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CMYV matrices, a matrix version of Baxter’s theorem,
scattering and de Branges spaces

Harry Dym and David P. Kimsey

Abstract. In this survey we establish bijective correspondences between the following classes of
objects: (1) f—1 and {Bn}02 . with B, € CP*P forn = —1,0,..., f—1 unitary, ||B;] < 1
for j > 0 and Z?‘;O Bl < oo; (2) A unitary matrix f—1 € CP*P and a spectral density A
belonging to the Wiener algebra WP*P with A(¢) > 0 for all ¢ on the unit circle T; (3) CMV
matrices based on a unitary matrix S_; € C?*P and a spectral density A that meets the constraints
in (2); (4) scattering matrices that belong to the Wiener algebra W?*P; (5) a class of solutions of
an associated matricial Nehari problem.

The bijective correspondence between summable sequences of contractions and positive spectral
densities in the Wiener algebra WP*P (i.e., between class (1) and class (2)) is known as Baxter’s
theorem and was established by Baxter when p = 1 and Geronimo when p > 1. The connections
between CMV matrices, the solutions of a related Nehari problem and an inverse scattering problem
seem to be new when p > 1. There is partial overlap of the connection between the considered
Nehari problem and a discrete analogue of an inverse scattering problem considered by Krein and
Melik-Adamjan. de Branges spaces of vector-valued polynomials are used to ease a number of
computations.
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1. Introduction

The main objective of this paper is to establish a bijective correspondence between:

(1) A class of unitary matrices 8_; € C?*? and p x p mvf’s (matrix-valued functions)
A =) {" A, on the unit circle T that are subject to the constraints:

n=—0oo

o

Y A < oo, (1.1)
A)>0 for L eT (1.2)

and

1 2w )
E/ A@e®)do = 1,. (1.3)
0
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(2) A class of infinite sequences {8, }5>, of p X p strict contractions (which are usually

called Schur parameters) that are subject to the constraint

D 1Ball < o0 (1.4)
n=0

and a unitary matrix f_; € CP*P,

(3) A class of matrices (commonly called CMV matrices) that play a key role in the
matrix representation of the operator of multiplication by ¢ in L7 (T, A).

(4) A class of scattering matrices (see Definition 10.3) that belong to the Wiener
algebra W#>?,

(5) A set of solutions of an associated matricial Nehari problem.

The constraint (1.1) means that A belongs to the Wiener algebra W?*?. For ease of
future reference, we shall say that A meets the constraint

(D1) if (1.1), (1.2) and (1.3) are in force.

Remark 1.1. It follows from a theorem of Gohberg and Krein (see, e.g., Corollary 10.4
in Chapter XXX of Gohberg, Goldberg and Kaashoek [23], applied to A(¢) and A(Z)),
that the first two conditions in (D1) hold if and only if

A) = 0(0)* Q) = RIOREQ)* for LeT (1.5)

where Q*! and R*! belong to the algebra WY™7 of mvf's F({) = Y no_ (" Fy
belonging to WP*? with F, = 0,x,, forn < 0.

The supplementary constraint
(D2) Q(0) > 0and R(0) >0

on the factors in (1.5) insures uniqueness.

The bijection between the classes described in (1) and (2) when p = 1 was established
by Baxter [5] and is usually referred to as Baxter’s theorem (see, e.g., Simon [31] and
Bingham [6, 7]). Simon [31] also refers to Stahl [33] and Nuttall and Singh [29] for
additional treatments of the “hard direction” of Baxter’s theorem. The extension of
Baxter’s theorem to the case p > 1 was first shown by Geronimo [21].

CMV matrices were introduced by Cantero, Moral and Veldzquez in [8] (see Si-
mon [32] for a good survey) when p = 1 and f_; = 1. In this case, the CMV matrix
based on a probability measure o on T is the unitary operator 2 : £, — {5 given by

A= V*MV,

where V : £, — L, (T, o) givenby Ve, = x, and M; denotes the operator of multiplica-
tionby ¢ in L»(T, 0), {e,}52, denotes the canonical orthonormal basis of £, and { x, }7>,
is the CMV basis which will defined in Section 7. Connections between the classes given
in (3), (4) and (5) when p = 1 are discussed by Golinskii, Kheifets, Peherstorfer and
Yuditskii [25]. They focus on the case of square summable Schur parameters.
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The bijection between scalar probability measures o on the unit circle T and square
summable sequences {8,}52,, where |8,| < 1 forn = 0,1,..., is classical and goes
back to Schur [30], Verblunsky [36] and Szegd [34]. Szegd showed that if the Lebesgue
decomposition of a scalar probability measure o is given by

do () = w(eig)g + dog(0)

and the density w with respect to the normalized Lebesgue measure satisfies the Szegd

condition
27

— In w(eie)dQ > —00, (1.6)
27 0

then the Schur parameters of o are square summable:

o0
> 1Bal? < oo (1.7)
n=0

Conversely, if {8,152, where |B8,| < 1 forn = 0,1, ..., is square summable, then there

exists exactly one probability measure o on T so that (1.6) holds and the Schur parameters
of o are given by {8,}52,.

There is also a correspondence between p x p probability measures o which sat-
isfy a natural analog of (1.6) and sequences of p x p strict contractions which satisfy
Y02 o llBall* < oo (see, e.g., Damanik, Pushnitski and Simon [9]). Orthogonal polyno-
mials and CMV matrices based on p x p probability measures are also studied in [9] (see
also Simon [32]).

At first glance, the focus on densities A in the Wiener algebra YWP>*? may seem overly
restrictive. The choice was made initially in order to minimize technical details. But an
even stronger case for this restriction is that it fits naturally with the setting of summable
Schur parameters, as confirmed by the equivalences between the classes noted earlier.

There is a vast literature on matrix and scalar orthogonal polynomials on the unit
circle (see, e.g., Simon [31], Damanik, Pushnitski and Simon [9], Geronimo [21,22] and
Delsarte, Genin and Kamp [10-13]). But going from one source to another is often difficult
because of widely different notation and normalizations on the orthogonal polynomials.
To minimize this difficulty, a serious attempt has been made to make this presentation
self-contained and easily accessible. To this end, three appendices are included with
expository material on special properties of scalar orthogonal polynomials, a proof of
Baxter’s inequality in the matrix case adapted from Findley [20] and a related Nehari
problem in the Wiener setting. We have tried to make the proofs as transparent as possible
by exploiting the theory of J-inner mvf’s and RKHS’s (reproducing kernel Hilbert spaces)
whenever possible.

Outline of the paper. Section 2 is devoted to matrix orthogonal polynomials; Section 3
to reverse matrix polynomials; Section 4 to the Schur algorithm; Section 5 to an auxiliary
pair of orthogonal matrix polynomials; Section 6 to RKHS’s; Section 7 to CMV matrices;
Section 8 to convergence results; Section 13 to recalling results on a related Nehari
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problem; Section 14 to explicit formulas for a rational case. The remaining sections are
devoted to establishing the equivalences between the classes (1)—(5) discussed earlier; the
table below exhibits the locations of the key results.

For the injective map from See
class (1) to class (2) Theorem 9.6
class (2) to class (1) Theorem 11.1
class (2) to class (3) Theorem 12.1
class (3) to class (4) Definition 10.3
class (4) to class (5) Theorem 16.1
class (5) to class (1) Theorem 15.1
class (5) to class (3) Corollary 15.3
Table 1.

Remark 1.2. The direct passage from class (2) to class (1) is not needed to establish the
equivalence between the classes (1)—(5). It is included because it depends upon a direct
construction and not upon a weak compactness of matrix-valued probability measures
argument which appears in the construction of a spectral measure when Y >, || B ||? < 0o
(see, e.g., Damanik, Pushnitski, and Simon [9]).

Notation.
D={AeC:|A| <1}, T={1eC:|A| =1} and ﬁ:{AeC:|)L|§1}.

CP*4 = matrices of size p x g with complex-valued entries.

A* denotes the Hermitian transpose of A € C#*4 and A™* = (A~1)* = (4*)"! when
appropriate.

A > Band A > B if A— B is positive semidefinite and positive definite, respectively, for
matrices A, B € CP*P,

. IP 0 2pX2p
AR

| - || denotes the operator norm.

2r
Fj = — e_”eF(e’e)dQ, j = 0,%1,..., denote the Fourier coefficients of the

Z eineF,, denotes the Fourier series of F.

n=—oo
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F*(A) = F(1/1)*.

LY™(T, A) = {measurable CP*? mvf’s F : | F||A < oo}, where
1

2
|FIA = 2—/ trace{ F(¢'%)* A(e'?) F (¢!9)1d0.
T Jo

_ 1 [~ ~ . ) ) -
(F,F)a = 2—/ trace{F (¢'?)* A(e'®)F(¢!®)}d# for F, F € LE*P(T, A).
T Jo
~ 1 [27 ~ . ) _
(F.F)y = 2_/ trace{F (¢'®)* F(¢!®)}df  for F,F € LE*P(T, I,,).
T Jo
_ 1 [2r_ ) ) -
[F,Fla = 2—/ F(e®)*A(e®)F(e'?)dh € CP*P for F,F € LE*P(T, A).
T Jo
~ 1 r ) ~
[F, Flq = 2—/ F(e'%)*F(e!®)d6 € CP*P  for F, F € LE*P(T, I,,).
T Jo

o0
H}™? = {holomorphic p x ¢ mvf’s F on D : Z | Full* < oo}

n=0

~1
(H?™?)+ = {holomorphic p x g mvf’s FonC \ D: Z I Fall? < oo}

n=—oo

RP*P = {p x p rational mvf’s}.

oo
WP ={px pmvfs FonT: [F[}, = Y  ||Fyl < oo}.
n=-—o0
WP = {F e WP*P : F,, = 0forn < 0}.
WP*P = {F € WP*P : F,, = 0 forn > 0}.
LY =LY HY = HY* and (H))' = (HI™ L.

p denotes the orthogonal projection of Lg (T, I,) onto Hzp andqg=1—p.

SP*P denotes the Schur class of p x p mvf’s, which are holomorphic on D and satisfy
ISA)|| < 1forall A € D.

SE™P denotes the set of inner mvf’s S € SP*P for which || S(¢)|| = 1 forall a.e. ¢ € T.

CP*P denotes the Carathéodory class of p x p mvf’s C which are holomorphic on ID and
satisfy C(A) + C(A)* > 0.
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2. Orthogonal matrix polynomials

If the density A satisfies (D1), then the block Toeplitz matrices

Ao - A,
T,[AlE | D | forn=0,1,...,
A, - Ag

based on the Fourier coefficients A; = 5-- JZT e7119 A(e'9)dB of A, are positive definite
forn =0, 1,.... Therefore, they are invertible,

Yo Yon

T,=TAD) =] : - : |>0 forn=0,1,...

v v

and

{yJ(_’]?}* = y]gf) for 0 < j, k <n.

Let
Es Q) =Y Ay tveey ' @1
j=0
n .
and E; () =Y MyWiylmy1/2, 2.2)
j=0

Theorem 2.1. If A satisfies (D1) and the matrix polynomials {Eni Yoo are defined by
(2.1) and (2.2), then:

1 27 . ) . ) 1 j =
o elmeE’-:l-(619)*A(610)e—1n9Er—li-(ele)de _)'r lf m n (2.3)
27 Jo Opxp if m #n.
1 2w . . X I ; —
o / Eo (@) A E (eao = )'r T m=n 2.4)
T Jo Opxp if m #n.
m)—3 ), m) ) (N —F e
o E,—:,_]A _ oo 32 Yom Ymm} f 2.5)
Opxp if m <n.
Proof. Tt V,(A) = Y Afyéf’;_j, then
U7 ko nyi6 0 o) L T e ()
7 ) eUA@E )V (e') dl = Z {Z/(; N [ Yn—j.0

J=0

n
— (n)
- Z Aj-kYn=j0
Jj=0
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n
= Z An—k—j V](',(;)
Jj=0

(n)

Yoo
= [An—k PPN A—k] S
ye
1 if k=
=) ! " (2.6)
Opxp it k=0,....,n—1
and hence
1 [ A , ; v it m=n
L / V(@) A Vi (e®) a0 = 700 @.7)
21 Jo Opxp if m #n.
Similarly, if W,(1) = Yj_o A/ 7/;('71)’ then
L (2 ko n,i6 0 N B T (n)
o —i i i _ o —i(k—j i
e AW, (1%)do = ;’{271/0 e Ae®)dog vy
n
= ZAk—JV/(Z)
j=0
Yor
= [k Ak-n] |
Y
1 if k=
A " (2.8)
Opxp it k=0,....n—1
and hence
1 27 . . . iy =
— | W@ AE )W (eag = T 2.9)
27 Jo Opxp if m #n.

Formulas (2.3) and (2.4) follow from (2.7) and (2.9), respectively, and the identifica-
tions A E;F(1/2)* = (y&)~/2V,(A) and E; (A) = W (W) ()" 2 forn = 0,1,....
Statement (iii) is an easy consequence of (2.8). O

The “orthonormality” exhibited in Theorem 2.1 leads easily to the following recursion
(see, e.g., formulas (13.12) and (13.13) in [15] for help if need be):

[E,piV) Ef W] =[AE, Q) EFQ)] Anga, (2.10)
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where
_ +1 +1),—
Apps = {yoh=1/2 0 Ip o Sty
n+1 = _ +1 +1 _
0 {rso V2] Ly ! I
(n+1)
X |: 7/nr—li-l,n+1}1/2 0 :|
+1
0 oo Y2
_ +1 - +1 +1)—
B B Y L i T 17 A el B
- — +1 +1 — — +1 . .
ey 2y gyt 12 {yon 12y riny2

Remark 2.2. The diagonal entries in the recursion (4.9) in [19] are incorrect and should
be replaced by (2.10).

3. Reverse matrix polynomials

A number of useful formulas are obtained almost for free from the fact that A meets the
conditions (D1) and (D2) if and only if the mvf

A@Q) =AY

meets the conditions (D1) and (D2) and the observation that

Ao - A,
Tn[z] = = ZyTu[AlZy > 0,
Ay - Ao
where
0 I,
Zy, = isofsize(n + 1)p x (n + 1) p.
I, 0
Consequently,
v
o= (LAD = ZyTuZo= | ¢+ - 1 |,
Yo Y00
ie.,
P =y e for 0=k <n. (3.1)
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Correspondingly,
Ef() = Zxkyk'g’{y("’}-”z
_ Zkk ’Sn)kn (r’tl)}—l/2
= Zx" iy I = A ES(1/0) (3.2)
and

n

E; ) =Y 250

k=0

n
= Y o)™
n
= > ARy sV = AEF(1/). (33)

Moreover, if
A =010 = RORQ)*
with
O e WP RE e WP*P . 0(0) »0, and R(0) > 0,
then
AQ) =0 H*0C™H =RCHREC™H*.

Thus, by the uniqueness of factorizations with factors subject to the stated conditions, it
follows that

O(¢™M* =R and RE™) =0 for (e (34

4. The Schur algorithm

In Theorem 4.2 below we shall present an algorithm for generating a sequence of strict
contractions By, f1, ... in CP*? from a density A that meets the constraint (D1). This
treatment is partially adapted from [14]. We begin, however, with some notation and a
preliminary lemma.
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Let

and, for 8 € CP*? with ||B| < 1, let

_[1, B[U, =8B 0

H(ﬂ) - [ﬁ{: IP:| |: ? 0 (]p _'B*ﬂ)—l/z] .
It is readily checked that
HPB) jpH(B) = H(B)jpH(B)" = jp.
H@)=HPB) <= a=p for |«|.|Bl <1,
H(B)™ = H(-p),
and
detH(B) =1,

since

det| 12 Pl = qer, — BB*) = dei(, — B*B).
g Iy

Lemma 4.1. If F,, and G, belong to Wﬁxl’ and

[FaD) GaM)] [58;*} ~0 for AeD,
then:
(i) Fn(A) is invertible for every point A € D.
(i) F, ' e Wi .
(iii) The mvf
Sa(A) = =F, (W)~ Gp(R)

294
belongs to SP*P N W7,
(iv) The matrix B, = S, (0) is a strict contraction, i.e., || B, < 1.

(v) The mvf’s F,+1 and G, 41 that are defined by the formula

1

[Far1(V)  Gup1(V)] = N

both belong to fol’ , and

Frur1(A)*

[Fat1(A)  Gur1(V)] Jjp [Gn+1(l)*} >0 for A eD.

[Fa(l)  Ga()] H(By) [Aé” 1(;

11

“.1)

4.2)
(4.3)
(4.4)

(4.5)

(4.6)

4.7

(4.8)
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Proof. Assertions (i)—(iv) are easy consequences of the inequality
Fy(MFa(Q)* = Gn(M)Gu(X)" = 0,

which follows from (4.6).
In view of (4.7),

Fus1(R) = (Fa(V) + Go(M) By — Bu )12
= F,(M (I + Fa(D) ' GBIy — Bufl) ™12 (4.9)

which is clearly invertible in D and belongs to W_pr , whereas

Fu(M)Bn + Gn(4)
A

@Hm={ }w—ﬁmﬂ” (4.10)

is holomorphic in D since F,(0)Bn + Gn(0) = 0,x, and hence belongs to W7,
Moreover,

[Frn® Grn@lis | 1O = [0 Ga0) i 1)
>0 for ¢ eT.

Therefore, the Poisson formula

_ 1 (2™ 1—|AP2 . .
PG G0 = 5 [ (s ) Fren (e G (et

for A € D is applicable and yields the bound

A -1 2 1 27 1— |A|2 i6\—1 i do
1) G D] = , \e? —ap [ Fnt1(e”) ™ Gry1(e™)[1dO.
1 2r 1— 2
= [ Rl L 7
2 0 |€l€ —A|2
=1.
Thus, (4.8) holds. ]

Theorem 4.2. If a density A satisfies (D1) and C(A\) = I, + 2y 72 | A" Ay, then:

(i) The mvf’s
FoA)=CA)+1, and Go(A)=CQA)—1,

both belong to fol’ and

Fo()Fo(M)* — Go(M)Go(L)* = 2{C(A) + C(W)*} = 0, for A € D.
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(ii) There exists a sequence of strict contractions {B,}5> given by
Bn =—F,(0)7"'G,(0) for n=0,1,..., 4.11)

where

[Fra®) 0] = 3 150 G a@n Y )] sorn=o

Proof. The first assertion in Statement (i) is self-evident. The second assertion in State-
ment (i) follows by noting that

. 1 (2™ 1—]|7A)? ” _
C)+Cy* / LA A0 i 4] <1
0

> =127 |eif — 1|2
AL) if [A]=1.
Statement (ii) follows from Lemma 4.1 and Statement (i). O]

Definition 4.3. The sequence of strict contractions {8, }52, in Theorem 4.2 will be called
the Schur parameters corresponding to the density A.

Remark 4.4. In the setting of Theorem 4.2, By = 0,xp since Go(0) = 0pxp.

Corollary 4.5. If {B,}°2, are the Schur parameters corresponding to a density A which
satisfies (D1) and

S,(\) =—F,(M)7'G,(A) for n=0,1,..., (4.12)
then
i) = (1 = Bu 201, = Sy~ 2Pl a1, a2
and
ot = Uy = Bo) i =P 1, = g
forn=0,1,....
Proof. This is immediate from (4.9), (4.10) and (4.12). 0

5. Orthogonal matrix polynomials generated by
a sequence of strict contractions

Inversion in Wiener algebras. It is well known that:
(1) If £ e WP then =1 € W1 if and only if f(¢) # 0 for ¢ € T.
() If f € WL then f~! € W11 if and only if f(1) # 0 for A € D.
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(3) If £ e WX then £~ € W' if and only if f(1) #OforA € C \ D,
and
lim f(A) # 0.
A—>00

The first assertion is a theorem of Wiener; for a proof based on Gelfand theory, see,
e.g., Theorem 1.10.6 in Arveson [4]. Item (2) is given as a exercise on p. 30 of [4] (see,
also, Theorem W, on p. 176 of Krein [27] for a continuous analog). Item (3) is an easy
consequence of (2), since

fewl «— f# eyl
and
reD < 1/1 e (C \ D)U {oo}.

Items (1)—(3) carry over easily to the matrix case, since a mvf F is invertible at A if and
only if det F(1) # 0, and in that case

1 GW
F@) " detF(L)’

where G = (g_,-k)j.’kzl, and

gjk(X) = (=1)7 T x kj minor of F(A).

Theorem 5.1. The following statements hold:
(1) If F e WP*P, F~1 € WP*P if and only if det F(¢) # 0 for ¢ € T.
() If F € WI™P, then F~' € W2 if and only if det F (L) # 0 for A € D.

(3) If F € WP*P, then F~' € WP*? ifand only ifdet F(A) # O for A € C \ D,
and
Alim det F(A) # 0.

