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Abstract. In this survey we establish bijective correspondences between the following classes of
objects: (1) ˇ�1 and fˇng1nD0, with ˇn 2 Cp�p for n D �1; 0; : : :, ˇ�1 unitary, kˇj k < 1

for j � 0 and
P1
jD0 kˇj k < 1; (2) A unitary matrix ˇ�1 2 Cp�p and a spectral density �

belonging to the Wiener algebra Wp�p with �.�/ � 0 for all � on the unit circle T; (3) CMV
matrices based on a unitary matrix ˇ�1 2 Cp�p and a spectral density� that meets the constraints
in (2); (4) scattering matrices that belong to the Wiener algebra Wp�p ; (5) a class of solutions of
an associated matricial Nehari problem.

The bijective correspondence between summable sequences of contractions and positive spectral
densities in the Wiener algebra Wp�p (i.e., between class (1) and class (2)) is known as Baxter’s
theorem and was established by Baxter when p D 1 and Geronimo when p � 1. The connections
between CMVmatrices, the solutions of a related Nehari problem and an inverse scattering problem
seem to be new when p > 1. There is partial overlap of the connection between the considered
Nehari problem and a discrete analogue of an inverse scattering problem considered by Krein and
Melik-Adamjan. de Branges spaces of vector-valued polynomials are used to ease a number of
computations.
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1. Introduction

The main objective of this paper is to establish a bijective correspondence between:

(1) A class of unitary matrices ˇ�1 2 Cp�p and p�p mvf’s (matrix-valued functions)
�.�/ D

P1
nD�1 �

n�n on the unit circle T that are subject to the constraints:

1X
nD�1

k�nk <1; (1.1)

�.�/ � 0 for � 2 T (1.2)

and
1

2�

Z 2�

0

�.ei� /d� D Ip: (1.3)
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(2) A class of infinite sequences fˇng1nD0 of p�p strict contractions (which are usually
called Schur parameters) that are subject to the constraint

1X
nD0

kˇnk <1 (1.4)

and a unitary matrix ˇ�1 2 Cp�p .
(3) A class of matrices (commonly called CMV matrices) that play a key role in the

matrix representation of the operator of multiplication by � in Lp�p2 .T; �/.
(4) A class of scattering matrices (see Definition 10.3) that belong to the Wiener

algebraWp�p .
(5) A set of solutions of an associated matricial Nehari problem.

The constraint (1.1) means that � belongs to the Wiener algebra Wp�p . For ease of
future reference, we shall say that � meets the constraint
(D1) if (1.1), (1.2) and (1.3) are in force.
Remark 1.1. It follows from a theorem of Gohberg and Krein (see, e.g., Corollary 10.4
in Chapter XXX of Gohberg, Goldberg and Kaashoek [23], applied to �.�/ and �. N�/),
that the first two conditions in (D1) hold if and only if

�.�/ D Q.�/�Q.�/ D R.�/R.�/� for � 2 T (1.5)

where Q˙1 and R˙1 belong to the algebra Wp�p
C of mvf’s F.�/ D

P1
nD�1 �

nFn
belonging to Wp�p with Fn D 0p�p for n < 0.

The supplementary constraint
(D2) Q.0/ � 0 and R.0/ � 0
on the factors in (1.5) insures uniqueness.

The bijection between the classes described in (1) and (2) when p D 1was established
by Baxter [5] and is usually referred to as Baxter’s theorem (see, e.g., Simon [31] and
Bingham [6, 7]). Simon [31] also refers to Stahl [33] and Nuttall and Singh [29] for
additional treatments of the “hard direction” of Baxter’s theorem. The extension of
Baxter’s theorem to the case p > 1 was first shown by Geronimo [21].

CMV matrices were introduced by Cantero, Moral and Velázquez in [8] (see Si-
mon [32] for a good survey) when p D 1 and ˇ�1 D 1. In this case, the CMV matrix
based on a probability measure � on T is the unitary operator A W `2 ! `2 given by

A D V �M�V;

where V W `2 ! L2.T; �/ given by V en D �n andM� denotes the operator of multiplica-
tion by � inL2.T; �/, feng1nD0 denotes the canonical orthonormal basis of `2 and f�ng1nD0
is the CMV basis which will defined in Section 7. Connections between the classes given
in (3), (4) and (5) when p D 1 are discussed by Golinskii, Kheifets, Peherstorfer and
Yuditskii [25]. They focus on the case of square summable Schur parameters.
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The bijection between scalar probability measures � on the unit circle T and square
summable sequences fˇng1nD0, where jˇnj < 1 for n D 0; 1; : : : ; is classical and goes
back to Schur [30], Verblunsky [36] and Szegő [34]. Szegő showed that if the Lebesgue
decomposition of a scalar probability measure � is given by

d�.�/ D w.ei� /
d�

2�
C d�s.�/

and the density w with respect to the normalized Lebesgue measure satisfies the Szegő
condition

1

2�

Z 2�

0

lnw.ei� /d� > �1; (1.6)

then the Schur parameters of � are square summable:

1X
nD0

jˇnj
2 <1: (1.7)

Conversely, if fˇng1nD0, where jˇnj < 1 for n D 0; 1; : : :, is square summable, then there
exists exactly one probability measure � on T so that (1.6) holds and the Schur parameters
of � are given by fˇng1nD0.

There is also a correspondence between p � p probability measures � which sat-
isfy a natural analog of (1.6) and sequences of p � p strict contractions which satisfyP1
nD0 kˇnk

2 < 1 (see, e.g., Damanik, Pushnitski and Simon [9]). Orthogonal polyno-
mials and CMV matrices based on p �p probability measures are also studied in [9] (see
also Simon [32]).

At first glance, the focus on densities� in the Wiener algebraWp�p may seem overly
restrictive. The choice was made initially in order to minimize technical details. But an
even stronger case for this restriction is that it fits naturally with the setting of summable
Schur parameters, as confirmed by the equivalences between the classes noted earlier.

