let G be a generator matrix of a non-degenerate
Œn; k�qm=q code. Let U be the Œn; k�qm=q system associated with G and u; v 2 Fkqm n ¹0º.
Then

suppn.uG/ � suppn.vG/ ” hui? \ U � hvi? \ U:

The above result naturally extends in the sum-rank metric.

Theorem 9.23. Let G be a generator matrix of a non-degenerate Œn; k�qm=q sum-rank
code. Let .U1; : : : ; Ut / be the Œn; k�qm=q system associated with G and u; v 2 Fkqm n ¹0º.
Then

suppn.uG/ � suppn.vG/ ” hui? \ Ui � hvi
?
\ Ui for any i 2 Œt �:

As a consequence of Theorem 9.23, the geometric correspondence described in Sec-
tion 5.2 and Definition 9.1 give us a 1-to-1 correspondence between classes of minimal
sum-rank metric codes and classes of cutting designs.

Corollary 9.24. There is a 1-to-1 correspondence between classes of minimal Œn; k�qm=q
codes and classes of cutting Œn; k�qm=q systems.

When the sum-rank metric corresponds to the Hamming or to the rank metric, the
above corollary coincides with [1, Theorem 3.4] (see also [88]) and [2, Corollary 5.7],
respectively. Therefore, all the examples of cutting designs given in Section 9.2 yield
constructions of minimal sum-rank metric codes.

Finally, we observe that, as in the Hamming and in the rank metrics, all the one-weight
sum-rank metric codes are minimal, see, e.g., [2].

Proposition 9.25. Let C be a non-degenerate Œn; k�qm=q code. If all the codewords of C
have the same sum-rank metric weight, then C is a minimal sum-rank metric code.

Proof. Let G be a generator matrix of C and let .U1; : : : ; Ut / be an Œn; k�qm=q system
associated with G. Since all the codewords of C have the same sum-rank metric weight,
by Theorem 5.5, we have that

Pt
iD1 dimFq .Ui \H/ is constant for every hyperplane H

of Fkqm . Theorem 9.4 can now be used to obtain the assertion.

9.6. Minimal sum-rank metric codes in the Hamming metric

We first describe the connection between sum-rank metric codes and Hamming metric
code in [77, Section 5.1] (see also [2, Section 4]).
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For a collection of multisets .M1;m1/; : : : ; .Mt ;mt / of PG.k � 1; qm/, we can define
their disjoint union as

t]
iD1

.Mi ;mi / WD .M;m/;

where M DM1 [ � � � [Mt , and m.P / D m1.P /C � � � Cmt .P / for every P 2 PG.k �
1; qm/. To every n-dimensional Fq-subspace U of Fkqm , it is possible to associate the
multiset .LU ;mU /, where LU � PG.k � 1; qm/ is the Fq-linear set defined by U and

mU .hviFqm / WD
q
wLU .hviFqm

/
� 1

q � 1
:

By (2.2), this means that the multiset .LU ;mU / of PG.k � 1;qm/ has cardinality (counted
with multiplicity) .qn � 1/=.q � 1/. Consider now an Œn; k�qm=q system .U1; : : : ; Ut / and
define the multiset

Ext.U1; : : : ; Ut / WD
t]
iD1

.LUi ;mUi /:

Then Ext.U1; : : : ; Ut / is a projective Œ.qn1 C � � � C qnt � t /=.q � 1/; k�qm system.
Hence, we can give the following definition.

Definition 9.26. Let C be a non-degenerate Œn; k�qm=q code. Let .U1; : : : ; Ut / be a sys-
tem associated with C. Any code C 2 ‰H .Ext.U1; : : : ; Ut //, where ‰H is defined as in
Section 4.4, is called an associated Hamming-metric code with C.

Minimal sum-rank metric codes also defines minimal codes in the Hamming metric
via the codes in Definition 9.26.

Corollary 9.27. Let C be a non-degenerate Œn; k�qm=q code. Then C is minimal if and only
if any associated Hamming-metric code is minimal.

Proof. The proof directly follows from Proposition 9.10.

