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Abstract. The aim of this paper is to review the main recent results about the dynamics of non-
linear partial differential equations describing flux-saturated transport mechanisms, eventually in
combination with porous media flow and/or reactions terms. The result is a system characterized by
the presence of wave fronts which move defining an interface. This can be used to model different
process in applications in a variety of areas as developmental biology or astrophysics. The concept
of solution and its properties (well-posedness in a bounded variation scenario, Rankine—Hugoniot
and geometric conditions for jumps, regularity results, finite speed of propagation, ... ), qualitative
study of these fronts (traveling waves in particular) and application in morphogenesis cover the
panorama of this review.
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1. Introduction

Flux saturated porous media equations is a shorthand that encompasses a class of de-
generate parabolic equations combining two non-linear diffusion mechanisms: That of
porous-media-type equations plus a flux saturation mechanism.

The archetypical porous media equation is

ou )

— = divu™ ' Vu), (1.1)
at

while flux-limited equations (also known as flux saturated equations or tempered diffusion

equations) are essentially equations in divergence form such that their flux saturates to

a constant value whenever the size of the gradients is big enough. Probably the most
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representative example of such an equation, at least in the mathematical literature, is the
so-called “relativistic heat equation”

Ju di uVu (12)
— =div| —o=]. )
ot Vu? + |Vul?

One of the easiest hybrid model we can come up with is the following (apparently first
introduced in [61]):

du . u™Vu

—=div| —— . (1.3)
This is quite representative of what we mean by a combination of two non-linear diffusion
mechanisms, at least from the formal point of view. There are of course other ways of
combining flux-saturated and porous media influences already present in [62, 67]. We
will see lots of examples in the sequel. In fact the previous is just the tip of the iceberg, as
both (1.1) and (1.2) lend themselves easily to generalization. The standard porous media
equation is customarily generalized to the filtration equation

du

— = Ad(u),

5 (u)
while flux-saturated equations come in a variety of ways, as long as they follow the vague
requirement set above on the structure of the flux. This has led to a plethora of general
forms or templates trying to embody large families of equations combining these two
types of nonlinear diffusion. To name a few, we have

u =" Qg and ur = [p(u) Q(ux)lx.

in [67, 68], 9
8_]; = div (e(u) ¥ (Vu/u))
in [48],
o ( AW) V() )
div| ——

~ U\ /Trvowp

i
in [62, 63] or even the very general formulation

B_u = diva(u, D®(u)),

ot

characterized by a Lagrangian having linear growth at infinity with respect to gradients,
as introduced in [62].

All these models are interesting for a number of reasons. First, they appear from time
to time in some areas of mathematical physics (they are even common currency in radia-
tive transport theory and astrophysics, for instance) and they are starting to find interesting
applications in some areas of mathematical biology as well (for instance in morphogen-
esis). Second, they allow us to compare both the porous media diffusion mechanism and
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the flux-saturated one in order to get a deeper understanding on each of them. It is not
clear cut if these mechanisms will really interact in some way, and, if so, if they will co-
operate and give rise to some emergent behavior. They might also be competing and as
the outcome of such competition one of them could dominate the overall dynamics after
a while. Which of these possibilities will show up in a given situation is not at all clear.
Possibilities greatly increase if we also add reaction terms. Finally, all this is connected
with the apparition of new mathematical phenomena which are interesting and quite chal-
lenging to analyze at the same time. All these aspects will be reflected in the present
survey.

In fact, one of the main reasons favoring the use of these models in the aforementioned
areas is the property of finite speed of propagation, which makes them stand in clear con-
trast with standard linear diffusion models like the heat equation. It is well known that if
we start with a point source the corresponding solution of the linear diffusion equation is
strictly positive at any point and for every positive time independently on the value of the
diffusion coefficient. This property is known as infinite speed of propagation or instan-
taneous spreading and was already pointed out in the pioneering work of Einstein over
a century ago [81]. He was able to deduce the linear diffusion equation from Brownian
motion, but paying the price of an unexpected quality of the limit: The infinite speed
of propagation, which Einstein remarked as impossible from the physical point of view.
Einstein [81] points out that

... the mean velocity of change of the observable (...) becomes infinitely
great for an infinitely small interval of time; which is evidently impossible . . .

Then, he concluded that depending on the context of applicability this property may ac-
tually pose some problems. One of the main reasons for the introduction of flux limited
models was precisely to try to solve this shortcoming. This is one of the fundamental
ideas that we will try to convey during the document. It will pop out as soon as we review
the series of works that initiated the subject, it will manifest itself virtually in every sec-
tion of this survey from there on (ranging from well-posedness to numerical simulation of
those models, all along a journey through their various analytical properties), and it will
be paramount in the closing section concerning applications in mathematical biology.

Indeed, the scope of the review is to give a detailed account of what is known nowa-
days for this class of hybrid models and to point out some of their applications. This
includes in particular those flux-saturated models that do not have any porous media type
term — like (1.2) — whose theory is more recent than that of the porous media equations,
and not as complete. The document is essentially divided in five blocks. This introduc-
tion, together with the next section concerning examples will give a rough idea on the
main features of the subject. The second block is devoted to well-posedness, which is
a highly non-trivial issue from the mathematical point of view; it comprises Sections 4
to 7. Then the third main block analyzes from both qualitative and quantitative points
of view various properties of these models. The finite propagation speed property, front
propagation, smoothing effects and asymptotic regimes will be some of the topics to be
treated in Sections 8—12. The coupling of these models with reaction terms deserves by
itself a separate discussion. This will be our fourth block, constituted by Section 13. A
final block presents some specific applications of the previous material.



Flux-saturated porous media equations 135

This introduction itself is divided in various sections. We briefly review some of
the properties of porous media equations and flux-limited equations before giving a first
summary of the properties of hybrid models. An historical account on the subject will
follow, together with some ideas concerning the applications to be discussed in the sequel.

1.1. A cavalier look into porous media equations. Let us recall that the standard
porous media equation reads

0
8—2: =vdiv(u/K)"'Vu), vk>0,m>1 xeR? 1>0. 1.4)

The case m = 1 is just the standard diffusion equation. When m < 1 (1.4) is known as
the fast diffusion equation. The mathematical theory for (1.4) and its generalization
du

i APu) (=div(®'(m)Vu)), ®:RT >R, & >0

is presently quite satisfactory. We refer to [127, 128] and the very many references therein
for details. Nevertheless, we want to point out a number of distinctive features of (1.4):

(1) Finite propagation speed. As stated in [127]:

Disturbances from the level u = 0 propagate in time with finite speed for
solutions of the porous medium equation.

Note that this spreading rate is not at all universal: It is data-dependent, in fact it
depends on the associated initial pressure. Anyhow, every point of the domain is
absorbed by the support in finite time.

(2) Presence of interfaces. Compactly supported initial data remain so during evolution,
which makes the concept of free boundary (or interface) meaningful: It is the set
of points separating the region in which the solution is strictly positive from that in
which it is zero. Spatial sections of the support constitute a non-decreasing family
(local positivity is maintained during evolution).

(3) Waiting times. Depending on the particular features on the initial datum (and more
specifically of its behavior at the interface), the associated solution may not start
to spread instantaneously but remain still for a while (meanwhile the solution re-
distributes itself inside the support) until certain conditions are met. Afterwards the
solution will start to spread and will continue to do so indefinitely. This elapsed time
is termed as the “waiting time” (strictly speaking, there is a waiting time for each
point at the initial interface).

(4) Asymptotic behavior. Solutions to (1.4) resemble on the long time run the so-called
Barenblat profiles:

_1
Ult,x) =17 (c - klxlzt_zﬂ)j:_l . C>0

with

o d g’ kza(m—l)-

“dm-n12 P 2md
These are solutions associated with a point source.
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(5) Fast diffusion case. Equations (1.4) can be meaningfully considered in the range
0 < m < 1. The behavior in this regime is more related to that of the standard heat
equation. But there are additional phenomena related to loss of mass at infinity and
finite time extinction, or even instantaneous extinction, see [128, 127] and references
therein. The range m < 0 can be also considered, but properties can be even more
pathological than in the previous regime (non-existence and non-uniqueness phenom-
ena show up).

We would like to mention here the fact that another ingredient to be coupled with
porous media equations (1.4) has been proposed recently in [46, 47]. It goes under the
name of “fractional porous media equations”, which read

U, =V-uV(E=A)"u), 0<s < 1.

The previous authors prove the existence of mass-preserving, nonnegative weak solutions
satisfying energy estimates and finite propagation, C* Holder regularity, as well as the
boundedness of nonnegative solutions with L' data. We won’t consider this type of frac-
tional porous media mechanism in the sequel.

1.2. What is to be expected of a flux-saturated mechanism? As opposed to the previ-
ous case, a mathematical theory for the relativistic heat equation

ou . uVu
=vdiv|] ——— v,c>0 (1.5)

ot ‘/uz—i-ﬁ—;quF

(here in dimensional form) and related models has not been available until very recently
(see [11, 12] for well-posedness), and by no means our present understanding of these
models is complete. Nevertheless, there are certain heuristics that we can easily grasp
which are quite helpful in order to figure out what the behavior of solutions to (1.2) could
be. Let us mention:

(1) Universal finite speed of propagation. As before, compactly suppoted initial data will
launch solutions which are compactly supported as well. However, the spreading rate
is given now by a finite, universal quantity which is usually found easily by direct
inspection (it would be exactly ¢ for the case of (1.5)).

(2) No waiting times. Solutions start to spread instantaneously, no matter their features
at the interface.

(3) No regularization at the boundary. Initially discontinuous interfaces (meaning more
precisely that the initial datum has a jump discontinuity across the interface) will
remain so forever. Moreover, there may be some loss of regularity at the interface,
specially if it is discontinuous (as the solution may develop infinite slopes at the jump
site).

(4) Smoothing effects inside the support. This may not be an instantaneous effect, but we
expect some kind of smoothing to take place for advanced times. In fact, (1.5) seems
to behave more like a usual parabolic equation inside the support.
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(5) Concavity properties. Solution profiles are expected to be concave inside the support
on the long time run. Indeed, entropy conditions impose this sort of concavity proper-
ties right at the interfaces, if they are discontinuous (which triggers an instantaneous
singularization of slopes there).

These features can be easily checked on numerical simulations, see those in Section 3
and in the references quoted therein. Later on we will see to what extent are they analyti-
cally demonstrated.

The asymptotic regime v — oo is described by the transparent media equation.
Namely, if |Vu| > u, then (1.5) formally converges to

ou _ odi Vu (1.6)
5 = cdiv u|Vu| . .

Comparing this with the wave-like equation u; = vu, gives a hint of the wave-like
behavior of solutions in the large gradient regime. Quite the contrary, when ¢ — oo (1.2)
formally converges to the standard heat equation.

1.3. Flux-saturated porous media equations in a nutshell. There are lots of hybrid
models we may come up with. Hence their properties combine in a variety of ways those
of standard porous media equations and those of flux-limited equations, also giving rise
to some new properties. Let us briefly outline below what is know for this wide family of
equations. Much of the content of this review is dedicated to explain in more detail the
points below.

* Well-posedness can be shown generically in the class of so-called entropy solutions.
This theory was introduced in the pioneering works [11, 12]. Just to give some hints
about the subtleties of the theory, let us note that explicit solutions for (1.6) can
be computed having as initial data the characteristic function of a ball [18]. These
solutions! display front-like behavior and in fact their regularity isu € BV([z, T] x
R?), forany 0 < v < T. Then this is in general the maximal regularity of solutions
that we can expect for any kind of flux-saturated model (with or without porous
media type terms). It is also seen that we cannot expect distributional solutions
to be unique, as in the previous case the static solution given by the initial datum
itself would qualify as distributional solution. These features lead to the necessity
of introducing the concept of entropy solutions (being partially related with those
introduced in [96]) for obtaining well-posedness. We will analyze these issues in
detail in Sections 5, 6 and 7.

* Variable speed of propagation. Given a specific model, the spreading rate of its
solutions may not be a universal feature, but depend instead on several constants of

ISpecifically, given a ball By € R?, the entropy solution of (1.6) with initial datum ety g, is

|B1]

u(t,x) =o———— :
(t,x) a|Bl@B(O,ct)|XBl®B(0'a)(X)

with B(x,r) an open ball centered at x with radius r and @ the Minkowsky sum. See Theorem 5.2 in [18] for
details.
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the model, on the initial datum and on the particular features at the interface. This
property will be discussed in Section 9.

* Waiting times may show up in a number of cases. This may be related with losses
of regularity (that may be either transitorial or perpetual) during evolution. This
loss of regularity may show up either at the interior or at the interfaces. Part of the
material in Section 10 is devoted to this topic.

* The previous phenomena may also be related with the formation and/or propagation
of traveling fronts. The evolution of such fronts is controlled by a suitable form of
Rankine—Hugoniot’s law together with entropy conditions. We will give details on
this in Section 8.

* In some cases singular interfaces are regularized during evolution. This is not
known to be true in general and is connected with the previous remarks concerning
waiting times and loss of regularity.

* As mentioned before, some loss of regularity at intermediate time scales is not at
all to be discarded. Nevertheless, we expect smoothing effects to operate inside
the support at longer time scales. To analyze this behavior is one of the goals of
Section 10.

* Some asymptotic regimes of these models are well described by porous media
equations. Due to the variety of cases, this has to be considered separately for each
model of interest. We will discuss some results concerning porous media limits of
various families of models in Section 11.

The addition of reaction terms to flux-limited models already incorporating porous
media terms is meaningful in a number of situations from the modeling point of view as
we explain below. Such extra terms can give rise to even more varied phenomenology.
For instance, there are some cases in which solutions having eternal singularities inside
the support are known to exist (see Section 13).

1.4. Some historical remarks about flux-limited models. To the best of our knowl-
edge, flux-saturated equations — no porous media terms here yet — originated in radia-
tive transfer theories in astrophysics, mainly due to the contributions of Levermore and
coworkers [99, 101, 100] and an unpublished work by Wilson (see [106] for an account
of it). The introduction of such theories is related to particular instances of closure prob-
lems and leads to formulations that are more tractable from the numerical point of view
than the original set of equations for radiative transfer. Since then, flux-limited theories
seem to have become part of the background in radiation transport (see [107, 109] and
references therein). We will comment on such models in the sequel.

A great impetus for the use of such models was given later by Rosenau and co-workers
in a series of papers [116, 114, 115, 67, 68, 97, 69]. Let us mention here:

* [116], in which they study to what extent an equation of the form

ur = [G(ux)lx
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(which they already term “a flux-limited diffusion process”, as it is assumed that
G(00) < oo and G'(s) > 0) is able to sustain an initially imposed sharp front
—i.e. a jump discontinuity at the edge of the support. They found the following:
Provided that

K
Gis)~Gyg——, s>1,
sY

sharp fronts are not resolved inmediatly for y > 1, but within a finite time, while
such fronts are resolved inmediately if y < 1. Sharp fronts are not sustained for
y = 1,see [115].

e [115], in which the model (1.5) is introduced, as a way to produce “a sensible
transport theory without trying to track the detailed hyperbolic aspects of the orig-
inal process”. This is obtained as a modification of the standard diffusion equation
which takes into account the fact that the speed of sound gives an upper bound on
the allowed propagation speed in a medium. Details on this will be given below.

The telegraph equation (also called Cattaneo’s model) [64, 85, 124]
Uy = VUxx — TUyt

is also mentioned in [115] as a suitable model for predicting finite propagation
speed and delayed resolution of large gradients. In 1992, Rubin [118] showed that
Cattaneo’s model of hyperbolic heat conduction [64] violates the second law of
thermodynamics, which may make its use questionable in some particular applica-
tion.

Another important and very influential contribution can be found in the work of
Bertsch—dalPasso [35], who noticed that a certain class of degenerate parabolic equa-
tions (in one spatial dimension) may undergo an extreme regime in which they display
hyperbolic behavior. This class of equations reads

ur = ()Y (ux))x, suchthat lim ¢ (s) = Yoo < 00

and arises in the theory of phase transitions when the free energy functional has a lin-
ear growth rate with respect to the gradient (compare with the rationale in [116, 114]).
They construct solutions for the Cauchy problem which satisfy entropy-like conditions (in
Oleinik’s form). Constructed solutions need not be continuous and in fact when u, — oo
they behave like solutions to u#; = Yoo (@(u))x. They give a very detailed account of
what kind of hyperbolic behavior shows up. More precise statements about finite time
regularization are also given when ¢ = 1 (compare with [116]). There are also solutions
of the Cauchy problem that do not satisfy the aforementioned entropy condition, hence
such condition is necesary for uniqueness. It is also sufficient, as shown in [76]. We also
mention here the approach by Blanc [38, 39], which coexisted in time with the previous
set of ideas. He studied the homogeneous Neumann problem in (0, 7') x (0, 1) for equa-
tions of the form u; = (a(u,uy))x, witha € C1%([0, co) x R) such that a(u, 0) = 0 and
dza(u, §) < 0 (together with some additional assumptions). He observed that there are no
classical solutions of the previous problem in general, then he constructed mild solutions
for it and showed their uniqueness (however he did not characterize such in distributional
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terms). This line of thought in [35, 76, 38, 39] is present in the general well-posedness
theory that we review in Section 5 and motivated it to some extent.

As these ideas were starting to blossom, a different point of view on the subject was
introduced by Brenier in [42], who connects (1.5) with optimal transport theory. Inci-
dentally, the name “relativistic heat equation” was coined in [42], as the cost function
allowing to deduce (1.5) from Jordan—Kinderlerher—Otto’s framework [93] has an “ob-
vious geometric and relativistic flavor”, although the equation is not Lorentz invariant.
This connection is stated at a formal level, but in can be made rigorous. Such is the idea
behind [103], which puts on solid grounds this connection and extends it to a wider class
of models. Then the optimal transport point of view is used as a way to construct actual
solutions.

Yet there is another point of view that leads to another subclass of degenerate parabolic
equations that can fairly be termed as “flux-saturated”. This is given by [70] in an indirect
way. Namely, they study the macroscopic limit of the one-dimensional kinetic model

O fotvdafe = 20U, fe = fultxv) (17)

as the mean free path ¢ is made very small. The collision kernel Q above is assumed
to be linear and to satisfy a number of extra properties, see [70] for details. To solve a
number of pitfalls when determining the asymptotic regime ¢ — 0, it is suggested in [70]
to replace the standard Hilbert expansion for f; with the following non-linear expansion

Jfe =exp Zekcbk

k>0

Then it turns out that, if we truncate at first order in &, the approximate density is well de-
scribed (see Theorem 7.3 below for more details) in such asymptotic regime by solutions

to an equation of the form
u £0xU
du—0dx [ -G =0, (1.8)
£ u

where the specific form of the function G depends on the properties of the collision kernel
Q. As a general rule G saturates to a constant value at infinity, thus (1.8) describes a flux-
saturated process. For instance, if the collision kernel is given by

1 1
O(fe) = pe— fer Pe:= 5 /_1 fe(v) dv,

the asymptotic regime ¢ — 0 can be described using the flux-saturated model proposed
by Levermore and Pomraning in [101]. Lots of flux-saturated models arise in this ways;
we will comment on some of the models arising in this way below.

Since 2005 a series of results were made [11, 12, 19, 60] that put the foundations to
treat well-posedness of virtually every flux limited model we just mentioned (not only in
dimension one but in arbitrary dimension) and even strive to extend this framework to
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more general flux saturating porous media mixtures [62]. This provides maybe for the
first time a unifying framework in order to deal with such proliferation of models from
the mathematical point of view, which constitutes a very important achievement from
the modeling point of view. As a matter of fact, this is groundbreaking material also
from the purely mathematical point of view and will be explained in more detail below in
Sections 4 and 5.

1.5. Some remarks concerning biological applications. One of the most important
motivations for studying the previous models is concerned with the fact that generation
and evolution of singularities (be it with or without reaction terms in the model) is in-
volved in the dynamics of a large number of real problems. In the latter case, we have
three different competing and/or collaborating mechanisms: The saturation of flux, the
porous media effect and the reaction term. There are many applications in which this
functional context takes on full meaning; for example, this combination of components
is related to gradient formation in morphogenesis which develops propagation fronts. In
this case, the problem is how to characterize the velocities and the jump structure of those
fronts. In connection with this question, it is interesting to highlight an aspect that de-
serves a detailed study: The analysis of waiting times (namely, elapsed times prior to
front propagation, during which the density of particles is reordered in order to form a
propagating front that will afterwards move forward in the direction of propagation of the
morphogen under study). The spectacular success of reaction-diffusion models (based on
linear diffusion) motivated enormous attention from the scientific community thanks to
their ability to generate patterns. Reaction—diffusion models are able to reproduce wave-
like phenomena, which have been used to understand problems of competition (growth,
invasion, ...) of different individuals or substances. However, classical traveling wave
solutions in linear diffusion systems coupled with reaction terms could not represent cor-
rectly the generation and evolution of fronts. In fact, the infinite tails of Gaussian-type
classical traveling waves prevent the creation of fronts. To overtake this problem, cutting
these tails by introducing an artificial threshold is not a solution because this “surgical”
treatment modifies (as we should have expected) the dynamics of the system under con-
sideration, as we will show in more detail in Section 14.

Still, the applicability of these models to specific biological situations is debatable.
Then a fundamental issue here is to be able to connect those continuous models of interest
with microscopic descriptions. See Section 2.3 on this account.

2. Towards a complete catalog of flux-saturated mechanisms and
general formulations

This section is structured around a number of ways in which the “relativistic heat equa-
tion” (1.5) was historically introduced. These ideas can be generalized to produce many
other flux-saturated and porous media flux-saturated models as we detail below. Specifi-
cally, we discuss first the derivation by Rosenau (amounting to an ad hoc truncation of the
flux at large values). Then we move on to introduce optimal transport derivations, which
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have the double advantage of providing a method to construct actual solutions and to give
a neat interpretation of the finite propagation speed property. The third strategy we detail
is related with macroscopic limits of microscopic kinetic models. Note that this is also
the idea in [70]. Nevertheless, while that line of reasoning is a way to introduce lots of
models that were not present in the literature at that time, it must be pointed out that it
only justifies their usage in the regime in which the mean free path ¢ is very small. This
amounts to the fact that the maximum propagation speed would be way too large. That
is, the arguments in [70] cannot be taken at all as a rigorous derivation of flux-saturated
equations in the regime in which the maximum propagation speed is of order one (say),
which is the one in which we are mostly interested for the sake of applications.

