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Abstract. In this article we describe the crystallization conjecture. It states that, in appropri-
ate physical conditions, interacting particles always place themselves into periodic configurations,
breaking thereby the natural translation-invariance of the system. This famous problem is still
largely open. Mathematically, it amounts to studying the minima of a real-valued function defined
on R3N where N is the number of particles, which tends to infinity. We review the existing litera-
ture and mention several related open problems, of which many have not been thoroughly studied.
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Introduction

At the microscopic scale, most crystals are composed of atoms which are arranged on
a periodic lattice. This specific geometric structure has important consequences at the
macroscopic scale. For instance, in snowflakes the atoms are arranged on an hexagonal
lattice, which explains the beautiful six-pointed figures that can be found in nature. The
aim of crystallography is to study those periodic structures and their properties at larger
scales.

2014 was declared the year of crystallography by UNESCO [236] and this gives us
the opportunity to draw attention to a difficult mathematical conjecture, also important
from a physical point of view, which has been studied a lot without being completely
solved. While crystallographers study the properties of some periodic arrangements and
compare them, there remains a more fundamental question: why is it favorable (at low
temperature) for the atoms to spontaneously arrange themselves on a periodic array? This
periodic order seems to only appear in the limit of a large number of particles, which
makes the question particularly difficult.

In this article we rigorously formulate this long-standing problem and we make a re-
view of the existing results as well as of the remaining open questions. We will mostly dis-
cuss the simplest model (classical particles interacting with a two-body potential at zero
temperature), before addressing more advanced situations (for instance quantum systems
and/or positive temperature).

1. The classical model

1.1. Energy. Let us consider a set of N classical identical particles in Rd (in practice
d D 1; 2; 3), interacting by pairs through a potential V depending only on the distance
between them. We denote by x1; : : : ; xN 2 Rd and p1; : : : ; pN 2 Rd the positions and
momenta of these particles. The model to be used is that of the Hamiltonian dynamics,
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based on the energy

HN .x1; : : : ; xN ; p1; : : : ; pN / D

NX
iD1

jpi j
2

2m
C

X
1�i<j�N

V
�ˇ̌
xi � xj

ˇ̌�
: (1)

Here m is the mass of the particles and j � j is the Euclidean norm of Rd .
At zero temperature, the equilibrium states are the minima of HN , which all satisfy

p1 D � � � D pN D 0. If one is only interested in those, it is therefore sufficient to consider
the potential energy

EN .x1; : : : ; xN / D
X

1�i<j�N

V
�ˇ̌
xi � xj

ˇ̌�
;

and to understand how the xi ’s solving the minimization problem

E.N/ D inf
n
EN .x1; : : : ; xN /; x1; : : : ; xN 2 Rd

o
; (2)

are arranged in Rd in the limit N ! C1. Let us note that EN is invariant under trans-
lations and rotations. Any configuration may be rotated and translated by a fixed vector
without changing the total energy. Minimizers of (2) are thus not unique. At positive
temperature one should consider the Gibbs measure exp.�HN =T /, as will be discussed
in Section 3.1 below.

In practice the potential V depends on the type of atoms and is not explicitly known.
As atoms are not elementary particles, V cannot be deduced from first principles. It
is therefore important to obtain mathematical results which are sufficiently generic with
regards to V .

Qualitatively, the function V is usually assumed to be positive (repulsive) at small
distances and negative (attractive) at large distances. Since the interaction between two
atoms which are far from each other is small, we assume that V.r/! 0 as r ! C1. A
typical and very popular example is the Lennard-Jones potential

VLJ.r/ D
1

12

�r0
r

�12
�
1

6

�r0
r

�6
; (3)

drawn in Figure 1. The behavior at infinity in r�6 mimics the Van der Waals interaction,
that is, the one for radially symmetric neutral particles. The behavior at r D 0 is, on
the other hand, completely empirical. The number r0 > 0 is the equilibrium distance
for two isolated particles. It may be seen from Figure 1 that for this specific potential
in the plane, the solutions xi to the minimization problem (2) are approximately located
on an hexagonal lattice and that they moreover form a big cluster having the shape of an
hexagon. Nobody knows how to prove these observations rigorously and this is essentially
the crystallization conjecture that will be discussed in this article.

For the rest of the article, we consider a general radial potential V that tends to zero
at infinity. Some assumptions are however necessary to ensure that our question is well
posed.
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Figure 1. Left: the Lennard-Jones potential (3). Right: a minimizer for the variational problem (2),
computed numerically in [20], with N D 100 and d D 2. The particles seem to arrange themselves
on an hexagonal lattice, and to form a large cluster having the shape of an hexagon.

1.2. Binding: existence of minimizers for E.N/. The first assumption that we need is
that particles can bind, that is, E.N/ should possess at least one minimizer (maybe only
for a subsequenceNj !1). For instance, if V > 0, then E.N/ D 0 for anyN 2 N, but
the minimization problem (2) has no solution. Indeed, the infimum of EN .x1; : : : ; xN /
is reached only when the distances between particles xi tend to infinity. It is therefore
mandatory to assume that minV � 0 (or to force the particles to stay together, as will
be discussed in Section 2.4). In physical situations the interaction is attractive at some
distance and we therefore always have

minV < 0:

Note that E.2/ D minV , hence this implies that E.2/ < 0.
Next we remark that the energy is subadditive, that is, it satisfies

8N;P � 1; E.N C P / � E.N/CE.P /: (4)

This inequality is shown by sending P particles at infinity and using the fact that V ! 0.
In other words, we write

E.N C P / � lim
j� j!1

ENCP .x1; : : : ; xN ; y1 C �; yP C �/

D EN .x1; : : : ; xN /C EP .y1; : : : ; yP /

and get (4) after optimizing with respect to the xj ’s and yj ’s. Applying (4) inductively,
we find that

E.N/ � bN=2cE.2/ � .N � 1/
E.2/

2
:

The optimal energy E.N/ is negative and bounded above by a term which behaves lin-
early in the particle number N . Since we require that minV < 0, we deduce that

E.N/

N
�
E.2/

2

�
1 �

1

N

�
< 0: (5)
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When the strict binding inequalities

E.N/ < E.K/CE.N �K/ (6)

hold for all K D 1; : : : ; N � 1 and when V is a continuous function on .0;1/, then
E.N/ can be shown to possess at least one minimizer.1 The verification of (6) can be
complicated for a general V , but it is easy if V < 0 at infinity. In this case, (6) can be
proved by induction on N , using that if two groups of particles are far away, they always
attract each other. We conclude from this discussion that when V is continuous on .0;1/
and negative at infinity, then E.N/ always possesses minimizers and satisfies (5).

It can also be proved that E.N/
N.N�1/

is non-decreasing, which gives us an inequality in
the reverse order:

E.N/

N
� .N � 1/

E.2/

2
: (7)

The latter is indeed obvious from the formula of EN , since each of the N.N � 1/=2 terms
in the sum can be bounded from below by V.jxi � xj j/ � min.V / D E.2/. As we will
explain in the next section, the lower bound (7) is not optimal in physically interesting
cases.

1.3. Stability and the behavior of E.N/ for large N . We have seen that E.N/ is
bounded above by a linear term in N . This linear behavior is indeed the interesting
physical case and we will always require that the following limit

e1 D lim
N!C1

E.N/

N
; (8)

exists and is finite. The reason is the following: if we gather two macroscopic identical
systems (for a “real life” object, N � 1023), the formation energy is by definition equal
to to 2E.N/�E.2N/ > 0, which may be arbitrarily large if E.N/ is super-linear.2 Note
that e1 < 0 from (5), since we require that min.V / < 0.

It is clear that the existence of the limit (8) implies that there is a lower bound of the
form

E.N/ � �CN; (9)

but the converse assertion is actually true and it is sometimes called Fekete’s subadditive
lemma [85]. Using that E.N/ � bN=KcE.K/ for every fixed K and taking the limit
N !1, we even deduce

e1 D inf
N�1

E.N/

N
:

In other words, C D �e1 is the optimal constant in (9). So we have to restrict ourselves
to the potentials V for which (9) is satisfied, and those are called stable in the literature.

1The idea is to consider a minimizing sequence and to study whether some particles escape. If all the xj ’s
are uniformly bounded (after applying an appropriate translation) then we get the existence of a minimizer using
the continuity of V . IfK particles escape, then we get a contradiction from (6).

2For instance 2E.N/�E.2N/ � C.2a � 2/Na ifE.N/ � �CNa with a > 1 and C > 0.
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The lower bound (9) can be rewritten in the formX
1�i<j�N

V.jxi � xj j/ � �CN (10)

for all N and all x1; : : : ; xN 2 Rd . Stable potentials have been widely studied since the
60s [67, 87, 89, 147, 204, 206, 209].

The simplest example of a stable potential is

V D V1 C V2; with V1 � 0; bV2 � 0 and
Z
Rd

bV2 < C1; (11)

where bV2 denotes the Fourier transform of x 7! V2.jxj/, cf. [209, Prop. 3.2.7]. For V2,
the proof relies on the observation that

X
1�i<j�N

V2.jxi � xj j/ D
1

2

NX
iD1

NX
jD1

V2.jxi � xj j/ �
N

2
V.0/

D
1

2.2�/d=2

Z
Rd

bV2.k/ˇ̌̌ NX
jD1

eik�xj
ˇ̌̌2
dk �

N

2
V.0/ � �

N

2
V.0/:

(12)

However, there are many physical potentials that cannot be written in the form (11).
Another famous example is that of a potential which is non-integrable at 0 but is

bounded from below by an integrable function at infinity. Namely, V is stable when

V.r/ �

8̂<̂
:
'1.r/ for 0 � r � a
�C for a � r � b
�'2.r/ for r � b

with '1 and '2 two positive decreasing functions on .0; a/ and .b;1/ respectively, such
that Z a

0

'1.r/ r
d�1 dr D1;

Z 1
b

'2.r/ r
d�1 dr <1;

see [67] and [89, App. A]. The idea behind these conditions is that the fast increase at
zero prevents the particles from being too close to each other in average. The integrability
of V at infinity then makes the double sum in EN behave like N . The Lennard-Jones
potential (3) satisfies these conditions in dimensions d � 5, and it is therefore stable.

1.4. Formation of a macroscopic object. The assumptions (4)–(9) above imply the
existence of a thermodynamic limit (8), but they do not ensure that a macroscopic object
is formed in this limit. Their aim is actually to avoid a collapse of the system by preventing
particles to be too close to each other. It is still possible that, in the optimal configuration,
particles do not stay close to each other. This situation should not be allowed.
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In order to have the formation of a macroscopic object, we want that the minimizing
configuration of N particles fill a volume of size N , in the limit N ! C1. Moreover,
the particles should be “evenly spaced” in this volume, as it is clear in the example of the
Lennard-Jones potential shown in Figure 1.

The mathematical formulation of this property is not unique. One possibility is to
apply a dilation of factor N�1=d to the optimal configuration (this is a way to pass to the
macroscopic scale), and to consider the empirical measure

MN D
1

N

NX
iD1

ı xi
N1=d

: (13)

We ask if, after extracting a subsequence Nj and translating the whole system by a vec-
tor �j ,

MNj .� � �j / �* M weakly-� in the sense of measures, with M 2 L1.Rd /,

supp.M/ compact and
Z
Rd

M.x/ dx D 1: (14)

This means that the macroscopic object is included in the support of M, and that, at this
scale the system is continuous, with the function M as local density. If (14) is satisfied,
a macroscopic object has formed. The knowledge about the positions of particles is very
crude, because of the dilation of factor N�1=d , which does not account for the local
behavior of the system.

Finding conditions on the potential which imply the existence of the weak limit (14)
is an important problem. However, it has never been, to our knowledge, studied mathe-
matically. For the Lennard-Jones potential VLJ in dimension 2, Figure 1 indicates that the
limit M is proportional to the characteristic function of a hexagon. In this example, the
shape of the support of M, which is visible at the macroscopic scale (as for instance snow
flake structure), is a manifestation of the crystalline order at the microscopic scale.

In the next section we discuss the crystallization conjecture, which concerns the mi-
croscopic properties of the system. We will come back to the macroscopic scale later in
Section 2.8 below.

2. The crystallization conjecture

2.1. Formulation. We now come to the question which has been intensively studied
since the 1960s, without being solved [196, 235]. This question is: does the system be-
come periodic in the limit N ! 1? This may be formulated as follows. Let us denote
by

�N D

NX
iD1

ıxi (15)

the empirical measure associated with the solution x1; : : : ; xN of problem (2). Note that,
contrary to (13), we do not use any dilation, and this means that we study the system at
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the microscopic scale. We ask if, after extracting a subsequence Nj and translating the
whole system by a vector �j ,

�Nj .� � �j / * � (16)

locally, where � is a locally finite measure. We say that crystallization occurs if � is
periodic, that is, if there exists a discrete subgroup

G D

8<: dX
jD1

nj vj ; nj 2 Z

9=; � Rd ; (17)

generated by d independent vectors v1; : : : ; vd 2 Rd , such that �.� C g/ D � for all
g 2 G. In order to avoid trivial cases, we assume here that G is the maximal group satis-
fying this property. Put differently, the period is supposed to be minimal. The invariance
under the action of G does not imply that the particles are located on the vertices of a
periodic lattice. This would correspond to the stronger hypothesis

� D
X
g2G

ıgCy ; (18)

for some fixed vector y 2 Rd , defining the position of the lattice in space. For instance,
it is possible to have 3 particles in the unit cell of the lattice G, which are repeated peri-
odically, as in Figure 2. In such a case, the configuration of particles is the superposition
of 3 shifted crystalline lattices, and the measure has the form

� D
X
g2G

ıgCy C
X
g2G

ıgCyC� C
X
g2G

ıgCyC� 0 :

v1

v2
τ

τ ′

y

Figure 2. Example of a periodic configuration in 2D.

In the special case where the particles are exactly on the nodes of the lattice G, as
in (18), we use the word Bravais lattice or mono-atomic lattice. For instance, in dimen-
sion 3, the simple cubic lattice (SC), face-centered cubic lattice (FCC) and body-centered
cubic lattice (BCC) are all Bravais lattices. On the other hand, the hexagonal close packed
lattice (HCP) is not. It is the superposition of two shifted Bravais lattices (Figure 3). This
configuration is the one used to pile up oranges in markets.
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Crystallization may be seen as a symmetry breaking of the system: the invariance of
the system under affine isometries is lost. If the positions of the particles form a periodic
lattice, then applying a translation, rotation or reflexion to the system does not change
its energy. Hence, the set of minimizing lattices has the structure of the compact group�
Rd=G

�
n Od .R/. Choosing a special minimizer for the positions xi at finite N , it is

possible to select one of the limiting lattices.
The microscopic scale convergence (16) does not give any information, in principle,

about the behavior at the macroscopic scale, such as the convergence of the dilated mea-
sure MN defined by (14). Conversely, the convergence of MN does not give any clue
about that of �N . However, one actually expects that the two phenomena are related. The
understanding of the link between these two scales is still incomplete, as we will discuss
in Section 2.8 below.

simple cubic (SC) face centered cubic (FCC) body centered cubic (BCC)

hexagonal close packed (HCP)

Figure 3. Most common configurations in 3D. ©Wikipedia, GNU FDL, by C. Dang Ngoc Chan.

Should crystallization be proved, the next question is to know which periodic configu-
rations are present in the limit (that is, what is the group G). Another question is to know
if � has the particular form (18) corresponding to a Bravais lattice. If not, one would
ask how many particles are present in each periodic cell, and what are their positions. In
physical systems, lattices with larger symmetry groups seem to be more common [142].
These lattices are the hexagonal and square lattices in 2D, and the lattices presented in
Figure 3 in 3D.

The ubiquity of crystals (at low temperature) indicates that crystallization is a univer-
sal phenomenon, which should occur for a wide class of interaction potentials V . As we
will see, several mathematical works prove crystallization, but they are based on restric-
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tive assumptions on V . To date, no generic class of potentials has been identified, for
which crystallization can be proved.

2.2. Convergence of �N and the minimal distance between the particles. Before
discussing existing results about the crystallization problem in itself, we discuss when the
sequence �N can be shown to have subsequences that converge locally, weakly-� in the
sense of measures, as we required in (16). We need to show that the number of particles
in an arbitrary fixed ball (centered at �N and of radius R) is uniformly bounded in the
limit N !1:

#fjxj � �N j � Rg � C.R/ <1: (19)

If this property is satisfied, by usual compactness arguments we can then construct a
subsequence of �N .� � �N / which converges locally to some �. We expect that C.R/
will behave like the volume jBRj of the ball for large R, but this is not needed at this
point.

The condition (19) immediately follows with C.R/ D jBRj=jB"j C O.Rd�1/ if we
can prove that the smallest distance between the particles does not tend to zero in the limit
N !1:

min
1�i¤j�N

jxi � xj j � 2" > 0

for a minimizer of EN . The idea is often that a very fast blow up of V at zero should
prevent that the particles get too close, but proving this very natural property can actually
be a difficult task. It has been the object of several works: the Lennard-Jones potential
was covered in [25, 171, 219, 250, 251, 253] and more general potentials were addressed
in [3,168,241,242]. As we will see in Section 3.1, the situation is much easier at positive
temperature where it is sufficient to estimate the probability that some particles get very
close.

2.3. Crystallization results and sphere packing.

In dimension d D 1. In dimension one, the problem of crystallization is rather well
understood. The first results are due to Ventevogel and Nijboer [238–240]: they prove
that the limit e1 is reached by equidistant configurations. This property is proved for a
wide class of potentials V (they are assumed to be non-increasing up to a distance r0 > 0,
and non-decreasing for r > r0, with additional hypotheses on V 00), which includes the
Lennard-Jones potential VLJ. The convergence (16) is not proved in these works and
is still an open problem. It has been proved in the special case of VLJ by Gardner and
Radin [105].

For some explicit examples of potentials V (non-increasing up to a distance r0 > 0,
and non-decreasing for r > r0), it has been proved that the optimal configuration does
not converge to a Bravais lattice. The limit can be clusters of particles which are globally
periodic [238]. With an oscillating potential V , it is even possible to obtain configura-
tions which have no periodicity [124]. In the latter, it is also proved that such aperiodic
configurations can be found as minimizers of a potential V which is an arbitrarily small
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perturbation of a potential for which crystallization occurs. This indicates that crystalliza-
tion is an unstable property if V is perturbed by a small but highly oscillating function.
Thus, the conditions on V ensuring crystallization are probably complex and have not
been completely understood yet, even in one dimension. It is commonly assumed that
the interaction potential is smooth, stable, non-increasing up to a distance r0, and non-
decreasing for r > r0. However, no crystallization result has been proved under these
assumptions only, even in one dimension.

In dimension d � 2. In higher dimensions, the problem is far from being understood.
Most results are based on geometrical arguments, which allow to reduce the question
to the sphere packing problem. This question consists in finding the position of non-
overlapping spheres of equal radii giving the largest possible density. In two dimensions,
the solution is precisely the hexagonal lattice (see Figure 4). Thue has given two proofs of
this result (in 1892 and in 1910), which both happened to contain flaws. A correct proof
was then provided in 1940 by Tóth [61, 200]. In dimension three, the problem is signif-
icantly more difficult. Kepler formulated it in 1611, and it is therefore often called Ke-
pler’s conjecture. A computer-assisted proof was given by Hales in 1999, then published
in 2005 in [123]. Only recently (August 2014) has it been fully validated, after eleven
years of work by the Flyspeck team [91], who managed to give a formal proof based on
the softwares Isabell and HOL Light. An important difference with the two-dimensional
case is that, in 3D, the problem has many solutions, including the hexagonal close packed
lattice, the face centered cubic lattice and even non-periodic arrangements. The fact that
FCC is the unique minimizer among Bravais lattices was proved by Gauss [106].