10. Dimension expanders

The notion of dimension expander was introduced by Wigderson, see [91], where he also
pointed out the problem of constructing these structures. A dimension expander is a col-
lection of m linear maps �j W F` ! F`, where F is a field, such that for any subspace
U � Fn of sufficiently small dimension, the subspace �1.U /C � � � C �m.U / has dimen-
sion significantly larger than dim.U /. Their interest is related to the fact that they can be
seen as the linear-algebraic analogue of expander graph and hence they play an important
role in the theory of algebraic pseudorandomness. See [46, Section 1] for a nice overview
of the problem. Constructions in zero characteristic were then given by Lubotzky and Zel-
manov in [60] and by Harrow in [52], but very recently some constructions were given
when the characteristic is positive by Guruswami, Resch and Xing in [46].
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The definition over finite fields is the following.

Definition 10.1. Let `;m � 1 be integers, � > 0 and � > 1. Let �1; : : : ; �mWF`q ! F`q be
Fq-linear maps. The collection ¹�j W j 2 Œm�º forms an .�; �/-dimension expander if for
all subspace U � F`q of dimension at most �`,

dimFq

� mX
jD1

�j .U /

�
� � dimFq .U /:

The degree of the dimension expander is m. If � D �.m/, then the dimension expander is
said to be degree-proportional.

In [46], Guruswami, Resch and Xing ably reduce the problem of constructing dimen-
sion expanders (with some constrains on the parameters) to the construction of subspace
designs. We will now describe the reduction and then we will use the s-designs to get
interesting and new examples of dimension expanders.

Suppose ` D mk. Let U1; : : : ; Ut , with t j ` and t � m be Fq-subspaces of Fq` with
dimFq .Ui / D `=t . Consider

D D

²
f .x/ D

t�1X
iD0

fix
qi
W fi 2 UiC1; i 2 ¹0; : : : ; t � 1º

³
� Lm;q :

Since Fq` Š F`q Š D as Fq-vector spaces and the maps of the dimension expanders are
from F`q in itself, we can identify the domain of the maps of a dimension expander with D

and the image space with Fq` . Let .ˇ1; : : : ;ˇm/ be an Fq-basis of Fqm . Define, for j 2 Œm�,

�j W D ! Fq` ; f .x/ 7! f . ǰ /: (10.1)

In [46] the authors show that when .U1; : : : ;Ut / is a subspace design with certain para-
meters, then the construction described above of the maps ¹�j W j 2 Œm�º gives a dimension
expander for which the parameters depend on the subspace design .U1; : : : ; Ut /.

Theorem 10.2 ([46, Theorem 3.4]). Let ` D mk with m and k positive integers. Let t be
a positive integer such that t � m. Consider an ordered set .U1; : : : ; Ut / of Fq-subspaces
in Fkqm such that

tX
iD1

dimFq .Ui \ S/ � As

for any s-dimensional Fqm -subspace S in Fkqm , for all s � �`, for some 0 < � < 1=m

and dimFq .Ui / D `=t , for i 2 Œt �. Then the maps ¹�j W j 2 Œm�º defined as in (10.1) form
a .�A; .m � t C 1/=A/-dimension expander. Moreover, if the subspaces U1; : : : ; Ut are
explicit, then the dimension expander is explicit.

Remark 10.3. In the above result, by explicit subspaces we mean that there is a polyno-
mial time algorithm in m and k which gives a basis for each of those subspaces.
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Using the construction of s-designs provided in Theorem 4.8, we obtain the following
explicit dimension expanders.

Theorem 10.4. Letm � q � 1. Suppose that q � 1 divides k. Then there exists an explicit
..q � 2/=.mk/;m � q C 2/-dimension expander in Fmkq of degree m.

Proof. Choosing s D q � 2, t D q � 1, Theorem 4.8 ensures the existence of an (explicit)
s-design .U1; : : : ; Ut /, with dimFq .Ui / D .mk/=.q � 1/. Let � D .q � 2/=.mk/. Note
that � < 1=m, since q � 1 j k and k > q � 2. Moreover, by Proposition 3.2, .U1; : : : ; Ut /
is an s0-design for each s0 ��mkD q � 2. Hence, by Theorem 10.2, the assertion follows.
Since the subspace design of Theorem 4.8 is explicit, the constructed dimension expander
is explicit as well.

Special instances of the above result give examples of degree-proportional dimension
expanders.

