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Algebraic combinatorial geometry: the polynomial
method in arithmetic combinatorics, incidence
combinatorics, and number theory

Terence Tao™

Arithmetic combinatorics is often concerned with the problem of controlling the possible range
of behaviours of arbitrary finite sets in a group or ring with respect to arithmetic operations
such as addition or multiplication. Similarly, combinatorial geometry is often concerned with
the problem of controlling the possible range of behaviours of arbitrary finite collections of
geometric objects such as points, lines, or circles with respect to geometric operations such as
incidence or distance. Given the presence of arbitrary finite sets in these problems, the methods
used to attack these problems have primarily been combinatorial in nature. In recent years,
however, many outstanding problems in these directions have been solved by algebraic means
(and more specifically, using tools from algebraic geometry and/or algebraic topology), giving
rise to an emerging set of techniques which is now known as the polynomial method. Broadly
speaking, the strategy is to capture (or at least partition) the arbitrary sets of objects (viewed
as points in some configuration space) in the zero set of a polynomial whose degree (or other
measure of complexity) is under control; for instance, the degree may be bounded by some
function of the number of objects. One then uses tools from algebraic geometry to understand
the structure of this zero set, and thence to control the original sets of objects.

While various instances of the polynomial method have been known for decades (e.g.
Stepanov’s method, the combinatorial Nullstellensatz, or Baker’s theorem), the general theory
of this method is still in the process of maturing; in particular, the limitations of the polynomial
method are not well understood, and there is still considerable scope to apply deeper results
from algebraic geometry or algebraic topology to strengthen the method further. In this survey
we present several of the known applications of these methods, focusing on the simplest cases
to illustrate the techniques. We will assume as little prior knowledge of algebraic geometry as
possible.
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1. The polynomial method

The purpose of this article is to describe an emerging set of techniques, now known as
the polynomial method, for applying tools from algebraic geometry (and sometimes
algebraic topology) to combinatorial problems involving either arithmetic structure
(such as sums and products) or geometric structure (such as the incidence relation
between points and lines). With this method, one overlays a geometric structure, such
as a hypersurface cut out by a polynomial, on an existing combinatorial structure,
such as a configuration of points and lines, and uses information on the former coming
from algebraic geometry to deduce combinatorial consequences on the latter structure.
While scattered examples of this method have appeared in the literature for decades
in number theory (particularly through Stepanov’s method, or Baker’s theorem) and
in arithmetic combinatorics (through the combinatorial Nullstellensatz), it is only in
the last few years that the outlines of a much broader framework for this method have
begun to appear. In this survey, we collect several disparate examples, both old and
new, of this method in action, with an emphasis on the features that these instances
of the polynomial method have in common. The topics covered here overlap to some
extent with those in the recent survey of Dvir [21].

Let us now set up some basic notation for this method. Algebraic geometry
functions best when one works over an ambient field which is algebraically closed,
such as the complex numbers C. On the other hand, many problems in combinatorial
geometry or arithmetic combinatorics take place over non-algebraically closed fields',
such as the real numbers R or finite fields [, of some order g. It is thus convenient
to work simultaneously over two different fields: a “combinatorial” field F' (which
in applications will be R or [;), enclosed in a “geometric” field F(eg CorF, =
lim F,n), which is an algebraic closure of F'. We will use the adjective “geometric”
to denote objects defined over F, and to which one can assign geometric concepts
such as dimension, degree, smoothness, tangency, etc., and use the prefix “F-” to
denote objects” defined instead over F, to which we will tend to assign combinatorial
concepts such as cardinality, incidence, partitioning, etc.

'One is often also interested in working over other commutative rings than fields, and in particular in the
integers Z; see Section 7.

2In particular, objects defined over R will be called “real”. In arithmetic geometry applications, objects
defined over a finite field F' are sometimes called “arithmetic”, though in our context “combinatorial” might be
more appropriate.
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An F-polynomial (or polynomial, for short) in n variables is defined to be any

formal expression P(x1,...,X,) of the form
_ i i
P(xy,...,xp) = E Ciprosin Xy« Xp"
01 yeeesin >0

where the coefficients c;, ... ;, lie in F, and only finitely many of the coefficients are
non-zero. The degree of this polynomial is the largest value of i; + - - - 4 i), for which
Ciy,...,i, 1S nON-zero; we will adopt the convention that the zero polynomial (which we
will also call the trivial polynomial) has degree —oo. The space of F-polynomials in
n variables will be denoted F[xy,...,x,]. This space is of course contained in the
larger space F[xi,...,x,] of geometric polynomials whose coefficients now lie in
F, but we will rarely need to use this space.

Of course, by interpreting the indeterminate variables xy, ..., x, as elements of
F, we can view an F-polynomial P € F[xy,...,X,] as a function from F” to F; it
may also be viewed as a function from F” to F. By abuse’ of notation, we denote
both of these functions P: F* — F and P: F* — F by P. This defines two
closely related sets, the geometric hypersurface

Z(P) = Z(P)[F] :={(x1....,xp) € F" : P(x1,...,X,) =0}
and the F-hypersurface
Z(P)[F]:={(x1,...,xp) € F" : P(x1,...,x,) =0}

(also known as the set of F'-points of the geometric hypersurface). We say that the
geometric hypersurface Z(P) has degree d if P has degree d. More generally,
given a collection Py,..., P € F[x1,...,Xxy,] of polynomials, we may form the*
geometric variety

k
Z(Py.....P) = Z(Py..... P)[F] = (| Z(P)|F]

i=1

and the F-variety

k
Z(Pr.....POIF] = () Z(P)[F]

i=1

30ne should caution though that two polynomials may be different even if they define the same function
from F” to F. For instance, if F = [ is a finite field, the polynomials x¢ and x in F [x] give rise to the
same function from F to F, but are not the same polynomial (note for instance that they have different degree).
On the other hand, this ambiguity does not occur in the algebraic closure F, which is necessarily infinite; thus,
if one wishes, one may identify P with the function P: F" — F, but not necessarily with the function
P: F" — F (unless F is infinite or P has degree less than | F'|, in which case no ambiguity occurs, thanks
to the Schwartz—Zippel lemma (see Lemma 1.2 below)).

“In this survey we do not require varieties to be irreducible.
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cut out by the k polynomials Py, ..., Pr. For instance, if xo,vo € F" with vg
non-zero, the geometric line

Cxowo = Lxowo[F] = {xo +tvg: t € F}

is a geometric variety (cut out by n — 1 affine-linear polynomials), and similarly the
F-line
ZXOJUO[F] ={xg+tvg:teF}

is the associated F-variety.
When the ambient dimension 7 is equal to 1, F-hypersurfaces can be described
exactly:

Lemma 1.1 (Hypersurfaces in one dimension). Let d > 0.

(i) (Factor theorem) If P € F[x] is a non-trivial polynomial of degree at most d,
then Z(P)[F] has cardinality at most d.

(ii) (Interpolation theorem) Conversely, if E C F has cardinality at most d, then
there is a non-trivial polynomial P € F x| with E C Z(P)[F].

Proof. If Z(P)[F] contains a point p, then P factors as P(x) = (x — p)Q(x) for
some polynomial Q of degree at most d — 1, and (i) follows from induction on d. For
(ii), one can simply take P(x) := ]_[pe g (x — p). Alternatively, one can use linear
algebra: the space of polynomials P of degree at most d is a (d + 1)-dimensional
vector space over F, while the space F £ of tuples ( Yp)peE is at most d -dimensional.
Thus, the evaluation map P +— (P(p))pek between these two spaces must have a
non-trivial kernel, and (ii) follows. ]

While these one-dimensional facts are almost trivial, they do illustrate three basic
phenomena:

(a) “Low-degree” F-hypersurfaces tend to be “small” in a combinatorial sense.

(b) Conversely, “small” combinatorial sets tend to be captured by “low-degree”
F-hypersurfaces.

(c) “Low-complexity” F-algebraic sets (such as {x € F : P(x) = 0}) tend to
exhibit size dichotomies; either they are very small or very large (e.g. {x €
F : P(x) = 0} is very small when P is non-zero and very large when P is
ZEero0).

These phenomena become much more interesting and powerful in higher dimen-
sions. For instance, we have the following higher-dimensional version of (a):
Lemma 1.2 (Schwartz—Zippel lemma, [59], [87]). Let F be a finite field, let n > 1,
andlet P € F[xq,...,Xu]| be apolynomial of degree at most d. If P does not vanish

entirely, then
|Z(P)[F]| <d|F|"".
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Proof. This will be an iterated version of the argument used to prove Lemma 1.1 (i).
We induct on the dimension n. The case n = 1 follows from Lemma 1.1 (i), so
suppose inductively that n» > 1 and that the claim has already been proven for n — 1.
Foranyt € F,let P, € F[xq,..., x,—1] bethe polynomial formed by substituting
t for x,, in P:
Pi(x1,...,xp—1) 1= P(x1,...,Xn—1,1).

This is a polynomial of degree at most d. If it vanishes, then we can factor

P(x1,...,xp) = (xp —1)OQ(X1,...,Xpn)

for some polynomial of degree at most d — 1; this is obvious for t = 0, and the
general case follows by translating the x, variable. Furthermore, for any ¢’ # ¢, we
see that Q4 vanishes if and only if P,/ vanishes. If we let E be the setof all € F
for which P, vanishes, we conclude upon iteration that | E| < d, and that

P(X1,....Xn) = (]‘[(x,, —z))R(xl,...,xn)

teE

for some polynomial R € F|[xi,...,Xx,] of degree at most d — |E|, such that R,/
does not vanish for any ¢’ ¢ E. From this factorisation we see that

Z(P)[FIC (F" 'xE)U U (Z(Ry)(F) x {t'}).
t'eF\E

By induction hypothesis we have |Z(R;/)(F) x {t'}| < (d — |E|)|F|"2, and so

1Z(P)[F)| < |[FI" ME|+ ) (d—I|EDIF|"™
t’eF\E
<|F|""'E| +|F|(d — |E])|F|"?
=d|F|n—1

as required. O

Remark 1.3. This is by no means the only statement one can make about the zero
set Z(P)[F]. For instance, the classical Chevalley—Warning theorem (Theorem 8.2
below) asserts that if P, ..., Pg are polynomials with deg(P;) + - - - +deg(Pr) < n,
then |Z(Py)[F] N --- N Z(Px)[F]| is divisible by the characteristic of F. Another
useful structural fact about the zero set Z(P)[F] is the combinatorial Nullstellensatz
of Alon, discussed in Section 5. (Indeed, the Nullstellensatz may be used to prove a
weak version of the Chevalley—Warning theorem; see [1].) The Lang—Weil inequality
[48] gives a bound of the form |Z(P)[F]| = ¢|F|"~' + 04, (| F|?~'/2), where c is
the number of distinct (up to scalars) irreducible factors of P in F[x,...,x,] that
are defined over F (i.e. are F'-polynomials up to scalars), and Od,n(|F|d_1/2) isa
quantity bounded in magnitude by Cy4 | F |4=1/2 for some quantity C4.n depending
onlyond, n.
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Similarly, we have the following higher-dimensional version of (b):

Lemma 1.4 (Interpolation). Let F be a field, let n > 1 be an integer, and d > 0. If
E C F"™ has cardinality less than (d tn ) = w then there exists a non-zero
polynomial P € F|xy,...,X,] of degree at most d such that E C Z(P)[F].

n

Using the crude bound (d:") > Z—Z, we conclude as a corollary that every finite

subset E of F" is contained in an F-hypersurface of degree at most n|E| 1/n,

Proof. We repeat the second proof of Lemma 1.1 (ii). If we let V' be the vector space
of polynomials P € F[x1,..., x,]of degree at most d, then a standard combinatorial
computation reveals that 1V has dimension (d MIFIE| < (d:” ). then the linear map

P+ (P(p))pek from V to FE thus has non-trivial kernel, and the claim follows.
O

Example 1.5. If we set n = 2 and d equal to 1, 2, or 3, then Lemma 1.4 makes the
following claims:

(1) Any two points in F?2 lie on a line;

(2) Any five points in F? lie on a (possibly degenerate) conic section; and

(3) Any nine points in F?2 lie on a (possibly degenerate) cubic curve.

