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Abstract. We present a comprehensive survey on removability of compact plane sets with respect
to various classes of holomorphic functions. We also discuss some applications and several open
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1. Introduction

A classical theorem generally attributed to Riemann asserts that every bounded holomor-
phic function on some open subset of the plane minus a point extends analytically to the
whole open set. In other words, single points are removable for bounded holomorphic
functions. A repeated application of Riemann’s theorem obviously shows that any finite
set is removable, so is any countable compact set, by a simple argument involving the
Baire category theorem. What about uncountable compact sets? Is it possible to find a
geometric characterization of those that are removable? This difficult problem dates back
to Painlevé in 1888, who was the first one to investigate the properties of the compact
plane sets that are removable for bounded holomorphic functions. Since then, the study
of removable sets has been extended to several other classes of holomorphic functions.
Understanding the properties of removable sets with respect to each of these classes has
proven over the years to be of fundamental importance. Indeed, in many situations, the
possibility of extending a function defined outside a compact set is somehow indepen-
dent of the particular function but rather depends on which class it belongs to and on the
geometric properties of the set.

The purpose of this article is to present a comprehensive survey on removability with
respect to various classes of holomorphic functions, including proofs of some results that
are probably well known to experts but do not appear in the literature, as far as we know.
Our main motivation comes from the fact that although there have been some excellent
surveys on removable sets, each of them is either outdated or centered on only one type
of removability. Moreover, some of the widely used removability results are essentially
folklore theorems and our intention is to give rigorous proofs. Actually, as we will see,
some statements have sometimes been taken for granted because they seem almost trivial
at first glance, yet no rigorous and correct proof exists to the best of our knowledge.
Another important motivation is that several people have expressed their interest in such a
survey, particularly for the more modern notion of conformal removability, which appears
naturally in holomorphic dynamics. Indeed, it frequently happens that two dynamical
systems are conjugated by some homeomorphism of the sphere which is (quasi)conformal
outside the Julia set. If the latter is conformally removable, then the conjugation is in fact
(quasi)conformal everywhere. Lastly, we would like to mention that the subjects treated
in this survey reflect the author’s own interests and are by no means exhaustive. There are
several other notions of removability which we will not discuss, such as removability for
bounded K-quasiregular mappings for example.
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Let E C C be compact and let Q := C \ E be the complement of E with re-
spect to the Riemann sphere. We shall be interested mainly in the following classes of
holomorphic functions on €2 :

H*®(Q) ={f : 2 — C holomorphic and bounded }
A(RQ) ={ f : Coo — C continuous and holomorphic on € }
S(2) = {conformal maps f : 2 — C }
CH(2) = {homeomorphisms f : Co, — Cx which are conformal on € }.

Note that clearly, we have the inclusions
A(Q) C H®(Q)

and
CH(Q2) C S(R2).

Moreover, each of the above classes is monotonic in the sense that if £y C E,, then
the class corresponding to 27 := Cs \ E; is contained in the class corresponding to
Qz = (Coo \ E2.

Definition 1.1. Let F be one of the above classes of functions H*°, A, S or CH. We
say that E is F-removable if F(2) = F(Cqs), in other words, if every function in
F(L2) is the restriction of an element of F(Cy,). More precisely, the compact set E is
H>, A, S, CH-removable respectively if

* every bounded holomorphic function on €2 is constant;
* every continuous function on C, that is holomorphic on €2 is constant;
* every conformal map on €2 is a Mobius transformation;

* every homeomorphism of C, onto itself that is conformal on €2 is a M6bius trans-
formation.

Note that in view of the preceding remarks, H °°-removable sets are A-removable and
S-removable sets are C H -removable. Furthermore, any compact subset of a removable
compact set is also removable, by monotonicity.

The rest of the paper is organized as follows. Section 2 is about the study of H *°-
removable sets. We discuss their main properties, particularly from the point of view
of Hausdorff measure and dimension. This section also includes a brief introduction to
analytic capacity and Tolsa’s solution of Painlevé’s problem. In Section 3, we present
the main properties of A-removable compact sets, also from the point of view of Haus-
dorff measure, as well as a brief introduction to the analogue of analytic capacity in this
new setting. Then, in Section 4, we first introduce some preliminaries on quasiconformal
mappings and then proceed with a description of the properties of S-removable sets, in-
cluding Ahlfors and Beurling’s characterization based on the notion of zero absolute area.
The last section, Section 5, deals with C H -removable compact sets. Among other things,
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we present Jones and Smirnov’s geometric sufficient condition for C H -removability, as
well as Bishop’s construction of nonremovable sets of zero area. We also describe some
applications of C H -removability to conformal welding and to the dynamics of complex
quadratic polynomials. Finally, the section concludes with a discussion of several open
questions.

Acknowledgements. The author would like to thank Chris Bishop and Misha Lyubich
for their interest and helpful discussions, as well as Joe Adams and the referee for provid-
ing valuable comments.

2. H°-removable sets

As mentioned in the introduction, the study of removable sets for bounded holomorphic
functions has first been instigated by Painlevé [48], who raised the problem of finding a
geometric characterization of H °°-removable compact sets. Moreover, Painlevé was the
first one to observe that there is a close relationship between removability for H*° and
Hausdorff measure and dimension. More precisely, he proved that compact sets of zero
one-dimensional Hausdorff measure are removable. In particular, compact sets of Haus-
dorff dimension less than one are H°°-removable. Unfortunately, the converse is false,
as we will see later in this section. On the other hand, a well-known lemma of Frostman
implies that compact sets of dimension strictly bigger than one are never removable. It
follows that one is the critical Hausdorff dimension from the point of view of removability
for bounded holomorphic functions. In this case, the situation is much more complicated
and Painlevé’s problem quickly turned out to be extremely difficult. As a matter of fact,
it took more than a hundred years until a reasonable solution was obtained, thanks to
the work of David, Tolsa and many others. A fundamental tool in the study of Painlevé’s
problem is the so-called analytic capacity, an extremal problem introduced by Ahlfors [1]
in 1947 which, in some sense, measures the size of a compact set from the point of view of
H °°-removability. We shall give a brief overview of the complete solution to Painlevé’s
problem at the end of this section, although the proofs will be omitted for the sake of
conciseness. For more information on this vast subject, we refer the interested reader to
the recent book of Tolsa [62]. See also [22] and [19].

2.1. Main properties. It follows from the aforementioned theorem of Riemann and Li-
ouville’s theorem that any single point is H °°-removable. The same argument obviously
shows that every finite set is H ®-removable, so is any countable compact set, by a simple
argument using the Baire category theorem. In fact, we will see at the end of this subsec-
tion that any compact countable union of H °°-removable sets is also H °°-removable.

Intuitively, one expects H *°-removable sets to be small, at least in some sense. For
instance, it is easy to see that if £ is H°°-removable, then its interior must be empty and
its complement 2 = Co, \ E must be connected. In fact, we have

Proposition 2.1. If E is H°°-removable, then E is totally disconnected.
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Proof. If F C E is a connected component of E containing more than one point, then by
the Riemann mapping theorem there exists a conformal map f : Coo \ F — D, where D
is the open unit disk. Clearly, f is a nonconstant element of H°°($2). O

The following proposition shows that H °°-removability is a local property.

Proposition 2.2. The following are equivalent :

(1) For any open set U with E C U, every bounded holomorphic function on U \ E
extends analytically to an element of H*°(U);

(2) E is H*-removable.

Proof. Clearly (1) implies (2). The converse is a simple application of Cauchy’s integral
formula. Indeed, suppose that E is removable and let U be an open set containing E.
Let f be any bounded holomorphic functionon U \ E and fix z € U \ E. Let '} be a
cyclein U \ (E U {z}) with winding number one around E U {z} and zero around C\ U.
Likewise, let I'; be a cycle in U \ (E U {z}) with winding number one around E and zero
around (C \ U) U {z}. Then by Cauchy’s integral formula, we have

1 f(é') dé_L &dé' = f1(2)+f2(z)'

2mi rhé—z 2mi Jr, £~z

f(2) =

Note that by Cauchy’s theorem, f1(z) and f>(z) do not depend on the precise cycles
I'; and I',. It follows that f; and f, define holomorphic functions on U and C \ E
respectively, with f = f; + fobon U \ E. Since f; and f are bounded near E, the
function f, is also bounded there and so is bounded everywhere outside E. But E is
removable and f>(co0) = 0, hence f> is identically zero and therefore f; = f is the
desired bounded analytic extension of f to the whole open set U. O

A remarkable property of H°°-removable sets is that they are closed under finite
unions.

Proposition 2.3. If E, F are H*-removable compact sets, then E U F is also H°-
removable.