Given B, ..., By € CP*P with ||Br|| < 1 fork =0,...,n,let

9 = H(By) [Aél’ IO} for k =0.....n, 5.1)
p
Or(A) = o(A)--- (L) for k =0,...,n (5.2)
and
[AFZ(A) FrM)]=[I, I1,]0k() for k=0,....n. (5.3)

A recursion relation for the sequences of mvf’s {F, k+ Wi—o and {F,~}7_ o follows readily
from (5.2) and is given by

[Fr ) FfW]=[rF_,) FZ )] H(Bre) (54

fork=1,...,n.
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It will be convenient to write

o) 65 ™
Or(A) = [ 1(,1) ) 1(,3) ) for k=0,....n (5.5)
57N 655
and let
Xi = (I, — BoB) 2Ty — BB V2 for k=0,...,n (5.6)
and Ye = (Ip— BeBo) V2 (I, — Bipr) Y2 for k=0,...,n. (5.7)

Theorem 5.2. If Bo. ..., Bn € CP*P with By = Opxp and ||Bi|| < 1 fork =0,...,n,
then:

(1) Ok (1) is a matrix polynomial of degree k + 1.

(i)) ©x(0) =[5, ]

(i) A 1Or() — [k 8] as A — oo

(iv) Or(A)*jpOr(A) X jp if 0 < |A| < 1 with equality when |A| = 1.

(V) Or(R)jpOr(A)* = j, if 0 < |A| < 1 with equality when |A| = 1.
(vi) Or(A)*jpOr(A) = jp if 1 < |A| < oo with equality when |A| = 1.
(vi) O (L) jpOr(A)* = jp if 1 < |A| < oo with equality when |A| = 1.
(viii) det®g (1) = A*k+Dr,

(ix) (B)*! e woxr,

x) @ F1o8)E e wexe,

Proof. Statements (i)—(iii) are clear from (5.2). Statement (iv) and (v) are verified by
using (4.2) to obtain

* A1
W) Jp ) = |7

0
L 11’

a1, o1, [AaI, o©
o 1,]77| 0 1,

| #ori o'y )]

_ [P, 0
o -1,
<j, if AeD. (5.8)

and B
() jpor(M)* < j, for A €D,

respectively.
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The inequality
Q) jpx(A) = jp, for 1 <Al < o0 (5.9)

can be verified in much the same way as (5.8). Statements (vi) and (vii) follow directly
from (5.9) and

D)y M) = jp for 1< 2] < oo,

respectively.
In view of (4.5),
det 9 (A) = det H(Bp)A? = AP

and (viii) follows easily from (5.2).
To verify Statement (ix), note that the 22 block of the inequality in Statement (iv)
implies that

o000 = 1, + 06PN 08 (1) for 1 eD (5.10)

and hence 9(];) is invertible for A € D. Therefore, in view of item (2) of Theorem 5.1,

(Q(k)) ! Wpo The conclusion (G(k)) € WPXP is immediate from (i).
To verify (x) note that the 11 block of the mequahty in Statement (vi) is

60 0% ) - 0P ) 6P M) =1, for [A] =1
and hence 91(1;) (1) is invertible for every point |A| > 1. In view of item (iii),

Jim. det A %108 () = det X # 0.

Thus, in view of item (3) of Theorem 5.1, (g—k—le"‘)) 1L ¢ WpPXP_ The conclusion
({'_k_IGflf)) € WP*? is immediate from (i). O

In view of item (iv) of Theorem 5.2, the mvf ® generated by B, ..., B, is a j,-inner
mvf for k = 0,...,n. The equality on T extends to

OF (V) jpOr(A) = jp = Or(1)j,OF(A) for AeC (5.11)
andk =0,...,n

Linear fractional transformations.

Theorem 5.3. If & € SP*? and By, ..., Pr € CP*? with ||Br|| < 1 fork =0,...,n,
then 92(?8 + Qg) is invertible on D and

def

Te, [6] £ (0X6 + 680 6 4 o))~

maps SP*P into SP*? fork =0, ...,n.
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Proof. We will first show that 92(]?8 + 92(];) is invertible. The 22 block of the inequality
in item (v) of Theorem 5.2 implies that

050 ey — oD )P ) < -1, for 1 eD.
Thus, 92(];) )t Q(k) (A) is a strict contraction for every A € D and hence
1620169 e <1 for A eD.

Consequently, 920;)8 + 92(15) is invertible for every A € D.

Moreover, since 91.(;() are polynomials for i, j = 1,2, we have that

O5P€ +05)™ and (0P€ +65)
are holomorphic on D, and thus T, [€] is holomorphic on D.

It remains to check that I, — Tg, [6]* Te, [€] = 0. But this follows from item (iv) of
Theorem 5.2:

1, - To, (6" To [€] = (66 + 6% [&* 1] @;‘;(—jp)@km
< (6Dg 4 o)1
SR R G AT ] bl [CAER R
since

[e* Ip](—jp)[f]=lp—8*8§0 on D. 0
p

Parametrization of ®f. The mvf’s O (1), k = 0,...,n, defined by (5.1) and (5.3)
are completely determined by the given sequence By, ..., 8, € CP*P with ||| < 1 for
k =0,...,n, the inequality (5.10) implies that

ok & To, [0pxp] = (0E)OE) for k =0.....n
is strictly contractive on D and hence that the mvf
Ck =(II,,—c7k)(Ip+crk)71 for k =0,...,n (5.12)
belongs to the Carathéodory class C”*? and

Up +C)F e WP for k=0,...,n

Moreover, in view of Theorem 5.2, G(k) (0) = Opxp. Therefore, A~ 19}?(/\) is a matrix
polynomial of degree at most k.
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Lemma 5.4. If{F ki Vi—o are the matrix polynomials defined by (5.3) in terms of the strict

contractions By, . .., Bn € CP*?, then

Fr) =20, + Gy 'R0 for A eD,
Fr() =2, +Cf)y 'A% () for A eC\ D,
R

Oy ) = (o8 (x)okm

and
out) =5 |17 TGOS e Ck@)}F,j(z)]
2 Ly = GONFQ) Ty + GOIF @)
for¢ eT.

Proof. The proof is broken into steps.
1. Verification of (5.13) and (5.15). In view of (5.3),

Fr() =650 + 650
= {ok(V) + I, }035) (M)
=21, + M} '6E 1) for 2 eD.
Thus (5.13) holds. To verify (5.15), use (5.13) to write

e(k)(k) — e(k)(k)e(k)(k) le(k)(k)
= oc ()55’ (3)

— O'k(/x) %IP + Ck(k)

> } F(A) for A €D.

2. Verification of (5.14) and (5.16). In view of (5.11),

@0 )1 0% ) = 6P )8 (1)1 for A eC \ D.

Therefore, in view of (5.3),

AR D) = 60% ) + 600
= {1, + 057 Mo )16 ()
= {I, + (055 W O oY )
=241, +Cl) 0P for AeC\ D.

% Fk+(/\) for A eD,

(5.13)
(5.14)

(5.15)

(5.16)

(5.17)
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Thus, (5.14) holds. To verify (5.16), use (5.11) to obtain
011 (M)B12(A) = 63, (2)622(1)
and hence
7)) = O (s e !

= 0}, (M)012 (V)05 (1) !
= 6, (Mor(R)

—Grey e

> } for A e C\ D.

3. Verification of (5.17). In view of (5.5), Assertion (5.17) follows directly from (5.13)—
(5.16). O

Theorem 5.5. If Bo. ..., Bn € CP*P with Bo = Opxp and ||Br|| < 1 fork =1,...,n,
then the p x p mvf’s C, F;” and Fk+,fork =0,...,n, enjoy the following properties:

(1) F k+ is a matrix polynomial of degree at most k and F, k+ (0) = Yg is invertible.

(2) Fy is a matrix polynomial of degree k and
lim AFF7 (L) = X
A—00

3) (FH* e wp ?.

@) (TFFO)E e wprep,

() F () | SOEGO N Fo) = 1, for¢ € T,

©) F (@ | SO O Fr @) = 1, for ¢ € T.

Proof. The proof is divided into steps.

1. Verification of (1) and (2). Since
[AFZA) FrW)]=[I, I,]0k() (5.18)
Al, O
=[I, 1)@ MHBO|" " (5.19)
0o I,
and Ok_1(A) is a matrix polynomial of degree at most k, it is clear that F;_ (1) and F, k+ L)
are matrix polynomials of degree at most k and F; k+ (0) is invertible. The assertions

FF(0) = Y and A™*F7 (1) — Xi as A — oo follow from items (i) and (iii) in
Theorem 5.2, respectively.
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2. Verification of (3) and (4). The assertions F;t € WY™? and {8 F,~ € WP*P are
automatic since F k+ is a matrix polynomial and F}~ is a matrix polynomial of degree k.
In view of (5.13) and item (ix) in Theorem 5.2, F, k+ (A) is invertible for A € D. Thus, it
follows from item (2) of Theorem 5.1 that (F k+)_1 € Wﬁxl’ . Similarly, in view of (5.14)
and item (x) of Theorem 5.2, { K F, . is invertible for all C \ D. Thus, it follows from
item (3) of Theorem 5.1 that (% Fo) e wpxp,

3. Verification of (5) and (6). Both formulas are straightforward computations based on
the formula given in item (iv) in Theorem 5.2 when |A| = 1. Thus, for example, the 22
block yields the identity

050 05 (@) — 035 055 () =1, for LT,
which implies that

Up — Ce ()" HIp — Ce(O)} —Ip + Cr ()" HIp + Ck (D)}
4

Fror ) B @ =1,

(5.20)
for ¢ € T. Thus, (6) follows directly since

Up — Cr(O) HIp — Cr(O)} —{Tp + Ce(O)*HIp + Cr (D)} = —2{Ci(§) + C ()™}
for ¢ € T. The verification of (5) is similar, but is based on the formula
Ok(0)*jpOk(§) = jp for {eT. O

Theorem 5.6. If {B,}5>, are the Schur parameters based on a density A which satis-
fies (D1), then:

(1) 751 {C(A) — C,(1)} is a holomorphic mvf on D.

@) L [27 RO A(E0)d = L [27 ok {M} do if [k| < n.

2 JO
. . . 0 if k#n
2 —(,10\* 0N —(,i0 _ x
B) = [T Fr(e®)*A(e®)F,y (€'%)db = Ij r Gk
. . . . . « if
(4) ﬁ 02n{e—zk9Fk+(ett9)}*A(ett9){e—1n9Fn+(et(9)}d0 _ Op p 1 k 7’é n
I, if kK =n.

Proof. The proof is divided into steps.

1. Verification of (1). By definition,
[CA)+1p CA)—=1p]0n(R) = A" [Far1(V)  Gur1(A)]
and by direct computation,

[ChV) +1p Ca(M) = 1] Ox(A) = [{Ca(A) + CIAF, (1) 0].
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Thus, if we subtract the second formula from the first we get
[CA)—Cr(d) CA)—Cu(W)]O(A) =[x A"T1Grp1(D)].
Therefore,

{CA) -GV} [AF, (V) Ff)] ={CR) - CaW)} [, 1,]0.()
=[x A"G,(W)].

Thus,
{C) — G, (M) = A" G (D)

and, upon calculating *,
{C(A) = Cu(MIAF, (M) = A"TEE (W) — {Ca(A) + CEHAIAFE, (A).

Since ((92(;))jEl e WI*P (I, + Cp)*! e WE*P and F, = 2(1, + c,,)—leg’;), itis clear
that (F,")*! € W2™? and hence

C—C, "W,

Thus, (1) holds.

2. Verification of (2). In view of (1),

1 [ . ) )
—/ k0L (e?) — Cu(e®)}d = 0px, if k> —n
27T 0

and

1 2m ) .
2—/ e KOLC () — Cu(e)*}dO = 0, if k <n.
T Jo

Therefore, both formulas are in force if |k| < n and hence

1 2 ) ) 1 2w .
_/ N _/ ok
0 21 Jo

2 b

2

C(e'?) + C(e'?)* } 6

L7 ks %c,,(e“’) + Cul(e'®)
0

— }d@ if |k| <n.
2 2
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3. Verification of (3). In view of items (4) and (5) of Theorem 5.5,

1 2 ) . .
A F (€9 A’ F, (e'%)db
1 27 . C (ei9)+c (eie)* .
=5 | o i M 5 " F(e'%)d6 (5.21)
1 2w X .
— 2_ ka(ezé‘)*an(ezé')f*de
T Jo
1 2w . . ; i
_ E et(n—k)t?{e—tkﬁFk—(eze)}*{e—lnﬂFn—(etﬂ)}—*dg
0
Opxp if k=0.....n—1
)1, ifk=n.

This proves (3) for k < n. If k > n, then (3) follows from
[Fy Fela = {[F Fyla}™ = 0pxp.

4. Verification of (4). In view of items (3) and (6) of Theorem 5.5,

1 2 . . . )
2_ {e—lk9Fk+(etﬂ)}*A(ele){e—ln9Fn-i-(elQ)}dO
T Jo
Cu(e'®) + Cu(e'®)*
2

1 2 ik6 i0
=5 | e R ey

§ €_im9Fn+(€i0)d9

2
_ L 14 ei(k_”)ng“L(eie)*Fn+(ei9)_*d0
2 0
Opwp i k=0, n—1
S, ifk=n.

This proves (4) for 0 < k < n. The proof of (4) for k > n follows from
ETESCEE s = (I F T EAY = 0pxp. O

Lemma 5.7. If {B,},2, are the Schur parameters based on a density A which satis-
fies (D1), then
F Q) FF W) — (AF, Q)}AF, (W)} = 0 (5:22)

forallA € Dandn = 0,1, ... with equality when A € T.

Proof. Assertion (5.22) follows from item (iv) in Theorem 5.2, since

[AF; (V) FFM)]=[1, 1,]0.(). O
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In the following theorem we will make use of the notation

1 iftm=n
8mn=

0 if m #n.

Theorem 5.8. Suppose A is a density which satisfies (D1) and { P 150 o are sequences
of p x p matrix polynomials which satisfy the following conditions:

(i) P, isofdegreen forn =0,1,....
(ii) P, (0)is invertible forn = 0,1,....
(i) 5= /57 Py (e'9)*Ae'®) Py (e10)d0 = Spunl .

(iv) o [27 MO P (e0)* A(e'®)e 0 PF(e!)dO = Spunlp.

Then forn = 0,1, ... there exist p X p unitary matrices My and N, so that
PN = EF(A)M, (5.23)
and P (L) = E, (A)N,. (5.24)

Proof. Since P, is a matrix polynomial of degree n and the matrix coefficient of A" is
invertible and E7;" is a matrix polynomial of degree j and the matrix coefficient of AJ s
invertible, it is readily checked that

Pr() =) Ej(W)Wn.

Jj=0

where
L 0 0 0
_ * _
Win = 7 | E; (e'"")*A(e'”) P, (e'7)db

= Opxp
forj =0,...,n—1. Thus,
Moreover, W, is unitary since

1 2w

Ip=5=| PrE®) AP (e)do
2 0

2n
=W {/ E, (e)* A E, (¢!9)dO} Wy,
0
=W, Wan.
Thus, (5.26) holds with M,, = W,,,, forn = 0,1, .... The formula (5.25) is established

in much the same way from the formula

MPH Q) = Y M (ENDZn. O

J=0
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Corollary 5.9. If{E} ﬂt} 2 o are the matrix polynomials that are defined by (2.1) and (2.2)
in terms of the Fourier coefficients of a density A that meets the constraint (D1) and
{FnjE 150 o are the matrix polynomials defined by (5.3) in terms of the Schur parameters
of A, then there exist two sequences of unitary matrices {Uy,}5> o and {V,}°2 , in CP*P
such that

Ff() =EFMU, for n=0,1,... (5.25)

and F (M) =E, M)V, forn=0,1,.... (5.26)
Moreover,

(Ip = ByBo) ™2 (I — ByBn) ™2 = (y5s 312U (5.27)

and (Ip = BoB) 2 (Ip = BuB) /% = Ly} 2V, (5.28)

Proof. In view of items (1) and (2) in Theorem 5.5 and items (3) and (4) in Theorem 5.6,
the matrix polynomials {F; jE} 2 o satisfy the hypotheses of Theorem 5.8. Thus, asser-
tions (5.25) and (5.26) hold.

Item (ii) of Theorem 4.2 implies that

FF(0) = 052(0) = (I, — BEBo) ™21, — B Ba) /2.

Formula (5.25) implies that F,F (0) = E,[(0)U, = {yé")}l/zUn, whence (5.27) holds.
Assertion (5.28) is proved in much the same way. O

Theorem 5.10. Let A and A be densities which satisfy (D1). If {Bn}5>, and {ﬁ,,
are the Schur parameters of A and A, respectively, and 8, = ,3,, forn =0,1,.., then

A =AE@) for LeT.

Proof. Let {F£}%, and {Fi} denote the sequences of matrix polynomials given

by (5.2) corresponding to the Schur parameters of A and A, respectlvely If g, = ,3,, for
n=0,1,...and ®, and ©, are defined by (5.2) and correspond to {8, }52 ; and {ﬂn 1o o0
respectively, then

O, =@n for n =0,1,....

In view of the recursion (5.4),

Ffr=Fy and F; =F, forn=0.1,....

n

Consequently, _
C,=C, forn=0,1,...,

where C, and C, are the mvf’s defined by (5.12) which correspond to {f,}°2, and
{ ﬂn 22 o> Tespectively. In view of item (2) in Theorem 5.6, we have that

A,,:Z,, for n =0,1,...

and hence _
A(C) =A) for ¢ eT. O



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 25
Theorem 5.11. If U, and V,, are as in (5.25) and (5.26), respectively, then
Busr = VI oty o 1 2 U
= Ve e T e e Y2 Un, (529)
Iy = BraBur)? = Uk dyge ™y 2 (v50 3/ Un

= Uy 2yt =120, 4, (5.30)
and (I, — Bur1Brp) " = Vi v 2 2,
= VI 2 ) Y (5.31)

Proof. In view of formulas (5.25) and (5.26), the recursion
[Frn) EL Q] =[AF Q) FFW]H(Bar)

can be rewritten as

_ _ V, 0 Vv 0
[Era®) Bl =RErw s[5 ) aean [ 0 ]
n
Thus, in view of (2.10),
—1/2
v ool v o
G =5 ]
:3n+1 0 Un Oyég)
(n+1) {p+1) )/,Y_ﬁ’lg{yégﬂ)}_l
n n —
Yont1n+1,n+1) ! Ip
(n+1) 1/2
% yn’ji-l,n+1 0 Vat1 0 ) (5.32)
0 yontn 0 Unn

Consequently, both formulas in (5.30) and (5.31) drop out easily from the 11 and 22 blocks
of (5.32). Both formulas in (5.29) can be obtained from the 12 and 21 blocks of (5.32)
with the help of (5.30) and (5.31). O

6. The reproducing kernel Hilbert space B(§,)

Let {F ki }1 —o be the matrix polynomials defined by (5.3) in terms of the strict contractions
Bo,...,Bn € CP*P_ In view of Lemma 5.7, item (3) of Theorem 5.5 and (4.6) the p x p
blocks F, (1) and F,}(}) of the p x 2p mvf

Fa(V) = [AF; () FF ()]

meet the conditions _
det F,F(A) #0 for AeD (6.1)
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and
(FH)'F,; e SP*P, (6.2)

Thus, in the terminology of [3] adapted to D, §, (1) is a de Branges matrix and the space
B(Fn) = {px1wfs f: (F,)™' f € HY and ((F,) 7' f € (HY)*} (6.3)

endowed with the inner product

27
e D 5o [ e@EHEEHE T e 64)

is a de Branges space.

Lemma 6.1. If{F ki Vi —o are the matrix polynomials defined by (5.3) in terms of the strict
contractions By, ..., Bn € CP*P, then

f€B@n) < feH] """ H. (6.5)
Proof. By Theorem 5.5, (F,£)*! € W7 and ({™" F,7)*! € WP*P_ Therefore,
(F,))™' f e HY ifand only if f € HY

and
(CF,)™" e (HP)Y ifand only if "7 f € (HP)* .

Thus, (6.5) holds. O

It will be convenient to let p, (1) = 1 — Aw. This function plays an important role
because

IP
Po(A)

This statement means that

is a RK (reproducing kernel) for H? if |o| < 1.

1 u
Lyu=—eH!
Pow Pw

and

u

(£25) =v @

Po st
for every choice of u € CP,w € Dand f € Hf . This can be shown by Cauchy’s formula.
Analogously,

Ip
— is a RK for (H?)1 if |w| > 1.
P (R) 2
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Theorem 6.2. If {Fki}zzo are the matrix polynomials defined by (5.3) in terms of the
strict contractions By, . .., Bn € CP*P, then B(F,) is a RKHS with RK

) S (1) B (@)
1) = o Jponl®)
Ko® pu (%)
+ + * _ Voo F— - *
Z{Ewmawnpg$;m&«w Jm
DY OV F(©) — (E) (O FF @) + EEF©F(©)*) if ¢ €T,
(6.6)

where { = w = A.
Proof. There are two facts to verify for every choice of w € C,u € C? and f € B(F»):
Klu € B(F») 6.7)
and
([ KGu)BE,) =u" f(0). (6.8)
The justification is broken into steps:

1. Verification of (6.7). Since KI(A) = F,} (1) F,"(0)*, the assertion is clear if @ = 0.
The proof for w # 0 rests on the identity

FFOF, Q)" = F, (OF, (©) for teT, (6.9)
which extends to
FFQFED Q) = Fy WE) () for 2 #0, (6.10)
or, equivalently to
Ff(1/@)F,f (0)* = F; (1/@)F; (@)* for o #0. (6.11)
Thus,
K'(\) = {F, ) — K (1/@)}F, (@) + {F, (1/®) — Ao F,7 (M)} Fy (0)*

P (A)

is a matrix polynomial of degree at most 7 if @ # 0.