There is a vast literature on matrix and scalar orthogonal polynomials on the unit
circle (see, e.g., Simon [31], Damanik, Pushnitski and Simon [9], Geronimo [21, 22] and
Delsarte, Genin andKamp [10–13]). But going from one source to another is often difficult
because of widely different notation and normalizations on the orthogonal polynomials.
To minimize this difficulty, a serious attempt has been made to make this presentation
self-contained and easily accessible. To this end, three appendices are included with
expository material on special properties of scalar orthogonal polynomials, a proof of
Baxter’s inequality in the matrix case adapted from Findley [20] and a related Nehari
problem in the Wiener setting. We have tried to make the proofs as transparent as possible
by exploiting the theory of J -inner mvf’s and RKHS’s (reproducing kernel Hilbert spaces)
whenever possible.

Outline of the paper. Section 2 is devoted to matrix orthogonal polynomials; Section 3
to reverse matrix polynomials; Section 4 to the Schur algorithm; Section 5 to an auxiliary
pair of orthogonal matrix polynomials; Section 6 to RKHS’s; Section 7 to CMVmatrices;
Section 8 to convergence results; Section 13 to recalling results on a related Nehari
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problem; Section 14 to explicit formulas for a rational case. The remaining sections are
devoted to establishing the equivalences between the classes (1)–(5) discussed earlier; the
table below exhibits the locations of the key results.

For the injective map from See

class (1) to class (2) Theorem 9.6
class (2) to class (1) Theorem 11.1
class (2) to class (3) Theorem 12.1
class (3) to class (4) Definition 10.3
class (4) to class (5) Theorem 16.1
class (5) to class (1) Theorem 15.1
class (5) to class (3) Corollary 15.3

Table 1.

Remark 1.2. The direct passage from class .2/ to class .1/ is not needed to establish the
equivalence between the classes (1)–(5). It is included because it depends upon a direct
construction and not upon a weak compactness of matrix-valued probability measures
argument which appears in the construction of a spectral measurewhen

P1
nD0 kˇnk

2 <1

(see, e.g., Damanik, Pushnitski, and Simon [9]).

Notation.
D D f� 2 C W j�j < 1g, T D f� 2 C W j�j D 1g and D D f� 2 C W j�j � 1g.

Cp�q = matrices of size p � q with complex-valued entries.

A� denotes the Hermitian transpose of A 2 Cp�q and A�� D .A�1/� D .A�/�1 when
appropriate.

A � B and A � B if A�B is positive semidefinite and positive definite, respectively, for
matrices A;B 2 Cp�p .

jp D

�
Ip 0

0 �Ip

�
2 C2p�2p .

k � k denotes the operator norm.

Fj D
1

2�

Z 2�

0

e�ij�F.ei� /d� , j D 0;˙1; : : :, denote the Fourier coefficients of the
mvf F .

1X
nD�1

ein�Fn denotes the Fourier series of F .
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F #.�/ D F.1=�/�.

L
p�q
2 .T; �/ D fmeasurable Cp�q mvf’s F : kF k2� <1g, where

kF k2� D
1

2�

Z 2�

0

tracefF.ei� /��.ei� /F.ei� /gd�:

hF;eF i� D 1

2�

Z 2�

0

tracefeF .ei� /��.ei� /F.ei� /gd� for F;eF 2 Lp�p2 .T; �/.

hF;eF ist D 1

2�

Z 2�

0

tracefeF .ei� /�F.ei� /gd� for F;eF 2 Lp�p2 .T; Ip/.

ŒF;eF �� D 1

2�

Z 2�

0

eF .ei� /��.ei� /F.ei� /d� 2 Cp�p for F;eF 2 Lp�p2 .T; �/.

ŒF;eF �st D 1

2�

Z 2�

0

eF .ei� /�F.ei� /d� 2 Cp�p for F;eF 2 Lp�p2 .T; Ip/.

H
p�q
2 D fholomorphic p � q mvf’s F on D :

1X
nD0

kFnk
2 <1g.

.H
p�q
2 /? D fholomorphic p � q mvf’s F on C n D :

�1X
nD�1

kFnk
2 <1g:

Rp�p D fp � p rational mvf’sg:

Wp�p D fp � p mvf’s F on T : kF k2W D
1X

nD�1

kFnk <1g:

Wp�p
C D fF 2Wp�p W Fn D 0 for n < 0g.

Wp�p
� D fF 2Wp�p W Fn D 0 for n > 0g.

L
p
2 D L

p�1
2 ,Hp

2 D H
p�1
2 and .Hp

2 /
? D .H

p�1
2 /?.

p denotes the orthogonal projection of Lp2 .T; Ip/ ontoH
p
2 and q D I � p.

Sp�p denotes the Schur class of p � p mvf’s, which are holomorphic on D and satisfy
kS.�/k � 1 for all � 2 D.

Sp�pin denotes the set of inner mvf’s S 2 Sp�p for which kS.�/k D 1 for all a.e. � 2 T.

Cp�p denotes the Carathéodory class of p � p mvf’s C which are holomorphic on D and
satisfy C.�/C C.�/� � 0.
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2. Orthogonal matrix polynomials

If the density � satisfies (D1), then the block Toeplitz matrices

TnŒ��
def
D

264�0 � � � ��n
:::

: : :
:::

�n � � � �0

375 for n D 0; 1; : : : ;

based on the Fourier coefficients�j D 1
2�

R 2�
0
e�ij��.ei� /d� of�, are positive definite

for n D 0; 1; : : : . Therefore, they are invertible,

�n D .TnŒ��/
�1
D

264

.n/
00 � � � 


.n/
0n

:::
: : :

:::



.n/
n0 � � � 


.n/
nn

375 � 0 for n D 0; 1; : : :

and
f

.n/

jk
g
�
D 


.n/

kj
for 0 � j; k � n:

Let

ECn .�/ D

nX
jD0

�j 

.n/
j0 f


.n/
00 g
�1=2 (2.1)

and E�n .�/ D

nX
jD0

�j 

.n/
jn f


.n/
nn g
�1=2: (2.2)

Theorem 2.1. If � satisfies (D1) and the matrix polynomials fE˙n g
1
nD0 are defined by

(2.1) and (2.2), then:

1

2�

Z 2�

0

eim�ECm .e
i� /��.ei� /e�in�ECn .e

i� /d� D

(
Ip if m D n
0p�p if m ¤ n:

(2.3)