Note that if £ N F = @, then the result is a direct consequence of Proposition 2.2.
For the general case, we follow the proof in [62, Proposition 1.18]. First, we need some
preliminaries on the Cauchy transform and Vitushkin’s localization operator.

Let u be a complex Borel measure on C with compact support. The Cauchy transform
of u is defined by

Cu(z) = [ §%Zalu(z).

An elementary application of Fubini’s theorem shows that the above integral converges for
almost every z € C with respect to Lebesgue measure. Furthermore, Cu is holomorphic
outside the support of x and satisfies

Cu(oo) =0
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and
Cu'(00) 1= Jim z(Cu(z) = Cu(o0)) = —p(C).

The definition of the Cauchy transform also makes sense if w is a compactly supported
distribution. In this case, we define

1
Cu = —— % L.
z

The following elementary lemma is well known, see e.g. [16, Theorem 18.5.4].

Lemma 2.4. We have

1
d— =6
mZz

in the sense of distributions, where 8¢ is the Dirac delta at the origin. As a consequence,
if w is a compactly supported distribution on C, then

ICp) = —mp.
Also, if [ € Llloc (C) is holomorphic on a neighborhood of infinity and f(o0) = 0, then

C@f)=—nf.

Now, given f € Ll1 »c(C) and ¢ € C°(C), we define Vitushkin’s localization opera-
tor Vg by

1 _
Vol i=¢f +—C(f39).
The same definition holds more generally if f is a distribution.

Lemma 2.5. Let f € L} (C)and ¢ € C>(C). Then

loc

1 -
Vof =——C(df)
in the sense of distributions.

Proof. By Lemma 2.4, we have
_ _ _ 11— _ /1
Vo) = f3+ 63f + Z0C( ) = 90f =T (~C@1N) ).

But both Vg f* and —%C (¢9 f) are holomorphic in a neighborhood of co and vanish at
that point, hence these two distributions must be equal, again by Lemma 2.4. O

Lemma 2.6. Let U C C be open and let E C C be compact and H *°-removable. Then
every bounded holomorphic function on U \ E has an analytic extension to an element of
H®* ().

Note that here it is not assumed that E is contained in U (compare with Proposi-
tion 2.2).
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Proof. Assume without loss of generality that U is bounded. Consider a grid of squares
{0} covering the plane and of side length /. Let {¢;} C C°(C) be a partition of unity
subordinated to {20 ;},i.e. 0 < ¢; < 1, supp(¢;) C 2Q; for each j and

Y ¢i=1
j

on C. Let f be any bounded holomorphic function on U \ E. Define f to be zero on
C\(U\ E). Then Vg, f is identically zero except for finitely many j’s and

= @) = Y C@N) = Ve, f
J J

where we used Lemma 2.4 and Lemma 2.5. Also, for each j, we have

supp(3(Vy, /) = supp(3(C($;9/))) C suppp; Nsuppdf C 2Q; N (E U V).

Hence Vy; f is holomorphic outside 2Q ; N E whenever j is such that 20 ; N U = @.
Now, note that for every j, 2Q; N E is H°-removable. Moreover, a simple estimate
shows that V4, f* is bounded. It follows that for each j such that 2Q; N dU = @, the
function V4 f must be identically zero, since it vanishes at infinity. Therefore,

f:ZV%‘fs

j20,;NAU#0

so that f is holomorphic on U except maybe in a 4/-neighborhood of dU. Since / is
arbitrary, we obtain that f is holomorphic on the whole open set U. Finally, it must be
bounded since E has empty interior. O

We can now proceed with the proof of Proposition 2.3.

Proof. Suppose that E and F are H°°-removable compact sets. Let f be any bounded
holomorphic functionon C\ (E U F) = (C\ F) \ E. By Lemma 2.6, the function f has
a bounded analytic extension to C \ F. Hence f must be constant, by H °°-removability
of F. This shows that £ U F is H°°-removable. O

Remark 2.7. A simple argument using Lemma 2.6 and the Baire category theorem shows
that any compact countable union of H *°-removable compact sets is H °°-removable. In-
deed, suppose that £ := U, E,, is compact, where each E,, is compact and H °°-removable.
Let f be any bounded holomorphic function on Q := Cy \ E. Also, let Q' be the
maximal domain on which f has a bounded analytic extension (such a domain can be
obtained with Zorn’s lemma, for instance). Then Q C Q’. Assume for a contradiction
that Q" # Ceo, i.e. E' := Cx \ @’ # @. Since E’ is the countable union of the compact
sets E' N E,, one of these sets must have nonempty interior in E’, by the Baire cate-
gory theorem. Hence there exists some n and an open set U such that U N E’ # @ and
UNE’ C UNE,. Now, the function f is analytic and boundedon U\ E' = U\(E'NE,)
and E’' N E, is compact and H ®°-removable , so that f has a bounded analytic extension
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to Q' U U by Lemma 2.6. This contradicts the maximality of ©’. Therefore, we must
have Q' = Co and f has a bounded analytic extention to the whole sphere. This shows
that E is H°°-removable.

Remark 2.8. One can prove Proposition 2.3 by exploiting the fact that H °°-removable
compact sets are totally disconnected, as in the proof of Proposition 4.13. However, the
main advantage of the above proof using Vitushkin’s localization operator is that it is
easily generalized to handle A-removable sets, as we will see in Section 3.

2.2. Relationship with Hausdorff measure. In this subsection, we study H °°-removability
from the point of view of Hausdorff measure and dimension. More precisely, we shall see
that compact sets of dimension less than one are removable, whereas those of dimension
bigger than one are not.

First, let us recall the definitions of Hausdorff measure and Hausdorff dimension in
the plane. Let F be a subset of the plane. For s > 0 and 0 < § < oo, we define

H5(F) = inf%Zdiam(F,-)s :F C UF,,F,- C C,diam(F;) <4 ;.
J J

The s-dimensional Hausdor{f measure of F is

HS(F) := sup H§(F) = lim H3(F).
§>0 §—0

The Hausdorff dimension of F is the unique positive number dimy (F') such that

oo if s < dimy(F)

s —
HAE) =120 ifs > dimy(F).

The following result is generally attributed to Painlevé.

Theorem 2.9 (Painlevé). If H!(E) = 0, then E is H*-removable.

Proof. Let f be any bounded holomorphic function on €2, say | f| < M. Lete > 0. Since
H(E) = 0, we can cover E by open disks D1, ..., D, of radius rq, ..., r, respectively

such that
n
Z rj < €.
j=1

Let I" be the outer boundary of the union of these disks. Then we have

760l = v [ riera:

n
<M er < Me,
=1

where f7(00) 1= lim,—00 z(f(z) — f(00)). As € > 0 is arbitrary, this shows that
f'(00) = 0, for every bounded holomorphic function f on Q. It follows that E is
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H ®°-removable. Indeed, if f is a nonconstant bounded holomorphic function on €2, then
there is a point zg €  with f(z¢) # f(c0), but then the function

I EFIED

Z—Z

is a bounded holomorphic function on €2 whose derivative at infinity is nonzero. O

Corollary 2.10. [fdimy(E) < 1, then E is H*-removable.

It is natural to ask whether the converse of Theorem 2.9 holds, as this would yield
an elegant solution to Painlevé’s problem. Unfortunately, there are examples of H °°-
removable compact sets with positive one-dimensional Hausdorff measure. The first
one was given by Vitushkin in 1959. The construction is the following. Let (a,) be
a nondecreasing sequence of integers, with a; > 2. Set Eg := [0,1] and E; :=
UZ‘ZI({I/k} % [0, 1/a4]). Forn > 2, obtain E, from E,_; by repeating this process with
each interval in E,_; but using a,. If E is the limit set obtained, then for every choice
of the sequence (a,), we have H'(E) > 0. Vitushkin [65] gave a rather complicated
proof that E is H *°-removable if a,, — 0o as n — oo. Garnett [23] used a much simpler
argument to show that E is also H°°-removable in the case where the sequence (a,) is
eventually constant. Moreover, he observed that the planar Cantor quarter set is another
example of H °°-removable compact set with positive one-dimensional Hausdorff mea-
sure. See [22, Chapter V] for more information. We also mention [42], which contains a
characterization of H °°-removable planar Cantor sets in terms of the ratio sequence.

On the other hand, linear compact sets are H °°-removable precisely when they have
zero length.

Proposition 2.11. Suppose that E is contained in the real line. Then E is H°°-removable
if and only if its one-dimensional Lebesgue measure is zero.

