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1. Introduction: Jarník and Dörge

Let N 2 N be an integer. We want to study the number of intersection points of a curve
with an N � N lattice. More precisely, we want to bound the number of points of the
lattice ƒN D 1

N
Z2 lying on a curve � � Œ0; 1/2 . Obviously,

j� \ƒN j � N
2;

1probably creating some new ones . . .
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and we can find a curve � that makes this an equality, going through all vertices of the
lattice in Œ0; 1/2. Suppose now that � is a graph of a function, that is, a set of the form
f.x; y/ 2 Œ0; 1/2 j y D f .x/g. Then again, there is an easy bound

j� \ƒN j � N;

and there exist graphs � realizing it. To make the problem more interesting, we are going
to assume that f is strictly concave or convex. The following statement is essentially due
to Jarník [14].

Theorem 1.1 (Jarník, 1926). Let � be the graph of a strictly convex or concave monotonic
function Œ0; 1�! Œ0; 1�. Then

j� \ƒN j � 3�
�2=3N 2=3

CO.N 1=3 logN/: (1.1)

The proof of Jarník’s theorem will not be needed further, but it is simple and beautiful,
and we sketch it below. Skipping it should not in any way harm the reader’s understanding
of the main content of this text. We thank Fedor Petrov who explained to us Jarník’s
argument and his subsequent work on the topic, and Martin Klazar, who detected an error
in the previous version of the proof.

It will be more convenient to prove a (formally) more general statement, by consider-
ing functions I ! Œ0; 1�, defined on a closed sub-interval I of Œ0; 1�. Thus, define

�.N/ D max
f
j�f \ƒN j;

where f runs over the set of strictly increasing and strictly convex functions from a
closed sub-interval of Œ0; 1� to Œ0; 1�, and �f denotes the graph of f . Further, let I
be a shortest sub-interval of Œ0; 1� such that there exists f W I ! Œ0; 1� as above with
j�f \ƒN j D �.N/. We fix these I and f and write � D �f .

Call a vector .x; y/ 2 Z2 primitive if d D gcd.x; y/ D 1; in general, we call .x=d;
y=d/ the primitivization of .x; y/. Let SX denotes the set of primitive vectors with posi-
tive coordinates whose sum is bounded by X :

SX D f.x; y/ 2 Z2 W x; y > 0; gcd.x; y/ D 1; x C y � Xg

Then

jSX j D
3

�2
X2 CO.X logX/;

X
.x;y/2SX

x D
1

�2
X3 CO.X2 logX/: (1.2)

(These relations are pretty standard. See, for instance, [12, Section 18.5] for the proof of
a similar statement; both relations (1.2) can be proved analogously.)

Let P0; : : : ; Pn be the lattice points on � (so that nC 1 D �.N/) ordered by the
increasing first coordinates. The vectors .xi ; yi / D N.Pi � Pi�1/ are pairwise distinct
(because the function is convex) and have positive coordinates (because it is increasing).
We may also assume them to be primitive; if one of them is not, then, replacing it by
the primitivization, we may find a new (strictly increasing and strictly convex) function
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with graph having nC 1 lattice points, but defined on a shorter interval, contradicting our
choice of I .

Let X be the largest real number such that nC 1 � jSX j. Then

j� \ƒN j D nC 1 D
3

�2
X2 CO.X logX/;

2N �
X
i

.xi C yi / � 2
X

.x;y/2SX

x D
2

�2
X3 CO.X2 logX/;

whence the result.
It follows from the proof that bound (1.1) is optimal in the sense that for each N we

can find a curve �N (satisfying the assumptions of Theorem 1.1) such that

j�N \ƒN j � 3�
�2=3N 2=3.1C o.1//:

Here the curve �N depends on N . One may wonder whether there exists a “universal
Jarník curve” � satisfying j�N \ƒN j > �N 2=3 for infinitely many N , where � is a pos-
itive real number, not necessarily equal to 3��2=3. This question, which is attributed to
J.-M. Deshouillers and A. Plagne [25], was recently answered negatively by F. Petrov [20],
who showed that for any fixed � we have

j� \ƒN j D o.N
2=3/ as N �!1:

Now we give a totally different proof of a weaker version of Jarník’s theorem. This
proof is based on an idea of Dörge [9] (1927) (see also [16, Section 9.2]) that will turn
out to be very fruitful.

Theorem 1.2. (Weak Jarník) Let I be a compact interval and � be the graph f.x; y/ j
y D f .x/g of a strictly convex function f 2 C2.I /. Then

j� \ƒN j � c.I; f /N
2
3 :

Note that this is weaker than Jarník’s theorem because f is assumed to be C2 and
because the constant in the bound depends on f .

The proof uses the following generalization of Lagrange’s mean value theorem:

Proposition 1.3. (Schwarz mean value theorem) Let I be an interval, f 2 Cn.I /, and
x0; : : : ; xn 2 I . Then there is � 2 I such thatˇ̌̌̌

ˇ̌̌ 1 x0 � � � xn�10 f .x0/
:::

:::
: : :

:::
:::

1 xn � � � xn�1n f .xn/

ˇ̌̌̌
ˇ̌̌ D f .n/.�/

nŠ
V .x0; : : : ; xn/:

Here V.x0; : : : ; xn/ denotes the Vandermonde determinantˇ̌̌̌
ˇ̌̌ 1 x0 � � � xn�10 xn0
:::

:::
: : :

:::
:::

1 xn � � � xn�1n xnn

ˇ̌̌̌
ˇ̌̌ :
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Proof of Schwarz mean value theorem. Let g.t/ D antnC� � �Ca1tCa0 be the Lagrange
interpolation polynomial for f at the points x0; : : : ; xn. Then we have .f � g/.xi / D 0
for all i D 0; : : : n, and therefore by a “generalized Rolle theorem” there is � 2 I such
that f .n/.�/ D g.n/.�/. Moreover, g.n/.�/ D nŠ an. Noting that

V.x0; : : : ; xn/ an D

ˇ̌̌̌
ˇ̌̌ 1 x0 � � � xn�10 f .x0/
:::

:::
: : :

:::
:::

1 xn � � � xn�1n f .xn/

ˇ̌̌̌
ˇ̌̌

then yields the result.