1

2�

Z 2�

0

E�m.e
i� /��.ei� /E�n .e

i� /d� D

(
Ip if m D n
0p�p if m ¤ n:

(2.4)

ŒE�n ; E
C
m �� D

(
f

.m/
00 g

� 12 

.m/
0m f


.m/
mmg

� 12 if m D n
0p�p if m < n:

(2.5)

Proof. If Vn.�/ D
Pn
jD0 �

j 

.n/
0;n�j , then

1

2�

Z 2�

0

eik��.ei� /Vn.e
i� /�d� D

nX
jD0

�
1

2�

Z 2�

0

ei.k�j /��.ei� /d�

�


.n/
n�j;0

D

nX
jD0

�j�k

.n/
n�j;0
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D

nX
jD0

�n�k�j 

.n/
j0

D
�
�n�k � � � ��k

�264

.n/
00
:::



.n/
n0

375
D

(
Ip if k D n
0p�p if k D 0; : : : ; n � 1

(2.6)

and hence

1

2�

Z 2�

0

Vm.e
i� /�.ei� /Vn.e

i� /�d� D

(


.n/
00 if m D n
0p�p if m ¤ n:

(2.7)

Similarly, if Wn.�/ D
Pn
jD0 �

j 

.n/
jn , then

1

2�

Z 2�

0

e�ik��.ei� /Wn.e
i� /d� D

nX
jD0

�
1

2�

Z 2�

0

e�i.k�j /��.ei� /d�

�


.n/
jn

D

nX
jD0

�k�j 

.n/
jn

D
�
�k � � � �k�n

�264

.n/
0n
:::



.n/
nn

375
D

(
Ip if k D n
0p�p if k D 0; : : : ; n � 1

(2.8)

and hence

1

2�

Z 2�

0

Wm.e
i� /��.ei� /Wn.e

i� /d� D

(


.n/
nn if m D n
0p�p if m ¤ n:

(2.9)

Formulas (2.3) and (2.4) follow from (2.7) and (2.9), respectively, and the identifica-
tions �nECn .1= N�/� D .


.n/
00 /
�1=2Vn.�/ and E�n .�/ D Wn.�/.


.n/
nn /
�1=2 for n D 0; 1; : : : .

Statement (iii) is an easy consequence of (2.8).

The “orthonormality” exhibited in Theorem 2.1 leads easily to the following recursion
(see, e.g., formulas (13.12) and (13.13) in [15] for help if need be):�

E�nC1.�/ ECnC1.�/
�
D
�
�E�n .�/ ECn .�/

�
ƒnC1; (2.10)
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where

ƒnC1 D

"
f

.n/
nn g
�1=2 0

0 f

.n/
00 g
�1=2

#"
Ip 


.nC1/
nC1;0f


.nC1/
00 g�1



.nC1/
0;nC1f


.nC1/
nC1;nC1g

�1 Ip

#

�

"
f

.nC1/
nC1;nC1g

1=2 0

0 f

.nC1/
00 g1=2

#

D

"
f

.n/
nn g
�1=2f


.nC1/
nC1;nC1g

1=2 f

.n/
nn g
�1=2


.nC1/
nC1;0f


.nC1/
00 g�1=2

f

.n/
00 g
�1=2


.nC1/
0;nC1f


.nC1/
nC1;nC1g

�1=2 f

.n/
00 g
�1=2f


.nC1/
00 g1=2

#
: (2.11)

Remark 2.2. The diagonal entries in the recursion (4.9) in [19] are incorrect and should
be replaced by (2.10).

3. Reverse matrix polynomials

A number of useful formulas are obtained almost for free from the fact that � meets the
conditions (D1) and (D2) if and only if the mvf

e�.�/ D �.��1/
meets the conditions (D1) and (D2) and the observation that

TnŒe�� D
264 �0 � � � �n

:::
: : :

:::

��n � � � �0

375 D ZnTnŒ��Zn � 0;
where

Zn D

264 0 Ip

: :
:

Ip 0

375 is of size .nC 1/p � .nC 1/p:

Consequently,

e�n D .TnŒe��/�1 D Zn�nZn D
264


.n/
nn � � � 


.n/
n0

:::
: : :

:::



.n/
0n � � � 


.n/
00

375 ;
i.e., e
 .n/

jk
D 


.n/

n�j;n�k
for 0 � j; k � n: (3.1)
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Correspondingly,

eECn .�/ D nX
kD0

�k Q

.n/

k0
f Q

.n/
00 g
�1=2

D

nX
kD0

�k

.n/

n�k;n
f
 .n/nn g

�1=2

D

nX
kD0

�n�k

.n/

kn
f
 .n/nn g

�1=2
D �nE�n .1=�/ (3.2)

and

eE�n .�/ D nX
kD0

�k Q

.n/

kn
f Q
 .n/nn g

�1=2

D

nX
kD0

�k

.n/

n�k;0
.

.n/
00 /
�1=2

D

nX
kD0

�n�k

.n/

k0
.

.n/
00 /
�1=2
D �nECn .1=�/: (3.3)

Moreover, if e�.�/ D eQ.�/�eQ.�/ D eR.�/eR.�/�
with eQ˙1 2Wp�p

C ; eR˙1 2Wp�p
C ; eQ.0/ � 0; and eR.0/ � 0;

then
�.�/ D eQ.��1/�eQ.��1/ D eR.��1/eR.��1/�:

Thus, by the uniqueness of factorizations with factors subject to the stated conditions, it
follows that

eQ.��1/� D R.�/ and eR.��1/ D Q.�/� for � 2 T: (3.4)

4. The Schur algorithm

In Theorem 4.2 below we shall present an algorithm for generating a sequence of strict
contractions ˇ0; ˇ1; : : : in Cp�p from a density � that meets the constraint (D1). This
treatment is partially adapted from [14]. We begin, however, with some notation and a
preliminary lemma.
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Let

jp D

�
Ip 0

0 �Ip

�
and, for ˇ 2 Cp�p with kˇk < 1, let

H.ˇ/ D

�
Ip ˇ

ˇ� Ip

� �
.Ip � ˇˇ

�/�1=2 0

0 .Ip � ˇ
�ˇ/�1=2

�
: (4.1)

It is readily checked that

H.ˇ/�jpH.ˇ/ D H.ˇ/jpH.ˇ/
�
D jp; (4.2)

H.˛/ D H.ˇ/” ˛ D ˇ for k˛k; kˇk < 1; (4.3)
H.ˇ/�1 D H.�ˇ/; (4.4)

and
detH.ˇ/ D 1; (4.5)

since

det
�
Ip ˇ

ˇ� Ip

�
D det.Ip � ˇˇ�/ D det.Ip � ˇ�ˇ/:

Lemma 4.1. If Fn and Gn belong to Wp�p
C and

�
Fn.�/ Gn.�/

�
jp

�
Fn.�/

�

Gn.�/�

�
� 0 for � 2 D; (4.6)

then:

(i) Fn.�/ is invertible for every point � 2 D.