Proof. If the measure of E is zero, then E must be H®°-removable by Theorem 2.9.
Conversely, if the measure of E is positive, consider the function

d
1) ::fE:th (z € Q).

which is just the Cauchy transform of the characteristic function of E times the Lebesgue
measure on R. Then f is holomorphic on 2, f(c0) = 0 and f’(c0) < 0, hence f
is nonconstant. Moreover, a simple calculation shows that the imaginary part of f is
bounded on Q, thus g := e/ is a nonconstant bounded holomorphic function on Q. It
follows that E is not H °°-removable. O

Corollary 2.10 shows that compact sets of sufficiently small dimension are remov-
able. On the other hand, the following theorem states that compact sets of large enough
dimension cannot be removable.
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Theorem 2.12. [fdimy (E) > 1, then E is not H°-removable.

Proof. By Frostman’s lemma (see e.g. [62, Theorem 1.23]), there exists a nontrivial posi-
tive Borel measure u supported on E with growth u(D(zg, 7)) < rforallzg € C,r > 0,
for some 1 < s < 2. Consider the function

d
£(2) = Cu(z) = f L cew)

Then f is a nonconstant holomorphic function on 2. Let us prove that the growth prop-

erty of u implies that f is Holder continuous on Q2. Fix z, w € Q and write § := |z — w]|.
Then
()
@ sl =8 [ =P
&= z[|¢ — w|

We separate the integral over the four disjoint sets :

Ay :={leE:|t—z|<8/2}
Ay:={C € E:|t—w|<68/2)

Az={{ e E: |t —z| | —w|.[{—z] = §/2}
Ag:={l e E: |t~z > [ —w| | —w|>8/2}.

On Ay, | — w| > §/2, so we have

s [ dr©) /AIA N 124t du ()

a ezt —w| =
§/2 o0
_ —2 -2
_Z/Al/z . dtdu(§)+2fAl[mt dt du(g)

/2
<2 / (D 1) 2d1 + 46~ u(Ay)
0

8/2
< 2/ 572dt + 487185278
0

= C5!

where C is independent of §. Similarly for the integral over A,. For the integral over A3,
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we have

du(f) dp (%)
] <4
/{

A 1E=zlIE—w| = Jye—zi=s/23 16—z

=2 | 8/ < [ — 2] < )
52

o0
<26 573dt
§/2

=C'§7 L

Here we used the fact that s < 2. Similarly for the integral over A4.

Combining the integrals together shows that f is Holder continuous on €2 and there-
fore extends continuously to a bounded function on C. In particular, f is a nonconstant
bounded holomorphic function on 2 and E is not H °°-removable. O

Remark 2.13. It is easier to prove directly that f is bounded, as in [62, Theorem 1.25].
However, the fact that f* extends continuously to the whole Riemann sphere shows that £
is not even removable for the class A.

2.3. The case of dimension one. We proved in the preceding subsection that compact
sets of dimension less than one are H °°-removable whereas sets of dimension bigger than
one are not. Painlevé’s problem is thus reduced to the case of dimension exactly equal to
one. In this case, however, the situation is much more complicated and we shall therefore
content ourselves with a brief overview of the main results, without giving any proof. For
the complete story, we refer the reader to [62].

One of the major advances toward a geometric characterization of H °°-removable
sets of dimension one was the proof of the so-called Vitushkin’s conjecture.

Theorem 2.14 (Vitushkin’s conjecture). Assume that H'(E) < oo. Then E is H-
removable if and only if H'(E N T') = 0 for all rectifiable curves T.

The forward implication was previously known as Denjoy’s conjecture and follows
from the results of Calderén [12] on the L2-boundedness of the Cauchy transform opera-
tor. The other implication was proved by David [17] in 1998.

In 2000, Joyce and Morters [33] constructed a nonremovable compact set £ which in-
tersects every rectifiable curve in a set of zero one-dimensional Hausdorff measure, there-
fore showing that Vitushkin’s conjecture is false witout the assumption of finite length.

Vitushkin also conjectured in [66] that a compact set E is H °°-removable if and only
if it has zero Favard length, i.e. it orthogonally projects in almost every direction onto
a set of linear Lebesgue measure zero. In 1986, Mattila [43] disproved this conjecture
in a remarkable way. Indeed, he showed that the property of having zero Favard length
is not conformally invariant, whereas the property of being H °°-removable clearly is.
However, Mattila’s proof gave no indication of which implication of the conjecture is
false! Later, in 1988, Jones and Murai [31] constructed a nonremovable compact set with
zero Favard length. The aforementioned set of Joyce and Morters is also an example.
However, it is still open whether the other implication of the conjecture holds, i.e. whether
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H ®°-removable implies zero Favard length. Finally, we mention that by Theorem 2.14,
the conjecture is true for compact sets E with H!(E) < oo, since for such sets having
zero Favard length is equivalent to intersecting every rectifiable curve in a set of zero
one-dimensional Hausdorff measure.

In general, for sets of infinite length, there is no nice characterization of removability
such as Theorem 2.14. However, in the remarkable paper [59], Tolsa obtained a metric
characterization of H *°-removability in terms of the notion of curvature of a measure.
Before stating the result, we need some definitions.

Definition 2.15. A positive Borel measure p on C has linear growth if there exists some
constant C such that u(D(z,r)) < Cr forall z € Cand all r > 0.

Definition 2.16. For a positive Radon measure 1 on C, we define the curvature of | by

1
() 1=///mdﬂ(x)dﬂ(y)dﬂ(z)»

where R(x, y, z) is the radius of the circle passing through x, y, z.
We can now state Tolsa’s result.

Theorem 2.17 (Tolsa [59]). A compact set E C C is not H®°-removable if and only if it
supports a nontrivial positive Radon measure with linear growth and finite curvature.

A fundamental ingredient of the proof of Theorem 2.17 is the notion of analytic ca-
pacity, which we now define.

Definition 2.18. The analytic capacity of a compact set E C C is defined by

V(E) :=sup{| f'(c0)| : [ € H®(Q).|f| =1},

where f/(00) = lim;— 00 z(f(2) — f(00)) and @ = C \ E.

Analytic capacity was first introduced by Ahlfors [1] in 1947 for the study of Painlevé’s
problem, based on the observation that E is H°°-removable if and only if y(E) = 0.

The characterization in Theorem 2.17 is a consequence of the comparability between y
and another capacity y+ which can be described in terms of measures with finite curvature
and linear growth. Another important consequence of this comparability is the semiaddi-
tivity of analytic capacity, which was conjectured by Vitushkin [66] in 1967.

Theorem 2.19 (Tolsa [59]). We have
Y(EUF) = C(y(E) + y(F))

for all compact sets E, F, where C is some universal constant.

Tolsa actually proved that analytic capacity is countably semiadditive.

We also remark that it is not known whether one can take C = 1 in Theorem 2.19,
i.e. whether analytic capacity is subadditive. See [68] for more information on this prob-
lem.

Finally, we end this section by mentioning another important result of Tolsa regarding
analytic capacity, which answered a question of Verdera raised in [64].
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Theorem 2.20 (Tolsa [61]). Let ¢ : C — C be a bilipschitz map. Then there exists a
positive constant C depending only on the bilipschitz constant of ¢ such that

C7y(E) = y(¢(E)) = Cy(E)

for all compact sets E C C. In particular, the property of being H*-removable is
bilipschitz invariant.

3. A-removable sets

This section is dedicated to the study of A-removable compact sets. Recall that a compact
set E is A-removable if every continuous function on the sphere that is holomorphic out-
side E is constant. It seems that A-removable compact sets were first studied by Besicov-
itch [7], who proved that compact sets of o-finite length are A-removable. The interest in
A-removability was reinvigorated by the work of Vitushkin [66] several years later, mo-
tivated by applications to the theory of uniform rational approximation of holomorphic
functions.

3.1. Main properties. It follows from the inclusion A(2) C H(2) that a compact
set E is A-removable whenever it is H °°-removable. However, the converse is easily seen
to be false. For instance, any segment (or more generally, any analytic arc) is A-removable
by Morera’s theorem but is never H *°-removable. In particular, A-removable sets need
not be totally disconnected.

On the other hand, we will see in this subsection that A-removable sets and H °°-
removable sets share many interesting properties. A first example is the fact that remov-
ability for the class A is also a local property.

Proposition 3.1. The following are equivalent :

(1) For any open set U with E C U, every continuous function on U which is holo-
morphic on U \ E is actually holomorphic on the whole open set U ;

(2) E is A-removable.
Proof. The proof is exactly the same as in Proposition 2.2. O

We also have the following analogue of Proposition 2.3.

Proposition 3.2. If E and F are A-removable compact sets, then EUF is also A-removable.
The above is a direct consequence of the following analogue of Lemma 2.6.