Proof of the weak Jarník theorem. Let us pick three pointsPi D .xi ; yi /, i D 0; 1; 2 on � .
Because of the strict convexity of f , they cannot lie on one straight line, so

� D

ˇ̌̌̌
ˇ̌ 1 x0 y0
1 x1 y1
1 x2 y2

ˇ̌̌̌
ˇ̌ ¤ 0:

By the Schwarz mean value theorem, there exists � 2 I such that

� D

ˇ̌̌̌
ˇ̌ 1 x0 f .x0/

1 x1 f .x1/

1 x2 f .x2/

ˇ̌̌̌
ˇ̌ D f 00.�/

2Š
V .x0; x1; x2/:

Since I is compact, this gives us an upper bound

j�j � c.I; f / max
1�i<j�3

jxi � xj j
3:

Assume now that P0; P1; P2 2 � \ƒN , that is, the Pi are rational points whose co-
ordinates have denominators dividing N . Then � is a non-zero rational number with
denominator at most N 2, so

j�j �
1

N 2
:

This, combined with the above upper bound, gives us

max
1�i<j�3

jxi � xj j � c N
�2=3:

We have thus proved that an interval containing the projections of three points lying in
� \ ƒN has length bounded from below by cN�2=3. Cutting I into small intervals
of length c

2
N�2=3, we have at most two points projecting to each such small interval.

Denoting by `.I / the length of I , there are at most `.I /2
c
N 2=3 such intervals, so the

result follows.
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In fact, we have proved the following

Proposition 1.4. Let I be a compact interval and � the graph f.x; y/ j y D f .x/g of
a function f 2 C2.I /. There is a constant c depending only on I and f , having the
following property. If for the points

P0; : : : ; Pk 2 � \ƒN ; Pi D .xi ; yi /

the coordinates x0; : : : ; xk lie in an interval of length smaller than c N�2=3, thenP0; : : : ; Pk
lie on a straight line.

In particular, the set � \ ƒN is covered by Of .N 2=3/ straight lines. Bombieri and
Pila [2] came up with a crucial idea: consider not only straight lines, but also more general
algebraic curves. We discuss it in the next section.

2. The theorem of Bombieri and Pila

Generalizing Dörge’s idea, Bombieri and Pila [2] proved that a plane analytic compact
curve cannot contain many rational points with a given denominator.

In the sequel by an irreducible plane curve of degree d we mean a subset of R2
consisting of points .x; y/ satisfying F.x; y/ D 0, where F.X; Y / is an irreducible real
polynomial of degree d . A segment of such a curve is its connected compact subset.

Theorem 2.1. (Bombieri, Pila, 1989) Let � � R2 be a real analytic plane compact curve.

(1) Assume that � is transcendental. Then for any " > 0 there is a constant C.�; "/ such
that

j� \ƒN j � C.�; "/N
";

where ƒN D 1
N
Z2.

(2) Assume that � is a segment of an irreducible plane algebraic curve of degree d . Then
for any " > 0 there is a constant C.�; "/ such that

j� \ƒN j � C.�; "/N
1
d
C":

Remarks
(1) The example of a curve given by y D xd shows that the exponent in the second part

of the theorem cannot be made smaller than 1=d .

(2) In the second part of the theorem one can replace C.�; "/ by C.d; "/, if one assumes
in addition that � � Œ0; 1�2.

We are going to use the following generalization of the mean value theorem:

Proposition 2.2. (Generalized Schwarz mean value theorem) Let I be an interval, f0; : : : ;
fn 2 Cn.I /, and x0; : : : ; xn 2 I . Then for all i; j such that 0 � i; j � n there is �ij 2 I
such that

detŒfi .xj /�i;j D det

"
f
.j /
i .�ij /

j Š

#
ij

� V.x0; : : : ; xn/:
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Here is the proof for n D 1: by the Lagrange mean value theorem, there are �01; �11 2 I
such that fi .x1/ � fi .x0/ D f 0i .�i1/ .x1 � x0/ for i D 0; 1. Thus,ˇ̌̌̌
f0.x0/ f0.x1/

f1.x0/ f1.x1/

ˇ̌̌̌
D

ˇ̌̌̌
f0.x0/ f0.x1/ � f0.x0/

f1.x0/ f1.x1/ � f1.x0/

ˇ̌̌̌
D

ˇ̌̌̌
f0.x0/ f 00.�01/

f1.x0/ f 01.�11/

ˇ̌̌̌
.x1�x0/;

and we can choose �00 D �10 D x0.
The proof of the general case is very similar, but with Lagrange replaced by Schwarz,

see [33].

Corollary 2.3. If the interval I is compact, there is a constant c depending only on
f0; : : : ; fn such that ˇ̌

detŒfi .xj /�i;j
ˇ̌
� c jV.x0; : : : ; xn/j:

Definition 2.4. Let d; e 2 N. We call a .d; e/-curve a (possibly reducible) plane algebraic
curve with equation of the formP.x; y/ D 0whereP 2 RŒx; y� is a non-zero polynomial
such that degx P < d and degy P < e.

For example, a .2; 2/-curve is of the form aC bx C cy C hxy D 0.

Facts about .d; e/-curves
(1) Any collection of de � 1 points lies on a .d; e/-curve.