2.1. Rosenau’s derivation. It is instructive to consider the argument in [115] leading to
(1.5), as it can be generalized to justify many other flux-saturated equations (in fact the
arguments to follow were already present in the rationale of those researchers in the field
of radiation transport). The basis of his rationale is to write abstract diffusion models as

uy = div(F), 2.1
being F the flux of the equation. For instance, the standard diffusion equation
U = vAu 2.2)

(also known as the heat equation or even as the Fokker-Planck equation) is replicated
using Fourier/Fick’s law
F =—vVu, 2.3)

while porous media equations (1.4) are obtained using Darcy’s law:
F=——Vum (= —vu™'Vu). Q2.4)
m

As a way to fix some of the shortcomings of the standard diffusion equation (2.2),
Rosenau proposed to replace the classical flux (2.3) with a flux that saturates as gradients
become unbounded. In order to do so, he relates u and F through the velocity V' defined
by F = u V. This amounts to write now (2.1) as a transport equation,

u; =div(u V). 2.5)
In the case of (2.2) we have that
Vu
V= vt (2.6)
u

which is clearly unbounded as |Vu /u| /' co. However, V should be bounded on physical
grounds by the sound speed or the light speed c¢. To take this into account, Rosenau
modifies (2.6) as

Vu Vv
V— = 2.7)

u VI=[V[Z/c?
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Hence

\Y \Y
V = —%, so that F = SR LS (2.8)

2 2
[Vu| [Vl
L (25) ()

and we obtain (1.5) upon replacing this new flux into (2.1).
Clearly many different models can be obtained just by making variations of (2.7)-
(2.8). The choice

Vu Vv that is F uVu
yp— = ————, atis fF = —v—————
u 14+V/c u +v|Vu|/c

gives rise to Wilson’s flux-saturated model (see [106]):

ou _ v div uVu
o u+ 2Vul )

Some porous media flux-saturated equations can be readily obtained if we modify Darcy’s
law in the same spirit of (2.7) and define V' by (say)

%4
Wiyt = —————
V1I—=|VI|?/c?
This gives the flux
F_ uvVu™

2
J1+ E—2|Vu’"|2
and we obtain the following flux-limited porous media model ([62, 63]):

ou . uVu™
=ypdiv] —o—-+. 2.9

o ,/1+E—§|Vum|2

Some models in the theory of radiation transport were indeed introduced by a similar
reasoning. In fact the model proposed in [99, 101], which essentially boils down to

Ou = div Vu u u coth [Vul
o |Vu| |Vu| U
corresponds to a “flux-limited form of Fick’s law of diffusion” [101]
Vu u [Vu|
F=———u|———coth| — ).
|Vu|”(|w| ° ( u ))

The one-dimensional version of this model is also recovered in [70] as already mentioned
in the introduction.
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Another example in the radiative transfer literature is the following family of models
(which seems to have been first introduced by Larsen, see [109])

|u|Vu

(ul’ + E—Z|Vu|1’

up = div p>1 (2.10)

)I/P

We clearly see that the flux F of (2.10) is bounded for large values of |Vu|.

In general, there have been many flux-limited models in the literature that have been
introduced in an ad hoc fashion. We can always check that they fulfill the requirement
of having a flux F that is bounded for large values of Vu. Some additional models we
would like to mention that were presented in such a way are

u"u
u = —=——1 ., n>0,
V14 (ux)? x
which is known as porous media curvature model, and

my
8_u = vdiv [l Vu

ot Ju? + E—§|Vu|2

presented in [67], [115] and [61] respectively, being some of the first hybrid models to
appear in the literature. We also have the so-called limited speed porous media equa-
tion [122]

@2.11)

v(u —log(1 + u))uy

2 4 Vg2
Jus + ux
X

We would finally like to mention the so-called plasma equation [79]

ou w32y,
ot \14ufug ) °
pe

which also follows the previous guidelines.

Uy =

2.2. Optimal transport approach. The use of optimal mass transport problems to solve
parabolic equations was pioneered by [93] and further developed by many authors, see
[1, 3, 42] for instance. We give here a brief account on it. Let k : R? — [0, 0] be a
convex cost function and let us define the associated Wasserstein distance between two
probability distributions pg and p; by

W (po. p1) := inf{/Rd y k <x ; y) d)/(x,y)/V € F(Po,Pl)},

being i > 0. Here I'(po. p1) stands for the set of probability measures in R¢ x R¢ whose
marginals are po and pj.
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Now let F : [0,00) — [0, 00) be a convex function and let P(R?) be the set of
probability density functions p : R — [0, c0). Starting from pé’ = po € P(R%), we can
solve iteratively

it WG+ [ Fpo) d.
peP(RY) R4

This is known as the Jordan—Kinderlehrer—Otto minimization scheme. Define p” (1) = pf’,
fort € [nh, (n+1)h). Thenas h — 0% the solution of this minimization scheme formally
converges to a limit # which solves the following equation

u, = div uVk*(VFE'(un))). (2.12)

This convergence has been shown to be rigorous in certain cases [93, 1, 103].
Based on these ideas, [42] found a new way to arrive to (1.5). The idea is to regard
(1.5) as the gradient flow of Boltzmann’s entropy

F(r) =v(rlogr —r),

for the Wasserstein metric which corresponds to the following cost function

_ 1o k2) 2
k(v) = (1 1 cz)c iffof=c (2.13)

400 if [v| > ¢

In particular, this gives some insight into the finite propagation speed property for (1.5).
Let us stress that this connection, as introduced in [42], is just a formal argument. It was
late made rigorous in [103] (we comment on this below).

Other flux-limited models can be recovered following this strategy (see [103, 48]).
For instance,

* Wilson’s equation can be recovered by means of the following cost function

—c|v| —c?log (C;—y’l) iflv] <c

400 if |[v| > ¢

k(v) = g

* Similarly, the model
pr = ((p/e) tanh(epx /(yp)))x

(introduced in [70]) can be obtained if we use the following cost function

Zarctanh (ve) — sLZ log (cosh(arctanh (ve))) if |v| < 1/e
k(v) = { log(2)/¢ if [v| =1/¢
~+o00 if [v| > 1/e

This transport approach can be extended in order to generate some flux-limited porous
media models, provided that we replace Boltzmann’s entropy with a suitable functional.
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Choosing
m+1
F(r)= ! , m>0
m

(known in some contests as Tsallis g-entropy functional [125]) and keeping the same cost
function as before, we formally arrive to the following variant of (2.9) [63]

8u_m+1, uVu™

— div (2.14)
ot m \/1 +(mm_4;1)2|vum|2

This is in fact a rigorous statement when m > 2, thanks to the results in [103].

2.3. Kinetic derivations. Another aspect of interest in the study of these models is the
connection between macroscopic equations and the dynamics at the microscopic scale, i.e.
between individual-based models and the continuum flux-saturated approach. Can contin-
uum models be derived from the underlying description at the microscale? Although this
subject is yet to be developed, there are different approaches to the derivation of the flux
saturated terms in connection with the classical kinetic theory: Through non-linear Hilbert
expansions [70] as we have mentioned before, or from the kinetic theory of multicellular
growing system [24], which is based on low (parabolic) and high (hyperbolic) field lim-
its [112, 108, 86]. Models based on the kinetic theory of multicellular growing system
includes the specific knowledge of interactions that modify the biological state without
generating proliferation or destruction phenomena (originating cooperation, aggregation,
reproduction, velocity-jump processes, gain and loss of individuals with specific biologi-
cal properties due to conservative encounters, .. .) as well as a complete description at the
micro-scale level. As it has been suggested in [25, 26], flux-saturated mechanisms may
have the capacity of reproducing some of the emerging behaviors that happen only at the
level of collective phenomena (i.e. involving all the interacting individuals but not being
directly related to the dynamics of a few entities). This is also a very interesting feature
of flux saturated mechanism that we will develop in Section 14.

2.4. A word on general templates. Well-posedness theory for (porous media) flux-
limited equations did not proceed by analyzing each model of interest separately. Quite
the contrary, general classes of degenerate parabolic equations were proposed and their
well-posedness analyzed in one single stroke. First, Andreu, Caselles and Mazén [12]
dealt with well-posedness of equations

u, = diva(u, Du) (2.15)

such that certain degeneracy and growth conditions are satisfied. Afterwards in [62] that
theory has been readapted in order to cover models of the form

u; = diva(u, D®(u)) (2.16)

under very general assumptions on ®. We will ellaborate on this in Sections 5 and 6.



Flux-saturated porous media equations 147

It is important to point out that, while the previous very general classes of equations

(2.15)—(2.16) provide arguably the largest framework in which those techniques by An-
dreu, Caselles and Mazo6n grant well-posedness, these classes are too general to be able
to derive qualitative properties for solutions of such. Hence a number of sub-classes have
been proposed in the literature with the aim of being able to provide more complete de-
scriptions of the solutions (and completely on the other end, (1.5) alone has been the
subject of some very specific mathematical investigations regarding its qualitative behav-
ior, probably to a greater extent than any other model among those listed before). Let us
enumerate some of them below.

a) Rosenau and his various collaborators have dealt with a number of families of flux-

b)

saturated equations. Let us mention here that in [67],

Uy = [unQ(g(u)x)]xs n > 07 (217)

being g a smooth function and Q a bounded function with Q(0) = 0 and Q' > 0.
Previous studies [116] were conducted on

ur = [Q(ux)]x
with G(0) = 0, G(c0) < o0, G(—s) = —G(s) Vs and G’ > 0.

Bertsch and dal Passo introduced in [35] the following very general family of equations
in dimension one:

ur = [@) Y (ux)]x. (2.18)
Here ¢ : R — R™ is a smooth, strictly positive function and ¥ : R — R is a smooth,
odd function which is strictly increasing and satisfies limg—oo ¥ (5) = Yoo < 00.

Some extra technical assumptions are also needed; there is no specific attempt in [35]
aimed at getting minimal assumptions.

[62] deals with various families of flux-saturated equations, among which we mention

here
e _ adiv( AG)VO®) ) . a.B>0, (2.19)

ot V1+BIVO®u)?

which requires the following
Assumptions 2.1. Let the functions ®, A : [0, 00) — [0, 00) be continuous and satisfy
e &(0) = A(0) =0,
e @ is strictly increasing,
¢ @,07 e WL%([0, 00)),
e A(z) >0Vz >0,
e A(z) = A@E™) withm > 1, A(z) > cozVz > 0 for some co > 0 and A €
1,00
Wioe ([0.00)).

loc
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d) Another general family of models was presented in [48], which reads

€)

?)_L; = div (p(u)¥(Vu/u)) (2.20)
under the following
Assumptions 2.2. Let y = (v, ... ¢ @) : R? — R¥ enjoy the following proper-
ties
(@) ¥ € CY(R?,RY).
(b) ¥(0) =0.
(©) limyp|—oo [ (r) —r/Ir|| = 0. Thus limj; |- | (r)| = 1.
(d) Ifd = 1itis required that
(1) ¥ be odd, monotonically increasing and verifying |Y'(r)| = O(1/|r]|) for
[r| > 1,
while the following properties are required for dimension greater than one:
(i) Y is a conservative vector field,
(i) y(—r) = -y () VreR?
(iii) The Jacobian matrix of W, D, is a non-negative definite (symmetric) ma-
trix.

(i) [DYlloo(r) = O/|r]) for [r| > 1.
and
Assumptions 2.3. Let ¢ : R — Rg satisfy the following:
(a) @ is Lipschitz continuous.
() ¢(0) = 0and lim,_,g ¢(z)/|z| = ¢'(0) exists and is finite.
(©) ¢(z) >0ifz #0.
We will show in this document that the previous structure can be easily generalized to

ou .

5 = dv ey (@) Vu)) (2.21)
while keeping many of its properties. Here 1, ¢ satisfy the previous set of assump-
tions, while 0 verifies

Assumptions 2.4. Let 0 : R > R be such that:

(@) 0 € WoP(R\{0}),
(b) 8(z) > 0 forz # 0.

C e limit lim,_, ¢ @@ oyists and is finite.
(c) The limit i o) o) d

Note that this set of assumptions is authomatically satisfied for any power law. Clearly
(2.20) is recovered for 8(u) = 1/u. The idea here is the same as the rationale given
in [48] to introduce the class (2.20): Here we declare gradients to be large in order
to impose saturation effects if 8(u)|Vu| > 1. The particular features of the problem
of interest will determine what the appropriate scale (or gauge) 8 would be; what we
have in mind is essentially the case of power laws.
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This list is by no means exhaustive (see for instance [122]). Some interconnections
between these general families of models we have presented are easily found:

e Taking g(u) = u in (2.17) we fall under the scope of (2.18).
* It is never possible to recast (2.20) as (2.18).

e If g(u) = logu then (2.17) stands as a sub-case of (2.20).

* (2.19) and (2.17) are connected by the identifications

N

VT

gu) =), Aw)=u", Q)=

whenever they make sense.

¢ Again, it is never possible to recast (2.20) as (2.19). This would amount to have
®(u) = logu, but this is clearly forbidden by Assumptions 2.1.

* The family (2.18) is contained in (2.21) for 6 = 1.

* The class (2.17) is formally a subclass (and then (2.19) as well) of (2.21), as we
see taking p(u) = u”, 0(u) = g'(u).

3. What kind of phenomena could be expected from flux-saturated
mechanisms? Numerical approach to the analytic difficulties

As mentioned in the introduction, the variety and richness of phenomena that flux-saturated
equations in combination with mechanisms associated with porous media originate (with
or without reaction terms), is a source of mathematical problems, partially motivated by
experimental evidence in some applications.

The key word in this type of systems is “singularities” or “interfaces”, whose study
concerns the following aspects: Their appearance or disappearance in the dynamics as-
sociated with these equations; their evolution in relation to their speed of propagation;
properties of regularization or emergent fronts inside the support; waiting time for the
evolution of the boundary of solutions support; existence of special solutions (steady
states, traveling waves) or sub and super solutions that control the above properties; con-
struction of singular traveling waves; asymptotic behavior and stability of solutions with
respect to those of classical models.

Before beginning with the analysis of these problems, it is interesting that we acquire
some intuition about the kind of phenomena with which we are confronted by some nu-
merical examples to show the variety and difficulty of these phenomena. Then the purpose
of the present section is to display some numerical simulations in order to support a num-
ber of statements in the text, as well as getting an additional insight into the nature of those
phenomena under study. Note that the above mentioned characteristics and properties of
the solutions of these equations show that they combine diverse parabolic and hyperbolic
effects and this is reflected in the type of techniques needed for their study. In particular,
the numerical approach requires to use a number of techniques in the field of conservation
laws in order to preserve any singularities that solutions may display.
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u(t, x)
B) 4
1 L

><V

Figure 1. Numerical evolution of a stepwise initial condition by the relativistic equation (1.5) in
A), and the flux-saturated porous media equation (2.9) with m = 2 in B). In both examples we
have taken v = ¢ = 1 and ¢ € [0, 0.9] (the smaller the height, the more advanced the times). The
time step between different profiles is 0.05 for the three first profiles and 0.2 for the rest in order to
capture the different velocities. Note the instantaneous regularization at the interior jumps although
this is not the case at the boundary. We remark the persistence of the discontinuous jumps at the
boundary in A), which disappear in B). It also interesting to observe that velocity of support is
constant in A) against the fact that it decreases in B).

In fact, we will display a number of simulations not just here but rather throughout the
text. We focus in this section (Figures 1, 2 and 3) in both pure flux-saturated equations
and some porous media variants; later on we will show some simulations where coupling
with a reaction term or even with a system of ODE’s is featured. Regardless of these
characteristics, the set-up used for those numerical simulations that are presented in the
document is always the same. The numerical solution considers a spatial discretization
of the flux-saturated transport equation by using a fifth-order finite difference WENO
(Weighted Essentially Non-Oscillatory) scheme [92] with Lax—Friedrichs flux splitting
[84]. For the time evolution we use a fourth order Runge—Kutta method, which also
allows to deal with possible delay phenomena. A spatial grid between 1000 and 2000
points with an appropriate CFL condition is considered.

The previous procedure is but one among a number of different possibilities. There are
in the literature different numerical approaches to flux-saturated equations, among which
we mention [20, 129, 52, 50, 57, 67, 68, 102, 122].

4. Mathematical preliminaries: The bounded variation scenario

In this section we introduce a number of tools that are needed to set up the well-posedness
framework in [11, 12] and some of its extensions. As pointed out in the introduction and in
the previous numerical examples, in general we may not expect solutions of flux-saturated
equations to be more regular than u € BV((0, T] x R¢). This makes operations like in-
tegration by parts already involved. But in fact this may be even worse. First, there is
no particular reason why u, should even be a Radon measure, which creates a number of
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u(t, x) u(t, x)
A) 4 B) 4
1F 1F

1 25 4 X 1 25 4 X

Figure 2. Numerical evolution of an initial condition given by a continuous polynomial spline.
Plot A) depicts the evolution by (2.11), while plot B) shows the evolution by (2.9). In both cases
m = 2and v = ¢ = 1. The time step between successive profiles is 0.48. In both cases we find
a waiting time for support spreading which is longer for the case of (2.9). Note that the cusp is
regularized in both cases but a discontinuity occurs in the derivative of the solution when sliding
through the initial profile. The result is a continuous profile for (2.9), which reduces its velocity,
and the emergence of a jump discontinuity in the case of (2.11), which is a moving front in which
the velocity of propagation depend on the parameters of the system via a Rankine—Hugoniot-type
condition. Therefore, in both cases there is a smoothing process but, simultaneously, another one
of singularization emerges either in the derivative in B) or as a jump in A).

technical issues (we will treat this in more detail in Section 10.2). And second, the de-
generacy of the equation may spoil the previous spatial regularity on the zeroth level set.
Then it will be mandatory to avoid this set when dealing with certain delicate technical
issues related with well-posedness. This motivates the introduction of a specific set of
truncation functions that will be essential in order to construct the functional framework
in which well-posedness can be proved. Another set of specific truncation functions will
be required for the sole purpose of showing uniqueness, as the extremely low regularity of
solutions requires to use Kruzkov’s doubling variables methodology. This proof uses very
complicated combinations of terms involving functions with extremely low regularity. A
very specific functional calculus needs to be defined in order to make sense of the previ-
ous. In particular, lower semicontinuity results for energy functionals in this degenerate
framework will be needed.

The required toolkit to cope with the above technical issues will be introduced in this
section. Its contents are extracted from [11, 12, 17, 13, 56, 62].

Let us take the opportunity to state here some generic purpose notations. Throughout
the document B(x,r) denotes an open ball centered at x with radius r. Let us denote
by £¢ and H¢~! the d-dimensional Lebesgue measure and the (4 — 1)-dimensional
Hausdorff measure in R respectively. Given an open set 2 in R? we denote by D(£2)
the space of infinitely differentiable functions with compact support in 2. The space of
continuous functions in 2 will be denoted by C(£2) (resp. C.(£2) for continuous functions
with compact support in ). Likewise, C¥* denotes the class of k-times differentiable
functions whose kth derivatives are Holder-continuous with exponent ««. Lebesgue and
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u
A

Figure 3. The above figures represent different traveling waves associated to (2.11) with a Fisher—
Kolmogorov—Petrovski—Piskunov reaction term, i.e. a term of the form F(u) = ku(1 —u). Vertical
dotted lines show points with infinite slope. The possible development of each of these traveling
waves depends on the initial conditions and on the parameters associated with the system: The de-
gree of porosity m, the characteristic velocity of the system ¢ and the factor k of the reaction term,
known as the intrinsic growth rate of the population. A) represent a classical regular traveling wave,
while B) has a discontinuity in the derivative with infinite slope. In C) we give a discontinuous
traveling wave together with the evolution of a parabola-type initial condition towards this traveling
wave which is an attractor for this initial data. In D) we show a traveling wave with a jump discon-
tinuity but instead of connecting with zero as in C) it has a Gaussian tail like in the classical case
A). We also prove numerically that this solution is an attractor and how the continuous initial datum
is singularized during evolution.

Sobolev spaces are denoted by L?(€2) and W57 (Q) respectively. Sometimes we will use
D(B) to denote the domain of an operator B and R(B) to denote its rank. Note that /
stands for the identity operator. We will use from time to time the positive part function,
defined as u* = max{u, 0}. The Minkowsky sum of two sets is indicated by .

4.1. A short introduction to functions of bounded variation. Recall that if Q2 is an
open subset of R, a function u € L'($2) whose gradient Du in the sense of distributions
is a vector valued Radon measure with finite total variation in €2 is called a function of
bounded variation. The class of such functions will be denoted by BV (£2). The total
variation of Du in Q is

sup {/ udivodx /o € D(Q), |o(x)| <1Vx € Q
Q

and is denoted by | Du|(€2). We will say that u € BV, (L) if the previous supremum is
finite for o € D(0), for each open set O CC £2.

Given u € BV(2), the vector measure Du decomposes into its absolutely continuous
and singular parts Du = D%u + D%u. Then D*u = Vu £2, where Vu is the Radon—
Nikodym derivative of the measure Du with respect to the Lebesgue measure £2. We
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also split D*u in two parts: The jump part D/ u and the Cantor part D€u.
We say that u is approximately continuous at x € 2 if there exists #(x) € R such that

1
lim ——— u(y) —i(x)|dy =0,
N0 L4(B(x, p)) B(x,p) e @

the value 1 (x) being the approximate limit of u at x. We denote by S, the set of all x € Q
such that u is not approximately continuous at x. We say that x € 2 is an approximate
jump point of u if there exist ut(x) # u~(x) € R and v, (x) € S~ such that

1

lim ———————— lu(y) —u™(x)|dy =0
PNO L(BF (x, vy (x))) JBF (xovu ()

and 1
P 08 G000 o " =0
where
B} (x.vu(x)) = {y € B(x.p)/(y — X) - vu(x) > 0}
and

B, (x.vyu(x)) = {y € B(x,p)/(y —x) - vu(x) <O}
We denote by J,, the set of approximate jump points of u. It is a Borel subset of S,, such
that H#?~1(S,\J,) = 0 and

D/u=D%ul_J,, D= Dul_(Q\S,)
holds. It is well known (see for instance [2]) that
Dy =@t - u_)vu’;’-[d_l L T,

with v, (x) = |1D)—Z|(x), being |1D)—Z| the Radon—-Nikodym derivative of Du with respect to
its total variation | Du|.

We also introduce some specific notations (see [61]) for functions of bounded varia-
tion of time and space that will be useful to discuss several properties of entropy solutions
to flux-saturated equations:

(1) By L}, (0, T, BV(R?)) (resp. L}, (0, T, BV(R?))) we denote the space of weakly-
* measurable functions w : [0,7] — BV(R?) (thatis t € [0,T] — (w(t),¢) is
measurable for every ¢ in the predual of BV(R?)) such that fOT lw®)| dt < oo
(resp. t € [0,T] — |lw(®)] is in L}OC(O, T)). Observe that, since BV(R?) has a

separable predual (see [2]), it follows easily that the map ¢ € [0, T] — |w()]| is
measurable.

(2) The following notions are useful in connection with Rankine—-Hugoniot relations in
Section 8 below. Assume that u € BVjoe((0,7) x RY). Let v := vy, = (v;, vy)
be the unit normal to the jump set of u and v/«® the unit normal to the jump set of
u(t). We write [u](¢,x) := u™t(t, x) — u (¢, x) for the jump of u at (¢, x) € J, and
[u(®)](x) := u(r)*(x) —u(t)”(x) for the jump of u(7) at the point x € Jy(p).

For more details on the subject we refer the reader to [2, 82, 133].
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4.2. Several classes of test functions. We will use in the sequel a number of different
truncation functions. A first reason for so doing can be easily grasped from the following
a priori estimate on solutions to (1.5):

1 T
—/ / |Vu?|dxdt < (T + 1)/ u% dx.
2 0 R4 R4

This is obtained thanks to the crucial requirement (5.2) below and is essentially all the
spatial regularity we may hope to get generically. Using the chain rule we can expect
solutions to be of bounded variation as long as we stay above zero. This observation
plagues in one way or another all the theory to follow.

Fora < band! € R, let T, (r) := max{min{b, r},a}, Tal’b = T, — [. We denote
[11,12,17]

Tri={Typ : 0 <a <b},
T*::{Tal,b : 0<a<b,leR,TaI’b20},
T_ = {Tal,b : 0<a<b,l€R, Tal,bfo}'

Given any function w and a,b € R we shall use the notation {w > a} = {x € R? :
w(x) > a}, {a <w < b} ={x € RY : ¢ < w(x) < b}, and similarly for the sets
{w > a}, {w < a}, {w < a}, etc.