Finally, we give a simple version (though certainly not the only version) of (c):

Lemma 1.6 (Dichotomy). Let F be a field, let n > 1 be an integer, let Z(P) be a
(geometric) hypersurface of degree at most d, and let £ be a (geometric) line. Then
either € is (geometrically) contained in Z(P), or else Z(P)[F|NL[F] has cardinality
at most d.

One can view this dichotomy as a rigidity statement: as soon as a line meets d + 1
or more points of a degree d hypersurface Z(P), it must necessarily “snap into place”
and become entirely contained (geometrically) inside that hypersurface. These sorts
of rigidity properties are a major source of power in the polynomial method.

Proof. Write £ = {xo 4 tvg : t € F}, and then apply Lemma 1.1 (i) to the one-
dimensional polynomial t — P (x¢ + tvgp). O

As a quick application of these three lemmas, we give

Proposition 1.7 (Finite field Nikodym conjecture). Let F be a finite field, letn,d > 1
be integers and let E C F" have the property that through every point x € F" there
exists a line Ly, which contains more than d points from E. Then |E| > (d:")

Proof. Clearly we may take d < | F|, as the hypothesis cannot be satisfied otherwise.
Suppose for contradiction that |E| < (d::"); then by Lemma 1.4 one can place E
inside an F-hypersurface Z(P)[F]of degreeatmostd. If x € F", then by hypothesis
there is a line £ ,,, which meets £, and hence Z(P)[F], in more than d points; by
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Lemma 1.6, this implies that £ . is geometrically contained in Z(P). In particular,
x lies in Z(P) for every x € F", so in particular |Z(P)[F]| = |F|*. But this
contradicts Lemma 1.2. O

A slight variant of this argument gives the following elegant proof by Dvir [20]
of the finite field Kakeya conjecture of Wolff [84]. If F is a finite field and n > 1 is
an integer, define a Kakeya set in F" to be aset E C F" with the property that for
every vo € F" \ {0} there is a line £y, in the direction vg such that £ ,,[F] C E.
The finite field Kakeya conjecture asserts that for every ¢ > 0 and every dimension #,
there is a constant ¢, . > 0 such that all Kakeya sets in F* have cardinality at least
cn.e| F|"%. This problem was proposed by Wolff [84] as a simplified model of the
Kakeya conjecture in R”, which remains open in three and higher dimensions despite
much partial progress (see, e.g., [44] for a survey). Results from basic algebraic
geometry had been brought to bear on the finite field Kakeya conjecture in [74], but
with only partial success. It was thus a great surprise when the conjecture was fully
resolved by Dvir [20]:

Theorem 1.8 (Finite field Kakeya conjecture). Let F be a finite field, let n > 1 be
an integer, and let E C F" be a Kakeya set. Then |E| > ('Flt"_l). In particular,
we have |E| > %|F|”

Generalisations of this result have applications in theoretical computer science,
and more specifically in randomness extraction; see [21]. However, we will not
discuss these applications further here.

Proof. Suppose for contradiction that | E| < (lF H;l"_l) . ByLemma 1.4, we may place

E inside an F-hypersurface Z(P)[F] of degree at most |F| — 1. If vy € F" \ {0},
then by hypothesis there is a line £ ,[F] which meets E, and hence Z(P)[F],
in | F| points. By Lemma 1.6, this implies that £ is geometrically contained in
Z(P).

To take advantage of this, we now work projectively, to isolate the direction vy of
the line £, ., as a point (at infinity). Let d be the degree of P. Thus0 < d < |F|—1,
and

X0,V0

_ i i
P(xy,...,xy) = E CiyinXq o X
I yeees intiy++in<d

for some coefficients c;,,. ;, € F, with ¢; non-zero for at least one tuple

n -oln

(i1,...,in) withiy +---+i, = d. We then introduce the homogeneous polynomial
P € Flxy,...,x4] defined by the formula
_ diy iy i .
P(x0,X1,...,%Xp) = Z CiyrinXo 1T x L x

i1seeinii] +otin<d
This polynomial is homogeneous of order d, thus

P(Axg, ..., Axn) = A4 P(xq,....Xn)
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forany A € F. Since P(1,x1,...,x,) = P(x1,...,x,), we conclude that
Z(P) D {(A.Ax):x € Z(P); A € F}.

In particular, since the line £, v, = {Xo + Vo : t € F} is geometrically contained
in Z(P), we conclude that the set

{(A, A(xo + 1)) 1 A, t € F}

is contained in Z(P). Geometrically, this set is the plane {(A, Axo +svo) : A, s € F}
with the line {(0, svg) : s € F} removed. Applying Lemma 1.6 again®, we conclude
that this line is also contained in Z(P). Since vy was an arbitrary element of F”\ {0},
we conclude that Z (13) contains 0 x F”". In particular, if we let Py € F[x1,..., Xp]
denote the polynomial

) _ i i
Po(x1,...,xp) = P(0,x1,...,x,) = E Cityoin Xy « - X"
i1 yeenini| +otin=d

(thus Py is the top order component of P), then Z(Py)[F] is all of F". But this
contradicts Lemma 1.2. O

There is no known proof of the finite field Kakeya conjecture that does not go
through® the polynomial method.

Another classical application of polynomial interpolation with multiplicity was
given by Segre [60]. Call asubset P of a affine plane F? or a projective plane PF? an
arc if no three points in P are collinear. Itis easy to establish the bound | P| < |F |42
for an arc, by considering the | F'| + 1 lines through a given pointin P. This argument
also shows that if an arc P has cardinality | P| = | F| + 2 — ¢, then every point in P
is incident to exactly ¢ tangent lines to P, that is to say a line that meets exactly one
point in P. When | F| is odd, we can rule out the ¢ = 0 case (since there would then
be no tangent lines, and the lines through any given point not in F then are incident
to an even number of points in P, contradicting the fact that | P| = | F| + 2 is odd).

The following result of Segre also classifies the # = 1 case, at least in the odd
prime case:

Theorem 1.9 (Segre’s theorem). Let F be a finite field of odd prime order, and let P
be an arc in PF? of cardinality |F| + 1. Then P is a conic curve, that is to say the
projective zero set of a non-zero polynomial Q € F|[x, y] of degree at most two.

30ne could also take closures in the Zariski topology of F" here, defined as the topology whose closed sets
are the (geometric) varieties.

6To illustrate the radical change in perspective that the polynomial method brought to this subject, it had
previously been observed in Proposition 8.1 of [52] that a Kakeya set could not be contained in the zero set of a
low degree polynomial, by essentially the same argument as the one given above. However, this fact was deemed
“far from a proof that the Kakeya conjecture is true”, due to ignorance of the polynomial method.
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See [5] for some of the recent developments associated to Segre’s theorem.

We now briefly sketch a proof of Segre’s theorem; details may be found in [37].
Let F', P be as in the theorem. As discussed earlier, every point A on P is incident to
exactly one tangent line £ p. The main step is to show that for any distinct points A,
B, C in P, there is a conic curve y4 g c that passes through A, B, C and is tangent
tof4,lp, Lc at A, B, C respectively. Once one has this claim, by applying the claim
tothe triples A, B, D, A,C, D, B, C, D for any fourth point D of P and using some
algebra, one can place D in a conic curve that depends only on A, B, C, {4, {p, {c;
see [37].

It remains to prove the claim. For any line £ passing through 4, letc4({) € PF!be
the projective coordinate of the intersection of £ with the line ﬁ with the property

that CA(ﬁ) = 0 and cA(%) = oo. Define cp and c¢c¢ for lines through B, C
similarly. Ceva’s theorem then asserts that

ca(1D)ep(BB)ec (CD) = 1

for any point D on P other than A, B, C. Multiplying this identity for all D in P,
and then taking complements using Wilson’s theorem, we conclude the key identity

ca(la)cp(lp)ec(le) = —1 (1)

(known as Segre’s lemma of tangents). On the other hand, from a version of Lemma 1.4
one can find a conic curve through A, B, C which is tangent to £4 and £p, and from
some algebra (or classical geometry) one can use (1) to conclude that this curve is
also tangent to ¢, giving the claim.

2. Multiplicity

One can boost the power of the polynomial method by considering not just the zero
set Z(P) of a polynomial P, but also the order of vanishing of P at each point on this
set. For one-dimensional polynomials P € F|[x], the order of vanishing is easy to
define; we say that P vanishes to order at least m at a point p € F if the polynomial
P is divisible by (x — p)™. An equivalent way of phrasing this is in terms of the
Taylor expansion

P(x) =Y D'P(p)(x—p) 2)
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of P, where the i Hasse derivative’ D' P € F|[x] of a polynomial P = Y. ¢;x/
is defined by the formula

Di(;cjxj) = Z (‘l] )cjxj_i

J

(noting that ({ ) vanishes when j < i); note that the identity (2) is an easy consequence
of the binomial identity. Then we see that P vanishes to order at least m at p if and
only if the first m Hasse derivatives DOp,.DLP,..., D™ 1P all vanish at p.

We can extend this latter definition to higher dimensions. Observe if P €
F[x1,...,xn] is a polynomial and p = (p1,..., py) is a point in F", one has
the multi-dimensional Taylor expansion

P(x)= Y D" P(p)(x1—p1)t ... (xn — pn)”

i1,eensin

where the multi-dimensional Hasse derivatives Dil»in P ¢ F [x1,...,Xp] are de-
fined by

. Z J1 Jn\ _j1—ir in—in
= le,m,jn( P X1 e Xy .

. . i1 1
J1se5Jn "

We then say that P vanishes to order at least m at p if the Hasse derivatives
Di1>+in P(p) vanish whenever iy + -+ + i, < m. The largest m for which this
occurs is called the multiplicity or order of P at p and will be denoted ord, (P).
Thus for instance ord, (P) > 0 if and only if p € Z(P)[F]. By convention we have
ord,(P) = 400 when P is the zero polynomial. By considering the product of two
Taylor series (and ordering all monomials of a given degree in, say, lexicographical
order) we obtain the useful multiplicativity property

ord,(PQ) = ord,(P) + ord, (Q) 3)
for any polynomials P, Q € F[x;,...,x,]and any p € F".
We can strengthen Lemma 1.1 to account for multiplicity:
Lemma 2.1 (Hypersurfaces with multiplicity in one dimension). Let d > 0.

(i) (Factor theorem) If P € F[x] is a non-trivial polynomial of degree at most d,
then } e ord,(P) < d.

In the real case F = R, the Hasse derivative D’ P is related to the real derivative P () by the formula
DiP = l.]jP(i ), giving rise to the familiar Taylor formula over the reals. However, over fields of finite
characteristic, such as finite fields, it is more convenient to use the Hasse derivative than the classical derivative,
as dividing by i! can become problematic if i is larger than or equal to the characteristic of the field.
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(ii) (Interpolation theorem) Conversely, if (¢p)peF is a collection of natural num-
berswith ), ¢p < d, then there is a non-trivial polynomial P € F[x] with
ord,(P) > ¢y forall p € F.

Proof. The claim (i) follows by repeating the argument used to prove Lemma 1.1 (i),
but allowing for repeated factors of (x — p) for each p. Similarly, the claim (ii) follows
either from the explicit formula P(x) := ]_[p (x — p)°r, or else by considering
the linear map from the (d + 1)-dimensional space of polynomials of degree at
most d to the space ]_[p F¢r formed by sending each polynomial P to the tuple

(Di P(P))peF;0§i<cp- OJ
We can similarly strengthen Lemma 1.2 and Lemma 1.4:

Lemma 2.2 (Schwartz—Zippel lemma with multiplicity, [22]). Let F be a finite field,
letn>1andd > 0, and let P € F[x1,...,Xxy] be a polynomial of degree at most
d. If P does not vanish entirely, then

> ordp(p) <d|F|"".

peFn

Proof. We repeat the proof of Lemma 1.2, and induct on n. The case n = 1 follows
from Lemma 2.1 (i), so suppose inductively that n > 1 and that the claim has already
been proven for n — 1.