2. Verification of (6.8) when |w| < 1. In view of (6.4),
(/Ko = (B L(FD T Kyu)a

=gy p e, G O B ),
(2] Pw st
= £ O {em 1 L )

The second inner product is equal to zero since u/ p,, € HY ifw € Dand ((F,)7! f € (HP)L.



28 H. Dym and D. P. Kimsey

This completes the proof, since
F (@)

(0)

(D7) =t @) @) f@
=u" f(o),
because I,/ p,, is a RK for Hy if w € D.

3. Verification of (6.8) when |w| > 1. If |w| > 1 and u € C?, then

(£ O —o

w

Thus,

U Kihan = ~(GF 2 Fy (@)'n)
=u" f(w),
since —1,/pg is a RK for (HY)L if |o| > 1.

st

4. Verification of (6.8) when |w| = 1. Given w € T, we can construct a sequence
{or}rey, With |og| > 1 fork = 0,1,...and

lim wy = w.
ktoo

If u € C?, then using Step 3 we have

u* flor) = (f. ngu)g(gn) for k=0,1,....

Thus, as f is a vector polynomial,

u* flw) = ]}leélo u* fwg) = klinglo(ﬁ Ko ) 8Ga) = (f Kp) B O

Theorem 6.3. If{F:'E}oo o and {Ei}°° o are the matrix polynomials defined by (5.3) in
terms of the Schur parameters {B}5>, and the Fourier coefficients, respectively, of a
density A which satisfies (D1) and (D2) then:

(1) The sequence of spaces {B(Fn)}5>, is ordered by inclusion, i.e.,
BEn) € BGnt1) € LT, A) for n=0,1,... (6.12)

and the inclusions are isometries.
(2) The orthogonal projection Pyz,) of py' Q™1 Q(w)*u onto B(Fy,) is
07 '0(w)*
PB(Sn)p—u = KZ)”

(0)

forn =0,1,...and w € D.
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(3) For every choice of w € D and u € C?

0 '0(w)™* " o 0(@) ' O(w)™*
P B

2
def
= —K"u

Kn -

A Po (@)
@) kn > 0asn 1 oo.

Proof. The proof is broken into steps.

29

u—u*Kl(w)u. (6.13)

1. Verification of (1). Assertion (1) is clear from item (2) of Theorem 5.6 and the
characterization of B(g,) as a p x 1 vector polynomials of degree at most n with inner

product
1 2 10 * |0 1
(fodsn = 57 [ 6@ AE) f(e)ae.

2. Verification of (2). If o, € Dand u,v € C?, then

000 ) (10, )
Pw Pw A
= <Q(a)) u,Qng>

Pao
Qo)™ >
u

(0)

v* (Pmn)

st

= <Qng,
= {u* Q@) Q(@)KL(w)v}" = v* KD (a)u.

Since both sides are polynomials the equality is valid for every point & € C.

3. Verification of (3). fu e C’,w €D f = p, ' 071 Q(w) *u and P o Pg(z,), then,

since P is an orthogonal projection,

—1 —% 2
H £ aw f(“’) w—Kgu| =10 =PYR= IR IPS IR
w00
1 = po (@) @ '
4. Verification of (4). Let
-1 —%
0u = 20 0@

Po(A)

If w € Dand u € C?, then

Qu(Qu =) /& where ) &l < oo.

j=0 j=0
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Let f,(§) = Y%_o t/£;. Inview of (2),

1Quu — Kjullz = min 1Quu — f13-

€B(Fn)
Therefore,
1Quu — KpulR < [1Qou — fullz <« Quu — fullZ,
o0
=K Z &1 =0 as n? oo.
j=n+1
Let
C.(A C,(MH*
Dy = SR+ G
and

1 i 1 14 1
(80, =5 [ £ D f(e a8

for f,g € LY(T, A).

Theorem 6.4. If {FnjE Jo2 o and {Ef }oo o are matrix polynomials defined in terms of the
{Bn}oL, the Schur parameters and the Fourier coefficients, respectively, of a density A

that satisfies (D1) and (D2), then:
(1) The p x2p mvf
&) =[AE; (V) EfQ],

is a de Branges matrix,

B(€,) = B(§n) for n=0,1,...

and
n €n(A)jpCr(w)*
1) = M JpCal@)”
Ko P
+ + * _ VSR — - *
_ {En ME, (o) - (/\;)UE" M E, () i Am 1
HED QE (O* — (ES) QET(©)* + CE; (OE; (O)*},

where{ = A =w € T.

@) (S sy = (L Sy = (L f)p, =(f. flaforn=0,1,....

(3) The RK K} ()) can also be expressed as
n
Kny =Y AyWak
J,k=0
and

Ki(h) =) Ej(MEj (0)*.

Jj=0

(6.14)

(6.15)

(6.16)



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 31

Proof. The proof of (1) and (2) is immediate from (6.6) using the identities (5.25)
and (5.26).

In order to show (6.15), it suffices to check that Z (1) = A/ yj(.’,?a" is a RK for
B(€,) = B(S»). In view of (6.5), Z7 clearly belongs to B(€,). If u € C? and
f(A) =A™ f,, for 0 < m < n, then, in view of item (6) of Theorem 5.5 and item (2) of
Theorem 5.6,

2w

(ﬁ ZZ,”)B(G,,) — u*ZZ)(eig)*E:(eig)_*E:(eig)_l{eimgfn}de

27 Jo

1 2w )
E /0 M*Zg)(ele)*

2w

w* Zg (') A )™ fu3db

Cn (eie) + Cn (eie)*
2

§ (e fu)do

27 Jo

" 1 2 4
3 “’k“*VIE;)%_/O ez(m—])GA(ele)de}fm

2
J.k=0

" A
— g * (n) (n) .
il DI T | I

k=0 Apem
=u*w" fin

=u* f(w).
Since (-, -) is linear in the first argument,
u* f(o) = (f. Zgu)pe,) for [ € B(En).
Thus, Z (1) is a RK for B(€,). Since there is only one RK for a RKHS, (6.15) holds.

We will now show formula (6.16). Since E7;" is a matrix polynomial of degree j with
invertible top coefficient, there exist matrices Ay, ..., 4, belonging to CP*? such that

Ki(d) =Y Ej(M)A;.
j=0

Thus, as

u*E; () = (E; . Kju)pee,) for ueC?,

(2.4) can be used to check that A; = E/._(a))* forj =0,...,n. O
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Corollary 6.5. If A is a density that satisfies (D1) and (D2), then

y& =y Iy S for jk=0.....n. (6.17)
0 <y =y _ymyy -1, ® @ < 00) " 00)* (6.18)
and
0 <yl =y Wyl <y < RO)FRO0)7! (6.19)
forn=1,2,....

Proof. The identity (6.17) follows readily from comparing the expressions for K7 (A)
given in (6.15) and (6.16) since E;()L) = ',’n:(, )Lmy,(n]j){yjj}_l/z.
In view of formulas (6.13), (6.14) and (6.16),
0 < E, (0)E, (0)* = Kg(0) — Kg~'(0)
= ES(OE ()~ Ef L (0E (0" < 207 00) "

forn = 1,2,.... The statements in (6.18) follow easily, since E,F (0) = {yég)}l/ 2 and

E; (0) = yo, {vany ™12 o
The statements in (6.19) follow by applying (6.18) to the reverse polynomials E;}, E;,

and the identity

P =y for 0<jk <n. m

Theorem 6.6. The Schur parameters {B,}52, corresponding to a density A that meets
the constraints (D1) and (D2) are subject to the bounds
1Ball < llvy vy ™21 for m=1.2,.... (6.20)
and
o0
Y 1B 112 < trace{ Q)T QO — oV} for n=1.2..... (6.21)
j=n

Proof. Since Uy, is unitary, formulas (5.7) and (5.27) imply that
_ -1 _
Brbo =Y Ivie) — vl Vv
and hence, with the help of (6.18), that

- -1 - -1
18all” = 1858l < 1%, 1 lvgs = voo VIIY, "I < llvgs = vao VIl (6.22)
= Iy§) ey = Iy i 2,
The inequality (6.21) is obtained from the preceding sequence of inequalities by noting
that

—1 —1
IS8 — y&=V) < wacely(® — yia="y,
(n) (n—1)

since y5" — Voo ~ > 0, and hence that

n+k
k — _ _ _
STUIBI? < tracelyiy ™ — yie "} < trace{ Q)OO —yi V). O

J=n
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7. CMYV matrices

In this section, we will show how to generate a unitary operator 2l on Zf that has a
factorization in terms of a unitary matrix f_; € CP*? and the Schur parameters {$,}5>,
of a density A that satisfies (D1). If B_; = I,, then 2 is the matrix representation of
the operator of multiplication by ¢ in L% *P(T, A) with respect to an orthonormal basis
that will be constructed in terms of the matrix polynomials { F, £} that are defined in
terms of the Schur parameters {8,}52, of A. This matrix is completely specified by the
Schur parameters of A. If B_; = I, and p = 1, then this construction is due to Cantero,
Moral and Veldsquez [8]. The case when f_; = [, and p > 1 was considered first in
Simon [32] (see also Simon, Damanik and Pushnitski [9]).

Let {¥,}22, be a sequence of mvf’s belonging to L7 (T, A) and {4,}52, be a
sequence of matrices belonging to C?*?. We will write

F@) =) _Wy(0)A, for FeLyP(T.A)
n=0
if

ntoo

n n
lim [F—Z\IJ,-Aj,F—Z\IJjAj] = 0pxps (7.1)
j=0 j=0 A

i.e.,

nliTTO i {F(e’e) -y \pj(e'G)A,»} A ) {F () =) Wi(e'®)A;}1d0 = 0pxp.

Jj=0 J=0

Definition 7.1. A sequence of p x p mvf’s {¥,}°°  in LY*?(T, A) will be called an
“orthonormal basis” for L5 ™7 (T, A) if:

. 1 if m=n
(1) [lpm» \Ijn]A = ?

Opxp it m #n.
(ii) There exists a sequence {A,}52, of p x p matrices such that (7.1) holds for each
F e LY*P(T, A).
Let {F;* 190 » denote the matrix polynomials given by (5.3) that are defined in terms
of the Schur parameters {8, }o~, of a density A which meets the constraint (D1) and set

X2k | _ k[ Far(© } B
|:X2k+1(§)j| =¢ |:F2_lfi1(§) for k =0.1,... (7.2)
and
ya@ V1 _[ ¢FFR© } _
[Y2k+1(é°):| B [‘;_k_IFE,ZH(E) for k =0,1,.... (1.3)

Definition 7.2. Let A be a density which meets the constraint (D1) and 8_; € CP*? be
unitary. The CMV matrix based on A and B_; is the operator 2 : £5 — (¥ given by

: ~ ifm=0,1,...andn =0
ek Ae, = %[éxn Kmlap-r if m e (7.4)

[Exn,s xmla if m=0,1,...andn =1,2,....
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If B_y = I, in Definition 7.2, then
A=V""'MV, (7.5)
where V : {5 — LgxP(T, A) is given by Ve, = y, and M; denotes the operator of
multiplication by ¢ in L7 (T, A).
Theorem 7.3. If {FnjE 192 o are the matrix polynomials generated by (5.3) in terms of the

Schur parameters of a density A that satisfies (D1) and {)n}52, and {yn}ne are given
by (7.2) and (7.3), respectively, then:

(1) {xnyo, is an “orthonormal basis” ongxP(T, A).

(ii) {yn}o>, is an “orthonormal basis” of LgxP(T, A).

Proof. The proof of (i) is broken into steps. The proof of (ii) is similar.

1. Verification of the orthonormality of { yn}5>,. If m = n, then, it follows readily from
items (3) and (4) in Theorem 5.6,

[F,f, F,fla  if miseven

[F,, . F,la if misodd

=1p.

[Xm» Xmla =

If m # n, then we may assume, without loss of generality, that m > n. It follows
from (2.8) and (5.26) that

[F,;,Eklp]A =0pxp for k =0,....m—1
Ifm =2j + 1, then
21 Il = (677 Fsj 40 8577 1p]a = 0pxp for k =0.....2j.

i.e.,

[X2j+1.¢" Ipla = O0pxp for —j <i <]
Therefore,

[X2j+1, xila = O0pxp for i =0,...,2j,
i.e.,

[Xm> xnla = 0pxp for m > n when m is odd.
It follows from (2.6) and (5.25) that
[FF " Ip)a = 0pxp for k=0,....m—1.
Thus, if m = 2j and j > 0, then
[t2j- ¢/ Ipla = (7 S5 8775 p)a = 0pxp for k=0,....2j — 1.

Therefore,
[(2j. xila = Opxp for i =0,...,2j —1,
i.e.,
[xm, xnla = 0pxp for m > n when m is even.
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2. {xn 1S is a basis for LY*P (T, A). Tt follows from (5.25) and (2.1) that
F;F(¢) = Ax + matrix linear combination{Z, ..., {¥}, (7.6)
where A € CP*? is invertible. Similarly, by using (5.26) and (2.2),
F )= ¢* By + matrix linear combination{1, ..., %=1}, (7.7)

The proof that item (ii) in Definition 7.1 holds follows easily from (7.6), (7.7) and the fact
that mvf’s of the form ) _ ¢k Ay, are dense in Lgx‘” (T, A). O

—n

Corollary 7.4. If A is a density that satisfies (D1) and F € Lgxl) (T, A), then

o0 o0
F@©) =Y tnOIF. xula =Y yu(QIF. yula. (7.8)
n=0 n=0
Proof. Both formulas in (7.8) follow immediately from Theorem 7.3. O]

Lemma 7.5. If A is a density that satisfies (D1), then

Ein(@) = im(Q)epAB*e, for LT, (7.9)
m=0
where
B-1 0 O
0 I, 0 -
B=1|90 0 I, . (7.10)

Proof. By (7.8), the coefficient in the expansion

En(©) = xm @t xmla

m=0
can be evaluated as

Cxns xmla = e, AB ey,. O

It will be convenient to introduce the unitary matrices

A, = [(1 _—ﬂﬂé*)l/z Uy ‘g;kﬂ")l/z} for n=0.1,....  (7.11)
p nFn n
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Theorem 7.6. The CMV matrix 2 based on a density A that satisfies (D1) and a unitary
matrix f—1 € CP*P admits the factorization:

A = Q[oddgleven%» (712)
where
A1 0 0 I, 0 0
0 A3 0 - 0 Ay 0 .-
RAoad = 0 0 As s Aeven = 0 0 As s (7.13)

B is given by (7.10) and the blocks { A}, are defined in terms of the Schur parameters
of A by (7.11).

Proof. 1t follows from (7.4) that
em AB* ey = [Lxns AmA-
In view of Corollary 7.4, the mvf y, can be expressed as

(@ =Yy (@) Pr,

k=0
where

Pr = [xn.yila for k=0,1,...,

and hence

[Cxn xmla =D _[Eye. xmlaPi

k=0 (7.14)
= D[k tmlalzn. vela.
k=0
The rest of the proof is broken into steps and is devoted to showing
* def
€ HAodd ek = [EVk. xmla
—B3 i1 if k=m=2n
Ban+1 ifk=m=2n+1
=Up = Bon+1B3ps)V? if m=2n+landk =2n (7.15)

(Ip = B3pi1Ban+)'/? if m =2nandk = 2n + 1

0,x otherwise
pXp
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and

def
ez Rleven €n = [Xn> Vi]a

I, if k=n=0
—Bimin ifk=n=2m+1
if k=n=2 2
_ Bam+2 . 1 n m + (7.16)
(Ip — Bam+2Bimsin)? if k =2m +2andn =2m + 1
(Ip — BimiaBom+2)/? if k =2m+ landn =2m +2
Opxp otherwise
1. Verification of (7.15). The recursion (5.4) can be rewritten as
$Fy (§) = Fir OUp = BBy ) ? = FF OB (7.17)
and FE Q) = FE(OUp = Bi 1 Ber)'? = LR (O Brrr.- (7.18)
Since H(Bx41)~! = H(—PBx1), the recursion (5.4) can also be written as
Fi () = CFE O Up = B Bi ) + Fi (OB (7.19)
and Fa(©) = FF@QUp = BB )" + (OB, (7.20)
If kK = 2n, then (7.17) can be reexpressed as
Eyan(8) = yont1(O)Up — ﬂ2n+lﬂ;n+1)1/2 — 120 (D) Brn st (7.21)
and hence, with the help of Theorem 7.3, it is easily checked that
[£y2n. x2nla = —Bins1: (7.22)
[£y2n: x2nt1la = Uy = Bons1B3r )/, (7.23)
and [Eyons xmla =0pxp for m=0,....2n—1,2n+2,.... (7.24)
If k = 2n, then (7.20) can be reexpressed as
Ev2n+1(8) = 120U p = B3nsi B2nt)'? + f2nr1(DBoner  (1.25)
and hence by another application of Theorem 7.3, it is easily checked that
[Eyan+1, X2n+1]a = Ban+1, (7.26)
Eyansr. aanla = Up = B3y 1 Bon)'V? (7.27)
and Eyant1. xmla =0pxp for m=0,....2n—1,2n4+2,.... (7.28)

Formulas (7.22)—(7.24) and (7.26)—(7.28) serve to justify (7.15).
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2. Verification of (7.16). Since yo($) = yo({) = I, it follows easily from Theorem 7.3

that
[X0: Ymla = [Yo, ymla
i, if m=0
~Opxp if m>0
and

[va XO]A
B {1,, if m=0

[XWH yO]A

Opxp if m > 0.

If k = 2n — 1, then (7.19) can be reexpressed as

Y208 = 221U = B2nB3)"? + f20 ()3, for n=1,2,....

Using (7.31) and Theorem 7.3, it is easily checked that

[X2n»y2n]A = :82?1 forn=1,2,...,
[X2n717y2n]A = (Ip - IBZHIB;n)l/z’

and (xm,Y2n]la =0pxp for m=0,....2n=2,2n+1,....

If k = 2n — 1 in (7.18), then multiplying both sides by {™" we obtain

Yan-1(8) = x20 QU = B3, Bon)"* = x2n-1(0)B2n for n=1,2,....

Using (7.35) and Theorem 7.3, it is easily checked that

[Xx2n—1, Yon—1la = =B3, forn=1,2,...,
[X2n9y2n—1]A = (Ip - .3>2kn,32n)1/27

and [XmsY2n—1la =0pxp for m=0,....2n—-2,2n+1,....

Formulas (7.29), (7.30), (7.32)—(7.34) and (7.36)—(7.38) serve to justify (7.16).

(7.29)

(7.30)

(7.31)

(7.32)

(7.33)
(7.34)

(7.35)

(7.36)

(7.37)
(7.38)

O

Letc, = (I, — BiBn)/? and d, = (I, — BuBi)"/? for n = 1,2,.... The next

formula is presented to convey some idea of the structure of the CMV matrix :

_—/3;(,371 —61/3; C1C2 0 0
dip-1  —p1B5;  Bicz 0 0
0 —Bidy —BiB> —c3fi  c3ca
™A= 0 didy,  difr —PB3B; Bsca
0 0 0 —Bids —PB5Pa

(7.39)



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 39
We will now introduce an alternative CMV matrix € : £5 — {2 based on a density A
that satisfies (D1) and a unitary matrix S_; € CP*? by interchanging the role of the basis

{x; };?°=0 and the basis {y; G0 Let

B_i[Vn, Ymla if m=0 and n=0,1,...

e’ Ce, = 7.40
me [EYn, ymla if m=1,2,... and n=0,1,.... (7.40)

If B_1 = Ip, then _ _
C=V"'MV, (7.41)

where Ve,, =y, forn =0,1,..., or, equivalently,
e Cen = [(n, ymla- (7.42)

Theorem 7.7. The alternative CMV matrix € based on a density A that satisfies (D1) and
a unitary matrix f—; € CP*? has the factorization:

¢ = BAeyenUodd, (7.43)
where B, Ueven and Uoqq are as in Theorem 7.6.
Proof. 1t follows from (7.40) that
ey B Cen = [Ln. ymla-

In view of Corollary 7.4, the mvf y, can be expressed as

o0
(@) = k(O Pr.
k=0
where
Pr = [yn. xxla for k =0,1,...,
and hence

Eyn, ymla = Z[Q’n’ Xk Prla
k=0

M

P]:[Z)’n» Xk]A

x~
I
o

e

ks Ymlallyn, xela

~
Il
o

Nk

ks Ymlal&yn, xila- (7.44)

x~
Il
o

Assertion (7.43) follows directly from (7.44) using the identifications made in (7.15)
and (7.16). O]
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The next formula is presented to convey some idea of the structure of the alternative
CMYV matrix €:

_—ﬂ_lﬂr ,3_1C1 0 0 0
—ﬂ;dl —,8;,31 —6‘2,3;; Ca2C3 0
drdy d2f1 —B2B3  Pacs 0 .