Lemma 3.3. Let U C C be open and let E C C be compact and A-removable. Then
every continuous function on Coo that is holomorphic on U \ E is actually holomorphic
on the whole open set U.
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Proof. The argument is the same as in Lemma 2.6, except we need the fact that the func-
tions Vs, f* are continuous on some open set containing U U E. But this follows directly
from the definition of Vitushkin’s localization operator

1 _
Vo, f =¢;f + ;C(f3¢j)
and from the fact that the integral

f(£)dg, ()
e 1(9)

{—z
depends continuously on z, since f 5¢> ; is bounded. Here m is the two-dimensional
Lebesgue measure. O

Remark 3.4. As in Remark 2.7, a simple argument using Lemma 3.3 and the Baire
category theorem shows that any compact countable union of A-removable compact sets
is A-removable.

3.2. Relationship with Hausdorff measure. As for H °°-removability, there is a close
relationship between Hausdorff measure and dimension and A-removability. Indeed, first
note that Theorem 2.9 implies that compact sets of zero one-dimensional Hausdorff mea-
sure are A-removable. In particular, any compact set of Hausdorff dimension strictly less
than one is removable. On the other hand, the proof of Theorem 2.12 shows that compact
sets of Hausdorft dimension strictly bigger than one are never A-removable. As for sets
of dimension exactly equal to one, we have the following sufficient condition.

Theorem 3.5 (Besicovitch [7]). If H!(E) < oo, then E is A-removable.

Proof. We only give a sketch of the proof. The interested reader may consult [22, Chap-
ter III, Section II] for all the details.

Let f : Co — C be continuous and holomorphic outside E, let ws : (0, 00) —
[0, 00) denote the modulus of continuity of f

wy(8) :=sup{| f(2) = f(w)| : [z —w[ < &}

and let 2(8) := Sw s (). Fix € > 0 and let S be any square in C. Since £(§)/8 — 0 as
8§ — 0and H'(E) < oo, we can find a cover (Sj)?"z1 of S N E by squares of side length
d; centered at a; with disjoint interiors and contained in S such that

D hs)) <e.
J

Then by Cauchy’s theorem,

' [ f(é)dé' - ‘; [ |, St = ‘; | , O raps s;4h(8/’)<4e-
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Since € > 0 and S are arbitrary, it follows from Morera’s theorem that f is holomorphic
everywhere and hence must be constant by Liouville’s theorem.
This shows that E is A-removable. O

By the remark following the proof of Lemma 3.3, we get

Corollary 3.6. Suppose that E is a compact countable union of compact sets of finite
one-dimensional Hausdorff measure. Then E is A-removable.

We end this subsection by mentioning a characterization of removability for product
sets. If E; and E, are two compact subsets of R and E is countable, then E := E| X E;
is A-removable by Corollary 3.6. The converse is true provided that m(E,) > 0.

Theorem 3.7 (Carleson [13]). Let E;, E» C R be compact and suppose that m(E3) > 0.
Then E = E1 x E, is A-removable if and only if E1 is countable.

3.3. Continuous analytic capacity. This subsection is a brief introduction to an ex-
tremal problem whose solution measures the size of a compact set from the point of view
of A-removability. This extremal problem is usually referred to as continuous analytic
capacity and is the analogue of analytic capacity for the class A.

Definition 3.8. The continuous analytic capacity of a compact set E C C is defined by
a(E) :=sup{|f'(c0)|: f € AQ), | fI =1}

Continuous analytic capacity was first introduced by Erokhin and Vitushkin [66] in
order to study problems of uniform rational approximation of holomorphic functions. See
also [71], [18] and [21, Chapter VIII] for the applications of continuous analytic capacity
to this type of problem.

It follows easily from the definition that «(E) < y(FE) and that E is A-removable if
and only if «(E) = 0. Unfortunately, unlike analytic capacity, there is no known geomet-
ric characterization of compact sets E such that «(E) = 0. The main recent advances are
again due to Tolsa, who proved that continuous analytic capacity is (countably) semiad-
ditive and that it is bilipschitz invariant in the sense of Theorem 2.20. See [60] and [61].

4. S-removable sets

This section deals with S-removable compact sets. Recall that a compact set E C C is
S-removable if every conformal map on Q@ = Co, \ E is a M6bius transformation.

The notion of S-removability was first considered by Sario [52] for the problem of
classifying Riemann surfaces. A couple of years later, in 1950, Alhfors and Beurling
published their seminal paper [3] containing among other things a characterization of
S-removable compact sets, which we present below. First, we need some preliminaries
on quasiconformal mappings.
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4.1. Preliminaries on quasiconformal mappings. This subsection consists of a very
brief introduction to quasiconformal mappings. For more information, the reader may
consult [2], [4] or [38].

There are several equivalent definitions of quasiconformal mappings. The following
is the analytic one.

Definition 4.1. Let K > 1,let U, V be domains in the Riemann sphere andlet f : U — V
be an orientation-preserving homeomorphism. We say that f is K-quasiconformal on U
if it belongs to the Sobolev space Wli)cz (U) and satisfies the Beltrami equation

af = pof

almost everywhere on U for some measurable function p with ||i|lee < I’g—jrll In this

case, the function p is called the Beltrami coefficient of f and is denoted by i .

A homeomorphism is conformal if and only if it is 1-quasiconformal. This is usually
referred to as Weyl’s lemma. We will also need the fact that quasiconformal mappings
preserve sets of area zero, in the sense that if £ C U is measurable, then m(E) = 0 if
and only if m( f(E)) = 0, where m is the two-dimensional Lebesgue measure.

The following fundamental theorem was first proved by Morrey [45] in 1938.

Theorem 4.2 (Measurable Riemann mapping theorem). Let U be a domain in the sphere
and let p : U — C be a measurable function with ||| < 1. Then there exists a
quasiconformal mapping [ on U such that p = uy, i.e.

af = paf

almost everywhere on U. Moreover, a quasiconformal mapping g on U satisfies g =
w=pysifandonlyif f og=':g(U) — f(U) is conformal.
We can now describe the various properties of S-removable sets.

4.2. Main properties. As in Proposition 2.1, any S-removable set must be totally dis-
connected. Indeed, if F is a nontrivial connected component of an S-removable compact
set E, then one can use the Riemann mapping theorem to obtain a conformal map f on
Coo \ F D Cx \ E which is not the restriction of a Mobius transformation.

Although S-removable sets are totally disconnected, it is interesting to mention the re-
sult of Thurston [58] saying that there exist many connected sets E (even quasi-intervals)
that are not far from being removable in the sense that there is an € > 0 such that every
conformal map on €2 with Schwarzian derivative less than € is a Mobius transformation.
Such compact sets are said to have conformally rigid complement and they are known to
have zero area [47].

Proposition 4.3. If E is H°-removable, then E is S-removable.
Proof. Let f be any conformal map on 2. Composing f with a Mdbius transformation

if necessary, we can assume that f(0co) = oco. Then f is bounded near E. Fix some point
zo €  and consider the function

£ = fz0)

Z—Z

Z =
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Clearly, this defines a bounded holomorphic function on €2, which must be constant by
H *°-removability of E. It follows that f is linear. This shows that E is S-removable. [

In particular, by Theorem 2.9, any compact set of zero one-dimensional Hausdorff
measure is S-removable. On the other hand, the following proposition implies that S-
removable sets must be rather small.

Proposition 4.4. If E is S-removable, then the area of E is zero.

Proof. If E has positive area, then by the measurable Riemann mapping theorem (Theo-
rem 4.2) there exists a quasiconformal mapping f on C, such that u s = % X E almost
everywhere. In particular, the map f is conformal outside E and is not a M&bius transfor-
mation, since 9 f # Oonaset of positive measure. Hence E cannot be S-removable. [J

Remark 4.5. The above proof actually shows that sets of positive area are never CH -
removable.

Remark 4.6. An alternative argument is the following. By a result of [63], a compact
set has zero area if and only if it is removable for Lipschitz functions on the sphere which
are holomorphic outside the set. Therefore, if E has positive area, then there exists such
a function, say f, which is not holomorphic everywhere. It follows that if € > 0 is small
enough, then z — z + €f(z) is a non-M&bius homeomorphism of the sphere conformal
outside E.

Remark 4.7. An interesting question is the following : if E has positive area, does there
necessarily exist a homeomorphism of the sphere onto itself which is conformal outside £
but is not quasiconformal everywhere? The answer is yes, by a result of Kaufman and
Wau [35] stating that there always exists a function f € CH(2) which maps a subset F
of E of positive area onto a set of zero area. This map f cannot be quasiconformal
everywhere since it doesn’t preserve sets of measure zero. It is still open whether one can
take F' = E in Kaufman and Wu’s result, see [9].

The proof of Proposition 4.4 illustrates the usefulness of quasiconformal mappings in
the study of S-removable sets. This motivates the following definition.

Definition 4.8. We say that a compact set £ C C is Q C-removable if every quasiconfor-
mal mapping on Cs, \ E has a quasiconformal extension to the whole Riemann sphere.