We need to consider the following function space

TBV (RY) := {w e L'RDY 1 T,pw)—ac BVRY), ¥ T, e 7;}.

It is closely related to the space GBV(R?) of generalized functions of bounded variation
introduced by Di Giorgi and Ambrosio (see [2] for instance). The main reason for intro-
ducing this space is the following: Using the chain rule for BV-functions (see for instance
[2]), one can give a sense to Vu for a function u € TB V+(]Rd ) as the unique function v
which satisfies

VT, o) = vXigey<ry L% —ae., VTupeT.

We refer to [27] for details.

Let us denote by P the set of Lipschitz continuous functions p : [0,+00) — R
satisfying p’(s) = 0 for s large enough. We write PT :={p € P : p > 0}.

Due to several reasons a slightly more general class of test functions needs to be
considered. This class was first introduced in [60] (see also [61, 62]). The aim for this
was essentially twofold: To clarify the relation of the notions of sub- and super-solutions
with the concept of entropy solution and to clarify the meaning of entropy conditions on
jump sets (which was one of the achievements in [61], see Section 8).

We define 7 SUB as the class of functions S, T € P such that

S>>0, §'>0 and T>0, T'>0
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and p(r) = p(T,p(r)) for some 0 < a < b, being p differentiable in a neighborhood
of [a,b] and p = S,T. Similarly, we introduce TSUPER as the class of functions
S, T € P such that

S<0, >0 and T >0, T'<0

and p(r) = p(T,p(r)) for some 0 < a < b, being p differentiable in a neighborhood of
[a,b]land p = S, T.

4.3. Weak traces, Anzellotti pairings and an integration by parts formula. In order
to give a meaning to integrals of bounded vector fields with integrable divergence with
respect to the gradient of a function of bounded variation several results by Anzellotti will
be introduced. Assume that  is an open bounded set of R¢ with Lipschitz continuous
boundary. Let p > 1 and p’ its dual exponent. Following [22], let us denote

X,(RY) = {z € L®(Q,R?) : div(z) € L?(RY)}.

Ifze X,(R2)andw € BV(Q)NLP (), we define the functional (z-Dw) : Cr(Q2)—R
by the formula

((z- Dw), @) :=—/ wgodiv(z)dx—/ wz-Veodx.
Q Q
Then (z - Dw) is a Radon measure in 2 [22], and
/(Z-Dw) =/Z-dex, Vwe WhH(Q)N L®(Q).
Q Q

Moreover, (z - Dw) is absolutely continuous with respect to | Dw| [22].

Let us denote by (z- Dw)%¢, (z- Dw)® the absolutely continuous and singular parts of
(z- Dw) with respect to £ . One has that (z- Dw)* is absolutely continuous with respect
to D’wand (z- Dw)% =z-Vuw.

The weak trace on 0€2 of the normal component of z € X, (2) is defined in [22]. More
precisely, let us denote by v¥(x) the normal vector at x which points outwards. Then it
is proved that there exists a linear operator y : X ,(2) — L% (02) such that ||y (z)] e <
|z]loo and y(z)(x) = z(x) - v (x) for all x € IR, provided that z € C!(2,RY). We
shall denote y(z)(x) by [z-v](x). Moreover, the following Green’s formula, relating the
function [z - v¥?] and the measure (z- Dw), forz € X ,(Q) and w € BV(Q) N L' (Q), is
proved

. ) _ e d—1
/;zwdlv(z)dx—i—/g(z Dw) /BQ[Z v 9 wdH .

Similar results hold true for @ = R?. In this case we have the following Green’s
formula

/ wdiv(z)dx—i—/ (z-Dw) =0 Vze X;(R?), Yw € BV(RY) N L®(R?).
R4 R4

There is also a related integration by parts formula for vector fields z € L>®(Q,R?)
such that divz € M(R2). See [61], Sec. 5 for details; see also [66].
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4.4. Lower semicontinuity results for energy functionals in BV. In order to define the
notion of entropy solutions for flux-saturated equations and give suitable characteriza-
tions for them, a functional calculus defined on functions whose truncations are in BV is
required. For that we need to introduce some functionals defined on functions of bounded
variation [11, 12].
Let Q be an open subset of R?. Let g : © x R x R — [0, 00) be a Borel function
such that
C()IE| - D(x) = g(x.z.§) < M'(x) + M¢| (4.1

for any (x,z,§) € @ x Rx R¥, |z| < R, and any R > 0, where M is a positive constant
and C, D, M’ > 0 are bounded Borel functions which may depend on R. Assume that
C,D,M' e L! (R2). Following Dal Maso [75] we consider the following functional:

Re(u) = /Qg(x,u(x),Vu(x)) dx +/;2g° (x,ft(x),ul;—z|(x)) d|DCu|

U4 (x)
0 d—1
+ /Ju (/u_(x) g (x,s,v,(x)) ds) dH (x),

foru € BV(Q) N L*®(R2). The recession function g° of g is defined by

g(x.z,6) = lim g (x,z, §) . 4.2)
t—0+ t

It is convex and homogeneous of degree 1 in £.

In case that €2 is a bounded set, and under standard continuity and coercivity assump-
tions, Dal Maso proved in [75] that Rg(u) is L!-lower semi-continuous for u € BV(RQ).
A very general result about the L!-lower semi-continuity of R, in B V(R?) can be found
on [77].

Assume now that g : R x R — [0, 00) is a Borel function such that

Cle|—D <g(z,6) <M +E))  Y(z,6) eRY, |z]| <R, (4.3)

for any R > 0 and for some constants C, D, M > 0 which may depend on R. Assume
also that

Xuzay (8(x),0) = g(a.0)) , Xuzpy (§(u(x),0) — g(b.0)) € L' (RY),
forany u € L'(R?)*. Letu € TBVFR4) N L®R4) and T = T, — 1 € T*. For
each ¢ € C.(R?), ¢ > 0, we define the Radon measure g(u, DT (1)) by

(gu. DT (). d) := Rgpg(Tapu)) +/ ¢ (x) (g(u(x).0) — g(a,0)) dx

{u<a}

4 / () (g(u(x).0) — g(b.0) dx. (44)
{u>b}

If ¢ € Ce(R?), we write ¢ = ¢ — ¢~ with ¢ = max{¢, 0}, $~ = —min{¢, 0}, and
we define (g(u7 DT(M)), ¢) = <g(u’ DT(M))v ¢+) - (g(u’ DT(“))’ ¢_)
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Note that the following is shown in [77]: If g(z, £) is continuous in (z, £), convex in
£ forany z € R, and ¢ € C'(R?)™ has compact support, then (g(u, DT (1)), ¢) is lower
semi-continuous in 7BV +(R?) with respect to the L (R?)-convergence.

4.5. Functional calculus. Using the tools introduced in Sections 4.2 and 4.4 we can
define the required functional calculus (see [11, 12, 61]). Let S € PT, T € T+. We
assume that u € TBV,*(R4) N L>°(R?) and

XiuzayS@) (g(u(x),0) — (@, 0)) , Xpuzpy S@) (g((x),0) — g(b,0)) € L'(RY).

Then we define gs(u, DT (1)) as the Radon measure given by (4.4) with gg(z,§) =
S(2)g(z.§).

Most of the times the former definition is applied in connection with a couple of
specific objets related with equations of the form u, = div(a(u, Du)):

(1) Let us introduce f : R x RY — R* such that a(z,§) = Ve f(z,8). We define
fs(u, DT (u)) as the Radon measure given by (4.4) with fs(z,&) = S(z) f(z, §).

(2) Let us introduce / : R x R — R defined by

h(z, &) :=a(z,§)¢. 4.5)
We define hs(u, DT (u)) as the Radon measure given by (4.4) with hg(z,&) =
S(z)h(z,§).
Suitable assumptions on a(z, §) for the previous to make sense will be given in Sec-
tion 5.1 below.

5. Well-posedness: Entropic solutions

This section is committed to show the well-posedness of the Cauchy problem
u, = div(a(u, Du)), u(0,x) = ug 6D

in the context of entropic solutions (to be defined in the sequel). This theory was stab-
lished in [11, 12] and can be regarded as a continuation of previous works by the same
authors [5, 6,7, 8, 9, 10].

5.1. Assumptions on the flux. We present now what requirements on the flux vector
field a(z, &) are needed to develop a well-posedness theory in the class of entropy solu-
tions. The following list of assumptions is essentially the one stated in [12], with slight
improvements by [62].

(1) There exists some continuous f : R X RY — RT, convex and differentiable in its last
variable, such that
Vef € C(R x RY)
and
a(z.§) = Ve f(2.6).
Note that f can be chosen so that f(z,0) = 0.
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(2) The following linear growth condition is satisfied:
Co(2)|El = Do(2) < f(2,6) <Mo)L + [E])  V(z.6) eRxRY,  (52)

for some continuous functions Cy, Cy, Do > 0, such that Cy(z) > 0 for z # 0 and
Dy (z) is locally bounded in R\{0}.

(3) We assume a(z,0) = 0 for all z € R¥.

(4) It is assumed that

a(z,&) = zb(z,€) with |b(z,&)| < My(2), V€ € R?

for some continuous M; > 0.
(5) Itis also assumed that

0
%(Z,S)GC(RXR‘{) foranyi =1,...,d.

This condition is not always strictly necessary. For instance, it is not required if
a(z, &) can be written in separate variables form. See [9] for more information on this
point.

(6) We require that /i defined by (4.5) satisfies
h(z,§) = h(z,—€) VzeR, £ eR?.

(7) We assume that h° exists, and that £°(z, £) = h0(z, §) for every (z,£) € R x R?,
(8) We also assume that
h(z.8) = e(2)¥°(®). (5.3)
with ¢ Lipschitz continuous, such that ¢(z) > 0 for z # 0, and ¥° convex and
homogeneous of degree 1.

(9) We require that
a(z,&)-n<hz,n) forallg, ne RY, z e R.

(10) Finally, let us assume that for any R > O there is a constant C > 0 such that

[(a(z1,61) —a(z2,§1)) - (51 — &)| < Clz1 — 22| |§1 — &2
for any (z1,€1), (z2.£) € RxRY, |z1],|z2| < R.

As a consequence of this set of assumptions several useful identities can be derived (see
for instance [12]). Here we point out that the following monotonicity condition is satisfied

(a(z, &) —a(z,8)- (- £ =0 (5.4)

for any (z, ), (z, é) e RxRY, |z| < M. We also mention that those requirements
in order that fs(u, DT (1)), hs(u, DT (u)) can be defined (that is the bounds (5.2)) are
satisfied thanks to the previous assumptions and the fact that they imply

Co(2)|E] — D1(z) < h(z.&) < M|§| forallz e R, £ e R, |z| < R. (5.5)
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5.2. The class of entropy solutions. In this section we give the concept of entropy
solution for the Cauchy problem (5.1) under the previous set of assumptions. For that
purpose it is handy to let J,(7) denote the primitive of g for any function g; i.e.

Jq(r) :=/0 q(s)ds.

The definition we introduce here is a simpler version (as it appears for instance in [13]
and in more recent works) of that originally in [12]. See for instance the comments in
[13] for an explanation of this simplification.

Definition 5.1. A measurable function u: (0, 7) x R¢ — R is an entropy solution of
(5.1)in Q7 = (0,T) x R¥ if

e ueC([0,T]; LY(RY))
e u(0,x) = up(x), x € RY,

e T(u())eL! (0,7, BV(R?))forall T € 7,

loc,w

and the equation is satisfied in the following sense:
() u; = div(a(u(t), Vu(t))) in D'((0, T) x R¥)

(i) Given any truncations S € Pt, T € T and any n € D(Qr), the following
entropy inequality is satisfied:

/ nhs(u, DT (u)) dt +/ nhr(u, DS(u)) dt
or or

5/ Jrs(u)osn dxdt —/ a(u, Vu)Vn T(u)S(u) dxdt. (5.6)
or or

A number of useful remarks in order to understand why this is a reasonable concept
of solution for our setting here can be found in [14, 17]. Note that entropy solutions can
be also defined analogously using the class 7SUB instead of P+, T, see Definition 5.1
in [60].

It is to be noted that entropy solutions so defined have finite mass. Up to now there is
no completely satisfactory extension of this class to solutions which are just bounded.

5.3. The existence and uniqueness result. The following result is the main achieve-
ment of [12]. It allows us to ensure well-posedness for virtually every flux-saturated
model we may come up with, toghether with many of their porous media variants.

Theorem 5.2. Let the list of assumptions in Section 5.1 be satisfied. Then, for any initial
datum 0 < ug € LY (R?) N L®(R?) there exists a unique entropy solution u of (5.1) in
Or = (0,T) x R? for every T > 0 such that u(0) = ug. Moreover, if u(t), u(t) are the
entropy solutions corresponding to initial data uo, g € L' (R?)*, respectively, then

() —u (@)1 < |(wo — o) |1  forall > 0. (5.7)
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The proof of the existence part proceeds by generating mild solutions via semigroup
techniques [73], then checking that those are indeed entropy solutions. Uniqueness fol-
lows from a variant of Kruzkov’s doubling variables method [96, 58]. Let us sketch this:

Step 1: The elliptic problem. The first step in order to generate mild solutions is to
study the associated elliptic problem

u —div (a(u, Du)) = vin R4, (5.8)
This was the purpose of [11]. The meaning of the expression
v = —div (a(u, Du)) in R¢. (5.9)

is the following.

Definition 5.3. ([11]) Given v € L'(R%) N L®(R?), we say that u > 0 is an entropy
solution of (5.9) if u € TBV*(R?) and a(u, Vu) € X;(R%) both satisfy the following
conditions:

v = —diva(u, Vu)  in D'(R?),

h(u, DT (1)) < a(u,Vu) DT (u) asmeasures VT € T (5.10)
hs(u, DT (u)) < a(u, Vu) DJ7s(u) asmeasures VS e PT, T e TT. (5.11)
Then the main result in [11] is as follows.

Theorem 5.4. Let the list of assumptions in Section 5.1 be satisfied. Then, for any 0 <
v e LY(R?)NL®(R?) there exists a unique entropy solutionu € TBV T(R4)NL>(R?)
of problem (5.8). Moreover, let u,u be two bounded entropy solutions of (5.8) associated
tov,v € L®RY)*, respectively. Then,

/Rd(u—ﬁ)“de f/l‘gd(v—ﬁﬁ'dx.

The existence part of this theorem proceeds adding a viscosity term to (5.8). The
trickiest point when letting the viscosity vanish is to identify the limit of the flux, which
can be achieved usign a variant of Minty-Browder’s method, thanks to (5.4). Entropy
conditions (5.10)—(5.11) are proved using those semicontinuity results in Section 4.4.
Uniqueness and the contraction property are obtained by a variant of Kruzkov’s doubling
variables method, for which the previous entropy inequalities (5.10)—(5.11) are crucial.

Step 2: Getting a mild solution. The idea here is to associate an accretive operator in
L' (R%) to the formal expression —div a(u, Vu). This is done in [11] as a consequence of
the results in the previous step. Let us explain this in more detail. We start defining the
associated differential operator.

Definition 5.5. ([11]) (u,v) € B if and only if 0 < u € TBV*t(RY) N L®(RY),
0<wve L' (R?Y) N L®R?) and u is the entropy solution of problem (5.9).

Theorem 5.4 is a key ingredient to show the following:
Proposition 5.6. ([11]) The following assertions hold true:
* B is accretive in L' (R?),
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o (L°@®Y) N L'RY)) " C RU + B),

e D(B) is dense in L' (R?)*.

Let us denote by B the closure of B in L'(R¢). It follows that the operator B is
accretive in L' (R%), satisfies the comparison principle and verifies the range condition

1 (md
DB ® = L'®RY)* ¢ R(I + AB) forall A > 0.
Then Crandall-Liggett’s Theorem [73] applies. Thus we get that for any 0 < uo €
L' (R?) there exists a unique mild solution u € C([0, T]; L' (R?)) of the abstract Cauchy
problem
u' (1) + Bu(r) 20, u(0) = uo.

Moreover, u(t) = T(t)ug for all t > 0, where (T(t));0 is the semigroup in L'(R%)*
generated by Crandall-Liggett’s exponential formula, i.e.,

t —n
T(uo = nIEIOIO (I + ;B) Up.

On the other hand, we have that the comparison principle also holds for 7'(¢). Meaning
that, if g, 1o € L' (R?)*, we have the estimate

(T (t)uo — T (1)) [I1 < I (uo — o)™ |- (5.12)

Step 3: Characterize mild solutions as entropy solutions. The final step in the ex-
istence proof is to show that mild solutions are actually entropy solutions. Crandall—
Liggett’s iteration scheme provides the required compactness in order to identify the limit
equation. The identification of the flux proceeds again by a variant of Minty—Browder’s
procedure. The entropy inequality (5.6) is also obtained thanks to lower semicontinuity
results. Finally to prove uniqueness and the contraction property this entropy inequality
(which acts as a kind of renormalized formulation of the equation) is used in combina-
tion with a variant of Kruzkov’s doubling variable technique; this time both spatial and
temporal variables are doubled.

Remark 5.7. We observe that u(t) € BV(R?) for any t > 0 if ug € BV(R?). Indeed,
let tpuo(x) = uo(x + h), h € R%. Let u,(¢) be the entropy solution corresponding
to the initial datum tju¢. Then by the uniqueness result of Theorem 5.2 we have that
up(t) = tpu(t) for any t > 0. By applying estimate (5.7) we have

lu(t) — tpu()||1 < |luo — Thttol1 vt > 0.
Since ug € BV(R?) we deduce that u(t) € BV(R?) for all ¢ > 0 and [|u(t)||py <
luol gy . Clearly u € LL (0, T; BV(R?)).

While the theory presented in the previous paragraphs may be regarded as the stan-
dard reference result on well-posedness, some improvements have been made afterwards
which we would like to mention here. Well-posedness for the Cauchy problem (5.1) was
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extended in [60] to hold for initial data in BV (R%), assuming that the flux satisfies the
following additional requirement:

la(z, )| < Cz, Vze][0,00).

In this setting, an initial datum 0 < uo € BV(R?) launches a unique entropy solution
u(t) € LL(0,T; BV(R?)) such that |[u(t)| sy < |uo| v (according to Remark 5.7).
Note also that the conditions under which (5.2) is to hold were relaxed in [62] (compare
with [11, 12]); these are the ones we quoted indeed in Section 5.1.

5.4. Comparison principles. Sub- and super-solutions for flux-saturated equations can
be introduced as in [17]. These are very useful tools for qualitative analysis thanks to some
comparison principles stated there. In order to use them a certain technical condition is
required.

Assumptions 5.8. Let the function h defined by (4.5) satisfy
h(z,&) < M(2)[¢|

for some positive continuous function M(z) and for any (z,£) € R x R<.
Definition 5.9. ([17]) A measurable function u : (0, 7) % RY — R(J{ is an entropy sub-
(resp. super) solution of (5.1)if u € C([0, T], L' (R9)), T, »(u) € L} (0, T, BV(R?))

loc,w
forevery 0 < a < b, a(u, Vu) € L°°(Qr) and the following inequality is satisfied:

/OT /Rd ¢hs(u, DT (u)) dt +[OT fRd ¢hr(u, DS(u)) dt

T
> / / {Irs@®)¢'(0) = au(). Vu(0) - Vg T@@)S@w)|dxdr, (5.13)
0o Jr4

(resp. with <) for any ¢ € D(Qr)™" and any truncations 7 € 7+, S € 7.
This implies that
u; <diva(u,Vu) inD'(Qr) (5.14)

(resp. with >). Note also that sub- and super-solutions can be defined using truncations
from the classes 7TSUB, TSUPER, see Definition 5.1 and Remark 8 in [60].
The following comparison principle was shown in [17]:

Theorem 5.10. Let the list of assumptions in Section 5.1 and Assumptions 5.8 hold. Given
an entropy solution u of (5.1) corresponding to an initial datum 0 < uy € (L*®° N
LY)(R?), the following statements hold true:

(1) if is a super-solution of (5.1) such that u(t) € BV(R?) for a.e. t € (0,T), then
Iu(e) =w(@) [y < l(wo —u(©0) I, V2 €[0, 7],

(2) if W is a sub-solution of (5.1) such that (1) € BV(RY) for a.e. t € (0,T), then
@) —u@)* I < 1@ (©0) —uo) |1, V¥t €[0,T].

Some extensions of this result have been shown in [83] in order to be able to consider
super-solutions neither bounded nor integrable.
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5.5. An application: Well-posedness for (2.21). With very similar arguments to those
in [48], the class given by (2.21) can be shown to provide models that are well-posed in
the entropic sense. We just point out the differences and new ideas for this more general
setting.

By definition a(z = 0, §) = 0. This time the Lagrangian is given by

»(2)
0(z)

with @ constructed as in [48] using Poincare’s Lemma. Its main properties follow as in
[48], as they don’t depend at all on those of 6. Note that in our case

P(B(2)€) ~ 0(2)|5| for O(z)[§] > 1.

f(z.8) = —=®(0(2)§). [f(z=0.§)=0,

Then it is easy to show that lim|;|—.¢ f(z,§) = 0 regardless of the behavior of § at zero.
This implies the continuity of f. We also compute

£0z.£) = lim r%@(se(z)m = £lo(2).

The bound f(z,&) < ¢(z)(1 + |&|) is readily obtained. In order to obtain a lower
bound for f, following [48] we get

D(0(2)§) = O(2)EV (B(2)E).
Apart from that, we claim that there exist constants 0 < Cy < 1 and Dy > 0 such that
ryr(r) > Colr| — Dy foranyr e R4, (5.15)
This is easily seen in dimension one. First we check that
Y(A)A = Col — Dy VA =0 (5.16)

for appropriate positive constants Co < 1, and Dg. This is clear since limy_,o ¥ (A)A —
CoA = 0 and limy_, o Y (A)A — CyA = oco. Being ¥ an odd function we have that (5.16)
holds indeed for any A € R, thereby proving our claim. This argument can be easily
generalized to arbitrary dimensions.

We choose now r = 0(z)& in (5.15), so that

0(2)Ey (0(2)§) = Cob(2)I§] —
Multiplication by ¢(z)/60(z) finally leads to the desired lower bound:

@(2)
0(z)

Next we introduce the function A(z, §) = £@(z)¥ (0(2)€) > 0, easily seen to be even.
Moreover,

f(z.8) z 0(2)Ey (0(2)§) = Colélp(z) — Dop—

0(2)¢/1

.8 = lim oG GIE/) = lim t02)

= [Elo(2).
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We also point out that

da® :

9z ¢ @V (O()E) + p(2)0'(2)3; ¥ (0(2)8)é;
is bounded locally in z and globally in &, thanks to our assumptions on 6. All the prop-
erties discussed in this paragraph suffice to show that the class (2.21) satisfies those as-
sumptions in Section 5.1.

6. A more general well-posedness theory

There are a number of situations in which flux-saturated equations of porous media type
are such that the porous media type term is not regular. These situations are not covered
by the theory we have reviewed in the previous section. In order to treat these cases, a
suitable well-posedness theory encompassing the already existing one was developed in
[62]. We explain below what are the new ideas.