(2) A collection of de points Pk D .xk ; yk/, k D 1; : : : ; de, lies on a .d; e/-curve if and
only if

� WD detŒxik y
j

k
�.i;j /D.0;0/;:::;.d�1;e�1/

kD1;:::;d e

D 0:

Note that the rows in the above determinant are numbered by the bi-index .i; j /. For
example, for .2; 2/-curves this condition for four points P1; : : : ; P4 takes the formˇ̌̌̌

ˇ̌̌̌ 1 1 1 1

x1 x2 x3 x4
y1 y2 y3 y4
x1 y1 x2 y2 x3 y3 x4 y4

ˇ̌̌̌
ˇ̌̌̌ D 0:

(3) If P1; : : : ; Ps do not lie on a .d; e/-curve (in particular s � de by the above), then
one can select de points among them not lying on a .d; e/-curve.

Let � be the graph y D f .x/ of a function f 2 Cde�1.I / where I is an interval, and
consider P1; : : : ; Pde 2 � \ƒN not lying on a .d; e/-curve. Then, by the above, writing
gi;j .x/ D x

if .x/j we have

� D detŒgij .xk/�.i;j /D.0;0/;:::;.d�1;e�1/
kD1;:::;d e

¤ 0;

where Pi D .xi ; f .xi //. Using Corollary 2.3 for the functions gij , we get

j�j � c.f / jV.x1; : : : ; xd e/j � c

�
max

1�k<l�d e
jxk � xl j

�de.de�1/
2

;
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where the constant c depends only on I and f . On the other hand, the coordinates of
Pi ’s are rational numbers with denominator dividing N . By assumption, the determinant
� evaluates to a non-zero rational number, and the entries in its .i; j /-th column have a
common denominator dividing N iCj . Thus the denominator of � is bounded byY

.i;j /

N iCj
D N

P
.i;j / iCj D N

de.dCe�2/
2

and we have
j�j � N�

de.dCe�2/
2 :

We can therefore conclude that if points P1; : : : ; Pde 2 � \ ƒN do not lie on a .d; e/-
curve, then

max jxk � xl j � c.f / �N�
eCd�2
ed�1 D c.f / �N�ı ;

where ı D dCe�2
de�1

: This means that if de points of � \ ƒN project to an interval of
length c

2
N ı , they necessarily lie on a .d; e/-curve. Since we can cut our interval I into

c.f; d; e; I /N ı such intervals, we have the following.

Lemma 2.5. (Main lemma of Bombieri–Pila) Let � be the graph y D f .x/ of a function
f 2 Cde�1.I /. Then the set � \ƒN is covered by cN ı .d; e/-curves, where c depends
on I , f , d , e and ı D dCe�2

de�1
.

Note that the approach of Bombieri and Pila is an exact analogue of the proof of the
weak Jarník theorem we gave above, with straight lines replaced by more general .d; e/-
curves.

Proof of Theorem 2.1. We prove the two statements of the theorem separately:

(1) Take � transcendental, analytic and compact as in the statement of the theorem, and
" > 0. Choose moreover d; e such that dCe�2

de�1
< ". We can break up � into a finite

number of pieces of the form y D f .x/ or x D f .y/, to each of which we apply the
main lemma. Thus � \ ƒN is covered by cN " .d; e/-curves, where c D c.�; "/.
On the other hand, since � is transcendental, the size of the intersection of � with a
.d; e/-curve is bounded uniformly by a constant depending only on � , d , e.

(2) Assume now that � is a segment of an irreducible algebraic curve of degree d . By
applying a linear change of variables, we may assume that it is defined by the poly-
nomial equation F.x; y/ D 0 where degx F D d . Choose e big enough such that
dCe�2
de�1

< 1
d
C ": Then, applying the main lemma, � \ ƒN is covered by cN 1=dC"

.d; e/-curves, where c D c.�; "/. On the other hand, since degx F D d , our curve �
cannot be contained in a .d; e/-curve. By the Bézout theorem, the size of the inter-
section of � with a .d; e/-curve is bounded by c.d; e/, and we are done.

3. Counting rational points with bounded height

In this section, instead of counting lattice points on � , we are going to count points of
bounded height.
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Definition 3.1. Let ˛ D p
q
2 Q with p and q coprime. Define the height of ˛ by

H.˛/ D maxfjpj; jqjg:

Denoting �.Q; N / D f.x; y/ 2 � \ Q2; H.x/;H.y/ � N g, we can state the
following stronger version of Theorem 2.1:

Theorem 3.2. (Bombieri–Pila theorem for rational points) Let � be a plane compact
analytic curve.

(1) If � is transcendental, then for any " > 0 there is a constant c.�; "/ such that

j�.Q; N /j � c.�; "/N ":

(2) If � is algebraic of degree d , then for any " > 0 there is a constant c.�; "/ such that

j�.Q; N /j � c.�; "/N
2
d
C":

Again, the second part cannot be improved, as shown by the example y D xd .
Proof. To get this result, we just need to modify a little the proof of Theorem 2.1, more
precisely, the proof of the Main Lemma. Consider points

P1; : : : ; Pde 2 �.Q; N /; Pk D .xk ; yk/

not lying on a .d; e/-curve, where � is a graph y D f .x/. We still have the bound

j�j � c.f /

�
max

1�k<l�d e
jxk � xl j

�de.de�1/
2

obtained directly from the general mean value theorem where

� D detŒxiky
j

k
�.i;j /D.0;0/;:::;.d�1;e�1/

kD1;:::;d e

¤ 0:

In fact, the only thing that needs to be changed is the computation of the lower bound
for �. The difference is that since now our condition is on the height of xk’s and yk’s,
we have less information on their denominators, and in particular we can no longer use
N as a common denominator. Write .xk ; yk/ D

�
�

Mk
; �
Nk

�
, with 0 < Mk ; Nk � N .