(ii) F �1n 2Wp�p
C .

(iii) The mvf
Sn.�/ D �Fn.�/

�1Gn.�/

belongs to Sp�p \Wp�p
C .

(iv) The matrix ˇn D Sn.0/ is a strict contraction, i.e., kˇnk < 1.

(v) The mvf’s FnC1 and GnC1 that are defined by the formula

�
FnC1.�/ GnC1.�/

�
D
1

�

�
Fn.�/ Gn.�/

�
H.ˇn/

�
�Ip 0

0 Ip

�
(4.7)

both belong to Wp�p
C , and

�
FnC1.�/ GnC1.�/

�
jp

�
FnC1.�/

�

GnC1.�/
�

�
� 0 for � 2 D: (4.8)
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Proof. Assertions (i)–(iv) are easy consequences of the inequality

Fn.�/Fn.�/
�
� Gn.�/Gn.�/

�
� 0;

which follows from (4.6).
In view of (4.7),

FnC1.�/ D .Fn.�/CGn.�/ˇ
�
n/.Ip � ˇnˇ

�
n/
�1=2

D Fn.�/.Ip C Fn.�/
�1Gn.�/ˇ

�
n/.Ip � ˇnˇ

�
n/
�1=2 (4.9)

which is clearly invertible in D and belongs to Wp�p
C , whereas

GnC1.�/ D

�
Fn.�/ˇn CGn.�/

�

�
.Ip � ˇ

�
nˇn/

�1=2 (4.10)

is holomorphic in D since Fn.0/ˇn C Gn.0/ D 0p�p and hence belongs to Wp�p
C .

Moreover,�
FnC1.�/ GnC1.�/

�
jp

�
FnC1.�/

�

GnC1.�/
�

�
D
�
Fn.�/ Gn.�/

�
jp

�
Fn.�/

�

Gn.�/
�

�
� 0 for � 2 T:

Therefore, the Poisson formula

FnC1.�/
�1GnC1.�/ D

1

2�

Z 2�

0

�
1 � j�j2

jei� � �j2

�
FnC1.e

i� /�1GnC1.e
i� /d�

for � 2 D is applicable and yields the bound

kFnC1.�/
�1GnC1.�/k �

1

2�

Z 2�

0

�
1 � j�j2

jei� � �j2

�
kFnC1.e

i� /�1GnC1.e
i� /kd�:

�
1

2�

Z 2�

0

�
1 � j�j2

jei� � �j2

�
d�

D 1:

Thus, (4.8) holds.

Theorem 4.2. If a density � satisfies (D1) and C.�/ D Ip C 2
P1
nD1 �

n�n, then:

(i) The mvf’s
F0.�/ D C.�/C Ip and G0.�/ D C.�/ � Ip

both belong to Wp�p
C and

F0.�/F0.�/
�
�G0.�/G0.�/

�
D 2fC.�/C C.�/�g � 0; for � 2 D:
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(ii) There exists a sequence of strict contractions fˇng1nD0 given by

ˇn D �Fn.0/
�1Gn.0/ for n D 0; 1; : : : ; (4.11)

where�
FnC1.�/ GnC1.�/

�
D
1

�

�
Fn.�/ Gn.�/

�
H.ˇn/

�
�Ip 0

0 Ip

�
for n � 0:

Proof. The first assertion in Statement (i) is self-evident. The second assertion in State-
ment (i) follows by noting that

C.�/C C.�/�

2
D

8<: 1

2�

Z 2�

0

1 � j�j2

jei� � �j2
�.ei� /d� if j�j < 1

�.�/ if j�j D 1:

Statement (ii) follows from Lemma 4.1 and Statement (i).

Definition 4.3. The sequence of strict contractions fˇng1nD0 in Theorem 4.2 will be called
the Schur parameters corresponding to the density �.
Remark 4.4. In the setting of Theorem 4.2, ˇ0 D 0p�p since G0.0/ D 0p�p .
Corollary 4.5. If fˇng1nD0 are the Schur parameters corresponding to a density � which
satisfies (D1) and

Sn.�/ D �Fn.�/
�1Gn.�/ for n D 0; 1; : : : ; (4.12)

then

SnC1.�/ D .Ip � ˇnˇ
�
n/
1=2.Ip � Sn.�/ˇ

�
n/
�1

�
Sn.�/ � ˇn

�

�
.Ip � ˇ

�
nˇn/

�1=2 (4.13)

and

ˇnC1 D .Ip � ˇnˇ
�
n/
�1=2 lim

�#0

�
Sn.�/ � ˇn

�

�
.Ip � ˇ

�
nˇn/

�1=2 (4.14)

for n D 0; 1; : : : :

Proof. This is immediate from (4.9), (4.10) and (4.12).