The focus is now on flux limited or tempered diffusion equations having the form

?)—L; = diva(u, D®(u)) 6.1

characterized by a bounded flux a(z,§) = V¢ f(z,§), where f : R x R? — R* is as
explained in Section 5.1. Here ® need not be smooth; if it is smooth then (6.1) can be
treated within the previous framework in many cases. However, even in the smooth case
the present theory allows to cover some situations not included in [11, 12] (see Remark
3.4 in [62]). Indeed, we state now a list of assumptions on ® and the flux a under which
the theory in [62] applies.

Assumptions 6.1. Let @ : [0, 00) — [0, 00) be such that the following properties hold:
* [tis a continuous, strictly increasing function
e ®(0)=0
o O, & € WH([a, b)) forany 0 < a < b.

Let also a(z, &) be such that those assumptions in Section 5.1 hold, except 4 being re-
placed by the following: It is assumed that there exists a constant M > 0 and some
m > 1 such that

a(z,§) = 2"b(z,€) with [b(z,£)| < M,V (z,£) e R* x RY.
This new assumption on the structure of the flux was initially considered in [60].

6.1. The class of entropy solutions: A suitable functional calculus. To define entropy
solutions in this new context requires to reformulate (and actually extend) the functional
calculus of previous paragraphs. The meaning of this new functional calculus we now
summarize is explained in detail in [63].
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Let S € C([0,00)) and p € P N C ([0, 00)). We denote
[Pz.8) = f(@7'(.8). h®(z.8) = h(@ ' (z.)).

[5:(2.6) = S’ @) fP(2.6), h§.,(2.6) = S@)p (2)h®(z,§).
Assume that p(z) = p(Ty5(2)), 0 < a < b and that w = P(u) € TBV,+(R‘1). We
denote by

Istpw. DTap(w)),  h3.,(w, DTap(w)),
or simply by
fSo<I>:p0<I>(”v DTa,b(w))’ hSotb:po@(”v DTa,b(w))

the Radon measures defined by (4.4) with g(z,§) = qu:’p (z,€) and g(z,§) = h?:p (z,8)
applied to w respectively.

The above definitions can be extended to any p € P such that p(z) = p(T,(z)) and
p is differentiable in a neighborhood of [a, b], by writting

[5:p(2.8) = S@F @) [Tz, h§,(z.8) = SE@)F (2h®(.§).

Notice that when S € 7 and ®(z) = z then fs(u, DT (u)) and hs(u, DT (u)) coincide
with the definitions in [11, 12].

6.2. The existence and uniqueness result. We are now in a position to introduce the
concept of entropy solution for the following Cauchy problem:

2—1; =diva(u, D®(u)), u(0,x) = uyp. (6.2)

Definition 6.2. ([62]) A measurable functionu: (0, T)xR? — R is an entropy solution
of (6.2)in Q7 = (0,T) x R¥ if
* ueC(0,T]; L' (RY))
e u(0,x) = up(x),x € R?,
* Tap(@() —aelL}, 0T BVRY))forall0<a<b<oo
e a(u(r), Veu(r))) € LY'(RY) N L®[R?) forae. t € (0,T)
and the equation is satisfied in the following sense:
(i) u; = div(a(u(r), V®(u(r)))) in D'((0, T) x RY)

(ii) Given any truncations (S, T) € TSUB with T =T o Typ, S = So Se,q and any
¢ € D(Qr), the following entropy inequality is satisfied:

/Q $h2. (D). DT, p (@) di + /Q Oh2. g (D). DSe.a (D)) di
5/ JTod S0 (U)0;p dxdt
or

_/Q a(u(), Vo ())Ve T(P(u()))S(Pu(t))) dxdt. (6.3)
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Then the following well-posedness result was proved in [62]:
Theorem 6.3. Let Assumptions 6.1 be satisfied. Then, for any initial datum 0 < ugy €
LY(R?) N L®(R?) there exists a unique entropy solution u of (6.2) in Q1 = (0, T) x R?
for every T > 0 such that u(0) = ug. Moreover, if u(t), u(t) are the entropy solutions
corresponding to initial data ug, o € L' (R?)™T, respectively, then

lu(t) —u@)|l1 < |[(uo — o) ||y forall £ >0. (6.4)

As in the previous section, the proof for the existence part proceeds by generating mild
solutions via semigroup techniques, then checking that those are indeed entropy solutions.
Let us sketch this in order to make clear what are the differences:

Step 1: The elliptic problem. The first step in order to generate mild solutions is to
study the associated elliptic problem, which this time reads

u—diva(u, D®u))=v in R (6.5)

Definition 6.4. ([62]) Given0 < v € L'(R4)NL>®(R¥), we say that u > 0 is an entropy
solution of (6.5) if u € TBV,*(R?) N L>®°(R?) and a(u, V®(u)) € X;(RY,R) both
satisfy the following conditions:

u—diva(u, Vo)) =v in D'(RY),

h2.7(D(u), DT, 5(P(u))) < (a(u, VO(u)), DJzs(D(u)))
as measures V (S,7T) € TSUB.

Then the following result was proved in [62].

Theorem 6.5. Let Assumptions 6.1 be satisfied. Then, for any 0 < v € LY(R%) N
L% (R?) there exists a unique entropy solutionu € TBV(R?)NL®(R?) of the problem
(6.5). Moreover, let u,u be two bounded entropy solutions of (6.5) associated to v,V €
L®(R?)*, respectively. Then,

/]Rd(u —mtdx < /Rd (v—v)"dx. (6.6)

The proof of this result follows the same lines of that for Theorem 5.4, making exten-
sive use of the specifically adapted functional calculus that was introduced before.

Step 2: Getting a mild solution. Now the previous result is used to construct a semi-
group.
Definition 6.6. ([62]) (u,v) € B if and only if 0 < u € L'(R?) N L®°(RY), ®(u) €
TBVF(RY),0<v e L'(RY) N L®(R¥) and a(u, VO(u)) € X;(R?) satisfy:
(1) v = —div a(u, V®(u)) in D'(R¥)

2) hg’:T(CD(u), DT, p(P(u))) < (a(u, V®(u)), DJ7/s(P(u))) asmeasures V (S,T) €
TSUB.
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Then B is shown to satisfy the assumptions of Crandall-Liggett’s theorem. This pro-
vides us with mild solutions of (6.2), a representation of them by means of an exponential
formula and a contraction principle.

Step 3: Characterize mild solutions as entropy solutions. As in the proof of Theo-
rem 5.2, the final step in the existence proof is to show that mild solutions are actually
entropy solutions. This is done in the same vein as in the previous case, using again the
specific functional calculus that was devised to deal with this framework. Uniqueness is
shown likewise by a doubling variables argument.

7. Variants on well-posedness theory

7.1. Alternative approaches. The optimal transport approach. Solutions to the Neu-
mann problem in bounded, convex domains for (2.12) were constructed in [103] as limits
of an approximating scheme involving optimal mass transport problems as explained in
Section 2.2. They can show the convergence of such approximating scheme when initial
data are bounded from above and below, for a very wide range of cost functions k and
entropy functionals F' (including the model (1.5)).

Bertsch—dalPasso’s theory [35]. They study the Cauchy problem for (2.18) with
strictly increasing initial data (and hence with infinite mass, so the theory on Section
5 does not apply). Existence is shown by standard parabolic regularization, which en-
ables to construct solutions in L*°(Q 1) N BV}, (Q7) satisfying entropy-like conditions
(in Oleinik’s form). Uniqueness in the constructed class of solutions is proved in [76].

7.2. Construction of regular solutions. We will present in forthcoming Section 10.4 a
number of regularity results that can actually be regarded as providing existence of solu-
tions to (porous media) flux-limited models for certain sub-classes of initial data (unique-
ness being a consequence of those uniqueness results for entropy solutions). For instance,
Bernstein-type estimates on (2.17) yield the following statement.

Theorem 7.1. ([67]) Let n > 0 and consider the equation

ur = W' Qux))y, u0,x)=up. 7.1
The following statements hold true:

(1) Assume that 0 < n < 1. If 0 < uy € C? then (7.1) has a unique global classical
solution, such that u(z, x) is of class C> with respect to x and of class C 1 with respect
tor.

(2) Assume thatn > 1. If uy € C3 is such that
0 <m :=minup(x) <maxup(x) =M
and

(%) 10((u0)x) o < min{—a.b}. being 0 :R— (a.b).

Then (7.1) has a unique global classical solution, such that u(z, x) is of class C? with
respect to x and of class C! with respect to 7.
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The situation covered in [51] comprises a large number of sub-cases, which we will
defer from analyzing here. Suffices to say that the arguments there lead to existence
results like the following.

Theorem 7.2. Let m > 2. Let 0 < ug € L'(R?) N L®(R?). Then, there exists some
t* < 00 such that (2.9) has a unique solution u € L*®(0,t*, W (R%)) with uq as
initial datum. The same statement holds for (2.11).

From another point of view, local in time regularity properties (inside its support) on
the entropy solutions of the relativistic heat equation (1.5) have been analyzed in [20] for
radially symmetric smooth initial conditions. The smoothness argument is inspired on
Angenent’s discussion on a class of degenerate parabolic equations [21]. Again, these
considerations provide a local existence result for certain classes of radially symmetric
initial data.

As in Theorem 7.1, some existence results for (1.8) can be proved if we give away
the idea of finite mass solutions [70]. Note that this is out of the scope of the theory for
entropy solutions in Section 5.

Theorem 7.3. ([70]) Assume that the collision kernel Q in (1.8) satisfies conditions (C1)—

(C4) in [70]. Let p > 0. There exist three positive constants &, C, Tx such that, for any

e € (0, 1] and for any po with ||po — pll ga) < 6,

(1) There exists a unique solution ps € C(0, Ty, p + H*(R)) to (1.8) with initial datum
Po-

(2) Moreover, the solution satisfies the estimates

sup [|pe(t) = pllgawy = €. sup [lpe(t) — pllwi.cow) = /2.
[0,T%] [0,T%]

(3) Let r be the solution to the heat equation p; = Dpxx, with initial data po, being D
computed explicitly from the collision kernel Q —using formula (6) in [70]. Then, we
also have

sup [[ps(r) —r(@)|L2@®) =< Ce.

0,7+
4) Infact, if f; is the solution to (1.7), we may set

~ 0
fe = peexp (—8m), (t,x,v) € (0, Tx) xRxV C (0,T*) x RxR

&€

and there holds that
I fe = fell 2o ms)xxy) = O(e) ase — 0.

7.3. Other types of initial value problems. The homogeneous Neumann problem in a
bounded domain is already considered in [9, 10] when the initial condition is bounded
and strictly positive, or when the Lagrangian is coercive. Similar techniques to those
in [11, 12] may be used to address problems in bounded domains with zero Neumann
boundary conditions, as stated in those references, as long as the Lagrangian verifies
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the previous set of hypotheses. The domain needs to be bounded and with C!-boundary.
Then well-posedness for non-negative and bounded initial data can be shown. See [16] for
a detailed exposition about the elliptic problem with homogenoeus Neumann boundary
conditions. See also earlier accounts on the one-dimensional Neumann problem by Blanc
[38, 39].

The Dirichlet problem on a bounded domain was undertaken in [19]. The extension
of those arguments in [11, 12] is highly non-trivial: Boundary conditions need not be
attained and they have to be weakend to an obstacle condition. Despite this fact, they
show well-posedness of (1.5) for non-negative and bounded initial conditions when the
domain is a bounded set with Lipschitz boundary and the boundary data is non-negative
and bounded. Contractivity estimates also hold.

A mixed one-dimensional Dirichlet-Neumann problem with non-homogeneous Neu-
mann boundary condition was studied in [4, 52]. Again, Dirichlet boundary condition
does not hold in classical form.

To the best of our knowledge, the study of problems with periodic boundary condi-
tions has not been touched upon. See however [51].

For all these initial value problems the concept of entropy solution has to be suitably
re-adapted. We refer to the above references for details.

7.4. Well-posedness for reaction-diffusion equations. Here we consider flux-saturated
equations (with or without porous media terms) with reaction terms in the following form.

g—”; = div(a(u, Du)) + F(u) in R?, u(0,x) = up(x). (7.2)

The extension of the theory of entropy solutions to the case of (7.2) was developed in
[15]. Here we just quote the main results. For that we need to (re)formulate properly the
concept of entropy solutions to (7.2).

Definition 7.4. ([15]) A measurable functionu: (0, T)xR? — R is an entropy solution
of (7.2)in O = (0, T) x R? if

e ueC(o,T]); LY (RY))

Fu(r)) e L} (RY) forae.0<t<T,

loc

u(0,x) = uo(x), x € R?,

Tu(:) eL! (0,7, BV(R?)) forall T € 7T,

loc,w

and the equation is satisfied in the following sense:

() u, = div(a(u(t), Vu(t))) + F(u(t)) in D'((0, T) x R?)
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(i) Given any truncations S € P*, T € T and any n € D(Qr), the following
entropy inequality is satisfied:

/ nhsu, DT (u)) dt +/ nhr(u, DS(u)) dt
or or
5/ Jrs(u)osn dxdt —/ a(u, Vu)Vn T(u)S(u) dxdt
or or

+/ nT (u(t))Su())F(u(t))dxdt. (7.3)
or

The notions of sub- and super-solutions can be reformulated accordingly to accomo-
date them to this framework. The main well-posedness result is the following.
Theorem 7.5. ([15]) Let the list of assumptions in Section 5.1 be satisfied and let F be
Lipschitz continuous with F(0) = 0. Then, for any initial datum 0 < ug € L®°(R?) N
LY(R?) there exists a unique entropy solution u of (7.2) in Qr for every T > 0 such
that u(0) = ug, satisfying u € C([0, T]; L*(R?)) and F(u(r)) € L*(R?) for almost all
0 <t <T. Moreover, ifu(t), u(t) are entropy solutions corresponding to initial data u,
Ug € (Loo(Rd) N Ll(Rd))+, respectively, then

lu(e) —u@)|ly < eWlLir |lug o)y,  forall > 0.

While we cannot guarantee existence for initial data which are just bounded, we have
uniqueness of entropy solutions for initial data in L°°(R¢) when they have null flux at
infinity. This is particularly useful in order to deal with traveling wave solutions.
Definition 7.6. ([15]) Let u be a sub- or a super-solution of (7.2) We say that u has a null
flux at infinity if

T
lim /0 /Rd la(u(t), Vu(1))| [V r(x)| dxdt = 0,

R—+o0

for all g € D(RY) such that 0 < ¥ g < 1, ¥z = 1 on B(0, R), supp(¥r) C B(0, R +
2) and [VYrllee = 1.
Theorem 7.7. ([15]) Let the list of assumptions in Section 5.1 be satisfied and let F be
Lipschitz continuous with F(0) = 0.
(i) Letu(t), u(t) be two entropy solutions of (7.2) with initial data ug, @y € L®(R4)T,
respectively. Assume that u(t) and u(t) have null flux at infinity. Then

lu(t) —(0)||; < eV lir ug —0)y, forall ¢ > 0.

(ii) Let Assumptions 5.8 hold. Assume thatug € (L' (R)NL®R)F, 1y € L®(RY) ™.
Let u(t) be the entropy solution of (7.2) with initial datum uy. Let u(t) be an en-
tropy super-solution of (7.2) with initial datum o € L®(R%)" having a null flux
at infinity. Assume in addition that u(t) € BViee(R?) for almost every 0 < t < T.
Then

() —u @) T < e WFILir ||(ug — o) Ty, forall > 0.

A similar result holds for # a solution and u a sub-solution.
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8. Geometric interpretation of entropy conditions.
Rankine-Hugoniot relations

Rankine—Hugoniot conditions are quite well-known in combustion theory and in the the-
ory of scalar conservation laws. They give some useful information on various parameters
describing the time evolution of traveling fronts (commonly known as shocks and rarefac-
tion waves elsewhere), which, together with some complementary information may allow
to determine their laws of motion completely. On a technical level, they impose a condi-
tion on the structure of jump discontinuities of a given solution to a scalar conservation
law, by the mere fact of satisfying a distributional formulation. Being sloppy for now, let
u™t, u™ be the values at both sides of a given jump discontinuity and let F(u™), F(u™)
be the fluxes at both sides of such a discontinuity. If v is the velocity by which such jump
discontinuity is transversing the medium, then the Rankine—Hugoniot condition roughly
says that
Fut)—F@)
V= —
ut —u-

Of course this sole condition is not enough to determine the structure of the fluxes at both
sides of the jump discontinuity; this extra amount of information is usually provided by
additional conditions (entropy-like conditions).

We will see soon that flux-saturated equation (including those of porous media type)
are not much different from scalar conservation laws in this regard. Namely, in the regime
of large gradients they behave essentially like scalar conservation laws (as already noticed
in [35] and commented above) and we expect some form of the Rankine—Hugoniot condi-
tion to hold. Let us mention that these ideas were already present in [67], where accurate
formulas for front evolution of solutions to (2.17) with g(u) = u were given, and also in
[35], where similar formulas and a detailed analysis of shock discontinuities for solutions
to (2.18) are shown.

Analytical studies of these issues were carried in [61, 62] which include equations
(2.9) and (2.11). The point of view given there is slightly different: All in all, it is shown
in [61, 62] that “the fact that

u € BV([0, 7] x Rd) forany 0<t<T 8.2)

8.1)

permits to identify the Rankine—-Hugoniot condition, to give a more concrete character-
ization of the entropy conditions on the jump set of ¥ and to compute the speed of the
moving discontinuity fronts”. This has also been extended to the case of (2.20), see [48].

Therefore we take the fundamental assumption (8.2) for granted (we comment on
this later in Section 10.2) and give a brief account on how do the aforementioned analysis
proceed. For this we use the specific notations introduced back in Section 4.1. We assume
that u™ > u~ in what follows (this determines if v, points inwards or outwards according
to the conventions on Section 4.1); we also assume u~ > 0.

The following result was proved in [61].

Lemma 8.1. Letu € BVjoe(Q7) and letz € L®°([0, T] x R, R¥) be such that u; =
divz in D'(Q7). Then

H? ({(1,x) € Ju/vx(t,x) = 0}) = 0.
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Thanks to the previous result the following definition is meaningful.
Definition 8.2. ([61]) Let u € BVj,.(Q7) and let z € L*([0, T] x R?,R?) be such
that u; = divz in D’'(Q7). We define the speed of the discontinuity set of u as v(z, x) =

vy (2,x) d
|v;(t,x)| H%-a.e. on Jy,.

The following is a result encoding the Rankine—Hugoniot conditions that can be found
in [61] too.
Proposition 8.3. Let u € BVj,o(Q7) and let z € L®([0,T] x R?,R¥) be such that
u; =divz. Fora.e. t € (0,T) we have

@]t x) = [[2- v O] HIT —ace in ),

where [[z - v/u®]|L_ denotes the difference of traces from both sides of Jy ).

Next we state the following characterization of entropy conditions, which are now
rephrased as two separate conditions on the jump and the Cantor parts of the original
entropy inequality. This is quite helpful in order to describe solution behavior at jump
discontinuities as we will show below.

Proposition 8.4. Ler u € C([0, T]; LY(R9)) N BVipe(Q7). Assume that u; = divz in
D' (Qr), where z = a(u, Vu). Assume also that u,(t) is a Radon measure for a.e. t > 0.
Let ¢ defined by (5.3) be a locally Lipschitz continuous function such that ¢(0) = 0. Then
u is an entropy solution of (2.11) (resp. (2.21)) if and only if for any (T, S) € T SUB (for
any (T, S) € TSUB U TSUPER) we have

hs(, DT w))® + hr(u. DSW))* < (2(t, x) - D(T (u)S u)))*

and for almost any t > 0 the inequality

[STe()]+- — [Jrse )]+~
< —Irs @(@O)]4— + [[2() - v/ OIT () Su()] - (8.3)

holds H%'-a.e. on Ju@)-

This is just Proposition 8.1 in [61] plus an easy generalization of Proposition 7.8 in
[48]. All in all, it is a particular case (®(u) = u) of Proposition 6.8 in [62], which we
now state.

Proposition 8.5. Let u € C([0,T]; L'(R?)) N BV (Q7). Assume that u; = divz in
D'(Qr), where z = a(u, V®(u)). Assume also that u,(¢) is a Radon measure for a.e.
t > 0. Then u is an entropy solution of (2.19) if and only if for any (T, S) € TSUB (for
any (T, S) € TSUB U TSUPER) we have

h§.p (@), DT(®W)))° +hf.5(Pu), DS(®)))° < (2(t, x)- D(T(S()S(P(u))))°
and for almost any t > 0 the inequality
[ST®( @) +- = [rgp0 (P@E))]+—
< —V[Jros so0 ()] + [[2(1) - vOIT (@) S(@UD))]+—  (8.4)
holds H%'-a.e. on Ju@)-
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We are now able to present the main result regarding Rankine—Hugoniot relations,
which applies to equations of the form (2.11), (2.19) and (2.21) — see [62, 63, 48]. Note
that any distributional solution satisfies a Rankine—Hugoniot law (8.1) at jump points —
this is Proposition 8.3 already. The point here is that entropy conditions characterize
completely the structure of the fluxes at both sides of a given jump discontinuity, as we
now state.

Proposition 8.6. Let u € C([0, T]; L (R?)) be the entropy solution of (2.11), (2.19) or
(2.20) with 0 < u(0) = ug € L*(R?) N BV(R?). Assume that u € BV (Q7). Then
the following statements hold true:

(1) Case of (2.11): The entropy conditions (8.3) hold if and only if for almost any t €
0.7)

[2-v0] = @t @) and [z-v7O) = (U (1)" (8.5)

hold H?'-a.e. on Ju(r)- Moreover the speed of any discontinuity front is

UML) L VR )

ut(r) —u=(r) (8.6)

(2) Case of (2.19): Assume further that @, A satisfy Assumptions 2.1. Then the entropy
conditions (8.4) hold if and only if for almost any t € (0,T)

[z- v/ O, = At (1) and [z-v7*O)_ = A= (1)) (8.7)
hold H?'-a.e. on Ju@).- Moreover the speed of any discontinuity front is

y— At () = A= ()
N ut@) —u-(@)

(8.8)
(3) Case of (2.21): Assume further that ¢ defined by (5.3) is a convex function. Then the
entropy conditions (8.3) hold if and only if for almost any t € (0, T)
[2- v =@t (t) and [z-vIO] =@ (1)) (8.9)
hold H?'-a.e. on Ju(r)- Moreover the speed of any discontinuity front is

b o™ (1)) —pu™ (1))
 ut@) —u ()

(8.10)

Remark 8.7. Under some additional assumptions we may derive from either (8.6), (8.8)
or (8.10) a vertical contact angle condition, as first pointed out in [61]. For that we assume
that for %4 -almost x € J, there is a ball By centered at x such that either (a) u|B, >
a > 0 or (b) J, N By is the graph of a Lipschitz function with Bx\J, = Bl U B2, where
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Bl, B2 are open and connected and u > o > 0 in B}, while the trace of u on J,, N dB2
computed from B2 is zero. Then, the following statements (encoding in a weak form the
fact that solutions display vertical contact angles at jump points) hold:

(1) For equation (2.11), in both cases __Vu____ = 1lon J, N By. If (a)
u2+';—§|Vu|2 N

holds, we also have V—’; vfuo | =1onJ, N By.
‘/u2+27\Vu\2

2) F tion (2.19), in both — V& . ,Juor| =1onJ,N By If
(2) For equation ( ), in bo cases[ ILEYTE v N on J, X (a)

hol 1so h VW hu | = N B..

olds, we also have |: S Avown v on Jy X

(3) For equation (2.21), in both cases [w(G(u)Vu) . vJu('>]+ = 1on J, N By. If (a)
holds, we also have [y (8 (u)Vu) - v/u®]_=1on J, N By.