¢ = 0 0 —Bids —BiBs —caft |- (7.45)

0 0 dads  BaBs  —PBaP;

Theorem 7.8. Suppose A and A are densities which both meet the constraint (D1) and
B-1 and B_y are unitary matrices belonging to CP*P. If the CMV matrix 2 based on A
and B_1 and the CMV matrix 2 based on A and f_1 coincide, i.e.,

A =9, (7.46)
then By = B_y and A = A.

Proof. Let {$,}52, and {Bn o2 o be the Schur parameters corresponding to A and A,
respectively. Let ¢y = (I — B Bu) /2 du = (Ip = BuB) 2. &0 = (I — Bifn)V/? and
dn = (Ip— ,3,,/3;‘)1/2 forn =0,1,.... Then, since

dif-1 =ejUAey = efﬁeo =dif-1,

and d; and c?l are both positive definite, whereas f_; and ,3_1 are both unitary, the
uniqueness of the polar decomposition implies that

dl = 6?1 and /3_1 = B—l'

We will now show g, = ,5,, forn = 0,1,... by induction. First note that we have
Bo = Bo = Opxp by construction (see Remark 4.4). In view of f_; = f_; and

—BiB-1 = ejAeq = e} Aeg = —f1 1.
B1 = B
If B = Bm for m = 2n, then the formulas
,B;n.HdZn = e;n Aesp_1 = e;n ﬁeZn—l = B;n+1d2n»
clearly imply that 82,41 = Ban+1. If B = 3,,, form = 2n + 1, then the formulas
* * * ~ Q%
Cont1Banis = €5, Aeont1 = €5, Aeant1 = Cont1PBon4n
clearly imply that B2,42 = Ban+o2.

Finally, as B8, = B, forn = 0,1,..., the proof that A = A on T is completed by
invoking Theorem 5.10. O
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Theorem 7.9. Suppose A and A are densities which both meet the constraint (D1). If the
alternative CMV matrix € based on A and By and the alternative CMV matrix € based
on A and B_ coincide, i.e.,

¢=7¢, (7.47)
then B—1 = B—1 and A(C) = A(C) for L € T.
Proof. The proof is completed in much the same way as Theorem 7.8. O

8. Convergence results

We begin with four lemmas.

Lemma 8.1. If{A,}°2, is a sequence of p x p positive definite matrices and Aisa p X p
positive definite matrix, then

lim |4, — Al = 0 <= lim ||A}/2? — 42| = 0. 8.1
ntoo ntoo
Proof. In view of the well known formula, see, e.g., (17.39) in [17],
. 2y [
AV2 (g 12 = Sm;ﬂ/ xV2(xI, + Ap) N (A — A)(xI, + A) dx.
T 0
Thus,

1 o _ _
472 4,320 < (5 [Tt 4 A + A )
< 4n - 4]
< clld, — I,

for some constant ¥ > 0, which justifies the implication = in (8.1). The converse
implication follows from the fact that

| 4n = All = 14,/2(4,7% = AY2) + (4, = 4V 412
< (A2 + A2 AY? — A1)
< (lAY* — AV2|| 4+ 2] A2 AL — A1) O

Lemmas 8.2 and 8.3 are well known results, see, e.g., Delsarte, Genin and Kamp [13].

Lemma8.2. If Py, ..., P, are p x p Hermitian matrices and P; = I, for j =1,...,n,
then
[Py Py = Ipl < ([ Prll -+ [ Pall = 1. (8.2)

Proof. If Ay = U*DU, where U is unitary and D = diag(it1, ..., up) with

[ ==y > 1,
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then

1Pr = Ipll = U*DU = 1| = [U*(D = Ip)U]|
=D =Ipll = p1—1
= || P1]l - 1.

Thus, (8.2) holds for n = 1. If n > 1 and the inequality is valid for n — 1, then

[PrP2-- Pn—Ipll < [|P1(Po-- Pn—Ip)| + | Pr— I
= 1 PolI(I P2l - | Pull = 1) + [ Pr]] = 1,

which coincides with (8.2). O]

Lemma 8.3. If {A,};2, is a sequence of p x p positive semidefinite matrices and
By, =, + Ao)---(Up + Ap), then

lim B, = B and B is invertible (8.3)
ntoo
if and only if
o0
> 1l A4n]l < oo. (8.4)
n=0

Proof. If m > n, then

[Bm — Bull < | Bullll(Ip + Ant1) -+ (Ip + Am) — Ip|
< 1Bullilidp + Ansall -~ 1p + Amll — 13

Therefore, since

Ip + Ajll =1+ 4, < expl4;].

it is readily checked that

n m
||Bm—Bn||sexp(Z||Aj||) exp( ) ||Aj||)—1
j=n+1

Jj=1

Thus, if (8.4) is in force, { B, }72, tends to a limit B € CP*? by the Cauchy convergence
criterion. Moreover, as

1 <det B, <det B,4+1 <detB,

B is invertible.
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Conversely, if (8.3) is in force, then (8.4) holds, since
det B > det B,, = det({, + Ao)---det({, + A,)

> [T +14;0)

J=0

n
=1+ 3 14,1 O
j=0
Lemma 84. If 8, € CP*P and ||B;|| <p < lfor j =1,2,..., then

L= JTa+ 181 <exp D 1Bl (8.5)
j=1 j=1

and

t<JTa—ugn"

j=1
L+ 1851 _ 2 ¢
(- 8.6
Hl—nﬁ )= —1_p;”ﬂf” (8.6)
If Z;ozo 1Bl < oo, then

[Ta+18iIh and T +18;1)

j=1 j=1

converge to finite positive limits as n 1 oo.

Proof. The bounds in (8.5) and the lower bound in (8.6) are self-evident. The upper bound
in (8.6) follows from the observation that

L _ LBl 2081
=B T T8
2 2
<4 1 = o] 81

Finally, the asserted existence of the finite positive limits follows from the monotonicity
of the two sequences and the bounds in (8.5) and (8.6). O]
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Lemma 8.5. If F e WP*?P and ||I, — F|yw <€ < 1, then
(1) F is invertible in WP*P.
@ 1-e<|[Fllw=1+e
B3 s < IF 'w < .
Proof. The identity
FQOQ =1, +F@&)—1p

implies that

Ipllw = 1p = Fllw = IFllw =< pllw + | F = Ipllw.

which is equivalent to (2).
Next, if ¢ € T and u € C?, then

IE@ull = [lu = (Ip = F(Eul
> [lull = M = F@llwllull
== ul

Therefore, F({) is invertible for ¢ € T and hence, by item (1) of Theorem 5.1, (1) holds.

Finally, the lower bound in (3) follows from the inequalities

L= IF Fllw < IF Hwlip + (F = Ip)llw
< IF~Hlw(1 +e),

whereas the upper bound follows from the inequalities

IF~ w =1y + F~' = Ipllw < Hpllw + 1F 7 U = F)llw
<1+el|F ' w.

Corollary 8.6. If {G,}5°, is a sequence in WP*P such that G, ' € WP*P and
lim |G, —G|lw =0 and G~'eWP*?,
ntoo
then
lim |G, = G w = 0.
ntoo
Proof. In view of (8.7), for any ¢ < 1, there exists a positive integer n, such that
G Gy — I,|lw <e <1 for n>n,.

Thus, it follows from item (3) of Lemma 8.5,

1
1G, ' Gllw < 1-- for n > ne.

8.7)

(8.8)
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Consequently,
1G:" =G w = 116G, (G = GG lw
=16,'GG7(G = GG |w
< G GIWIGT WG = Gallw
— 0 asn 1 oco. O
Lemma 8.7. If the matrix polynomials {Fni};‘f’:o are defined by (5.3) in terms of a given

sequence of strict contractions {Bn}5> o with Bo = Opxp and Y .2 |Ball < 00 and Xy,
and Y, are given by (5.6) and (5.7), respectively, then:

(1) Xn = Xoo asn 1 0o, where Xoo € CP*P s nonsingular.
(ii) Yy, — Yoo as n 1 00, where Yoo € CP*P is nonsingular.
(i) X, ! — X lasn 1 oo

iv) Y, ' > Y asn 1 oo

Proof. The proof is broken into steps.

1. Verification of (i) and (ii). If

Aj = =P V2 =1, for j=0,1,...,
then
Xy = (Ip+A0)"'(Ip+An)-

Since A, > 0 and

1 1
A= — 1= —1
= s T e ha 1B
1

<

STCUB

8l

=181

oo

neo I|An|l < oo. Therefore, (i) follows from Lemma 8.3. The

it is readily seen that )
proof of (ii) is similar.

2. Verification of (iii) and (iv). Assertion (iii) follows readily from Corollary 8.6 applied
to the sequence {X,}52 . The verification of (iv) is similar. O

Lemma 8.8. If the matrix polynomials {E,fE Yoo are defined by (2.1) and (2.2) in terms
of the Fourier coefficients of a density A that satisfies (D1) and (D2), then

lim {0 }'% = 0" -0 (8.9)

and
lim {112 = R(0)™! > 0. (8.10)
ntoo
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Proof. If u € C? and w = 0 in (6.13), then, in view of Theorem 6.3,
lim u*(Q(0)™% — F, (0)F," (0)*)u = 0.
ntoo
Therefore, since
v — FFO0)FF0) = EFO)ES(0)* for n=0.1,...,
lim u*(Q(0)~2 700))” = 0.
ntoo
In view of (8.1),
lim 1% (Q(0)™" — {ysp } /2.
ntoo

i.e., (8.9) holds.
We will now prove (8.10). It follows from (8.9) that

lim {232 = 007" >
Taking advantage of the identification (3.4), (8.10) is readily obtained. O

Corollary 8.9. If the matrix polynomials { E;, jE} 2o are defined by (2.1) and (2.2) in terms
of the Fourier coefficients of a density A that satisfies (D1) and (D2), then

det 0(0) = det R(0). .11
Proof. This follows easily from (8.9) and (8.10), since det yn) = det y\. O

Lemma 8.10. If the matrix polynomials {E;, ﬂE} 2o are defined by (2.1) and (2.2) in terms
of the Fourier coefficients of a density A that satisfies (D1) and (D2) and u € C?, then

lim [|(Q7" — E; ulla =0, (8.12)
ntoo
lim Q7' Q)" — FE (0)"ulla =0. (8.13)
lim [(R™" =" E, Julla =0 (8.14)
ntoo
and
lim [[(RT*R(0)™ — ¢ Fy X )ula =0. (8.15)
ntoo

Proof. If u € CP, then (8.12) follows from item (4) in Theorem 6.3 with @ = 0 and (8.9).
Indeed,

Q™" = ENulla = I(QT ES (0" — ESS E;S (0)E,f (0)"ul -

Assertion (8.13) follows directly from item (4) in Theorem 6.3 with @ = 0.
IfA@) = AQ) = 0(8)0(¢), where OF € W2 then, it follows from (8.12) that

lim (0" — ENullx = 0. (8.16)
ntoo
where E,J{ is given by (3.2). Assertion (8.14) drops out easily from (8.16) in view of the

identifications (3.4) and (3.2).
Assertion (8.15) can be obtained from (8.13) in a similar fashion. O]
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9. The Schur parameters of a positive spectral density in the Wiener
algebra are summable (the harder half of Baxter’s theorem)

In this section the convergence results established in Section 8 will be strengthened
with the help of a matrix version of Baxter’s inequality. The main conclusion in this
section, Theorem 9.6, is verified in complete detail. This result was obtained earlier by
Geronimo [21] via a matrix generalization of Baxter’s inequality due to Hirschman [26].

Corollary 9.1. If A € CP*P and |1, — A| < & < 1, then:
(1) A is invertible.
2)1-e<|Al =1+e
G) s <147 < .
The following theorem depends heavily on the matrix extension of Baxter’s inequality,
which is presented in Appendix C.

Theorem 9.2. If {Ef};’lo:o are matrix polynomials based on the Fourier coefficients of a
density A that satisfies (D1) and (D2), then

lim |01 05" — E; {ys 32w =0 ©.1)
ntoo
and
lim [R™*Ry" — " E, {y3y 2|y = 0. 9.2)
ntoo

Moreover,
M 197" = Efllw — 0asn 1 oo
@) |R*=¢"E |lw —>0asn 1 oo.
3) 10 —(ES) Yw —0asn 1 .
@) IR* = C"E;) lw = 0asn 1 oo
(5) ICh —Cllw — 0asn 1 oo.

Proof. The proof of (9.1) and (9.2) drops out from Theorem C.1. The rest of the proof is
broken into steps.

1. Verification of (1) and (2). Tt follows from Theorem C.1 that there exists a constant k
so that o
1E {700 3w < &

for n > 0. Thus, as (1) holds if and only if | Q™' Q5! — E;F Q5w — Oasn 1 oo and

107'05" — E;F 05t Ilw < kn + Ln

where
kn = 11071051 = ES s P Iw
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and
U = 1 E; (s 372 = 09 Hllw
< IES Iwllrss 2 = 05|
< kI y @ 2y 2 — 03
<kl Qollll{rse 32 - 05

we obtain (1) by using (8.9), (9.1) and the monotonicity in (6.18).
The proof of (2) is similar.

2. Verification of (3) and (4). Assertion (3) follows from item (3) of Lemma 8.5 and (1).
Assertion (4) is proved similarly.

3. Verification of (5). In view of item (6) of Theorem 5.5 and (5.22),

| SO mror R0 = BHOT E O
Thus, using (1) we have
mlietsod e o

Butas Q({)*Q(¢) = A(¢) = {C({) + C({)*}/2 and C, and C belong to W™ (5) can
be obtained from (9.3). O]

In view of formulas (5.17), (5.25) and (5.26), it is readily checked that the mvf

o ve o 0l[¢c 1, 0
zo%e.0s o[ 1)

1 [{1,, + Cu(OTE (O U — Cn(é)}E,T(Z)]
{Up = Ca@Q*"}TEL(6) {Up+Ca@QYES (D]

Corollary 9.3. If A is a density that satisfies (D1) and (D2), then

T2

lim |85 = Eoollyy =0, ©4)
where
Eeo(t) = = [{Ip + CQOMRQ™ Al - C(é)}Q(Z)l] ©.5)
T2 Uy~ COMROT U, +COI0Q) '
for eT.

Proof. Assertion (9.4) follows easily from items (3)—(5) in Theorem 9.2. O]
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Lemma 9.4. If A is a density which satisfies (D1) and (D2) and if the mvf E » defined
in (9.5) is written in block form as

[1]

=(11)  =(12)
_ | Yo =oo
© = | o) =22
— 00 — 00

and

df Q11 Q2| _ , ~ " ; [0 1,
Q(é‘) - [QZI 922} - ZZ‘-‘OO(;) ZZ» Wlth ZZ - []p 0] ) (96)

then:
(i) Qis jp-unitary on'T.
(i) €12 + Qo5 is invertible on T for every contractive matrix & € CP*P,
(iii) The identity
(EQ12 + Q22) ' (Q11 + Q1) = (BL"E + EG)(ERVE + EG)™!

o o

holds on T for every contractive matrix & € CP*P,

Proof. The verification of (i) is easy, since Z* = Z and Z* j,Z = —j,. The verification
of (ii) follows easily from the identity

Q2(0)*Q222(0) = R12(0)*Q12(0) + 1,

which is the 22 block of €2({)* j,€2(¢) = jp. Finally, (iii) holds if and only if
(EQu1 + Q) (ELVE + ERY) - (6Qu12 + Q) (ELVE + ELD) = 0pxp  (07)

on T. But the left-hand side of (9.7) can be rewritten as

Qu1|[-e) ~@2
& n)[on][s2 =@

onT. O
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Remark 9.5. If Q({)™' = }72,¢/Ljand R(()™" = 352, ¢/ M, then
QOoLo = RoMy = I,

and the convergence in WP?*? indicated in (9.1) and (9.2) is equivalent to

n n oo
hm{ZHLjLo—ZV}’é) + ||L,-Lo||}=0 9.8)
nteo U520 j=0 j=n+1
and
n n o0
nm{ZHM;MO—Zy,E"_)M + 3 ||M;‘Mo||}=0, 9.9)
e Ui Jj=0 j=n+1
respectively.

The proof of the next theorem is modeled on the proof of (x) implies (xii) in Theo-
rem 5.2.2 of Simon [31], which treats the scalar case p = 1. Simon credits his proof to a
“clever argument of Baxter [5]”.

Theorem 9.6. If {8,}5°, are the Schur parameters based on a density A which satis-
fies (D1), then

> 1Bull < oo (9.10)
n=0

Proof. The proof is broken into steps.

1. The matrix polynomials {En:|E 190 o defined by (2.1) and (2.2) obey the recursion:

ESMWES ) —ES (WE (07" = AE,_ (M, forn=1.2,... (.1
with
Bl = VaBuUr (EX (07" forn=1,2,.... (9.12)

The recursion (5.18) implies that
EF O Up = Brbn)'? = AF (VB + FL1 (D),
which, upon invoking the formulas
FfQ) = EfMUn. Fy () = E;(W)Vy
and

Un(Ip — /3:/3")1/2 _ {yég)}—1/2{7/(%71)}1/2Un_1
= E:(O)_IE:_l(O)Un—la

can be rewritten as (9.11).
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2. The inequality

20 Ro{y S 2B — IR E;_y Bl Iw
< |R*E;] E;f () w — |R*E} L EF (07w (9.13)

holds forn = 1,2,....
The inequality
RO E,_(OE,_ (07" = RO E, (DES (0™ = RO CE, (OB,  (9.14)

is easily obtained from (9.11), or, equivalently, in terms of the notation

n

AQ) =) ¢ 4; = RQOESQE 0!

J=—00
and B() =) /B; = RO*CE, (DB,
j=—00

can be restated as
RO E QE, 7 =Y 4, -3 By,
j=—00 j=—00
Thus, as E,f_l is a polynomial of degree at mostn — 1,
Ap =B, = Ra‘{yn('i_l’lzfl}l/zﬂ; for n =1,2,...
and hence that

n n
IR*E}E 0w < Y 14511+ Y 1Byl =2 Ball

j=—00 j=—00
= IR*ESES (O lw + [R*E,_i By llw — 2] Ball.
Consequently, (9.13) holds.

3If0<e<, py = Ro{y("__l,l,z_l}l/z and W, (§) = R(Q)*¢("E,; (), then there exists

n
a positive integer ng such that

lon —Ipll <& and ||Wp_1—1Iplw <& if n>n,. (9.15)
The existence of n, follows from items (2) and (4) in Theorem 9.2.

4. lpnByll = A=), if n > ne. In view of the bound (9.15) and Lemma 8.5, py is
invertible and (|| o, *[)~! > 1 — &. Therefore,

1831 = llon" uBull < Nl lon Byl

ie.,

Bl = o 7B = (L= o)IB Il if 1 = .
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S IR E;_ Byl = (L+ B, ifn = n,. Cleatly,

IR*E,_Bullw < IR*E,_; w8,
= [Wn1llwllBy I
= [[Wn-1 — Ip + 1p||W||ﬁ;,||
< U¥n—1 = Lpllw + BB

which is equivalent to the asserted inequality when n > n, by the second bound in (9.15).

6. Ifn > ng, then

20 DByl = IIR*E;_y Bpllw = (1 =3e)1 Q5™ 7M1 Ba |

forn=0,1,....

By Steps 4 and 5, if n > ng, then

20l = IR*E;_1 By lw = (1= 38) 1, |

Moreover, since V;, and U, —; are unitary matrices,

1Bull = 1V, By Ex—y (O)Un—1]|
< IV Bl EF (O) Ui
= 1B, I E, O]
< 18,1125l

since E,F (0) = {yég)}l/ 2 < Q. The asserted conclusion drops out easily by combining
the two inequalities.

7. Verifying (9.10). If we let k, = 1_#3E||Q31 ||, then it follows from Steps 2 and 6 that
n+k
DB < kel IR*ES L E 0w — [R*EF L E (0)7 )
Jj=n * _
SKSHR ”W”E,;:_kE,—,:_k(O) 1”W
< kel R* lw {1 E;f 1 B O = 071 Oollw + 107" Qollw}
= Ke w n+kn+k olw oliwy -

Thus,

o0
Y Bl < kel R*Iwll Q™" Qollw if 7 = ne.

Jj=n

and hence (9.10) holds. O
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10. Asymptotics for CMV matrices

Throughout this section we will assume that A is a density which satisfies (D1) and (D2).
In view of Theorem 9.6, the Schur parameters {,}5, corresponding to A satisfy

o0
> 1Bl < 0.
n=0

Theorem 10.1. If {B,}°2, are the Schur parameters of a density A which satisfies (D1)

n=0

and (D2) and u € CP, then
lim [(Q7'Q(0)™" = F,f Yoo)ulla =0 (10.1)
ntoo

and liTm [(RT*R0)™' =" F; XX )ulla =0, (10.2)
ntToo

where X and Yoo are nonsingular matrices given in Lemma 8.7.

Proof. Assertion (10.1) follows directly from (8.13), Y, — Yo as n 1 o0, the identifica-
tion given in item (1) of Theorem 5.5 and

(@71 Q0)™ — F Yoo)ulla < Q71 Q0)™ — F Yuulla + IIF,;F (Ya — Yoo)ulla
= Q7' Q) = Ff Ypulla + |(Yn — Yoo)ul.