The following result essentially says that the property of being Q C-removable is lo-
cal.

Proposition 4.9. The following are equivalent :

(1) For any open set U with E C U, every quasiconformal mapping on U \ E extends
quasiconformally to the whole open set U ;

(2) E is QC-removable.

Proof. The direct implication is trivial, while the converse follows from classical quasi-
conformal extension theorems, see e.g. [38, Chapter II, Theorem 8.3]. O

It is a remarkable consequence of the measurable Riemann mapping theorem that the
notions of Q C-removability and S-removability actually coincide.
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Proposition 4.10. A compact set E is Q C-removable if and only if it is S -removable.

Proof. Assume that E is Q C-removable. First note that the area of £ must be zero, by
a classical result of Koebe saying that every planar domain can be mapped conformally
onto the complement of a set of zero area. Now, if f is any conformal map on €2, then
in particular f is quasiconformal outside E so that it extends quasiconformally to the
whole sphere, by O C-removability of E. But then by Weyl’s lemma, the map f must be
a Mobius transformation. Thus E is S-removable.

Conversely, if E is S-removable, let g be any quasiconformal mapping on 2. By
Theorem 4.2, there exists a quasiconformal mapping f : Coo — Cx such that f o g
is conformal on . Since E is S-removable, the map f o g is a Mobius transformation
and thus g = f~! o (f o g) extends quasiconformally to the whole sphere. Since g was
arbitrary, we get that £ must be Q C-removable. O

An interesting consequence of the above result is that Proposition 4.9 remains true
without the assumption that £ C U in (i). Before proving this, we need the following
topological lemma.

Lemma 4.11. Let X be a totally disconnected compact Hausdorff space. Suppose that
Fy and F, are two disjoint closed subsets of X. Then there exist disjoint closed subsets
X1 and X5 of X such that X = X1 U X5, F1 C Xy and F> C X».

Proof. The result easily follows from the fact that such spaces X are zero-dimensional.
O

We can now prove the following generalization of Proposition 4.9.
Proposition 4.12. The following are equivalent :

(1) For any open set U C C, every quasiconformal mapping on U \ E extends quasi-
conformally to the whole open set U ;

(2) E is S-removable.

Proof. The direct implication follows trivially from Proposition 4.10. Conversely, assume
that E is S-removable. Let U be any open set, let f be a quasiconformal mapping on
U\ E and let € > 0. Define F; := {z € E : dist(z, C\ U) > e} and F, := E\ U.
Then F; and F, are two disjoint closed subsets of E, so by Lemma 4.11 there exist two
disjoint closed subsets of E, say E; and E,, such that E = E; U E;,, F; C E; and
F>, C E,. Here we used the fact that S-removable sets are totally disconnected. By
Proposition 4.10, E; is Q C-removable. Since f is quasiconformal on (U \ E;) \ E;
and E is a compact subset of the open set U \ Ej, it follows from Proposition 4.9 that f
extends quasiconformally to U \ E,. This extension is well-defined for every z € U
such that dist(z, C \ U) > ¢, independently of the precise value of € since E has empty
interior. Since € > 0 was arbitrary, we get that f extends quasiconformally to the whole
open set U. O

As in Proposition 2.3 and Proposition 3.2, we can deduce from this that unions of
removable sets are removable.
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Proposition 4.13. If E and F are S-removable compact sets, then E U F is also S-
removable.

Proof. Any conformal map on Coo \ (EU F) = (Cs \ E) \ F extends quasiconformally
to Coo \ E and then to the whole sphere, by Proposition 4.12. Since E U F has zero area,
the extension must be conformal everywhere. O

Remark 4.14. Again, a simple argument using Proposition 4.12 and the Baire category
theorem shows that any compact countable union of S-removable compact sets is S-
removable.

4.3. A characterization of removability. In this subsection, we present a characteriza-
tion of S-removable sets due to Ahlfors and Beurling [3] and based on ideas of Grunsky.
First, we need a definition.

Definition 4.15. We say that a compact set E has absolute area zero if for every confor-
mal map f € S(2), the complement of f(£2) has measure zero.

Note that sets of absolute area zero must be totally disconnected. We also mention
that a sufficient condition for a set E to have absolute area zero in terms of the moduli
of nested annuli surrounding each point of E can be found in McMullen’s book [44,
Theorem 2.16].

Theorem 4.16 (Ahlfors—Beurling [3]). A compact set E C C is S-removable if and only
if it has absolute area zero.

Note that the direct implication follows from Proposition 4.4. Indeed, if E is S-
removable, then it must have zero area and every conformal map f on Q is a Mobius
transformation, so that Co, \ f(2) = f(E) has zero area.

For the converse, we follow [3] and introduce two extremal problems.

Let E C C be compact and as usual denote by €2 the complement of E in the Riemann
sphere. We assume that €2 is connected. Define

n(E) = sup | f'(c0)],

where the supremum is taken over all holomorphic functions f on Q with f(c0) = 0
and whose Dirichlet integral D( f) satisfies

D(f) = /Q ' Pdm < x.

Also, let
B(E) := sup|f’(c0)],

where the supremum is taken over all conformal maps f € S(Q2) with f(oco) = 0 and
having the property that the complement of (1//)(2) has area greater or equal to 7. If
there is no such function, we set S(E) = 0.

Ahlfors and Beurling’s remarkable result states that n( £) and B(E) are actually equal,
for any compact set E. This implies the reverse implication in Theorem 4.16. Indeed,
suppose that E has absolute area zero. Then 2 is connected and 0 = B(E) = n(E).
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Let f be conformal on 2. Without loss of generality, assume that f(co) = oco. Then f
is bounded near E, so its Dirichlet integral there is finite. Then, since n(E) = 0, a simple
modification of the proof of Proposition 2.2 shows that f has an analytic extension to the
whole complex plane. This extension must be conformal, so that f is linear. Therefore E
is S-removable.

Theorem 4.17 (Ahlfors—Beurling [3]). For any compact set E, we have

n(E) = B(E).

Proof. We only give a sketch of the proof.

By a simple normal family argument, it suffices to prove the result for compact sets E
that are bounded by finitely many disjoint analytic Jordan curves. In this case, there exist
conformal maps g and & of € onto domains bounded by horizontal slits and vertical slits
respectively with normalization

a a
g@) =z 4+ 5+
z z

and -
h(z):z+—+_§+...
z oz
near infinity. In this case, the maps g and % are unique, see e.g. [25, Chapter 5, Section 2].
Let I denote the boundary of 2 oriented positively and let f be any function regular

on © and holomorphic on  with f(co) = 0 and D(f) < . A simple calculation using
Green’s theorem and the Cauchy-Riemann equations shows that

/f S'OEED FE)dxdy = & f Fdg — dh.
Q T

Since g(£2) is a horizontal slit domain and /(£2) is a vertical slit domain, we have dg = dg
and dh = —dh on T, thus we obtain

|| reoE@@=FExay = [ f@g+an =2are0. @
Q r
where we used the fact that
/F f)(g'(2) + 1 (2))dz = =2mi(f(g' + 1)) (00) = —4mif’(c0).
Replacing f by g — h in (1) yields
D(g —h) =2n(a —b).

Now, by (1) and the Cauchy—Schwarz inequality, we get

4| f'(00)* < 2m(a = b)D(f) < 27*(a — b)
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and thus
a—>b

TECOTERE

with equality for the function
g—nh

V2@ —-b)

One can prove using some approximation process that the above inequality holds even for
functions f that are only assumed to be holomorphic on 2. It follows that

f=

a—>b

n(E) = 7

It only remains to show that the same equality holds with 5(E) replaced by B(E). First,
we need to introduce two integral quantities. For functions ¢, ¥ regular on €2 and holo-
morphic on €2 except a simple pole at infinity, define

1(¢.9) == ZE/F‘W

and .
i —
1@y=5£¢d¢=H¢@-
Note that 1(¢, ) = I(, ).

Now, let f be regular on €2 and holomorphic on Q2 with a simple zero at infinity. Set
¢ :=1/f. Asin (1), we have

i
Igg+m =3 [ (g —dh) = —zc@@—b).
r
where c is the residue of ¢ at infinity. In particular, this holds for ¢ = g + & and thus

I(g +h) =—2n(a —b).