9. Finite propagation speed in a general setting

Probably the most distinctive feature of flux-saturated models like (1.5) is the finite prop-
agation speed property for support growth. It is not only the fact that the spreading rate
of a compactly supported solution is finite, but the fact that it can be bounded above by
a universal quantity (the speed of sound/light depending on the applications) and that
generically this universal bound is indeed the actual spreading rate of the support.

This has been justified heuristically in a number of ways, as we have seen above, but
the first rigorous installment of such properties was not given until 2006 in [17]. The main
idea of that paper is that for compactly supported solutions to (1.5), the support at time #
is generically the Minkowsky sum of the initial support and a ball of radius cz. Stated in
another way, the spreading rate of the support is precisely given by the constant c.

Let us discuss in some detail those results in [17] leading to this conclusion. First,
a general comparison principle was given, see Theorem 5.10 in Section 5. It has been
improved in [83] to cover more general situations. This allows to use sub- and super-
solutions to control the spreading rate of compactly supported solutions, which is pre-
cisely the next step taken in [17]. To bound from above the speed of propagation, they
show that

luollco Xy, $2(2) := suppuo & B(0, ct),

being ¢ the Minkosky sum of two set, is a super-solution dominating the entropy solu-
tion u(t) with initial datum ug. This fact is easilly carried onto many other flux-limited
models, as shown in [83] (which includes in particular the classes (2.19) [62], (2.20) [48]
and easily generalizes without change to the case of (2.21)). The key idea is the fact that
the fastest spreading rate for the support will be attained when the slopes at the interface
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are very high, that is, the case of a traveling front. Then the object that codifies the be-
havior of the equation at that regime is the recession function of the Lagrangian f (see
section 5.1 and specially (5.3)).

It turns out that

U(t, x) = |uolleo xoq),  being 2(2) := (suppuo & B(0, ¢'([[uolle0)?))

is a super-solution. A number of immediate consequences follow:

(1) The speed of propagation of pure flux-saturated models — no porous media terms
— is always bounded above by a universal constant, as claimed in the introduction.
In particular, the speed of propagation for (1.5) and generally any model of the form
(2.10) is bounded above by c.

(2) The speed of propagation for (2.9) is also bounded above by c.

(3) The speed of propagation for (2.11) is bounded above by cm (||uglloo)™ . Note that
the bound is no longer universal but depends on both some of the constants of the
model and on the particular initial datum.

To find suitable sub-solutions is a subtler task. One of the major contributions of [17]
was to construct a family of compactly supported sub-solutions to (1.5) which spread with
a rate given by c¢. These sub-solutions have the following form: Given Ry, 9 > 0 and
Yo > 0, there are values B, 8, > 0 large enough such that

(e, %) = g exp{—p1t — Bar*} (20§ V/(Ro + D) — [xP + o) if x| < Ro +ct
0, if x| > Ro + ct
is an entropy sub-solution of the relativistic heat equation.

Hence we have that, generically, the spreading rate of compactly supported solutions
to (1.5) is exactly ¢. But we also get some extra bits of information which are interesting.
First, these sub-solutions ensure that local positivity is maintained during evolution. And
second, they also show that discontinuous interfaces stay put forever in a number of cases
(sandwiching with the previous super-solutions). Thus, there cannot be regularizing ef-
fects at the tip of the support for solutions of (1.5) and the maximum regularity which is
to be expected for u; is, generically, that it is a Radon measure. Let us also mention the
fact that a similar family of subsolutions was constructed in [48] for some of the models
having the form (2.20), thus extending the previous results to a broader class of equations.

Note that some of these results could have been partially derived using Rankine—
Hugoniot’s relation. The main point here is that Rankine-Hugoniot’s law is valid as long
as interfaces remain discontinuous, but it provides no estimate on the life span of such a
discontinuous interface. This is of course one of the major contributions in [17, 48], as
the families of sub-solutions so constructed allow to ensure that discontinuous interfaces
are eternal in a varied number of cases.

Finally, let us mention that the finite propagation speed property can be also con-
nected in some cases to optimal transport approaches. Following the ideas back in Sec-
tion 2.2, if the model under study has the property of universal finite speed of propaga-
tion (let’s say c), then the associated cost function should reflect this fact. Namely, if
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we want to displace something a distance greater than ¢ per unit time as we follow the
Jordan—Kinderlehrer—Otto optimal transport scheme, we should pay infinite to make that
movement (thus banning such a possibility). This was shown for (1.5) in [103], provid-
ing a different justification of the finite propagation speed property. Pursuing this line
further, note that [48] shows that any flux-saturated model whose structure agrees with
that of (2.20) is connected with a cost function whose domain is contained in a ball of
finite radius (being that radius the maximum speed allowed). This result has a suitable
generalization to the case of those flux-saturated models having the form (2.21) when
¢(z) = z. Equating (2.12) and (2.21), we readily get that ¥ (r) = Vk*(r) (as in [48])
and V(F’(u)) = 6(u)Vu, which amounts to

F'(z) = 0(2). ©.1)

Provided that (9.1) holds, a statement like the one in [48] can be proved. For instance, if
0(z) = z% o > —1 then the model (2.21) can be formally obtained when ¢(z) = z from
a minimization scheme associated to a convex entropy of the form

Zot+2

(¢ + (e +2)

and a cost function which is finite only on a ball of finite radius. This is coherent with the
results concerning (2.14) that were mentioned back in Section 2.2.

F(z) =

10. Regularity results

This section deals with further regularity properties of solutions to flux-saturated equa-
tions (with porous-media type terms eventually) than those barely predicted by well-
posedness results in the class of entropy solutions. We are talking here mainly about
time regularity, propagation of Lipschitz regularity and smoothing effects. To the best
of our knowledge, most of the studies so far deal with these issues only for the Cauchy
problem on the whole space. This will be the case below unless we explicitly state it oth-
erwise. It is to be expected that the addition of boundary conditions may pose additional
substantial challenges.

10.1. Earlier regularity results. First regularity results we know of focus in particular
classes of solutions (with the exception of those in [67], already discussed in Section 7.2).
Regularity results for the class of log-concave solutions to (1.5) (i.e. x +— log(u(z, x))
is concave) were provided in [13]. More precisely, consider the class of log-concave
initial data which are compactly supported on a smooth convex domain, and such that
they are smooth inside their support, bounded away from zero and with vertical contact
angles at the boundary. Then the concept of entropy solution for this family of initial
data boils down to check that certain degree of smoothness is fulfilled inside the support,
that the contact angles at the boundary are vertical and that the equation is verified inside
the support. Put it in another words, such class of initial data provides entropy solutions
wich are log-concave, smooth inside their support and with vertical contact angles at the
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boundary. These results were also extended to treat with the case of a reaction term,
see [15].

Spherically symmetric solutions are studied in [20]: Initial data which are compactly
supported and with discontinuous interfaces are considered. Interior regularity for en-
tropy solutions to (1.5) launched by these initial data is analyzed both from analytical and
numerical points of view. Local-in-time existence of radially symmetric smooth solutions
(inside the support) for smooth initial conditions whose only discontinuities are at the
boundary of its support are obtained for (1.5), as explained in Section 7.2. These results
are expected to be global in time (note that there is no waiting time phenomena for (1.5)),
but no proof for this seems to be available up to date.

10.2. Partial regularity results on the time derivative. We have seen previously that
flux-limited equations (and hence also those of porous media type) have a certain tendency
to support discontinuous traveling fronts. Therefore, we cannot expect the time derivative
of a solution to be better than a Radon measure. Is it possible to ensure that it won’t be
worse than that? To get some understanding of this problem is a paramount issue, as the
Rankine—Hugoniot theory previously presented in Section 8 rests on the fact that entropy
solutions u(¢) are assumed to verify

U € BVipe((0,T) x RY). (10.1)

Concerning spatial regularity, we have already seen that entropy solutions are of bounded
variation if the initial condition is, cf Remark 5.7. Clearly this is not enough to fulfill
(10.1); we need some extra knowledge about the time derivative. Namely, we need u; to
be a Radon measure. Therefore, solutions not complying with this regularity condition
are pathological enough so that currently we do not know how to describe the evolution
of their jump discontinuities. On top of that, boundary traces of the flux a(u, Vu) may
fail to be uniquely defined now, see Section 5 in [61]. Thus, we want to be able to ensure
that under suitable conditions a given initial datum launches an entropy solution such that
u; is a Radon measure. The main references analyzing this subject are [13, 61, 62].

Let us mention that the desired regularity for u;, is easily obtained when the operator
is homogeneous of degree m > 1, as the homogeneity estimate of Benilan and Crandall
in [28] implies that u; is a finite Radon measure in (0,7) X R4 for any 0 < ug €
LY(R%) N L°°(R¥). This is the case with solutions to (2.11) if m > 1 and also the case
of (2.20) when ¢(u) = u™ withm > 1 [61, 48].

The situation is much more delicate when the operator is homogeneous of degree
one, which is for instance the case of (1.5) and (2.9). It is conjectured in [61, 62] that
solutions to (1.5), (2.19) verify that u € BV([r, T] x R?) for any 0 < © < T as soon
as ug € BV(R?), but no proof for this is available yet. Some partial results have been
obtained instead, showing that u,(¢) is a Radon measure for any # > 0 under various sets
of conditions. The rationale behind such is the same in all results up to date: Quoting
[61, 62], what is used is the basic result that if the initial condition u is in the domain of
B, then |lu,(t)|l1 < ||Buoll1 [73]. To use this result, a set of conditions on ¢ are given
depending on the case that guarantee that it can be approximated by uo, € (L'(R%) N
L% (R4))* in the domain of B with || Bug,||; bounded. As a consequence, it is derived
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that if u,(¢) is the entropy solution of the pertinent equation with u,(0) = ug,, then
lune (@)|l1 < |Buonll1 for any n > 1 and any ¢ > 0. Letting n — oo it is deduced that
u, () is a Radon measure for any ¢ > 0. As a consequence S(u) € BV([r, T] x R?) for
any 0 < t < T and any truncation S € 7,. If, in addition, uy € BV(R?), then finally
ue BV(r,T] xR4) forany0 < v < T.

The first such result concerns (1.5) and was proved in [13]. It specifies that the pre-
vious approximation procedure can be performed if the initial datum uy € L'(R?) N
L*®(R?) is supported in a domain Q of class C>', it is bounded away from zero in its
support and satisfies ug € W1 () N W2:1(Q); hence for such set of initial conditions
the time derivative is a Radon measure. This result was later extended in [61] for the case
of initial conditions having a jump set composed of smooth C?! hypersurfaces, such that
ug isin W N W21 away from such jump set (plus some other technical conditions, we
refer the reader to the precise statement of Lemma 4.1 in [61]). Afterwards the result in
[61] was generalized, under the same conditions on the initial data than in [61], to cover
a subclass of those equations of the form (2.19) which includes in particular

rvm
utzadiv(L), a,B>0r>1

V1 4+ B|Vum|?

for the cases m > 2 and r > m. See [62] for more details.

10.3. Waiting time phenomena. We know that initial conditions with discontinuous
interfaces will start to spread instantaneously as per Rankine—Hugoniot relations. This
may not be the case if an initial condition displays continuous interfaces. Some times
the support will start to spread immediatly, as we have seen already for (1.5) and related
models in Section 9, but this is not the case for some of the porous media counterparts
of these models, in which case we say that there is a (finite) waiting time for the support
to spread. Some numerical evidences of this phenomenon can be found in [67, 20, 56,
122, 49] and in Fig. 2. There are some analytical results in [83, 49] (see also [67],
Theorem 2.2).

Now, we show the existence of waiting times for some one-dimensional models of the
form (2.20). Specifically, we will deal with

ou Uy
i (w(u)w (7))X . (10.2)
verifying that
@(s) < es® and ¢'(s) < ¢8s%71, with§ > 1, (10.3)

for some ¢ > 0, together with the required well-possednes Assumptions 2.2 and 2.3.
Following the arguments developed in [50] (see also [83]) based on the existence of super-
solutions, we can deduce a finite waiting time for solutions to (10.2) with initial data
compactly supported in [a, b] and verifying some decay estimates at the boundary of the
support.

Theorem 10.1. Let § > 1 given by equation (10.2)—(10.3). Then, any solution u to (10.2)
with initial condition ug € L>®°(R) such that
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* ug is compactly supported on [a, b],
* uq verifies strong enough decay estimates at the boundaries, i.e.

uop(x)  uo(x)
(x—ay’ (b—x)”

2
belong to L (R), with — < § — 1,
14

can be majorized by a super-solution supported on [a,b] for t € [0,T], being T > 0
some time instant depending on ug. Therefore, the support of u does not increase during
that time interval.

Proof. Let us prove the local in time existence of a super solution of the form % (z, x) =
a(t)B(x), being B(x) = ((x —a)(b — x))%_, where ()4 denotes the positive part. It is a
simple mater to get the following estimates:

AU PR
B(x) BY(x)

Combining the above estimates together with hypothesis (10.3) and the uniform bounds
on ¥ and ¥’ (Assumptions 2.2), we find

forx € [a,b].

Bl < yb—a)p’7 (). ‘(

(w(ﬁ) Y (L;Tx)) < Key(b —a)a® (1) (,38—% + (b _a)ﬁ“—%) .

From this estimate we can conclude

o 2
3 = 0pw = (e (%))

provided that

G < K=o (F0 + b-p' T w)

holds. Since % < §—1 we get a global estimate of the right hand side allowing to establish
the local-in-time existence of «. Note that «(0) should to be chosen big enough in order
to have ug < u, which is always possible thanks to the hypothesis on uy. The comparison
results quoted in Section 5.4 give the bound u(¢, x) < (¢, x) justifying the waiting time
during which «(¢), and as a consequence i, exists. O

10.4. Partial regularity results based on Bernstein’s approach. The idea behind Bern-
stein’s approach is to get bounds on the spatial gradient by means of a maximum principle
applied to an equation satisfied by |Vu|?, which we derive from the equation satisfied by
u itself. As long as there is some chance of getting waiting time phenomena, only local-
in-time bounds may be furnished by this procedure. Namely, if waiting times are present,
singularities in the spatial derivative will show up eventually, no matter the initial de-
gree of smoothness. This explains why global-in-time regularity results are not usually
obtained in this setting, which is reflected by the fact that those estimates provided by
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Bernstein’s method may blow up in finite time. Note that this provides a lower bound for
the waiting time itself, were it present.

These ideas were applied to some extent in [67], where partial regularity results for
(2.17) were stated when g(u) = u. Namely, when 0 < n < 1 they show that ||ux|co <
I[(0)x lloo, While when n > 1 they show that ||uy ||oc is bounded for every finite time if
certain requirements on the range on the initial datum are met (involving strong separation
from zero, see Theorem 7.1 for details).

A more sistematic treatment was given in [51]. Here the following question is ad-
dressed for both (2.9) and (2.11): If we start with a Lipschitz continuous initial datum,
will it remain so during evolution? The answer is affirmative at least for the one dimen-
sional versions of (2.9)—(2.11) in the range 0 < m < 1 (this goes in the same line of the
results in [67]). Otherwise the question cannot be addressed by means of Bernstein type
estimates, as those obtained in [51] are local in time. A number of remarks are in order,
though:

* there are a number of sub-cases depending on the spatial dimension and the expo-
nent m, which are summarized in table / in [51]. The large number of sub-cases
suggests that those results are probably non-optimal.

* as we mentioned above, if we track the proofs in [51] we can produce explicit lower
bounds on the waiting time (whenever applicable).

The results in [51] imply in particular that for the one-dimensional relativistic heat
equation, Lipschitz initial conditions launch spatially Lipschitz solutions, altough not ex-
plicitly stated there (see their Proposition 4.5, compare with [13, 56]). This rationale can
be partially extended to mode general models. For instance, the one-dimensional version
of (2.20) is such that Lipschitz initial data launch spatially Lipschitz solutions. This can
be obtained arguing as in [51] and using the following Bernstein-type estimates.

Lemma 10.2. Let d = 1. Assume that ¥’ > 0 and ¥ € C>(R). Let u(t, x) be a solution
of (2.20) with C'-regularity with respect to t and C3-regularity with respect to x. Assume
that there is some o > 0 such that u(t, x) > o > 0 for every (t, x) € R x R. Then there
exists some finite C > ||(uo)x || oo such that ||ux(t)||Lee < C, Vt > 0.

Proof. Let w = (ux)?/2. We have
Wy = UxUxx, Wxx = (uxx)2 + UxUxxx, Wy = UxUix. (10.4)

and
ur = ux Y (ux/u) + u‘/f/(ux/u)[ux/u]x

so that

Urx = uxx‘/f(ux/u) + 2uxw/(ux/l")[ux/l"]x
Fuy e /u) ([t /1)) 4w (/1) [ 1] .
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Hence
- 4 X xx 2
= e ) 4wy e ) T2y gy P 200
, Uxxx Wx UxW
+ uux ¥ (Ux/u) {T - 3u_2 +4 v }
= 0w+ Y f10) = T )|+ 45y S,

Then we have that " (1 /u) < 0 for uy/u > 1and ¥ (ux/u) > 0 for —uy/u > 1.
Thus, we can ensure that there exists some C > 0 (depending only on ) such that either
w < C or

wy — w/(ux/u)wxx — Wy {W(”x/u) - uxuﬂw/(ux/u)} <0.

The expression on the left hand side of the previous inequality is a strictly parabolic
operator whose coefficients are bounded thanks to our hypothesis. Using a comparison
principle we can derive the estimate in the statement. O

Then we would get the following regularity result for the one-dimensional case.

Proposition 10.3. Letd = 1. Assume that ' > 0 and ¥ € C*(R). Letug € WhH*nL1,
Then the entropy solution u of (2.20) launched by ug verifies u € L>(0, oo, W 1),

Arguably the extra restrictions on ¥ can be bypassed. We will not investigate this
point here.

Remark 10.4. The same results hold for (2.21) provided that 26’(z) + z6” (z) < 0 for
every z > 0. This includes in particular the case of 6(z) = z* for« € [—1,0].

10.5. Partial regularity results: The one-dimensional relativistic heat equation. Ber-
nstein-type regularity results for (1.5) can be carried much further in the one-dimensional
case. Namely, it can be shown that solutions become smooth inside of their support after
a finite time. The first major step taken in this direction was presented in [56]. They
show that not only Lipschitz initial data remain so during evolution, but that if they are
strongly separated from zero inside the support then the solution becomes inmediatly
smooth inside the support (furthermore if ug € W12 then u, is a Radon measure, as per
the discussion back in Section 10.2). A similar result holds for the case of discontinuous
interfaces and initial Lipschitz regularity inside the support. The main idea to show these
is to pass to a dual problem stated in terms of the inverse distribution function by using a
transformation called “the mass coordinate” of Lagrange. This dual problem, that trans-
forms the support into a known domain, has some regularity properties that are typical of
uniformly elliptic operators of second order, see [105] for references. Namely, let u(¢) an
entropy solution to (1.5) in dimension one, let M be its mass and consider

(a(t),b(t)) := (minsupp u(t), max supp u(t)).
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Assume for simplicity that the support is connected. Then the inverse distribution function
o(t,:) : (0,M) — (a(t),b(t)) is defined by

@(t,m)
/ u(t,x)ydx =m, me 0,M). (10.5)
a(t)

Now we perform one further change of variables, letting v(¢,m) := g—,‘f,(t, m), which
relates to u(z, x) by means of

1
v(t,m) = —. (10.6)
u(t, o(t,m))
This function v satisfies the following equation:
av VU
w= |l T t>0,me(0,M). (10.7)

2
vt + z_z(vm)z

Then (10.7) provides a dual formulation in which some features are analyzed in an easier
way than in the original formulation (1.5). In particular, Bernstein-type estimates for
(10.7) with suitable boundary conditions can be shown and then be translated for the
original solution.

The second major step was taken in [49], which extends the finite time smoothing
effect to the case of a finite number of non-Lipschitz continuity points (like Holder cusps)
and jump discontinuities. These ideas are able to handle also isolated zeros but require
the a-priori knowledge of the fact that u, be a Radon measure (because it relies heavily
on the material in Section 8; as mentioned in Section 10.2 this fact is not yet completely
characterized in terms of the initial datum, although there are some sufficient conditions
for it to hold). The main observation here is that, if we think of u as a temperature, jump
discontinuities determine (moving) adiabatic walls while they stand, thereby allowing to
apply the techniques put forward in [56] to each isolated sub-system.

These ideas have also been partially extended to other one-dimensional models. Con-
cerning (2.9), it is shown in [49] that compactly supported initial data supporting a fi-
nite number of singularities (non-Lipschitz continuity points and /or jump discontinuities)
which are bounded away from zero do not develop further singularities prior to contact
time with zero (and in fact anything but jump discontinuities is instantaneously smoothed
out). This is a real issue for (2.9) in dimension one, as it was also shown in [49] that jump
discontinuities in general and discontinuous interfaces for (2.9) in particular are dissolved
within a finite time, at least in the one-dimensional case (which is in clear contrast to the
case of (1.5) and other models already mentioned in Section 9, for which discontinuous
interfaces are eternal). This was shown by comparison with a special family of travel-
ing waves which serve as suitable super-solutions. Then interfaces become eventually
continuous and what happens afterwards, from the point of view of inner regularity, is
essentially open.
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11. Asymptotic regimes from FLPME to classical counterparts: Heat
and porous media equations

We saw already that when ¢ — oo, solutions of (1.5) formally converge to (2.2), while
when v — oo we formally arrive to (1.6). These asymptotic regimes for the relativistic
heat equation were rigorously stated in [59, 18]. More precisely, for the regime ¢ — oo
we have that given an entropy solution u, to the Cauchy problem for (1.5) such that the
initial datum satisfies 0 < ug € L'(R%) N L®(R%), then as ¢ — oo, u, converges in
C([0, T], L' (R%)) to the solution of the Cauchy problem for (2.2) with initial datum .
This was shown in [59] with a proof that rests on an a priori estimate on ||V /u||so. This
estimate is obtained by means of Bernstein’s method, by considering v such that u = e,
which verifies (after normalization)

v div Vv N |Vvl|?
ot V14 |[Vo]2 V14 [Vo2

As regards the regime v — o0, analytical results were given in [18]. Given an en-
tropy solution u, to the Cauchy problem for (1.5) such that the initial datum satisfies
0 < up € L'(R?) N L®(R?), then, as v — oo, u,, converges in C([0, T], L' (R9)) to
the entropy solution of the Cauchy problem for (1.6) with initial datum u¢. This follows
as a consequence of the convergence of the associated resolvent operators. In fact, these
results show indeed the well-posedness of (1.6). Note that (1.6) does not fit into the frame-
work of Section 5, then a separate framework has to be formulated for it. This is precisely
done passing to the limit those notions that operate nicely for (1.5). The associated el-
liptic problem for (1.6) is actually solved in this fashion; then the associated semigroup
is constructed, which allows to conclude the existence for the parabolic problem by the
convergence of the associated resolvent operators as v — oo. Let us finally mention that
this convergence has been also treated from a numerical point of view in [56].

These results are expected to hold for a wider spectrum of models. As a matter of fact,
[63] shows that solutions of the Cauchy problem for (2.9) converge when m > 0 to those
of

u; = vdivluVu™),

while solutions of (2.11) converge to those of
u; = vdivu™ V)

for m > 1. Note that 0 < m < 1 would amount to consider the porous media equation
in the fast diffusion range, see the introduction and next section; since these models are
troublesome from the point of view of well-posedness, we expect the analysis of this
particular asymptotic regime to be more involved.