5. Orthogonal matrix polynomials generated by
a sequence of strict contractions

Inversion in Wiener algebras. It is well known that:
(1) If f 2W1�1, then f �1 2W1�1 if and only if f .�/ ¤ 0 for � 2 T.
(2) If f 2W1�1

C , then f �1 2W1�1
C if and only if f .�/ ¤ 0 for � 2 D.
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(3) If f 2W1�1
� , then f �1 2W1�1

� if and only if f .�/ ¤ 0 for � 2 C n D,
and

lim
�!1

f .�/ ¤ 0:

The first assertion is a theorem of Wiener; for a proof based on Gelfand theory, see,
e.g., Theorem 1.10.6 in Arveson [4]. Item (2) is given as a exercise on p. 30 of [4] (see,
also, Theorem WC on p. 176 of Krein [27] for a continuous analog). Item (3) is an easy
consequence of (2), since

f 2W1�1
C ” f #

2W1�1
�

and
� 2 D” 1=� 2 .C n D/ [ f1g:

Items (1)–(3) carry over easily to the matrix case, since a mvf F is invertible at � if and
only if detF.�/ ¤ 0, and in that case

F.�/�1 D
G.�/

detF.�/
;

where G D .gjk/pj;kD1, and

gjk.�/ D .�1/
jCk
� kj minor of F.�/:

Theorem 5.1. The following statements hold:
(1) If F 2Wp�p , F �1 2Wp�p if and only if detF.�/ ¤ 0 for � 2 T.
(2) If F 2Wp�p

C , then F �1 2Wp�p
C if and only if detF.�/ ¤ 0 for � 2 D.

(3) If F 2Wp�p
� , then F �1 2Wp�p

� if and only if detF.�/ ¤ 0 for � 2 C n D,
and

lim
�!1

detF.�/ ¤ 0:

Given ˇ0; : : : ; ˇn 2 Cp�p with kˇkk < 1 for k D 0; : : : ; n, let

#k.�/ D H.ˇk/

�
�Ip 0

0 Ip

�
for k D 0; : : : ; n; (5.1)

‚k.�/ D #0.�/ � � �#k.�/ for k D 0; : : : ; n (5.2)
and �

�F �
k
.�/ FC

k
.�/
�
D
�
Ip Ip

�
‚k.�/ for k D 0; : : : ; n: (5.3)

A recursion relation for the sequences of mvf’s fFC
k
gn
kD0

and fF �
k
gn
kD0

follows readily
from (5.2) and is given by�

F �
k
.�/ FC

k
.�/
�
D
�
�F �

k�1
.�/ FC

k�1
.�/
�
H.ˇk/ (5.4)

for k D 1; : : : ; n.
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It will be convenient to write

‚k.�/ D

"
�
.k/
11 .�/ �

.k/
12 .�/

�
.k/
21 .�/ �

.k/
22 .�/

#
for k D 0; : : : ; n (5.5)

and let

Xk D .Ip � ˇ0ˇ
�
0 /
�1=2
� � � .Ip � ˇkˇ

�
k/
�1=2 for k D 0; : : : ; n (5.6)

and Yk D .Ip � ˇ
�
0ˇ0/

�1=2
� � � .Ip � ˇ

�
kˇk/

�1=2 for k D 0; : : : ; n: (5.7)

Theorem 5.2. If ˇ0; : : : ; ˇn 2 Cp�p with ˇ0 D 0p�p and kˇkk < 1 for k D 0; : : : ; n,
then:

(i) ‚k.�/ is a matrix polynomial of degree k C 1.

(ii) ‚k.0/ D
�
0 0
0 Yk

�
.

(iii) ��k�1‚k.�/!
�
Xk 0
0 0

�
as �!1.

(iv) ‚k.�/�jp‚k.�/ � jp if 0 � j�j � 1 with equality when j�j D 1.

(v) ‚k.�/jp‚k.�/� � jp if 0 � j�j � 1 with equality when j�j D 1.

(vi) ‚k.�/�jp‚k.�/ � jp if 1 � j�j <1 with equality when j�j D 1.

(vii) ‚k.�/jp‚k.�/� � jp if 1 � j�j <1 with equality when j�j D 1.

(viii) det‚k.�/ D �.kC1/p .

(ix) .� .k/22 /
˙1 2Wp�p

C .

(x) .��k�1� .k/11 /
˙1 2Wp�p

� .

Proof. Statements (i)–(iii) are clear from (5.2). Statement (iv) and (v) are verified by
using (4.2) to obtain

#k.�/
�jp#k.�/ D

�
�Ip 0

0 Ip

��
H.ˇk/

�jpH.ˇk/

�
�Ip 0

0 Ip

�
D

�
�Ip 0

0 Ip

��
jp

�
�Ip 0

0 Ip

�
D

�
j�j2Ip 0

0 �Ip

�
� jp if � 2 D: (5.8)

and
#k.�/jp#k.�/

�
� jp for � 2 D;

respectively.
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The inequality
#k.�/

�jp#k.�/ � jp for 1 � j�j <1 (5.9)

can be verified in much the same way as (5.8). Statements (vi) and (vii) follow directly
from (5.9) and

#k.�/jp#k.�/
�
� jp for 1 � j�j <1;

respectively.
In view of (4.5),

det#k.�/ D detH.ˇk/�p D �p

and (viii) follows easily from (5.2).
To verify Statement (ix), note that the 22 block of the inequality in Statement (iv)

implies that
�
.k/
22 .�/

��
.k/
22 .�/ � Ip C �

.k/
12 .�/

��
.k/
12 .�/ for � 2 D (5.10)

and hence � .k/22 is invertible for � 2 D. Therefore, in view of item (2) of Theorem 5.1,
.�
.k/
22 /
�1 2Wp�p

C . The conclusion .� .k/22 / 2Wp�p
C is immediate from (i).

To verify (x), note that the 11 block of the inequality in Statement (vi) is

�
.k/
11 .�/

��
.k/
11 .�/ � �

.k/
21 .�/

��
.k/
21 .�/ � Ip for j�j � 1

and hence � .k/11 .�/ is invertible for every point j�j � 1. In view of item (iii),

lim
�!1

det��k�1� .k/11 .�/ D detXk ¤ 0:

Thus, in view of item (3) of Theorem 5.1, .��k�1� .k/11 /
�1 2 Wp�p

� . The conclusion
.��k�1�

.k/
11 / 2Wp�p

� is immediate from (i).

In view of item (iv) of Theorem 5.2, the mvf‚k generated by ˇ0; : : : ; ˇn is a jp-inner
mvf for k D 0; : : : ; n. The equality on T extends to

‚#
k.�/jp‚k.�/ D jp D ‚k.�/jp‚

#
k.�/ for � 2 C (5.11)

and k D 0; : : : ; n.

Linear fractional transformations.