Then the common denominator in column k is at most M d�1
k

N e�1
k
� N dCe�2, and �

has denominator at most N de.dCe�2/, which gives us

j�j � N�de.dCe�2/:

The rest of the proof works in exactly the same way. Note that in the proof of the first
version of the Main Lemma, the exponent was de.dCe�2/

2
, that is, we lost the factor 1

2
.

Therefore, the new version of the Main Lemma is the following:

Lemma 3.3. (Second Main Lemma) Let I be an interval and � a graph y D f .x/ of
a function f 2 Cde�1.I /. Then �.Q; N / is covered by c N ı .d; e/-curves, where c
depends only on I , f , d and e, and ı D 2.dCe�2/

de�1
.
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4. Generalization to higher dimensions

Let X � Rm be a compact real-analytic transcendental manifold. We denote by X.Q; N /
the set of rational points of X whose coordinates are all of height smaller than N . To
generalize the previous results, we would like to get something like

jX.Q; N /j � c.X; "/N ":

However this is easily seen to be false, as the example of the surface z D xy where
1 � x; y � 2 shows. Indeed, the problem that arises in the higher dimensional case is
the fact that a transcendental manifold can very well contain whole pieces of algebraic
curves, which can have many rational points. Let us therefore define X alg to be the union
of all segments of algebraic curves inside X , and X tr D X n X alg. The above statement
then turns out to be true when replacing X by X tr:

Theorem 4.1. (Pila, Wilkie) For every " > 0 there is a constant c.X; "/ such that

X tr.Q; N / � c.X; "/N ":

We sketch now the proof in the case whereX is a (two-dimensional) surface inside R3.
In this special case, Theorem 4.1 was proved by Pila in [21].

Theorem 4.2. (Pila, 2005) Let X � R3 be an analytic surface. For every " > 0, there is
a constant c.X; "/ such that

X tr.Q; N / � c.X; "/N ":

In fact, Pila proved this result for subanalytic surfaces, projections of analytic surfaces.
See [1] for a tutorial on these topics.

We start from an analog of the Main Lemma. Instead of algebraic curves of bounded
degree, as in the one-dimensional case, we now use algebraic surfaces of bounded degree:
for a positive integer d , a d -surface2 is defined by P.x; y; z/ D 0 where degx P; degy P;
degz P < d . The Main Lemma asserts that rational points on a sufficiently smooth
compact surface lie on a few d -surfaces.

Proposition 4.3. (Main Lemma in dimension 2) Let " > 0. There are integers d and D
depending on ", such that if X is a compact CD-surface in R3, then X.Q; N / is covered
by c N " d -surfaces, where c D c.X; "/.

The proof goes along the same lines as in dimension 1. Fix d and D, to be specified
later. Points P1; : : : ; Ps 2 R3 belong to a d -surface if a certain determinant � van-
ishes. We may assume that X is given by z D f .x; y/, where f is a function defined on
some compact domain in R2 having bounded continuous derivatives of order up to D. If
P1; : : : ; Ps 2 X project to a small square on the x; y-plane, and D is large enough (in
terms of d ), then� can be bounded from above using some analogues of the Mean Value
Theorem. On the other hand, if P1; : : : ; Ps are rational points of height at most N and
� ¤ 0, then � is bounded from below by some negative power of N . When the square

2To make it compatible with the .d; e/-curves, we should have probably said .d; d; d/-surface, but this is
too lengthy.
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is small enough, the upper bound contradicts the lower bound, which means that � must
be 0. In other words, if the points project to a sufficiently small square, then they must
belong to a d -surface. Selecting d suitably large, we see that “sufficiently small square”
means “square with side length c.X; "/N�" ”. Now subdividing the domain of definition
of the function f into small squares, we complete the proof. For the details see [32,
Appendix A, Lemma A.3].

Having this, let us see what kind of intersectionX can have with a d -surface. SinceX
is transcendental, such an intersection is of dimension 1; by compactness, it must be a
finite union of irreducible analytic curves. The number of irreducible components in the
intersection is controlled by the following result due to Gabrielov [10].

Theorem 4.4. (Gabrielov) Let V;W be complex semi-analytic manifolds with W com-
pact, and � W V ! W an analytic map. There exists a constant c.�/ depending only on
� such that for all ! 2 W the number of connected components of ��1.!/ is bounded
by c.�/.

Applying this theorem (more precisely, an analogous statement about irreducible com-
ponents) with W being the space of all non-zero polynomials defining d -surfaces (which
is Pd3�1.R/, hence compact), we bound the number of components in the intersection
of X with a d -surface. Now let us consider one such component. It is a curve, algebraic
or transcendental. If it is algebraic, it is contained in X alg and we don’t have to worry
about it. If it is transcendental, then we reduced the problem to the one-dimensional case.
Projecting it to one of the coordinate planes, we obtain a plane transcendental curve, and
to the latter we may apply Theorem 3.2.

The argument above can be briefly summarized as follows: rational points of bounded
height from X tr belong to “few” transcendental curves, and each of the latter has “few”
rational points of bounded height by Theorem 3.2.

However, there is an important difficulty: Theorem 3.2 involves a constant depending
on the curve. Thus we need to have a sort of “uniform” version of this theorem, which
would follow if we get a similar uniform version of the one-dimensional Main Lemma.

Let us therefore for a moment go back to the one-dimensional case. Let � be the graph
y D f .x/, where f is defined on some interval I and has sufficiently many bounded
derivatives therein. The Main Lemma asserts that the set �.Q; N / is contained inside a
union of cN " .d; d/-curves, where c depends on I , f , d and ".