In fact, [63] proves a much more general statement. Namely, consider the Cauchy
problem

u div( AGVOm) ) Or = (0,T) x RY

i = VT VewP/e

u(0,x) = up(x), in R4
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Assume that A, ® satisfy Assumptions 2.1 together with ® € C1(0, 00) and A increas-
ing. Letting u. be the entropy solution of the previous Cauchy problem with 0 < ug €
L'(R4) N L°°(R?), then as ¢ — oo the sequence u. converges in C([0, 7], L' (R%)) to
the solution of the generalized porous media equation

u; = div(A(u)Ve(u)), u(0,x) = uyp.

Note that this includes some models of the form (2.17) [67].

The proof of this result is based on the convergence of the resolvents for both prob-
lems, an approach that also works for the case of (1.5) and (2.2). To show that the spatial
derivative of the limit has no singular part a convex duality method by [41] is used (see
also [65, 111]). This requires to construct a specific family of sub-solutions at the re-
solvent level, for which some extra conditions on ® are needed, see [63] for details. The
proof of a similar statement for (2.11) is essentially the same and is also contained in [63].

We also mention the work in [70], see Theorem 7.3, which can be regarded as a
statement concerning the limit of those flux-saturated models found in [70] when the
maximum propagation speed tends to infinity. Given that there are no porous media terms
in their models, this limit is described by the standard heat equation.

12. The fast diffusion range

As we have seen in the previous section, solutions to (2.11) for 0 < m < 1 formally
converge to the porous media equation in the fast diffusion range. It is known that if the
spatial dimension d > 3, then (1.4) in the range 0 < m < (d — 2)/d features properties
wich are radically different from those of the standard porous media equations [128]. In
a nutshell, diffusion may be indeed too fast (hende the name “fast diffusion”), causing
losses of mass to infinity and lack of uniqueness for the Cauchy problem. This poses a
different scenario from the modeling point of view, as new phenomena show up from the
same formal structure, but raises a number of problems in order to analyze these models
in a completely rigorous way.

Then, we may expect to have some of these problems also when considering (2.11)
in the “fast diffusion range” above specified. A quick glance shows that (2.11) is not
included in the previous set of well-posedness theories when 0 < m < 1. Presently this
is not completely well understood and there are a number of interesting open problems
pertaining the behavior of (2.11) (and related models) in the fast diffusion range. Though,
several advances were made in [51]. A concept of entropy solution was proposed there,
which is roughly the same as in Section 5 with the extra assumption of null flux at infinity.
The idea is that preventing mass leakage through infinity will help avoid non-uniqueness
phenomena. In fact, it was shown that, under such concept of solution, well-posedness
for the Cauchy problem holds in dimension one for any initial condition in (L' N L%°)T,
while the same is true in higher dimension if the initial datum uo € (L! N L)V satisfies
the additional decay condition

up(x) = 0(|x|%) as  |x| — o0 (12.1)
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(and in fact this decay rate is preseved during evolution). Existence is proved as in Sec-
tion 5: First the associated elliptic problem is studied, then Crandall-Liggett’s theorem is
used to construct mild solutions, which can be characterized afterwards in more operative
terms as entropy solutions in the previous sense. Uniqueness is obtained by a suitable
modification of the doubling variables strategy in which the null flux condition in Defi-
nition 7.6 — i.e. no leakage of mass — plays a paramount role: It is not known how to
prove uniqueness if this condition is not satisfied and in fact we conjecture that unique-
ness will break down if there is some loss of mass to infinity. The null flux condition can
be shown to hold if the aforementioned decay condition is met, by means of a modified
comparison principle for the elliptic problem in a bounded domain and the use of certain
super-solutions decaying as power laws with exponent less or equal than (1 — d)/m.
Apart from that, currently we only have heuristics and numerical evidences (see [20]
for instance) in order to ascertain the behavior of such models. Although not proved ana-
Iytically yet, it is pretty clear that in this case solutions will propagate with infinite speed;
it is also quite plausible that smoothing effects will take place instantaneously (besides of
those global Lipschitz regularity estimates that we already mentioned in Section 10.4).

13. Traveling waves for flux-saturated-reaction models

Since the apparition of the groundbreaking work by Turing [126], the study of reaction-
diffusion equations ad their traveling wave solutions has grown to become a full research
area in its own right. There are many situations for which such models can be applied,
and the number of different problems in this area that deserve to be studied are virtually
countless (see for instance [94]). Our humble contribution here to this body of research
focuses on a study of traveling wave solutions to one dimensional flux-saturated equations
coupled with a reaction term of Fisher—-Kolmogorov type. Several applications in biology
(morphogenesis) [4, 32, 52, 126], Social Sciences [25] or traffic flow [34] motivate the
study of non-smooth densities such as singular traveling waves [45] . Do they really exist
as solutions to flux-saturated models with reaction terms? To answer this question is one
of the objectives of the analysis to be carried in this section.

Some of the results of this section are a recreation of the ideas previously introduced
in [49, 54], but here we provide a vision and an original development based on the study
of first order graph associated with the traveling wave equation.

We look for traveling wave solutions of reaction-diffusion equations having the fol-
lowing general form:

ou = ((p(u)w (u_x)) +uK(u), ul=0,x)=up(x), xR, t>0. (13.1)

|ul

Here we wrote the reaction term as F' (1) = uK(u); the properties of K are stated below.
The profiles we are seeking as solutions to (13.1) are non-negative functions u(t) =
u(x — ot) defined on R for some o > 0, such that

lim u(zr)=1 and lim u(r) =0. (13.2)
T—>—00 T—>00
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From a different perspective, the existence of other kind of traveling waves such as
those with pulses or soliton-type shapes constitutes an interesting problem to be explored
which requires at least the choice of different reaction terms, since in the context studied in
this section this alternative traveling waves do not appear in our analysis (see for example
[113] or [80, 120] in another context). It can be also of interest to consider heterogenous
media, where the heterogeneity property can come from the heterogeneous character of
the equation and/or from the underlying domain (we refer to [31, 32, 33]), but again this
is not the objective of this review.

In the first two subsections we introduce the results, while the proofs are postponed to
the last part of this section for a better panoramic view of the theory.

13.1. Statement of the problem and main result. We will restrict ourselves to look for
traveling wave solutions in the class of entropy solutions for (13.1). Then we will use
those results in Section 7.4 to tackle this issue. As a brief summary, let us note that:

(1) There is no existence theory for solutions to (13.1) with infinite mass. This is not
a problem for our particular purpose here as we will explicitly construct entropic
solutions of traveling wave type; it will later turn out that none of these has finite
mass.

(2) Nevertheless, uniqueness in the class of entropy solutions can be ensured if these
traveling profiles happen to have null flux at infinity.

(3) Those results on Section § about geometric characterizations of entropy conditions
are generalized without much effort to the case in which there is an additional reaction
term in the equation. Such extended statements will be crucial for the developments
below.

To be completely sure about the validity of the previous statements, functions ¥, ¢
and K have to be such that those results in Section 5 apply indeed. Let us detail what are
our assumptions on these structure functions.

Assumptions 13.1. Let  : R — R be a function satisfying Assumptions 2.2 such that
¥'(x) >0, Vx > 0.

In the case of the functions ¢ and K, the following properties are considered:
Assumptions 13.2. Let the functions ¢, K : [0, 1] — [0, 00) be such that
(1) ¢ € C'([0,1]) N C3(0. 1])
(2) ¢(0) =0and ¢ > 0in]0,1].
3) ¢” = 0in]0,1].
@ K ec(o.1)ncto. 1))
(5) K(1) =0and K >0in]0, 1]

Altogether, Assumptions 13.1 and 13.2 enable to use the entropic well-posedness
framework to deal with (13.1) (see Section 5 and [48]).
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In order to construct traveling wave profiles we substitute the traveling wave ansatz
u(x —ot) into (13.1). This leads to the study of the following equation:

(¢ /w) +ou’ +uk) =0, (13.3)

We can use (13.3) to construct piecewise smooth entropy solutions of (13.1). For that, it
suffices to join together smooth solutions of (13.3) defined on intervals of R fulfilling the
following rules:

(i) If solutions corresponding to two consecutive intervals match in a continuous way,
then the first derivative cannot have a jump discontinuity. If the first derivative is
~+00 (resp. —oo) on one side then it must be also +o0o (resp. —oo) on the other side.
This can be justified as in [49].

(i1) If solutions corresponding to two consecutive intervals match forming a jump dis-
continuity, then the speed of the moving front should obey the Rankine—Hugoniot
condition (8.10) and the slopes of the profile at both sides of the discontinuity must
agree and be either plus or minus infinity (see the geometric interpretation of en-
tropy conditions in Section 8), except when one of the solutions we are matching
with is the zero solution. In that case, when looking for decreasing profiles, we only
have to worry about the infinite slope condition on the left side of the discontinuity.
If ¢ is not convex then we have no guarantee that the fulfillment of (8.10) plus the
conditions in i) above ensure that the traveling profile so constructed qualifies as an
entropy solution; in that case our construction will be at least formally correct (we
produce distributional solutions).

Therefore, we focus on describing smooth solutions of (13.3) defined on |7_xo, Teo|
for T_oo, Too € [—00, +00], which we will eventually extend afterwards to the whole
real line by suitable matching procedures based on the previous observations. In order
to accomplish the first stage of this prospect we will write (13.3) as an autonomous pla-
nar system. We will explain how to do this in what follows. Throughout the following
construction we will assume the following:

(1) <0 VYT €]T—00, Tool. (13.4)

This is done only for technical convenience. Proposition 13.22 below shows that this
assumption can be safely removed. Note in passing that the constant solutions ¥ = 1 and
u = 0 do not satisfy it; nevertheless they will play a very important role in the sequel.

Definition 13.3. We will say that u is a smooth solution of (13.3) if both u and @ (u) vy (u’/u)
are C!(]7—oo. Too[) functions verifying (13.3) pointwise.

Remark 13.4. Indeed, we will justify that if 0 < u < 1 this will be equivalent to get a
classical solution, that is € C?(]T—wo, Too[) Verifying (13.3).

Definition 13.5. We will say that a traveling wave profile defined in R saturates the flux
if its slope at some point is not finite.

In order to state what are the traveling wave solutions of (13.1), let us first sort them
into various convenient sub-classes.
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Definition 13.6. Let v be a traveling wave profile defined in R which is an entropic
solution of (13.1). We will say that it is a profile of type a, b, ¢, d or e respectively if it
matches the corresponding item from the list below:

(a) it is a non-saturated smooth traveling wave solution (that is a C! solution supported
on the whole real line with finite slopes at any point).

(b) it is a continuous traveling wave supported on a half-line composed of the following
two branches: A C? solution in a interval | — 0o, 7o verifying lim;— .5 u(7) = 0 and
limg u'(t) = —oo, which is extended continuously by zero.

(c

~

it is a discontinuous traveling wave supported on a half-line composed of the follow-
ing two branches: A C? solution in a interval | — oo, 7o[ verifying lim 5 u(r) > 0
and lim,_no— u’(tr) = —oo, which is extended by zero to the right (hence there is a
saturated jump discontinuity at the matching point).

d

~

it is a continuous traveling wave supported on the whole real line and constituted by
two C2 branches u~, ut, defined respectively in intervals | —oo, 79[ and ] 7o, oo, such
that lim, ;> u™(7) = lim__, + u™ (¢) and lim, o (u™) (v) = lim__, + W) (z) =
—oo (the traveling profile saturates at the matching point).

(e

~

it is a discontinuous traveling wave supported on the whole real line and constituted
by two C? branches u~, u™, defined respectively in intervals | — oo, To[ and ]zg, 0o[,
such that lim; > u™(t) > limr_”au u™(r) and lim; > (u™)' (1) = limr_)r(;.r ™) (v)
= —oo (the traveling profile saturates at the matching point, in which a jump discon-
tinuity is present).

We are now ready to present our main statement regarding the description of traveling
wave solutions to (13.1).

Theorem 13.7. Let Assumptions 13.1 and 13.2 be satisfied. Then, there exist two values
0 < Oent < Osmoorh depending on ¢, ¥ and K, such that:

(1) If 0 > Osmoorh there exists a non-saturated smooth traveling wave solution to (13.1)
(hence a type a profile),

(2) Oent # Osmoorn if and only if 9" (0) < Osmoorh- In that case

(@) ¢'(0) < Oent < Tsmooths

(b) if 0 = Oent there exist a discontinuous traveling wave solution to (13.1) sup-
ported on a half-line (hence a type c profile),

(©) if Oent < 0 < Ogmoorh there exist a traveling wave solution to (13.1) supported
on the whole real line which is discontinuous (hence a type e profile),

(3) If 0 = Ogmoorh the following holds:

(@) if Osmoorh < ¢'(0), there exists a non-saturated smooth traveling wave solution
to (13.1) (hence a type a profile),

(b) if @' (0) < Ogmoorh, then we have two sub-cases. If (¢) " (Osmoorn) is reduced
to a single value, then there exists a continuous (non-smooth) traveling wave
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solution to (13.1) supported on the whole real line (that would be a type d pro-
file). If #(¢") "N (Csmoorn) is greater than one, then there exists a traveling wave
solution to (13.1) supported on the whole real line which is either continuous
(non-smooth) or discontinuous (that would be a type d or e profile).

(©) if @' (0) = Osmoorn there exists a traveling wave solution to (13.1) that can be of
any of the types in Definition 13.6.

Furthermore:

o All the previous traveling wave profiles have null flux at infinity and hence they are
unique as entropy solutions.

* For a given value of 0 > 0 there does not exist any other entropic traveling wave
solution of (13.1) in the class of piecewise smooth functions? but those we enumer-
ated above. In particular, there are no such solutions for 0 < Gep;.

Remark 13.8. If ¢/(0) > 0 the non-saturated smooth traveling waves become classical
traveling wave solution, that are C? solution supported on the whole real line with finite
slopes at any point.

Remark 13.9. To make the most out of the previous result we would need a generic
recipe to compute the first bifurcation value 05, 0¢,- Unfortunately this seems not to be
available in general and such computation has to be performed for each case of interest
separately.

The proof of this result is outlined in the following sections. Some technical auxiliary
results required for this will be addressed in Subsection 13.3.

13.2. Getting the constituents of the traveling wave profiles: The graph formulation.
Hereafter Assumptions 13.1 and 13.2 will be taken for granted with no further mention.
To analyze smooth solutions of (13.3) we reformulate it as a planar dynamical system.
For that we consider the range of u to be restricted to |0, 1[. We define for the given range
of u an auxiliary variable:

ri=—y@'/u) €0, 1]. (13.5)

Note that the given range for r is due to Assumptions 13.1 and the fact that u’ < 0 by
(13.4). On this basis, we can invert for u’ in the previous relation. Thus (13.3) can be
recast as

—pu)r' + (0 —r¢’(w)) v’ + uKu) =0

and then
u' = —ug(r),
’_ u ’ (13.6)
{ r'= (e — o) + k).

where g(r) := ¢! :]0, 1[—]0, oo[is aC!, strictly increasing function verifying lim, ¢ g(r)
= 0, lim,_, g(r) = oo and g(r) > 0 Vr €]0, 1] thanks to Assumptions 13.1. Let us
notice that thanks to Assumptions 13.2 the flux of (13.6) is regular in ]0, 1]x]0, 1].

2Meaning that there is a finite set S = {p1,..., pr} C R such that # is smooth in R\ S..
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Remark 13.10. If, in addition v would verify

¥'(0) > 0 then lim g'(r) = < o0 (13.7)
r—>0

1
v’(0)
which would provide some extra regularity properties for the planar flow of (13.6) in the
set |0, 1{x{0}.

Remark 13.11. If we look for decreasing profiles, we observe that r(§) € [0, 1] for all
& € R(while r(§) €] — 1, 1] for all £ € R if no monotonicity assumption is made, where
g has to be suitably extended to | — 1, 1[). Moreover, if u(—o0) = 1, u(+o0) = 0
and u is smooth, then u(¢) € [0, 1] for all £ € R. Then, for smooth solutions, (13.3)
is equivalent to the previous first order planar dynamical system. In what follows we
shall focus on the study of decreasing traveling profiles, for these are the only reasonable
traveling waves that can be obtained, as we show in forthcoming Proposition 13.22. Thus,
we will restrict the study of (13.6) to the set ]0, 1]x]0, 1[; this will be implicitly assumed
in every statement referring to (13.6).

To deal with the solutions of the planar system (13.6) in ]0, 1[x]0, 1[ we will analyze
the equivalent first order equation:

= (5 oy K@)
R'(u) = o (o Ru)g'(u) g(R(u))) (13.8)

where R is such that R(u(t)) = r(z) for any given solution (u, r) to (13.6). We will refer
to (13.8) as the graph formulation. Sometimes we will find useful to stress the dependence
of R on o, for which we will use the notation R,.

Let us discuss now how to reflect boundary conditions (13.2) in this new formulation.
In terms of the planar orbit (13.6), first condition in (13.2) implies that we seek solutions
(u(t), r (7)) defined in |T—co, Too| verifying

lim u(r) =1.
T—=>T—00

If this is verified we can prove that lim;—,.__ u’(7) = 0 or equivalently

lim (u(r),r(r)) = (1,0). (13.9)
T—>T—00
When 7_, = —oo this can be rigorously justified arguing as in Lemma 2.1 in [54]. If

T_co > —00 this solution can be only matched with the constant solution 1 in the interval
] — 00, T—oo[ since we are looking for decreasing functions. Then lim;—.,__ u'(z) = 0
according to the rules stated after (13.3). Thus, in any case, first condition in (13.2) is
replicated in the graph formulation as

lim R(u) =0. (13.10)
u—1

However, there is nothing meaningful that can be said about second condition in (13.2) at
this stage; it will require a particular analysis later on.
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Proposition 13.12. For any 0 > 0 there exists a unique maximal solution to (13.8)
Ry :Jug, 1[—]0, 1] verifying (13.10) and uy > 0. Furthermore:
(1) Ifus > 0, then
lim Ry(u)=1. (13.11)
U—Uy

(2) If o1 < 0y then
Ug, > Ug, and Ry (1) > Ry, (u)

in their common interval of definition Jus, , 1[.

This is proved in Subsection 13.3. This result is an inestable manifold type theo-
rem for system (13.6) giving us the existence of ordered regular branches of solutions
(thg(z), 7o (7)) verifying (13.9) and such that R, (#i5 (7)) = 75 (7). Note that this ordering
affects both the functions R, and their definition domains.

At this point we may formally define the first bifurcation value.

Definition 13.13. Let
Osmoorh = Inf{o > 0;u, = 0}. (13.12)

As a direct consequence of the previous Proposition we deduce that u, > 0 for any
0 < Osmooth and ugy = 0 for any 0 > Ogmooth-

Our next goal is to describe the behavior of the corresponding solutions (ti4(7), 7o (7)).
This traveling wave profile i, () may or may not saturate the flux depending on R hit-
ting r = 1 or not. Our next result describes more precisely when does each of these
possibilities take place.

Proposition 13.14. The following statements hold true:
(1) 0 < Osmoorn < 00.
(2) If 6 < Osmooth, then (13.11) holds and 6 < ¢’ (uy).
(3) If 0 > Ogmoorh then sup { Ry (u) 1u €]0,1[} < 1.
(4) The mapping o > uq is continuous for any 6 # Osmooth-
(5) If Osmooth < ¢'(0) then ug,,,,,,, = 0and sup{Ry,,, .., (W) ;u €]0,1[} < 1.
(6) If Osmoorn > ¢'(0) then g, , .., > 0, (13.11) holds for 0 = Osmoorn andlimg—o= Us

= Uoymoorn — ¢/(u0.vmaoth)'
Remark 13.15. The case 0 = 0gm00rn = ¢’ (0) requires a more detailed analysis. There
are examples in [54] where ug,, ,,, = 0 with R; not hitting r = 1, and also exam-
ples for which us,, .. > 0 with R, actually converging towards 1. The possibility of
having us,,, .., = 0 and sup {Rgsmomh (u);u €]0, 1[} = 1 at the same time cannot be
discarded.

If

sup {Ro(u) :u €]0,1[} < 1 (13.13)

it can be easily proved that the corresponding traveling wave profile i, is defined in
Jt—c0, 00[. Moreover, (13.13) implies that g (75 (]T—co, Too[)) is bounded from above by a
certain positive contant C. Upon using (13.6) we can deduce that

u(tz) = exp(—=Cty) exp(Cty)u(ty) forany t-oo <t <t < Too. (13.14)
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Then 7 cannot be finite because of the regularity of the flux of the system (13.6) in
10, 1]x]0, 1] (recall that lim;_,« iz (t) = ug = 0). On the other hand, 7_, can assume
any finite value or the value —oo. Regardless of which possibility shows up, we have that
lim;—,_, (7)) = 1 and lim;—,__, 1/ (7) = 0 (by definition of Ry).

In those cases when u, > 0 (only possible if 0 < G500tk OF 0 = Tgmooth = ¢'(0))

lim @,(t) =uy and lim @, (t) = —oc0 (13.15)
T—>Too T—>Too

hold. Note that, as g(r) is not bounded, (13.15) rules out the possibility of having 7o, =
—00.

In order to obtain a globally defined profile, we may match u with another profile
Ug ]Toos Too|[—]0, Uy [. If this matching is to be continuous then

lim #,(t) =us; and lim u,(r) = —0c0.
T—>Too T=>Too

If it is discontinuous then
J'_ -
u™) —o(u
lim #,(r) =—oc0 and o= a 3 QOE )
r—)ro"; ut—u

where u™* and u~ should assume the values u, and nmr—ﬂé@ Uy (T) respectively. Let us
analyze these cases in turn.

In the continuous case we can easily ensure that i, can only exists for ¢ = 05m00:h
and in consequence U~ = uq,,,,,,,- Lhe existence of U, is equivalent to the existence of a
solution Ry, to (13.8) defined on an interval Jus —8, us [ such that limy,_, ¢, )~ Ru, (u) =
1. Then, there exists an increasing sequence {u, }ney — Ug such thatlim, oo Ry, (4y) =
land R, (un) > 0. By evaluating (13.8) in {u, }sen and making n large enough we can
get o > ¢'(uy). By a similar argument applied to 7 and R, we deduce that o < ¢'(uy),
and as a by-product 0 = ¢'(uy). This allow us to conclude that 0 = 0,00r5 thanks to
Proposition 13.14.

In the discontinuous case, we have to find those values of o such that the equation

_ plug) —o(u)
o = PlHa) — )

Uy — U

(13.16)

has positive solutions u €]0, u,[. Note that solutions u#~ to (13.16) can only exist when
Osmooth = ¢'(0), as 0 < Ogmoorn and W > ¢’(0) — thanks to Assumption
13.2.3. Now we have two different situations. If 0gu00:n = ¢(0) then clearly (13.16)
can only hold for 0 = 0g00:5- In fact, in this case ¢ is a linear function in the interval
[0, Uo,,00i1] With slOpe Osmoorn, as per

w(uﬁsmooth) _ w(u) = (/)/(%-)

=¢'(0), & €U Uogp0l-
—u

Osmooth =
Uosmoorn

In this case (13.16) would be achieved for any u € (¢) ™' (Gsmooth)-
In the case Ogmoorn > ¢’ (0) the study of solutions to (13.15) can be performed in
terms of a second bifurcation value that we now introduce.
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Proposition 13.16. Assume that 6sme0n > ¢’ (0). Then (13.17) has a unique solution,
which belongs to the interval 1¢'(0), Ogmooth |-
Definition 13.17. Let 0., be the value of o such that u™ = 0, that is, the unique solution

to the following equation:

_ p(ug)
o= ——=
Ug

for o < Osmooth- (13.17)

In all those cases where Ogmo0rn < @' (0) we will define 0enr = Osmoorh-
This enables us to state the following.