Assertion (10.2) is shown in much the same way using (8.15) and the identification given
in item (2) of Theorem 5.5. O]

Theorem 10.2. If A is a density that satisfies (D1) and (D2) and {U,}5>, and {V,}72,
are sequences of unitary matrices given in (5.25) and (5.26), respectively, then there exist
unitary matrices Us, and Vo such that

lim Uy = Uso (10.3)
ntoo

and lim V, = Vg, (10.4)
ntoo

respectively.

Proof. In view of (5.27),
U, = {y(%)}_l/zyn»

whence (10.3) follows easily from (8.9) and item (ii) of Lemma 8.7, which is applicable
due to Theorem 9.6. The fact that U, is unitary is self-evident.
The verification of (10.4) is similar. O]

Definition 10.3. Given the CMV matrix 2 based on the unitary matrix 8_; € CP*? and
a density A which satisfies (D1) and (D2), the scattering matrix @ is given by

D) = Bo1REO* Q)" for €T (10.5)
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Remark 10.4. The definition of ® in formula (10.5) is motivated by asymptotics which
appear in Theorem 10.5.

In Theorem 10.5 we shall let

Wor (§) | _ [ B=1R(E)* x2k ()
[%Hl(z)] = [R(&)*mmz)] oreed (10:6)
and _
U (@) | _ | )y (D)
[%Hl(z)] = [Q(z)mﬂ(z)} for feT, {10-n
where {yn}52, and {y, 5o are given by (7.2) and (7.3), respectively.

Theorem 10.5. If 2 is the CMV matrix and € is the alternative CMV matrix based
on a density A which satisfies (D1) and (D2) and the unitary matrix f—, € CP*P,
® = B_1R*Q ' and u € CP, then the following asymptotics hold in LY (T, I,) norm:

Wan () = O Q)Y + o(1), (10.8)

Wan+1(8) = "I RO) X+ o(1), (10.9)

on(8) = " @) B-1R(O0)™* X u + o(1) (10.10)

and Uant1(0) = E"1QO) YS! + o(D), (10.11)

where Xoo and Yo, are as in Lemma 8.7 and {W,}°2 , and {En 192 o are given by (10.6)
and (10.7), respectively. Moreover, if B_; = Iy, then

[Wo(©) ¥1(Q) -+ ]A=¢[Wo(O) ¥i(0) -+ ] (10.12)
and [To(0) W1(0) -+ ]€=¢[Te(®) T1(©) - ] (10.13)

Proof. Let {$,}52, denote the Schur parameters of A. In view of Theorem 9.6,
Y o2 o I1Ball < 0o. Thus, Xo0 and Yo exist due to Lemma 8.7.
The proof is broken into steps.

1. Verification of (10.8) and (10.9). It follows from (10.1) that
lim [(R*Q7'Q(0) ™" — R*F,} Yoo )ullq = 0.
ntoo

Thus, in view of (7.2) and the unitarity of S_1,
lim |(¢™" -1 R* Q™ Q(0)™" = f-1 R” 2nYooJulls = 0.
n

Therefore, since ®(¢) = B_1R(£)*Q ()™, (10.8) holds.
We will now verify (10.9). It follows from (10.2) that

lim [|(RO) ' X ¢ DR*F;,  ully = 0.
ntoo

Thus, in view of (7.2) and the unitarity of f_1,

lim [[(R(O)™' X = ¢ ' R* yans Dl = 0.
ntoo
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2. Verification of (10.10) and (10.11). Assertions (10.10) and (10.11) are proved in a
similar manner to (10.8) and (10.9), respectively, using (7.3).

3. Verification of (10.12) and (10.13). If f_y = I,, then, in view of (7.8) with
F(§) = Y (0),

(o) Wi(Q) - Jew =Y ¥n(O[ltn, xmla

m=0

= R* Z Xm(é')[é‘xn’ Xm]A

m=0

= R*¢xn({)

The proof of (10.13) is similar. O

11. Generating a positive spectral density from a summable sequence
of strict contractions (the easier half of Baxter’s theorem)

In this section we shall show that each sequence g, B1, ... of p X p matrices with

o0
Bo=0pxp, [Ball <1 and Y ||l < oo

n=0

can be identified as the Schur parameters of exactly one density A which meets the
constraints in (D1). This result is known, see, e.g., [12] and [21], and will provide a
converse to Theorem 9.6. Given {8,}52,, with 8o = 0,xp and ||B,|| < 1forn =0,1,..,
define ®,, as in (5.2), forn = 0, 1,... and the matrix polynomials {Fni},‘;"=0 via (5.3).
Let

Dp(§) = FF QT F (O™ = F, (O F, (7" for {eT. (11.1)

In view of Theorem 5.5, it is easily seen that the mvf D, satisfies (1.1) and (1.2) for
n=0,1,....

Theorem 11.1. Let {f,}52, be a given sequence of p x p strict contractions, i.e.,
1Ball < 1forn =1,2,....If Y v2; | Bull < 0o, then there exists exactly one density A
for which (D1) is in force with Schur parameters equal to the given sequence {f,}52,
where Bo = 0pxp. Moreover,

lim [|A = (F,H) ™ (F,) ™ lw=0 (11.2)
ntoo

and lim |A — (F7) 7 (F) " w=0. (11.3)
ntoo

Before proving Theorem 11.1, we first need some preliminary results.



56 H. Dym and D. P. Kimsey

Lemma 11.2. [f the matrix polynomials {Fni 190 o are defined by (5.3) in terms of a given
sequence of strict contractions {f,}°2 o with Bo = Opxp, then:

(i) Forall0 < j, k <n,

Ip ifj=k

[F;. Filp, = {01;@ ——

(ii)) Forall0 < j,k <n,

Ip ifj=k

gt s—kpt —
[Z IF] ’é' Fk ]Dn - {Opxp lf ] 7ék

Proof. In view of the identification given in item (5) of Theorem 5.5,

Ca (@) + Cu (D"

Di(5) = =

for ¢ €T, (11.4)

where C, is the mvf given by (5.12). In view of (11.4) and the chain of equalities,
beginning at (5.21), carried out in Step 2 of the proof of Theorem 5.6, (i) holds. The proof
of (ii) is carried out in much the same way using the chain of equalities in Step 4 of the
proof of Theorem 5.6. O

Lemma 11.3. The matrix polynomials {Fni}zozo defined by (5.3) in terms of a given
sequence of strict contractions { B, }52 o with Bo = Opxp and

1Ball <p<1 for n=0,1,...

are subject to the bounds

2 " R
exp —(T)Znﬂju <IEEQI<exp ] —— 3181} (1)
I=r/i3 I=ri

fort e Tandn =0,1,....

Proof. The proof is broken into steps.

1. Verification of the bounds

{ 1= 1|Bnt1ll
L+ [|Ba+all

fort e Tandn =0,1,....

1+ ||13n+1||} (11.6)

} IEr Ol < I1F Ol < I1F; @) % L= [[Bus

The recursion (5.4) implies

Frp1(0) = CF, () + FE(OBr o) p — Brs1Bry) 2
= F (O, + Fy Q7 FL(OBs s Up — Bum Bpr) ™2 (1LT)
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and hence, as F,, ({)"' F,"(¢) is unitary for ¢ € T,

1Er O < IE @I+ 1Bas DIy — Bus1 B4 0) V2.

Let 8,41 = USV™ be the singular value decomposition for 8,41, where U and V are
unitary, S = diag(si,...,sp)and sy > -+ > 5, > 0. Then,

(Up—But1Bryi) 2 =UU, — S V2U*

and hence
1

1
Ji—st VIRl

I(Ip = Bus1Bis) 21 =
Thus,

[F 1 Ol = 1E @

1+ (B }
VT =Bt l?

(1 + [1Bal)? }”2
1—Bns1l?
1+ ||ﬁn+1||}
= [Basall

= 1 E; @ {
<IF; @ {

which justifies the upper bound in (11.6).
The equality (11.7) implies that

Fy Q) = Fuiy U p = Basi By )V €1y = By @7 RS @B )™ (118)
for { € T. Since

Up = Bur1Bii)V? =UU - $*)'V2U*,
I(Ip = Bat1Bir )2 < 1 < 1+ [|Busall.

Thus, upon invoking the inequality

I(Zp = )7l =

1— 4]
for A € CP*P with || A|| < 1 and the unitarity of F,, ({)"1F,'(0),

L+ [|Bnall }

1E7 @1 < 1E7 @l { T [Busr

which justifies the lower bound in (11.6).
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2. Verification of (11.5). The bounds

(1= 1B+l } Fe - o - %1 + ||l3j+1||} 9
j[[o{—l 1Bl [Fo Ol = 1F51 DI = (1 Fo (§)||j1:[0 T= 1Bl (11.9)

follow from (11.6). In view of F (§) = I, and (8.6), the bounds for || F, ", ; ({) || advertised
in (11.5) are readily obtained from (11.9). The bounds for ||FnJZrl(§)|| in (11.5) follow
from (11.1). L]

Theorem 11.4. If the matrix polynomials {Fni}flozo are defined by (5.3) in terms of a
given sequence of strict contractions {Bn}5> o with Bo = Opxp and > _pe || Bnll < o0,
then:

(i) There existsamvf A € fol’ such that A~! e Wpr,
|Ef —Allw — 0 as ntoo (11.10)
and I(FH)™ =47 w =0 as n 1 oo. (11.11)

(ii) There exists a mvf B € foy such that B™' € Wpr,
18" (F,7)* = Bllw — 0 as n 1 oo (11.12)

and IE"(F,) ™ =B~ w —0 as n?oo. (11.13)

Proof. The proof is broken into steps. Let {X,}52, and {Y,}.2, be given by (5.6) and
(5.7), respectively.

1 Ifkn = ||F, Y, w and £, = | Fy X7 lw, then {kn}32 and {£,}32, are bounded.
Using the recursion (5.4), it is readily checked that

Frn QX = F, @ + B OB X, ! (11.14)
and Fl @Y, = CF7(OBns1 + FF QY (11.15)
Consequently,

IF Xotillw < 1Ey X w + IES B Xl
and IE Y < 1Ey Bt Yy Hw + IEF Y .

Thus, if we let

an = ||Fn_Xn_1||W + ||Fn+Yn_1||W forn=0,1,...,
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then

ans1 < an + 1F Brn X7 w + 1 Fy Brr Yyl
< an + 1F Y, WYl Buat X5+ 1Ty X I X B2 115
<an(1 + &l Bn+1lDs (11.16)

where, in view of Lemma 8.7,

K= sup Yl X I Xl < oo

n yeer

Iterating the bound (11.16), since ag = 1, it is easily seen that,

n
knt1 +Lug1 = any1 < ap l—[(l +k|Bj+1l)
=0

n
<expik > B+l g

J=0

which serves to justify the boundedness of the sequences {k,}5>, and {{,},2,, since

Y520 Bl < oo

2AF Y1

' Ineo is a Cauchy sequence in WﬁXp. If m > n > 0, then, in view of (11.15),

m—1

IFg Yt = By w < D IF; Bia Y w
j=n
m—1

= S IF X7 X B Y
j=n

m—1

< S UE7 X WX B 1Y

j=n
m—1

<&y 1B+l
Jj=n

where, in view of Step 1 and Lemma 8.7,

= sup {a; || X; [IY;' ]I} < oo,

j=0,1,...

Thus, as
m—1
S Bj+ill =0 as mon 1 oo,
j=n

Step 2 holds.
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3 {FF132, is a Cauchy sequence in WY P This follows from the sequence of inequal-
ities
1Fpy = Fufllw = 1 Fyy Y Yo = F5Y, Yl
= (Fp Yy = FS Y, DY + B Y, (Y = Vo)l
< IFg Y = B Yol + 1B Y w1 Y = Yal
and Step 2. Therefore, there exists A € Wpr such that (11.10) holds.

4. Verification of A™! € W_’;Xp. In view of Lemma 11.3,

2\ = 2 =
exp | - (1—) S8 < IE @ <expl—— 31850
Jj=1 j=1
where p as in the statement of Lemma 11.3. Consequently, there exists a subsequence
{nk}pe, of {0, 1,.. .} and a mvf P on D such that

lim || F,F (A)™' = P(M)|| =0 ateach point A € D. (11.17)
ktoo

We claim that P(A) = A(A)~L. In view of (11.17),
1, = AP = | FE WD FL (W)™ = AR P
< | EFDIEL Q)™ = PO+ I1F,E Q) — AW PA)]|
—0 as k1 oo.

Therefore, as A(A) is invertible for all A € D, it follows from item (2) of Theorem 5.1 that
Al e fol’.
5. Verification of (11.11). Since
IFH™ = a7 w = I(FEH A= FHA  w
< IEH IwlA = S Iwl A7 w,
it suffices to show that ||(F,")~1 ||y is bounded. But, in view of (11.10),
lim |F,fA™ = I,lw=0. (11.18)
ntoo

Thus, using Lemma 8.5 we have any 0 < ¢ < 1,
1
||A(Fn+)71 Ihw < 1 for n sufficiently large (11.19)
—&

and hence
ICED ™ w = 1A~ AFH  iw
< 1A IwllAE) w

1
< (]—) A7 |y  for n sufficiently large.
—¢
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6. Verification of (ii). The verification of (ii) is carried out in much the same way as the
verification of (i) in Steps 1-5. We will outline the major steps. In view of (11.14) and
(11.15),

s ‘"+‘>Fn+1xn+1||w 1" Fy X I + B B X o

and IE 1 Yol < 187" Fy Bua Yy Hiw + 11, Y, s

which can be used to show that {{™" F,; X, 1}%° ; is a Cauchy sequence in W?*?. Con-
sequently, one can show that {{™" F,~ } 2o is also a Cauchy sequence in Wp *P. Thus,
there exists a mvf B € Wp ? such that (11.12) holds. The verification of B~! € Wp xp
and (11.13) is completed in a way similar to Step 3 and 4, respectively. O

We are now ready to prove Theorem 11.1.

Proof of Theorem 11.1. The proof is broken into steps.

1. There exists a density A which satisfies (1.1), (1.2), (11.2) and (11.3). In view of
items (i) and (ii) in Theorem 11.4, there exist mvf’s 4 and B with A*! and B! both
belonging to W7 such that (11.10)~(11.13) hold. If

AG) = AQ)TFAEQ)T" for L €T, (11.20)
then (11.2) follows from (11.11) and the bound
AT AT = (FD) T (F,O) w
< A7 IwllA™ = (ED T Hw + 147 = (ED T Iwll(F) ™ w-
The limit (11.3) follows from (11.2) and (11.1).
By an argument based on (11.13) that is similar to verification of (11.20), it follows

that
lim |[B™'B™* — (" F,) "¢ F)  w=0
ntoo

and hence that, in addition to (11.20), A admits the second factorization
AQ) =B 'B@)™* for ¢ eT. (11.21)

2. The matrix polynomials { F.£}%  satisfy

- 1. — Ip ifj=k
[Fj,Fk]A—{Opo i (11.22)
_ _ I ifj=k
Jjr+ k m+ _ V4
[ Ff.¢ Fk]A—{Opo A (11.23)

and (1.3).
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If 0 < j,k < n, then item (i) in Lemma 11.2 guarantees that

1 2w o . . B B

2 ), Fi (€% Dy(e'®)F; (e'%)d0 = [F}, F{ b, (11.24)
N, it =k
0y, if j # K

Thus, as
[(F)*(Dn — D) F; llw < | F Iwll Dn — AllwlI F; llw

tends to 0 as n 1 oo, the limit as n 1 oo can be brought inside the integral to obtain

1 [ I, if j=k

- (11.25)
Opxp if j #k.

E i Fk—(eie)*A(eie)Fj—(eie)dG — {

Thus, (11.22) holds.
The proof of (11.23) is completed in much the same way from item (ii) in Lemma 11.2.
In view of Fjy (§) = I, (1.3) follows from (11.25).

3. The Schur parameters of A are equal to {Bn}5—,. Let {a,},~, denote the Schur
parameters of A. In view of (11.22) and (11.23), we may use Theorem 5.8 to obtain
sequences of unitary matrices { M, }°2 , and {N,}°2 , so that

Ff(A) = Ef (MM, (11.26)
and F, (M) = E; (A)N,. (11.27)

Consequently, the matrix polynomials { F,F}2 ; generated by {52,

[Fri ) FL W] =[AF; ) FFQ)] H(Batr)
can be written as

(B Efam]=DE@ EW]|Y 0 G|V
n+1 n+1 n n 0 Mn n+ 0 M;:+1 .
Thus, as the last recursion can also be written in terms of the Schur parameters {o, } 5>,
of A as

_ _ V, 0 V* 0
[E,.i (V) ES W] =[AE; ) EfM]| ! H(apyy) | 2F0 0,
0o U, 0 USiy
N, O ] N* 0 V. O V* 0
H(Bn+1) |: ntl } = [ H(otpqp) | "
[ 0 My, " 0 M:+1 0 U n+ 0 U:—H
must hold for n = 0, 1,.... Therefore, by the uniqueness of the polar decomposition,

Z1 = V1, and, continuing by induction,

Zy=V, forn=0,1,....
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In much the same way, using (5.30), one can show that

M,=U, forn=01,....

Therefore,
H(opy1) = HBpy1) for n=0,1,...
and hence
Op41 Iﬁn+1 for n =0,1,....
4. A is unique. The asserted uniqueness has been established in Theorem 5.10. O

12. Generating a positive spectral density from
a unitary operator of the form (7.12)

Let B_1 be a p x p unitary matrix and {8, }52; be a sequence of p x p strict contractions
which satisfy

o0
> 11Ball < oo
n=1

Let {u,};2, be a sequence of 2p x 2p unitary matrices given by

un:[ g (lp—ﬂ;‘ﬂn)”z} for n=1,2,....

(Ip — BuPi)V/? Bn
and
U= L[odduevengna (121)
where
[u; 0 0 - I, 0 O
0 Uus 0 s 0 Ur 0
Hoga = 0 0 us v Meven = 0 0 uy
and
(-1 0 0
0 I, 0
=10 o 1,

Since u, is unitary forn = 1, 2, ..., it is readily checked that {1 : e;’ — Eé’ is unitary.
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Theorem 12.1. Let {B,},2, be a sequence of p X p strict contractions with

o0
> 11Ball < oo
n=1

If s is the unitary operator on 65 given by (12.1), then there is exactly one density A
meeting the constraint (D1) and one unitary matrix B—, € CP*P with the property that {1
is the CMV matrix based on the mvf A and B_; (see Definition 7.2).

Proof. Let Bo = Opxp. If {Bn}2, satisfies Y p— || Bull < 0o, then, using Theorem 11.1,
there exists exactly one density A which satisfies (D1) and the Schur parameters of A are
given by {8,}52,. Let 2 denote the CMV based matrix based on A and S_;. It follows
from Theorem 7.6 that 2 = 4[. The fact that there is only exactly one density A which
meets (D1) and exactly one unitary matrix S—_; so that 4l is the CMV matrix based on A
and B_; follows from Theorem 7.8. O

13. A Nehari problem

In this section a number of important connections with a Nehari problem in W#?*? are
summarized. Most of the facts follow from the fundamental study of the Nehari problem
in a general setting by Adamjan, Arov and Krein [2]. For the convenience of the reader
proofs that are adapted mostly from [2] to the present simpler setting are presented in
Appendix C. However, Theorem 13.5 and Corollary 13.6 are based on the work of Treil
and Volberg [35].

Let 207*? denote the set of & € WP*P on T for which the Hankel operator

To= AMs|gp

is strictly contractive, i.e., ||fq> || < 1, and let N (®) denote the set of all mvf’s W € WP*P
with |W(¢)|| < 1 for every point ¢ € T for which

O —weW? (13.1)
It is readily checked that
Ve NP < qUf =qdf forevery f € HY.

In order to simplify the typography we shall abuse notation a little and shall allow
operators that act on p x 1 vvf’s to act on p x k mvf’s with the understanding that they
act column by column. Thus, for example, if

F=[fi - fi]eH™

then R
I'eF isinterpreted as [F¢f1 Fq>fk]. (13.2)
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The main result will be to parameterize N (®) in terms of a linear fractional transfor-
mation
Tol€] = (611€ + 012)(621€ + 622) "

basedona2p x 2p mvf

011 012
® = 13.3
|:921 922} (13.3)
with blocks
911 S WEXP, {912 € WEXP, 4“‘1021 € W_{Xp and 922 (S W_I;Xp (134)

that will be defined in terms of the p X p positive definite matrices
M =[I-T4Te) Iy Ip)e and N =[(I —Tol%) ¢, ¢ ]« (13.5)

when ® € 25P*7,

Theorem 13.1. If ® € Q0P*P, then there exists exactly one mvf © of the form indicated
in (13.3) such that

1 —Te ¢on 6] ¢TINTI2 0 (13.6)
_Fg I {10 6| 0 M2 '
Moreover,

(1) 6%,(0) = N2, 6%,(0) = 0,xp, 021(0) = 0% and 625(0) = M/2.
(2) Ois jp unitary on'T, i.e.,

O jpO(0) = 0(0)jpO()* = jp for{eT. (13.7)
(3) Telz] is unitary on T for every mvft € WP*P such that ()t ({)* = I, for¢ € T.
@) 101171012l <8 < Land [|622(0) 7' 00 ()| <e < 1for{ .
(5) (6216 + U)X e WP P if & € SP*P N WP,
(6) (B11 + 0126%)F € WP*P if & € SP*P N WP,

Proof. The proofs of items (1)—(4) are presented in Subsection D.2; (5) and (6) are verified

in Subsection D.5. O
Let ®(0) = Y oo {"®, belong to 257*? with @ in the matrix ball
(NTV2BM~V2 4 Cy: peCP*P and B*B < 1,}, (13.8)
with center R o
Co=—(Topt™ (I —T4Ta)™ M. (13.9)

We now introduce a second Hankel operator
GP f=g0f =tqc'®f for feHE, (13.10)

in which q denotes the orthogonal projection of L5 onto {(HY )L and B € CP*P isa
contraction.
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The operators

o0
GPe); =y for j=0.1.... (13.11)
k=0
o0
and (Tof)j = Y Vitks1be for j=0.1...., (13.12)
k=0
with yi=®_; for j=0,1,..., (13.13)

are the counterparts in £ of the operators @g) and T, respectively.
It is readily checked that

IGL =16P) and [Ts| = Tal.