By repeatedly factoring out any factors of x,, — ¢ which appear in P, we arrive at
the factorisation

P(xr.ox) = ([T =0") 001, .. x0)

teF

with some natural numbers (a;);er With ), a; < d, and a non-zero polynomial
O of degree at most d — ), a; with the property that the slices O, (as defined in
the proof of Lemma 1.2) are non-zero for each t € F. From (3) we have

Ordpl,...,pn (P) = apn + Ordp],...,Pn(Q)

Z ord,(P) = |F|"! Za, + Z ord, (Q).

peEF™ teF peF”"

and so

However, by a comparison of Taylor series we see that

ordp,,...p,(Q) <ordp,,...p, ,(Op,)

and from the induction hypothesis we have

Z ordy, ... pu_i(Qp,) < (d — Zat)|F|”_2

(P1seesPp—1)EF—1 teF
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so on summing in p, we conclude that

> ordy(0) = (4= Y ar)IFI

pEF" teF

and hence

> ord,(P) <d|F|"
peEFN

as required. O

Lemma 2.3 (Interpolation with multiplicity). Let F be a field, let n > 1 be an
integer, and d > 0. If (cp)pern is a collection of natural numbers such that

> peFn (c”"_n"_l) < (d:") then there is a non-zero polynomial P € Flxq,...,X,]

of degree at most d such that ord,(P) > cp forall p € F".

Proof. Asinthe proof of Lemma 1.4, we let V' be the (d :{" )-dimensional vector space
of polynomials P € F|[xy,...,x,] of degree at most d. We then consider the linear
map

P > (D" P(P))peFrsiy 4tin<cp

from V to a Zpe Fn (C‘” +n” _1)—dimensional vector space. By hypothesis, the range

has smaller dimension than the domain, so the kernel is non-trivial, and the claim
follows. O

Setting ¢, = m for all p in E, we conclude in particular that given any subset
E C F" we can find a hypersurface of degree at most d that vanishes to order at
least m at every point of E as soon as

—1 d
(m+n )|E|<( +n);
n n
m+n—1

bounding ( " ) < (m 4+ n)*/n! and (d::") > d"/n!, we conclude in particular
that we may ensure that
d := (m +n)|E|"/".
Finally, from Lemma 2.1 (i) we have a multiplicity version of the dichotomy:

Lemma 2.4 (Dichotomy). Let F be a field, let n > 1 be an integer, let Z(P) be a
(geometric) hypersurface of degree at most d, and let { = Ly, ., be a (geometric)
line. Then at least one of the following holds:

(1) £ is (geometrically) contained in Z(P); or

(ii) ZpGF ord, P(xo + -vo) < d, where P(xo + -vg) denotes the polynomial
t = P(xo + tvg).

Using multiplicity, we can now obtain a better bound on the Kakeya problem:
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Theorem 2.5 (Improved bound on Kakeya sets, [22]). Let F be a finite field, let
n > 1 be an integer, and let E C F" be a Kakeya set. Then |E| > 27"|F|".

Proof. We argue as in the proof of Theorem 1.8, but now make our polynomial P
much higher degree, while simultaneously vanishing to high order on the Kakeya set.
In the limit when the degree and order go to infinity, this will give asymptotically
superior estimates to the multiplicity one argument.

We turn to the details. Let £ be a Kakeya set, and let 1 < [ < m be (large)
integer parameters to be chosen later. By the discussion after Lemma 2.3, we may
find a hypersurface Z(P) of degree d at most (m +n)| E|'/" which vanishes to order
at least m at every point of E. In particular, if i = (iy,...,i,) is a tuple of natural
numbers with |i| := i; 4+ --- 4+ i, < [, then D’ P vanishes to order at least m — |i|
on the F-points £y, ,,[F] of each line £, ,, associated to the Kakeya set E, while
having degree at most (m +n)| E|'/" —|i|. From Lemma 2.4 we see that either Lxo,v0
is geometrically contained in Z (D' P), or

|F|(m —i]) < (m + )| E[Y" — i,
or both. Thus if we choose m, [ so that
|Fl(m—=1)> (m+n)|E|Y" =1, 4)

then all of the lines £, ,, are geometrically contained in Z (D' P) foralli with |i| < .
Passing to the top order term Py € F[x1, ..., X,] as in the proof of Theorem 1.8, we
conclude that Z(D' Py) contains F", or in other words that Py vanishes to order at
least/ on F". As Py is non-zero and has degree at most (m +n)|E|'/", we contradict
Lemma 2.2 provided that

I|F| > (m + n)|E|V". 5)

If |E|V" < %|F |, then by choosing / to be a sufficiently large integer and setting
m := 2[, we may simultaneously satisfy both (4) and (5) to obtain a contradiction.
Thus |E|"/" > 1|F|, and the claim follows. O

We remark that the above argument can be optimised to give the slight improve-
ment |[E| > (2 — ﬁ)_”|F|"; see [22]. This bound turns out to be sharp up to a
multiplicative factor of two; see [57], [49]. For further application of the polynomial
method (with or without multiplicity) to Kakeya type problems, see [22], [26], [46],
[23].

3. Smoothness

Many of the deeper applications of the polynomial method proceed by exploiting
more of the geometric properties of the hypersurfaces Z(P) that are constructed with
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this method. One of the first geometric concepts one can use in this regard is the notion
of a smooth point on a variety. For simplicity, we restrict attention in this survey to
the case of hypersurfaces Z(P), in which the notion of smoothness is particularly
simple:

Definition 3.1 (Smooth point). Let Z(P) be a hypersurface in F" for some P €
Flx1,...,xy],andlet p be an F-pointin Z(P), thus p € F" and P(p) = 0. We say
that p is a smooth point of Z(P) if VP(p) # 0, where VP := (D1 P,..., D" P)
is the gradient of P, defined as the vector consisting of the first-order derivatives of
P. Any F-point p of Z(P) which is not smooth is said to be singular.

Note from the inverse function theorem that points which are smooth in the above
sense are also smooth in the traditional sense when the field F is R or C.

In the real case F = R, the gradient V P(p) at a smooth point is normal to the
tangent hyperplane of Z(P) at p; in particular, the only lines through p that can be
contained in Z(P) are those which are orthogonal to V P(p). The same assertion
holds in arbitrary fields:

Lemma 3.2. Let Z(P) be a hypersurface in F" for some P € F[xi,...,X,], and
let p be a smooth F-point. Let Ly, v, be a line which is geometrically contained in
Z(P) and passes through p. Then vy-V P(p) = 0, where - denotes the dot product.

Proof. By hypothesis, we have P(p + tvg) = Oforallt € F. As F is infinite, this
implies that the polynomial ¢ — P (p +tvo) vanishes identically, and in particular its
derivative at zero vanishes. But this derivative can be computed to equal vy - V P(p),
and the claim follows. O

To show the power of this simple lemma when inserted into the polynomial
method, we now establish the joints conjecture of Sharir [62] in an arbitrary field:

Theorem 3.3 (Joints conjecture). Let F be a field, let n > 2, and let L be a set of N
linesin F". Define ajoint to be a point p in F" with the property that there are n lines
in L passing through p which are not coplanar (or more precisely, cohyperplanar)
in the sense that they do not all lie in a hyperplane. Then the number of joints is at
most nN™ =1,

The bound here is sharp except for the constant factor of 7, as can be seen by con-
sidering the lines in the coordinate directions ey, . .., e, passing through a Cartesian
product Ay X --- X Ay, where each Ay, ..., A, is a finite subset of F of cardinality
comparable to N 1/(1=1)  Partial results on this conjecture, using other methods than
the polynomial method, can be found in [14], [62], [64], [7]. As with the Kakeya
conjecture over finite fields, the only known proofs of the full conjecture proceed via
the polynomial method; this was first done in the n = 3 case in [34], and for general
n in [56], [43]. See also [24] for some further variants of this theorem.
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Proof. We use an argument from [56]. Let J be the set of joints, and let d > 0 be
a parameter to be chosen later. We perform the following algorithm to generate a
subset L” of L and a subset J’ of J as follows. We initialise " := L and J' := J.
If there is a line £ in L’ that passes through d or fewer points of J’, then we delete
those points from J’ and delete £ from L’. We iterate this procedure until all lines
remaining in L’ pass through more than d points of J (this may cause L" and J' to
be empty).

There are two cases. If J’ is now empty, then we conclude that |J| < d|L|, since
each point in J was removed along with some line in L, and each line removes at
most d points. Now suppose J’ is non-empty. If we have

|J|§d—<(d+”),
n! n

then by Lemma 1.4 and the trivial bound |J’| < |J| we may find a hypersurface
Z(P) of some degree d’ < d which passes through all the points in J’. We take P
to have minimal degree among all P with J' C Z(P); in particular, this forces P
to be square-free (that is, P is not divisible by Q2 for any non-constant polynomial
Q € F[x1,...,xn]). As J' is non-empty, this also forces the degree d’ of P to
be at least one. This in turn implies that V P does not vanish identically, since this
can only occur if F has a positive characteristic p and P is a linear combination
of the monomials x’! ...x™ with all iy, ..., i, divisible by the characteristic p, and
then by using the Frobenius endomorphism x +— x? we see that P = Q7 for some
polynomial Q, contradicting the square-free nature of P.

Let p be apointin J'. Then p is a joint, and so there are n lines £x, v, - - -, £x,,0,
in L, not all in one hyperplane, which pass through p. These lines must lie in L/,
for if they were removed in the construction of L’ then p would not remain in J'.
In particular, these lines meet more than d points in J’ and hence in Z(P), which
by Lemma 1.6 implies that all of these lines are geometrically contained in Z(P).
If p is a smooth point of Z(P), then by Lemma 3.2, this implies that the directions
V1,..., Uy are all orthogonal to V P(p), but this is not possible since this would force
the lines {x, y,.....{x,, v, to lie in a hyperplane. Thus we see that all the points in
J' are singular points of Z(P), thus VP(p) = 0 for all p € J'. Setting D% P
to be one of the non-vanishing derivatives of P, we conclude that p € Z(D% P),
contradicting the minimality of P.

Summarising the above arguments, we have shown that for any d, one of the
statements

|/l <d|L|

and
n

1> —
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must hold. If we set d := (n!)}/”|J|1/", we obtain a contradiction unless
1< @)L

and the claim follows (using the trivial bound n! < n"~1). J

4. Bezout’s theorem and Stepanov’s method

The previous applications of the polynomial method exploited the geometry of hy-
persurfaces through their intersections with lines. Of course, one can also try to study
such hypersurfaces through their intersection with more complicated varieties. One
of the most fundamental tools in which to achieve this is Bezout’s theorem. This
theorem has many different versions; we begin with a classical one.

Theorem 4.1 (Bezout’s theorem). Let F be a field, let dy,d> > 0, and let Py, P, €
Fx, y] be polynomials of degree d,, d, respectively, with no common factor®. Then
Z(P1, Po)[F] = Z(Py)[F] N Z(P,)|F] has cardinality at most dyd.

Proof. We use methods from commutative algebra. Inside the ring F|[x, y], we
consider the principal ideals (P1) :={P1Q1: Q1 € F[x,y]} and (P2) :={P>Q> :
Q> € F|x, y]}, together with their intersection (P; N P,) and sum

(P1, P2) = (P1) + (P2) ={P101+ P20>: 01,02 € Flx,y]}.
As P;, P, have no common factor, we have
(P1N Py) = (P1P2) ={P1P,0:Q € Flx, y]}.

For any natural number 7, the space F[x, y]<, of polynomials in F[x, y] of degree
at most n has dimension ("+1). In particular, for sufficiently large n, we have

2
. ) n—d;+1
dim((P1) N F[x, yl<n) = dim F[x, y]<p—a, = ( 21 )
and similarly
: n—d;+1
dim((P2) N F[x. y]<n) = ( 22 )
and
: n—dy—d,+1
dim((Py) N (Py) N Flx, y]<n) = ( v )

8Here we rely on the classical fact that polynomial rings are unique factorisation domains.
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which implies that

dim(((P1) N Flx, yl<n) + ((P2) N Flx. y]<n))

_(n—d1+1)+(n—d2+1)_(n—d1—d2+1)
B 2 2 2

n+1
_( 2 )_d‘dz

and hence
dim((P1, P2) N Fx, yl<n) = dim(F[x, y]<n) — d1d>.

This implies that (P;, P») has codimension at most d;d» in F[x, y], or in other words
that the quotient ring F'[x, y]/(P1, P») has dimension at most d; d, as a vector space
over F.