Now assume that f runs through a continuous family of functions

ff� W I� ! R W � 2 Tg

with a compact base T. We will manage to complete the argument above if we bound the
constant c uniformly in � . This would have been possible if the constant depended only
on the length jI j of the interval and the sup-norm kf k: both are bounded in a continuous
family with compact base. Unfortunately, the constant depends also on the sup-norms
of the derivatives kf .k/k with k D 0; : : : ; d2 � 1, and the derivatives are not bounded
in a continuous family with compact base (for example, take T D Œ0; 1�, I� D Œ0; 1� and
f� .x/ D �

1=3.x C �/1=2).
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One can take care of the first derivative f 0 by noticing that on the part of the interval
where jf 0j � 1 our curve can be written as x D g.y/ with jg0j � 1. However, one cannot
deal like this with higher order derivatives.

Instead, Pila uses the fact that derivatives can be large only on short intervals. The
following lemma is easy to prove.
Lemma 4.5. Assume that f is of class C2 on I D Œa; b�, and f; f 0; f 00 do not vanish on
I . Put J D ŒaC ı; b � ı� where 0 < ı < b�a

2
. Then kf 0jJ k < ı�1kf k.

Indeed, assume, for instance, that f; f 0; f 00 > 0 on I . Then for x 2 J we have
f .x/ > 0 and f 0.u/ > f 0.x/ > 0 for u 2 Œx; b�. Hence

f .b/ D f .x/C

Z b

x

f 0.u/ du > f 0.x/ .b � x/ � f 0.x/ ı;

whence 0 < f 0.x/ < ı�1f .b/ D ı�1kf k, proving the lemma in this case. The other
cases are treated similarly.

By induction, one shows that if f 2 CnC1.I / and f; f 0; : : : ; f .nC1/ do not vanish
on I , then kf .n/jJ k � .n=ı/n kf k.

Thus high order derivatives may grow uncontrollably only near the points where one
of them vanishes.

Now return to our curve y D f .x/. Put n D d2 � 1 and assume that the functions
f; f 0; : : : ; f nC1 have k roots altogether. Fix a small positive number ı and throw away
from our interval I all the ı-neighborhoods of these roots. On the remaining part of I
the sup-norms of derivatives of order up to n are controlled by the sup-norm of f . As for
the part thrown away, it consists of k tiny intervals, and Pila applies to them an ingenious
re-scaling argument, going back to the original article with Bombieri. The details are
quite intricate and cannot appear here: the reader may consult Pila’s article [21] or the
exposition in [32, Appendix A].

This reasoning implies a new version of the Main Lemma, with constant depending
only on jI j; kf k and the number of zeros of derivatives of order up to n. For the curves
occurring in the proof of Theorem 4.2 the first two of these parameters are estimated
immediately, just from the compactness of the space of d -surfaces. As for the number of
zeros of derivatives, this can be estimated using Gabrielov’s theorem.

This is, in general terms, how Theorem 4.2 was proved.

5. The Manin–Mumford conjecture

In this section we show how Pila’s techniques apply to the famous problem of Manin–
Mumford. We start with some generalities about complex abelian varieties.

Let A be an abelian variety over C of dimension g. Recall that there is a complex
analytic group isomorphism

A.C/ Š Cg=ƒ;
where A.C/ is the group of complex points of A and ƒ is a lattice inside Cg . It follows
that

AŒN � Š .Z=NZ/2g ;
where AŒN � D fx 2 A j Nx D 0g are the N -torsion points of A.
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We will denote the group of all torsion points of A by Ators D [N�1AŒN �: In its simplest
form, the Manin–Mumford conjecture can be stated as follows:

Theorem 5.1. (Manin–Mumford conjecture, simplest form) Let X be an algebraic curve
on an abelian variety A. If X is not an elliptic curve, then jX \ Atorsj is finite.

If X � A is an elliptic curve passing through a torsion point of A, then the above
set is equal to the set of torsion points of X , so is infinite: this explains why we need to
exclude elliptic curves.

Theorem 5.1 was proved by Raynaud [26] in 1983. To state a more general form of
the Manin–Mumford conjecture, we need the following definition.

Definition 5.2. A subvariety B � A is called a torsion subvariety if it is a translate of
an abelian subvariety by a torsion point. That is, there exist a torsion point b 2 A and an
abelian subvariety B0 � A such that B D b C B0.

Theorem 5.3. (Manin–Mumford conjecture, general form) Let X � A be a complex
algebraic variety. Then X has only finitely many maximal torsion subvarieties.

This was proved by Raynaud [27] in 1983 as well. After the work of Raynaud a
number of other proofs emerged.

Recently a new proof was suggested by Pila and Zannier (2006). They do prove the
general conjecture, but we will discuss their argument only in the simplest case where
X is an algebraic curve. Let us consider the inverse image of X under the the complex
analytic uniformization map for A

� W Cg �! A;

1

N
ƒ �! AŒN �;

eX D ��1.X/ �! X:

Let� � Cg be a fundamental domain of the latticeƒ. Then �j� W � �! A is surjective,
and any point inside AŒN � \X comes from a point in eX \ 1

N
ƒ \�, so we have

ˇ̌
X \ AŒN �

ˇ̌
�

ˇ̌̌̌eX \ 1

N
ƒ \�

ˇ̌̌̌
:

Thus we have reduced the problem to rational points on the complex analytic curve (and
real analytic surface) eX . Our goal is to apply Theorem 4.1, for which we have to deter-
mine eX alg

. This will be done in two steps:

Claim 1: Each irreducible component of eX is transcendental.

First of all, let us observe the following property of plane algebraic curves.

Lemma 5.4. Let C � R2 be an irreducible plane algebraic curve and let ƒ be a lattice
in R2. Then either C is a straight line and the intersection C \ƒ is infinite, or C Cƒ
is dense in R2 (in the real topology).
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We do not prove this lemma, but it is not very difficult. Since eX is invariant under
translations by elements of the lattice, but not dense, the lemma implies that its only pos-
sible algebraic components are straight lines having infinite intersection with the lattice.
But having such a component would mean that X has an elliptic curve as a component, a
contradiction. This proves Claim 1.