The link between the crystallization problem and the sphere packing problem has
been highlighted by Heitmann and Radin in [129]. Indeed, if the interaction potential V
is given by

V.r/ D

8̂<̂
:
C1 if 0 � r < 1;
�1 if r D 1;
0 if r > 1;

(20)

then the particles can be considered as hard spheres of radius 1=2. These spheres tend to
touch due to the condition V.1/ D �1. The crystallization problem is thus equivalent to
the sphere packing, and one obtains that the solution is the hexagonal lattice in 2D, and
either FCC or the other sphere packing solutions in 3D.

Subsequent works aimed at generalizing this result to potentials which are similar
to (20), but are closer to physically realistic interactions. For instance, in [194], Radin
considered a potential satisfying (20) for r 2 Œ0; 1�, which is non-decreasing for r � 1;
and tends to 0 fast enough as r ! C1. In a famous article [229], Theil dealt with
smoother, more realistic potentials (which look like VLJ), in dimension two. However, he
still used restrictive hypotheses on V . This work has been extended to dimension three
recently in [90], in which an additional three-body term is added, which favors particular
angles between interatomic bonds. A similar strategy has been used in dimension d D 2
in [78, 169, 170], where the optimal lattice may be a square lattice. One can therefore
consider that the problem is not completely understood in dimension two, and completely
open in dimension three.
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All these results in dimensions two and three rely heavily on the similarity with the
sphere packing problem. However, it is not clear if this should be the correct physical
explanation. This would exclude, for instance, configurations which are periodic but not
mono-atomic. In such a case, particles form small groups which are repeated periodi-
cally. The crystallization conjecture for a more general class of potentials is still an open
problem.

Figure 4. Packing of identical disks, maximizing the density. The centers of the disks lie on a
hexagonal lattice.

The sphere packing problem becomes more complex as the dimension increases. Note
however that, in dimensions d D 4; 8; 24, there are special lattices which are believed
to solve the best packing problem [57]. Although the sphere packing problem in high
dimension plays an important role in information theory, it is natural to restrict ourselves
to the (physically relevant) cases of dimension d D 1; 2; 3. Indeed it has been conjectured
that crystallization only occurs in small space dimensions for physical interactions [224,
233, 234].

2.4. A variant: minimization at fixed density. It is possible to consider a potential V
which does not allow for the formation of a macroscopic object, if we force the particles to
stay together. The idea is to minimize the energy while keeping the density of particles �
fixed. This may be done by confining the particles in a large domain� and imposing that
their number be N ' �j�j, where j�j is the volume of �. This way, we get a family of
problems depending on the parameter �.

To be more precise, we consider the minimization problem for N particles in the
domain �

E�.N / D inf
˚
EN .x1; : : : ; xN /; x1; : : : ; xN 2 �

	
; (21)

and we study the limit

e.�/ D lim
N!1
j�N j!1
N=j�N j!�

E�N .N /

N
(22)

where � > 0 is fixed and �N is a sequence of domains which covers the whole space in
the limit N !1. This limit should not depend on the chosen sequence. For instance, it
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is often assumed that the measure of the boundary of �N is a lower order term compared
to its volume j�N j [209]. To fix the ideas, one can think of �N as a cube of side length
.N=�/1=d , or a convex symmetric domain of unit volume, dilated by a factor .N=�/1=d ,
as for instance a ball of radius proportional to .N=�/1=d .

Since E�.N / � E.N/ � e1N , it is clear that e.�/ � e1 for all � > 0, where e1
is the constant defined in (8). In order for the limit (22) to exist, we also need an up-
per bound. Since the particles are confined to the domain �, we cannot send them to
infinity anymore, hence we loose most of the properties of Section 1.2. The energy is
not necessarily subadditive as in (4) and we may well have E.N/ > 0. Furthermore, if
the function V tends to zero too slowly at infinity, each of the particles in the domain �
interacts with many of the other particles and the energy might grow faster than N . A
natural condition is to assume that V is integrable at infinity:Z 1

b

jV.r/j rd�1 dr <1:

We can then easily find a position of the particles that will give an energy of order N ,
henceE.N/ � CN . Under this assumption and the usual stability condition (9), the limit
in (22) can be shown to exist and to be independent of the sequence �N . Potentials that
are not integrable are also sometimes considered, but then one should divide the energy
by the appropriate power of N .

Whether the energy behaves linearly or not, the problem is to study the behavior of the
particle positions x1; : : : ; xN solution to the minimization problem (21), and the questions
are similar to the preceding case. A difference is that the model is no more invariant under
affine isometries. Different extraction of the sequence of minimizers may in principle give
limiting lattices with different positions. In practice, the position of the limiting lattice is
often determined by the choice of a particular sequence�N (see [145] for a discussion of
this aspect in dimension d D 1).

Since a cube �N of volume N=� can be placed in a cube �0N of volume N=�0 when
�0 < �, an optimal position of the particles for �N can be used in �0N , and we conclude
that � 7! e.�/ is non-decreasing. Assume now that V has an attractive part and that the
problem E.N/ studied before in the whole space lead to a crystal. This crystal has an
average density � D n=jQj where Q is the unit cell and n is the number of particles in
it (n D 1 for a Bravais lattice). Then, if we impose a density � < � the domain will
typically be larger than the natural size of the system and the particles will solve the exact
problem E.N/, that is, we have E�.N / D E.N/. We conclude that e.�/ D e.�/ D e1
is constant for 0 < � � �. The energy only starts to grow for � > �.

The fact that one can consider a repulsive potential changes the physical meaning of
the problem. In particular, the relation with the sphere packing problem is less clear. In
the case of the preceding section, it is natural to consider that the particles are attracted to
each other, and behave like hard spheres at short range, therefore trying to maximize the
density of the system. Doing so, they tend to maximize the number of their neighbors.
Here, particles can repel each other fiercely, and tend to maximize their mutual distance,
while staying in the domain�. Experiments and numerical simulations indicate, however,
that here again crystallization occurs.
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In dimension one, Ventevogel and Nijboer have proved crystallization for any density
� > 0 in the case of non-negative non-increasing convex potential [238]. In [239, 240],
they prove the same result for the potential V.x/ D exp.�˛x2/ and V.x/ D .ˇC x2/�1,
for ˛; ˇ > 0, still in dimension one. This allows to generalize the result to any convex
combination of these potential, such as V.x/ D

R C1
0

e�˛x
2
d�.˛/; for any non-negative

measure �. Such potentials may be non-convex. In addition, they give a necessary con-
dition for crystallization, in any dimension: if crystallization occurs for sufficiently small
densities, and V is continuous, then bV � 0. As before, the situation is much less clear in
dimension d � 2.

2.5. Optimal lattices and special functions. If crystallization is assumed, it is possible
to determine the most favorable periodic configurations by comparing their energy per
particle e1 and e.�/, defined by (8) and (22). In some cases, this question may be related
to a problem in analytic number theory, involving special functions.

Indeed, if the particles lie on the vertices of a Bravais lattice G (a discrete subgroup
of Rd such as (17), with unit cell Q), the limit energy per particle reads:

1

2

X
g2Gnf0g

V.g/: (23)

Finding the optimal configuration amounts to minimize this expression with respect toG.
There is no additional constraint on G for e1. In contrast, one needs to fix the volume of
the unit cell Q of G to jQj D 1=� when the density is fixed, as for instance in the case of
a repulsive potential.

Epstein zeta function. With a Lennard-Jones type potential

V.r/ D
1

a

�r0
r

�a
�
1

b

�r0
r

�b
; (24)

where a > b > d , we get

1

2

X
g2Gnf0g

VLJ.g/ D
�d .S; a/

a
�
�d .S; b/

b
(25)

where S is a symmetric positive definite matrix of size d , which is related to the Gram
matrix of the basis

�
vj
�
1�j�d

, and such that r0S1=2Zd D G. Here,

�d .S; s/ D
1

2

X
z2Zd nf0g

1

.zT Sz/s=2
(26)

is the Epstein zeta function [81]. Still assuming that we have crystallization on a Bravais
lattice, the minimal energy for VLJ reads

eLJ;� D min
SDST>0

�
�d .S; a/

a
�
�d .S; b/

b

�
: (27)
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Except in dimension d D 1, the solution to this problem is still unknown, even for the
physically relevant cases a D 12 and b D 6.

If the density � > 0 is fixed as discussed in Section 2.4, it is possible to consider a
repulsive potential V.r/ D r�s with s > d . Hence, we need to minimize the value of the
zeta function (26), with respect to G (that is, with respect to the matrix S )

e� .�; s/ D min
SDST>0

det.S/D��2

�d .S; s/: (28)

Here, det.S/ is the volume of the unit cell of the lattice to the power 2. Applying a dilation
of the lattice, one easily proves that

e� .�; s/ D �
s=d e� .1; s/

and that it is sufficient to study the problem in which the unit cell has a volume equal to 1.
Without loss of generality, we can thus assume that det.S/ D 1. There is a link with the
sphere packing since, in the limit s ! 1, the optimal lattice converges to a solution to
the d -dimensional sphere packing problem [210]. It should be noted that �d .S; s/ is not
bounded. If the smallest eigenvalue of S reaches 0, then �d .S; s/ tends toC1.

The function s 7! �d .S; s/ has an analytic continuation to the set Cnfdg. This exten-
sion has a simple pole at s D d , with a residue equal to �d=2�.d=2/�1 (if det.S/ D 1),
and satisfies the functional equation

�d .S; s/ D �
s�d=2

�
�
d�s
2

�
�. s

2
/
�d .S

�1; d � s/ (29)

where S�1 is the matrix associated with the latticeG� D
˚
k 2 Rd W k � g 2 Z; 8g 2 G

	
;

called the dual lattice of G [36, 37]. Thus, it is also possible to study the minimization
problem (28) even if 0 < s < d . As we will see below, this problem is of great impor-
tance from a physical point of view, particularly if d D 3 and s D 1. Formula (29)
implies that if S is a solution to the minimization problem e� .1; s/, then S�1 is a solution
to e� .1; d � s/.

Going back to the case of the Lennard-Jones potential (27), we see that, after dilating
the problem with fixed density � > 0, it amounts to minimize the function

eLJ;� .�/ D �
a=d min

det.S/D1

�
�d .S; a/

a
� �

b�a
d
�d .S; b/

b

�
: (30)

Since b > a is assumed, for large � the problem reduces to the minimization of �d .S; a/.
For the minimization problem (27) with no density constraint, one finally needs to con-
sider � which minimizes the function � 7! eLJ;� .�/. In this case, the optimal lattice is
unknown.

One can derive a representation of �d as a series with exponentially decaying coef-
ficients. The most widely used method is due to Ewald [31, 83, 115] and relies on the
integral representation

1

rs
D

1

2�.s=2/

Z 1
0

e�� r
2

� s=2�1 d�: (31)
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For s > d , we have, if det.S/ D 1,

�d .S; s/ D
�s=2

�.s=2/

�
1

s � d
�
1

s

C
1

2

Z 1
1

��
�d .S; �/ � 1

�
� s=2�1 C

�
�d .S

�1; �/ � 1
�
�
d�s
2 �1

�
d�

�
; (32)

where
�d .S; ˛/ D

X
z2Zd

e��˛z
T Sz : (33)

is the Jacobi theta function. Here, we have used Poisson’s summation formula

�d .S; ˛/ D
1

˛d=2
�d

�
S�1;

1

˛

�
: (34)

Formula (32) is also meaningful for 0 < s < d and can be used to prove that �d has
an analytic extension to C n fdg (� has a pole at the origin which compensates for the
divergent term 1=s), as we already mentioned. Formula (32) is widely used by physicists.
It gives a way to compute numerically the values of �d .S; s/ very accurately, allowing to
formulate conjectures on what should be proved.

We are now going to describe what is expected for the minimization of the Epstein
zeta function.

Results for � and � in dimension 2. In dimension d D 2, it has been proved by
Rankin [198], Cassels [48], Ennola [79] and Diananda [65], that the hexagonal lattice
is the unique minimizer of the zeta function, for any s > 0, when the density is fixed. In
other words, we have

�2.S; s/ � �2.Shex; s/ � 0 (35)

for all s > 0 and all S such that det.S/ D 1, where

Shex D
2
p
3

�
1 1=2

1=2 1

�
corresponds to the hexagonal lattice. In addition, the inequality (35) is strict if S ¤ Shex,
up to the invariances of the problem (rotation and change of basis of the lattice). Another
proof is given in [183]. Inequality (35) is still valid for s D 2 where both functions have
a simple pole with equal residue. When s ! 0, we have a divergence which needs to be
dealt with, but the result is still true [214]. We have made some numerical calculations
that confirm these results, see Figure 5 below.

A famous result due to Montgomery [180] deals with the case of a Gaussian repulsive
interaction in dimension d D 2. In this case, the problem reduces to the study of the
Jacobi theta function (33). As for the zeta function, Montgomery proves that �2.S; ˛/ �
�2.Shex; ˛/ for all ˛ > 0 and all S such that det.S/ D 1 (cf. Figure 6). If the potential V is
a positive linear combination of Gaussians, Montgomery’s result implies that the optimal
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lattice is the hexagonal one, for a fixed unit cell volume. For instance, using the integral
formula (32), one recovers the previously mentioned result on zeta functions.

 6

 8

 10

 12

 14

 2.5  3  3.5  4  4.5

square
hexa

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  0.5  1  1.5  2  2.5  3

Figure 5. Left: �2.S; s/ as a function of s for the square lattice (S D I2) and the hexagonal one
(S D Shex). Right: the relative difference

�
�2.I2; s/ � �2.Shex; s/

�
= j�2.Shex; s/j. It shows that

the hexagonal lattice energy is lower than that of the square lattice for all s > 0, as it is proved
in [48, 65, 79, 198].

 1

 1.01

 1.02

 1.03

 1.04

 1.05

 1.06

 1  1.5  2  2.5  3  3.5  4  4.5

square
hexa

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Figure 6. Left: �2.˛/ as a function of ˛ for the square lattice (S D I2) and the hexagonal one
(S D Shex). Right: the relative difference

�
�2.I2; ˛/ � �2.Shex; ˛/

�
=�2.Shex; ˛/. It shows that the

hexagonal lattice energy is lower than that of the square lattice for all s > 0, as it is proved in [180].

Subtracting two Epstein zeta functions gives a function that can be expressed as an
integral of the function �2.S; ˛/ multiplied by a weight. This weight is non-negative
when � is large enough. Using this argument, Bétermin and Zhang [22] have proved that,
at high density, the optimum of (30) is reached by the hexagonal lattice in 2D, for the
Lennard-Jones potential VLJ. Imposing that � is large means that particles are close to
each other. Therefore, their interaction is dominated by the repulsive part r�12 of VLJ.
The energy is close to �2.S; 12/, which, as a function of S , reaches its minimum for the
hexagonal lattice only. On the contrary, they prove that, when � ! 0, the hexagonal
lattice cannot be the global minimizer. For instance, if

�3 <
�2.I2; 6/ � �2.Shex; 6/

�2.I2; 12/ � �2.Shex; 12/
;

the square lattice (Scar D I2) has an energy which is smaller than that of the hexagonal
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lattice. If no symmetry breaking occurs, then the square lattice becomes the minimizer.
Recall, however, that the true e.�/ is expected to be constant when � � � (the density of
the optimal lattice at which (30) is minimal). It will not coincide with eLJ;� .�/ in (30) at
small �. For a more recent work in the same spirit, see [21].

Results and conjectures for � and � in dimension d � 3. In dimension d � 3, some
authors have studied the critical points and the (local or global) minima of the Jacobi theta
function and the Epstein zeta function. In a famous article [218], Sarnak and Strömbergs-
son determined special local minima in dimensions 4, 8 and 24 (see also [58, 62, 63]).
In dimension 3, Ennola has proved that the face centered cubic (FCC) lattice is a non-
degenerate local minimum of �3.S; s/ for all s > 0 [80]. Formula (29) implies that its
dual, the BCC lattice, is also a non-degenerate local minimum for 0 < s < 3. In addition,
based on the sphere packing problem obtained in the limit s ! 1, it has been shown
in [210] that FCC is the unique global minimizer for s large enough. As opposed to what
Ennola conjectured in [80], FCC cannot be the unique minimizer for all s > 0. Indeed,
formula (29) would imply that its dual, BCC, is a minimizer for some values of s. Hence,
a more likely conjecture would be that FCC is the unique minimizer for s > 3=2, whereas
BCC is for 0 < s < 3=2 [218, section 5].3 If it is assumed that the minimizer has a
high-symmetry group, and if we only compare the energies of SC, FCC and BCC, this
conjecture is corroborated by numerical computations presented in Figure 7. It is a very
important conjecture: its proof would be an important advance both in analytic number
theory and in solid-state physics. One of the difficulties in the proof is that the values
of the zeta function for BCC and FCC are very close to each other. This implies that a
quantitative argument needs to be very precise.

Similar questions may be asked about theta function (33), but it seems that the corre-
sponding literature is far less important. In 3D, the conjecture is that FCC is the unique
minimizer for any ˛ > 1, whereas BCC is for ˛ < 1 [218, Section 5]. Here again, this
conjecture is confirmed by numerical simulations presented in Figure 8. Note that, con-
trary to dimension 2, the conjecture for the theta function does not seem to imply it for
the zeta function: formula (31) always involves both the lattice and its dual for different
values of ˛.

Most works consider only mono-atomic lattices. This excludes the HCP (Hexagonal
Close Packed) lattice in dimension 3, since it is not a Bravais lattice. We refer to [167]
for an explicit link between zeta functions and quantum field theory, to [226] for the
link with optimal quadrature point repartition, and to [186, 217, 218] for the link with the
optimization of the determinant of the Laplace operator: det.��/ D e��

0
d
.S;0/.

As a conclusion, determining the optimal periodic lattice can, for some simple poten-
tials, be related to the study of special functions. the conjecture is that the minimizer can
be either the FCC lattice, or the BCC one. This is still an open problem (in most cases),
even though research is very active on this subject.

3Note that BCC cannot be a non-degenerate local minimum for all s > 0 [86, 119], hence it has to be a
degenerate critical point of �d for some s � 3.
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Figure 7. Left: �3.S; s/ as a function of s for different lattices ; FCC and BCC have energies which
are very close to each other. Right: the relative difference
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It indicates that BCC should be the minimizer for 0 < s < 3=2, while FCC should be for s > 3=2.
Proving this is still an open problem. The relative difference is of order 10�4.
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Figure 8. Left: �3.˛/ as a function of ˛ for several lattices ; FCC and BCC have energies which
are very close to each other. Right: the relative difference
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It indicates that FCC is the minimizer for ˛ > 1, while BCC is for ˛ < 1. Proving this is an open
problem, which does not seem to imply the above result on the function �3.