Now suppose for contradiction that Z(Py, P,)(F) contains did, + 1 points
(xij,y;) fori = 1,...,dyd> + 1. Then one can find d;d> + 1 polynomials in
F[x, y] whose restrictions to Z (P, P>)(F) are linearly independent; for instance,
one could take the polynomials

Qi(x.y) = [ (x —xj) X [ v =)

1<j<dida+1:x; #x; 1<j=<did>+1:y; #y;
These polynomials must remain linearly independent in the quotient ring

Flx,y]/(P1, P2),
giving the desired contradiction. O

As with several previously discussed lemmas, there is a multiplicity version of
Bezout’s theorem. If Py, P, € F[x, y] are polynomials and p = (pi, p2) € F?,
we define the intersection number I,( Py, P») of vanishing of Py, P, at p to be the
dimension of the F-vector space R, := F[[x — p1,y — p2]l/(P1. P2)p,,p,, Where
F[[x — p1,y — p2]] is the ring of formal power series } ; ; ¢i,;j (x — 1) (y — p2)!
with coefficients in F', and (P1, P2),,,p, is theideal in F[[x — p;, y — p2]| generated
by P, P,. One easily verifies that /,(p1, p2) is positive precisely when p lies in
Z(Py)[F] N Z(Py)[F], since if p lies outside Z(P1)[F] N Z(P2)[F] then at least
one of P; or P, may be inverted via Neumann series in F[[x — p1, y — p2]]. We then
have the following refinement of Bezout’s theorem:

Theorem 4.2 (Bezout’s theorem with multiplicity). Let F be a field, let dy, dy > 0,
andlet Py, P, € F[x, y] be polynomials of degree dy, d; respectively with no common
factor. Then

> Ip(P1. Py) < dids.

pEF?2

In particular, I,,(P1, Py) is finite for every p.
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Proof. 1t suffices to show that

> I, (P Py) < dvdy
PEE

for any finite subset E of Z(P1)[F] N Z(P>2)[F].

Let R be the commutative F-algebra R := F|[x, y]/(P1, P2), with its localisa-
tions R, := F[lx — p1,y — p2]l/(P1, P2)p,,p, defined previously. By the proof of
the previous theorem, we know that R has dimension at most dyd, as an F-vector
space, so it suffices to show that the obvious homomorphism from R to [[,c g Rp is
surjective.

We now claim that for any p € E and any polynomial Q € F[x,y] which
vanishes at p, the image Q, of P in Q) is nilpotent, thus Q7 = 0 for some n > 1.
Indeed, as R is finite-dimensional, we have some linear dependence of the form

10" + -+ ¢, Q'™ =0 mod (Py, P>)

forsomem > 1,somei; < --- < i,,, and some non-zero coefficientscy, ..., ¢, € F.
As Q vanishes at p, i; cannot be zero (as can be seen by evaluating the above identity
at p), and so one can rewrite the above identity in the form

Qi1(1+S):Om0d(P1,P2)

for some polynomial S € F[x, y] which vanishes at p. One can then invert 1 + S in
F[[x — p1,x — p>]] by Neumann series, giving Q' = 0 as required.

From the above claim we see that for each p = (pi, p2) € E, the images of
x — p1 and y — p, in R, are nilpotent, which implies that any formal power series
in F([x — p1.y — p2]] is equal modulo (P, P,), to a polynomial in F[x, y], which
in turn implies that the obvious homomorphism from R to R, is surjective. To finish
the proof of the theorem, observe that from polynomial interpolation we may find
polynomials P, € F[x, y] for each p € E which equal 1 at p but vanish at all the
other points of E. By raising these polynomials to a sufficiently large power, we may
thus assume that the image of P, in R, vanishes for ¢ € E \ {p} and is invertible in
R,. By considering linear combinations of these polynomials with coefficients in R
and using the surjectivity from R to each individual R,, we thus obtain surjectivity
from R to [[,cg Rp as required. O

Bezout’s theorem can be quite sharp’, as for instance can be seen by considering
polynomials P;(x, y) = f(x), P2(x,y) = g(y) that depend on only one of the two
variables. However, in some cases one can improve the bound in Bezout’s theorem
by using a weighted notion of degree. For instance, consider polynomials of the form

9Indeg,d, if one works in the projective plane instead of the affine plane, and if one works in the algebraic
closure F' of F rather than in F itself, one can make Bezout’s theorem an identity instead of an inequality; see,
e.g., [28].
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Pi(x,y) = y?> — f(x) and P5(x,y) = g(x), where f is a polynomial of degree 3
and g is of degree d. A direct application of Bezout’s theorem then gives the upper
bound of 3d for the cardinality of the joint zero set Z(P1)[F] N Z(P,)[F]. But one
can improve this bound to 2d by observing that g has at most d zeros, and that for
each zero x of g, there are at most two roots y to the equation P (x, y) = 0. We can
generalise this observation as follows. Given a pair (@, b) of natural numbers and a
polynomial

P(x.y) =) cijx'y/
i,Jj

in F[x, y], define the weighted (a, b)-degree deg, ;,(P) of P to be the largest value
of ai + bj for those pairs (i, j) with ¢; ; non-zero, or —oo if P vanishes. Thus for
instance deg; ; (P) is the usual degree of P.

Theorem 4.3 (Weighted Bezout theorem with multiplicity). Let a, b be positive
integers, and let Py, P, € F[x, y] be polynomials of degree dy, d respectively with
no common factor. Then

deg, ;,(P)deg, ;,(Q)
ab '

Z I,(Py1, P) <

pEF?2

Note that Theorem 4.2 is just the @ = b = 1 case of this theorem. In the case
Pi(x,y) = y%2 — f(x), P2(x,y) = g(x) discussed earlier, we see that Theorem 4.3
with (a, b) = (2, 3) gives the optimal bound of 2d instead of the inferior bound of
3d provided by Theorem 4.2.

Proof. Write dy := deg, ,(P) and d, := deg, ,(Q). By the arguments used to
prove Theorem 4.2, it will suffice to show that the F-vector space F|[x, y]/(P1, P2)
has dimension at most d1d5/ab.

Now let O1, O be the polynomials Q1 (x, y) := Pi(x%, y?) and Q,(x, y) :=
P>(x%, y?). Then Q, Q, lie in F[x%, y?] and have unweighted degree d;, d»
respectively. Applying the change of variables x — x%, y — yb , we see that
F[x,y]/(P1, P,) has the same dimension as F[x?%, y?]/(Q1,02)@?), where
(Q1, 02) @) is the ideal of F[x?, y?] generated by Oy, Q». On the other hand,
by the arguments used to prove Theorem 4.1, we conclude that F[x, y]/(Q1, Q2)
has dimension at most d1d,. But F[x, y] is a free module of dimension ab over
F[x?, y?], which implies that the dimension of F[x, y]/(Q1, Q>) is ab times the
dimension of F[x, y]/(Q1, Q2). The claim follows. O

We now give an application of Bezout’s theorem to a fundamental problem in
number theory, namely that of counting F-points on a curve, when F is a finite field
F = [,. For simplicity of exposition we will first discuss elliptic curves of the form

C :={(x.y):y%= f(x)}
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for some degree 3 polynomial f € F[x], although the method discussed here (known
as Stepanov’s method) applies to general curves with little further modification. We
are interested in bounding the size of C[F]. By intersecting C with the curve {x :
x9 — x = 0} and using Bezout’s theorem, we obtain the upper bound |C[F]| < 3¢;
using the weighted Bezout theorem we may improve this to |C[F]| < 2¢q. This
bound is also obvious from the observation that for any x € F, there are at most
two solutions y € F to the equation y? = f(x). However, one expects to do better
because f(x) should only be a quadratic residue approximately half of the time (note
that f cannot be a perfect square as it has odd degree). Indeed, we have the following
classical bound that confirms this intuition:

Proposition 4.4 (Hasse bound). If ¢ is odd, then we have |C[F]| = q + O(q'/?).

Here and in the sequel, we use O (X) to denote any quantity bounded in magnitude
by CX for an absolute constant C. In particular, the above proposition is non-trivial
only in the regime in which ¢ is large.

The requirement that ¢ is odd is needed to avoid the points on C[F] occurring
with multiplicity two; the statement and proof of this bound can be extended to the
even g case after one accounts for multiplicity, but we will not do so here.

This bound was first established by Hasse [36] using number-theoretic arguments;
we give here the elementary argument of Stepanov [69] (incorporating some geomet-
ric reinterpretations of this argument due to Bombieri [8]), which in fact generalises
to give the Riemann hypothesis for arbitrary curves over a finite field; see [58].

We now begin the proof of Proposition 4.4. The first observation is that it suffices
to establish the upper bound

ICIF]| < q + 0(q"?). (6)
Indeed, if we introduce the dilated curve

C':={(x.y):y* =af(x)}.

where a € F is a non-zero quadratic non-residue in F, then we observe that for
each x € F with f(x) # O there are exactly two y for which either y2 = f(x)
or y2 = af(x), by dividing into cases depending on whether f(x) is a quadratic
residue or not. This gives the bound

ICIF]| + |C'[F]| = 2¢ + O(1)

and we thus see that the lower bound |C[F]| > ¢ — O(¢'/?) is implied by the upper
bound |C'[F]| < ¢ + O(q"/?). Since C' is of essentially the same form as C, it thus
suffices to establish the upper bound (6).

It remains to prove (6). We had previously obtained upper bounds of the form
2q or 3¢ by containing C[F] inside the intersection of C with {(x, y) : x4 = x}
or {(x,y) : ¥4 = y}. Indeed, C[F] is the triple intersection of these three curves.
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However, instead of viewing C[F] as the intersection of three plane curves, one can
identify C[F] with the intersection of two curves in the surface C x C. Indeed, if
one considers the diagonal curve

Cy:={(p,p):peC}

and the graph
Cz = {(p.Frob(p)) : p € C},

where Frob: F2 — F?2 is the Frobenius map Frob(x, y) := (x4, y9), then Cy, C,
are two curves in C x C (note that Frob preserves C), and

CiNC ={(p.p): peC[F]}.
In particular, the upper bound (6) is equivalent to the bound
IC1NCaf =g+ 0@"?).

If we directly apply Bezout’s theorem (or analogues of Bezout’s theorem for the
surface C x C), we will still only obtain upper bounds of the form 2¢ or 3¢q for
C1 N C,. To do better than this, the idea is to use the polynomial method and locate
a polynomial P on C x C that does not vanish identically on C,, but vanishes to
high order on (1, so that tools such as Theorem 4.3 may be applied to give improved
upper bounds on C; N C, (cf. the use of multiplicity to improve Theorem 1.8 to
Theorem 2.5).

We turn to the details. As we are now working on the surface C x C instead
of the plane, we have to slightly modify the definitions of some key concepts such
as “polynomial” or “multiplicity”. On the plane, we used F[x, y] as the ring of
polynomials. On C x C, the analogous polynomial ring is given by

R:=Flx,y.x".y'1/(y* = f(x).()))> = f(x)), )

where (y2 — f(x), (y')?> — f(x')) denotes the ideal in F[x, y, x’, y'] generated by
y2— f(x)and (y")? — f(x’). Note that any element of R can be viewed as a function
fromC x C to F. In particular, the restriction of R to C; or C, is well-defined. For
a polynomial P € F|[x, y] on the plane, we say that P vanishes to order at least m
atapoint p = (p1, p2) € F? if the Taylor expansion of P at (p;, p») has vanishing
coefficients at every monomial of degree less than m. An equivalent way to write this
is P € (x — p1,y — p2)™, where (x — py,y — p2) is the ideal in F[x, y] generated
by x — p; and y — p;, and (x — p1, ¥y — p2)"" is the ideal generated by products of
m elements in (x — p;, y — p2). Motivated by this, we will say that a polynomial
P € R vanishes to order at least m at a point (p, p’) = (p1, p2. p}. py) if it lies in
the ideal (x — p1,y — p2,x" — p}, ¥’ — p5)™. We may now apply Theorem 4.3 as
follows:
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Proposition 4.5. Let m > 1. Suppose that one has a polynomial P € F[x,y,x’,y']
which does not vanish identically on C,, but vanishes to order m at every smooth
point of Cy (after projecting P to R). Suppose that the polynomial P(x, y,x4,y?) €
F[x, y] has weighted (2, 3)-degree at most D. Then |C; N C3| < % + 3.