Now, it is easy to see that if ¢9 has a removable singularity at infinity, then /(¢y) is
just the Dirichlet integral of ¢. It follows that

Cc
1(p=5E+m)=0.
Therefore,
1@ =1(¢=56+m)+1(¢5e+n)+1(56+m.9)=1(5c+n)
20— Zlefa—b) + 5T + 7 + SleP@—b)

=—gm%a—m.
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Suppose in addition that f is conformal on €2 and that the area of the complement of
¢ (L2) is greater or equal to 7r. In this case, Green’s theorem shows that —7(¢) is precisely
the area enclosed by ¢(I") and hence I(¢) < —m. Combining this with the preceding
inequality, we obtain
1 a—b

< .

el =¥ 2

But a simple calculation yields |c¢| = 1/| f/(00)], so that

, a—b
(0 = 55— @
It follows that
b

a—

Finally, observe that equality in (2) is attained by the function

V2(a—b)

/= g+h

Using the argument principle, one can prove that this function is univalent on €2. There-
fore, we obtain

a—>b

B(E) = — = n(E). O

5. CH -removable sets

The last section of this article deals with C H -removable sets. Recall that a compact set
E C Cis said to be CH -removable if every homeomorphism of the sphere onto itself
that is conformal outside E is a Mobius transformation.

Besides earlier results on removable product sets by Gehring [24], the notion of
C H -removability (also sometimes referred to as conformal removability or holomorphic
removability) seems to have first been seriously investigated by Kaufman [34], who con-
structed several examples of nonremovable and removable sets. Bishop [9] later gave
another construction of similar sets. In recent years, there has been a strong renewal of
interest in C H -removability, mainly due to its applications in the theory of holomorphic
dynamics. In that respect, we mention the work of Jones [30] whose results were later
generalized by Jones and Smirnov [32]. Furthermore, Jeremy Kahn introduced in his
Ph.D. thesis new dynamical methods to prove that some Julia sets of complex quadratic
polynomials are CH -removable, from which one can deduce that the boundary of the
Mandelbrot set is locally connected at the corresponding parameters. This is quite remi-
niscent of Adrien Douady’s philosophy that one “first plows in the dynamical plane and
then harvests in the parameter plane”.
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5.1. Main properties. Clearly, a compact set E is CH -removable whenever it is S-
removable. In particular, compact sets of absolute area zero are always C H -removable
in view of Theorem 4.16. Moreover, it follows from Proposition 4.3 that H °°-removable
sets are C H -removable. In fact, we have the following stronger statement.

Proposition 5.1. If E is A-removable, then E is C H -removable.
Proof. The proof is the same as in Proposition 4.3. O

Combining this with Corollary 3.6, we obtain

Corollary 5.2. If E is a compact countable union of compact sets of finite one-dimensional
Hausdorff measure, then E is CH -removable.

A remarkable consequence of the measurable Riemann mapping theorem is that the
property of being C H -removable is quasiconformally invariant.

Proposition 5.3. Let h : Coo — Co be a quasiconformal mapping with h(oco) = oo.
Then E is CH -removable if and only if h(E) is.

Proof. Since the inverse of a quasiconformal mapping is also quasiconformal, it suffices
to prove one of the two implications, say the first one. Assume that £ is CH -removable.
Note that £ and & (E) must have zero area, by the remark following Proposition 4.4 and
the fact that quasiconformal mappings preserve sets of measure zero.

Let g : Coo — C be any homeomorphism conformal outside 2(E). By Theo-
rem 4.2, there exists a quasiconformal mapping f : Coo — Coo such that puj—15-1 = p r
outside g(h(E)). By the uniqueness part, f o goh is a homeomorphism of C, onto itself
which is conformal outside E. Since E is CH -removable, f o g o & must be conformal
everywhere, so that g is quasiconformal on Co,. But g is conformal outside /#(E), a set
of zero area, hence it must be conformal everywhere by Weyl’s lemma. This shows that
h(E) is CH -removable. O

Corollary 5.4. Quasicircles (images of the unit circle under quasiconformal mappings of
the sphere) are C H -removable.

We also mention that David circles are also C H-removable, see [70]. David circles
are images of the unit circle under so-called David maps, which are generalizations of
quasiconformal mappings where the Beltrami coefficient is allowed to tend to one in a
controlled way.

Now, recall that by Proposition 4.10, it suffices to assume in the definition of S-
removability that the maps are quasiconformal outside the set. In this regard, the following
definition is natural.

Definition 5.5. We say that a compact set £ C C is Q CH -removable if every homeo-
morphism of Co, onto itself that is quasiconformal outside E is actually quasiconformal
everywhere.

As in Proposition 4.9, the property of being Q C H -removable is local.
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Proposition 5.6. The following are equivalent:

(1) For any open set U with E C U, every homeomorphism f : U — f(U) that is
quasiconformal on U \ E is actually quasiconformal on the whole open set U ;

(2) E is QCH -removable.

We do not know however if Proposition 5.6 holds without the assumption that U
contains E in (1), see the discussion following Question 5.26.
We also have the following analogue of Proposition 4.10.

Proposition 5.7. A compact set E is Q C H -removable if and only if it is C H -removable.

Proof. The proof is exactly the same as in Proposition 4.10, except for the fact that Q CH -
removable sets have zero area, which follows from the third remark following Proposi-
tion 4.4. O

Remark 5.8. Some authors claimed without proof that the direct implication (i.e. QCH -
removability implies CH -removability) follows trivially from the definition. However,
the difficult part is proving that Q C H-removable sets have zero area. We do not know
any elementary proof of this fact. Note that instead of resorting to Kaufman and Wu’s
theorem, one can also use known results on David maps.

An important consequence of Proposition 5.7 is that the property of being C H -remov-
able is invariant under finite disjoint unions.

Corollary 5.9. If E and F are disjoint CH -removable compact sets, then E U F is
CH -removable.

Proof. By Proposition 5.7, it suffices to prove the result for Q C H -removability. If f :
Coo — C is a homeomorphism of the sphere onto itself that is quasiconformal on
Co\(EUF)=(Cx\ E)\ F, then by QCH -removability of F and Proposition 5.6,
the map f is in fact quasiconformal on Co \ E. Since E is also Q CH -removable, we
get that f is actually quasiconformal everywhere. O

We conclude this subsection with a brief presentation of the removability theorems
of Jones and Smirnov [32], which give elegant and geometric sufficient conditions for
C H -removability.

First, we need some definitions. For the rest of this subsection, we suppose that K
is the boundary of a domain 2. We shall also assume for simplicity that 2 is simply
connected, although the following also works for arbitrary domains, with suitable modi-
fications.

Definition 5.10. A Whitney decomposition of Q2 consists of a countable collection of
dyadic squares {Q ; } contained in 2 such that

(1) the interiors of the squares are pairwise disjoint;
(2) the union of their closure is the whole domain £2;

(3) for each Q;, we have diam(Q ;) ~ dist(Q;, 0R2).
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The existence of such a decomposition is well known and is usually referred to as the
Whitney covering lemma.

Fix some point zg € Q and let I' := {y,; : z € K} be the family of all hyperbolic
geodesics y, connecting zo to some point z € K.

Definition 5.11. For each Whitney square Q ; C €2, the shadow of Q ; is defined by
S(Qj)i={zeK:y:N0Q; #£0}.

‘We can now state the main result of [32].

Theorem 5.12 (Jones—Smirnov [32]). Suppose that
> diam(S(Q))* < oo,
J

where the sum is over all Whitney squares Q j in Q. Then K is CH -removable.

Jones and Smirnov actually proved the stronger result that under the same assump-
tions, the compact set K is removable for Sobolev continuous functions. It is not known
whether Sobolev removability and C H -removability are equivalent notions.

See also [37] for a generalization of the above result.

An important consequence of Theorem 5.12 is that boundaries of sufficiently nice
simply connected domains are C H -removable.

Definition 5.13. We say that a simply connected domain 2 is a Holder domain if the
Riemann conformal map is Holder continuous on the closed unit disk.

Corollary 5.14 (Jones—Smirnov [32]). Boundaries of Holder domains are C H -removable.

This supersedes an earlier result of Jones [30] saying that boundaries of John domains
are C H -removable.

5.2. Nonremovable sets of zero area. Recall that by the first remark following Propo-
sition 4.4, compact sets of positive area are not C H -removable. The converse is well
known to be false. In this subsection, we present some examples of nonremovable sets of
zZero area.

As far as we know, the first such examples were given by Carleson [13] and Gehring [24],
who proved the following characterization of C H -removable product sets.

Theorem 5.15 (Carleson [13], Gehring [24]). If F C R is compact, then E .= F x [0, 1]
is CH -removable if and only if F is countable.

By taking F' to be any uncountable compact set of zero one-dimensional Lebesgue
measure, we obtain a nonremovable set E of zero area.

The proof of the direct implication in Theorem 5.15 involves the construction of a
homeomorphism of the sphere onto itself which is quasiconformal outside E of the form

x+iy = x +iy + g(y)pu((—o0, x)),

where p is any continuous probability measure on F' and g is some smooth function
supported on [0, 1]. If F' is uncountable, it is possible to choose g such that 4 is not qua-
siconformal everywhere. The other implication is a direct consequence of Theorem 3.7
and Proposition 5.1.
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In fact, if F is uncountable, then F X [0, 1] contains a closed graph which is not CH -
removable. This much stronger statement was proved by Kaufman [34]. See also [67] for
other examples of nonremovable product sets.