Moreover,
GPE = YyoY*6 + TTo + YY*ToT*s for £ € €8 (13.14)
and
Yo = —Y*ToT*(I —T3Te) 'YM™ 4+ N~V28M~1/2, (13.15)
where
Y& = col(€,0,...,0) € 65’ for £ € C?,
Y*E=§ e€CP for &=col(§,&,...)el?,
T& = col(0,&,&1,...) € €5 for & = col(§, &1,...) € 45,
and T*t = col(§1,&2,...) €45 for & = col(§, &1,...) € £5.

Theorem 13.2. If & € Q07*?, O is specified by (13.6) and € CP*P with B*p < I,
then

(0218 + 02) ' € WEP, (13.16)
(0118 + 12)F! e WExP (13.17)
and _ R
dimker{ — (G#)*G®)} = dimker{1, — B*B}. (13.18)
If B*B = Ip, then
555)(921/3 + 622) = (0118 + 012), (13.19)
(GL)* (0118 + 612) = (6218 + 622), (13.20)
IGL ) =1 (13.21)
and R R
{0218 + Oa2)u 1 u € CP} = ker {I — (GL)*GP)y (13.22)

is a p dimensional subspace of Hf .
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Proof. See Subsection D.4. O

Let XP*? denote the class of p x p mvf’s X € WP*P which are unitary on T and
admit a factorization of the form

X(©) =X-(O)X4(@)7" for { €T, (13.23)
with (X_)*! € WP*P and (X4)*! e WP,
Theorem 13.3. [f ® € Q7*? and O is specified by (13.6), then

N(D) = {Tp[8]: & € SP*P N W_{Xp} (13.24)
and

N(P) N XP*P = {Tg[8] : & € CP*P and is unitary}. (13.25)

Proof. See Subsection D.5 for the proof of the inclusion

{Tol€]: € e WP NSP*P} C N (D)
in (13.24), Subsection D.7 for the proof of the inclusion

N(P) S {Tol€]: 6 € fol’ nSP*ry
in (13.24) and the verification of (13.25). O]
Corollary 13.4. If ® € 207*?, © is specified by (13.6) and

U = TelB] for some unitary matrix B € CP*P,

then (the Fourier coefficients of V)

N=V2BM~12 _ (TeT*d)oM Y2 if k=0

v_;, =
7)o, ifk=102,...,

(13.26)

where

(622)0
d=| (0221

Moreover, if
Gy =y,

then

GP N =Wo+ > 7y fo+LTept™ Q) (13.27)

J=1

for f = 2?0:0 ¢’ f; belonging to HY.

Proof. See Subsection D.8. O
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Theorem 13.5. The set X?*P is a subset of the set 20P*P, i.e., if X € XP*P, then the
Hankel operator Ty = qX| Hy is strictly contractive.

Proof. Let
Ax (@) =X (D) X_(5) for L eT.

Then, in view of the presumed unitarity of X on T,
Ax(@) = X+()*X4+() for L eT.
Moreover, there exist a pair of positive constants 0 < a < b such that
al, < Ax() =<xbl, for ;eT.

Therefore, the averages
1 ,
41 = o [ Axiey=ao
I

over any subinterval [ of [0, 27] of length || are subject to the bounds
Ar(Ax) <bI, and A;(A%Y) <a'l,.
Consequently,
147 (Ax) 2 Ar(AXHY2 ) < A1 (ax) (147 (A% )|
< (/a)'?,

i.e., Ax meets the Treil-Volberg matrix Muckenhoupt condition (A2) in [35], and hence,
by the main result of [35], the angle between the “past”

3-(Ax) =cls{t/§: j <—1 and § € C?}
in LY (T, Ax) and the “future”

3+(Ax) =cls{t/§: j =0 and & € CP}
in LY (T, Ay) is strictly positive:

sup{|(f=. fr)ax|: f- €3-(Ax), f+ €3+(Ax) and | fllay = [ frllay =1} < 1.
(13.28)

But

(f—s f+)AX = (X—f—»X—f+>St
= (X f-. XXy f4)a

Therefore, since g = X_ f_ belongs to (H2p )L, g+ = X, f1 belongs to Hzp and
[f£lax = llg+llse

(o, fdax = (8= Xg+)s = (8- . Tx g4 )s (13.29)



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 69
Furthermore, since
X+ maps 34 (Ayx) bijectively onto HY

and
X_ maps 3—(Ax) bijectively onto (Hzp)J‘

it follows readily from (13.28) and (13.29) that
ITxl <p<1. O
Corollary 13.6. If A({) = Q(0)*Q(0) = RQQ)R(Q)* for ¢ € T with Q%' e WP and
R*! e fol,, then the Hankel operator fp = qF|H2p with symbol
F@Q) =R®)*QO)™" for {eT
is strictly contractive.

Proof. Tt suffices to show that F € X?*? which is self-evident. O

14. Explicit formulas for the rational case

This section is adapted from [16], where all rational solutions of a matricial Nehari problem
based on a Hankel operator I : HY (T14+) — HZ (1), where T14 and T1_ denote the
right half plane and left half plane, respectively.

Let RP*? denote the set of p x p rational mvf’s. Let ®({) = > o _ . {"®, belong
to WP*? and suppose ®_(¢) = ;i_oo " ®,, belongs to R?*? and admits a minimal
realization of the form

®_(A) = C(AL, — A)~!B, (14.1)

where A € CP*P witho(A) C D, B € C"*? and C € CP*", Let

F,(\) =CI, — A7, F.(A) = B*(I, —AA")", (14.2)
1 271

Py=—
° 27'[0

) ) 1 [~ ) )
Fo(e'®)* Fy(e'®)dd and P, = 2—/ Fo(e'%)* F.(e'%)dp. (14.3)
T Jo

If ||fq>|| < 1, then I, — P, P, and I, — P. P, are invertible (see Lemma 14.10). In
addition, let

Mo ={F,(Mu:ueC?} and M, ={F.(A)u:u e CF} (14.4)
be endowed with the inner product
(Fou, Foulpm, = v*Pou and  (Feu, Feo)a, = v* Peu,

respectively.
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The assumption that the realization given in (14.1) is minimal means that the pair
(C, A) is observable and the pair (A4, B) is controllable, i.e.,

n—1 n—1
(ker CA7 = {0} and () ker B*(4%)/ = {0}.
j=0 j=0

Thus, if F,(A)u = 0 forevery A € C \ o(A), then u = 0. Similarly, if F.(A)u = 0 for
every A € C \ o*(4), where

o*(A4) ={1/A: L € a(A) \ {0}},

then u = 0. Consequently, the n columns of F,(4) and F,(A) form a basis for M, and
M, respectively. Moreover, P, and P, are both positive definite matrices.
Let N (®) denote the set of all mvf’s W € WP*P 0 RP*P with

0
Vo) =) {"®p e RV

n=—oo

and ||¥(¢)| < 1 for every point { € T. The main result of this section is devoted
to obtaining explicit formulas for the blocks 6 iks J k = 1,2, in the linear fractional
transformation 7g[&] in Theorem 13.3.

Theorem 14.1. [f ® € QP*? and ®_ has a minimal realization given by (14.1), then

N (D) = {(011€ + 012)(0216 + 022)7' : & € SP*P N RP*P}, (14.5)
where
611 (A) = AFo(A)(In — P Po) ' PeC*{C (I, — P P,) ' P.C*} 712, (14.6)
612(A) = Fo(A) Pe(In — PoPe)" P,B{B*(I, — P,P.)"' P,B}™'/?, (14.7)
021(A) = AFe(A) Po(In — PePy) ' P.C*{C(Iy — P.Py) ' P.C*}7'2, (14.8)
and 0 (A) = Fe(\)(In — PoPe) ™" PoB{B*(I, — P,P.)"' P,B}™"/2. (14.9)
Moreover,

00) |:)t_(1)1p I(li| [/1_1911(1) 912(A)i|

27101 () 022(R)

c 07[r,—4 o 1'rpt -1,
0 B* 0  I,—ad*| |-1, P;!

o

C*N~/? 0
x [ 0 BM—I/Z] , (14.10)
where
N =C(,—P.P,) 'P.C* >0
and M = B*(I, — P,P.)"'P,B > 0.

The proof of Theorem 14.1 will be deferred until the end of the section.



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 71

Lemma 14.2. [f & € Q07*P and ®_ has a minimal realization given by (14.1), then the
spaces M, and M are both n-dimensional RKHS’s with RK’s

K2(A) = F,(M) Py Fo(w)* for A, 0 € C \ o(A) (14.11)
and KS(A) = F.(M) P F.(w)* for A,w € C \ o*(A). (14.12)

Proof. Since the realizations in (14.2) are minimal, M, and M, are both n dimensional
spaces, to prove the assertion for M,, it suffices to show that:

(1) Ku e M, foreveryu € C°Pandw € C \ o(4).
2) (f.KSu)m, = u”* f(w) forevery u € C? and [ € M,.
Ifu e CPandw € C \ o(A), then K& (A)u = Fo(A)v forv = P, 1 F,(w)*u. Thus, (1)
holds. Next if f = F,v, where v € C?, then
(f. Kgu)m, = (Fov. Kgu)m,
= (Fov, Fo Py Fo(@) ) 1,
= u*Fy(w) P, P,v

=u*F,(w)v
=u* f(w).
Thus, (2) holds.
The verification for M, is completed in much the same way. O

Lemma 14.3. If ® € Q07*P and ®_ has a minimal realization given by (14.1), then:
(i) Py is the only solution of the Stein equation

C*C = P, — A*P,A. (14.13)

(ii) P is the only solution of the Stein equation

BB* = P, — AP.A*. (14.14)

Proof. Since 6(A) C D,

1 2w ) .
Po=— | Fo(e) Fole'")db
0
1 2w . .
=5 (I, — e an~'c* e, —e 0 A)~1do
T Jo
1 27 0 ) ) Sl )
= Do aryiiercdy (e Ak hdo
T Jo j=0 k=0
. S T 00, et N e (N —ih1)6 (k1
=CTC+ A"~ D e (as/=r)crc( > e A1 )do5 A
T Jo -
j=1 k=1

=C*C + A" P, A.
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Thus, P, is a solution of (14.13). Py is the only solution of (14.13) because o (A4) C D
and hence
o(A) No*(4) =0,

(see, e.g., Theorem 18.2 in [17]).
The verification of (ii) is similar. O

Remark 14.4. Since 6(A) C D,

o0
P, = Z(A*)f'C*CA/’ (14.15)
j=0
o0
and Pe =) (4)/ BB*(4"). (14.16)
Jj=0

The recipe for P, and P, given in (14.15) and (14.16) follows easily from (14.13) and
(14.14), respectively.

Lemma 14.5. [f ® € 27*? and ®_ has a minimal realization given by (14.1), then:

(i) The mvf
0o(A) =T, —(A =D F(M) Py (I, — A*) I C*

is inner with respect to C \ D.

(ii) The mvf
0c(A) =1, —(1—VDF.(MP ' (I,—A)'B

is inner with respect to D.
Proof. With the help of (14.13), it is readily checked
—1p + 05(M)0(0)* = (1 — AD)F,(A) P, Fo(w)* (14.17)

and hence that 6,, is inner with respect to C \ D.
Similarly, with the help of (14.14), it is readily checked that

I, —0:(M)0:(w)* = (1 = A@)F.(\) P F.(0)* (14.18)
and hence 6, is inner with respect to D. O

Lemma 14.6. If ® € 257*?P and ®_ has a minimal realization given by (14.1) and
f e H?, then

2
Tof)(X) = Fo(k)%%/o F.(e'%)* f(e'%)db (14.19)

for every point A € C \ o(A).
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Proof. If A = diag(w,,...,wy) and ej, j = 1,...,n, denotes the standard basis of C",
then

*

AL, —A)~! .
( )~ Z pp w]
It is readily seen that

Tof)A) = @@f)(A)

f = f(w)) < sp (S@))
=q ZCQJQ B( 1 wcjj)—i_jgcejejB(l—wc]z)j)
el

) Bf(w)),

since
S = fw))

k—wj

f (@)
e HY and A_Zuje(Hzp)L

when w; € D. Therefore,

TofIA) = CLy — )" Y exe Bf ().

k=1

Thus, upon invoking Cauchy’s formula for H.7,
1 2w f(eig)
W) = — ————d#,
S (@) 2 /0 1 — wge i
it follows that

2w

(I, — Ae—"")—le(e“’)de} .
2w

Fof)N) = COLy — 4)"" {i
27
— OOy — ) {i (B* (I, — e—”A*rl)*f(e”)d@}
27'[ 0
1 = * if
:Fo(k){gfo Fo(0)* f(e )d@}.

This completes the proof of (14.19) when A is diagonal. The preceding argument can
easily be adjusted to obtain the same conclusion when A is diagonalizable. Therefore, since
the n x n diagonalizable matrices are dense in C**", (14.19) holds for any A € C***. O
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Lemma 14.7. If ® € 207*? and ®_ has a minimal realization given by (14.1) and
h(C) = 352 o £y belongs to {(HY)L, then

rte)o-

Proof. Ifh € {(H?)Y, u € CP and A € D, then
N h u
(o) o=(e)
Po  PA
_ <h#u 1 >
Pr - Po
hu
(54) @
o
_u*h(l/o)
P ()
_u*h(l/w)
-
If w = 0, then (14.20) follows from the evaluation (ph)(¢) = hy. O

M weD )\ (0}

h() zfa)=0

(14.20)

if @eD \ {0}.

Lemma 14.8. If ® € 27*? and ®_ has a minimal realization given by (14.1) and
gEe (Hzp)J-, then

2
Fr0)() = F.(h) {% /0 Fo (@) ¢(®)d0 a4.21)

for A € C \ o*(A).
Proof. If g € (HY)* and A = diag(wy, ..., ®,), then
T% 9 = (pB*Cl, — A%)'C*g)(V)

n

= (8" Y z__c )

j=1

Let 1(¢) = £g(¢) and write A({) = D peo ¢ "hp. Using Lemma 14.7 we get

» Q) = ZB (1_Aw1)2ekekc h(@y)

= B*(I, — AA*)7! Z exe; C*h(l/@y)
k=1
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n
= Fe(A) ) exefC*h(@y). (14.22)
k=1
Formula (14.21) is obtained from (14.22) using Cauchy’s formula. O

Lemma 14.9. If ® € 207*? and ®_ has a minimal realization given by (14.1), then:

(i) The formulas fq;Fcu = F,P.u and /l'\“prov = F. P,v hold for every choice of
u,veC".

(i) Ifg e (Hzp)l and (g, Fou)y = 0 for every u € CP, then fgg =0.
(i) If f € HY and (f, Fou)y = 0 for every u € CP, then fcpf =0.

Proof. Assertions (i)—(iii) follow easily from (14.19) and (14.21), respectively. O]
Lemma 14.10. If ® € 207*? and ®_ has a minimal realization given by (14.1),
PCI/2 P, Pcl/2 = UDU*, where U € C"™™" is a unitary matrix with columns uy, ..., u,
and D = diag(s?,...,s2) and sy > -+ > s, > 0,

1
fi=FeP?u; and g; = (—) F,PMu; for j=1.....n,
Sj

then:
() Tofj =s;g, and/l:fbgj =s;fjforj=1,....,n
0 if j#k
1 if j =k.
3) (fij.gk)st =0for jk=1,...,n.
@ I, — P.P, and I, — P, P. are invertible matrices.

@ (fis fide = (8. 8k)st = {

Proof. Assertion (1)—(4) are an easy consequence of the formulas advertised in item (i)
of Lemma 14.9. We will now check that I, — P, P, is invertible. In view of

Iy — PcP, = PM*(I, — P2 P, P2 P72,
I, — P, P, is invertible if and only if 1, — Pcl/2 P, PCI/2 is invertible. In view of (1),
(I —T3Te)fj = fi —Tos;8;
=(1 —sf)fj for j=1,...,n.

Thus, as I — fgﬁp is a positive operator and f; is an eigenvector corresponding to the
eigenvalue 1 — s?, l1—-s; >0forj =1,...,n. Thus, I, — PP, is invertible, and
consequently, /,, — P, P, is also invertible. O
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Lemma 14.11. [f ® € 27*? and ®_ has a minimal realization given by (14.1), then
(U =T3Te) ' 1p}() = Fe()Un — PoPe) ™ PoB (14.23)
forA € C\ a(A), and
(I =Tol5) ¢ 1,}() = Fo()(In — PePo) ' P.C* (14.24)

for C \ o*(A). Moreover, the positive definite matrices M and N defined in (13.5) can
be written as

M = B*(I, — P,P,)"'P,B (14.25)
and N =C(Il,— P.P,) ' P.C*. (14.26)

Proof. The proof is broken into steps.

1. Verification of (14.23) and (14.24). Tt is readily seen that (14.23) is equivalent to

D ATETe) 1,30 = ) Fe)(PoPe) PoB. (14.27)
j=0 j=0
But
k o k '
D ATETe) 13(A) = Y Fe(M(PoPe) P B (14.28)
j=0 j=0

can be checked by induction on k using formulas (14.19) and (14.21). Thus, (14.27) holds
and so must (14.23).
The verification of (14.24) is similar.

2. Verification of (14.25) and (14.26). In view of (14.23),

ME (1 -T3Te) 1, Il

= [F.(In — PoPc) ' PoB, I,]g
= [Fe, Ip]«(In — P, Pe) "' P, B

1 2w .
- B* {_f B*(I, — e’gA*)_lde} (In — PoPe) "' PoB
0

21
00 1 2w .
=B*) {E/ e’ke{A*}kcw% (I, — P,P.)"'P,B
k=0 0

= B*(I, — P,P.)"'P,B.

The verification of (14.26) is similar using (14.24). O]
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Theorem 14.12. If & € QP*? and ®_ has a minimal realization given by (14.1), then:
(i) The n-dimensional RKHS M, can be identified as

M, = (H))* © 6,(HD)*
with RK

Ip - eo(k)eo(w)*

Ko == ®

for A,w € C \ o*(A).

(ii) The n-dimensional RKHS M can be identified as
M, = (H}) © 6:(HF)

with RK
Ip - ec (A)ec (w)*

Po(A)

Proof. The formula for KZ (1) and K¢, (1) follow from (14.17) and (14.18), respectively.
The identifications for M, and M, follow from Lemma 14.9 and Theorem 14.13. O]

Ko =

Jor L,w € C\ a(A).

Theorem 14.13. [f & € Q7*? and ®_ has a minimal realization given by (14.1), then:
(i) The Hankel operator T maps M. injectively onto M, and

kerTe = HY © M.,. (14.29)

(ii) The Hankel operator ffp maps M, injectively onto M. and
ker T = (H))' © M,. (14.30)

Proof. Assertion (i) follows easily from the definition of M, given in (14.4) and the
formula (14.19), since (C, A) is an observable pair: if [ f = 0 for f € M., then
f = Fu for some u € C? and

Tof =Tou=F,Pu =0.
Thus, as (C, A) is an observable pair and P, is invertible, ¥ = 0. Therefore, fq; maps the
n-dimensional space M, injectively onto the n-dimensional space M,. Finally, (14.29)

follows from (14.19).
Assertion (ii) is proved in much the same way since

(T Fou)(A) = Fe(X) Pou

and, as (A, B) is a controllable pair, (B*, A*) is an observable pair. O
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Proof of Theorem 14.1. In view of (13.24), it suffices to justify the formulas advertised in
(14.6)—(14.9). In view of (14.23) and (14.25),
022(A) = Fe(\)(In — PoPe) ' P,BM™'/2
= Fe(\)(In — PoPc)"' PoB{B*(I, — P,P.)"' P,B}"'/2. (14.31)
The formula for 6, can be obtained from (D.15) using (14.31) and item (i) of Lemma 14.9.