Proof. Let (p, p) = (p1, p2, p1, p2) be a point in C; N C, with py # 0. The
significance of the assumption p, # 0 is that it forces (p;, p») to be a smooth point
of C (here we use the hypothesis that g is odd). Note that f has at most three zeros,
so there are at most three points of C; N C, with p, = 0. Thus it suffices to show
that there are at most D/m points (p, p) in C; N C, with p, # 0.

By hypothesis, P lies in the ideal (x — p1,y — pa2,x’ — p1, ¥y’ — p2)™ after
quotienting by (y2 — f(x), (y')?> — f(x')). Setting P'(x,y) := P(x,y,x4,y9), we
conclude that P’ lies in the ideal (x — p1, y — p2, x4 — p1, vy — p,) after quotienting
by (y% — f(x),(»9)* — f(x?)). But x? — p; = x4 — p{ is a multiple of x — py,
and similarly for y¢ — p, and (y9)? — f(x9), so P’ lies in (x — p1,y — p2)™
after quotienting by (y2 — f(x)). We may Taylor expand y? — f(x) as 2p2(y —
p2) + f'(p1)(x — p1) + --- where the error ... lies in (x — py,y — p2)?; note
that 2p, is non-zero by hypothesis. Now let F[[x — p1,y — p2]] be the ring of
formal power series in x — p; and y — p, with coefficients in F. In the quotient ring
Fl[x — p1,y — p2]l/(»? — f(x)), we then have the expansion

f'(p1)
2p>

where the error again lies in (x — p1, y — p2)?; in particular, by Neumann series we
see that in this ring y — p» is a multiple of x — pj, and hence P’ is a multiple of
(x—p1)™. We conclude that the monomials 1, (x — py), ..., (x — p1)"™ ! are linearly
independentin F[[x — p1, y — p2]l/(P’, y* — f(x)), and so I,(P’, y* — f(x)) > m.
On the other hand, by hypothesis P’ does not vanish on C and so does not share a
common factor with y? — f(x) (note that the latter polynomial is irreducible since
f, having odd degree, cannot be a perfect square). Since P’ has weighted (2, 3)-
degree at most D by hypothesis, the claim now follows from Theorem 4.3 (noting
that y2 — £(x) has weighted (2, 3)-degree 6). O

y—p2=- (x—p1)+--

To use this proposition, we need to locate a polynomial P € F[x, y, x’, y'] of not
too large a degree that vanishes to high order at Cy, without vanishing entirely on C,.
To achieve the second goal, we use the following simple observation:

Lemma 4.6 (Good basis of polynomials). Let P € F[x,y,x’,y’] be a non-trivial
linear combination of the monomials x' y/ (x")!' (y")7" with j, j' <1, 2i +3j < q.
Then P does not vanish on C,.

Proof. 1t suffices to show that P(x, y, x?, y?) does not vanish identically on C; as
y2 — f(x) is irreducible, this is equivalent to the assertion that P(x, y, x4, y?) is not
divisible by y? — f(x).
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By hypothesis, P is the sum of one or more terms ci,j,i/,j/xiyj(xq)"/(yq)j/
with ¢; ;i ;v # 0 and the tuples (i, j,i’, j') distinct and obeying the constraints
J»j' < land 2i + 3j < g. Observe from these constraints that the weighted
(2, 3)-degrees 2i + 3j + q(2i’ + 3j') are all distinct. Thus there is a unique term
Cijir Xty (xq)i/(yq)j/ of maximal weighted (2, 3)-degree. If P were divisible by
y2— f(x), this term would have to be divisible by the (weighted) top order component
of y2 — f(x), which takes the form y? — ax> where a is the leading coefficient of
f. But this is easily seen to not be the case, and the claim follows. O

We remark that this lemma relied on the existence of a good basis of polynomials
with distinct degrees in C,. When applying this argument to more general curves,
one needs to apply the Riemann—Roch theorem to locate an analogous basis; see,
e.g., Chapter 11 in [40] or [58] for details.

Finally, we need to construct a combination of the monomials in Lemma 4.6 that
vanish to higher order at C;. This is achieved by the following variant of Lemma 1.4:

Lemma 4.7 (Interpolation). Let d > 10 and m > 1 be such that
(g — 10m)(d — 10) > m(q + 10d + 20m).

Then there exists a non-trivial linear combination P € F|x,y, x', y'] of the mono-
mials x' y7 (x")' (y")!" with 2i’ +3j' < d, j,j <1, 2i +3j < q which vanishes
to order at least m at every smooth point of Cj.

Proof. From the hypotheses we observe that g > 10m.

Let V be the space spanned by x?y/ (x)' (y)/" with 2i’ +3j' < d, j,j' <1,
2i +3j < g—6m; thisisan F-vector space of dimension at least (¢ — 10m)(d — 10).
Let I be the ideal in F[x, y,x’, y'] generated by y2 — f(x), (y/)* — f(x/), and
(x—x', y—y’)™. Suppose we can locate a non-zero element Q of V such that y2”~1 0
lies in /. Then, when projected onto the ring R given by (7), y2™~1 Q lies in the ideal
(x—x',y—y")™in R; also, since y? = f(x)in R, we can write y>"~!Q = P inR,
forsome P € F|[x, y, x’, y'] that is a combination of the monomials x y/ (x")!" (y")/’
with2i’+3j' <d, j,j' <1,2i +3j < q. Then P lies in the ideal (x —x’, y — y’)™
in R; in particular, for any smooth point (p, p) = (p1, p2., p1, p2) in Cy, P vanishes
inthering R/(x — p1,y — p2,x’ — p1, ¥’ — p2)™. Thus, by definition, P vanishes
to order m at every smooth point of Cj.

It remains to locate a non-zero Q € V such that y2”~1Q that lies in 1. To
do this, it will suffice to show that the projection y2”~'V mod I of y?"~ 'V in
F[x,y,x’, y']/I has dimension at most m(q + 10d + 20m).

The space y2"~1V mod I lies in the span of the monomials x’ y/ (x)!" (y")/’
mod I with2i" +3j' <d,j' <1,j >2m—1,and 2i + 3j <q.

In the ring F[x, y, x’, y']/I, we have

= fx) =0~ 1) =0
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and thus | |
Y=y =50- ¥+ () = &)

If we write a := %(y —y)and b := %(f(x) — f(x)), we can rewrite the above
identity as
ya =a’* +b. ()

We now claim that _
y¥la = R;j(@®.b) + Q;(y.b) ©9)

for all j > 1, where R; is a homogeneous polynomial of degree j, and Q; is a
polynomial of weighted (1, 2)-degree at most 2. Indeed, for j = 1 this follows
from (8), while if (9) holds for some j, then we have

y¥7la = 8j(a* b)a® + ¢;b’ + Q;(y.b)

for some constant ¢; and some homogeneous polynomial S; of degree j — 1. Mul-
tiplying both sides by y? and using (8) we conclude that

y2UFD=1G = §:(a%,b)(a® + b)? + ¢;y2b) + y2Q,(y.b)

giving (9) for j + 1.

We now apply (9) with j := m. Since a2, b both lie in (y — y’, x — x'), we see
that R,,(a?, b) vanishes in F[x, y, x’, y']/I. Hence, in the ring F[x, y,x’, y']/I we
have

| , ! :
2 =) = O 5 F@ - ()

and thus
y2m—1y/ — R(X,.x/,y)

for some polynomial R of weighted (2, 2, 3)-degree at most 6. Using this identity
to eliminate all appearances of y’, we thus conclude that y?™~!'V mod [ lies in
the span of the monomials x’ y/ (x’)!" mod I with 2i" < d 4+ 6m and 2i + 3j <
g + 6m. Next, by writing x” as x + (x” — x) and using the vanishing of (x’ — x)™ in
F[x,y,x’,y']/1, we conclude that y?”~1V mod I lies in the span of the monomials
x'y/(x" — x)"" mod I withi’ < m and 2i + 3/ < g + d + 12m. But the number
of such monomials is at most m(q + 10d + 20m), and the claim follows. O

We can now conclude the proof of (6) and hence Proposition 4.4. Observe that
if P is the polynomial given by Lemma 4.7, then the polynomial P(x,y,x9?, y?)
has weighted (2, 3)-degree at most dg + ¢, and is non-vanishing by Lemma 4.6.
Applying Proposition 4.5, we conclude the upper bound

dqg+q

|Ci NGy < +3
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whenever d > 10 and m > 1 obey the constraint
(g — 10m)(d — 10) > m(q + 10d + 20m).

One can optimise this bound by setting m := C~! /g and d := C‘lﬂ + C for
some sufficiently large absolute constant C, which (for ¢ sufficiently large) gives the
required bound (6). (For g bounded, the claim (6) is of course trivial.)

Remark 4.8. Our argument was arranged from a “geometric” viewpoint, in which
one works on geometric domains such as the surface C x C which are naturally
associated to the original problem. However, it is also possible to project down to
simpler domains such as the affine line Al = F or the affine plane A> = F x F,
obtaining a more “elementary”, but perhaps also more opaque, proof that avoids
Bezout’s theorem; see, e.g., [40].

Remark 4.9. In the example just discussed, the bounds obtained by Stepanov’s
method can also be obtained through more algebraic means, for instance by invoking
Weil’s proof [83] of the Riemann hypothesis for curves over finite fields; indeed,
the latter approach provides much more precise information than the Hasse bound.
However, when applying Stepanov’s method to counting solutions to higher degree
equations, it can be possible for the method to obtain results that are currently beyond
the reach of tools such as the Riemann hypothesis, by exploiting additional structure
in these equations. For instance, as a special case of the results in [11], the bound'?

Hx e F:x™ =a; (x—1)" = b} <« m?*? (10)

was shown for any 1 <« m < p3/ “anda,b € F, when F = [, is of prime order.
The argument is similar to the one presented above, and can be sketched as follows.
Observe that the left-hand side of (10) is |[C; N C,|, where C1, C; are the curves

Ci:={(x,a,b): x € F},
Cy i={(x,x", (x—1)™):x eF}
which lie inside the surface
S = {(s,as™t™™ b(s — )™t —1)"):seF;telF\{0,1}}.

Let V be the space of polynomials P(x, y,z) of degree at most A in x and B in
v, z, for some parameters A, B to be determined later; the restriction to Cj is then a
polynomial of degree at most A + 2m B, which we assume to be less than p. If

AB <m

then these polynomials restrict faithfully to C; (because the z-constant term is 4 B-
sparse and has degree less than p and so cannot vanish to order m at 1). Using the

10Here and in the sequel we use X < Y to denote the estimate | X| < CY for some absolute constant C.
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vector field x (x — 1)ds := x(x —1)dx +my(x —1)dy + mzx0,, which is tangent to
S and transverse to C, we can then find a non-trivial polynomial on V' that vanishes
to order A at C; if

AB* > CA?
for some large absolute constant C, in which case we conclude that

A+2mB

|ICi NGy < 1

which on optimising in 4, B (setting A ~ m?/3 and B ~ m'/3) gives the desired
bound.

5. The combinatorial Nullstellensatz

The factor theorem (Lemma 1.1 (i)) can be rephrased as follows:

Lemma 5.1 (Factor theorem, again). Let F be a field, let d > 0 be an integer, and
let P € F[x] be a polynomial of degree at most d with a non-zero x¢ coefficient.
Then P cannot vanish on any set E C F with |E| > d.

We have already discussed one extension of the factor theorem to higher dimen-
sions, namely the Schwartz—Zippel lemma (Lemma 1.2). Another higher-dimensional
version of the factor theorem is the combinatorial Nullstellensatz of Alon [1], which
arose from earlier work of Alon, Nathanson, and Ruzsa [2], [3]:

Theorem 5.2 (Combinatorial Nullstellensatz). Let F be afield, letd,, .. .,d, > 0be

integers, and let P € F[x1,...,Xx,] be a polynomial of degree at most di + --- + d,
with a non-zero xf' .. .x,(f” coefficient. Then P cannot vanish on any set of the form

Eix---xE,withEq{,...,E, C Fand|E;| > d; fori =1,...,n.
We remark for comparison that the proof of the Schwartz—Zippel lemma (Lem-
ma 1.2) can be modified to show that
|Z(P)[FIN(Ey x--x Ep)| <d sup  [] |E]
VSISRy jans i
when P has degree d, which gives a much weaker version of Theorem 5.2 in which

the condition |E;| > d; is replaced by |E;| > d.