2.6. Coulomb potential and Wigner crystallization. The Coulomb potential (the real
interaction between charged particles) is not covered by any of the previous results. In
dimension d , the Coulomb potential Vd;Coul is by definition the Green function of the
Laplace operator, that is, the solution to

��Vd;Coul D jS
d�1
jı0;

in the sense of distribution, where jSd�1j is the volume of the sphere in dimension d ,

Sd�1 D
˚
x 2 Rd jxj D 1

	
:

We thus have

V1;Coul.x/ D �jxj; V2;Coul.x/ D � log jxj; Vd;Coul.x/ D
1

jxjd�2
for d � 3:
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The function Vd;Coul is never integrable at infinity and it is not stable in dimension d � 2.
In dimension d � 3, Vd;Coul is non-negative, hence no macroscopic object can be formed.
If we perform the thermodynamic limit as in Section 2.4, then E.�N ; N / behaves as
N 1C2=d .

Physically, a macroscopic system of charged particles is never seen in vacuum. Two
alternatives are usually considered. The first is to put them in a trap, that is, to add an
external potential

PN
jD1 Vext.xj / to the energy, with Vext.x/ ! C1 when jxj ! 1.

This is now done in the laboratory [56, 128, 230, 231], although a large number of parti-
cles is still difficult to reach. We discuss this possibility in Section 2.7.1 below. Another
realistic macroscopic system of electrons is when they are placed in an external poten-
tial describing a background of opposite charge, which compensates the charges of the
electrons and allows for an equilibrium to form. In a metal, the background is composed
of the positively-charged nuclei (and possibly another set of electrons that do not move).
These other particles can be fixed or optimized (see Section 3.2). In [246], Wigner con-
sidered the simpler situation of a uniform background of density � > 0, and this is the
object of this section. This is the one-component plasma or Jellium model, in which the
background is a kind of “jelly” slowing down the movements of the particles. As we
will explain in Section 2.7.1 below, trapped systems can be shown to locally behave like
Jellium hence, in spite of its apparent simplicity, the Jellium problem is of high physical
relevance.

For a general potential V , the Wigner minimization problem reads:

E�;�.N / D inf
x1;:::;xN2�

( X
1�i<j�N

V
�
jxi � xj j

�
� �

NX
iD1

Z
�

V.jxi � yj/ dy

C
�2

2

Z
�

Z
�

V.jx � yj/ dx dy

)
; (36)

with the same limit as before

eJell.�/ D lim
N!1
j�N j!1
N=j�N j!�

E�N ;�.N /

N
: (37)

The second term of the energy in (36) accounts for the interaction of our N particles with
the homogeneous background. This is a new term compared to the preceding cases. The
last term is the energy of the background, which is constant with respect to the positions
of the particles. We keep it in order to have a finite limit (37) (in the case we deal with
here,

R
�

R
�
V.jx � yj/ dx dy grows like N 1C2=d ). In the limit (37) one imposes that

N=j�N j ! �, which means that the particle density is equal to that of the background.
This allows to reach an electrostatic equilibrium between particle repulsion and the attrac-
tion of the background. One could in principle minimize over the domain � while fixing
j�j D N�, and then use this domain �N , but it is often assumed that �N has a shape
which is fixed (a cube or a ball for instance), and is then dilated. The limit (37) should
not depend on the chosen sequence �N .
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For a stable integrable potential V , adding the background should only affect the
points close to the boundary of �N , and we expect that in the thermodynamic limit
eJell.�/ D e.�/��=2

R
Rd V . The situation is different for potentials that decay slowly. As

mentioned above, Wigner was originally interested in the electrostatic interaction between
electrons, that is, the Coulomb potential V D Vd;Coul. Nevertheless, the problem (36)
makes sense as soon as V behaves like jxj�s with s � d � 2 at infinity. Screening is
the main effect that will make this possible. The idea is that each particle will feel an
effective potential that decays faster than jxj�s , due to the cancellations induced by the
two additional terms. The potential is expected to decay like jxj�s�2 or even jxj�s�3 if
the configuration of the particles has sufficiently many symmetries.

In [246], Wigner has conjectured crystallization for V D Vd;Coul, at least if 1 � d � 3
and � is small enough. He also suggested that in 3D, the electrons form a body centered
cubic lattice (BCC). In 2D, the particles are expected to form a hexagonal lattice. The
same is expected for V.jxj/ D jxj�s with d � 2 � s < d . Numerical simulations and
formal computations corroborate Wigner’s conjecture. However, a rigorous proof is still
missing in dimensions d D 2; 3.

Dimension d D 1 is simpler and has been solved by Kunz in 1974 for small densi-
ties [145]. This result has been generalized to any density by Aizenman and Martin [7]. At
temperature T D 0, the particles form a lattice of step 1=�, as in the preceding sections.
If T > 0, it has also been proved in [7] that the particle density is periodic of period 1=�.
A different proof, which applies to the quantum case, has been proposed by Brascamp
and Lieb in [39]. It is an application of their study of the optimality of Gaussians in some
functional inequalities.

As in Section 2.5, if crystallization is assumed (on a Bravais lattice G), it is possible
to compute the corresponding energy per unit volume. In the present case, we have

eJell;G.�/ D
1

2

X
g2Gnf0g

W.g/ �

Z
Q

V.x/ dx C
�

2

Z
Q

Z
Q

V.x � y/ dx dy (38)

where W is the twice-screened potential

W.x/ D V.x/ � 2
1

jQj

Z
Q

V.x � y/ dy C
1

jQj2

Z
Q

Z
Q

V.x C y � z/ dy dz

with Q the unit cell of the lattice G, satisfying jQj D 1=�. As expected, the last two
terms have the same effect as a Taylor expansion of V at infinity, which increases its
decay and can make the series in (38) convergent (depending on the symmetry properties
of the unit cell Q). If V.x/ D jxj�s at infinity with s > d � 2, then W.x/ � jxj�s�2

and no assumption on Q is necessary. For s D d � 2 (Coulomb potential), it is sufficient
to choose for Q a set which is symmetric with respect to the origin 0, which is always
possible. Doing so, W behaves like jxj�d�1 at infinity. If Q has sufficient symmetry
properties, it is possible to express the energy with the simple screened potential

QW .x/ D V.x/ �
1

jQj

Z
Q

V.x � y/ dy:
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We refer to [154, App. B] for the details. It is always useful to choose for Q the Wigner-
Seitz cell, which has the same symmetries as the lattice G [16].

When the above series converges and V.x/ D jxj�s , one can prove that the en-
ergy (38) is equal to the analytic extension of the first term in (36), that is,

eJell;G.�/ D �d .S; s/; (39)

for d > 2 and d�2 � s < d . The proof is based on the same arguments as [154, App. B],
and on results from [34–36]. The point s D d � 2 which is the one interesting for
applications is always on the left of the pole s D d , where the Zeta function is defined
through analytic continuation, showing the importance of studying it in this region. For
d D 3, the numerical simulations presented in this article indicate that the body centered
cubic lattice (BCC) is the unique global minimizer, as conjectured by Wigner. Proving
this fact is still an open problem. In dimension d D 2, the energy has a logarithmic
singularity which needs to be removed, but the problem is similar. In [214], Sandier
and Serfaty used Montgomery’s result to prove that the optimal lattice in 2D must be the
hexagonal lattice, in the limit s ! 0.

Physicists usually rely on the integral representation (31) to compute the value of the
zeta function and compare different lattices. As an example, the energies are approxi-
mately equal to

��1=3

8̂<̂
:
1:41865 : : : for the simple cubic lattice (SC),
1:44415 : : : for the face centered cubic lattice (FCC),
1:44423 : : : for the body centered cubic lattice (BCC),

in dimension d D 3 [37, 115]. Using an argument due to Onsager [185], Lieb and Narn-
hofer managed to prove in [160] that the true energy defined by (37) satisfies eJell.�/ �

��1=31:4508 : : : for any � > 0. This value is very close to the expected one. However,
the proof of Wigner crystallization is still an open problem, in dimension d � 2.

Let us point out that Wigner’s model has been recently studied and reformulated
in [190, 203, 216]. In these articles, the energy eJell.�/ is called renormalized energy
and is defined directly on sets of infinitely many points (which need not be on a periodic
lattice), without using the thermodynamic limit N !1.

2.7. Occurrence of the crystallization problem in other situations. In this section,
we present a few questions that reduce to the crystallization problem stated above, or to
Wigner’s problem. This shows that these questions are rather universal.

2.7.1. Confined systems in the mean-field limit. The crystallization problem appears
in some dense trapped systems that are now realized in the laboratory. Here, a change of
scale is needed to recover a problem set in the whole space. The prototypical situation is
to minimize the energy

EVext.N / D min
xi

8<: 1

N

X
1�i<j�N

V.jxi � xj j/C

NX
iD1

Vext.xi /

9=; ; (40)
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where Vext is a confining potential, which tends to C1 at infinity. The coefficient 1=N
multiplying the interaction allows for both terms to be of the same order of magnitude in
the limit N ! C1. This is called the mean field regime. An example of interaction V
is given by V.x/ D jxj�s with 0 < s < d , or V.x/ D � log jxj. Most commonly used
confining potentials are the harmonic potential Vext.x/ D jxj

2, and the potential

Vext.x/ D

(
0 if x 2M;

C1 otherwise,

which amounts to impose that all the particles stay in the bounded set M � Rd . The
set M can be a bounded domain like a ball, or a zero-measure set such as a sub-manifold
of Rd , of dimension strictly smaller than d .

Figure 9. A colloidosome is a spherical shape made of colloids (polystyren molecules here), which
can be described by Thomson’s model. This model consists in minimizing the interaction jxj�s for
particles on the sphere S2 � R3. Scanning microscope picture, from [66]. © AAAS.

If d D 3 and M D S2 is the unit sphere, and if V.x/ D jxj�1, this is called Thom-
son’s problem [232]. Finding the optimal positions of the particles on the sphere, even
for a fixed value of N , is a famous problem which has been solved only for some values
of N . Many numerical studies have given an insight on what the optimal configurations
should look like. This problem is related to one of the eighteen open problems mentioned
by Smale in 1998 [18, 19, 225]. It naturally occurs in many different situations: it is re-
lated to the construction of a set of points which discretizes the sphere as uniformly as
possible (the so-called elliptic Fekete points [211]); in biology, this problem can explain
the form of some viruses, and the repartition of pores on pollen grains; it is also studied
in link with “colloidosomes” [66] (Figure 9). If V.x/ D jxj�s , with d > s, and if M
is a sub-manifold without boundary, of dimension d � 1, the problem is usually called
Riesz problem. We refer to [126] for a general presentation of the problem and numeri-
cal simulations. Coulomb crystals in traps are now produced in the laboratory, since the
90s [56, 128, 230, 231].
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For the model (40), a second-order expansion is needed to find the crystallization
problem. Indeed, the leading order is, under appropriate assumptions, given by the mean-
field theory

lim
N!1

EVext.N /

N

D inf
� probability
measure on Rd

�
1

2

Z Z
V.jx � yj/ d�.x/ d�.y/C

Z
Vext.x/ d�.x/

�
WD a: (41)

The measure � , a solution to this variational problem, is in general absolutely continuous
with respect to the Lebesgue measure, and gives the average repartition of the points in
space. More specifically,

1

N

NX
iD1

ıxi * � (42)

weakly-� in the sense of measures. Since in Rd the points xi will have a typical dis-
tance of order N�1=d , the measure � plays the same role as the macroscopic measure M
discussed in (13)–(14). For instance, in the case of the Thomson problem for which Vext
confines the particles to the unit sphere S2 and V.jxj/ D jxj�1, the solution is unique
and equal to the uniform measure � D .4�/�1 on S2. This means that the particles
tend to be uniformly distributed on the sphere. For a general set M or general confining
potential Vext, proofs of (41) and (42) are given in [45, 46, 55, 140, 141, 146, 179, 202].

A change of scale is needed to be able to study accurately how the particles are or-
ganized at the microscopic scale. In order to do so, it is better if the potential V be-
haves appropriately under dilations. In general, one assumes that V.jxj/ D jxj�s (or
V.jxj/ D � log jxj, which formally corresponds to the case s D 0). When Vext is smooth,
after a dilation of N�1=d around a given point Nx 2 Rd , the problem happens to coincide
with Wigner’s model in dimension d , with the local density � D �. Nx/. The total limit
energy is the superposition of these local problems, and one finds

EVext.N / D aN CN
s
d eJell.1/

Z
Rd
�.x/1C

s
d dx C o.N

s
d /; (43)

where a is the constant given by (41), and where eJell.1/ is the Jellium energy (37) for
� D 1 with interaction V.x/ D jxj�s (this expansion is modified in the case V.x/ D
� log jxj). This result has been recently proved by [201, 215, 216] in the case V.x/ D
� log jxj in dimensions d D 1; 2, in [203] for the Coulomb potential s D d � 2, and
in [190] for d � 2 < s < d .

In the case of a sub-manifold M � Rd , the scaling is modified, and instead one
applies a dilation of N�1=d

0

where d 0 is the dimension of M. It is expected that the same
kind of results hold [33, 40, 41, 116, 197, 243, 244], although it has not been proved yet,
except in the case of the sphere in dimension d D 2 with V.x/ D � log jxj [44].

The asymptotics O.N/ in (41) is only valid if V is locally integrable, so that the
right-hand side is finite. Several authors have studied the case of a potential which is not
locally integrable, typically V.x/ D jxj�s for s � d . In the case of a submanifold M of
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dimension d 0, the corresponding energy behaves like N s=d 0 (or N logN for s D d 0). If
s > d 0, it was proved in [32, 120, 126, 127, 143, 172] that the corresponding term reads

lim
N!1

EVext.N /

N s=d 0
D jMj�s=d 0e.1/; (44)

where e.1/ is now the minimal energy (22) for the problem on the whole space Rd 0 with
V.x/ D jxj�s:

e.1/ D lim
N!1
j�N j!1
N=j�N j!1

0@ 1

N
inf

8<: X
1�i<j�N

jxi � xj j
�s; xi 2 �N

9=;
1A :

As we pointed out in Section 2.5, the conjecture is that the particles are located on a
hexagonal lattice in dimension d 0 D 2 and FCC when d 0 D 3. In such a case, the
right-hand side is equal to �d 0.S; s/ with S corresponding to the optimal lattice [40].

Except in dimension 1 [148,215] for which the problem is better understood, it seems
that none of these works provide any new information on the crystallization conjecture
itself. Nevertheless, they give an important insight on how it naturally arises in mean-
field confined systems.

2.7.2. Vortices and crystallization in dimension 2. In dimension d D 2, the crystal-
lization problem appears when studying fast rotating Bose–Einstein condensates or super-
conductors in large magnetic field. Vortices are created, and their number grows with the
rotation speed (or the magnetic field intensity). When this number becomes large, they
seem to form a hexagonal lattice, called Abrikosov lattice in this context [2].

In fast rotating Bose–Einstein condensates, vortices may be modeled as classical par-
ticles interacting via a potential. The corresponding energy may be computed using the
Jacobi theta function (33) [6]. In this context, Montgomery’s result explains why the
vortices should form a hexagonal lattice (see Figure 10).

Vortex patterns for the Ginzburg–Landau equation of superconductivity have been
widely studied in the mathematics literature (see [23, 24], the first articles on the sub-
ject, using simplified models). Under some constraints on the magnetic field, there is a
finite number of vortices which behave like classical particles interacting via the (two-
dimensional) Coulomb potential and submitted to a harmonic confining potential [134,
212,213,221,222]. For extremely intense magnetic fields, the number of vortices tends to
infinity, and the limit problem becomes that of Wigner’s crystallization (see Section 2.6),
as shown in [214]. This explains, although it has not been proved rigorously yet, why
the hexagonal lattice appears in superconductors. We refer to [223] for a more detailed
presentation of this problem.

2.7.3. Ohta–Kawasaki model. The Ohta–Kawasaki model describes phase separation
in copolymer systems [184]. In its simplest version, it consists in minimizing the energy
functional

" j@fu D 1gj C
1

2

Z
�

Z
�

.u.x/ � Nu/V.jx � yj/.u.y/ � Nu/ dx dy
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where � is a bounded domain of Rd and where u is allowed to take only the two val-
ues ˙1, each one corresponding to a phase of the system. The first term is the perimeter
of the set where u D 1 whereas the second term describes the interaction between the
two phases. The potential V is often assumed to be the Coulomb or Yukawa interaction,
with periodic boundary conditions on � if it happens to be a cube. The question is to
determine the optimal configurations, as the parameters " and Nu vary. If Nu D �1, then the
energy simplifies into

" j@Ej C 2

Z
E

Z
E

V.jx � yj/ dx dy (45)

with E D fu D 1g. A regularized version of the model consists in minimizing the energy
functionalZ

�

�
"2 jru.x/j2 C F.u.x//

�
dxC

Z
�

Z
�

.u.x/� Nu/V.jx�yj/.u.y/� Nu/ dx dy; (46)

where F is a non-negative function having as unique minimal points u D ˙1. In the limit
"! 0, this problem becomes equivalent to (45).

Figure 10. Left: Experimental pictures of fast rotating Bose–Einstein condensates: the number of
vortices increases with the rotation velocity. The experiments have been conducted by Ketterle’s
team [1] at MIT in 2001. © AAAS. Right: Numerical simulation of the Gross-Pitaevskii equation
with the software GPELab [14, 15], reproducing the vortex lattice in the corresponding regime.

In dimension one, it has been proved that the minimizer is periodic [11, 53, 112, 181,
199, 252] if Nu D 0, for all " > 0. Very few results exist in higher dimension [10, 54].
In the limit where one phase is strongly favored ( Nu � �1) and " ! 0, it has been
proved that, here again, the opposite phase u D 1 is a solution to Wigner crystallization
problem [117, 118].

A proof of crystallization on the hexagonal lattice (in 2D) has been recently given in
[38] for a different copolymer model. In this theory, the second term in (45) is replaced



The crystallization conjecture: a review 281

by the Wasserstein distance W to the Lebesgue measure. Hence, the energy is defined for
point measures � having their support in � � R2. It reads

E.�/ D "
X

z2supp.�/

p
�.fzg/CW.1�; �/;

and crystallization is proved for any " > 0 if � has appropriate symmetries, and if " is
sufficiently small (or equivalently if " > 0 is fixed and j�j ! 1). In the limit " ! 0 it
had been proved previously that the hexagonal lattice minimizes the Wasserstein distance
to the Lebesgue measure [182].

2.8. The macroscopic object and its microscopic structure. We mentioned above the
question of proving the existence of a macroscopic measure M, obtained as the weak
limit (14). This is related to the formation of a macroscopic object. Another question is
to know what kind of object is formed, that is, to compute the measure M.

This problem seems different from the local behavior of the particles. However, the
hexagon in Figure 1 indicates that a link exists with the microscopic scale. Indeed, if
exact crystallization is assumed, that is, if the particles are restricted to be on the vertices
of a periodic lattice for all N , then it is possible to write a limit minimization problem
for the surface energy, which coincides with the second-order term in the development
of E.N/. This term is of order N .d�1/=d . It has been proposed by Wulff [249], and
proved rigorously for a hard sphere model4 in dimension two by Au Yeung, Friesecke
and Schmidt in [17, 220]. This work is based on results by Radin et al [129, 194]. We
refer for instance to [28, 29, 52] for similar results on the Ising model.