Claim 2: eX cannot contain a segment of a real algebraic curve.
Indeed, by analytic continuation this would give us a complex algebraic curve in-

side eX , contradicting Claim 1.

Thus eX alg
D ∅. We are therefore ready to apply the Pila–Wilkie theorem to get an

upper bound ˇ̌
X \ AŒN �

ˇ̌
�

ˇ̌̌̌eX \ 1

N
ƒ \�

ˇ̌̌̌
� c.X; "/N ":

(Notice that while eX can a priori have infinitely many components, only finitely many of
them may intersect �.)

For the lower bound, we may assume without loss of generality that A and X are
defined over a number field K. Then if P 2 X \ AŒN �, all conjugates of P over K
lie in X \ AŒN � as well, which implies jX \ AŒN �j � ŒK.P / W K� where K.P / is the
extension of K generated by the coordinates of P . The lower bound comes from the fact
that torsion points generate extensions of large degree, an old result of Masser [18].

Theorem 5.5. (Masser) Let A be an abelian variety of dimension g over a number
field K. Then there exist ı D ı.g/ > 0 and c D c.A;K/ > 0 such that if P 2 AŒN � is of
exact order N then

ŒK.P / W K� � cN ı :

Taking " D ı
2

shows that for sufficiently big N , the set X \ AŒN � must be empty.

6. Definable sets in o-minimal structures

In fact, in [24] Pila and Wilkie obtained a much more general result than Theorem 4.1:
they estimated the number of rational points of bounded degree on arbitrary definable sets
in o-minimal structures over R.

6.1. O-minimal structures. For our purposes the following definitions will be suffi-
cient; the interested reader might want to consult the main reference on the subject, [6].

Definition 6.1. We define a structure on a set R to be a sequence

S0;S1;S2;S3; : : : ;

where Sm � P.Rm/ is a collection of subsets of Rm. A set A � Rm such that A 2 Sm is
called definable in the structure. Further we ask that

(S1) Each Sm is closed under finite union and complement (and therefore under finite
intersection as well): if A;B 2 Sm, then A [ B 2 Sm and A 2 Sm.
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(S2) The structure is closed under taking Cartesian products: if A 2 Sm and B 2 Sn,
then A � B 2 SmCn.

(S3) Equalities are definable in the structure. Namely, the set f.x1; : : : ; xm/ j xi D xj g

belongs to Sm for each i; j 2 f1; : : : ; mg.
(S4) The structure is closed under projections: if � W RmC1 ! Rm denotes the projection

on the first m coordinates, then for all A 2 SmC1 the set

�.A/ D fx 2 Rm j 9y 2 R; .x; y/ 2 Ag

belongs to Sm.

The last axiom is called quantifier elimination.
For a map f WRm ! Rn we say that it is definable if its graph is definable:

f.x; y/ 2 Rm �Rn j y D f .x/g 2 SmCn:
Let us remark that, as was described in the previous sections, Pila’s methods involve

taking intersections and projections of the initial sets; this shows that definable sets in a
structure are a convenient setting for possible generalizations of Pila’s results, allowing us
to keep track of the regularity of the sets we are working with while we perform operations
on them. For our purpose we are particularly interested in the case where the underlying
set is R, and we would like to work with structures over R that are compatible with its
properties as an ordered ring. More precisely, we are going to consider structures where
� The operationsC; � W R2 ! R are definable.
� The singletons fxg for all x 2 R are definable.
� The relation < is definable, that is for all m and for all i; j 2 f1; : : : ; mg the set
f.x1; : : : ; xm/ j xi < xj g is definable.

From now on we will understand by “structure over R” a structure over the setR D R sat-
isfying these additional properties. Note that under these assumptions, all semi-algebraic
sets, that is, sets given by equations and inequalities involving polynomials, are definable.
It is natural to ask whether semi-algebraic sets themselves form a structure over R. This
is true, the non-trivial part being axiom .S4/, a theorem by Tarski and Seidenberg.

All semi-algebraic subsets of R are of one of the following types:
� ∅;
� open intervals .a; b/ with a; b 2 R [ f˙1g;
� singletons fxg for x 2 R;
� finite unions of the previous sets.

Definition 6.2. A structure over R is called o-minimal if the only definable sets in R are
those listed above.

Though this definition seems to concern only sets in dimension 1, it imposes strong
regularity conditions on definable sets in higher dimensions; for instance, every definable
set is a finite union of smooth manifolds, see [6]. On the other hand, the following exam-
ples show that the class of o-minimal structures is very rich and allows numerous strong
extensions of Pila’s results.
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Examples:
(1) The simplest (and smallest) example of an o-minimal structure is the structure Ralg of

semi-algebraic sets.

(2) Real semi-analytic sets do not form a structure, because a projection of an analytic
set is not necessarily analytic, see [1]. Call a set subanalytic if it is a projection of a
semi-analytic set, and globally subanalytic if it is a restriction to Rm of a subanalytic
set inside PRm. Van den Dries [5] was, probably, the first one to observe that globally
subanalytic sets form an o-minimal structure, denoted by Ran.

(3) The structures Ralg,exp and Ran,exp obtained by extending Ralg and Ran to make the
function exp definable are o-minimal, as shown by Wilkie, Van den Dries and others
in the 1990’s, see [7], [8] for precise references.

(4) Peterzil and Starchenko [19] showed definability of the Weierstrass }-function. Pre-
cisely, denote by � the standard fundamental domain for the action of SL2.Z/ on the
upper half plane H (see Subsection 7.1 for more details) and by }.z; �/ the Weier-
strass }-function of ƒ D Z� C Z. Then the function f .x; y; �/ D }.x� C y; �/ on
the set Œ0; 1�� Œ0; 1��� is definable in Ran;exp. It follows that the j -invariant function
restricted to � is definable in Ran,exp as well.