Proof. LetEy,...,E, C Fbesuchthat |E;| > d;fori =1,...,n. Letl <i <n.
The space FZi of functions f;: E; — F has dimension | E;|; by the factor theorem,

the restrictions of the monomials 1, x, ..., x% to E; are linearly independent. As
|E;| > d;, there must exist a non-zero function f;: E; — F such that
3 fitx! =0

x;€E;
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forall0 < j < d;, but
> St =1
x;€E;

In particular, we see that if j;,..., j, > 0 are integers, the quantity

Z fl(xl)"'fn(xn)xfl...x,{"

(X1,.Xn)EE1XEy

vanishes if j; < d; for at least one i = 1,...,n, and equals 1 if j; = d; for all
i =1,...,n. Decomposing P into monomials, and noting that all such monomials
have degree at most d; + --- + d,, and must therefore be in one of the two cases
previously considered, we conclude that

Z S1(x1) .o fa(xn) P(x1, ..o x0) # 0.
(X1,esXxn)EEIXEp
In particular, P cannot vanish on E; x --- x E,, as desired. O

Remark 5.3. The reason for the terminology “combinatorial Nullstellensatz” can
be explained as follows. The classical Nullstellensatz of Hilbert asserts that if P,
01, ..., Qy are polynomials in F[xy, ..., x,] with Z(P) D Z(Q1)N---N Z(0k),
then there is an identity of the form P" = Q1R + --- + Qi Ry for some r > 1 and

some polynomials Ry,..., Ry € F [x1,...,xu]. It can be shown inductively (see
[1]) thatif P € F[x1,..., X,]isapolynomial that vanishes on a product E1 X---X E,
of finite non-empty sets E1, ..., E, C F, or equivalently that

Z(P) D Z(Q1)N---N Z(Qn)

where
Qi(x1,...,xp) 1= l_[ (xi — i),
Yi€E;
then there exists anidentity of the form P = Q1 Ry +---+Q, Ry, where Ry, ..., R, €
F[x1,...,xy] are polynomials with deg(R;) < deg(P;) — | E;|. This fact can in turn
be used to give an alternate proof of Lemma 5.2.

The combinatorial Nullstellensatz was used in [1] (and in many subsequent papers)
to establish a wide variety of results in extremal combinatorics, usually by contra-
diction; roughly speaking, the idea is to start with a counterexample to the claimed
extremal result, and then use this counterexample to design a polynomial that vanishes
on a large product set and which is explicit enough that one can compute a certain
coefficient of the polynomial to be non-zero, thus contradicting the Nullstellensatz.
This should be contrasted with more recent applications of the polynomial method, in
which interpolation theorems such as Lemma 1.4 or Lemma 2.3 are used to produce
the required polynomial. Unfortunately, the two methods cannot currently be easily
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combined, because the polynomials produced by interpolation methods are not ex-
plicit enough that individual coefficients can be easily computed, but it is conceivable
that some useful unification of the two methods could appear in the future.

Let us illustrate the use of the Nullstellensatz first with a classic example from the
original paper of Alon [1]:
Proposition 5.4 (Cauchy—Davenport theorem). Let ' = [, be a field of prime order,
andlet A, B C F be non-empty sets, with sumset A+ B :={a+b:a € A, b € B}.
Then |A + B| > min(|A| + |B| -1, p).

The bound here, first established by Cauchy [13] and Davenport [18] by differ-
ent methods, is absolutely sharp, as can be seen by taking A, B to be arithmetic
progressions with the same step.

Proof. The claim s trivial for |A|+|B| > p (since A and x — B must then necessarily
intersect for every x € [, sothat A+ B = [F), so we may assume that |A| 4+ |B| < p.
Suppose the claim failed, so that A+ B C C for some set C with |C| = |A|+|B|—2.
Then the polynomial
P(x,y):= l_[(x +y—c)
ceC

has degree |A| + | B| — 2 and vanishes on A x B. But the x!4I=1y!BI=1 coefficient of
P is (A|+|B ‘_2), which one can compute to be non-zero in [, and this contradicts

|4]—1
Theorem 5.2. O

As mentioned previously, this particular result can be proven easily by many
other methods (see, e.g., [75] for two other proofs in addition to the one given above).
However, an advantage of the Nullstellensatz approach is that it is quite robust with
respect to the imposition of additional algebraic constraints. For instance, we have

Proposition 5.5 (Erd6s—Heilbronn conjecture). Let ' = [, be a field of prime order,
and let A, B C [ be non-empty sets with |A| # |B|. Then the restricted sumset

A+ B:={a+b:acA beB, a#b}
obeys the bound |A &+ B| > min(|A| + |B| — 2, p).

Proof. As before, the case |A| + |B| > p + 1 is easily established, as is the case
|A| = 1or |B| = 1, so we may assume that |A| + |B| < p + 1 and |A4]|, |B| > 2.
Suppose for contradiction that A & B C C for some C with |C| = |A| + |B| — 3.
Then the polynomial

Px.y):=x-n[][x+y-0

ceC

has degree |A| + |B| — 2 and vanishes on A x B. But the x!4/=1ylBI=1 coefficient

of P is (IAI‘;I§\2—3) — (|A||;|‘f|1_3), which one can compute to be non-zero in [, and

this contradicts Theorem 5.2. O
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This result was first proven by da Silva and Hamidoune [19] by a different method,
but the proof given above is significantly shorter than the original proof.

The combinatorial Nullstellensatz (or generalisations thereof) have had many
further applications to additive combinatorics; we do not have the space to survey
these here, but see Chapter 9 in [75] for some further examples.

6. The polynomial ham sandwich theorem

The applications of the polynomial method in previous sections were algebraic in na-
ture, with many of the tools used being valid in an arbitrary field F (or, in some cases,
for arbitrary finite fields F'). However, when the underlying field is the real line R, so
that the varieties Z(P)[R] are real hypersurfaces, then the polynomial method also
combines well with fopological methods. To date, the most successful application of
topological polynomial methods has come from the polynomial ham sandwich the-
orem, which can be used to increase the flexibility of the interpolation lemma from
Lemma 1.4. To motivate this extension, let us first observe that the interpolation
theorem ultimately relied on the following trivial fact from linear algebra:

Lemma 6.1. Let T: F" — F™ be a linear map with n > m. Then there exists a
non-zero element x of F" such that Tx = 0.

In the case when F' = R, we have the following nonlinear generalisation of the
above fact:

Theorem 6.2 (Borsuk—Ulam theorem). Let T : R \ {0} — R™ be a continuous odd
map with n > m (thus T(—x) = —Tx for all x € R™). Then there is a non-zero
element x of R" such that Tx = 0.

Indeed, to prove the above theorem, we may assume without loss of generality
that m = n — 1, and restrict 7 to the n — 1-sphere S”~!, and then the statement
becomes the usual statement of the Borsuk—Ulam theorem [9]. As is well known,
this theorem can then be used to establish the “ham sandwich theorem” of Stone and
Tukey [70]:

Theorem 6.3 (Ham sandwich theorem). Let By, ..., B, be bounded open subsets
of R" (not necessarily distinct). Then there exists a hyperplane {(x1,...,x,) €
R® : ap + ayx1 + -+ + anx, = 0}, with ag,...,an, € R not all zero, which
bisects each of the B;, in the sense that for each 1 < i < n, the intersection of
B; with the two half-spaces {(x1,...,xy) € R" : ag + a1x; + -+ + anx, > 0},
{(x1,...,xn) € R" tap+a1x1+---+anx, <0} have the same Lebesgue measure.

Proof. Define the map T: R*T1 \ {0} — R” by defining the i"® component of
T (ayp,...,ay) to be the difference between the Lebesgue measure of

Bi N{(x1,...,xp) € R" 1ag +ayxy + -+ + anx, > 0}
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and
B, N {(x1,....xy) €R" 1ap +ar1xy + - + anx, < 0}.

In other words,

n

T(ag,...,a,) := ([ sgn(ag + ayxy + -+ + anpxy) dx, ...a’xn)
B;

i=1

From the dominated convergence theorem we see that 7 is continuous on R”? 1\ {0},
and it is clearly odd. Applying Theorem 6.2, we conclude that 7' (ay,...,a,) = 0
for some ay, ..., a, not all zero, and the claim follows. O

The same argument allows one to generalise the ham sandwich theorem by allow-
ing the dividing hypersurface to have a higher degree than the degree-one hyperplanes:

Theorem 6.4 (Polynomial ham sandwich theorem). Let n > 1 be an integer, and let

d > 0. Let By,..., By be bounded open subsets of R" for some m < (d:n) Then
there exists a P € R[xy, ..., x,] of degree at most d such that Z(P)[R] bisects each
of the B, in the sense that for each 1 < i < m, the intersection of B; with the two
regions Q4 (P) :={x € R* : P(x) > 0} and Q_(P) := {x € R" : P(x) < 0}
have the same Lebesgue measure.

Proof. Let V be the vector space of polynomials P € R[xy,...,x,] of degree at
most d. Thenthe map 7: V \ {0} — R™ defined by

T(P):= (/B sgn(P))
i i=1

can be verified to be continuous and odd. As V' has dimension (d:”), we may apply
Theorem 6.2 and conclude that 7 (P) = 0 for some non-zero P € V, and the claim
follows. O

This theorem about continuous bodies By, . . ., B, wasemployedin [33]tosolve'!
a certain multilinear version of the Kakeya problem in R”; this usage was directly
inspired by Dvir’s use of the polynomial method to solve the finite field Kakeya
problem (Theorem 1.8). The polynomial ham sandwich theorem also has a useful
limiting case that applies to discrete sets:

Theorem 6.5 (Polynomial ham sandwich theorem, discrete case). Let n > 1 be an
integer, and let d > 0. Let E1, ..., E,, be finite subsets of R" for some m < (d:").
Then there exists a P € R[xy, ..., x,] of degree at most d such that Z (P)[R] bisects

Strictly speaking, the polynomial ham sandwich theorem argument in [33] only solves a model case of the
multilinear Kakeya conjecture, with the full conjecture requiring the more sophisticated topological tool of LS
category. However, a subsequent paper of Carbery and Valdimarsson [12] establishes the full multilinear Kakeya
conjecture using only the Borsuk—Ulam theorem.
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each of the E;, in the sense that for each 1 < i < m, the intersection of E; with the
two regions Q4 (P) :={x e R" : P(x) >0} and Q_(P) :={x e R" : P(x) <0}
have cardinality at most | E;|/2.

Proof. Forany e > 0, let E? be the e-neighbourhood of E;. By Theorem 6.4, we may
find a non-zero polynomial P, in the vector space V of polynomials in R[x1, ..., x,]
of degree at most d, such that Z(P)[R] bisects each of the E7. By homogeneity
we may place each P; in the unit sphere of V' (with respect to some norm on this
space). The unit sphere is compact, so we may find a sequence &, — 0 such that P,
converges to another polynomial P on this sphere. One then verifies that Z(P)[R]
bisects each of the E; (in the discrete sense), and the claim follows. O

Note that the FF = R case of Lemma 1.4 is equivalent to the special case of
Theorem 6.5 when the finite sets E1, . . ., E,, are all singletons. Thus Theorem 6.5 can
be viewed as a more flexible interpolation theorem, which allows for the interpolating
polynomial P to have significantly smaller degree than provided by Lemma 1.4, at
the cost of Z(P)[R] only bisecting various sets, as opposed to passing through every
element of these sets.

By using the crude bound (d::") > d"/n", we see that any Eq,..., E;, may be
bisected by the zero set Z(P)[R] of a polynomial P of degree at most nm!/”.

In [35], Guth and Katz introduced a very useful polynomial cell decomposition
for finite subsets of R”, by iterating the above theorem:

Theorem 6.6 (Polynomial cell decomposition). Let E be a finite subset of R", and let
M > 1beapowerof two. Then there exists anon-zero polynomial P € R[x1, ..., Xp]
of degree O(n>M ™), and a partition R* = Z(P)[R]U Q1 U --- U Qpy, such that
each Q; has boundary contained in Z(P)[R], and such that |E N Q;| < |E|/M for
alli=1,...,M.

The polynomial cell decomposition is similar to earlier, more combinatorial, cell
decompositions (see, e.g., [16] or [73]), but is comparatively simpler and more gen-
eral to use than these previous decompositions, particularly in higher-dimensional
situations.