These works assume that the particles form a subset of a given periodic lattice for
allN , which is true only for very specific interaction potentials V . It would be interesting
to generalize these results to more general cases. However, this problem is a priori a very
difficult one, since a good knowledge of the leading order term of E.N/ is needed to
understand the next one. And this is exactly the crystallization conjecture.

3. Extensions

3.1. Positive temperature. Until now we have only considered the problem of mini-
mizing the energy, that is, we have assumed the temperature to be 0. As a matter of fact,
it seems intuitive that crystallization only occurs for small temperature [196]. At positive
temperature T > 0, the problem is more complicated to state. We discuss here a possible
formulation and mention some important references.

The point particles should now be replaced by a probability density on RdN that only
describes random positions of the N particles. This probability is found by minimizing
the free energy, which is the sum of the energy EN and of an entropy term multiplied by
the temperature T . The entropy favors extended systems and a high value of T will spread
out the probability density. In the whole space the entropy would make all the particles

4That is, V � C1 on Œ0; 1� "/, V � 0 on Œ1C ";1/ and min.V / D V.1/ < 0, with small ".
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fly apart, and one therefore needs to confine them. This may be done as in Section 2.4 by
imposing that the system is in a bounded domain� and that the volume j�j is proportional
to the (average) number of particlesN . Another possibility would be to work in the whole
space Rd , and add a confining external potential as was done in (40), but we will (almost)
not discuss this here.

Formulation in the canonical ensemble. The probability that we have to consider is the
Gibbs probability measure5

P�;N;T .x1; : : : ; xN / D
e�

EN .x1;:::;xN /
TZ

�N
e�

EN .x1;:::;xN /
T dx1 � � � dxN

: (47)

This distribution concentrates on the minima of EN when T ! 0. This probability mea-
sure is obtained by minimizing the free energy

F�.N; T / WD min
P 0 symmetric measure

on�N , with
1
NŠ

R
�N

P 0 D 1

�
1

N Š

Z
�N

EN .x1; : : : ; xN / P 0.x1; : : : ; xN / dx1 � � � dxN

C
T

N Š

Z
�N

P 0.x1; : : : ; xN / logP 0.x1; : : : ; xN / dx1 � � � dxN

�
; (48)

in which the first term is the energy of the system, and the second one is the opposite of
the entropy. The symmetry of P 0 accounts for the fact that the particles are identical and
indistinguishable. The Boltzmann coefficient 1=N Š appearing in front of all the integrals
is here to count each possible configuration only once. In (48) we can replace P 0 by the
probability measure P D P 0=.N Š/ at the expense of an additive term T log.N Š/. At
T D 0 an optimal P is a symmetrized delta measure at one minimum of EN . But when
T > 0, the entropy term imposes that P be absolutely continuous with respect to the
Lebesgue measure.

The solution of the minimization problem (48) is unique, given by P 0 D .N Š/P�;N;T
in (47), and satisfies

F�.N; T / D �T logZ�.N; T /;

where
Z�.N; T / D

1

N Š

Z
�N

e�EN .x1;:::;xN /=T dx1 � � � dxN

is called the (canonical) partition function. As before we look at the coupled limit
N !1 with j�N j ! 1 and N=j�N j ! � > 0, a fixed parameter. Using the sta-
bility of V , EN � N e1, we find

F�N .N; T / � �T log
�
j�N j

N

NŠ
e�e1N=T

�
� N

�
e1 C T .log � � 1/

�
5It is also possible to consider the Hamiltonian (1) instead of EN , but the Gibbs measure e�HN =T can

then be factorized and the variables pi do not play any role. The situation is different in the quantum case
(Section 3.3).
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by Stirling’s formula. Similarly, by Jensen’s inequality,

F�N .N; T / � �T log
�
j�N j

N

NŠ
e
�j�N j

�N
R
�N
N

EN =T
�

� NT .log � � 1/C
N�

2

Z
Rd
V.jxj/ dx:

A similar estimate exists when V is not integrable at 0. We deduce that F�N .N; T /
behaves linearly in N . After a little more work [209], one can actually prove that the
thermodynamic limit exists

f .�; T / D lim
N!1
j�N j!1
N=j�N j!�

F�N .N; T /

N
;

as in (22).
In order to formalize the crystallization problem at positive temperature, it is con-

venient to consider the empirical measures (also called k-point correlation functions [88,
173]), which are similar to the measure�N introduced in (15). To be more precise, we de-
fine the family of measures, obtained by integrating with respect to all variables except k
of them:

�
.k/
�;N;T .x1; : : : ; xk/

D
NŠ

.N � k/Š

Z
�N�kC1

P�;N;T .x1; : : : ; xk ; ykC1; : : : ; yN / dykC1 � � � dyN : (49)

A natural definition of crystallization is that the measures �.k/�N ;N;T locally converge, after
extraction of a subsequenceNj and applying an appropriate translation �j to some locally
finite measures in the thermodynamic limit,

�
.k/
�Nj ;Nj ;T

.� � �j / * �
.k/
�;T

where these measures are invariant under the action of a (maximal) lattice group G:

8g 2 G; �
.k/
�;T .x1 C g; : : : ; xk C g/ D �

.k/
�;T .x1; : : : ; xk/: (50)

Here again the limit will depend on the subsequence and on the sequence of domains
.�N /. Different weak limits might have different invariance groups. The group G in (50)
is assumed to leave invariant all the possible weak limits up to rotations (for chosen T
and � and all Nj and �Nj for which the limit exists).

In general, when�.2/.x1; x2/��.1/.x1/�.1/.x2/ does not tend to zero when jx1 � x2j
! 1, one says that there is long range order, meaning that two particles far away are cor-
related, although the system is not necessarily periodic. Many works have been devoted
to the proof that systems exhibit long range order, without reaching exact periodicity.
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For physical systems one might expect that there will be a periodic (or at least long-
range) order for all T � Tc.�/ for a small critical temperature Tc.�/, and that the system
will be translation-invariant, with unique equilibrium states, for T � T 0c.�/ � Tc.�/. It is
usually believed that the function f .�; T / is piecewise real-analytic in .T; �/ and that the
curves of non-analyticity correspond to phase transitions [209].

In the zero-temperature case, we only considered the measure �.1/, which appears
in (16). The reason is that, in such a case, a solution to (48) is

P�;N .y1; : : : ; yN / D
1

N Š

X
�2SN

ıx�.1/.y1/ � � � ıx�.N/.yN /

where x1; : : : ; xN is a solution to problem (2). Because of this specific form, local con-
vergence for k D 1 to � implies that all the other empirical measures �.k/.x1; : : : ; xk/
automatically converge to �.x1/ � � ��.xk/. Such a property cannot hold in general for
T > 0. In case of crystallization at T D 0, it is usually expected that the k-particle densi-
ties �.k/�;T should converge in the limit T ! 0 towards the uniform average of translations
and rotations of the crystal:

lim
T!0

�
.k/
�;T .x1; : : : ; xk/ D

1

jQj

Z
Q

Z
SO.d/

kY
jD1

�
�
R.xj � �/

�
dR d� WD �.k/�;0.x1; : : : ; xk/:

Then �.k/�;0 is translation-invariant (in particular, �.1/�;0 is constant), but �.2/�;0 is periodic in
x1 � x2.

Grand canonical ensemble. The problem is often stated in the grand-canonical ensem-
ble, for which the algebra is simpler. This corresponds to assuming that the number of
particles N in � is also a random variable. It is then customary to consider the Laplace
transform of the measuresN 7! Z�.N; T /, introducing a variable � D .T=N / log z dual
to N , called the chemical potential:

QZ�.z; T / WD
X
N�0

e�N=TZ�.N; T / D 1C
X
N�1

zN

NŠ

Z
�N

e�EN =T :

The series on the right is conveniently written in terms of the fugacity z D e�=T . The
stability EN � e1N makes the sum convergent, with QZ�.z; T / � exp.j�je.��e1/=T /.
By varying z > 0 (or �), one can obtain some information on the canonical ensemble.
The problem is then the same as before, except that we cannot divide by N which is an
unknown variable, so we instead divide by j�j and define

Qf .z; T / D lim
j�j!1

�T log QZ�.z; T /
j�j

;
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which now satisfies �T j�je.��e1/=T � Qf .z; T / � 0. In a similar manner, we define
the k-particle grand-canonical correlation function by

Q�
.k/
�;z;T .x1; : : : ; xk/

D QZ�.z; T /
�1

0@zke� E.x1;:::;xk/
T C

X
n�1

zkCn

nŠ

Z
�n
e�

E.x1;:::;xkCn/
T dxkC1 � � � dxkCn

1A
(51)

and ask the same questions as before about its possible local weak limits.

Known results. There are many results showing the absence of crystallization in several
situations, but almost none proving its existence. The first classical theorems are due to
Ruelle and Penrose [189, 205, 209] who studied the convergence of the series at small
fugacity z (hence, high-temperature for fixed �). They showed that the grand-canonical
free energy as well as the correlation functions are all convergent series in the parameter
z D e�=T , with a radius of convergence at least equal to

Rmin.T / D e
2e1=T�1

�Z
Rd

ˇ̌̌
e�V.x/=T � 1

ˇ̌̌
dx

��1
: (52)

Furthermore, the correlation functions must be translation-invariant when z and T are
in this range. Since e1 � 0 with strict inequality if minV < 0, the radius Rmin.T /

shrinks exponentially fast when T ! 0. The main tool here is a system of equations for
the correlation functions called the Kirkwood-Salsburg equations, that allows to derive
uniform bounds of the form �.k/.x1; : : : ; xk/ � C

k at small fugacity. The bound on the
radius of convergence was recently improved in [193]. The series of Qf .z; T / in terms
of z is called the Mayer expansion. It is possible to invert the value of the constant
density �.z; T / D Q�.1/ in terms of z and to express Qf as a function of � and T . Since
�.z; T / D z CO.z2/, this is a low-density regime. The corresponding series (called the
Virial expansion) was studied in [151].

The properties of the system in the thermodynamic limit depend in a crucial way on
the space dimension d , a phenomenon that is not present at T D 0. For one-dimensional
systems with a fastly-decaying potential, a result due to van Hove in [237] (see also [209,
Thm 5.6.7] and [68, 207]) states that Qf .z; T / is actually real-analytic for all z > 0 with
unique correlation functions, hence there is no phase transition. Given that crystallization
has been proved for a large variety of models in dimension one at zero temperature, this
shows that the phase transition occurs exactly at Tc.�/ D 0. We notice that phase transi-
tions can occur for an integrable potential decaying as slowly as 1=jxj2 [74,97]. A similar
result called the Mermin–Wagner theorem [95, 96, 176–178] exists in two dimensions for
very short-range potentials, except that only the translation-invariance is known, and there
does not seem to be any information on the range of analyticity.

Given that there is no crystalline order in one and two-dimensional systems at positive
temperature, but that crystallization is expected at T D 0, a natural question is to ask what
is happening when T ! 0. Recent works [59, 131, 133] investigate the exponentially
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small region of convergence of the Mayer series close to T D � D 0, where things can be
proved in any dimension. Namely, they considered the limit T ! 0 and � ! 0 with the
constraint that T log � ! � (recall that � � z D e�=T at small activity, so this is similar
to fixing �). They showed that, in any dimension, the system behaves as a gaz of finite
clusters of particles which essentially do not interact. The number of particles K in each
cluster is determined by the parameter � and it can be as big as we want if all the E.K/
have minimizers. Each cluster of K particles solves the problem E.K/. For K !1 the
cluster converges to the zero-temperature crystal configuration.

Even without more information about the limiting states, it is possible to show in most
situations that the correlation functions satisfy a pointwise bound of the form

Q�
.k/
�;z;T .x1; : : : ; xk/ � .Cz;T /

k (53)

and therefore have local weak-� limits, after extraction of subsequences. The positive
temperature makes the weak convergence of the correlation functions much easier than at
T D 0 (see Section 2.2), but the constant Cz;T always blows up when T ! 0. The first
simple case is that of a non-negative potential V : using in (51) that EN .x1; : : : ; xkCn/ �
EN .xkC1; : : : ; xkCn/ we immediately obtain the pointwise bound (53) with Cz;T D z.
The most general case was covered by Ruelle in [208] who proved (53) for super-stable
interactions V . Super-stability means that there exists constants A;B; r > 0 such thatX

1�i<j�N

V.jxi � xj j/ �
X
k2Zd

�
An.k/2 � B n.k/

�
(54)

where n.k/ is the number of particles in the cube krCŒ�r=2; r=2/d . Any continuous non-
negative interaction with V.0/ > 0 satisfies (54) for r small enough. Hence any stable
interaction can be made super-stable by slightly increasing its values in a neighborhood
of 0. Ruelle’s constant Cz;T is, however, a complicated function of the parameters. It was
shown in [101] that one can take Cz;T D zew.0/=T when bV � 0.

The Jellium problem described in Section 2.6 can be defined at positive temper-
ature and it is an exception for which crystallization occurs for any T and any den-
sity � in dimension d D 1 [7, 39, 145]. This is not surprising, since screening ef-
fects should make the effective potential be integrable at infinity, but probably not de-
cay faster than 1=r2. Numerical simulations indicate that, in dimension d � 2, there
exists a critical temperature Tc > 0 such that, if T > Tc , then Jellium is not crystal-
lized [8,9,30,42,43,64,69,103,125,191,228]. The link between trapped Coulomb gases
in the mean-field limit and the positive-temperature Jellium problem was recently studied
in [149, 150], similarly to what we discussed in (43).

Link with random matrices. The N eigenvalues of an N � N matrix with random
coefficients are, in some situation, distributed according to the Gibbs measure of a gas
of particles in an external trapping potential. The effective interaction will usually be
V.x/ D � log jxj, and the dimension d D 1 (if the eigenvalues are real numbers) or
d D 2 (if they are complex). If the entries of the matrix are independent Gaussian
variables, the statistical distribution of the eigenvalues �1; : : : ; �N is given by the Gibbs
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measure (47) with the mean-field energy

EN .�1; : : : ; �N / D �
1

N

X
1�k<`�N

log j�k � �`j C
NX
jD1

j�j j
2:

For hermitian matrices (GUE, that is, Gaussian Unitary Ensemble), the problem is set in
� D R, since the eigenvalues have no imaginary part. In such a case, the temperature is
equal to T D 1=.2N /. If one imposes that the matrices have real coefficients (GOE, that
is, Gaussian Orthogonal Ensemble), the temperature is T D 1=N . When considering
complex matrices without any symmetry assumption (Ginibre ensemble), we have the
same formula, but the �i are now in � D C D R2 and the temperature is T D 1=.2N /.

It is also possible to consider unitary or orthogonal matrices (CUE for Circular Uni-
tary Ensemble, and COE for Circular Orthogonal Ensemble, respectively), using the
uniform law on this compact subset of matrices. Then, the eigenvalues are distributed
according to the Gibbs measure (47) with

EN .�1; : : : ; �N / D �
1

N

X
1�k<`�N

log j�k � �`j;

this time restricted to the unit circle � D S1.
Studying the eigenvalues of random matrices and the link with Coulomb gas is a very

active subject, which started with the seminal works of Wigner [247,248] and Dyson [70–
72, 77, 175]. The interest in the sets of matrices we just mentioned is that they allow for
explicit computation of empirical measures, hence a good knowledge of the statistics
of theses eigenvalues. Since T behaves like 1=N , the first order corresponds to the zero-
temperature setting. The average distribution of the eigenvalues is given by the measure �
solution to the minimization problem in (41). The next order is more complex and its link
with the crystal problem is less clear [72]. We refer for instance to [13, 92, 174] for a
detailed study of the subject.

3.2. Several types of particles. In order to deal with long-range interactions (for in-
stance Coulomb potential), as in Wigner problem presented in Section 2.6, it is possible
to add a background homogeneous density making the system globally neutral. Another
model, more important from a practical viewpoint, is the case of two (or more) different
types of atoms or ions, with different charges. One can think for instance of sodium chlo-
ride crystal, which is made of two face centered cubic lattices, one (NaC ions) shifted
with respect to the other (Cl� ions).

For the sake of simplicity, let us consider only two types of particles. The interaction
between two identical particles is different from the interaction between two different
ones. We are thus led to the energy

EN1;N2
�
x1; : : : ; xN1 ; y1; : : : ; yN2

�
D

X
1�i<j�N1

V11
�ˇ̌
xi � xj

ˇ̌�
C

X
1�i<j�N2

V22
�ˇ̌
yi � yj

ˇ̌�
C

N1X
iD1

N2X
jD1

V12
�ˇ̌
xi � yj

ˇ̌�
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where xi and yi are the positions of the particles of each type. We study the limit
N1; N2 ! 1, possibly imposing a link between N1 and N2, accounting for a charge
difference between the two types of particles. Thinking of a 3D crystal composed of
charges of opposite sign q1 et �q2, we assume that

V11.jxj/ �
jxj!1

q21
jxj
; V22.jxj/ �

jxj!1

q22
jxj
; V12.jxj/ �

jxj!1
�
q1q2

jxj
;

and we impose the neutrality condition q1N1 � q2N2 ! 0 in the limit. For such a
classical model, the Coulomb interaction is not adapted, since the energy tends to �1 as
two particles of opposite charge get close to each other, and the model is unstable (note,
however, that it is stable in the quantum case, as it was proved by Dyson–Lenard [75,152]
and Lieb–Thirring [165]). Hence, one needs to assume that the potentials V11 V22 and
V12 are repulsive at short distance jxj ! 0. The simplest choice is to take

Vij .jxj/ D 2.ıij � 1=2/qiqjW.x/; with W.x/ D
1 � e��jxj

jxj
:

Since W has a positive Fourier transform, the same calculation as in (12) gives that the
total interaction is bounded from below by

EN1;N2
�
x1; : : : ; xN1 ; y1; : : : ; yN2

�
�

1

2.2�/d=2

Z
Rd

bW .k/
ˇ̌̌̌
ˇ̌q1 N1X

jD1

eik�xj � q2

N2X
kD1

eik�yk

ˇ̌̌̌
ˇ̌
2

dk �
N1q

2
1 CN2q

2
2

2
�

� �
N1q

2
1 CN2q

2
2

2
�

and the model is stable.
Several conjectures have been made concerning the optimal lattices [37], but we do

not know any result on the crystal problem with several types of particles. Thinking of
crystalline structures currently observed in nature, it is a highly important question from
a physical viewpoint. The existence of the thermodynamic limit and estimates on the
correlation functions were proved in [101]. A review of known results in 3D for high
temperature (hence without crystallization) is given in [43]. In [195] Radin considers
special short-range potentials for two types of particles, and proves that crystallization
fails, but the minimizers are quasi-periodic.

3.3. Quantum models. In the classical models studied so far, the kinetic energy of the
particles does not play any role, since we deal with minimizers or Gibbs states. The termPN
jD1 jpj j

2=.2m/ in (1) disappears in the minimization problem, factors out and gives a
Gaussian at positive temperature in (47). The situation is different in quantum mechanics,
in which there is a link between velocity and position, in order to respect Heisenberg’s
uncertainty principle. This makes the kinetic energy dependent on the positions of the par-
ticles. More precisely, quantum mechanics principles imply that pj should be replaced by
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the differential operator �i„rxj and that the Hamiltonian HN .p1; : : : ; pN ; x1; : : : ; xN /

in (1) should be replaced by the differential operator

HN D �

NX
jD1

„2

2m
�xj C

X
1�k<`�N

V.xk � x`/: (55)

This operator acts on L2.�N /, where � D Rd for an unconfined system, and where �
is a bounded domain if the system is confined (with suitable boundary conditions). Since
the particles are indistinguishable, we work with a subspace of L2.�N / consisting of
functions having a prescribed symmetry property. In nature one can find two types of
particles: bosons and fermions. For bosons, we use the subspace L2s .�

N / of functions
which are symmetric with respect to variable permutations. For fermions, we use the
subspace L2a.�

N / of functions which are antisymmetric. Properties of the system in the
limitN !1 depend on the chosen symmetry class. For the sake of simplicity, we asume
that the particles have no spin.