As for totally disconnected nonremovable sets of zero area, an example was given by
Rothberger [51] using elementary normal family arguments. More precisely, the proof
involves a simple and elegant geometric construction using a sequence of multiply con-
nected slit domains converging to a Cantor set of zero area. A non-Mo6bius homeomor-
phism of the sphere conformal outside the set is then obtained as a suitable limit of slit
mappings.

In the remaining of this subsection, we present a construction of nonremovable Jordan
curves of zero area due to Bishop [9]. First, we need a definition.

Definition 5.16. A Hausdorff measure function is an increasing continuous function
h : [0,00) — [0,00) with #(0) = 0. For such a function &, we denote by Ay (E)
the Hausdorff #-measure of a compact set E, so that the usual s-dimensional Hausdorff
measure corresponds to h(t) = t°.

Theorem 5.17 (Bishop [9]). For any Hausdor[f measure function h with h(t) = o(t) as
t — 0, there exists a Jordan curve I" such that

(1) T is not CH -removable;
(2) Ap(T) =0;
(3) there exists a non-Mobius ¢ € CH(2) with Ap(¢(I')) = 0, where Q := Coo \ T.

We also mention that the curve I' can be constructed so that it is “highly nonremov-
able”, in the sense that given any other curve I'” and any € > 0, there is a ¢ € CH(R2)
such that ¢ (T") belongs to the e-neighborhood of TV with respect to the Hausdorff metric.
Furthermore, Bishop’s argument can be used to obtain an analogue of Theorem 5.17 for
totally disconnected sets.

Remark 5.18. Theorem 5.17 implies that one can construct nonremovable curves of any
Hausdorff dimension greater or equal to one. On the other hand, there are examples
of compact sets of Hausdorff dimension two which are S-removable, hence also CH -
removable (see [38, Chapter V, Section 3.7]). This shows that Corollary 5.2 and Proposi-
tion 4.4 are best possible in terms of Hausdorff measures alone.

We now give a sketch of the proof of Theorem 5.17. All the details can be found
in [9].

First, we introduce the following notation. If A is any set, we denote by A(e) the
(open) e-neighborhood of 4, i.e.

A(e) :={z € C : dist(z, A) < €}.
The proof of Theorem 5.17 is based on the following lemma on the approximation of

conformal maps.

Lemma 5.19. Let I" be an analytic Jordan curve with complementary components 21,22
and let 1, ¥, be conformal maps on 21,2y such that Y1 (21) and ¥,(23) are the
complementary components of some Jordan curve I''. Further, let o, 8, n > 0.
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Then there exists an analytic Jordan curve y C I'(a) with complementary components
w1, wy and conformal maps ¢y, P2 on w1, w, such that

(1) ¢1(y) = ¢2(y) C I'(@);
Q) |¥j(z)—¢j2)| <bforz e Qi \TI' (), j =1,2;
(3) jumpy, ) (¢1.$2) < 1.
Here
jumpy, ) (1. $2) 1= )Scl;I; disty, () (P1(x), 2(x)),

where the distance is measured by arclength along ¢1(y) = ¢2(y).
Proof. See [9]. O
Let us assume the above lemma and prove Theorem 5.17.

Proof. Let (¢€,) be a sequence of positive numbers decreasing to zero which we will de-
termine later. Start with an analytic curve T'® with complementary components 9, Q9
and conformal maps ¥{, ¥ on 9, Q9 mapping 29, Q9 onto the complementary com-
ponents of some Jordan curve. By Lemma 5.19, there exists an analytic Jordan curve
I'! € T'%(ey) and conformal maps |, 4 approximating ¥{, ¥ such that

Y1 =y, (Y Y )(e)(= Y2 (M) ()
and
jump(y ) < 3.
At the n-th step, we replace I~ by I'" and y/7~!, y2~1 by ¢, ¥# such that

" cI'" Yep),

Y (") = Y3 (") C Y T e (= ¥5 7 T (en)
and
jump(y1, ¥y) <27

Then the limits I' := limy o0 I', ¥ 1= limp—o0 ¥} for j = 1,2 exist and Y1 = ¥
on I, thus these two maps define a continuous function on C, which is conformal out-
side I'. By a sufficiently small choice of each €,, we can make sure that I" is a Jordan
curve and that ¥, ¥, are injective on I', and therefore define a homeomorphism of the
sphere onto itself which is conformal outside I'. Moreover, we can arrange for this home-
omorphism not to be Mobius, since ¥, %% uniformly approximate ¥, v sufficiently
far away from I'. Finally, for A, (I") = Ay (¢(I")) = 0 to hold it suffices to choose €, so
small that both I~ and y/7~!(I'"~!) can be covered by N disks of radius €,, where N
is such that Nh(ey) is less than 27", This is possible since the curves are analytic and
h(t) =o(t)ast — 0. O
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5.3. Applications to the dynamics of complex quadratic polynomials. In this sub-
section, we discuss some applications of C H -removability to the dynamics of quadratic
polynomials. We consider the family of polynomials

fe(z) = 2% +c,

where ¢ € C.

Let us first review some elementary notions of holomorphic dynamics.

For ¢ € C, the basin of infinity of f. is defined as the set of all points that escape to
infinity under iteration :

De(o0) :={z € Coo: fI'(z) > 00 as n — 0},

where f,* is the composition of f. with itself # times. It is a completely invariant domain
containing the point co. Its complement in the Riemann sphere is denoted by X, and is
called the filled Julia set. The filled Julia set and the basin of infinity have a common
boundary 7, := 0K, = 9D, (c0) called the Julia set. The Julia set is either connected or
a Cantor set (totally disconnected perfect compact set), and the latter case happens if and
only if 0 € D, (c0). The Fatou set F. is defined as the complement of the Julia set :

Fe:=Coo \ Je = Dc(00) Uint(K,).

It is also the maximal set of normality of the sequence of iterates ( f")nen.

The Mandelbrot set M is the set of all parameters ¢ € C such that the Julia set 7,
is connected. It is a connected compact set. A famous conjecture (the so-called MLC-
conjecture) asserts that M is locally connected.

Let zo be a periodic point of f. of period p, meaning that p is the smallest integer
such that 7.7 (z9) = zo. We define the multiplier of z¢ as

p—1

Azo) := (£7) (z0) = [ [ S/ (£ (z0)).

n=0

The point zg is called attracting if |A(z¢)| < 1.

We say that a quadratic polynomial f, is hyperbolic if it has an attracting periodic
point or if its Julia set is a Cantor set. This is equivalent to the dynamics being expanding
on the Julia set. The following result on hyperbolic Julia sets is well known.

Proposition 5.20. Let f. be a hyperbolic quadratic polynomial whose Julia set J. is
connected. Then the Riemann map h : D — Do admits a Hélder continuous extension
to the closed unit disk D. In particular, [J. is locally connected.

Combining this with Jones and Smirnov’s result (Corollary 5.14), we obtain

Theorem 5.21. If f. is a hyperbolic quadratic polynomial whose Julia set J. is con-
nected, then J. is C H -removable.

Moreover, it is possible to show that totally disconnected Julia sets are boundaries
of John domains [15], thus they must be CH -removable by Theorem 5.12 or [30]. In
fact, using Mcmullen’s sufficient condition [44, Theorem 2.16], it is not difficult to prove
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that these Julia sets have absolute area zero, so they are actually S-removable by The-
orem 4.16. Combining this with Theorem 5.21, we obtain that every homeomorphism
of the sphere onto itself that is conformal outside the Julia set of a hyperbolic quadratic
polynomial is actually a Mobius transformation. Note that this is false if we consider
rational functions instead of polynomials. Indeed, there are hyperbolic rational functions
with nonremovable Julia sets; an example is given by R(z) := z2+1/z3 for A > 0 small.
The Julia set of R is a nonremovable Cantor set of circles of zero area. It is, however,
dynamically removable. See [27, Section 9.2] and [6, Section 11.8].

Other examples of C H -removable Julia sets include those of subhyperbolic or Collet-
Eckmann quadratic polynomials (see [30] and [26] for their definition), since they are
known to be boundaries of John domains [14] and of Holder domains [26] respectively.
It was conjectured in [30] that all Julia sets of quadratic polynomials are C H -removable.
This is now well known to be false, since there are Julia sets of positive area [11]. We do
not know any example though of a nonremovable quadratic Julia set with zero area.