Theorem 5.3. If E 2 Sp�p and ˇ0; : : : ; ˇk 2 Cp�p with kˇkk < 1 for k D 0; : : : ; n,
then � .k/21 E C �

.k/
22 is invertible on D and

T‚k ŒE�
def
D .�

.k/
11 E C �

.k/
12 /.�

.k/
21 E C �

.k/
22 /
�1

maps Sp�p into Sp�p for k D 0; : : : ; n.
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Proof. We will first show that � .k/21 E C �
.k/
22 is invertible. The 22 block of the inequality

in item (v) of Theorem 5.2 implies that

�
.k/
21 .�/�

.k/
21 .�/

�
� �

.k/
22 .�/�

.k/
22 .�/

�
� �Ip for � 2 D:

Thus, � .k/22 .�/
�1�

.k/
21 .�/ is a strict contraction for every � 2 D and hence

k�
.k/
22 .�/

�1�
.k/
21 .�/E.�/k < 1 for � 2 D:

Consequently, � .k/21 E C �
.k/
22 is invertible for every � 2 D.

Moreover, since � .k/ij are polynomials for i; j D 1; 2, we have that

.�
.k/
21 E C �

.k/
22 /
�1 and .�

.k/
11 E C �

.k/
12 /

are holomorphic on D, and thus T‚k ŒE� is holomorphic on D.
It remains to check that Ip � T‚k ŒE��T‚k ŒE� � 0. But this follows from item (iv) of

Theorem 5.2:

Ip � T‚k ŒE�
�T‚k ŒE� D .�

.k/
21 E C �

.k/
22 /
��
�
E� Ip

�
‚�k.�jp/‚k

�
E

Ip

�
� .�

.k/
21 E C �

.k/
22 /
�1

� .�
.k/
21 E C �

.k/
22 /
��
�
E� Ip

�
.�jp/

�
E

Ip

�
.�
.k/
21 E C �

.k/
22 /
�1;

since �
E� Ip

�
.�jp/

�
E

Ip

�
D Ip � E�E � 0 on D:

Parametrization of ‚k. The mvf’s ‚k.�/, k D 0; : : : ; n, defined by (5.1) and (5.3)
are completely determined by the given sequence ˇ0; : : : ; ˇn 2 Cp�p with kˇkk < 1 for
k D 0; : : : ; n, the inequality (5.10) implies that

�k
def
D T‚k Œ0p�p� D .�

.k/
12 /.�

.k/
22 /
�1 for k D 0; : : : ; n

is strictly contractive on D and hence that the mvf

Ck D .Ip � �k/.Ip C �k/
�1 for k D 0; : : : ; n (5.12)

belongs to the Carathéodory class Cp�p and

.Ip C Ck/
˙1
2Wp�p

C for k D 0; : : : ; n:

Moreover, in view of Theorem 5.2, � .k/11 .0/ D 0p�p . Therefore, ��1� .k/11 .�/ is a matrix
polynomial of degree at most k.
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Lemma 5.4. If fF˙
k
gn
kD0

are the matrix polynomials defined by (5.3) in terms of the strict
contractions ˇ0; : : : ; ˇn 2 Cp�p , then

FC
k
.�/ D 2fIp C Ck.�/g

�1�
.k/
22 .�/ for � 2 D; (5.13)

F �k .�/ D 2fIp C C
#
k .�/g

�1��1�
.k/
11 .�/ for � 2 C n D; (5.14)

�
.k/
12 .�/ D �k.�/�

.k/
22 .�/ D

�
Ip � Ck.�/

2

�
FC
k
.�/ for � 2 D; (5.15)

.�
.k/
21 /

#.�/ D .�
.k/
11 /

#.�/�k.�/

D .�F �k /
#.�/

�
Ip � Ck.�/

2

�
for � 2 C n D

(5.16)

and

‚k.�/ D
1

2

�
fIp C C

#
k
.�/g�F �

k
.�/ fIp � Ck.�/gF

C

k
.�/

fIp � C
#
k
.�/g�F �

k
.�/ fIp C Ck.�/gF

C

k
.�/

�
(5.17)

for � 2 T.

Proof. The proof is broken into steps.

1. Verification of (5.13) and (5.15). In view of (5.3),

FC
k
.�/ D �

.k/
12 .�/C �

.k/
22 .�/

D f�k.�/C Ipg�
.k/
22 .�/

D 2fIp C Ck.�/g
�1�

.k/
22 .�/ for � 2 D:

Thus (5.13) holds. To verify (5.15), use (5.13) to write

�
.k/
12 .�/ D �

.k/
12 .�/�

.k/
22 .�/

�1�
.k/
22 .�/

D �k.�/�
.k/
22 .�/

D �k.�/

�
Ip C Ck.�/

2

�
FC
k
.�/ for � 2 D:

2. Verification of (5.14) and (5.16). In view of (5.11),

.�
.k/
22 /

#.�/�1.�
.k/
12 /

#.�/ D �
.k/
21 .�/�

.k/
11 .�/

�1 for � 2 C n D:

Therefore, in view of (5.3),

�F �k .�/ D �
.k/
11 .�/C �

.k/
21 .�/

D fIp C �
.k/
21 .�/�

.k/
11 .�/

�1
g�
.k/
11 .�/

D fIp C .�
.k/
22 /

#.�/�1.�
.k/
12 /

#.�/g�
.k/
11 .�/

D 2fIp C C
#
k .�/g

�1�
.k/
11 .�/ for � 2 C n D:
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Thus, (5.14) holds. To verify (5.16), use (5.11) to obtain

�#11.�/�12.�/ D �
#
21.�/�22.�/

and hence

.�
.k/
21 /

#.�/ D .�
.k/
21 /

#.�/�
.k/
22 .�/�

.k/
22 .�/

�1

D �#11.�/�12.�/�
.k/
22 .�/

�1

D �#11.�/�k.�/

D .�F �k /
#.�/

�
Ip � Ck.�/

2

�
for � 2 C n D:

3. Verification of (5.17). In view of (5.5), Assertion (5.17) follows directly from (5.13)–
(5.16).

Theorem 5.5. If ˇ0; : : : ; ˇn 2 Cp�p with ˇ0 D 0p�p and kˇkk < 1 for k D 1; : : : ; n,
then the p � p mvf’s Ck , F �k and FC

k
, for k D 0; : : : ; n, enjoy the following properties:

(1) FC
k

is a matrix polynomial of degree at most k and FC
k
.0/ D Yk is invertible.