The classical problems studied so far read, in the quantum case,

Ea=s;�.N / D inf
‰2L2

a=s
.�N /R

j‰j2D1

Z
�N

 
„2

2m
jr‰.x1; : : : ; xN /j

2

C

X
1�k<`�N

V.xk � x`/j‰.x1; : : : ; xN /j
2

!
dx1 � � � dxN ; (56)

for the energy at T D 0,

Fa=s;�;T .N / D �T log
�

trL2
a=s

.�N /e
�HN =T

�
for the canonical free energy, and

QFa=s;�;z;T .N / D �T log

0@X
N�0

zN trL2
a=s

.�N /e
�HN =T

1A
for the grand-canonical free energy. Note the absence of the Boltzmann factor, due to
the restriction that we work in the subspaces L2

a=s
.�N /. If we instead work in the full

space L2.�N / (distinguishable particles sometimes called “boltzons”), then we need to
put back the 1=N Š coefficient. In the semi-classical limit „ ! 0, these (free) energies
converge (up to a constant which diverges like log „ at positive temperature) to the corre-
sponding classical (free) energies.

Quantum mechanics is by nature a probabilistic theory and the study of crystallization
relies on the weak limit of the empirical measures, as in the case of the positive temper-
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ature classical model. For instance, at zero temperature one can study the limit of the
k-particle densities

�
.k/
�;N .x1; : : : ; xk/

WD
NŠ

.N � k/Š

Z
�N�k

j‰�;N .x1; : : : ; xk ; ykC1; : : : ; yN /j
2 dykC1 � � � dyN

where ‰�;N is a minimizer of problem (56) (this minimizer is always unique, up to a
phase, for bosons, but it is not necessarily unique for fermions). A similar formula is valid
at positive temperature but we do not provide the details. The measure �.k/�;N corresponds
to the one defined in classical mechanics and it does not carry all the information on the
quantum system. It is more relevant to study the limit of k-particle density operators,
which are defined by their integral kernel



.k/
�;N .x1; : : : ; xk ; x

0
1; : : : ; x

0
k/

WD
NŠ

.N � k/Š

Z
�N�k

 
‰�;N .x1; : : : ; xk ; ykC1; : : : ; yN /

�‰�;N .x
0
1; : : : ; x

0
k
; ykC1; : : : ; yN /

!
dykC1 � � � dyN ; (57)

and where the diagonal part coincides with �.k/�;N . We say that the system crystallizes if
these operators locally converge to operators 
 .k/ which commute with translations of a
(maximal) lattice G, that is,

8g 2 G; 

.k/
�;N .x1Cg; : : : ; xkCg; x

0
1Cg; : : : ; x

0
kCg/ D 


.k/
�;N .x1; : : : ; xk ; x

0
1; : : : ; x

0
k/:

If V is a stable potential, then the quantum mechanical problem is also stable since
the Laplacian is a non-negative operator, and the thermodynamic limit can be shown to
exist [209]. However, potentials V that are unstable classically can become stable in
quantum mechanics. This is the case for the Coulomb potential in dimension d D 3

with two kinds of particles of opposite charge, which has been shown to be stable for
fermions [161, 165, 166] but not for bosons [60, 73, 163, 164, 227]. The existence of the
thermodynamic limit in the Coulomb case is proved in various situations [27, 84, 94, 121,
122, 156]. Correlation functions were studied in this case in [94, 101].

Few results have been proved for the crystal problem in the case of continuum quan-
tum systems. In particular, one could think that, when a classical system exhibits crystal-
lization, so does the quantum corresponding system if „ is sufficiently small. This has not
been studied, to our knowledge, except in the case of Coulomb gas (quantum Jellium) for
which Kunz [145] and Brascamp–Lieb [39] have proved crystallization for small density �
in dimension d D 1. After a change of scale, assuming that � is small is equivalent to as-
suming „ is small, so the situation is indeed a semi-classical limit. Crystallization for 1D
quantum Jellium (at any density � and any temperature T ) has been recently proved by
Jansen and Jung [132].
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Many of the results on the non-existence of crystals in the classical case have been ex-
tended to quantum systems. Using the Feynmann–Kač formula (expressing all the quan-
tum objects in terms of paths in the classical problem), Ginibre proved in [107–109] that
the grand-canonical free energy as well as the k-particle density matrices are convergent
series in terms of the fugacity z. Hence there is no phase transition for z small enough
and the k-particle density matrices are translation-invariant. The uniform bounds (53)
allowing to define local weak limits have been generalized to quantum systems in [82,94,
101, 188].

Some results have been proved for quantum systems described by nonlinear models,
such as Thomas–Fermi or Hartree. In the Coulomb case, assuming that the nuclei are
classical particles with positive charge and are distributed on a lattice, it has been proved
for convex models that the electrons are periodically arranged [47, 49–51, 162]. If in
addition one optimizes over the positions of the nuclei, then crystallization is only known
in 1D for Thomas–Fermi type models [26].
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Figure 11. Numerical calculation of the minimizing density juj2 of the Hartree energy (58) in
1D for the truncated Lennard-Jones potential w.x/ D min.103; jxj�12 � jxj�6/. Here N D 10,
„2=.2m/ D 1, the average density is � D 1 and we have used Dirichlet boundary conditions, on a
mesh with 2 � 103 points on the interval Œ0; 10�.

For a general interaction, one could study the Hartree problem that is the mean-field
approximation of the bosonic many-particle system [153]. It relies on the nonlinear en-
ergy functional

E.u/ D
„2

2m

Z
�

jru.x/j2 dx C
1

2

Z
�

Z
�

V.jx � yj/ ju.x/j2ju.y/j2 dx dy;

with
Z
�

ju.x/j2 dx D N; (58)

which is similar in spirit to (46). The numerical simulation presented in Figure 11 shows
the occurrence of crystallization for this model in 1D for a Lennard-Jones interaction.
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Similar results have been observed for the potential V.r/ D 1.0;1/.r/ in higher dimen-
sions [4, 5, 12, 130, 135, 136, 144, 192, 245].

3.4. Discrete systems. In our review, we focused on continuous systems, defined in the
whole space or in a domain �N which grows as N ! C1. An important literature is
devoted to the study of discrete systems. Such systems are defined on a lattice G � Rd ,
without assuming a priori that the corresponding states are G-periodic. We expect that
proving the occurrence of periodicity is slightly easier, since a natural periodic lattice is
already present in the definition of the system. Many rigorous results have been proved
for this kind of problems, although important questions are still unsolved. The models
considered can be either quantum or classical.

Examples of such systems are the (classical or quantum) Heisenberg or Ising models.
Two main regimes are usually dealt with: the ferromagnetic one, in which spins tend to be
aligned with each other, and antiferromagnetic in which spins are preferably of alternate
sign. In this latter case, crystallization gives a periodic lattice which size is twice that of
the original one.

In 1986, Kennedy and Lieb have considered two systems of this type. In [137, 138,
155], they study electrons on a lattice, submitted to a pointwise interaction with fixed
particles of opposite spin. They prove that the electrons are located on a sub-lattice.
In [139] they consider a 1D system on the lattice Z. This model describes for instance
deformations of a polyacetylene molecule. They prove that the minimizer is periodic of
period 2, a phenomenon called Peierls instability. This result has been further developed
in [157–159]. It has been generalized in [104], and extended to the hexagonal lattice in
2D in [93].

Apart from systems with analytical solutions, an important method for studying clas-
sical or quantum spin systems is the reflection positivity method. This strategy has been
introduced in field theory [187], then adapted and developed in the case of spin sys-
tems [76, 98–100, 102]. This method aims at proving phase transitions and long-range
order. However, it does not always allow to conclude that the system is periodic. For
recent examples of application of this theory to crystallization problems, see for in-
stance [110, 111, 113, 114].

Conclusion

We have described several aspects of an important problem arising in physics and which,
in spite of an intense activity, is still not completely understood mathematically. In addi-
tion to the famous crystallization problem, several questions have been mentioned, some
of which are probably more at hand than others. Some progress in any of these directions
would be of high interest and would improve the theoretical understanding of the structure
of matter at the microscopic scale. We hope that this article will stimulate further research
in these directions.



The crystallization conjecture: a review 293

References

[1] J. R. Abo-Shaeer, C. Raman, J. M. Vogels, and W. Ketterle, Observation of vortex lattices in
Bose–Einstein condensates, Science, 292 (2001), 476–479.

[2] A. Abrikosov, The magnetic properties of superconducting alloys, J. Phys. Chem. Solids, 2
(1957), 199 – 208.

[3] B. Addis and W. Schachinger, Improved bounds for interatomic distance in Morse clusters,
Oper. Res. Lett.,37 (2009), 290–294. Zbl 1221.92084 MR 2543680

[4] A. Aftalion, X. Blanc, and R. L. Jerrard, Nonclassical rotational inertia of a supersolid, Phys.
Rev. Lett., 99 (2007), 135301.

[5] A. Aftalion, X. Blanc and R. L. Jerrard, Mathematical issues in the modelling of supersolids,
Nonlinearity 22, 1589–1614. Zbl 1178.82087 MR 2519680

[6] A. Aftalion, X. Blanc and F. Nier, Lowest Landau level functional and Bargmann spaces
for Bose-Einstein condensates, J. Funct. Anal. 241 (2009), 661–702. Zbl 1118.82004
MR 2271933

[7] M. Aizenman and P. A. Martin, Structure of Gibbs states of one-dimensional Coulomb sys-
tems, Comm. Math. Phys. 78 (1980/81), 99–116. MR 0597033

[8] A. Alastuey, Propriétés d’équilibre du plasma classique à une composante en trois et deux
dimensions, Ann. Phys. Fr., 11 (1986), 653–738.

[9] A. Alastuey and B. Jancovici, On the classical two-dimensional one-component Coulomb
plasma, J. Physique 42 (1981), 1–12. MR 0604143

[10] G. Alberti, R. Choksi and F. Otto, Uniform energy distribution for an isoperimetric prob-
lem with long-range interactions. J. Amer. Math. Soc. 22 (2009), 569–605. Zbl 1206.49046
MR 2476783

[11] G. Alberti and S. Müller, A new approach to variational problems with multiple scales, Comm.
Pure Appl. Math. 54 (2001), 761–825. Zbl 1021.49012 MR 1823420

[12] F. Ancilotto, M. Rossi and F. Toigo, Supersolid structure and excitation spectrum of soft-core
bosons in three dimensions, Phys. Rev. A 88 (2013), 033618.

[13] G. W. Anderson, A. Guionnet and O. Zeitouni, An introduction to random matrices. Cam-
bridge Studies in Advanced Mathematics, 118, Cambridge University Press, Cambridge,
2010. Zbl 1184.15023 MR 2760897

[14] X. Antoine and R. Duboscq, GPELab, a Matlab toolbox to solve Gross–Pitaevskii equations
I: Computation of stationary solutions, Comput. Phys. Commun., 185 (2014), 2969 – 2991.

[15] X. Antoine and R. Duboscq, Robust and efficient preconditioned Krylov spectral solvers for
computing the ground states of fast rotating and strongly interacting Bose-Einstein conden-
sates, J. Comput. Phys. 258 (2014), 509–523. MR 3145291

[16] N. Ashcroft and N. Mermin, Solid State Physics, Saunders, Philadelphia, 1976.

[17] Y. Au Yeung, G. Friesecke and B. Schmidt, Minimizing atomic configurations of short range
pair potentials in two dimensions: crystallization in the Wulff shape, Calc. Var. Partial Differ-
ential Equations 44 (2012), 81–100. Zbl 06028251 MR 2898772

[18] C. Beltrán, Harmonic properties of the logarithmic potential and the computability of elliptic
Fekete points. Constr. Approx. 37 (2013), 135–165. Zbl 1266.31006 MR 3010213

https://zbmath.org/?q=an:1221.92084
http://www.ams.org/mathscinet-getitem?mr=2543680
https://zbmath.org/?q=an:1178.82087
http://www.ams.org/mathscinet-getitem?mr=2519680
https://zbmath.org/?q=an:1118.82004
http://www.ams.org/mathscinet-getitem?mr=2271933
http://www.ams.org/mathscinet-getitem?mr=0597033
http://www.ams.org/mathscinet-getitem?mr=0604143
https://zbmath.org/?q=an:1206.49046
http://www.ams.org/mathscinet-getitem?mr=2476783
https://zbmath.org/?q=an:1021.49012
http://www.ams.org/mathscinet-getitem?mr=1823420
https://zbmath.org/?q=an:1184.15023
http://www.ams.org/mathscinet-getitem?mr=2760897
http://www.ams.org/mathscinet-getitem?mr=3145291
https://zbmath.org/?q=an:06028251
http://www.ams.org/mathscinet-getitem?mr=2898772
https://zbmath.org/?q=an:1266.31006
http://www.ams.org/mathscinet-getitem?mr=3010213


294 X. Blanc and M. Lewin

[19] C. Beltrán, The state of the art in Smale’s 7th problem in Foundations of computational math-
ematics, Budapest 2011, 1–15. London Math. Soc. Lecture Note Ser., 403. Cambridge Univ.
Press, Cambridge, 2013. Zbl 1321.65206 MR 3137631

[20] A. Ben Haj Yedder, X. Blanc, and C. Le Bris, A numerical investigation of the 2-dimensional
crystal problem, Tech. Rep. R03003, Laboratoire J.-L. Lions, Université Pierre et Marie Curie,
2003.

[21] L. Bétermin, 2D Theta Functions and Crystallization among Bravais Lattices, 2015.
arXiv:1502.03839

[22] L. Bétermin and P. Zhang, Minimization of energy per particle among Bravais lattices in R2:
Lennard-Jones and Thomas–Fermi cases, Commun. Contemp. Math., (2014).

[23] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Differ-
ential Equations and their Applications, 13, Birkhäuser Boston, Inc., Boston, MA, 1994.

[24] F. Bethuel and T. Rivière, Vortices for a variational problem related to superconductivity, Ann.
Inst. H. Poincaré Anal. Non Linéaire 12 (1995), 243–303. Zbl 0842.35119 MR 1340265

[25] X. Blanc, Lower bound for the interatomic distance in Lennard-Jones clusters. Comput. Optim.
Appl. 29 (2004), 5–12. Zbl 1065.81135 MR 2093384

[26] X. Blanc and C. Le Bris, Periodicity of the infinite-volume ground state of a one-dimensional
quantum model, Nonlinear Anal., 48 (2002), 791–803. Zbl 0992.82043 MR 1879075

[27] X. Blanc and M. Lewin, Existence of the thermodynamic limit for disordered quantum
Coulomb systems, J. Math. Phys. 53 (2012), 095209, 32. Zbl 1278.82031 MR 2905791

[28] T. Bodineau, The Wulff construction in three and more dimensions. Comm. Math. Phys. 207
(1999), 197–229. Zbl 1015.82005 MR 1724851

[29] T. Bodineau, D. Ioffe, and Y. Velenik, Rigorous probabilistic analysis of equilibrium crystal
shapes. J. Math. Phys. 41 (2000), 1033–1098. Zbl 0977.82013 MR 1757951

[30] M. Bonitz, P. Ludwig, H. Baumgartner, C. Henning, A. Filinov, D. Block, O. Arp, A. Piel,
S. Käding, Y. Ivanov, A. Melzer, H. Fehske, and V. Filinov, Classical and quantum coulomb
crystals, Physics of Plasmas 15 (2008).

[31] L. Bonsall and A. A. Maradudin, Some static and dynamical properties of a two-dimensional
Wigner crystal, Phys. Rev. B 15 (1977), 1959–1973.

[32] S. V. Borodachov, Lower order terms of the discrete minimal Riesz energy on smooth closed
curves, Canad. J. Math. 64 (2012), 24–43. Zbl 1246.31006 MR 2932168

[33] S. V. Borodachov, D. P. Hardin and E. B. Saff, Asymptotics of best-packing on rectifiable sets,
Proc. Amer. Math. Soc. 135 (2007), 2369–2380. Zbl 1124.28004 MR 2302558

[34] D. Borwein, J. M. Borwein and R. Shail, Analysis of certain lattice sums. J. Math. Anal.
Appl. 143 (1989), 126–137. Zbl 0682.10028 MR 1019453

[35] D. Borwein, J. M. Borwein, R. Shail and I. J. Zucker, Energy of static electron lattices, J.
Phys. A 21 (1988), 1519–1531. Zbl 0675.33010 MR 0951042

[36] D. Borwein, J. M. Borwein and A. Straub, On lattice sums and Wigner limits, J. Math. Anal.
Appl. 414 (2014), 489–513. Zbl 06420444 MR 3167976

[37] J. M. Borwein, M. L. Glasser, R. C. McPhedran, J. G. Wan, and I. J. Zucker, Lattice sums
then and now, Encyclopedia of Mathematics and its Applications, 150, Cambridge University
Press, Cambridge, 2013. Zbl 1312.11001 MR 3135109

https://zbmath.org/?q=an:1321.65206
http://www.ams.org/mathscinet-getitem?mr=3137631
http://arxiv.org/abs/1502.03839
https://zbmath.org/?q=an:0842.35119
http://www.ams.org/mathscinet-getitem?mr=1340265
https://zbmath.org/?q=an:1065.81135
http://www.ams.org/mathscinet-getitem?mr=2093384
https://zbmath.org/?q=an:0992.82043
http://www.ams.org/mathscinet-getitem?mr=1879075
https://zbmath.org/?q=an:1278.82031
http://www.ams.org/mathscinet-getitem?mr=2905791
https://zbmath.org/?q=an:1015.82005
http://www.ams.org/mathscinet-getitem?mr=1724851
https://zbmath.org/?q=an:0977.82013
http://www.ams.org/mathscinet-getitem?mr=1757951
https://zbmath.org/?q=an:1246.31006
http://www.ams.org/mathscinet-getitem?mr=2932168
https://zbmath.org/?q=an:1124.28004
http://www.ams.org/mathscinet-getitem?mr=2302558
https://zbmath.org/?q=an:0682.10028
http://www.ams.org/mathscinet-getitem?mr=1019453
https://zbmath.org/?q=an:0675.33010
http://www.ams.org/mathscinet-getitem?mr=0951042
https://zbmath.org/?q=an:06420444
http://www.ams.org/mathscinet-getitem?mr=3167976
https://zbmath.org/?q=an:1312.11001
http://www.ams.org/mathscinet-getitem?mr=3135109


The crystallization conjecture: a review 295

[38] D. P. Bourne, M. A. Peletier and F. Theil, Optimality of the triangular lattice for a particle sys-
tem with Wasserstein interaction. Comm. Math. Phys. 329 (2014), 117–140. Zbl 1294.82006
MR 3206999

[39] H. J. Brascamp and E. H. Lieb, Some inequalities for Gaussian measures and the long-
range order of the one-dimensional plasma in Functional Integration and Its Applications,
A. Arthurs, ed., Clarendon Press, Oxford, 1975.