The verification of the formulas for 6;; and 6, are similar.
It is readily checked that

A1, 01 _[C 0][AL,—4 o 1
®(’U[ 0 1,,]_[0 B*M 0 I,—AA*
(In_PcPO)_IPc Pc([n_POPC)_IPo
Po(ln = PePo) ' P (In— PoPe)™' P,

C*N~/? 0
X [ 0 BM‘I/Z} . (14.32)

P7U =L Un—=PeP) ' Pe Pely— PoPe) ™' P,
_In P_l Po(ln _PCPD)_IPC (In _PDPC)_IPO ’

o
(14.10) follows directly from (14.32). L]

Remark 14.14. The matrix
'13' _ Po_l -1,
~|-1, P!

o

appearing in (14.10) is positive definite. By a Schur complement argument,

5 _[In —P[P =Py 0 I, 0
I 0 P =P, I,

o

[t =P [PV~ PP, PP 0 [ 1 O
0 I, 0 P |-Po 1]

(=)

We have already observed in the proof of Lemma 14.10 that the eigenvalues of the positive
definite matrix Pcl/ 2P0 Pcl/ 2 Jie in (0, 1). Thus,

I, — PY2pP,P}? 0

and consequently P> 0.

15. An inverse scattering problem

In this section there is partial overlap of the connection between the considered Nehari
problem and a discrete analogue of an inverse scattering problem considered by Krein and
Melik-Adamjan [28].
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Theorem 15.1. [f ® € Q0P*?, O is defined by (13.6) and ® = Te[E] for a unitary matrix
& € CP*P, then there exists exactly one factorization

®(0) = UR()* Q)" forall points { € T (15.1)
with the following properties:
(1) O*' e WP*P and R*' e WP,
(2) Q(0) > 0and R(0) > 0.

(3) 2O Q(5) = RE)R()* for all points § € T.

(4) The integral

1 2w . .
2 ), Q(e")* Q(e')db = 1I,.

(5) U € CP*? is a unitary matrix.

Proof. The proof is broken into steps.

1. ® admits at least one factorization of the form (15.1). Let
O\) = {021(M)E + 622(A)ZV  for A eD, (15.2)
where

| —-1/2

27
Z- {2— / (021 (€)€ + 62 (e*)]* [021 ()€ + Oz (016
T Jo

and V' € CP*? is a unitary matrix such that
0(0) = 622(0)ZV > 0,

and
R(A) = V*Z{&*6,(A) + 61,(M)}U  for A D, (15.3)

where U € CP*? is a unitary matrix such that
R(0) = V*Z&*6%,(0)U > 0.

By Theorem 13.1, (811 & +012)T! € WP*P and (05,8 +625)*! € W_’;XP. Consequently,
in view of (15.2) and (15.3), Q%! € WP™” and R*! € WI™P. As

R(O*Q) ' =U*Te[€] for ¢ €T,
®() =URQ* Q)" for (T

and the factorization above satisfies properties (1)—(5).
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2. ® admits exactly one factorization of the form (15.1) that meets constraints (1)—(5). If
®=UR*Q"'=UR*Q""' onT,
are two factorizations such that (1)—(5) hold, then
R*U*UR*=0"'Q on T. (15.4)
Therefore, since 0710 € WP and R*U*UR* € WP*p,
0@ =K for K eCP.

However, since
1 2w ) ) 1 2r .
Iy=5-[ 0E"*0@"d0=— [ 0(")*0(")de.
27 Jo 21 Jo
K must be unitary, and, as Q(0) = @(O)Ig the uniqueness of the polar decomposition
for the positive definite matrices Q(0) and Q (0) forces

K=1I,
and, consequently, "
Q) =0() for ¢eT.
Therefore, o
RO)U*U = R(0),
and as R(0) > 0 and %(0) > 0, another application of the uniqueness of the polar
decomposition leads to the conclusion

~

U=U.
Thus, _
R(¢) = R(¢) for {eT
and the proof of Step 2 is complete. O

Definition 15.2. If 2 is a CMV matrix based on a density A that satisfies (D1) and (D2)
and a unitary matrix f_; € C?*? then we will write 2{ € W.

Corollary 15.3. If ® € 20P*P, O is defined by (13.6) and & = Tg[E] for a unitary
matrix & € CP*P, then there exists exactly one CMV matrix 24 € W whose scattering
matrix is P.

Proof. In view of Theorem 15.1, there exists exactly one factorization

() = URQ)* Q)™ for L eT, (15.5)

where Q, R and U satisfy properties (1)—(5) in Theorem 15.1. In view of Theorem 9.6,
the CMV matrix 2 based on A(¢) = Q(£)*Q(¢) and f—; = U belongs to the class W.
Moreover, in view of Definition 10.3, ® is the scattering matrix of 2(. The asserted
uniqueness of 2 follows from the uniqueness of the factorization (15.5). O

Remark 15.4. If, in the proof of Theorem 15.1, Z = I,, then in formulas (15.2)
and (15.3),
V=I, and U =6.
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16. A mvf of the form (10.5) is a solution
of a related Nehari problem

In the following theorem, we shall let Tg[&] be as in (13.3).
Theorem 16.1. Suppose ® € WP*P and f_, € CP*? is a unitary matrix such that:
(i) ® = B_1R*QO ! is unitary on T.
(i) O*', RE e WP, 0(0) > 0 and R(0) > 0.
(i) 5= [27 Q(e*)*Q(e')dl = I,.
Then
(1) ol < 1.
(2) There exists exactly one mvf ® € W?P*2P ywhich satisfies (13.6).
(3) ® = Tol€] for some unitary matrix & € CP*?,

Proof. In view of the hypotheses (i)—(iii), ® and R* Q™! both belong the class X 7.

It follows from Corollary 13.6 that ||/I:R*Q—1 | < 1. But, since |To| = ||fR*Q—1 I,
(2) follows immediately. Assertion (2) has already been observed in Theorem 13.1.
Assertion (3) follows directly from (13.25). O

A. Scalar results

In this short appendix a number of formulas that have been established earlier for p > 1
are reviewed in the special case that p = 1 in terms of the notation introduced in Section 3.
This leads to simplifications and helps to ease comparisons with the extensive literature
that is available for classical scalar orthogonal polynomials on T.

Theorem A.1. If { EL}%° , are the polynomials defined by (2.1) and (2.2), respectively, in
terms of the Fourier coefficients of a density A € W'*! which satisfies (D1) and {Fni};’f’:o
are the polynomials defined by (5.3) in terms of the Schur parameters {f,}or ., then:

W Y =y =y for jk =0.....n.
() E; (M) = Fy (W) and E;f (A) = Ff (L),
3) A(ENH ) = E; (M) and A" (E;)* () = E;f (V).
@) Bn = 7o (100} = vao ran "
Proof. If p = 1, then, A({) = A(¢) for ¢ € T, and consequently
A_,' = A,j for ] =0,:|:1,....
Therefore, the Toeplitz matrices T,,[A] and T}, [Z] satisfy

Tu[A]=Tu[A] and T, =T,=T],
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i.e., L
n) _ () _ ()
Vie = Vej = Ynekn—j-
Thus, (1) holds.

Next, formulas (5.28) and (5.27) imply that the unitary 1 x 1 matrices U, and V}, are
both positive. Therefore U, = V,, = 1 and hence (2) holds, thanks to the two formulas
in (5.25).

Finally, (3) is a straightforward computation and (4) follows from (1) and formu-
las (5.29) and (5.30), since U, = V, = 1 and the terms in the indicated formulas
commute. O]

Remark A.2. Let {¢,}5°, be the sequence of polynomials constructed by the Gram-
Schmidt procedure in (1.1.1) of Simon [31] with respect to a density A € W!*! that
satisfies (D1). In Theorem 1.5.2 of [31], Simon constructed a sequence {oy, }5,2, such that

lan| <1 for n=0,1,...

and
[Gni1(0) 1 M) = [Apn(X) u(W)] H(—atw) for n=0,1,....  (A.D)

where H (o) is given by (4.6) and a,, (A) = A" (D).

Let {F, }52, denote the polynomials defined by (5.3) in terms of the Schur parameters
{Bn1y of A € WL Since {F, (1)}52, and {¢, }>2, are orthonormal sequences of
polynomials with respect to A with positive leading coefficients, it follows from Theo-
rem 5.8,

¢on(A) =F,;(A) for n=0,1,.... (A.2)

Comparing (A.1) and (5.3), it follows easily that

Ay = —Pny1 for n=0,1,.... (A3)

B. Dictionary for matrix polynomials and Schur parameters

To ease the comparison between results formulated in this paper and those that are pre-
sented in the basic references [9], [10] and [21], a dictionary of notation is presented
below.

Let A be a p x p density which satisfies (D1). A sequence of p X p matrix polynomials
{An(1)}52, will be called LMOP (left matrix orthogonal polynomials) with respect to A
if the leading matrix coefficient of A4,,(1) is an invertible matrix and

1 2m

Y. Am () AE0) A, (e"0)* = 8pnl, for m,n=0,1,....
T Jo

Similarly, a sequence of p X p matrix polynomials {B,(1)},2, will be called RMOP
(right matrix orthogonal polynomials) with respect to A if the leading matrix coefficient
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of B, (A) is an invertible matrix and

1 2w ) . )
— B (e)*A(e®) B, (¢') = 8unl, for m,n=0,1,....

2 0
The acronyms LMOP,, (resp. RMOP,,) stand for the left (resp. right) orthogonal matrix
polynomials of degree n with respect to A; LC,, denotes the leading coefficient; SP denotes
the Schur parameters with respect to A.

Object ‘ This paper [9] [10] [21]
LMOP, | A"F;f (%)* = ol = PV = ¢LA.n)
LC, Y, Ky M, J(n,n)
RMOP, F(A) = ok = 0.00) = ¢RA.n)
LC, X, kR Ny K(n,n)
SP, ‘ _,Bn+1 = (o77] = Wn = Tn
Table 2.

Warning. In [10] and [21] Schur parameters are denoted by {£,}2,. We have chosen
new notation to avoid confusion with the matrix orthogonal polynomials £, and E,, that
used in this paper.

The asserted equalities in rows 1 and 3 follow by repeated applications of the following
elementary fact:

Lemma B.1. IfT,S.Y € CP*P, Y is invertible, TY ™' = 0, SY™' = 0and T = US
with U unitary, then T = S.

Proof. Under the given assumptions
TY™'>0 and TY'U*>0.
Therefore, by the uniqueness of the polar decomposition of a matrix, U = I,. O

The verification of the equalities in the above table is divided into steps.

1. Verification of the equalities for the LMOP and RMOP. By definition,

Fir() = o5 (0) = Po(V) = 9= (1.0) = I, (B.1)

and Fy (L) = o&) = 0o(h) = ¢R(1,0) = 1,. (B.2)
In [9],

KnL+1{KnL}_1 >0 and {Kf}_lK,f_,’_l >0 forn=0,1,.... (B.3)

Similarly, in [10],
My M,V >0 and {N,} !N,y >0 forn=0,1,..., (B.4)
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whereas, in [21],
Jn+1,n+1D)*J(n,n) ™ >0 forn=0,1,... (B.5)
and Kn,n)*Kn+1,n+1)*>0 forn=0,1,.... (B.6)

We will now verify the equalities in row 1 of the table. The verification of the equalities
in row 3 is carried out in a similar way using the fact that F,"(0) is invertible and hence
the leading coefficient of A” ;" (1/ X)* is invertible. In view of Theorem 5.8, there exist
a sequence of p x p unitary matrices {H,}52, such that

oRMHY = E; (&) for n=0,1,....

Consequently,
A A

and, hence,
Hn{KrIf}_lKr$+1Hrt+l = {yrgrrlt)}_l/z{yrsr-?l,n-i-l}_l/z

= Vullp — Bus1Bip )2V, for n=0,1,...,

where (5.31) was used to obtain the last line. Thus,
Vi Hu k3™ et H'yy Vi = 0,
However, as Vo = Ho = I, and {«&}"'«R > 0 and
&R HF Y >0,

Lemma B.1 impllies that 1 = V;*. One can continue inductively and deduce that

H,=V; forn=0,1,....

Therefore,
ok = E;(W)V, forn=0,1,....
Since E, (A)V,, = F, (1) (see (5.26)), the first equality in row 1 of the table holds. The

remaining equalities are verified in a similar manner.

2. Verification of the equalities for SP. In view of the identifications made in Step 1, the
recursion appearing above formula (3.12) in [9] can be rewritten as

[Fn__H()L) Fn“fH()k)] = [XF,,_()&) F,f(/\)] H(-a,) forn=0,1,...,
which, upon comparison with (5.4) implies that
H(—ay) = H(By4+1) for n=0,1,....

Therefore, the equality —f,,+1 = o, forn = 0, 1, ... follows from (4.3). The remaining
equalities in row 5 of the table follow from the identifications for the matrix orthogonal
polynomials.
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C. Baxter’s inequality

In this section we present a matrix version of Baxter’s inequality that is adapted from a
paper of Findley [20].
Theorem C.1. If A meets condition (D1), h(¢) = Z?:o {jhj is a p X p matrix polyno-
mial,
. Z?:O Ak_jhj fork = 0, ..o, n
&= fork < —landk >n+1

and g(¢) = Z?:o {l g, then for every choice of ¢ € (0,1), there exists a positive
integer n such that

(10~ *Iw + IR w)*

T 1A e liglw  whenn = s (C.1)

2w < {

Proof. Let

b 0o
(M5 @) =D ¢ f; formvfs f =" ¢/ fj in WP*P
Jj=a j=—00
and set »
P =D (Ah); and f(©) =) ¢/(Ah);.
j=—o00 j=n+1

(To keep the notation in mind, think of p as the past and f as the future.) Then the
following four identities are valid for every point ¢ € T:

AR = p©) + g + f(5), (C.2)
QOh(©) =01 p) + Q1) ") + Q)" £(D), (C3)
R(O)*h(&) = RO p(©) + RE)™'¢(©) + RO (). (C4)
and
h(@) = A p(Q) + A g0 + AQ)T f(©). (C.5)

The identity (C.5) implies that
IBlw < 1O Wl @™ plw + 1A Iwligllw + IRT*IWIR™ fllw.  (C.6)

The rest of the proof is broken into steps.

1. Verify the inequality
M= 0 fllw < IMZEF2 0 * [wll £ llw- €7
Let Q)™ =L(§) =Y )_ oo ¢/Ljand f(§) = 35,4, ¢/ f;. Then
IMZ5 LS lw = IMZSATZE L) £l
< 1M=L Liwll £,
which is equivalent to (C.7).
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2. Verify the inequality
TS R plw < TS R Il pllw- (C.8)
Let R())™" = Y524¢/M; and p(¢) = j_';—oo ¢/ pj. Then

| TT n+1R P”W = ||Hn+1{(H?+2R71)P}||W
< I, R wlplw.

which is equivalent to (C.8).

3. Verify the inequality

10~ pllw < 10 Iwligllw + ITZL 0~ [wlI RIwII R 1w (C.9)
Since [T~ Q~*p = Q~*p, formula (C.3) implies that
Q7 p+ N {Q 7 g+ 07" f} =T Qh=0.
Therefore,

107 pllw = M2 {Q ™ g + 07" f} lIw
<o lIwlglw + M= 07" fllw-

The inequality (C.9) now follows easily from the last inequality, (C.7) and the observation
that

I£ 1w = IRR™ fllw < [RIWIR™" flIw-
4. Verify the inequality
IR fllw < 1T R Iw @ Iwl @7 pllw + IR Iwllg - (C.10)
Since H;’,OH(R_lf) = R™! f, formula (C.4) implies that
N2, R 'p+ 02, R 'g+ R f =T R*h = 0.
Therefore,

IR fllw =I5, AR p + R g} lw
< I35 R pllw + IR HIwllglw

The inequality (C.10) now follows easily from the last inequality, (C.8) and the observation
that

Iplw = 1100 pllw = 1Q*IIWII 2™ pliw-
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5. Verify (C.1). Fix e € (0, 1) and choose n, so large that
ML 0™ wlRlw <& and [T, R wlQ*w <& whenn > ne.

Then, by (C.9) and (C.10), the sum

10~ pliw + IR™" fllw
{107 plw + IR flw) + IO lIw + IR llw} liglw.
since |Q 7" [ = [Q™*[lw and R~ [l = [R™*[lw. Thus, by (C.6),
1l = Q™ lw + IR w127 pllw + IRT! fllw} + 1A Iwliglw

_ _ 2
(10~ *llw + IR [Iw)
1—¢

=

+ 1A w llglw. O

D. Proofs for the Nehari problem

D.1. Preliminary observations.

Lemma D.1. [f ® € P*?, y; = ®_; for j = 1,2,...and f(0) = Y 520 ¥ fr
belongs to HY, then

To /(&) = Zz kafk—é sz(rcpf)J for €T, (D)
j=1

where £ denotes the vector in 55 with components fr, k =0,1,..., and
ITell = [Tl (D.2)
Proof. f ®(0) = Y 02 (" ®y, then

T /)0 = @)

o0

=Y Y ki
Jj=1 k=0

which agrees with the first formula in (D.1). The second formula in (D.1) follows
from (13.12). Formula (D.2) follows from the Plancherel formula for Fourier series. [l

Lemma D.2. I[f ® € WP*?, y; = &_; for j = 1,2,...and g({) = Y fuy (¥ ar
belongs to (Hzp)l, then

T5e)(0) = Zz (Zy;;kgk):sz(r;T*g)j for L €T, (D.3)
j= k=1

Jj=0

where g denotes the vector in Kg with components g, k =0,1,....
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Proof. If g(£) = 332, L ¥ gx belongs to (HY)*, then

T52)(0) = (pMag)(0)

=p Z ¢’ ( > q’;—kgk)

j=— k=—o00
o0 ) o0
-3 (S ).
j=0 k=1
This justifies the first equality in (D.3); the second follows from (13.12). L]
Lemma D.3. If ® € 207*?, then
Totkf =qt*Tef for f € H andk =0,1,... (D.4)
and R R
Tht*g =p*The forge (H) andk =0,1,.... (D.5)

Proof. 1If f € Hf andk = 0,1,.. ., then clearly

Tol* f = al* (b + 9)®f = at*q®f = q¢* T f,
which justifies (D.4). The verification of (D.5) is similar. O

Let
011(8)  012(9) Yot TTa; 5L ¢TTh)

def
621(8)  022(8) Yt Xiotd;

With the help of Lemmas D.1 and D.2 it is readily checked that ®(A) is a solution
of (13.6) in the Wiener algebra YW??*2? if and only if the system of equations

I -Tel[ a T*b YN~1/2 0
[—F;;, 1 ][T*c d}:[ 0 YM™? B-7

() = (D.6)

for the vectors

do bo Co d()
a=|9|, p=|h c=|a d=|%

) ) ’

admits a solution with a, b, ¢ and d in Klp . Since the operator I'g is compact in 2 a
theorem that seems to have originated with Krein (see e.g., the discussion in Gohberg
and Zambickii [24], Lemma 7.1 in Adamjan, Arov and Krein [1], and the formulation in
Theorem 3.1 in [18]) guarantees that I'g has the same nonzero spectrum in both Ef and Kg
(as well as a host of other Banach spaces). Therefore, since |['¢| < 1 as an operator
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from £5 into itself and the columns of the right hand side of (D.7) belong to £4, the vectors
a, b, ¢ and d belong to €277 as needed.
It is useful to note that (D.7) is equivalent to the four equations:

a=TeT*c+ YN V2= (I —Tel) 'YN~/2 (D.8)
¢=TTgza (andhence co = Opxp); (D.9)
d=TiT*b+YM V2 = (I —Tile) 'Y M~1/2 (D.10)
b =TTed (and hence by = 0pxp). (D.11)

Thus, for example, Lemma D.2 implies that
o0
D300 =Y ({T3T*Ta};.
j=0
Consequently,
o0 o0
{7100 =T 7101 —= Zéjcﬂrl = Z {{T§T*Ta};
Jj=0 Jj=0
< T"c=Tja.

The remaining identifications are verified in much the same way. Moreover,

GP (cp + d)E = ap +b)g (D.12)
and (GPY* @B + 1) = (cf + d)E. (D.13)
O

D.2. Verification of items (1)—(4) in Theorem 13.1. The preceding discussion guar-
antees the existence of exactly one mvf solution ® with blocks 6%, j,k = 1,2, of the
form (13.4) to the equation (13.6). The rest of the proof is divided into a number of steps.

1. Verification of (1) of Theorem 13.1. This follows from the formulas for the the blocks
in (13.6):

£ 01 =Tl 01 + N2 = (I —Toly) 't T'NTV2, (D.14)

61> = Tobao, (D.15)

¢y =Tt 101, (D.16)

and 0y = i1 + M~V2 = (1 —T5Te) ' M~V/2. (D.17)

Thus, for example, in view of formula (13.5),
022(0) = [(I —T5Te) ' M~V2 1],
=[(I =T4Te) M, I)JuM ™2 = MY/,

The verification of the formula 6% (0) = N1/2 is similar; the verification of the remaining
two formulas is easy.
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2. Verification of (2) of Theorem 13.1. In view of (D.16),

(¥ 0001, £ 021 0) g = (CC 10010, THE 1011 0)
= (Tol* " 001u, L1 0110)
= (q¢* Tl 0210, L1 0110)
= (¢ 00 = TN T e o)y

fork =0,1,...and u,v € C?. Therefore,

(¥ (07,611 — 03,620)u, vy = (CENTY2u, 011 0)
(N=V2u, N2y if k=0

0pxp if k=1,2,...
A, ifk=o0
C0pxp, ifk=1.2,....

Since
011(0)*011(0) — 021(§)*021(8) = {011(§)*011($) — 021(5)"021(5)}",
the Fourier coefficients
(03,611 — 03,621) =0 alsofork =—1,-2,....