(2) F �
k

is a matrix polynomial of degree k and

lim
�!1

��kF �k .�/ D Xk :

(3) .FC
k
/˙1 2Wp�p

C .

(4) .��kF �
k
/˙1 2Wp�p

� .

(5) F �
k
.�/�

n
Ck.�/CCk.�/

�

2

o
F �
k
.�/ D Ip for � 2 T.

(6) FC
k
.�/�

n
Ck.�/CCk.�/

�

2

o
FC
k
.�/ D Ip for � 2 T.

Proof. The proof is divided into steps.

1. Verification of (1) and (2). Since�
�F �

k
.�/ FC

k
.�/
�
D
�
Ip Ip

�
‚k.�/ (5.18)

D
�
Ip Ip

�
‚k�1.�/H.ˇk/

�
�Ip 0

0 Ip

�
(5.19)

and‚k�1.�/ is a matrix polynomial of degree at most k, it is clear that F �
k
.�/ and FC

k
.�/

are matrix polynomials of degree at most k and FC
k
.0/ is invertible. The assertions

FC
k
.0/ D Yk and ��kF �

k
.�/ ! Xk as � ! 1 follow from items (ii) and (iii) in

Theorem 5.2, respectively.
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2. Verification of (3) and (4). The assertions FC
k
2 Wp�p

C and ��kF �
k
2 Wp�p

� are
automatic since FC

k
is a matrix polynomial and F �

k
is a matrix polynomial of degree k.

In view of (5.13) and item (ix) in Theorem 5.2, FC
k
.�/ is invertible for � 2 D. Thus, it

follows from item (2) of Theorem 5.1 that .FC
k
/�1 2Wp�p

C . Similarly, in view of (5.14)
and item (x) of Theorem 5.2, ��kF �

k
is invertible for all C n D. Thus, it follows from

item (3) of Theorem 5.1 that .��kF �
k
/�1 2Wp�p

� .

3. Verification of (5) and (6). Both formulas are straightforward computations based on
the formula given in item (iv) in Theorem 5.2 when j�j D 1. Thus, for example, the 22
block yields the identity

�
.k/
12 .�/

��
.k/
12 .�/ � �

.k/
22 .�/

��
.k/
22 .�/ D �Ip for � 2 T;

which implies that

FC
k
.�/�

�
fIp � Ck.�/

�gfIp � Ck.�/g � fIp C Ck.�/
�gfIp C Ck.�/g

4

�
FC
k
.�/ D �Ip

(5.20)
for � 2 T. Thus, (6) follows directly since

fIp � Ck.�/
�
gfIp � Ck.�/g � fIp C Ck.�/

�
gfIp C Ck.�/g D �2fCk.�/C Ck.�/

�
g

for � 2 T. The verification of (5) is similar, but is based on the formula

‚k.�/
�jp‚k.�/ D jp for � 2 T:

Theorem 5.6. If fˇng1nD0 are the Schur parameters based on a density � which satis-
fies (D1), then:
(1) 1

�nC1
fC.�/ � Cn.�/g is a holomorphic mvf on D.

(2) 1
2�

R 2�
0
eik��.ei� /d� D 1

2�

R 2�
0
eik�

n
Cn.e

i� /CCn.e
i� /�

2

o
d� if jkj � n.

(3) 1
2�

R 2�
0
F �
k
.ei� /��.ei� /F �n .e

i� /d� D

(
0p�p if k ¤ n
Ip if k D n:

(4) 1
2�

R 2�
0
fe�ik�FC

k
.ei� /g��.ei� /fe�in�FCn .e

i� /gd� D

(
0p�p if k ¤ n
Ip if k D n:

Proof. The proof is divided into steps.

1. Verification of (1). By definition,�
C.�/C Ip C.�/ � Ip

�
‚n.�/ D �

nC1
�
FnC1.�/ GnC1.�/

�
and by direct computation,�

Cn.�/C Ip Cn.�/ � Ip
�
‚n.�/ D

�
fCn.�/C C

#
n.�/g�F

�
n .�/ 0

�
:
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Thus, if we subtract the second formula from the first we get�
C.�/ � Cn.�/ C.�/ � Cn.�/

�
‚n.�/ D

�
� �nC1GnC1.�/

�
:

Therefore,

fC.�/ � Cn.�/g
�
�F �n .�/ FCn .�/

�
D fC.�/ � Cn.�/g

�
Ip Ip

�
‚n.�/

D
�
� �nC1GnC1.�/

�
:

Thus,

fC.�/ � Cn.�/gF
C
n .�/ D �

nC1GnC1.�/

and, upon calculating �,

fC.�/ � Cn.�/g�F
�
n .�/ D �

nC1F �nC1.�/ � fCn.�/C C
#
n.�/g�F

�
n .�/:

Since .� .n/22 /˙1 2Wp�p
C , .IpCCn/˙1 2Wp�p

C and FCn D 2.IpCCn/�1�
.n/
22 , it is clear

that .FCn /˙1 2Wp�p
C and hence

C � Cn 2 �
nC1Wp�p

C :

Thus, (1) holds.