Proof. By Theorem 6.5 we may find a non-zero polynomial P; of degree at most
n1'/" = n which bisects E. More generally, by iterating Theorem 6.5, we may find

for each natural number j = 1,2, ..., a non-zero polynomial P; of degree at most
n2U =D/ which bisects each of the 2/~ sets E N Qe (P)N---NQ¢;_, (Pj—1) for
all choices of signs €1,...,€;—1 € {—1,+1}. If we then set P := P; ... P;, where

2/ = M, we see that P is a non-zero polynomial of degree at most

Z n2(i—1)/n — O(HZMl/n)

1<i<j
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and the M regions Q¢ (P1) N --- N Q¢; (P;) have boundary contained in Z(P)[R],
and each intersect E in a set of cardinality at most |E|/2/ = |E|/M, and the claim
follows. O

The regions 21, ..., Qs in the above theorem are each unions of some number
of connected components of R” \ Z(P)[F]. The number of such components for
a polynomial P of degree d is known to be'? at most %d(2d — 1"~ [51], [55],
[76], so one can ensure each of the regions €2; to be connected if one wishes, at the
cost of some multiplicative losses in the quantitative bounds that depend only on the
dimension 7.

As before, if one takes M to be slightly greater than |E|, we again recover
Lemma 1.4 (with slightly worse quantitative constants); but we obtain additional
flexibility by allowing M to be smaller than | E|. The price one pays for this is that £
is no longer completely covered by Z(P)[F], but now also has components in each
of the cells 21, ..., Qp. However, because these cells are bounded by a low-degree
hypersurface Z(P)[F], they do not interact strongly with each other, in the sense
that other low-degree varieties (e.g. lines, planes, or spheres) can only meet a limited
number these cells. Because of this, one can often obtain favorable estimates in inci-
dence geometry questions by working on each cell separately, and then summing up
over all cells (and also on the hypersurface Z(P)[F], and finally optimising in the
parameter M .

We illustrate this with the example of the Szemerédi—Trotter theorem [ 73], a basic
theorem in combinatorial incidence geometry which now has a number of important
proofs, including the one via the polynomial method which we present here. Given
a finite set P of points p € R? in the Euclidean plane R?, and a finite set L of lines
¢ C R? in that plane, we write I(P, L) := {(p,{) € P x L : p € {} for the set of
incidences between these points and lines. Clearly we have |I(P, L)| < |P||L|, but
we can do much better than this, since it is not possible for every point in P to be
incident to every line in L once | P|,|L| > 1. Indeed, simply by using the axiom that
any two points determine at most one line, we have the following trivial bound:

Lemma 6.7 (Trivial bound). For any finite set of points P and finite set of lines L,
we have |I(P,L)| < |P||L|*? + |L|.

Proof. If we let u(£) be the number of points P incident to a given line £, then we
have

[1(P, L) =) 1)

leL

12A more elementary proof of the slightly weaker bound O, (d™), based on applying Bezout’s theorem to
control the zeros of V P, may be found at [68]. See [6] for the sharpest known bounds on these and related
quantities.
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and hence by Cauchy—Schwarz

> u(? = [1(P.L)P/IL.

leL

On the other hand, the left-hand side counts the number of triples (p, p’,£) € P x
P x L with p, p’ € £. Since two distinct points p, p’ determine at most one line, one
thus sees that the left-hand side is at most | P|?> + |I(P, L)|, and the claim follows.

O

This bound applies over any field F'. It can be essentially sharp in that context, as
can be seen by considering the case when F is a finite field, P = F? consists of all the
points in the plane F2, and L consists of all the lines in F2, so that |L| = |F|?> + | F|
and |I(P,L)| = |F|?® + |F|?>. However, we can do better in the real case F = R,
thanks to the polynomial ham sandwich theorem:

Theorem 6.8 (Szemerédi—Trotter theorem). For any finite set of points P and finite
set of lines L, we have |I(P, L)| < |P|?/3|L|*® + |P| + |L|.

This theorem was originally proven in [73] using a more combinatorial cell de-
composition than the one given here. Another important proof, using the purely
topological crossing number inequality, was given in [72].

Proof. We apply Theorem 6.6 for some parameter M > 1 (a power of two) to be
chosen later. This produces a non-zero polynomial Q € R[x, y] of degree O(M1/?)
and a decomposition

R* = Z(Q)[RIU Q1 U--- U Qp,

where each of the cells 2; has boundary in Z(Q)[R] and contains O(|P|/ M) of the
points in P. By removing repeated factors, we may take Q to be square-free. We
can then decompose

M
[1(P, L) = [I(P N Z(Q)R], L)| + D 11(P N &y, L),
i=1

Let us first deal with the incidences coming from the cells €2;. Let L; denote the
lines in L that pass through the i™ cell ;. Clearly

[I(P N, L)| = [1(P N Q;, L)
and thus by Lemma 6.7

| P

[I(P N Q;, L) < [P N||L:i|Y? + L] < W|Li|1/2 + L.
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On the other hand, from Lemma 4.1, each line £ in L either lies in Z(Q)[R], or meets
Z(Q)[R] in at most O(M'/?) points. In either case, £ can meet at most O (M /?)
cells ©2;. Thus

m
S ILil < ML
i=1

and hence by Cauchy—Schwarz, we have

m
D OILiVE < ML,

i=1

Putting all this together, we see that

m
D P NQi L) < MTY4PIILIM? + ML

i=1

Now we turn to the incidences coming from the curve Z(Q)[R]. As previously
noted, each line in L either lies in Z(Q)[R], or meets Z(Q)[R] in O(M /?) points.
The latter case contributes at most O(M '/2|L|) incidences to |[I(P N Z(Q)[R]. L)|,
SO now we restrict attention to lines that are completely contained in Z(Q)[R]. As in
Section 3, we separate the points in the curve Z(Q)[R] into the smooth points and
singular points. By Lemma 3.2, a smooth point can be incident to at most one line
in Z(Q)[R], and so this case contributes at most | P | incidences. So we may restrict
attention to the singular points, in which Q and V Q both vanish. As Q is square-free,
V Q and Q have no common factors; in particular, V Q is not identically zero on any
line £ contained in Z(Q)[R]. Applying Lemma 4.1 once more, we conclude that
each such line meets at most O(M '/2) singular points of Z(Q)[R], giving another
contribution of O(M '/2|L|) incidences. Putting everything together, we obtain

[I[(P,L)| < M~Y*4|P||LIY? + M2|L| 4 |P|

for any M > 1. An optimisation in M (setting M comparable to |P|*/3|L|72/3
when |L| < |P|?, and M = 1 otherwise) then gives the claim. O

The Szemerédi-Trotter theorem is a result about points and lines in R2, but it
turns out that analogous arguments can also be made in higher dimensions; see [68].
In [35], the following three-dimensional variant was established:

Theorem 6.9. [35] Let N > 1 be a natural number, and let L be a collection of
lines in R3 with |L| < N?, such that no point is incident to more than N lines in
L. Assume also that no plane or regulus (a doubly ruled surface, such as {(x,y,z) :
z = xy}) contains more than N lines in L. Then the number of pairs ({1, 4>) € L?
of intersecting lines in L is at most O(N3log N).
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For reasons of space, we will not give the proof of this theorem here, but note
that it has a similar structure to the proof of Theorem 6.8, in that one first applies the
polynomial ham sandwich theorem and then analyses interactions of lines both on
the hypersurface Z(Q)[R] and within the various cells Q1, ..., Q,,. To handle the
former contribution, one uses arguments related to (and inspired by) the arguments
used to prove the joints conjecture (Theorem 3.3), combined with some facts from
classical algebraic geometry regarding the classification of ruled (or doubly ruled)
surfaces in R3. This theorem then led to the following remarkable near-solution of
the Erdos distance set problem:

Corollary 6.10 (Erdds distance set problem, [35]). Let N > 1 be a natural number,
let P be a set of N points on R?, and let A(P) := {|p —q| : p,q € P} be the set of
distances formed by P. Then |A(P)| > %.

This almost completely answers a question of Erdés [27], who gave an example
of aset P (basically a /N x +/N grid) for which |A(P)| was comparable to \/IZ:W’
and asked if this was best possible. There has been a substantial amount of prior
work on this problem (see [30] for a survey), but the only known way to obtain a
near-optimal bound (with regard to the exponent of N) is the argument of Guth and

Katz using the polynomial cell decomposition.

Proof (Sketch). We consider the set of all quadruplets (p,q,r,s) € P* such that
|p —q| = |r —s|. A simple application of the Cauchy—Schwarz inequality shows
that

L
|A(P)]

soitsuffices to show that there are O (N3 log N) quadruplets (p, g, r, s) with | p—q| =
|r —s|. We may restrict attention to those quadruplets with p, ¢, r, s distinct, as there
are only O(N3) quadruplets for which this is not the case.

Observe that if p,q,r,s € R? are distinct points such that |p — q| = |r — s|,
then there is a unique orientation-preserving rigid motion R € SE(2) (the special
Euclidean group of the plane) that maps p, g to r, s respectively. In particular, if we
let £, , C SE(2) denote the set of rigid motions that map p to r, and let L denote
the set of all £, » with p, r distinct elements of P2, then it suffices to show that there
are at most O(N 3 log N) pairs of distinct sets £, ¢ in L which intersect each other.
However, it is possible to coordinatise SE(2) (excluding the translations, which can
be treated separately) by R in such a way that all the sets £ in SE(2) become straight
lines; see [35]. Furthermore, some geometric arguments can be used to show that any
point in R is incident to at most N lines in L, and that any plane or regulus in R? is
incident to at most O(N) lines in L, and the claim then follows from Theorem 6.9.

O

{(p.q.r.s) € P*:|p—q|=|r—sl}| >

The polynomial cell decomposition can be used to recover many further incidence
geometry results, and in many cases improves upon arguments that rely instead on
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older combinatorial cell decompositions; see [42], [39], [63], [85], [41]. The Guth-
Katz argument has also been recently used in [25] to strengthen the finite fields
Kakeya conjecture (Theorem 1.8) in three directions by relaxing the hypothesis of
distinct directions. However, some natural variants of the above results remain out
of reach of the polynomial method at present. For instance, the Guth—-Katz argu-
ment has not yet yielded the analogous solution to the Erd6s distance problem in
three or more dimensions; also, analogues of the Szemerédi—Trotter theorem in finite
fields of prime order are known (being essentially equivalent to the sum-product phe-
nomenon in such fields, see [10]), but no proof of such theorems using the polynomial
method currently'? exists. It would be of interest to pursue these matters further, and
more generally to understand the precise strengths and weaknesses of the polynomial
method.

There have also been some scattered successes in combining the polynomial
method with other topological tools, which we now briefly discuss. We have already
mentioned the crossing number inequality, which ultimately derives from Euler’s
formula V' — E + F = 2 and was used in [72] to give a very short proof of the
Szemerédi—Trotter theorem; see [54] for a more general version of this argument.
In [86], the polynomial cell decomposition was combined with the crossing num-
ber inequality to establish an optimal Szemerédi—Trotter theorem for planes in R*
(improving upon previous work in [77], [68]); roughly speaking, the idea is to first
apply the polynomial cell decomposition to reduce to studying incidences on a three-
dimensional hypersurface, then apply yet another polynomial cell decomposition to
reduce to a two-dimensional surface, at which point crossing number techniques may
be profitably employed. One new difficulty that arises in this case is one needs to con-
trol the algebraic geometry of varieties of codimension two or more, and in particular
need not be complete intersections.

Another classical application of Euler’s formula V — E 4+ F = 2 to incidence
geometry problems is in Melchior’s proof [50] of the famous Sylvester—Gallai the-
orem [71], [29], which asserts that given any finite set of points P in R2, not all
collinear, there exists at least one line which is ordinary in the sense that it meets
exactly two points from P. Recently in [32], this argument was combined with
the classical Cayley—Bacharach theorem from algebraic geometry, which asserts that
whenever nine points are formed from intersecting one triple of lines in the plane with
another, then any cubic curve that passes through eight of these points, necessarily
passes through the eighth. This theorem (which is proven by several applications of
Bezout’s theorem, Lemma 4.1) was used in [32], in conjunction with Euler’s formula
and several combinatorial arguments, to obtain a structure theorem for sets P of points
with few ordinary lines. While this argument is not directly related'* to the previous
usages of the polynomial method discussed above, it provides a further example of

13Note though that sum-product estimates over the reals are amenable to some algebraic methods; see [65].
14This argument however has some similarities to the proof of Theorem 1.9.
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the phenomenon that the combination of algebraic geometry and algebraic topology
can be a powerful set of tools to attack incidence geometry problems.