6.2. The theorem of Pila and Wilkie. We can now state the principal theorem of Pila
and Wilkie from [24].

Theorem 6.3. (Pila, Wilkie, 2006) Let a subset X � Rm be definable in some o-minimal
structure. Then for every " > 0 there is a constant c.X; "/ such that

jX tr.Q; T /j � c.X; "/ T ":

Applying this to the o-minimal structure Ran, we see that Theorem 4.1 we stated
earlier is a special case of this one.

In the sequel we shall often omit for brevity the reference to o-minimality, but will
assume it tacitly. By “definable” we shall always mean “definable in some o-minimal
structure”.

The main new tool in the proof is an o-minimal version of Gromov’s and Yomdin’s
re-parametrization lemma.

Definition 6.4. Let X � Rm be definable. A partial Cr -parametrization of X is a defin-
able function f W .0; 1/m ! X which is injective and Cr . It is said to be bounded if all
its derivatives of order � r are bounded. A finite set ff1; : : : ; fkg of (bounded) partial
parametrizations of X is called a (bounded) Cr -parametrization of X if the union of the
images of all the fi covers all of X .

Existence of a Cr -parametrization (without boundedness condition) is not difficult
to establish, see [6], and the principal hassle is boundedness. Gromov [11], improv-
ing on a result of Yomdin [31], showed that a semi-algebraic set admits a bounded Cr -
parametrization. Pila and Wilkie [24] extended this further to arbitrary definable sets.

Lemma 6.5. (Yomdin–Gromov re-parametrization lemma) A compact definable set has a
bounded Cr -parametrization.
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Moreover, a similar statement holds for a definable family of definable sets.
Thanks to the bounded parametrization, one no longer has to struggle with non-

uniformity, as we did in Section 4: all the derivatives are bounded, and one can proceed
with the inductive argument almost straightforwardly. This is one of the best examples we
know when placing the problem in the correct general context greatly clarifies it, and the
proof of a much more general statement appears to be much simpler than that of particular
cases.

Later Pila in [22] extended Theorem 6.3 to algebraic points of bounded degree on
definable sets. Denote by X tr.Q; d; T / the set of points on X of height3 bounded by T
and degree (over Q) bounded by d .

Theorem 6.6. (Pila, 2009) Let d � 1 be an integer and let X � Rm be a definable set.
Then for all " > 0 there is a constant c.X; "; d/ > 0 such that

jX tr.Q; d; T /j � c.X; "; d/ T ":

The idea is to reduce this to Q-points in a higher dimensional set, precisely, in the
symmetric product of d copies of X . If P is a point of degree d over Q and P1; : : : ; Pd
are its conjugates, then the point .P1; : : : ; Pd / 2 Xd gives rise to a Q-rational point on
the symmetric product.

7. The André–Oort conjecture

Before discussing another very important application of Pila’s results, we need to recall
some facts on modular curves and complex multiplication, the main reference being [15].

7.1. Modular curves. Let E be an elliptic curve over C. Then there is a complex ana-
lytic isomorphism

E.C/ Š C=ƒ;
where ƒ is some lattice in C. Two elliptic curves E1 and E2 are isomorphic if and only
if the corresponding lattices ƒ1; ƒ2 are equivalent, that is, if there exists ˛ 2 C� such
that ƒ2 D ˛ƒ1. Thus up to isomorphism we can always write E.C/ D C=ƒ where ƒ is
the lattice h1; �i generated by 1 and an element � of the upper half-plane H. There is an
action of �.1/ WD SL2.Z/ on H given by�

a b

c d

�
� � D

a� C b

c� C d
;

and the modular curve Y.1/ D �.1/nH of �.1/-orbits parametrizes isomorphism classes
of elliptic curves. One can also describe it more explicitly choosing the following funda-
mental domain:

� D

�
� 2 H; �

1

2
� Re.�/ <

1

2
; j� j > 1

�
[

�
� 2 H; j� j D 1;�

1

2
� Re.�/ � 0

�
:

3We intentionally do not specify what we mean here by “height”; each reader can use her/his favorite defini-
tion, the result will always be the same.
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Two elliptic curves are isomorphic over C if and only if they have the same j -invariant,
and every complex number is the j -invariant of some elliptic curve over C. Therefore,
the j -invariant defines an analytic isomorphism �.1/nH Š C.

Define the congruence subgroup

�0.N / D

�

 2 SL2.Z/; 
 �

�
� �

0 �

�
.mod N/

�
:

The curve Y0.N / D �0.N /nH parametrizes pairs .E; f / where E is an elliptic curve
and f is a cyclic N -isogeny, that is, an isogeny f W E ! E 0 (where E 0 is some other
elliptic curve) of degree N with kernel cyclic of order N . We can define a function on
Y0.N / by jN .�/ D j.�=N /. There is an explicit description of Y0.N / as a plane curve
over Q given by an equation ˆN .x; y/ D 0, where ˆN is an irreducible polynomial in
ZŒx; y� such that ˆN .j; jN / D 0.

7.2. Complex multiplication. LetE D E� be an elliptic curve over C with correspond-
ing lattice ƒ D h1; �i. Its endomorphism ring End.E/ contains the ring Z of rational
integers, corresponding to the multiplication-by-n maps for every n 2 Z. If End.E/ is
strictly bigger than Z, the curve E is said to have complex multiplication, or to be a CM-
curve. In this case � is necessarily imaginary quadratic, and End.E/ is an order O� in the
imaginary quadratic fieldK D Q.�/. In particular, there is a positive integer f , called the
conductor of � , such that O� D ZCf OK where OK is the ring of integers ofK. Writing
Q.�/ D Q.

p
d/ where d < 0 is an integer such that �d is square-free, D D f 2d is the

discriminant of the order O� , called the discriminant of � . The following is a fundamental
result of the theory of complex multiplication:

Theorem 7.1. Assume E has complex multiplication by the order O� of conductor f .
Then j.�/ is an algebraic integer of degree hf;K , the class number of the order O� of K.