Lastly, we mention the work of Jeremy Kahn who proved in his Ph.D. thesis that Julia
sets of quadratic polynomials f. with ¢ € M such that either

(1) both of the fixed points of f. are repelling and f; is not renormalizable
or
(2) all of the periodic cycles of f. are repelling and f. is not infinitely renormalizable

are CH -removable. Then one can deduce from this that the Mandelbrot set M is locally
connected at such c’s. This illustrates the importance of studying the C H -removability
of Julia sets of quadratic polynomials whose parameter belongs to the boundary of the
Mandelbrot set. We also remark that it is not known whether the boundary of M itself is
C H -removable. It is not even known if it has zero area, although we now know thanks to
a result of Shishikura [57] that its Hausdorff dimension is two.

5.4. Applications to conformal welding. In this subsection, we present another appli-
cation of C H -removability.

Let D be the open unit disk, let T := 0D be the unit circle and set D* := Cq \ D.
Let Q C Cx be a Jordan domain and let f : D — Q and g : D* — Q* be conformal
maps, where Q* := Cq \ Q. By a well-known theorem of Carathéodory, the maps f
and g extend to homeomorphisms on I, so that 1 :== f~' o g : T — T is an orientation-
preserving homeomorphism.

Definition 5.22. We say that i : T — T is a conformal welding for Q.

Note that / is uniquely defined up to post-composition and pre-composition with au-
tomorphisms of ). Moreover, if 7 is any Mobius transformation, then Q and 7'(2) give
rise to the same welding homeomorphism and thus the map

W [R] — [h]
is well-defined, where

[Q] :={T(Q) : T is a M&bius transformation }
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and
[h] ;== {¢pohoy ¢, ¢ € Aut(D) }.

Conformal welding has several important applications. For instance, it is a fundamen-
tal notion in the theory of Teichmiiller spaces and Fuchsian groups. It was also used by
Courant in the 1930’s in his solution of the Plateau-Douglas problem of minimal surfaces.
More recently, it was observed by Sharon and Mumford [56] that conformal welding is a
useful tool in the field of computer vision and numerical pattern recognition, especially
for the problem of classifying and recognizing objects from their observed silhouette. For
more information on the various applications of conformal welding, the interested reader
may consult the survey article [28] by Hamilton and the references therein.

It is well known that the map W is not surjective. However, its image contains the
set of quasisymmetric homeomorphisms; this is usually referred to as the fundamental
theorem of conformal welding and it was first proved by Pfluger [49] in 1960. Another
proof was published shortly after by Lehto and Virtanen [39]. We also refer the reader
to [10] for an elementary geometric proof using Koebe’s circle domain theorem as well
as [53] for a functional analytic proof.

As for the injectivity of the map W, the following proposition shows that it is closely
related to removability properties.

Proposition 5.23. Let Q, 2 C Coo be Jordan domains. Then W([2]) = W([S)) if and

only if there existsamap F € CH(C, \ 02) such that F(Q2) = Q.

Proof. TW([Q]) = W(~[§~2]), then there exist conformal maps f : D — Q, g : D* — Q%
f:D— Q,g:D* - Q* such that

flog=f"log

onT,i.e. _

foft=gog™!
on 02. It follows that the conformal map f o £~! on Q can be extended to a homeomor-
phism F : Co, — Cy which is conformal outside 9€2. Clearly, F(Q2) = Q.

Conversely, if there exists such an F,then Fo f : D — Qand Fog : D* — Q* are
conformal whenever f : D — Q and g : D* — Q* are conformal, so that

W(QD) =[(Fo f) " o(Fog)=1[f"0ogl=W(Q. O

Corollary 5.24. [f Q is a Jordan domain such that 92 is CH -removable, then for any
other Jordan domain 2, we have W[Q2] = W] if and only if [2] = [2].

In other words, if 2 is C H -removable, then the only other Jordan domains that yield
the same welding homeomorphism are the Mobius images of 2. It was observed by
Maxime Fortier Bourque in his master’s thesis that many authors have claimed that the
converse is true, either without proof or by giving an incorrect argument. See for instance
[46, Lemma 2], [36, Corollary I1.2], [29, Section 4] [8, Corollary 1], [9, pp.324-325],
[28, Section 3], [10, Remark 2], [5, Section 2.3], [40, Corollary 1.4]. If 02 is not
C H -removable, then there exists a non-Modbius homeomorphism F : Co, — Coo which
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is conformal outside d€2. As in Proposition 5.23, it follows that Q and F(2) give
rise to the same welding homeomorphism. However, one cannot directly deduce that
[F(S2)] # [€2] since there could exist a Mobius transformation 7" such that F(2) = T(R2),
even though F itself is non-Mdobius.

However, if in addition the boundary of €2 is assumed to have positive area, then the
converse of Corollary 5.24 holds. Indeed, by the measurable Riemann mapping theorem,
there is an infinite-dimensional family of non-Md&bius homeomorphisms of the sphere
conformal outside d2 and one can use some dimension argument to show that the im-
ages of 2 under these conformal homeomorphisms cannot always be Mobius-equivalent
to 2. A similar argument was used by Sullivan in his proof of the No Wandering Domain
theorem.

Unfortunately, as we saw earlier, there are curves of zero area that are not CH -
removable. We do not know if the converse of Corollary 5.24 holds for such curves.

Question 5.25. Is the converse of Corollary 5.24 true in the zero-area case? In other
words, if Q is a Jordan domain with zero area boundary such that the only other Jordan
domains giving rise to the same welding homeomorphism are the Mobius images of Q,
then is 02 necessarily CH -removable?

Finally, we end this subsection by mentioning that in some special cases, the weld-
ing homeomorphism can be identified explicitly. For instance, the welding homeomor-
phism of a proper polynomial lemniscate of degree n (i.e. a connected set of the form
Q :={z:|P(z)| < 1} where P is a polynomial of degree n) is given by the n-th root of
a Blaschke product of degree n whose zeros are the images of the zeros of P under a
conformal map of €2 onto D. Conversely, any n-th root of a Blaschke product of degree n
is the welding homeomorphism of a proper polynomial lemniscate of the same degree.
This was first proved by Ebenfelt, Khavinson and Shapiro [20]. See also [69] for a more
elementary proof and a generalization to rational lemniscates.

There are also several efficient numerical methods that can be used to recover the
boundary curve d€2 from the welding homeomorphism, such as Marshall’s Geodesic Zip-
per Algorithm [41] for example.

5.5. Open questions. We end this section by discussing some open questions related to
CH -removability.

Question 5.26. Is the union of two C H -removable compact sets also C H -removable?

Recall that the answer is yes if the two compact sets are assumed to be disjoint, by
Corollary 5.9. Furthermore, by Proposition 2.3, Proposition 3.2 and Proposition 4.13, the
answer is positive if the class CH 1is replaced by H*°, A or S.

The main difficulty in Question 5.26 is showing that Proposition 5.6 remains true
without the assumption that U contains E in (1). For the classes H* and A, we were
able to prove the corresponding result using Vitushkin’s localization operator and for the
class S, using the fact that S-removable sets are totally disconnected. Unfortunately, these
two approaches seem to fail for C H -removable sets.
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Question 5.27 (Bishop [9]). Let T" be a Jordan curve. If T is not C H -removable, does it
contain a nonremovable closed proper subset?

Clearly, the answer is positive if [" has positive area. A positive answer in the general
case would obviously follow from a positive answer to Question 5.26.

Question 5.28. Let E C C be a compact set which is not CH -removable. How large
is CH(R2)? In particular, if f € CH(R2) is non-Mdobius, does there exist another non-
Mébius homeomorphism in CH (2) which is not of the form T o f where T is Mobius?

As mentioned before Question 5.25, if E has positive area then CH (£2) is very large.
An affirmative answer to Question 5.25 would follow if one could prove that C H(S2) is
always large enough, even in the zero-area case.

Recall that if £ is not removable for the class S, then there exists a conformal map
of © onto the complement of a set of positive area, in view of Theorem 4.16.

Question 5.29. If E C C is compact and not CH -removable, does there exist a map
f € CH(R2) such that f(E) has positive area?

If we could prove that the answer is yes, then this would give a positive answer to
Question 5.25.

Finally, we mention a question raised by Scott Sheffield on the removability of the
famous Schramm-Loewner Evolution with parameter k (SLE,) (see [54] and [50] for the
definition and main properties).

Question 5.30 (Sheffield [55]). Is SLE, (almost surely) C H -removable, for k € [4,8)?

It is known that if ¥ € (0, 4), then SLE, is the boundary of a Holder domain [50] and
thus is CH -removable by Corollary 5.14. On the other hand, for ¥ > 8, the curve SLE,
is space-filling hence certainly not removable.

An answer to Question 5.30 would be very interesting in view of applications to ran-
dom conformal welding. See [55, Question 8] for more information.
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