[40] J. S. Brauchart, About the second term of the asymptotics for optimal Riesz energy on the
sphere in the potential-theoretical case, Integral Transforms Spec. Funct. 17 (2006), 321–328.
Zbl 1100.41018 MR 2237493

[41] J. S. Brauchart, D. P. Hardin and E. B. Saff, The next-order term for optimal Riesz and log-
arithmic energy asymptotics on the sphere in Recent advances in orthogonal polynomials,
special functions, and their applications, 31–61, Contemp. Math., 578. Amer. Math. Soc.,
Providence, RI, 2012. Zbl 1318.31011 MR 2964138

[42] S. G. Brush, H. L. Sahlin and E. Teller, Monte Carlo study of a one-component plasma. I, The
Journal of Chemical Physics 45 (1966), 2102–2118.

[43] D. C. Brydges and P. A. Martin. Coulomb systems at low density: a review, J. Statist. Phys. 96
(1999), 1163–1330. Zbl 1080.82503 MR 1722991

[44] L. Bétermin, Renormalized Energy and Asymptotic Expansion of Optimal Logarithmic En-
ergy on the Sphere, 2014. arXiv:1404.4485

[45] E. Caglioti, P.L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows for
two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys. 143
(1992), 501–525. Zbl 0745.76001 MR 1145596

[46] E. Caglioti, P.-L. Lions, C. Marchioro and M. Pulvirenti, A special class of stationary flows
for two-dimensional Euler equations: a statistical mechanics description. II., Comm. Math.
Phys. 174 (1995), 229–260. Zbl 0840.76002 MR 1362165

[47] É. Cancès, A. Deleurence and M. Lewin, A new approach to the modeling of local de-
fects in crystals: the reduced Hartree-Fock case, Comm. Math. Phys. 281 (2008), 129–177.
Zbl 1157.82042 MR 2403606

[48] J. W. S. Cassels, On a problem of Rankin about the Epstein zeta-functionm, Proc. Glasgow
Math. Assoc. 4 (1959), 73–80. Zbl 0103.27602 MR 0117193

[49] I. Catto, C. Le Bris, and P.-L. Lions, The mathematical theory of thermodynamic limits:
Thomas-Fermi type models, Oxford Mathematical Monographs, The Clarendon Press Oxford
University Press, New York, 1998. MR 1673212

[50] I. Catto, C. Le Bris, and P.-L. Lions, On the thermodynamic limit for Hartree-Fock type
models, Ann. Inst. H. Poincaré Anal. Non Linéaire, 18 (2001), 687–760. Zbl 0994.35115
MR 1860952

[51] I. Catto, C. Le Bris, and P.-L. Lions, On some periodic Hartree-type models for crystals, Ann.
Inst. H. Poincaré Anal. Non Linéaire, 19 (2002), 143–190. Zbl 1005.81101 MR 1902742

[52] R. Cerf and Á. Pisztora, On the Wulff crystal in the Ising model, Ann. Probab., 28 (2000),
947–1017. Zbl 1034.82006 MR 1797302

[53] X. Chen and Y. Oshita, Periodicity and uniqueness of global minimizers of an energy func-
tional containing a long-range interaction, SIAM J. Math. Anal. 37 (2005), 1299–1332 (elec-
tronic). Zbl 1114.49002 MR 2192296

https://zbmath.org/?q=an:1294.82006
http://www.ams.org/mathscinet-getitem?mr=3206999
https://zbmath.org/?q=an:1100.41018
http://www.ams.org/mathscinet-getitem?mr=2237493
https://zbmath.org/?q=an:1318.31011
http://www.ams.org/mathscinet-getitem?mr=2964138
https://zbmath.org/?q=an:1080.82503
http://www.ams.org/mathscinet-getitem?mr=1722991
http://arxiv.org/abs/1404.4485
https://zbmath.org/?q=an:0745.76001
http://www.ams.org/mathscinet-getitem?mr=1145596
https://zbmath.org/?q=an:0840.76002
http://www.ams.org/mathscinet-getitem?mr=1362165
https://zbmath.org/?q=an:1157.82042
http://www.ams.org/mathscinet-getitem?mr=2403606
https://zbmath.org/?q=an:0103.27602
http://www.ams.org/mathscinet-getitem?mr=0117193
http://www.ams.org/mathscinet-getitem?mr=1673212
https://zbmath.org/?q=an:0994.35115
http://www.ams.org/mathscinet-getitem?mr=1860952
https://zbmath.org/?q=an:1005.81101
http://www.ams.org/mathscinet-getitem?mr=1902742
https://zbmath.org/?q=an:1034.82006
http://www.ams.org/mathscinet-getitem?mr=1797302
https://zbmath.org/?q=an:1114.49002
http://www.ams.org/mathscinet-getitem?mr=2192296


296 X. Blanc and M. Lewin

[54] R. Choksi and M. A. Peletier, Small volume fraction limit of the diblock copolymer problem:
I. Sharp-interface functional. SIAM J. Math. Anal. 42 (2010), 1334–1370. Zbl 1210.49050
MR 2653253

[55] G. Choquet, Diamètre transfini et comparaison de diverses capacités, in Séminaire Brelot-
Choquet-Deny. Théorie du potentiel, Exp. 4, 1958–1959.

[56] J. Chu and L. I, Coulomb lattice in a weakly ionized colloidal plasma, Physica A: Statistical
Mechanics and its Applications, 205 (1994), 183 – 190.

[57] H. Cohn and N. Elkies, New upper bounds on sphere packings. I., Ann. of Math. (2) 157
(2003), 689–714. Zbl 1041.52011 MR 1973059

[58] H. Cohn and A. Kumar, Universally optimal distribution of points on spheres, J. Amer. Math.
Soc. 20 (2007), 99–148. Zbl 1198.52009 MR 2257398

[59] A. Collevecchio, W. König, P. Mörters and N. Sidorova, Phase transitions for dilute par-
ticle systems with Lennard-Jones potential, Comm. Math. Phys. 299 (2010), 603–630.
Zbl 1204.82017 MR 2718925

[60] J. G. Conlon, E. H. Lieb and H.-T. Yau, The N 7=5 law for charged bosons, Comm. Math.
Phys. 116 (1988), 417–448. MR 0937769

[61] J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, Third ed. Grundlehren
der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences],
290. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton,
A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. Springer-Verlag, New York, 1999.
Zbl 0915.52003 MR 1662447

[62] R. Coulangeon, Spherical designs and zeta functions of lattices, Int. Math. Res. Not., 16
(2006), Art. ID 49620. Zbl 1159.11020 MR 2272103

[63] R. Coulangeon and A. Schürmann, Energy minimization, periodic sets and spherical designs,
Int. Math. Res. Not. IMRN (2012), 829–848. Zbl 1272.49004 MR 2889159

[64] S. de Leeuw and J. Perram, Statistical mechanics of two-dimensional Coulomb systems: II.
The two-dimensional one-component plasma, Physica A: Statistical Mechanics and its Appli-
cations, 113 (1982), 546 – 558.

[65] P. H. Diananda, Notes on two lemmas concerning the Epstein zeta-function, Proc. Glasgow
Math. Assoc., 6 (1964), 202–204. Zbl 0128.04501 MR 0168537

[66] A. D. Dinsmore, M. F. Hsu, M. G. Nikolaides, M. Marquez, A. R. Bausch and D. A. Weitz,
Colloidosomes: Selectively permeable capsules composed of colloidal particles, Science, 298
(2002), 1006–1009.

[67] R. L. Dobrushin, Investigation of conditions for the asymptotic existence of the configuration
integral of Gibbs’ distribution, Theory of Probability & Its Applications, 9 (1964), 566–581.

[68] R. Dobrushin, The problem of uniqueness of a gibbsian random field and the problem of phase
transitions, Functional Analysis and Its Applications, 2 (1968), 302–312. Zbl 0192.61702
MR 0250631

[69] D. H. E. Dubin and T. M. O’Neil, Trapped nonneutral plasmas, iquids, and crystals (the ther-
mal equilibrium states), Rev. Mod. Phys., 71 (1999), 87–172.

[70] F. J. Dyson, Statistical theory of the energy levels of complex systems. I. J. Mathematical
Phys., 3 (1962), 140–156. Zbl 0105.41604 MR 0143556

[71] F. J. Dyson, Statistical theory of the energy levels of complex systems. II, J. Mathematical
Phys., 3 (1962), 157–165. Zbl 0105.41604 MR 0143557

https://zbmath.org/?q=an:1210.49050
http://www.ams.org/mathscinet-getitem?mr=2653253
https://zbmath.org/?q=an:1041.52011
http://www.ams.org/mathscinet-getitem?mr=1973059
https://zbmath.org/?q=an:1198.52009
http://www.ams.org/mathscinet-getitem?mr=2257398
https://zbmath.org/?q=an:1204.82017
http://www.ams.org/mathscinet-getitem?mr=2718925
http://www.ams.org/mathscinet-getitem?mr=0937769
https://zbmath.org/?q=an:0915.52003
http://www.ams.org/mathscinet-getitem?mr=1662447
https://zbmath.org/?q=an:1159.11020
http://www.ams.org/mathscinet-getitem?mr=2272103
https://zbmath.org/?q=an:1272.49004
http://www.ams.org/mathscinet-getitem?mr=2889159
https://zbmath.org/?q=an:0128.04501
http://www.ams.org/mathscinet-getitem?mr=0168537
https://zbmath.org/?q=an:0192.61702
http://www.ams.org/mathscinet-getitem?mr=0250631
https://zbmath.org/?q=an:0105.41604
http://www.ams.org/mathscinet-getitem?mr=0143556
https://zbmath.org/?q=an:0105.41604
http://www.ams.org/mathscinet-getitem?mr=0143557


The crystallization conjecture: a review 297

[72] F. J. Dyson, Statistical theory of the energy levels of complex systems. III, J. Mathematical
Phys., 3, 166–175. Zbl 0105.41604 MR 0143558

[73] F. J. Dyson, Ground-state energy of a finite system of charged particles, J. Math. Phys., 8
(1967), 1538–1545. MR 2408895

[74] F. J. Dyson, Existence of a phase-transition in a one-dimensional Ising ferromagnet, Comm.
Math. Phys., 12 (1969), 91–107. Zbl 1306.47082 MR 0436850

[75] F. J. Dyson and A. Lenard, Stability of matter. I, J. Math. Phys., 8 (1967), 423–434.
Zbl 0948.81665 MR 2408896

[76] F. J. Dyson, E. H. Lieb and B. Simon, Phase transitions in quantum spin systems with isotropic
and nonisotropic interactions, J. Statist. Phys., 18 (1978), 335–383. MR 0496246

[77] F. J. Dyson and M. L. Mehta, Statistical theory of the energy levels of complex systems. IV,
J. Mathematical Phys., 4 (1963), 701–712. MR 0151231

[78] W. E and D. Li, On the crystallization of 2D hexagonal lattices, Comm. Math. Phys. 286
(2009), 1099–1140. Zbl 1180.82191 MR 2472027

[79] V. Ennola, A lemma about the Epstein zeta-function, Proc. Glasgow Math. Assoc., 6 (1964),
198–201. Zbl 0128.04402 MR 0168536

[80] V. Ennola, On a problem about the Epstein zeta-function, Proc. Cambridge Philos. Soc., 60
(1964), 855–875. Zbl 0146.05504 MR 0168535

[81] P. Epstein, Zur Theorie allgemeiner Zetafunktionen. II, Math. Ann., 63 (1906), 205–216.
MR 1511399

[82] R. Esposito, F. Nicolò and M. Pulvirenti, Superstable interactions in quantum statistical me-
chanics: Maxwell–Boltzmann statistics, Ann. Inst. H. Poincaré Sect. A (N.S.), 36 (1982), 127–
158. MR 0662882

[83] P. P. Ewald, Die berechnung optischer und elektrostatischer gitterpotentiale, Ann. Phys., 369
(1921),253–287.

[84] C. Fefferman, The thermodynamic limit for a crystal, Comm. Math. Phys., 98 (1985), 289–
311. Zbl 0603.35079 MR 0788776

[85] M. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit
ganzzahligen Koeffizienten, Math. Z., 17 (1923), 228–249. Zbl 49.0047.01 MR 1544613

[86] K. L. Fields, Locally minimal Epstein zeta functions, Mathematika, 27 (1980), 17–24.
Zbl 0428.10014 MR 0581992

[87] M. E. Fisher, The free energy of a macroscopic system, Arch. Rational Mech. Anal., 17 (1964),
377–410. MR 0172644

[88] M. E. Fisher, Correlation functions and the coexistence of phases, J. Mathematical Phys., 6
(1965), 1643–1653. MR 0186254

[89] M. E. Fisher and D. Ruelle, The stability of many-particle systems, J. Mathematical Phys., 7
(1966), 260–270. MR 0197133

[90] L. C. Flatley and F. Theil, Face-centered cubic crystallization of atomistic configurations,
Arch. Ration. Mech. Anal., 218 (2015), 363–416. Zbl 06482497 MR 3360741

[91] Flyspeck team, Announcement of completion of the flyspeck project, August 2014.
https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion

https://zbmath.org/?q=an:0105.41604
http://www.ams.org/mathscinet-getitem?mr=0143558
http://www.ams.org/mathscinet-getitem?mr=2408895
https://zbmath.org/?q=an:1306.47082
http://www.ams.org/mathscinet-getitem?mr=0436850
https://zbmath.org/?q=an:0948.81665
http://www.ams.org/mathscinet-getitem?mr=2408896
http://www.ams.org/mathscinet-getitem?mr=0496246
http://www.ams.org/mathscinet-getitem?mr=0151231
https://zbmath.org/?q=an:1180.82191
http://www.ams.org/mathscinet-getitem?mr=2472027
https://zbmath.org/?q=an:0128.04402
http://www.ams.org/mathscinet-getitem?mr=0168536
https://zbmath.org/?q=an:0146.05504
http://www.ams.org/mathscinet-getitem?mr=0168535
http://www.ams.org/mathscinet-getitem?mr=1511399
http://www.ams.org/mathscinet-getitem?mr=0662882
https://zbmath.org/?q=an:0603.35079
http://www.ams.org/mathscinet-getitem?mr=0788776
https://zbmath.org/?q=an:49.0047.01
http://www.ams.org/mathscinet-getitem?mr=1544613
https://zbmath.org/?q=an:0428.10014
http://www.ams.org/mathscinet-getitem?mr=0581992
http://www.ams.org/mathscinet-getitem?mr=0172644
http://www.ams.org/mathscinet-getitem?mr=0186254
http://www.ams.org/mathscinet-getitem?mr=0197133
https://zbmath.org/?q=an:06482497
http://www.ams.org/mathscinet-getitem?mr=3360741
https://code.google.com/p/flyspeck/wiki/AnnouncingCompletion


298 X. Blanc and M. Lewin

[92] P. J. Forrester, Log-gases and random matrices, London Mathematical Society Monographs
Series, 34. Princeton University Press, Princeton, NJ, 2010. Zbl 1217.82003 MR 2641363

[93] R. L. Frank and E. H. Lieb, Possible lattice distortions in the Hubbard model for graphene,
Phys. Rev. Lett., 107 (2011), 066801.

[94] J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classi-
cal and quantum continuous systems. II. Bose-Einstein and Fermi-Dirac statistics, J. Statist.
Phys., 23 (1980), 701–753. MR 0602079

[95] J. Fröhlich and C.-E. Pfister, On the absence of spontaneous symmetry breaking and of
crystalline ordering in two-dimensional systems, Comm. Math. Phys., 81 (1981), 277–298.
MR 0632763

[96] J. Fröhlich and C.-E. Pfister, Absence of crystalline ordering in two dimensions, Comm. Math.
Phys., 104 (1986), 697–700. Zbl 0592.58016 MR 0841677

[97] J. Fröhlich and T. Spencer, The phase transition in the one-dimensional Ising model with 1=r2

interaction energy, Comm. Math. Phys., 84 (1982), 87–101. Zbl 1110.82302 MR 0660541

[98] J. Fröhlich, R. B. Israel, E. H. Lieb and B. Simon, Phase transitions and reflection positiv-
ity. I. General theory and long range lattice models, Comm. Math. Phys., 62 (1978), 1–34.
MR 0506363

[99] J. Fröhlich, R. B. Israel, E. H. Lieb and B. Simon, Phase transitions and reflection positivity.
II. Lattice systems with short-range and Coulomb interactions, J. Statist. Phys., 22 (1980),
297–347. MR 0570370

[100] J. Fröhlich and E. H. Lieb, Phase transitions in anisotropic lattice spin systems, Comm. Math.
Phys., 60 (1978), 233–267. MR 0523697

[101] J. Fröhlich and Y. M. Park, Correlation inequalities and the thermodynamic limit for classical
and quantum continuous systems, Comm. Math. Phys., 59 (1978), 235–266. MR 0496191

[102] J. Fröhlich, B. Simon and T. Spencer, Infrared bounds, phase transitions and continuous
symmetry breaking, Comm. Math. Phys., 50 (1976), 79–95. MR 0421531

[103] R. Gann, S. Chakravarty, and G. Chester, Monte carlo simulation of the classical two-
dimensional one-component plasma, Phys. Rev. B, 20 (1979), 326–344.

[104] M. Garcia Arroyo and E. Séré, Existence of kink solutions in a discrete model of the poly-
acetylene molecule, preprint hal-00769075, December 2012.

[105] C. S. Gardner and C. Radin, The infinite-volume ground state of the Lennard–Jones potential,
J. Statist. Phys., 20 (1979), 719–724. MR 0537267

[106] C. F. Gauss, Recension der ”Untersuchungen über die Eigenschaften der positiven ternären
quadratischen Formen von Ludwig August Seeber, Dr. der Philosophie, ordentl. Professor an
der Universität in Freiburg. 1831. 248 S. in 4.“, J. Reine Angew. Math., 20 (1840), 312–320.
MR 1578241

[107] J. Ginibre, Reduced density matrices of quantum gases. I. Limit of infinite volume, J. Math-
ematical Phys., 6 (1965), 238–251. Zbl 0129.43601 MR 0175566

[108] J. Ginibre, Reduced density matrices of quantum gases. II. Cluster property, J. Mathematical
Phys., 6 (1965), 252–262. Zbl 0129.43601 MR 0175567

[109] J. Ginibre, Reduced density matrices of quantum gases. III. Hardcore potentials, J. Mathe-
matical Phys., 6 (1965), 1432–1446. Zbl 0129.43601 MR 0184660

https://zbmath.org/?q=an:1217.82003
http://www.ams.org/mathscinet-getitem?mr=2641363
http://www.ams.org/mathscinet-getitem?mr=0602079
http://www.ams.org/mathscinet-getitem?mr=0632763
https://zbmath.org/?q=an:0592.58016
http://www.ams.org/mathscinet-getitem?mr=0841677
https://zbmath.org/?q=an:1110.82302
http://www.ams.org/mathscinet-getitem?mr=0660541
http://www.ams.org/mathscinet-getitem?mr=0506363
http://www.ams.org/mathscinet-getitem?mr=0570370
http://www.ams.org/mathscinet-getitem?mr=0523697
http://www.ams.org/mathscinet-getitem?mr=0496191
http://www.ams.org/mathscinet-getitem?mr=0421531
http://www.ams.org/mathscinet-getitem?mr=0537267
http://www.ams.org/mathscinet-getitem?mr=1578241
https://zbmath.org/?q=an:0129.43601
http://www.ams.org/mathscinet-getitem?mr=0175566
https://zbmath.org/?q=an:0129.43601
http://www.ams.org/mathscinet-getitem?mr=0175567
https://zbmath.org/?q=an:0129.43601
http://www.ams.org/mathscinet-getitem?mr=0184660


The crystallization conjecture: a review 299

[110] A. Giuliani, J. L. Lebowitz and E. H. Lieb, Ising models with long-range antiferromagnetic
and short-range ferromagnetic interactions, Phys. Rev. B, 74 (2006), 064420.