Proposition 13.18. Assume that 0gmo0in > ¢'(0). Then, for any 0 < Ogmoorh equation
(13.16) has a unique solution u™ if and only if 0 > Oep;.

Once we have analyzed the existence of the value u~ depending on o, we will be
able to provide the existence of the function u enabling for a matching with the desired
properties. In order to do this we need to introduce the following quantity:

u* = u*(0) ;= min{u; ¢’ (u) = o}.

By Assumption 13.2.3., forany o € (¢’)~!([0, 1]) the sets (¢') ! (o) are non-empty inter-
vals. If 0 > ¢’(0) then zero is not contained in those. The equation ¢’(u) = ¢ formally
corresponds to the limit case of the Rankine-Hugoniot conditions when u™, u™ — u.

Proposition 13.19. Assume that 6 > ¢’(0). Then, for any u~ €]0,u*] there exists a
unique solution Ry~ :10,u~[—]0, 1] to the first order equation (13.8) such that

lim R,—(u) =1.
U—>u-
Furthermore, this solution verifies

limsup R,—(u) < 1.

u—0

If u™ > u* there does not exist any solution of the first order equation (13.8) such that
limy .y~ Ry—(u) = 1.

Remark 13.20. In the particular case 0 = ¢’(0) last Proposition reduces to a non-
existence result since u* = 0, which is induced by the linearity of ¢ in [0, Ogmo0rh]-

Sumarizing, if we are given o €|0ens, Osmoorn[ We can ensure the existence and
uniqueness of a function i, :]teo, 00[—]0, Uy [ verifying
. _ L Ug) — U™
lim i,(t) =u", lim @, (r)=-00 and o= Plio) = (u7)

>t T—>T Ug — U

by using an estimate similar to (13.14). These will be called continuation solutions.
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13.2.1. Assembling traveling wave profiles: Proof of Theorem 13.7. In this paragraph
we will prove Theorem 13.7 collecting all the information of the previous section. From
the definitions of 0,00 and oenr we clearly have that 0 < Oenr < Ogmoorn, With
equality if and only if ¢’(0) > Gsmoorh-

In the cases 0 > Osmoorh aNd 0 = Ogmoorn < @' (0) those functions i, defined in
Jt—c0, 00[ are the unique solutions to (13.3) verifying lim;—. _ tis(r) = 1 and
lim; o0 tig(t) = 0. If 7o = —oo the profile % constitutes by itself a classical trav-
eling wave profile supported on the whole real line since 0 < 4 < 1. If t_oo > —00
the profile 7 shoud be matched continuously with the constant solution 1 in the interval
] — 00, T_so| to give rise to a traveling wave profile in C!(] — oo, oo[). However, this is
only possible if ¥'(0) = 0, due to the extra regularity of the planar flow (13.6). This
justifies points (1) and (3)-(a) of Theorem 13.7.

When ¢'(0) < Osmoorh» the profile i, is defined on |7_co, Too| With 7o finite. To
extend it to the whole real line we do as follows:

* If 7_o > —oo then # can be extended continuously to the half-line | — 0o, o[ (up
to a maching with the constant solution 1).

* If 0 = 0¢p; then by definition 13.17 ii,,, is extended to |7, 00[ by zero, giving
rise to a traveling wave suported on a half line.

* Finally, if 0 > 0.5, then a discontinuous traveling wave profile is obtained by
joining # with the corresponding continuation solution .

Those profiles above are the ones presented in Theorem 13.7-(2). The case 60 = Osmoorh >
¢’ (0) corresponds to Theorem 13.7-(3)-(b). Here @ gives a profile defined in | — 00, Too|
(up to a maching with 1), such that lim___+ u(7) = Ug,,,0,,, > 0. By Proposion 13.14-
(4), we have that Uy, 00, belongs to {u; ¢'(u) = Ogmoorn}. However, by Proposition
13.19 there exists only one compatible continuation solution verifying limr_)t;g () = u*.
If u* = u,,,,,,,, then the corresponding traveling wave is a continuous profile supported
on the whole real line and saturating the flux at the maching point. This is always the case
if (¢") " (uo,,,,,,,) 18 @ single point. If u* < ugy,, ., the profile will give a discontinu-
ous traveling wave supported on the whole real line.

In the critical case 6 = Ggmp0rn = @’ (0), which corresponds to Theorem 13.7-(3)-(c),
Remark 13.15 shows that a number of different situations can occur:

* If u; = 0 and 75, = o0 then the profile u (up to a matching with 1) constitutes a
non-saturated traveling wave.

* If uy = 0 and t, < oo then # (up to a matching with 1) is continuated contin-
uously by zero in the interval |too, 00[. This gives rise to a continuous traveling
wave profile supported on a half-line.

* Ifu, > 0 and ¢ is linear in ]0, uy [ then & (up to a matching with 1) can be only
extended by zero obtaining a discontinuous traveling wave supported on a half-line.

The uniqueness of all these profiles is consequence of the uniqueness of 0005, Tents
Uy, Ug and the neccesary Rankine—Hugoniot conditions. Let us observe that even if u™ is
not unique, in the case 0 = O;m00:4 the continuation solution is, see results in Proposition
13.19 and Remark 13.20.



Flux-saturated porous media equations 195

Remark 13.21. We have proved uniqueness for traveling wave profiles which are de-
creasing monotone functions and have at most two singular points; one of them is the
connection with u = 1 that could be regular or singular. Our analysis also implies that
there is at most one interior singular point. Other possible concept of solutions (that could
include Cantor set of singularities) are not considered in this paper.

13.2.2. Uniqueness with respect to c. Let us address now how many traveling solutions
can be constructed with a given speed o. For that we recall that when we say that a
function is piecewise smooth, up to a finite number of points, we understand that at those
singular points there is a jump either of the function or of its first derivative. A suitable
adaptation of the techniques introduced in [49] shows that there are no other traveling
profiles in this class of piecewise smooth profiles than those we already constructed.

Proposition 13.22. Let ¢ be linear or strictly convex. Then the following statements hold
true:

(1) Given o € [Gens, +00|, the only nontrivial entropy solution of (13.1) with the form
u(x—aot), having its range in [0, 1] and being piecewise smooth —up to a finite number
of points— is (up to spatial shifts) the one provided by the previous development.

(2) Given o €] — 00, —0Oent], the only nontrivial entropy solution of (13.1) with the form
u(x—ot), having its range in [0, 1] and being piecewise smooth —up to a finite number
of points— is (up to spatial shifts) the mirror image of the one provided by the previous
development for wave speed —o.

(3) Given 0 €] — Oent, Oent|, there is no entropy solution of (13.1) with the form u(x —
ot), having its range in [0, 1] and being piecewise smooth —up to a finite number of
points—.

Note that we just spoke about entropy solutions of (13.1) in the previous statement.
This does not assume any monotonicity property for the traveling profiles (see Remark
13.11), nor does it fix any particular behavior at =0c. Hence this is a very strong unique-
ness statement ruling out the apparition of any type of non-monotonic profile (solitons in
particular). It also allows to settle some open questions that were raised in [54]. Entropy
traveling waves there constructed are unique in the class of entropy piecewise smooth
profiles, and there are no other such profiles in that class but the ones constructed in [54]
(in particular there are certain regimes in which there are no admissible profiles).

13.3. Proof of the main results of Section 13. Here we collect the proofs of the results
established in the first part of this Section 13, where the traveling wave construction was
presented in a concise way for the sake of simplicity. Due to their technical character we
present them separately. Some complex requirements of the proofs lead us to re-elaborate
some of the statements in a more complete form including mathematical properties which
were not taken into account in the previous subsection. This is the case of our first result
that contains in particular the statements of Proposition 13.12.



196 J. Calvo, J. Campos, V. Caselles, O. Sdnchez and J. Soler

Proposition 13.23. There exist a relative open subset Q C [0, 00[x]0, 1] and a continu-
ous function R : Q — [0, 1] such that:

(1) Forany o > 0 the set {u; (o,u) € Q} is an interval luq, 1] and R(o, ) is the unique
maximal solution to (13.8) in Jug, 1] such that lim,, 1 Ry(u) = 0.

(2) The map o +— ug is lower-semicontinuous, that is,

limsupug, < uq forany o, — o.
n—oo

(3) Ifo1 < 02, then ug, > Uy, and
Ry, () = Ry, (1)

in the common interval of definition Jug, , 1[.

4) ug > 0 holds.

(5) Ifug > 0, then limy—y,, Ry(u) = land o < ¢'(ug).

(6) If there exists some value oo such that ug, > 0 and oo < ¢'(Us,), then the function
0 — Ug IS continuous in oy.

(7) Ifo # ¢'(0) and ug = 0, then sup { R (u) ;u €]0,1[} < 1.

Furthermore, there exists ¢ > 0 such that us < 1 — ¢ forany o > 0.

The proof of this Proposition requires the study of some additional properties of the
solutions to (13.8) that we introduce in some preliminary Lemmas.

Our analysis of the solutions to (13.8) is based on a general continuation process.
The properties K(1) = 0 and lim,_,; g(r) = oo allow to build the following continuous
function

oty (o=@ = K8)  for ) €0, 10xJ0.1,

Flu,r) = @(a—@’(u)), for (u,r) €]0, 1[x[1, oo[,
@ (o0 —r¢'(1)), for (u,r) €[l, 0o[x]0, 1],
@(G—qo’(l)), for (u,r) € [l,o00[x[1, o0l

Then, we consider a continuous extension of the differential equation (13.8):
R'(u) = F(u, R(u)) u €]0,o0l. (13.18)

Peano’s Theorem allows to deduce the local existence and uniqueness of a solution R :
Juo—e, up+e] —]0, oo[ to (13.18) such that R(ug) = rg, for any (ug, ro) €]0, 0o[x]0, col.
We are interested in solutions to (13.18) because these will provide solutions to (13.8) af-
ter restricting them to |0, 1[x]0, 1[. The above extension will be specially useful when
dealing with the behavior of solutions at the boundaries {1}x]0, 1{ and ]0, 1[x{1}.

Lemma 13.24. Let R :|upmin, Umax[—]0, 1] be a maximal solution to (13.8) in]0, 1[x]0, 1]
such that Umin > 0. Then limy_,, . R(u) = 1 and limy_,,, R'(u) =
m (0 — @' (Umin)) <O.
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Proof. The maximal character of the solution assures that R(u) tends to the bound-
ary of the domain as ¥ — u,,;,. This is not the point (u,,;,,0) because in that case

limy y,,;, R() = 0and limy_y,,;, R'(4) = —oo. Thus, the solution is forced to verify
limy—y,,;, R(u) = 1. The assertion about the sign and the convergence of R’(u) can be
deduced from the regularity of the extended differential equation (13.18). O

In the case where the boundary is ]0, 1[x{0} the flux cannot be extended continuously
because it diverges to —oo. However, we have the next estimate for solutions close to this
boundary.

Lemma 13.25. Let ug €]0, 1[. Consider the maximal solution R of (13.8) in |0, 1[x]0, 1]
with R(ug) = ro. For any given § > 0, there exists some y > 0 such that if ro < y,
then R is not defined for u > ug + 8. As a consequence, we have gy < ug + 8 and
limyy,,,. R(u) = 0.

Proof. Let M be a positive fixed quantity, then there exists 0 < y < M such that for
any (u,r) €]0, 1[x]0, I[N B((ug, 0), §) the inequality F(u,r) < —M holds. Thus, since
(u, R(u)) € B((uo,0), ) the solution to (13.8) with initial data R(ug) = ro and ro < y
verifies R(u) < ro — M(u — uyg), for any u € [ug, Umax[. In particular, this estimate
implies that Umax < 1o + 55 < uo + 6. O

The regularity of the equation in ]0, 1[x]0, 1] allows to assure that solutions to (13.8),
for a fixed value o, cannot cross each other. It can be also proved that there exists an order
with respect to o between all these solutions in the following sense:

Lemma 13.26. Let 01 < 05 and a1, op such that the maximal solutions in |0, 1]x]0, 1]
R01 and Rg2 have a common intersection, i.e. there exists some point ugy €0, 1] such that
0'1 (Mo) 0’2 (u()) Then

Iégl (u) > Iéoz(u), for any u e]umm,uo[,

and

Rol (u) < Iz’gz(u), Sor any u €lug, min{uy} ., u32, 3.

being uml w Upax> Uniax the lower and upper limits for the respective maximal existence
interval Ongl and RC,2 in )0, 1[x]0, 1].

Proof. This property can be easily proved since at any crossing point u

01 — 02

@(uo)

holds, which justifies the result locally around u(. Standart arguments show that it is not
possible to have two or more points verifying this inequality. Thus, there is at most one
crossing point. O

R, (uo) — R} (uo) =

Proof. Proposition 13.23. The process of construction for the solutions stablished in the
first statement of Proposition 13.23 will also provide the proof of assertions (2) and (3).
The order relation given in Lemma 13.26 and the regularity of the extended system assure
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that any solution R(, to (13.18), for any ¢ > 0 and initial condition Rg(l) < «, is bounded
from above by the solution Ry :]uf’nin, 1] —]0, 1] with initial condition Ro(1) = o, where
o > 0. This implies that those solutions are defined at least in ]”21 in» 1], where we have
used Lemma (13.24). Let u,,;, be such that u° < 1 — ¢, for any 0 > 0 fixed but

min
arbitrary and 0 < ¢. Then, the set
I = {r €]0. 1[| s.t. R, solution to (13.18), R(1 — &) = r is defined in ]1 — &, 1]}

is an open interval due to regularity of (13.18) and the usual continuous dependence re-
sults. Here, we have to take into consideration the concept of solution at ¥ = 1. Now, we
can easily determine that r, := inf I is strictly positive because otherwise this would
contradict Lemma 13.25 at ug = 1 — ¢ with § = £/2. Now, we will focus on the solu-
tion to (13.18) verifying Ro(1 — €) = ry. In particular, we are going to prove that it is
defined in [1 — ¢, 1] and verifies lim, ; Ry () = 0. Since (1 — &,7,) €]0, 1[x]0, 1] the
maximal solution R, passing through this point is defined in the interval [1 — &, Upqx[. If
Umax < 1, thenlimy sy, Ro(u) = 0. We focus on solutions passing through (#max, ¥)
with y > 0. The order relation allows to assure that these solutions have to be defined
foru = 1 — ¢ and, as a consequence, also for ¥ = 1 due to the definition of r,. This
contradicts Lemma 13.25 since y can be chosen small enough. Hence, R, is defined in
]1 — &, 1[. Using the regularity of the extended system and the continuation argument for
(13.18) we also get limy,_,; Ry (1) = 0. Otherwise, the solution would be extended for
u > 1 and consequently r, € I, which is a contradiction.

The uniqueness of R, for (13.8) with lim, 1 Ry (u) = 0 can be justified by realizing
that the right hand side of this equation is just an addition of ﬁ (0 — r¢’(u)), aregular

term at (1, 0), to —%, an increasing term in r.

Once we have proved the existence and uniqueness we deal with the order property
stated in (3). The construction of R, together with Lemma 13.26 provide that rs; > rq,,
for o1 < o3 since 15, C I5,. Due to the uniqueness of R, and the fact that the previous
bound does not depend on &, we conclude that Ry, (u) > Ry, (u) foru € [1 — ¢, 1[. In
fact, the inequality is strict thanks again to Lemma 13.26 since a common value implies
Rs, (1) < Rg, (1) for u smaller than the crossing point.

These solutions R, have to be extended by maximal solutions to intervals |u,, 1[. The
order property is still valid in this maximal existence interval, otherwise the application
of Lemma 13.26 in the upper crossing point would contradict Ry, (4) > R, (u) for
uell—ell

Now we can prove the continuity of R with respect to both ¢ and u, in the open
set € . We have the following uniform convergence property: Consider a monotone
sequence {0y }nen converging to o. Then, R;, — Ry uniformly in [1 — ¢, 1], where ¢
was obtained previously as the minimal length of any existence interval for the solutions
R, . For instance, if 0, is increasing the order relation gives Ry, (1) > Ry, (4) > Ry (1),
for any u € [1 —e¢, 1]. These estimates allow to deduce that the pointwise limit of Ry,,, R,
is a continuous function in [1 — &, 1], which is a solution of the Volterra integral equation
for o associated to (13.8). Furthermore, R is continuous in ¥ = 1 due to the bounds
Rgo (1) > R(1) > Ry (u). Dini’s Theorem assures the uniform convergence in [1 — ¢, 1].
The uniqueness of solution to (13.8) provides the identity R = R,. From this uniform
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convergence and the continuous dependence of the solutions in {1 — &}x]0, 1| we can
deduce the continuity of R and also that €2 is an open set. The lower-semicontinuity of
0 — Uy is a consequence of the open character of €2.

The proof of point (4) is analogous to those exhibited in [49]. In the case 0 = 0 it can
be justified by using (13.8) that:

K()
g =

The case of uy = 0implies that r (u)¢@(u) is a decreasing function such that lim,, o 7 ()@ (1)
= 0 and therefore identically zero. This is a contradiction with our construction, in par-
ticular with the fact that r, > 0.

Assertion (5) in Proposition 13.23 is a direct consequence of Lemma 13.24.

Now we focus on (6), for which continuity will be deduced by considering monotone
sequences. Let {0,}, be an increasing sequence such that 6, — 0¢. Then ug, > ug,,
which together with the lower semicontinuity of (2) and

(rwe)) = —

Ugy < liminfus, <limsupug, < uq,

justify the convergence of ug, towards uq,. If 0, — 09 is a decreasing sequence, then
Ug, 1s increasing and bounded by u4,. Thus us, — o < uy,. Let us show that o = ug,.
We argue by contradiction, assuming that « < uy,. Then, we can define the point-
wise limit of Ry, i.e. Rp(u) = lim,y_—o Ry, (1), for any u €], 1[. Using Proposi-
tion 13.23-(1) we deduce Ry, (u) = Rp(u), for any u €Jug,, 1[. On the other hand,
since the sequences R, and R are uniformly bounded in any interval [a,b] Cle, 1]

the Ascoli-Arzela Theorem provides the uniform convergence of R;, towards Rj,. The
uniform convergence and the continuous extension (13.18) also provide the uniform con-
vergence of Rgn. Thus R, is a derivable function in ], 1{. To conclude, we have that
Rp(ug) = limy_sy, Rs,(u) = 1 and since u = u, is a critical point we have that
0 = limy—y, R,(u) = limy—,, R (u). However, this contradicts the hypothesis
o0 < ¢’ (4g,) and Lemma 13.24, which implies o = u,.

The proof of the last claim of Proposition 13.23 can be split in two cases. If o > ¢’(0)
there exists § > 0 such that

K(u)

o—r¢'(u)y——=>0 uel0,8], refl-4,1].
g(r)

That is, the flux in [0, §] x[1 —4, 1] is monotonically increasing. If the solution R, crosses
this rectangular region, then its increasing character implies that the maximum value is
achieved exactly at u = §. This together with the fact that u, = 0 justify that R, reaches
an absolute maximum in ]0, 1[. In the opposite case 0 < ¢’(0), a rectangular region
with monotone decreasing flux [0, 8] x [1 — §, 1], can be defined in a similar way. If the
solution passes through this region, the maximal value of R should be reached when u
converges to u, = 0. If limy, g Ry (1) < 1, then the result holds. Otherwise the fact
that lim,, .o R(u) = 1 provides a contradiction with the following argument: Consider
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ve = R! in the rectangular region where monotonicity holds. Then, v = v, is the
solution to the IVP
V'(r) = Zr)e(r)), v(l)=0 rell-34,1], (13.19)
where Z(r) is a continuous function such that
1

(0 r/ (v (r)) — Klzgtn)

Because of the regularity of ¢, the solution to (13.19) is unique. The contradiction is then
obtained from the fact that (13.19) also admits v = 0 as a solution. O]

0.

Z(r) = if r<1and Z(1) =

o —¢'(0) =

The proof of Proposition 13.14 is founded on the results of Proposition 13.23.

Proof. Proposition 13.14. First, we prove that 0, 0: 1S positive. Proposition 13.23-(5)
implies uy = 0, for any o > max{¢’(u); u € [0, 1]}, and as a consequence g, p0rh < OO.
Furthermore, 05,001, 18 nonnegative by definition. However, if 05,00/1 = 0, then u, =
0, for any 0 > Ogmeorn = 0, while us,, .., = 1o > 0 by Proposition 13.23-(4). Hence,
the function 0 — u, is not continuous in Gy, 00z Using (5)-(6) in Proposition 13.23
we deduce that 0 = Ogmoorh = ¢ (Uo,,,,,,)» Which contradicts Assumption 13.2-(2),
concluding the proof of the first statement.

Concerning the proof of the second claim, using the definition of 0,,00¢5 and the
order relation of Proposition 13.23-(3), we obtain us > 0, for any 0 < Omeer- Then,
by Proposition 13.23-(5) we only have to prove that the equality ¢’(4s) = o cannot be
verified. The reason of this incompatibility is that u, > 0 together with ¢’(uy) = o is
only admissible if 0 = O00:5- If this were not the case, there would exists 6 > o such
that uz < u, and as a consequence:

G>0=¢us) > ¢'(uz),

which is in contradiction with Proposition 13.23-(5).

The third assertion establishes that for 6 > 0;,00:4 the solutions R, are always away
from 1. When o # ¢’(0) this is a direct consequence 13.23.7 since u, = 0. In the case
o = ¢’(0) we have ¢’ (0) > Ogmoorr and we can choose 6 € (Osmoorn» ¢’ (0)). Then, the
boundedness of Rz also implies that of R, because of the order relation between them.

The last assertion deals with the continuity and jump discontinuities of the function
0 — Ug. When 0 < Ogmooth, the second statement of Proposition 13.14 provides 0 <
¢'(uy) and thanks to Proposition 13.23-(6) continuity holds. On the other hand, if o >
Osmooth Continuity is satisfied since uy = 0, for any 0 > 0gpmo0rn- At the critical value
0 = Osmooth the function ¢ — u, may have different behaviors. If 0g,00:n < ¢'(0),
then u, is left-continuous since ug,,,,,, < 4o = 0 by Proposition 13.23-(5), for any
0 €l0smoorh» ' (0)[. In the opposite case Ogmoorn > ¢’ (0) we have that u, is right-
continuous. Firstly, note that u,,, ., cannot be zero since in that case there would exists
an increasing sequence 0, — Ogmoorh Such that ug, > 0 and ¢’(4s,) > 0,. The lower-
semicontinuity property established in Proposition 13.23-(2) also implies that u,;, — 0
since

0 < liminfu,, < limsupus, < Us,m0n = 0
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and ¢’(0) > 0gmo0rh» Which contradicts the hypothesis 0001 > @’(0). Using the fact
that us,,,,,, > 0 and the lack of continuity of ¢ — us at 0 = Osmeork, Proposition
13.23-(6) leads t0 Ogmoorh = @' (Uay,p0.,)- Finally, we check that limgo-  U; =
Uomo0rn- CONSIAEr 0, —> Ogmoorn Such that 0y, < Ogmoosn- Then, (3) and (2) in Proposi-
tion 13.23 give

Ui moorn < IMInfus, < limsupug, < Ug,,,. 0mn>
which completes this proof. O

The proof of Proposition 13.18 is based on some general properties of convex func-
tions provided by the next result.