An intriguing hint of a deeper application of algebraic geometry in incidence
geometry is given by the Hirzebruch inequality [38]

Nz + N3 > |P|+ N5 +2Ng + 3N7 + -

for any finite set P of points in C? with Nipj = Nipj-1 = 0, where Ni is the
number of complex lines that meet exactly k points of P. The only known proof
of this inequality is via the Miyaoka—Yau inequality in differential geometry; for
comparison, the argument of Melchior [50] mentioned previously gives a superficially
similar inequality

Ny >3+ Ny +2N5s+3Ng+ -+,

but only for configurations in R? rather than C2. Hirzebruch’s inequality can be used
to settle some variants of the Sylvester—Gallai theorem; see [45]. While there has been
some progress in locating elementary substitutes of the Hirzebruch inequality (see
[67]), the precise role of this inequality (and of related results) in incidence geometry
remains unclear at present.

7. The polynomial method over the integers

In all previous sections, the polynomial method was used over a base field F. How-
ever, one can also execute the polynomial method over other commutative rings, and
in particular over the integers Z. Of course, one can embed the integers into fields
such as Q, R, or C, and so many of the basic tools used previously on such fields are
inherited by the integers. However, the integers also enjoy the basic but incredibly
useful integrality gap property: if x is an integer such that |[x| < 1, then x is neces-
sarily'” zero. In particular, if P € Z[x1,...,x,] and (x1,...,X,) € Z" is such that
|P(x1,...,xn)| < 1,then P(xy,...,x,) = 0. The integrality gap is a triviality, but
the becomes powerful when combined with other tools to bound the magnitude of
a polynomial P(xy,...,X,) at a given point (x1, ..., X,), for instance by using the
Cauchy integral formula.

In order to exploit such tools, it is not enough to abstractly know that a given
polynomial P € Z[xy, ..., x,] hasinteger coefficients; some bound on the magnitude
of these coefficients is required. As such, interpolation lemmas such as Lemma 1.4
often are not directly useful. However, there are variants of such lemmas which do
provide a bound on the coefficients; such results are often referred to as Siegel lemmas
[66]. Here is a typical example of a Siegel lemma:

15This property may be compared with the dichotomy in Lemma 1.6; if a polynomial P € F [x] of degree at
most d vanishes at more than d points, then it must vanish everywhere.
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Lemma 7.1 (Siegel lemma for polynomials). Let N,n > 1 and d > 0 be integers.
If E C {l,..., N}" has cardinality less than R := (d::"), then there exists a non-
zero polynomial P € Z[xy,..., x| of degree at most d such that E C Z(P)[Z].
Furthermore, we may ensure that all the coefficients of P have magnitude at most

4(RN4)FET,

Proof. See [79], Lemma 3.3. Instead of using linear algebra as in the proof of
Lemma 1.4, one uses instead the pigeonhole principle, considering all integer poly-
nomials of the given degree and (half) the magnitude, evaluating those polynomials
on FE, and subtracting two distinct polynomials that agree on E. O

Siegel’s lemma has often been employed in transcendence theory. Here is a typical
example (a special case of a celebrated theorem of Baker [4]):

Theorem 7.2 (Special case of Baker’s theorem). There exist absolute constants
C,c > O such that |37 — 24| > q%3pf0r all natural numbers p, q.

The details of the proof of Baker’s theorem, or even the special case given above,
are too technical to be given here, in large part due to the need to carefully select a
number of parameters; see, e.g., [61] for an exposition. Instead, we will sketch some
of the main ingredients used in the proof. The argument focuses on the vanishing
properties of certain polynomials P € Z[x, y] on finite sets of the form 'y :=
{(2*,3") : n € {1,..., N}}. By using a Siegel lemma, one can find a polynomial
P € Z[x, y] with controlled degree and coefficients which vanish to high order J
on one of these sets X . Using complex variable methods, exploiting the complex-
analytic nature of the curve {(2%, 3%) : z € C}, one can then extrapolate this vanishing
to show that P almost vanishes to nearly as high an order (e.g. J/2) on a larger version
'y of I'yy, in the sense that many derivatives of P are small on I'y/. If the parameters
are chosen correctly, these derivatives can be chosen to have magnitude less than 1,
and then the integrality gap then shows that P vanishes exactly to high order on I'y.
Iterating this argument, we conclude that P vanishes on I'y~ for a large value of N”;
expanding P out in terms of monomials, this implies a non-trivial linear dependence
between the vectors ((2“3b)")a+b5D forn = 1,...,N”, where D is the degree of
P; but by use of Vandermonde determinants (and the elementary fact that the integers
243b are all distinct), this leads to a contradiction if N is sufficiently large depending
on D.

More recently, the polynomial method over the integers has begun to be applied
outside the context of transcendence theory. In particular, we have the following
result by Walsh [79] showing that heavily sifted sets of integers are algebraic in some
sense:

Theorem 7.3. Let N,n > 1 be integers, let 0 < k < n and A,e > 0, and let
E C {1,..., N} be such that E occupies at most Ap* residue classes modulo p
for each prime p. Then there exists a polynomial P € Z[x1, ..., x| of degree at
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most C logn%fc N and coefficients of magnitude at most exp(C 10gn%{ N), such that
Z(P)[Z] contains at least (1—¢&)|E | elements of E. Here C is a quantity that depends
onlyonk, n, A, €.

This can be viewed as a partial converse to the Schwartz—Zippel lemma (Lem-
ma 1.2), since if £ C Z(P)[Z] for some polynomial P of degree at most d, then
Lemma 1.2 implies that E occupies at most dp” ! residue classes modulo p for each
prime p. See [79] for some other examples of sets E obeying the hypotheses of the
above theorem. This result can be viewed as an initial step in the nascent topic of
inverse sieve theory, in which one aims to classify those sets of integers (or sets of
congruence classes) for which standard sieve-theoretic bounds (e.g. the large sieve)
are nearly optimal, or (by taking contrapositives) to determine whether one can make
significant improvements to these sieve bounds. See [31] for some further discussion
of the inverse sieve problem.

We will not give a full proof of Theorem 7.3 here, but sketch the main ideas of
the proof. First, one selects a random subset S of E, which is significantly smaller
than E but has the property that for many primes p, S occupies most of the residue
classes modulo p that E does; the fact that £ only occupies Ap* such classes is used
to construct a fairly small set S with this property. Then one applies Lemma 7.1 to
locate a polynomial P € Z[xy, ..., x,] of controlled degree and coefficient size, such
that P vanishes on all of S. This implies that for most x € E, the value P(x) of P at
x is divisible by a large number of primes p; on the other hand, one can also establish
an upper bound on the value of | P(x)|. With the correct choice of parameters, one
can then exploit the integrality gap to force P(x) = 0, giving the claim.

8. Summation

In this section we discuss a variant of the polynomial method, based on the com-
putation of sums ) .4 P(x) € F of various polynomials P € F[xy,...,x,] and
sets A C F" in order to extract combinatorial consequences. Often one relies on the
trivial fact that the expression ) . 4 P(x) is unaffected by permutations of the set A.
We have already seen a summation method in the proof of the Nullstellensatz (The-
orem 5.2). Like the Nullstellensatz, summation methods work best when one uses
an explicit, and carefully chosen, polynomial P which is related to the combinatorial
object being studied, and for which various key coefficients can be easily computed.
The simplest summation of this type occurs when A4 is all of F”:

Lemma 8.1. Let F be a finite field, and let P € F[xy,...,X,] be a polyno-
mial that does not contain any monomial x’ll X with iy, ... iy > |F|] — L
Then Y .cpn P(x) = 0. In particular, we have ) .cpn P(x) = 0 whenever
P € F[xy,...,x,] has degree less than n(|F| — 1).
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Proof. By linearity it suffices to establish the claim when P is a monomial; by
factoring the n-dimensional sum into one-dimensional sums it suffices to establish
that )" .. x' = O wheneveri < |F|—1. Butifi < |F|— 1, we can find a non-zero
a € F suchthata’ # 1 (since the polynomial a > a’ — 1 has at most i zeros). Since
the dilation x — ax permutes F, we have

in = Z(ax)i =d in

x€F x€F xeF
and thus ) . x* = 0 as required. O
A classic application of the above lemma is the Chevalley—Warning theorem [15],
[82]:

Theorem 8.2 (Chevalley—Warning theorem). Let F be a finite field of characteristic
p, andlet Py, ..., Py € F[x1,..., x| be non-zero polynomials such that

deg(P1) + --- + deg(Pr) < n.

Then |Z(P1, ..., Py)[F]| is divisible by p. In particular, if there is at least one
solution to the system Py1(x) = --- = Pr(x) = 0in F", then there must be a further
solution.

Proof. Observe from Euler’s theorem that for x € F”, the polynomial P(x) :=
Hle(l—Pi (x)!FI=1) equals 1 whenx € Z(Py, ..., P¢)[F], and vanishes otherwise.
The claim then follows by applying Lemma 8.1 with this polynomial. O

A variant of the above argument gives the following result of Wan [80]:

Theorem 8.3. Let F be a finite field, let n be a positive integer, and let P € F|x]
have degree n. Then P(F) is either all of F, or has cardinality at most | F | — %

This bound is sharp; see [17].

Proof. We use an argument of Turnwald [78]. By subtracting a constant from P we
may assume P (0) = 0. Now consider the polynomial

0(x) =[] (x = P(a)).

acF

Clearly this polynomial has degree |F| with leading term x!F!, and has zero set
Z(Q)[F] = P(F). Now we look at the next few coefficients of Q below x!F!. For
any non-zero ¢t € F, we use the dilation a +— ta to observe that

0(x) = [[(x - P(ta)).

acF
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Observe that for any 0 < i < |F|, the x!F|= coefficient of [loer(x — P(ta))is a
polynomial in ¢ of degree at most ni; by the previous discussion, this polynomial is
constant on F \ {0}. If ni < |F|—1, we conclude from Lemma 1.1 (i) that this poly-
nomial is in fact constant in ¢; setting t = 0, we conclude that the x!FI=1 coefficient
of Q(x) vanishes whenever ni < |F| — 1. As a consequence the polynomial

0(x) == Q(x) — (xFl —x)

has degree at most | F| — |F|T_l As Z(Q)[F] = Z(Q)[F] = P(F), the claim now
follows from another application of Lemma 1.1 (i). O

Now we give an argument of Miiller [53] that involves summation on a proper
subset of F":

Proposition 8.4. Letr F be a finite field, let U C F\{0} be non-empty, and let
P € F|x] be a polynomial of degree n such that P(x + U) = P(x) + U for all
xeF.If 1 <n, then|U| > |F|—n.

Proof. We can of course assume n < | F'|. For any natural number w, the polynomial

X > Z P(x+u)" —(P(x)+u)?
uelU

is of degree at most wn and vanishes on F. Thus, if wn < |F|, we conclude from
Lemma 1.1 (i) that this polynomial vanishes geometrically. In particular, we have the
identity

Y Px+w? —PxY =) (P(x)+u)” — P(x)*. (11)

uelU uelU

From Vandermonde determinants, we know that ) _, ;; u” is non-zero for at least
one 1 <r < |U]|. Let r be the minimal positive integer with this property. If r < nw,
then we can compute that the x"*~" coefficient of the left-hand side of (11) is non-
zero, but that the right-hand side has degree at most nw — nr, a contradiction since
n > 1. We conclude that r > nw, and hence |U| > nw. Setting w to be the largest
integer such that wn < | F|, we obtain the claim. O

This proposition can be used to give a quick proof of a classic theorem of Burnside,
that any transitive permutation group of prime degree is either doubly transitive or
solvable; see [53]. The main idea is that if a transitive permutation group G on [,
is not doubly transitive, then after a relabeling one can create a proper subset U of
[, with the property that w(x + U) = n(x) + U forallx € [, and 7 € G. By
viewing 7 as a polynomial and using the above proposition, one can show that all
permutations 7 in G are affine, giving solvability.
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