Moreover, hf;K is related in the following way to the class number hK of K:

hf;K D c � hK f
Y
pjf

�
1 �

�
d

p

�
1

p

�
; c 2 f1; 1=2; 1=3g: (7.1)

See [4, Section 7] for more details.

7.3. The André–Oort conjecture.

Definition 7.2. A point P 2 C2 is said to be a CM-point if P D .j.�1/; j.�2// where �1
and �2 are imaginary quadratic.

Lines of the form C � fj.�/g or fj.�/g � C contain infinitely many CM-points.
So does a modular curve Y0.N /, as we have seen it contains all points of the form
.j.�/; j .�=N // : André’s theorem states that all curves inside C2 containing infinitely
many CM-points must be of one of these types:

Theorem 7.3. (André, 1998) If X � C2 is an irreducible curve which is not a horizontal
or vertical line nor Y0.N / for some N , then X has finitely many CM-points.
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The general André–Oort conjecture deals with Shimura varieties, an important special
case being products of modular curves Y0.N1/�: : :�Y0.Nk/: in this setting it was proved
by Edixhoven in 1998 assuming the GRH for imaginary quadratic fields. We are going to
concentrate on the Shimura variety Ck obtained when N1 D : : : D Nk D 1.

Definition 7.4. (1) A special point in Ck is a point of the form .j.�1/; : : : ; j.�k// where
�i ’s are imaginary quadratic.

(2) A special subvariety of Ck is a subvariety given by an equation of one of the following
forms:

� xi D j.�/ for some i , where � is imaginary quadratic;
� ˆN .xi ; xj / D 0 for some i; j .

Special points and special subvarieties are an analogue of torsion points and torsion
subvarieties in the statement of the Manin–Mumford conjecture. Now we can state the
André–Oort conjecture for Ck , proved by Pila in [23] using his previous results on rational
points in definable sets.

Theorem 7.5. (André–Oort conjecture) Let X be a subvariety of Ck . Then it has finitely
many maximal special subvarieties.

We are going to sketch Pila’s proof for k D 2, when it boils down to proving Theo-
rem 7.3. The ideas are very similar to the ones used for the proof of Manin–Mumford.
Consider a map

H2 �
�! C2:

.�1; �2/ 7! .j.�1/; j.�2//

For a non-special irreducible X � C2, put eX D ��1.X/ \ .� � �/. Any CM-point
on X comes from some point of eX , so it suffices to bound the number of points from eX
mapping to CM-points inX . Note that for any CM-pointP onX , a point eP 2 eX mapping
to P is of the form .�1; �2/ where �1; �2 are imaginary quadratic, so ŒQ.eP / W Q� � 4: We
therefore need a bound on the size of eX.Q; 4; T / in terms of T , and so we must check
that we can apply Theorem 6.6. The following is a consequence of the already mentioned
theorem by Peterzil and Starchenko about the definability of the Weierstrass }-function
in Ran;exp:

Claim 1: eX is definable.

Moreover, in the same manner as in the proof of Manin–Mumford (an algebraic curve
that is not special cannot be SL2.Z/-invariant) we obtain

Claim 2: eX tr
D eX .

Assuming these claims, by Theorem 6.6 we get

jeX.Q; 4; T /j � c.X; "/ T ": (7.2)



128 A. Beshenov, M. Bilu, Yu. Bilu, P. Rath

Now we are going to bound the number of special points on X from below. For this
we can assume that X is defined over some number field L. If P 2 X is special, all
its conjugates over L are special as well. Bearing in mind that P is a CM-point, P D
.j.�1/; j.�2// where we can choose �1 and �2 inside the fundamental domain �, so thateP D .�1; �2/ 2 eX . Therefore

ŒL.P / W L� � maxfŒQ.j.�1// W Q�; ŒQ.j.�2// W Q�g: (7.3)

According to Theorem 7.1, for i D 1; 2,

ŒQ.j.�i // W Q� D hfi ;Q.�i /;

where fi is the conductor of �i . The following theorem tells us that the class number of
an imaginary quadratic field cannot be too small:

Theorem 7.6. (Siegel) Let K be an imaginary quadratic field and fix "0 > 0. Then there
is a constant c D c."0/ > 0 such that

hK � c jDK j
1
2�"
0

;

where DK is the discriminant of the number field K.

Thanks to formula .7:1/, we then get that

ŒQ.j.�i // W Q� � ci jDi j
1
2�"
0

(7.4)

for some constant ci > 0, where Di D f 2i DQ.�i / is the discriminant of �i . Moreover,
for � imaginary quadratic of discriminant D lying in the fundamental domain, a quick
computation shows that the height H.�/ of � is bounded in terms of its discriminant:

H.�/ �
p
jDj: (7.5)

Putting (7.3), (7.4) and (7.5) together, we get finally for "0 sufficiently small

ŒL.P / W L� � cmaxfH.�1/;H.�2/g1�2"
0

D c H.eP /1�2"0 :
If there are infinitely many special points onX , the heightsH.eP / can be arbitrarily large,
which with the upper bound .7:2/ yields the result.

For further reading on the topic we strongly recommend Scanlon’s expository texts
[29], [30] and Zannier’s lecture notes [32].

As mentioned in the preface, these notes do not claim for any kind of exhaustiveness.
For instance, we do not speak at all on Heath-Brown’s “determinant method”, which
can be viewed as a “p-adic” version of the Bombieri–Pila method; see [13], [3] and the
subsequent work of Browning, Salberger and others.

While Heath-Brown’s method is beautiful and powerful, it mainly applies in the alge-
braic case, and has yet to show its efficiency in the transcendental case, which is the main
topic of these notes. Therefore it is left out.
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