Corollary 10.5. Let ı 2 .0; .q � 2/=.q � 1// such that 1=ı 2 N. Let m D .q � 2/=ı and
k D .q � 1/=ı. Then there exists an explicit construction of an .�; �/-dimension expander
in Fmkq of degree m, where � D �.ım=m/ and � D �..1 � ı/m/. In particular, it is also
degree-proportional.

Proof. By choosing m D .q � 2/=ı and k D .q � 1/=ı in Theorem 10.4, we obtain an
explicit ..q � 2/=.mk/;m � q C 2/-dimension expander in Fmkq of degree m. So,

� D
q � 2

mk
D

ı.q � 2/

.q � 1/m
D �

� ı
m

�
and

� D m � q C 2 D
q � 2

ı
� q C 2 D .1 � ı/m;

and hence the assertion follows.

Remark 10.6. In [46, Theorem 5.1], Guruswami, Resch and Xing constructed degree-
proportional dimension expanders in which q � .mk/ı for some ı > 0, whereas the
construction in Corollary 10.5 has no restrictions on q. Furthermore, in [46, Theorem 5.1]
further assumptions on the parameters are needed which in Corollary 10.5 are not required.

11. Conclusions and open problems

Motivated by their applications in list decoding for rank metric codes and Hamming metric
codes, and to dimension expanders, in this paper, we provided bounds and constructions
of subspace designs in V.k; qm/. Moreover, we pointed out which subspace designs cor-
respond to maximum sum-rank metric codes, i.e., the optimal subspace designs. We then
generalized the notion of s-scattered subspaces to the subspace designs, introducing the s-
designs. Subsequently, we proved that for s D 1 and s D k � 1, they correspond to the
optimal subspace designs. We paid particular attention to the case s D 1, for which we
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provided examples and characterizations. Then we also investigated cutting designs and
we showed their connection with minimal sum-rank metric codes.

There are some problems that still remain open. We list some of them:

• In Corollary 4.11, we proved that a maximum s-design in V.k; qm/ is also a .k �
1; t.mk=.s C 1/ �mC s//q subspace design. Nevertheless, when s D 1, we proved
that a maximum 1-design is a .k � 1; tmk=2 � tmC 1/q-subspace design, improv-
ing what is proved in Corollary 4.11. This also suggests that a maximum s-design in
V.k; qm/ is also a .k � 1; t.mk=.s C 1/ �m/C s/q-subspace design, but the double
counting arguments become too difficult to deal with.

• Construct maximum 1-designs in the case where t > 1, k is odd and m ¤ 2 is even.

• Is it true that maximum h-designs in V.k; qm/ are optimal subspace designs also when
2 � h � k � 2?

• In Corollary 4.14 we showed that maximum 1-designs yield two intersection sets with
respect to hyperplanes. In particular, this means that from a maximum 1-design, we
can define linear codes equipped with the Hamming metric with two nonzero weights
(known also as two-weight codes) and we can consider the associated strongly regular
graph, see Section 4.4. However, we do not know whether or not the parameters of
these codes and of these graphs are new, except for the union of Baer subgeometries
and the case in which the design has one element, see [6] and [20]. A first check
with the available databases of two weight codes/strongly regular graphs (see [24,29])
seems to suggest that the parameters are new.

• Classification of optimal subspace designs using known classification results on scat-
tered spaces. This would clearly imply a classification for MSRD codes.

• Is it possible to give a geometric description of the Delsarte dual operation on subspace
designs similarly to the Delsarte duality introduced in [32, Section 3]?

• Obtain new (non)-existence results of Cameron–Liebler sets by making use of the
connection established in Theorem 8.8, the techniques developed in Sections 8.1–8.3
and the Singleton bound for sum-rank metric codes.

• Show a non-trivial sum-rank metric analogue of the Ashikhmin–Barg condition [5,
Lemma 2.1] for the minimality of a sum-rank metric code.

• An ordered set .U1; : : : ; Ut / of Fq-subspaces of Fkqm , with the property that there
exists a positive integer c such that

Pt
iD1 dimFq .Ui \H/ D c for every hyperplane

of Fkqm , corresponds to one-weight rank metric codes, see [77] and Proposition 9.25.
As proved in Theorem 9.4 they also define a cutting design. It would be interesting
to prove that LU1 [ � � � [ LUt cover the entire space or to find examples of cutting
designs .U1; : : : ; Ut / such that LU1 [ � � � [ LUt ¤ PG.k � 1; qm/.
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