Thus,
011(0)*011(¢) — 021(5)*021(¢) = I, forevery point ¢ € T. (D.18)

This justifies the 11 block of the first asserted identity in (13.7). The remaining identities:

011(6)*012(8) — 021(£)*022(5) =0 for { €T (D.19)
and 912(&)*612@‘) - 922({)*922@') = —Ip for é' eT (DZO)

are verified in much the same way. The second asserted identity in (13.7) is immediate
from the first.

3. Verification of
(0216 + 922)_1 e WP*P  and (611 + 9128)_1 e Wexp
Jor & e WP*P and || &(C)|| < 1when € T.

If £%(021(£)E(8) + 022(¢)) = 0 for some vector ¢ € C? and some point ¢ € T, then
it follows from the 22 block of the formula ®(¢)j,®({)* = j, on T:

022(0)022(0)* = 021(£)6021(0)* + 1, for { €T, (D.21)
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implies that

§°8 = £"{022(0)022(0)" — 021(D)621(0)7}€
= "0 (DIEQED)" — 1p}021(0)"E < 0.

Therefore, £ = 0, and hence (0,1& + 65,) is invertible on T; (621€ + 62,)~! € WPXP
follows by item (1) of Theorem 5.1.

The proof of the second assertion is easily modelled on the proof of the first starting
from the 11 block of the formula

0(5)jp®Q)* =j, for {eT.

4. Verification of (3) of Theorem 13.1. Let W(¢) = (To[r])(¢). Since (6217 + 020) 7! €
WPXP by Step 3, W belongs to WP*?, By a straightforward calculation,

Iy = W@)* W) = {0217 + 022} "Iy — T* D021 + 022D}
=0,x, for €T,

since 7($)T(§)* = Ip.
5. Verification of (4) of Theorem 13.1. Let X(£) = 025(£)"1621(¢). In view of (D.21),

XQOXQ)* =1 —02()'022()7 for T

Since || X(¢)|| is continuous on T and || X(¢)|| < 1 for each point { € T, there exists
0 < & < 1 such that

IX@) ™M = 11622(0) 7" 021 () <e <1 for L eT.

This completes the proof of the second assertion in (6); the proof of the first is similar. [

D.3. The one step extension. In this subsection we shall show that if ® € 2J7*?, then:

(1) The Hankel operator Gyo = que| HY based on the mvf

-1 o]
O =y+ Y Uo=y+ Y Ty
j=1

J=—00

is contractive if and only if Y, is in the matrix ball

(NTV2ZKM™Y2 4 Cy: K € CP*P and K*K < I,)} (D.22)

with center
Co=—Y*I''/T*(I -TT)"'ym™! (D.23)
= —Y*I'/T*TF(I —TZ/TT*TH)7'1Y, (D.24)

where I'; is defined below in (D.25).
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(2) If K is unitary, then ||6\po|| = 1 and

dim ker (I — GG yo) = p.

The construction is based on the one step extension method of Adamjan, Arov and Krein [2]
and is adapted from [2] with some variations based on the analysis in [18].
It is convenient to work in the (discrete) time domain. Towards this end, let

Vj Vi+1 Vji+2
Yi+1 Vi+2 Vj+3

Viz Vi+3 Vi+a for j =1,2 (D.25)

r; =

denote the Hankel operators on £ based on the Fourier coefficients {®_; }52, and let

vo C
G=[4 T]= [B FJ (D.26)
with
A= B?} B=T,Y and C =Y*T). (D.27)
Thus,

T2l = Tl = ITell <1,

and, in terms of this notation, the matrices M and N in (13.5) can be expressed as
N=Y*(I-T4TH)7'Y and M =Y*(-T;T)7'Y. (D.28)
It is readily checked that

GG* <] < AA* < I —-I'I'{
— (I -T T V244*(U -\ TH V2 <1
= A*I-T ) tA=<1.

Thus, upon expressing (I — T'1T'f)~! in block form as

(I-TIH ' = [g; Zj with Zq; € CP*P, (D.29)

it is easily seen that GG* < [ if and only if

Zit Zi2||vo
* *
[v& B*] [221 Zzz] [ HEN (D.30)
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The rest of the discussion is broken into steps.

1. Zu=Y*UA-T1"IH 'Y ={I-CU-TI)'c*y ' =N

and

Ziyp = ZCTy(I - T3t
Since I'y = [§i|,
2

._[I-cc* —CT3
[=hly= [ —IC* 1 —rzr;}

[ —cmw T [x o I 0
~lo I 0 W||l-wrer 1]

with
X=1-CC*-CIy(I-T,oI})"'IhC*
=I1-C(I-T3Iy) c*
and W =1-T,Tj.

Therefore, X is invertible,

Zi Zi2 *—1
= -I4T
|:Z21 ZZZ ( 1 1)

B I ojfx=* o J[1 cryw!
“woiner 1|l o wt|o I ’

Zy=Y*I - THly =x7!

and hence

is invertible, and

Zp=X'crywt

2. Zyy — ZonZ{' Z12 = (I = T2.T'3)~'. By Schur complements,

—1
_ _ Z V4 0
_ 1 1_ 1 Zi2
(Zoo—ZnZ7' Zin) ' =0 I] |:221 222:| |:Ii|

-]
—fo - [FCJ [c* 13 m

=1 —T,I}.

93
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3. GG* < I ifand only if
Vo + B*ZnZN)Z11(vo + Z1' Z12B) 2 I — B (Zao — Zn Z1 Z12)B.  (D.31)
This follows easily from (D.30).

4.{1 —B*(I —T,I}) "B} = Y*(I —=T{T\)"'Y = M. SinceT; = [B T3],

_ * _*
I—F;‘n:[l B*B BFZ]

—T}B I-T}I,
Therefore, as
I —B*B—B*To(I —TyT,) 'T3B =1—-B*(I —T,I'}) !B,

I —B*To(I — r;rz)—l} [1 — B*(I —T,T})"'B 0 }

* —
1—r1r1_[0 I 0 1-T3T

y [ I 0}
—(I -T3)7'T5B 1
and the advertised formula drops out by computing the 11 block of (I — I'f ry)—1L.
5. The inequality GG* < I holds if and only if
Yo € (NTVZKM™Y2 4 Cy: K € CP*P and K*K < I,},

where
Co=—Y*T\T*T'{(I —T\/TT*T})"'T'Y.

In view of the formulas in Steps 1 and 4, the constraint (D.31) can be reexpressed as
(Vo + B*ZnZiDN(o + Z1 Z2B) < M.
But this holds if and only if
N'Y2(yo + Z1' Z1nB)M'?> = K
is a contraction, i.e., if and only if

Yo=N"Y2KkM~V2_77'Z,B
=N"V2KM~YV2_CT}(I —T,I}) " 'B
= N"V2KkM7Y? 4 ¢,

with
Co=—CT5(I —T,T3) 'B.

But this is the same as the formula for Cy in (D.24), since I, = I'1T.
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6. If yo is in the matrix ball (D.22) and G is defined by (D.26), then
dimker (I — G*G) = dimker(/, — K*K).

If & € €5 Nker(I — G*G) and G§ = 1), then & and 1 must satisfy the following system
of equations:

vofo + CT*E = no (D.32)
Bt + TaT*™E =T (D.33)
Yono + B*T*n =& (D.34)
C*no + TiT*n = T*E. (D.35)

Equations (D.33) and (D.35) imply that

T*n= (I —T2I3) " {B& + I['2C*no}
and T*¢ = (I —I3T2) {3 B + C*1o}.

But, upon inserting the last two formulas into (D.32) and (D.34) it follows that

{vo+ CU =T3To) 7' Ty BYEg = {I — C(I = T5T2) ™' C*ino
_ N—l
= Mo,

by the formulas in Step 1 and, similarly, with the aid of the formulas in Step 4,
(v + B*(I = T2T3) ' T2C% o = M~ 4.
The last two displayed formulas reduce to
KM~ 28 = N"Y2p5 and K*N~V259 = M~1/2,

when y, belongs to the matrix ball specified in Step 5. But this in turn leads easily to the
conclusion:

(I —G*G)§ =0 = that the components of § = [;:g} = [7?25}

meet the constraints

(I, — K*K)M ™28 =0 (D.36)
and
T*t = (I —T3T2) Y3 B + C*N'2KM ™12}, (D.37)

A lengthy but straightforward calculation serves to establish the converse: Thus,
(I -G*G)¢§=0 <= (D.36)and (D.37) hold.

Therefore, the assertion in Step 6 holds.
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D.4. The proof of Theorem 13.2. Let G 51?0) denote the Hankel operator based on the mvf
®° € WP*P with Fourier coefficients {®y }2: where @ is given by (13.8). Then,

—00°

GLRNHQ) =@+ Y7y fo+ TR f)Q). (D.38)

j=1

where in (D.38)
SA) = f(0)

(Rof)(0) = 2

and, in view of assertion (2) in Subsection C.3,
IGL = 1.
Moreover, with the help of (D.38), it is readily checked that
65{?(921/3 + 622) = 0118 + bh2. (D.39)
Thus,

(I = (GLY* LN (6218 + 622), (6218 + 622))

= (0218 + 022,021 8 + O22)s — (52{,33(921/3 + 622), @Efo)(Qzlﬂ + 022)) st
= (0218 + 622, 0218 + 022)sc — (6118 + 012,0118 + 021)s = 0,

since (0118 + 012)(021B + 022)~ ! is unitary on T.

1. Verification of formulas (13.19), (13.20) and (13.22). Since I — (6 Efo))* G Elfo) is positive
semidefinite, the preceding set of displayed formulas imply that

Opp = (I = (GCENY*CL) (0218 + 622) = 6218 + 622 — (CL)* (6118 + 612).

which justifies (13.20); (13.19) is verified in (D.39). Suppose nextthat (I — (GE)*GL)) f =0
and set

g=f—(0218+ 0)u

with u = 05,(0)~! £(0). Then, since g(0) = 0 and g € ker{/ — (6553)*6233}, for-
mula (13.27) implies that

lgl? = 1GL eI = ITal? < Tl /gl

and hence, as ||fq>|| < 1, that g = 0. Thus, ker{I — (65152)*6552} is spanned by the p
columns of the mvf 051 8 + 055.
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2. If B € CP*P and BB* = I, then (6218 + 622)~" € WP, Tt suffices to show that

the mvf F(1) = 6,1 (1)B + H22(A) is invertible in . Theorem 13.1 guarantees that F (1)
is invertible for A € T. If there exists a point w € D and a vector u € C? such that
F(w)u =0, let

bo(A) = A for A €D.

1)
1 —wA

Then b, Fu € W2*! and
IGE) Full = [§bo®by! Full = [[Gb,G Eby" Ful
< 1GL b, Full < |1b;" Fu|
= [|Full = [(GE)*GL) Fu|
<IGL Ful.

Therefore, 6
1GE b, Ful® = ||b," Ful?,

ie.,
b, ! Fu is in the kernel of the operator I — (G S{fQ)*GEfo).

Thus, in view of (13.22), there exists a vector v € C? such that
bo(M)'F(M)u = F(A)v for A e D, (D.40)
which is only possible when u = v = 0.
3.IfB € CP*P and BB* = I, then (Te[B]—®) € WP, In view of (D.14) and (D.15),
0611 + 612 — (O + 622)} = alat ™ 001 — atT ot~ 021
=qN~2=0.

Therefore,
(0118 + 012) — D(021B + 622) € W™

and hence, in view of Step 2,
(0118 + 012) (0218 + 622) ™' — @ € WP,

4.If B € CP*P and BB* = I,, then (61,8 + 612)~! € WP*P_ The formula

[, €]6©)* /00 [fj 0y

leads easily to a second formula for the linear fractional transformation Tg[€] for every
mvf & € WP*P N SP*P:

def

Tol€] = TE[E] = (05, + €05,) 7 (05, + €03,). (D.41)
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Thus, if o and T are contractive mvf’s in W?*P? then
Tolo] - Telt] = T§[o] - Telr]
= (0], +005) (o — )27 + 022) 7.

Therefore, if , B € CP*? are unitary, then

(eikl + 0‘91*2)71(05 —B) = (Telo] — Te[B) (6218 + 622)

and hence as the right hand side of the last formula belongs to Wﬁxl’ thanks to Step 3,
so does the left hand side. The stated result follows easily by choosing unitary matrices «
and B for which o — B is invertible (e.g., B = —).

D.5. Verification of the inclusion {Te[€] : € € SP*P N WP} € N (®) in the
setting of Theorem 13.3 and (5) and (6) in Theorem 13.1. The verification is divided
into steps.

1. 92_21 € W_fiXp. To this point, we know that 65, € fo”, 92_21 € W_fiXp and if B €

CP<P with BB* = I,. then (60218 +022) " € W™, Thus.if X(¢) & 622(0) 021 (0)
then

(022X + 1)} = (I, + X) 7105 e WP, (D.42)

and hence, as 6,5 € Wpr,
Ip+X)' e WP,

Consequently,

G={I,—X{I,+ X} 'ewl™”
and
G={l,— X}, + X}
= {20, — (I, + X)}{Ip + X} 7!
=2l,+X}7'—1,

also belongs to W1 ™7, since | X(¢)| < & < 1 for { € T by item (6) of Theorem 13.1. It
is easily seen that

G@Q) + GO =2{Ip + X HI, — X" XM, + X(©)} ' > 0
for ¢ € T, and hence G(1) + G(1) > 0 for A € D. Thus, the mvf
SQ) = {1, =G}, + G}
belongs to SP*P N WE™? and X(1) = S(A) for A € D. Consequently,
Up+X)e fol’ and 92_21 € Wﬁxﬁ

by (D.42).
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2. 03! € WP*P_ The proof is completed in much the same way as the proof of Step 1.

3. The mvf Te[0pxp] = 01205, belongs to N (®). Since 65,' € WP, it suffices to
check that @6, — 61, € W47, But this follows easily from (D.15).

4. (011 — 91292_21 921) € WiXp. In view of the identity
011 — 012055 021 = 011 — (012655 — @)6p1 — Dby

and Step 1, it suffices to show that 61 — ®6; € W2 ™?. But this follows from (D.14) and
the observation that
q(611 — 021) = qt{al 61 — Tol 621}
=qtqt N2 =gNT2 =0,

5. (011 — 01205, 621)"" € WP In view of (13.7),

071011 — 012055 021) = 07,611 — 05,012055 021
= 07,011 — 9;192292_21921 =1,.
Therefore,
(011 — 012055 021) 1= 6f) € WE™P.

6. (0216 +6)7 ' € fol) and (011 + 01,8*)~1 € WP*P_ To verify the first assertion,
it suffices to show that the mvf 61 & + 6,5 is invertible in ID. Suppose to the contrary that

{021(@)E (@) + Orn(w)}n =0 forsome w € Dand n € C?.
Then
Inll = [1622(@) ™" 021 () E (@) | < elnll,

thanks to item (4) of Theorem 13.1 and the maximum modulus principle applied to the
mvf 03,! 621 which is holomorphic on D and belongs to W4 ™7 thanks to Step 1. Therefore,
n=0.

The second assertion is verified in much the same way, with the help of item (4) of
Theorem 13.1 and Step 2.

7. To[€] € N(®). Itsuffices to show that To[€] — ® € WE™P. In view of Step 1 in D.5
and the identity

Tel€] — @ = To[€] — T®[0p><p] + T®[0p><p] -

this reduces to showing that Te[6] — Te[0pxp] € WE™P. But this is immediate from
Steps 4 and 6 of D.5, since

Tol6] — Tol0pxp] = (O11 — 012055 021)8 (0216 + 022) 7.
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D.6. A preliminary bound.
LemmaDd4. If P € CP*? and P + P* > pl, for some p > 0, then P is invertible and

1P~ = 2p7" (D43)
IfA e CP*? and |A| < 1, then I, + A is invertible and
Up+ A"+ Uy +45 =1, (D.44)
Proof. If P + P* > pl, and (Pv,v) = pu + iv, with 1, v € R, then
21 = ((P + P*)v,v) = p(v,v) = pllv|>.

Thus, as
Inl < V2 +v2=[(Pv,v)| < [[Polllvll,

it is easily seen that
[Pv| > p27v|| for v e C?, (D.45)

i.e., P is invertible and (D.43) follows by setting ¥ = Pv in (D.45).
Next, if | A|| < 1, then [, + A is invertible. If

V=>U,—A)UI,+ A"
= {20, — Uy + D}, + A}
=2(I, + A7 1,

then V + V* > 0. Finally, since (I, + A)~' = (V + 1,,)/2,
Up+ D)7 +Up+ AN =1 +(V+V/22 ),
i.e., (D.44) holds. O]

D.7. Verification of (13.25) and the inclusion & (®) C {Te[€]: € € W_{Xp NnSP*p}
in the setting of Theorem 13.3. If ¥ € N (®) and

€() = (Te-1[¥D(¢) for LT,

then & € WP*P and ||E(¢)|| < 1for ¢ € T and ©~1(¢) exists due to (13.7). It remains to
show that & € W_{Xp N SP*P_ The proof is divided into steps.

1.6(Ip + 605,'0,,6)71 e WP™P. Step 3 of D.5 guarantees that
Tol0pxp] = 91292_2] € N(D)
and, hence, 01265, — ® € WY™”. Thus,

U — 01205, = (¥ — @) — (61265, — d) e WI*P.
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Assertion 1 is an easy consequence of the formula
Y — 01203, = To[€] — 6126,
= (011 — 9129;21 021)€ (0218 + 622) 7",

since
92_21 and (911 — 91292_21021)_1
belong to W™” by Steps 1 and 5 of Subsection D.5, respectively.

2.(Ip + 05,621€) € WY™P. Since 65,61 € WY™?, Step 1 and the identity
I, —05500018(Ip + 055 0218) " = (I + 055160216)7!

imply that the mvf
F=(p+6,,'0,8)7" e WPP.

Since
1622() 7 021(DE@ < 1622() ' 021 (D)l < 6 < 1
by item (4) of Theorem 13.1, Lemma D.4 implies that

FQO+F@Q)*>=1, forteT

and, hence, by the Poisson formula

. . 1 [ 11— ; ;
F(re'%) + F(re'%)* / |ie—{F(e’@) + F(e'%)*}do
0 e

27 —retf)2

1 (7 172
= — ———1,d0
T 27 [0 et — reif|2°F
=1,

for 0 < r < 1. Thus, by another application of Lemma D.4, F (1) is invertible for every
point A € D. Thus,
F1= Ip + 02_219218 S W_{Xp.

3.6 e WP 0 SP*P. Steps 1 and 2 clearly imply that & € WY™P. Since [|€(0)]| < 1
for ¢ € T the maximum modulus principle yields that |E(A)|| < 1 for A € D and hence
& e WP nSP¥P,

4. Verification of (13.25) in Theorem 13.3. Suppose first that X € N (®) N XP*P, Then,
in view of (13.24),
X =Te[€] forsome & € SE*P N WP*P,

Thus,
X_Xy =Y Y4
with
Y. =611 + 9128* and Y, = &(0,,6 + 922)_1.
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Therefore, since X! € W2*P, XE e WP Y € WP*P and Y, € WP,
Y lx_ = Y+X;l belongs to WP*P N Wﬁxy,

i.e.,
Y'X_ =Y, X]'=KeCP?,

But this implies that

X_-(¢)=Y_(0))K and Yi({) = KX;(¢) forallpoints¢ e T

and hence, as X_(¢) and Y_({) are invertible, that K is an invertible matrix and, conse-
quently, Y ! also belongs to W/™” . Therefore,

+1 pPXp PXDp
€ eW, T NSHTP.

But this means that both € and £* belong to W1 *? and hence that & € CP*? and is
unitary.
Conversely, if & is a unitary p x p matrix, then, (13.16) and (13.17) guarantee that

(0116 + 912):|:1 € WP*P and (0216 + sz)il € Wixl],

respectively. Thus,

Tol€] = X-X4.
with X_ = 0116 + 015 and X4 = (621€ + 02)7 !, implies that Te[E] € XP*P. This
completes the proof, since Tg[&] € N (P) by formula (13.24). O

D.8. Proof of Corollary 13.4. Since f§ is a unitary matrix, Theorem 13.3 guarantees that
Y e N (D) and hence that ¥ — O € Wfixl’ . Therefore,

V_, =®_; fork=1,2,....
It remains to evaluate Wy. In view of formulas (D.6) and the identity
011(5)B + 012(0) = V(O{021(D)P + 622(8)} for €T,
it is easily seen by matching the coefficients of ¢° that

o0
apB = Wodo + Z V_i(ckB + di)
k=1

(e.9) (e9)
= Wodo + Y vkckB+ ) vidr
k=1 k=1

o0 o0
=Wodo + Y _ Vet 1 (T B + Y vies1 (T*d)x
k=1 k=0

= Wody + {Ta(T"c}of + {T'aT"(d)}o.
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Thus, as ag = {TeT*c}o + N~Y/2 and dy = M /2, it follows that

whi

(1]

[2]

(3]

(4]

[5]

(6]

[7]

(8]

(91

[10]

[11]

[12]

[13]

[14]

Wo = {NTV2B — (ToT*d)o| M712,

ch coincides with (13.26).
The verification of (13.27) is a straightforward calculation. O
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