[111] A. Giuliani, J. L. Lebowitz and E. H. Lieb, Striped phases in two-dimensional dipole systems,
Phys. Rev. B, 76 (2007), 184426.

[112] A. Giuliani, J. L. Lebowitz and E. H. Lieb, Periodic minimizers in 1D local mean field theory,
Comm. Math. Phys., 286 (2009), 163–177. Zbl 1173.82008 MR 2470928

[113] A. Giuliani, E. H. Lieb, and R. Seiringer, Realization of stripes and slabs in two and three
dimensions, Phys. Rev. B, 88 (2013), 064401.

[114] A. Giuliani, E. H. Lieb and R. Seiringer, Formation of stripes and slabs near the ferromag-
netic transition, Comm. Math. Phys., 331 (2014), 333–350. Zbl 1302.82018 MR 3232004

[115] G. Giuliani and G. Vignale, Quantum Theory of the Electron Liquid, Cambridge University
Press, 2005.

[116] L. Glasser and A. G. Every, Energies and spacings of point charges on a sphere, J. Phys. A,
Math. Gen., 25 (1992), 2473.

[117] D. Goldman, C. B. Muratov and S. Serfaty, The �-limit of the two-dimensional Ohta-
Kawasaki energy. I. Droplet density, Arch. Ration. Mech. Anal., 210 (2013), 581–613.
Zbl 1296.82018 MR 3101793

[118] D. Goldman, C. B. Muratov and S. Serfaty, The �-limit of the two-dimensional Ohta-
Kawasaki energy. Droplet arrangement via the renormalized energy, Arch. Ration. Mech.
Anal., 212 (2014), 445–501. Zbl 1305.35134 MR 3176350

[119] P. M. Gruber, Application of an idea of Voronoı̆ to lattice zeta functions, Tr. Mat. Inst.
Steklova, 276, (2012), 109–130. Zbl 1297.11113 MR 2986113

[120] M. Götz and E. B. Saff, Note on d -extremal configurations for the sphere in RdC1, in Recent
progress in multivariate approximation (Witten-Bommerholz, 2000), 159–162. Internat. Ser.
Numer. Math., 137. Birkhäuser, Basel, 2001. Zbl 0988.31004 MR 1877504

[121] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb sys-
tems. I. General theory, Adv. Math., 221 (2009), 454–487. Zbl 1165.81041 MR 2508928

[122] C. Hainzl, M. Lewin, and J. P. Solovej, The thermodynamic limit of quantum Coulomb sys-
tems. II. Applications. Adv. Math., 221 (2009), 488–546. Zbl 1165.81042 MR 2508929

[123] T. C. Hales, A proof of the Kepler conjecture, Ann. of Math. (2), 162 (2005), 1065–1185.
Zbl 1096.52010 MR 2179728

[124] G. C. Hamrick and C. Radin, The symmetry of ground states under perturbation, J. Statist.
Phys., 21 (1979), 601–607. MR 0552996

[125] J. Hansen, Statistical mechanics of dense ionized matter. i. equilibrium properties of the
classical one-component plasma, Phys. Rev. A, 8 (1973), 3096–3109.

[126] D. P. Hardin and E. B. Saff, Discretizing manifolds via minimum energy points, Notices
Amer. Math. Soc., 51 (2004), 1186–1194. Zbl 1095.49031 MR 2104914

[127] D. P. Hardin and E. B. Saff, Minimal Riesz energy point configurations for rectifiable d -
dimensional manifolds, Adv. Math., 193 (2005), 174–204. Zbl 1192.49048 MR 2132763

[128] Y. Hayashi and K. Tachibana, Observation of Coulomb-crystal formation from carbon parti-
cles grown in a methane plasma, Jpn J. Appl. Phys., 33 (1994), L804.

[129] R. C. Heitmann and C. Radin, The ground state for sticky disks, J. Statist. Phys., 22 (1980),
281–287. MR 0570369

https://zbmath.org/?q=an:1173.82008
http://www.ams.org/mathscinet-getitem?mr=2470928
https://zbmath.org/?q=an:1302.82018
http://www.ams.org/mathscinet-getitem?mr=3232004
https://zbmath.org/?q=an:1296.82018
http://www.ams.org/mathscinet-getitem?mr=3101793
https://zbmath.org/?q=an:1305.35134
http://www.ams.org/mathscinet-getitem?mr=3176350
https://zbmath.org/?q=an:1297.11113
http://www.ams.org/mathscinet-getitem?mr=2986113
https://zbmath.org/?q=an:0988.31004
http://www.ams.org/mathscinet-getitem?mr=1877504
https://zbmath.org/?q=an:1165.81041
http://www.ams.org/mathscinet-getitem?mr=2508928
https://zbmath.org/?q=an:1165.81042
http://www.ams.org/mathscinet-getitem?mr=2508929
https://zbmath.org/?q=an:1096.52010
http://www.ams.org/mathscinet-getitem?mr=2179728
http://www.ams.org/mathscinet-getitem?mr=0552996
https://zbmath.org/?q=an:1095.49031
http://www.ams.org/mathscinet-getitem?mr=2104914
https://zbmath.org/?q=an:1192.49048
http://www.ams.org/mathscinet-getitem?mr=2132763
http://www.ams.org/mathscinet-getitem?mr=0570369


300 X. Blanc and M. Lewin

[130] N. Henkel, F. Cinti, P. Jain, G. Pupillo and T. Pohl, Supersolid vortex crystals in rydberg-
dressed Bose–Einstein condensates, Phys. Rev. Lett., 108 (2012), 265301.

[131] S. Jansen, Mayer and virial series at low temperature, J. Stat. Phys., 147 (2012), 678–706.
Zbl 1252.82045 MR 2930575

[132] S. Jansen and P. Jung, Wigner crystallization in the quantum 1D jellium at all densities,
Comm. Math. Phys.,331 (2014), 1133–1154. Zbl 1303.82036 MR 3248061

[133] S. Jansen and W. König, Ideal mixture approximation of cluster size distributions at low
density, J. Stat. Phys., 147 (2012), 963–980. Zbl 1251.82040 MR 2946631

[134] R. L. Jerrard, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math.
Anal., 30 (1999), 721–746. Zbl 0928.35045 MR 1684723

[135] C. Josserand, Y. Pomeau, and S. Rica, Coexistence of ordinary elasticity and superfluidity in
a model of a defect-free supersolid, Phys. Rev. Lett., 98 (2007), p. 195301.

[136] C. Josserand, Y. Pomeau and S. Rica, Patterns and supersolids, EPJ ST, 146 (2007), 47–61.

[137] T. Kennedy and E. H. Lieb, A model for crystallization: A variation on the Hubbard model,
in Statistical Mechanics and Field Theory: Mathematical Aspects, T. C. Dorlas, N. M. Hugen-
holtz and M. Winnink, eds., 1–9, Lecture Notes in Physics, 257, Berlin, Springer-Verlag, 1986.
MR 862827

[138] T. Kennedy and E. H. Lieb, An itinerant electron model with crystalline or magnetic long
range order, Phys. A, 138 (1986), 320–358. Zbl 1002.82508 MR 0865249

[139] T. Kennedy and E. H. Lieb, Proof of the Peierls instability in one dimension, Phys. Rev. Lett.,
59 (1987), 1309–1312. MR 0906772

[140] M. K.-H. Kiessling, Statistical mechanics of classical particles with logarithmic interactions,
Comm. Pure Appl. Math., 46 (1993), 27–56. Zbl 0811.76002 MR 1193342

[141] M. K.-H. Kiessling, A note on classical ground state energies, J. Stat. Phys., 136 (2009),
275–284. Zbl 1310.81055 MR 2525246

[142] C. Kittel, Quantum Theory of Solids, 2nd ed., John Wiley & Sons, 1987.

[143] A. B. J. Kuijlaars and E. B. Saff, Asymptotics for minimal discrete energy on the sphere,
Trans. Amer. Math. Soc., 350 (1998), 523–538. Zbl 0896.52019 MR 1458327

[144] M. Kunimi and Y. Kato, Mean-field and stability analyses of two-dimensional flowing soft-
core bosons modeling a supersolid, Phys. Rev. B, 86 (2012), 060510.

[145] H. Kunz, The one-dimensional classical electron gas, Ann. Physics, 85 (1974), 303–335.
MR 0426742

[146] N. S. Landkof, Foundations of modern potential theory, Translated from the Russian by
A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, 180. Springer-
Verlag, New York-Heidelberg, 1972. Zbl 0253.31001 MR 0350027

[147] O. E. Lanford, Entropy and equilibrium states in classical statistical mechanics, in Statistical
Mechanics and Mathematical Problems, A. Lenard, ed., 1–113, Lecture Notes in Physics, 20,
Springer, Berlin Heidelberg, 1973.

[148] T. Leblé, A Uniqueness Result for Minimizers of the 1D Log-gas Renormalized Energy,
2014. arXiv:1408.2283

[149] T. Leblé, Logarithmic, Coulomb and Riesz energy of point processes, 2015.
arXiv:1509.05253

https://zbmath.org/?q=an:1252.82045
http://www.ams.org/mathscinet-getitem?mr=2930575
https://zbmath.org/?q=an:1303.82036
http://www.ams.org/mathscinet-getitem?mr=3248061
https://zbmath.org/?q=an:1251.82040
http://www.ams.org/mathscinet-getitem?mr=2946631
https://zbmath.org/?q=an:0928.35045
http://www.ams.org/mathscinet-getitem?mr=1684723
http://www.ams.org/mathscinet-getitem?mr=862827
https://zbmath.org/?q=an:1002.82508
http://www.ams.org/mathscinet-getitem?mr=0865249
http://www.ams.org/mathscinet-getitem?mr=0906772
https://zbmath.org/?q=an:0811.76002
http://www.ams.org/mathscinet-getitem?mr=1193342
https://zbmath.org/?q=an:1310.81055
http://www.ams.org/mathscinet-getitem?mr=2525246
https://zbmath.org/?q=an:0896.52019
http://www.ams.org/mathscinet-getitem?mr=1458327
http://www.ams.org/mathscinet-getitem?mr=0426742
https://zbmath.org/?q=an:0253.31001
http://www.ams.org/mathscinet-getitem?mr=0350027
http://arxiv.org/abs/1408.2283
http://arxiv.org/abs/1509.05253


The crystallization conjecture: a review 301

[150] T. Leblé and S. Serfaty, Large Deviation Principle for Empirical Fields of Log and Riesz
Gases, 2015. arXiv:1502.02970

[151] J. L. Lebowitz and O. Penrose, Convergence of virial expansions, J. Mathematical Phys., 5
(1964), 841–847. MR 0163711

[152] A. Lenard and F. J. Dyson, Stability of matter. II, J. Math. Phys., 9 (1968), 698–711.
Zbl 0948.81666 MR 2408897

[153] M. Lewin, Mean-field limit of Bose systems: rigorous results, in Proceedings of the Interna-
tional Congress of Mathematical Physics, 2015. arXiv:1510.04407

[154] M. Lewin and E. H. Lieb, Improved Lieb-Oxford exchange-correlation inequality with gra-
dient correction, Phys. Rev. A, 91 (2015), 022507.

[155] E. H. Lieb, A model for crystallization: a variation on the Hubbard model, Phys. A, 140
(1986), 240–250. Zbl 0686.58045 MR 0873971

[156] E. H. Lieb and J. L. Lebowitz, The constitution of matter: Existence of thermodynam-
ics for systems composed of electrons and nuclei, Advances in Math., 9 (1972), 316–398.
Zbl 1049.82501 MR 0339751

[157] E. H. Lieb and B. Nachtergaele, Dimerization in ring-shaped molecules: the stability of the
Peierls instability, in XIth International Congress of Mathematical Physics (Paris, 1994), 423–
431, Int. Press, Cambridge, MA, 1995. Zbl 1052.81684 MR 1370698

[158] E. H. Lieb and B. Nachtergaele, Stability of the Peierls instability for ring-shaped molecules,
Phys. Rev. B, 51 (1995), 4777.

[159] E. H. Lieb and B. Nachtergaele, Dimerization in ring-shaped molecules: the stability of the
Peierls instability, in XIth International Congress of Mathematical Physics (Paris, 1994), 423–
431, Int. Press, Cambridge, MA, 1995. Zbl 1052.81684 MR 1370698

[160] E. H. Lieb and H. Narnhofer, The thermodynamic limit for jellium, J. Statist. Phys., 12
(1975), 291–310. Zbl 0973.82500 MR 0401029

[161] E. H. Lieb and R. Seiringer, The stability of matter in quantum mechanics, Cambridge Uni-
versity Press, Cambridge, 2010. MR 2583992

[162] E. H. Lieb and B. Simon, The Thomas-Fermi theory of atoms, molecules and solids, Ad-
vances in Math., 23 (1977), 22–116. Zbl 0938.81568 MR 0428944

[163] E. H. Lieb and J. P. Solovej, Ground state energy of the one-component charged Bose gas,
Comm. Math. Phys., 217 (2001), 127–163. MR 1815028

[164] E. H. Lieb and J. P. Solovej, Ground state energy of the two-component charged Bose gas,
Comm. Math. Phys., 252 (2004), 485–534. Zbl 1124.82303 MR 2104887

[165] E. H. Lieb and W. E. Thirring, Bound on kinetic energy of fermions which proves stability
of matter, Phys. Rev. Lett., 35 (1975), 687–689.

[166] E. H. Lieb and W. E. Thirring, Inequalities for the moments of the eigenvalues of the
Schrödinger hamiltonian and their relation to Sobolev inequalities, 269–303, Studies in Math-
ematical Physics, Princeton University Press, 1976.

[167] S. C. Lim and L. P. Teo, On the minima and convexity of Epstein zeta function, J. Math.
Phys., 49 (2008).

[168] M. Locatelli and F. Schoen, Minimal interatomic distance in Morse clusters, J. Global Op-
tim., 22 (2002), 175–190. Zbl 1045.81059 MR 1878141

http://arxiv.org/abs/1509.05253
http://www.ams.org/mathscinet-getitem?mr=0163711
https://zbmath.org/?q=an:0948.81666
http://www.ams.org/mathscinet-getitem?mr=2408897
http://arxiv.org/abs/1510.04407
https://zbmath.org/?q=an:0686.58045
http://www.ams.org/mathscinet-getitem?mr=0873971
https://zbmath.org/?q=an:1049.82501
http://www.ams.org/mathscinet-getitem?mr=0339751
https://zbmath.org/?q=an:1052.81684
http://www.ams.org/mathscinet-getitem?mr=1370698
https://zbmath.org/?q=an:1052.81684
http://www.ams.org/mathscinet-getitem?mr=1370698
https://zbmath.org/?q=an:0973.82500
http://www.ams.org/mathscinet-getitem?mr=0401029
http://www.ams.org/mathscinet-getitem?mr=2583992
https://zbmath.org/?q=an:0938.81568
http://www.ams.org/mathscinet-getitem?mr=0428944
http://www.ams.org/mathscinet-getitem?mr=1815028
https://zbmath.org/?q=an:1124.82303
http://www.ams.org/mathscinet-getitem?mr=2104887
https://zbmath.org/?q=an:1045.81059
http://www.ams.org/mathscinet-getitem?mr=1878141


302 X. Blanc and M. Lewin

[169] E. Mainini P. Piovano and U. Stefanelli, Finite crystallization in the square lattice, Nonlin-
earity, 27 (2014), 717–737. Zbl 1292.82043 MR 3190318

[170] E. Mainini and U. Stefanelli, Crystallization in carbon nanostructures, Comm. Math. Phys.,
328 (2014), 545–571. Zbl 06305254 MR 3199992

[171] C. D. Maranas and C. A. Floudas, A global optimization approach for Lennard-Jones micro-
clusters, J. Chem. Phys., 97 (1992), 7667–7678.

[172] A. Martínez-Finkelshtein, V. Maymeskul, E. A. Rakhmanov and E. B. Saff, Asymptotics
for minimal discrete Riesz energy on curves in Rd , Canad. J. Math., 56 (2004), 529–552.
Zbl 1073.31007 MR 2057285

[173] J. S. McCarley and N. W. Ashcroft, Correlation functions in classical solids, Phys. Rev. E,
55 (1997),4990–5003.

[174] M. L. Mehta, Random matrices, Third ed. Pure and Applied Mathematics (Amsterdam), 142.
Elsevier/Academic Press, Amsterdam, 2004. Zbl 1107.15019 MR 2129906

[175] M. L. Mehta and F. J. Dyson, Statistical theory of the energy levels of complex systems. V,
J. Mathematical Phys., 4 (1963), 713–719. Zbl 0133.45202 MR 0151232

[176] N. D. Mermin, Absence of ordering in certain classical systems, J. Math. Phys., 8 (1967),
1061–1064.

[177] N. D. Mermin, Crystalline order in two dimensions, Phys. Rev., 176 (1968), 250–254.

[178] N. D. Mermin and H. Wagner, Absence of ferromagnetism or antiferromagnetism in one- or
two-dimensional isotropic heisenberg models, Phys. Rev. Lett., 17 (1966), 1133–1136.

[179] J. Messer and H. Spohn, Statistical mechanics of the isothermal Lane–Emden equation, J.
Statist. Phys., 29 (1982), 561–578. MR 0704588

[180] H. L. Montgomery, Minimal theta functions, Glasgow Math. J., 30 (1988), 75–85.
Zbl 0639.10017 MR 0925561

[181] S. Müller, Singular perturbations as a selection criterion for periodic minimizing sequences,
Calc. Var. Partial Differential Equations, 1 (1993), 169–204. Zbl 0821.49015 MR 1261722

[182] D. J. Newman, The hexagon theorem, IEEE Trans. Inform. Theory, 28 (1982), 137–139.
Zbl 0476.94006 MR 0651808

[183] S. Nonnenmacher and A. Voros, Chaotic eigenfunctions in phase space, J. Statist. Phys., 92
(1998), 431–518. Zbl 1079.81530 MR 1649013

[184] T. Ohta and K. Kawasaki, Equilibrium morphology of block copolymer melts, Macro-
molecules, 19 (1986), 2621–2632.

[185] L. Onsager, Electrostatic interaction of molecules, J. Phys. Chem., 43 (1939), 189–196.