Lemma 13.27. Let ¢ € C'(I), being I an interval. Then H(u,v) := w is an
increasing function in both variables verifying

¢'(u) < H(u,v) < ¢'(v), (13.20)

forany u, v € I such that u < v. Furthermore, if any of these inequalities becomes an
equality, then the same would happen with the other one and ¢ would be linear in [u, v].

Proof. Convexity properties provide

H(x1,x2) < H(x1,x3) < H(x2,Xx3),

X2—X]

o From

for any values x; < x < x3 such that x; = (1 — a)x; + ax3 witha =
this it can be proved that for any different y, u, v € [ such thatu < v

H(y,u) < H(y,v)

holds by taking into account all the relative positions of y, u, and v. Inequalities (13.20)
are a result of the Mean Value Theorem and the increasing character of ¢'.

Assume that ¢'(u) = H(u,v) holds. This implies that the continuous function
g(v) := H(u,v), for v # u, is an increasing function such that g(u) = g(v) for u > v.
This can be only possible if g is constant, i.e. if ¢ is linear in the interval [u, v] and
therefore ¢’(v) = H(u, v). We can argue in a similar way if ¢’(v) = H(u, v) holds. [

Proof of Proposition 13.18. Hypothesis 0m00:1 > ¢’ (0) implies that ¢ cannot be linear.
This will follow as a consequence of Proposition 13.14-(2); note that the convexity of ¢
provides

‘P/(O) < (p/(u(ﬂ/(o)) 5 (p/(uasmooth)'

Then, equalities in (13.20) with u = 0, v €]0, uq,,,,,,,, [ cannot be achieved, and hence
¢ cannot be linear in any subinterval of [0, u,,,,,,,,,], proving our claim.
Furthermore, by using Proposition 13.14-(4), we also find

Osmooth = (p/(uasmooth) > H(uosmooth’ 0)
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On the other hand, for o = ¢’(0) we get
o = (p/(O) < H(M(D/(O), 0)

since as in the previous argument ¢ cannot be linear in [0, 1,/ ()]. The last two estimates
together with the decreasing character of H(uy, 0) with respect to o prove the existence
and uniqueness of g, solution of (13.17). The same strategy also gives

0> H®gy,0) < 0 > Oens. (13.21)

Now, the aim is to deal with solutions to (13.16). If there exists a value u~ €]0, uy|
solution to (13.16), then the monotone character of H giveso = H(uqs,u~) > H(ue,0).
Equality H(uq,u~) = H(us, 0) is not possible since this would imply the linear charac-
ter of ¢ in the interval [0, u~]. Thus we have that ¢ > H(us,0), which is only possible
if 0 < Oent, as we have mentioned previously. Consider 6 €]0ens, Osmoorn[- Then,
using (13.21) and Proposition 13.14-(4), we deduce that H(u,, ,-) is a continuous in-
creasing function defined for u € [0, uq[ such that limy,—¢ H(us,u) = H(us,0) < o
and limy,—,,, H(ug,u) = ¢'(us) > o. This justifies the existence of at least one positive
solution u~ to (13.16) in ]0, us[. The uniqueness of this solution is due to the fact that ¢
is non-linear in [0, us]. O

We conclude this section by proving the last result of Section 13, Proposition 13.19.

Proof. Proposition 13.19. Let u* > 0, which is possible only if o > ¢’(0). Consider
(13.18) the continuous extension of the differential equation (13.8). Then, Peano’s Theo-
rem implies the local existence of a solution Ry~ :Ju™ — &,u~| —]0, oo to (13.18) such
that R,—(u~) = 1, for any u~ €]0,u*[. Since F(u,r) > 0in]0,u~] x [1, 00[, R,~
cannot reach 1 for any u €]0, u ™[, which justifies the extension of Ry~ to ]0, 1[. By con-
tinuous dependence with respect to the initial condition u~, we can deduce the existence
of Ry, solution to (13.18) such that R, < 1, for any u €]0,u*[ and R,+(u*) = 1.
In fact, due to the increasing character of the flux in ]0, u*[x1, R,* verifies the strict
inequality R,+ < 1, for any u €]0, u*[. Backward uniqueness comes from the fact that
the flux F' can be written as the sum of a locally Lipschitz function plus an increasing
function of R.

If u~ > u™ we have to consider two different cases. When ¢’(u~) > o any solution
to (13.18) such that R,—(u~) = 1 is bigger than 1, for u < u~, because F(u—,1) < 0.
When ¢’(4~) = o holds, the constant function R = 1 is the unique solution to (13.18)
such that lim,,—.,,— R(u) = 1, foru € (u*,u™). Since this is not a solution to (13.8) the
existence of an extension R,— is then not possible. O

14. Applications to developmental biology

Embryonic morphogenesis is concerned with spatial organization and cell number allo-
cation, giving rise to the proper shape and size of tissues and organs of the developing
and adult organism. Morphogens are signaling molecules (proteins) secreted by localized



Flux-saturated porous media equations 203

sources that regulate tissue patterning by triggering distinct cellular fates in responding
cells at different concentration ranges. In this section, we deal with the dynamics of the
Sonic Hedgehog morphogenetic action and the consequences of the activation of the target
gene gli. Progenitor or stem cells, mostly cycling, enter distinct differentiation programs
at defined positions from the source, responding to the morphogen in a concentration—
dependent manner. When this process is deregulated, it is usually associated with tumor
growth.

14.1. Biological and mathematical basis on morphogenesis. A central question in bi-
ology is how secreted morphogens act to induce distinct cell fates in a concentration-
dependent manner. This is highly relevant as it has a number of consequences on cell
growth and tumor dynamics, for instance. In the sequel, we will focus on one of the most
important proteins in development and stem cell biology: Hedgehog (Hh). In a variety of
tissues, Hh acts as a morphogen to regulate growth and cell fate specification.

Mathematical models in developmental biology need to replicate in as much detail
as possible, to the extent that technology allows, the events observed in experiments.
Moreover, it is desirable that the predictive capability of such models goes further than
just accurately mimicking known experimental results, aquiring in consequence more
biological relevance.

Several hypotheses have been proposed to explain morphogen movement. The math-
ematics of morphogenesis has been classically based on reaction—diffusion models since
the pioneering works of Turing, Crick and Meinhardt [74, 94, 98, 104, 126]. From that
point on, the dominant paradigm when modeling morphogenetic processes has largely
focused on parameter tuning. That is, adjusting parameters within reaction—diffusion sys-
tems in order to get quantitative fittings that reproduce previously established patterns.
Quantitative accuracy is important, but there are no less important qualitative aspects of
evolution that may shed light on morphogenesis processes and validate the mathematical
models as a driving force for new biological predictions. On large time scales, qualita-
tive and quantitative properties must converge. Note however that what happens at small
scales has often a critical effect on pattern formation, as we shall see in the example of
the signaling pathway of the morphogen Sonic Hedgehog (Shh) and its impact on the
activation of target gene gli.

A large part of this section will focus on the dynamical properties of signaling pathway
Shh—Gli. This pathway is involved in both normal embryonic development and tissue,
when Gli is regulated, as well as in tumor progression when Gli is deregulated [78, 123].
In developmental biology, the vertebrate neural tube and the insect wing imaginal disc
(where the morphogen Hh plays the same role than Shh in vertebrates) are prime examples
of morphogenetic patterning. In the former, embryonic pseudostratified ventral epithelial
cells are instructed to acquire specific fates in response to Shh morphogenetic signals
derived from the ventral floor plate, and earlier the notochord [91]. In the latter, Hh
signal from the posterior compartment establishes patterns in the anterior compartment
of the developing wing epithelium. Cells closest to the source receive higher doses of a
morphogen and for longer times than those further apart from it. But, importantly, distal—
most cells do not respond.
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In the above examples related to development, reaction—diffusion systems do not repli-
cate the real biological events. Note that by default diffusion in such models is described
by a linear differential operator of second order (namely, the Laplacian). In fact, a number
of biological observations are incompatible with linear diffusion. First, Hh morphogens
do not behave as very small particles in large spaces, thus invalidating one of the assump-
tions of Brownian motion implied by linear diffusion: Hh has been detected in Drosophila
as visible aggregates of ~ 20-300 nm. in diameter [89, 131]. Such particles have been
shown to be multimers [132], membrane vesicles [88], oligomers [131], and/or lipopro-
tein particles [53, 110]. Second, the dynamics of morphogen—induced pattern formation
are inconsistent with the action of linear diffusion. Indeed, the time of exposure (and not
only the large time asymptotics) of morphogen concentration is critical to specify cell
fate. Modeling morphogen gradients with linear diffusion necessarily implies that every
cell in the responding field receives a low level of morphogen instantaneously and, hence,
predicts the same time of exposure for every cell in the whole tissue [78]. This is at odds
with the observation that the development of morphogenetic responses requires time. In-
deed, low level Hh signaling has cumulative effects in the neural tube and limb buds. The
following sentence from [78] makes this clear:

In the vertebrate central nervous system and limbs, the pattern of cellular
differentiation is controlled by both the amount and the time of Shh exposure.

Similarly, while current linear diffusion models may reproduce natural final patterns
they cannot account for how these are formed [90], and therefore the dynamics of the
formation of genetic patterns is not very representative qualitatively. Indeed, in such
models an arbitrary threshold of noninstructive signaling or noise had to be introduced
in order to make the concentration curves fit the biological reality of a discontinuity at
the front of the gradient (see Fig. 8 in [119]). Removing the tails of a Gaussian-type
solution is a usual procedure in reaction—diffusion systems, specifically when dealing with
traveling wave solutions. However, in the present context this produces artificial fronts out
of no biological inputs. It is important to highlight that both the existence of a front and
the velocity of morphogen transport (which is obviously not infinite, as opposed to what
linear diffusion would predict) are critical elements in order to accurately describe pattern
formation in morphogenetic processes. Without a threshold mechanism, the mathematical
model in [119] predicts that the chemical signal arrives too fast to distant areas, thus
triggering the chemical cascade too soon. Nonetheless, with a threshold mechanism the
chemical signal would never be able to arrive at distant areas according to the model in
[119]. As a matter of fact the chemical signal would be receding, having as a result that
large sections of the neural tube would never be exposed to the action of the morphogen.
In this way, previous work on linear diffusion simply approached known data but had
to impose nonbiological thresholds to make some sense of it, as far as traveling fronts
are concerned [119]. These models, then, might not predict the novelty introduced by
biological processes such as negative feedback [78].

Moreover, such linear diffusion models do not appropriately account for the anatomy
where the macroparticles (vesicles) are been transported. In fact, Hh proteins do not
travel alone but in aggregates that are composed of different types of molecules grouped
in the form of a vesicle. Note that there are continuous interactions between vesicles
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and the activation of target genes. Also, linear diffusion models do not account for the
topography of its signaling landscape. This means that the precise physical relationships
between the cells that produce signaling proteins and the fields of cells that receive these
signals have not been properly described in the literature so far.

A satisfactory explanation for the previous couple of points (the cytoneme mechanism
for protein transport) has been proposed recently [87, 95, 117, 121, 129]; it also provides
a good experimental agreement. Cytonemes are actin-based cell protrusions that span
several cell diameters. Various Hh signaling components localize to cytonemes, as well
as to form structures (macroparticles) moving along cytonemes and are probably exovesi-
cles. Cytonemes are dynamical structures: Hh gradients are established and correlated
with cytoneme formation in space and time. This cytoneme—based model challenges pre-
vious linear diffusion—based models; we feel that these features should be incorporated
in those mathematical models describing morphogen transport. In general, models that
cannot accommodate all of the different settings have limited biological relevance.

The model in [129] features a flux saturation mechanism and indeed predicts non-
trivial behavior, as it incorporates such interaction mechanisms between flux and target
genes. As regards Shh signaling, the model takes into account the action of Ptcl by in-
troducing a negative feedback component. This model can be regarded as an extension
of Fick’s law and of the pioneering ideas of Turing, that tries to overcome the qualitative
weaknesses associated with linear diffusion. Here, a general model for Shh-Gli signaling
in the vertebrate neural tube, based on a continuous feedback between mathematical mod-
eling, numerical analysis and data collection from experiments on Hh particle movement
in the insect wing imaginal disc epithelium and in mammalian cells is developed. Our
thesis is that the transport of active macroparticles (vesicles) throughout cytonemes is the
biological counterpart of the flux-saturated mechanism.

To understand the implications of such a change of viewpoint, let us elaborate a bit
more on the biological setting. As we have pointed out previously, in the Shh-Gli path-
way the number of aggregates is infinitely large from a scale point of view, trafficking
is large, and a molecular description is difficult to use since several molecular and cel-
lular interactions are involved. These molecules positive or negatively regulate the Shh
pathway. For instance, the cell adhesion molecule Cdon forms a heteromeric complex
with the Hh receptor Patched 1. Cdon—mediated interference with Hh ligand dispersion
is a mechanism by which Hh signaling information can be regulated in vertebrates. This
receptor complex binds Hh and enhances signaling activation, indicating that Cdon pos-
itively regulates the pathway. In the case of pattern formation of the vertebrate optic
vesicle into proximal/optic stalk and distal/neural retina, this Ptc-independent function
protects the retinal primordium from Hh activity, defines the stalk/retina boundary and
thus the correct proximo-distal patterning of the eye [55]. Then, there is evidence that in
the absence of Ptc interaction with Hh, Cdon (but also other molecules as Boi or Thog) has
an evolutionary preserved function as Hh decoy receptors. This mechanism of limiting
Hh activity acts in parallel to other, more intensively studied mechanisms. We have for
example negative feedback regulation of the Ptc receptor, which inhibits pathway activa-
tion. Therefore, Shh molecules do not travel alone, but in complex aggregates with other
molecules, forming vesicles, in which there are, as we have seen, emerging relations of
cooperation and interactions towards a common goal beyond a single behavior.
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The way in which these macromolecules are transported is not, of course, random.
As we pointed out before, morphogens travel from producing to receiving cells, and the
physical medium in which such displacements take place has been the subject of intense
study, both from mathematical and biological points of view. Transport of information by
cellular extensions (cytonemes) that point towards the morphogen source, is at present the
mechanism supported by most of biological evidence [87, 95, 117, 121, 129]. Vesicles are
transported through cytonemes, which form an extensive network that regulates traffic. In
Drosophila an initial mechanism of synopsis has been described, so that epithelial cells
behave as neural cells; emitting cells interact in the signaling process as neurons. This
would strengthen the argument that morphogenetic signals do not diffuse freely to form an
extracellular concentration gradient, but the transport and receipt of morphogens would
only be mediated by cellular extensions that would be prolonged to cell contact. The
formation, evolution and transfer of information by cytonemes and vesicles and the con-
nection between cytonemes and vesicles is thus a complex process which would involve
ligand-receptor interaction, which in turn may also determine the directionality of cell
extensions and information exchange. This exchange could be carried across synapses or
as simple transport paths forming a global distribution network. We stress again that our
thesis claims that the biological mechanisms for the saturation of the flux are precisely
the cooperation processes between cytonemes and vesicles.

14.2. Results. The main issue when describing the vertebrate neural tube is trying to
understand how morphogen gradients are formed and interpreted (transduction by cells).
The models proposed so far study DV patterning in the chick embryo spinal cord, be-
ginning when Shh is first secreted by the floor plate. They do not focus on the whole
neural tube, but only on the ventral-most binary cell fate (V3 interneurons). The most
relevant proteins involved in the transduction process are PtcShhe,, PtcShhey,, Ptcyem,
Ptc.y, GlilA“, Gli3*<" and Gli3®¢?. They follow the interaction scheme of Fig. 4. The
interaction scheme is similar but a bit simpler for Drosophila; there, the target genes are
ptc and ci (cubits interruptus) instead of ptcl and gli.

Mathematical models for Shh transport must address the problem of infinite speed of
propagation that plagues reaction-diffusion descriptions, due to the reasons we mentioned
previously. Recall that linear diffusion models in mathematical biology arise essentially
from Fick’s theory, which is based on a microscopic linear relation between the con-
centration flux and the gradient Vu(z, x) of the concentration function. The subsequent
macroscopic equation associated with Fick’s law yields d;u = kdiv(Vu), and predicts
an infinite speed of propagation for the concentration flux. It is mandatory to amend this
unrealistic principle if we want to get a reasonable description in our particular setting,
as previously argued. One way out is to resort to flux-limitation ideas. Flux-limitation
mechanisms propose to modify the microscopic law defining the flow to make it saturate
when concentration gradients become unbounded. The result is a non-linear spreading
equation of the type

) my
2 div " Ve

ot Ju? + S|Vsul?

+ F(u) . (14.1)
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In our setting the reaction term F(u) would take into account the chemical reactions
taking place inside the cells. Provided that m = 1, the constant ¢ is the maximum speed
of propagation allowed in the medium, while v reduces to a diffusion coefficient in the
limit of the velocity ¢ — oo, in which the usual Fick equation is recovered [59].

GliACt
lil

Shh— Ptc1 — Smo Glil ptcl Ptcl

Figure 4. Schematic diagram of the Shh-Gli pathway. The temporal time line follows the flow of
positive arrows (promotion) and negative T bars (repression) from the action of the secreted Shh
morphogen on the left. Note that the Gli code includes the function of Gli2 and Gli3 activators as
well as Gli2 repressors. For simplicity we incorporate all repressor function in the term Gli3Rep,
For activators, we include G1i34¢? but consider Gli14¢? as the major Gli activator.

Using this kind of ideas, the following flux-limited spreading (FLS) equation for Shh
concentration shows up once the mass law action is applied:

o[Shh]
ar

[Shh]™ 3, [Shh]

v 0y
JJIShh> + % (d,[shh])?

+ ko7 r[Ptc1Shhyen] — Kon[Shh][Ptc]em].

Here, square brackets denote concentations. We will adopt this description and assume
that m = 1 for now. Later on we will comment on experimental results concerning
velocities of discontinuity fronts; if such speeds are not constant, then we may require to
consider a different value of m in order to fit experimental data in a better way.

We propose to describe the chemical cascade of reactions taking place inside the cells
with a different set of ordinary differential equations than those that have been tradition-
ally used in the context of linear diffusion models [119]. Our aim is to take into account
a number of facts that we believe quite important and become clearer when a linear de-
scription is disregarded. First, the chemical signal does not arrive instantaneously at the
surface receptors, which makes such a big change in the intracellular dynamics compared
to what linear models predict. Second, synthesis and transport to cell membrane of Ptcl
molecules is also not instantaneous, and in fact the elapsed time is not that short to be
disregarded at once. This feature seems to have been overlooked in previous models and
it entails an extra delay for the system of differential equations describing the chemical
cascade inside those cells composing the neural tube. Below we represent this delay by a
parameter t (depending on the individuals, the value of t is about 2 or 3 hours), so that the
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aforementioned set of differential equations describing the chemical cascade reads now
as follows:

3[Ptc1Shh,pen
% = —(Kofr + Kcin) [Ptc1Shhyen] + Kon[Shh][Pte ]
+ kcour[Ptc1Shh,y,],
3[Ptc1Shh,,
% = kcin[Pte]1Shhyen] — Keou[Pte1Shhey] — KcgegPtelShhy,
a Pt lmem
% = ko[Ptc1Shhye] — Kon[SRAIIPAC Lyen] + Kpint[Ptc o],
d[Ptcl,y L » .
% — kpPq {[GI1)(t — fi), [Gli3*"] (1), [GIi3*)(1)} ®prc — kpim[PtcLy],
B[Gli1A
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where [Ptcly)] is the initial value of [Ptc1,,e5,]. The values for the many parameters above
are either taken from the literature or obtained experimentally [129]. From now on, we
will refer to the coupling of the FLS equation with the ODEs system as the Gli-FLS
model.

The mixed Dirichlet-Neumann problem for the FLS equation has been analyzed in
[4] (wellposedness) and [52] (asymptotic behavior of solutions). In these studies the
velocity at which the incoming chemical signal (vesicles) travels through the cytonemes
in the extracellular matrix, as described by FLS, is taken constant (and agrees with the
value of ¢, a mean value). This is precisely the behavior that we wanted to describe with
a mathematical model, which cannot be replicated using a model as that in [119]. The
value of ¢ can be measured experimentally in different systems [129]. The mean value in
the experiments [129] for ¢ was found to be 0.07 wm /s in the first few seconds, followed
by an average value of 0.02 um/s. Other measures in wing discs (8 hrs after Hh-GFP
induction) and in early (embryonic day 8.5) mouse neural tubes, however, suggest a value
of 0.0013 um/s (see [129] and references therein). The value of ¢ thus appears to vary
in different contexts (Drosophila, culture cells or vertebrates), at different times or stages
of development, and in areas of equivalent distance from the source. These variations on
speed at different stages of morphogen transport allows us to elucidate that a flux-saturated
model taking into account the porous nature (m # 1) of the extracellular medium could
improve the quantitative and qualitative aspects of the description.
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Figure 5. Plots of Shh and Gli14¢! concentrations versus distance from the floor plate at various
times. The plots have been obtained numerically solving the flux-saturated model A) and B) and
the linear diffusion model C) and D). Note that in linear diffusion modeling C) and D) there are no
natural fronts and that an artificial and not dynamic threshold had to be imposed in C) at 2.5nM
in order to achieve them (see Fig. 8 in [119]), which is independent of any biological reality and
contradicts the results in [78]. Note also the correct pattern in the activation of Glil4¢? in B) while
there are not concrete patterns in D).

14.3. Discussion. Previous studies in [24, 26] concerning macro and microscales and
their connection via parabolic—hyperbolic asymptotics [112, 108, 86], point out that flux-
saturated models of biological materials are related to the dynamical properties of living
matter. This can be given an extended meaning as aggregates of living beings in the way
of swarms, flocks, schools, bacteria colonies, cells, social entitites. .. [23, 26, 71]. Then,
flux-saturated mechanisms may have the capacity of reproducing some of the emerging
behavior that shows up at a collective level; here we term emerging behavior as that
involving the interacting individuals but not being directly related to the dynamics of a
few entities. This would relate to vesicles and their relationship with cytonemes in our
context.

Understanding how these molecules gain information from each other, transfer it,
can be synchronized [40], cooperate and make decisions is a fascinating issue. To the
best of our knowledge, the applicability of flux-limitation ideas to this problem was first
discussed in [26], although a broader literature about the subject is starting to emerge.
In morphogenesis, the fact that cells form clusters connected by cytonemes and vesicles
transmitting information, as well as their ability of organizing their dynamics according
to a strategy (based on nonlinear additive actions in the group), is attractive and needs
further exploration.
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Figure 6. (A) Briscoe’s group experiment on desensitization. (B,C) Evolution of Gli14¢t over
time at a distance of 1 wm from the floor plate resulting from signal accumulation and subsequent
desensitization in our FLS model (B). This behavior is not observed in the linear diffusion model
(C). The FLS curve reproduces a temporal adaptation mechanism: After 12 hours cells become
desensitized to Shh signal and the response decreases.

The mathematical description of cytonemes requires, at least, a bidimensional version
of the model introduced in [20, 4, 49, 52, 61, 62, 67, 115]. Such a description must
incorporate the potential generated by Ptc1, as well as other interactions (for instance, that
with Cdon) as a source of directionality. This is a challenging line for future research.
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