[186] B. Osgood, R. Phillips and P. Sarnak, Extremals of determinants of Laplacians, J. Funct.
Anal., 80 (1988), 148–211. Zbl 0653.53022 MR 0960228

[187] K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Comm. Math.
Phys., 31 (1973), 83–112. Zbl 0274.46047 MR 0329492

[188] Y. M. Park, Quantum statistical mechanics for superstable interactions: Bose–Einstein statis-
tics, J. Statist. Phys., 40 (1985), 259–302. Zbl 0629.46065 MR 0804171

[189] O. Penrose, Convergence of fugacity expansions for fluids and lattice gases, J. Mathematical
Phys., 4 (1963), 1312–1320. Zbl 0122.46205 MR 0157695

https://zbmath.org/?q=an:1292.82043
http://www.ams.org/mathscinet-getitem?mr=3190318
https://zbmath.org/?q=an:06305254
http://www.ams.org/mathscinet-getitem?mr=3199992
https://zbmath.org/?q=an:1073.31007
http://www.ams.org/mathscinet-getitem?mr=2057285
https://zbmath.org/?q=an:1107.15019
http://www.ams.org/mathscinet-getitem?mr=2129906
https://zbmath.org/?q=an:0133.45202
http://www.ams.org/mathscinet-getitem?mr=0151232
http://www.ams.org/mathscinet-getitem?mr=0704588
https://zbmath.org/?q=an:0639.10017
http://www.ams.org/mathscinet-getitem?mr=0925561
https://zbmath.org/?q=an:0821.49015
http://www.ams.org/mathscinet-getitem?mr=1261722
https://zbmath.org/?q=an:0476.94006
http://www.ams.org/mathscinet-getitem?mr=0651808
https://zbmath.org/?q=an:1079.81530
http://www.ams.org/mathscinet-getitem?mr=1649013
https://zbmath.org/?q=an:0653.53022
http://www.ams.org/mathscinet-getitem?mr=0960228
https://zbmath.org/?q=an:0274.46047
http://www.ams.org/mathscinet-getitem?mr=0329492
https://zbmath.org/?q=an:0629.46065
http://www.ams.org/mathscinet-getitem?mr=0804171
https://zbmath.org/?q=an:0122.46205
http://www.ams.org/mathscinet-getitem?mr=0157695


The crystallization conjecture: a review 303

[190] M. Petrache and S. Serfaty, Next Order Asymptotics and Renormalized Energy for Riesz
Interactions, 2014. arXiv:1409.7534

[191] E. Pollock and J. Hansen, Statistical mechanics of dense ionized matter. II. equilibrium prop-
erties and melting transition of the crystallized one-component plasma, Phys. Rev. A, 8 (1973),
3110–3122.

[192] Y. Pomeau and S. Rica, Dynamics of a model of supersolid, Phys. Rev. Lett., 72 (1994),
2426–2429.

[193] A. Procacci and S. A. Yuhjtman, Convergence of Mayer and Virial expansions and the Pen-
rose tree-graph identity, 2015. arXiv:1508.07379

[194] C. Radin, The ground state for soft disks, J. Statist. Phys., 26 (1981), 365–373. MR 0643714

[195] C. Radin, Crystals and quasicrystals: a continuum model, Comm. Math. Phys., 105 (1986),
385–390. MR 0848646

[196] C. Radin, Low temperature and the origin of crystalline symmetry, Internat. J. Modern Phys.
B, 1 (1987), 1157–1191. MR 0932349

[197] E. A. Rakhmanov, E. B. Saff and Y. M. Zhou, Minimal discrete energy on the sphere, Math.
Res. Lett., 1 (1994), 647–662. Zbl 0839.31011 MR 1306011

[198] R. A. Rankin, A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. As-
soc., 1 (1953), 149–158. Zbl 0052.28005 MR 0059300

[199] X. Ren and J. Wei, On energy minimizers of the diblock copolymer problem, Interfaces Free
Bound., 5 (2003), 193–238. Zbl 1031.49035 MR 1980472

[200] C. A. Rogers, Packing and covering, Cambridge Tracts in Mathematics and Mathematical
Physics, 54, Cambridge University Press, New York, 1964. Zbl 0176.51401 MR 0172183

[201] S. Rota Nodari and S. Serfaty, Renormalized energy equidistribution and local charge balance
in 2D Coulomb systems, Int. Math. Res. Not. IMRN, 11 (2015), 3035–3093. Zbl 1321.82029
MR 3373044

[202] N. Rougerie, De Finetti theorems, mean-field limits and Bose–Einstein condensation, 2015.
arXiv:1506.05263

[203] N. Rougerie and S. Serfaty, Higher Dimensional Coulomb Gases and Renormalized Energy
Functionals, Comm. Pure Appl. Math., in press, 2014.

[204] D. Ruelle, Classical statistical mechanics of a system of particles, Helv. Phys. Acta, 36
(1963), 183–197. Zbl 0113.45606 MR 0151261

[205] D. Ruelle, Correlation functions of classical gases, Ann. Physics, 25 (1963), 109–120.
MR 0156647

[206] D. Ruelle, Statistical mechanics of quantum systems of particles, Helv. Phys. Acta, 36 (1963),
789–799. Zbl 0121.22701 MR 0180273

[207] D. Ruelle, Statistical mechanics of a one-dimensional lattice gas, Comm. Math. Phys., 9
(1968), 267–278. Zbl 0165.29102 MR 0234697

[208] D. Ruelle, Superstable interactions in classical statistical mechanics, Comm. Math. Phys., 18
(1970), 127–159. Zbl 0198.31101 MR 0266565

[209] D. Ruelle, Statistical mechanics, reprint of the 1989 edition. World Scientific Publishing Co.,
Inc., River Edge, NJ; Imperial College Press, London. 1999. Zbl 1016.82500 MR 1747792

http://arxiv.org/abs/1409.7534
http://arxiv.org/abs/1508.07379
http://www.ams.org/mathscinet-getitem?mr=0643714
http://www.ams.org/mathscinet-getitem?mr=0848646
http://www.ams.org/mathscinet-getitem?mr=0932349
https://zbmath.org/?q=an:0839.31011
http://www.ams.org/mathscinet-getitem?mr=1306011
https://zbmath.org/?q=an:0052.28005
http://www.ams.org/mathscinet-getitem?mr=0059300
https://zbmath.org/?q=an:1031.49035
http://www.ams.org/mathscinet-getitem?mr=1980472
https://zbmath.org/?q=an:0176.51401
http://www.ams.org/mathscinet-getitem?mr=0172183
https://zbmath.org/?q=an:1321.82029
http://www.ams.org/mathscinet-getitem?mr=3373044
http://arxiv.org/abs/1506.05263
https://zbmath.org/?q=an:0113.45606
http://www.ams.org/mathscinet-getitem?mr=0151261
http://www.ams.org/mathscinet-getitem?mr=0156647
https://zbmath.org/?q=an:0121.22701
http://www.ams.org/mathscinet-getitem?mr=0180273
https://zbmath.org/?q=an:0165.29102
http://www.ams.org/mathscinet-getitem?mr=0234697
https://zbmath.org/?q=an:0198.31101
http://www.ams.org/mathscinet-getitem?mr=0266565
https://zbmath.org/?q=an:1016.82500
http://www.ams.org/mathscinet-getitem?mr=1747792


304 X. Blanc and M. Lewin

[210] S. S. Ryškov, On the question of the final �-optimality of lattices that yield the densest pack-
ing of n-dimensional balls, Sibirsk. Mat. Ž., 14 (1973), 1065–1075, 1158. MR 0337796

[211] E. B. Saff and V. Totik, Logarithmic potentials with external fields. Grundlehren der Mathe-
matischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 316. Springer-
Verlag, Berlin, 1997. Zbl 0881.31001 MR 1485778

[212] E. Sandier, Lower bounds for the energy of unit vector fields and applications, J. Funct.
Anal., 152 (1998), 379–403. Zbl 0908.58004 MR 1607928

[213] E. Sandier and S. Serfaty, Vortices in the magnetic Ginzburg-Landau model, Progress in
Nonlinear Differential Equations and their Applications, 70. Birkhäuser Boston, Inc., Boston,
MA, 2007. Zbl 1112.35002 MR 2279839

[214] E. Sandier and S. Serfaty, From the Ginzburg-Landau model to vortex lattice problems,
Comm. Math. Phys., 313 (2012), 635–743. Zbl 1252.35034 MR 2945619

[215] E. Sandier and S. Serfaty, 1D log gases and the renormalized energy: crystallization at
vanishing temperature, Probab. Theory Related Fields, 162 (2015), 795–846. Zbl 06481968
MR 3383343

[216] E. Sandier and S. Serfaty, 2D Coulomb Gases and the Renormalized Energy, Ann. Probab.,
43 (2015), 2026–2083. Zbl 06457517 MR 3353821

[217] P. Sarnak, Determinants of Laplacians; heights and finiteness, in Analysis, et cetera, 601–
622, Academic Press, Boston, MA, 1990. Zbl 0703.53037 MR 1039364

[218] P. Sarnak and A. Strömbergsson, Minima of Epstein’s zeta function and heights of flat tori,
Invent. Math., 165 (2006), 115–151. Zbl 1145.11033 MR 2221138

[219] W. Schachinger, B. Addis, I. M. Bomze and F. Schoen, New results for molecular for-
mation under pairwise potential minimization, Comput. Optim. Appl., 38 (2007), 329–349.
Zbl 1214.49043 MR 2354199

[220] B. Schmidt, Ground states of the 2D sticky disc model: fine properties and N 3=4 law
for the deviation from the asymptotic Wulff shape, J. Stat. Phys., 153 (2013), 727–738.
Zbl 1292.82027 MR 3117623

[221] S. Serfaty, Local minimizers for the Ginzburg-Landau energy near critical magnetic field. I,
Commun. Contemp. Math., 1 (1999), 213–254. Zbl 0944.49007 MR 1696100

[222] S. Serfaty, Stable configurations in superconductivity: uniqueness, multiplicity, and vortex-
nucleation, Arch. Ration. Mech. Anal., 149 (1999), 329–365. Zbl 0959.35154 MR 1731999

[223] S. Serfaty, Ginzburg–Landau vortices, Coulomb gases, and renormalized energies, J. Stat.
Phys., 154 (2014), 660–680. Zbl 1291.82142 MR 3163544

[224] M. Skoge, A. Donev, F. H. Stillinger and S. Torquato, Packing hyperspheres in high-
dimensional Euclidean spaces, Phys. Rev. E (3), 74 (2006), 041127, 11. MR 2283977

[225] S. Smale, Mathematical problems for the next century, Math. Intelligencer, 20 (1998), 7–15.
Zbl 0947.01011 MR 1631413

[226] S. L. Sobolev, Formulas for mechanical cubatures in n-dimensional space, Dokl. Akad. Nauk
SSSR, 137 (1961), 527–530. Zbl 0196.49202 MR 0129548

[227] J. P. Solovej, Upper bounds to the ground state energies of the one- and two-component
charged Bose gases, Comm. Math. Phys., 266 (2006), 797–818. Zbl 1126.82006 MR 2238912

[228] S. Stishov, Does the phase transition exist in the one-component plasma model?, J. Exp.
Theor. Phys., 67 (1998), 90–94.

http://www.ams.org/mathscinet-getitem?mr=0337796
https://zbmath.org/?q=an:0881.31001
http://www.ams.org/mathscinet-getitem?mr=1485778
https://zbmath.org/?q=an:0908.58004
http://www.ams.org/mathscinet-getitem?mr=1607928
https://zbmath.org/?q=an:1112.35002
http://www.ams.org/mathscinet-getitem?mr=2279839
https://zbmath.org/?q=an:1252.35034
http://www.ams.org/mathscinet-getitem?mr=2945619
https://zbmath.org/?q=an:06481968
http://www.ams.org/mathscinet-getitem?mr=3383343
https://zbmath.org/?q=an:06457517
http://www.ams.org/mathscinet-getitem?mr=3353821
https://zbmath.org/?q=an:0703.53037
http://www.ams.org/mathscinet-getitem?mr=1039364
https://zbmath.org/?q=an:1145.11033
http://www.ams.org/mathscinet-getitem?mr=2221138
https://zbmath.org/?q=an:1214.49043
http://www.ams.org/mathscinet-getitem?mr=2354199
https://zbmath.org/?q=an:1292.82027
http://www.ams.org/mathscinet-getitem?mr=3117623
https://zbmath.org/?q=an:0944.49007
http://www.ams.org/mathscinet-getitem?mr=1696100
https://zbmath.org/?q=an:0959.35154
http://www.ams.org/mathscinet-getitem?mr=1731999
https://zbmath.org/?q=an:1291.82142
http://www.ams.org/mathscinet-getitem?mr=3163544
http://www.ams.org/mathscinet-getitem?mr=2283977
https://zbmath.org/?q=an:0947.01011
http://www.ams.org/mathscinet-getitem?mr=1631413
https://zbmath.org/?q=an:0196.49202
http://www.ams.org/mathscinet-getitem?mr=0129548
https://zbmath.org/?q=an:1126.82006
http://www.ams.org/mathscinet-getitem?mr=2238912


The crystallization conjecture: a review 305

[229] F. Theil, A proof of crystallization in two dimensions, Comm. Math. Phys., 262 (2006), 209–
236. Zbl 1113.82016 MR 2200888

[230] H. Thomas, G. E. Morfill, V. Demmel, J. Goree, B. Feuerbacher and D. Möhlmann, Plasma
crystal: Coulomb crystallization in a dusty plasma, Phys. Rev. Lett., 73 (1994), 652–655.

[231] R. C. Thompson, Ion coulomb crystals, Contemporary Physics, 56 (2015), 63–79.

[232] J. Thomson, Xxiv. On the structure of the atom: an investigation of the stability and periods
of oscillation of a number of corpuscles arranged at equal intervals around the circumference
of a circle; with application of the results to the theory of atomic structure, Philos. Mag., 7
(1904), 237–265.

[233] S. Torquato and F. H. Stillinger, Exactly solvable disordered sphere-packing model in
arbitrary-dimensional Euclidean spaces, Phys. Rev. E (3), 73 (2006), 031106, 8. MR 2231345

[234] S. Torquato and F. H. Stillinger, New conjectural lower bounds on the optimal density of
sphere packings, Experiment. Math., 15 (2006), 307–331. Zbl 1113.52034 MR 2264469

[235] G. Uhlenbeck, An outline of statistical mechanics, in Fundamental problems in statistical
mechanics II, E. Cohen, ed., 1–29. Amsterdam, North-Holland Publishing Company, 1968.

[236] Unesco, International Year of Crystallography, 2014.
http://www.iycr2014.org/

[237] L. van Hove, Sur l’intégrale de configuration pour les systèmes de particules à une dimension,
Physica, 16 (1950), 137–143. Zbl 0037.41201 MR 0036171

[238] W. J. Ventevogel, On the configuration of a one-dimensional system of interacting particles
with minimum potential energy per particle, Phys. A, 92 (1978), 343 – 361.

[239] W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting parti-
cles with minimum potential energy per particle, Phys. A, 99 (1979), 569–580. MR 0552855

[240] W. J. Ventevogel and B. R. A. Nijboer, On the configuration of systems of interacting parti-
cles with minimum potential energy per particle, Phys. A, 98 (1979), 274–288. MR 0546896

[241] T. Vinkó, Minimal inter-particle distance in atom clusters, Acta Cybernet., 17 (2005), 107–
121. Zbl 1082.81536 MR 2156032

[242] T. Vinkó and A. Neumaier, New bounds for Morse clusters, J. Global Optim., 39 (2007),
483–494. Zbl 1190.90222 MR 2350372

[243] G. Wagner, On means of distances on the surface of a sphere (lower bounds), Pacific J. Math.,
144 (1990), 389–398. Zbl 0648.10033 MR 1061328

[244] G. Wagner, On means of distances on the surface of a sphere. II. Upper bounds, Pacific J.
Math., 154 (1992), 381–396. Zbl 0767.11033 MR 1159518

[245] H. Watanabe and T. C. V. Brauner, Spontaneous breaking of continuous translational invari-
ance, Phys. Rev. D, 85 (2012), 085010.

[246] E. P. Wigner, On the interaction of electrons in metals, Phys. Rev., 46 (1934), 1002–1011.

[247] E. P. Wigner, Characteristic vectors of bordered matrices with infinite dimensions, Ann. of
Math. (2), 62 (1955), 548–564. Zbl 0067.08403 MR 0077805

[248] E. P. Wigner, Random matrices in physics, SIAM Review, 9 (1967), 1–23. Zbl 0144.48202

[249] G. Wulff, Zur Frage der Geschwindigkeit des Wachsthums und der Auflösung der Krys-
tallflächen, Z. Kristallogr., 34 (1901), 449–530.

https://zbmath.org/?q=an:1113.82016
http://www.ams.org/mathscinet-getitem?mr=2200888
http://www.ams.org/mathscinet-getitem?mr=2231345
https://zbmath.org/?q=an:1113.52034
http://www.ams.org/mathscinet-getitem?mr=2264469
http://www.iycr2014.org/
https://zbmath.org/?q=an:0037.41201
http://www.ams.org/mathscinet-getitem?mr=0036171
http://www.ams.org/mathscinet-getitem?mr=0552855
http://www.ams.org/mathscinet-getitem?mr=0546896
https://zbmath.org/?q=an:1082.81536
http://www.ams.org/mathscinet-getitem?mr=2156032
https://zbmath.org/?q=an:1190.90222
http://www.ams.org/mathscinet-getitem?mr=2350372
https://zbmath.org/?q=an:0648.10033
http://www.ams.org/mathscinet-getitem?mr=1061328
https://zbmath.org/?q=an:0767.11033
http://www.ams.org/mathscinet-getitem?mr=1159518
https://zbmath.org/?q=an:0067.08403
http://www.ams.org/mathscinet-getitem?mr=0077805
https://zbmath.org/?q=an:0144.48202


306 X. Blanc and M. Lewin

[250] G. L. Xue, Minimum inter-particle distance at global minimizers of Lennard–Jones clusters,
J. Global Optim.,11 (1997), 83–90. MR 1459381

[251] G. L. Xue, R. S. Maier, and J. B. Rosen, Minimizing the Lennard–Jones potential function
on a massively parallel computer, in Proceedings of the 6th International Conference on Su-
percomputing, ICS 1992, 409–416, New York, ACM, 1992.

[252] N. K. Yip, Structure of stable solutions of a one-dimensional variational problem, ESAIM
Control Optim. Calc. Var., 12 (2006), 721–751 (electronic). Zbl 1117.49025 MR 2266815

[253] S. A. Yuhjtman, A Sensible Estimate for the Stability Constant of the Lennard–Jones Poten-
tial, J. Stat. Phys., 160 (2015), 1684–1695. Zbl 06497195 MR 3382763

Received 03 April, 2015; revised 23 September, 2015

http://www.ams.org/mathscinet-getitem?mr=1459381
https://zbmath.org/?q=an:1117.49025
http://www.ams.org/mathscinet-getitem?mr=2266815
https://zbmath.org/?q=an:06497195
http://www.ams.org/mathscinet-getitem?mr=3382763

	The classical model
	Energy
	Binding: existence of minimizers for E(N)
	Stability and the behavior of E(N) for large N
	Formation of a macroscopic object

	The crystallization conjecture
	Formulation
	Convergence of N and the minimal distance between the particles
	Crystallization results and sphere packing
	A variant: minimization at fixed density
	Optimal lattices and special functions
	Coulomb potential and Wigner crystallization
	Occurrence of the crystallization problem in other situations
	The macroscopic object and its microscopic structure

	Extensions
	Positive temperature
	Several types of particles
	Quantum models
	Discrete systems

	References