2. Verification of (2). In view of (1),

1

2�

Z 2�

0

eik�fC.ei� / � Cn.e
i� /gd� D 0p�p if k � �n

and

1

2�

Z 2�

0

eik�fC.ei� /� � Cn.e
i� /�gd� D 0p�p if k � n:

Therefore, both formulas are in force if jkj � n and hence

1

2�

Z 2�

0

eik��.ei� /d� D
1

2�

Z 2�

0

eik�

(
C.ei� /C C.ei� /�

2

)
d�

D
1

2�

Z 2�

0

eik�

(
Cn.e

i� /C Cn.e
i� /

2

)
d� if jkj � n:
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3. Verification of (3). In view of items (4) and (5) of Theorem 5.5,

1

2�

Z 2�

0

F �k .e
i� /��.ei� /F �n .e

i� /d�

D
1

2�

Z 2�

0

F �k .e
i� /�

(
Cn.e

i� /C Cn.e
i� /�

2

)
F �n .e

i� /d� (5.21)

D
1

2�

Z 2�

0

F �k .e
i� /�F �n .e

i� /��d�

D
1

2�

Z 2�

0

ei.n�k/�fe�ik�F �k .e
i� /g�fe�in�F �n .e

i� /g��d�

D

(
0p�p if k D 0; : : : ; n � 1
Ip if k D n:

This proves (3) for k � n. If k > n, then (3) follows from

ŒF �n ; F
�
k �� D fŒF

�
k ; F

�
n ��g

�
D 0p�p:

4. Verification of (4). In view of items (3) and (6) of Theorem 5.5,

1

2�

Z 2�

0

fe�ik�FC
k
.ei� /g��.ei� /fe�in�FCn .e

i� /gd�

D
1

2�

Z 2�

0

fe�ik�FC
k
.ei� /g�

(
Cn.e

i� /C Cn.e
i� /�

2

)
e�in�FCn .e

i� /d�

D
1

2�

Z 2�

0

ei.k�n/�FC
k
.ei� /�FCn .e

i� /��d�

D

(
0p�p if k D 0; : : : ; n � 1
Ip if k D n:

This proves (4) for 0 � k � n. The proof of (4) for k > n follows from

Œ��nFCn ; �
�kFC

k
�� D fŒ�

�kFC
k
; ��nFCn ��g

�
D 0p�p:

Lemma 5.7. If fˇng1nD0 are the Schur parameters based on a density � which satis-
fies (D1), then

FCn .�/F
C
n .�/

�
� f�F �n .�/gf�F

�
n .�/g

�
� 0 (5.22)

for all � 2 D and n D 0; 1; : : : with equality when � 2 T.

Proof. Assertion (5.22) follows from item (iv) in Theorem 5.2, since�
�F �n .�/ FCn .�/

�
D
�
Ip Ip

�
‚n.�/:
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In the following theorem we will make use of the notation

ımn D

(
1 if m D n
0 if m ¤ n:

Theorem 5.8. Suppose � is a density which satisfies (D1) and fP˙n g1nD0 are sequences
of p � p matrix polynomials which satisfy the following conditions:

(i) P�n is of degree n for n D 0; 1; : : : :
(ii) PCn .0/ is invertible for n D 0; 1; : : : :

(iii) 1
2�

R 2�
0
P�m .e

i� /��.ei� /P�n .e
i� /d� D ımnIp .

(iv) 1
2�

R 2�
0
eim�PCm .e

i� /��.ei� /e�in�PCn .e
i� /d� D ımnIp .

Then for n D 0; 1; : : : there exist p � p unitary matricesMn and Nn so that

PCn .�/ D E
C
n .�/Mn (5.23)

and P�n .�/ D E
�
n .�/Nn: (5.24)

Proof. Since P�n is a matrix polynomial of degree n and the matrix coefficient of �n is
invertible and E�j is a matrix polynomial of degree j and the matrix coefficient of �j is
invertible, it is readily checked that

P�n .�/ D

nX
jD0

E�j .�/Wjn;

where

Wjn D
1

2�

Z 2�

0

E�j .e
i� /��.ei� /P�n .e

i� /d�

D 0p�p

for j D 0; : : : ; n � 1. Thus,
P�n .�/ D E

�
n .�/Wnn:

Moreover, Wnn is unitary since

Ip D
1

2�

Z 2�

0

P�n .e
i� /��.ei� /P�n .e

i� /d�

D W �nn

�Z 2�

0

E�n .e
i� /��.ei� /E�n .e

i� /d�

�
Wnn

D W �nnWnn:

Thus, (5.26) holds with Mn D Wnn for n D 0; 1; : : : . The formula (5.25) is established
in much the same way from the formula

�n.PCn /
#.�/ D

nX
jD0

�j .ECj /
#.�/Zjn:
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Corollary 5.9. If fE˙n g1nD0 are the matrix polynomials that are defined by (2.1) and (2.2)
in terms of the Fourier coefficients of a density � that meets the constraint (D1) and
fF˙n g

1
nD0 are the matrix polynomials defined by (5.3) in terms of the Schur parameters

of �, then there exist two sequences of unitary matrices fUng1nD0 and fVng
1
nD0 in Cp�p

such that

FCn .�/ D E
C
n .�/Un for n D 0; 1; : : : (5.25)

and F �n .�/ D E
�
n .�/Vn for n D 0; 1; : : : : (5.26)

Moreover,

.Ip � ˇ
�
0ˇ0/

�1=2
� � � .Ip � ˇ

�
nˇn/

�1=2
D f


.n/
00 g

1=2Un (5.27)

and .Ip � ˇ0ˇ
�
0 /
�1=2
� � � .Ip � ˇnˇ

�
n/
�1=2
D f
 .n/nn g

1=2Vn: (5.28)

Proof. In view of items (1) and (2) in Theorem 5.5 and items (3) and (4) in Theorem 5.6,
the matrix polynomials fF˙n g1nD0 satisfy the hypotheses of Theorem 5.8. Thus, asser-
tions (5.25) and (5.26) hold.

Item (ii) of Theorem 4.2 implies that

FCn .0/ D �
.n/
22 .0/ D .Ip � ˇ

�
0ˇ0/

�1=2
� � � .Ip � ˇ

�
nˇn/

�1=2:

Formula (5.25) implies that FCn .0/ D ECn .0/Un D f

.n/
00 g

1=2Un, whence (5.27) holds.
Assertion (5.28) is proved in much the same way.

Theorem 5.10. Let � and e� be densities which satisfy (D1). If fˇng1nD0 and f Q̌ng1nD0
are the Schur parameters of � and e�, respectively, and ˇn D Q̌n for n D 0; 1; : : :, then

�.�/ D e�.�/ for � 2 T:

Proof. Let fF˙n g1nD0 and feF˙n g1nD0 denote the sequences of matrix polynomials given
by (5.2) corresponding to the Schur parameters of � and e�, respectively. If ˇn D Q̌n for
n D 0; 1; : : : and‚n and e‚n are defined by (5.2) and correspond to fˇng1nD0 and f Q̌ng1nD0,
respectively, then

‚n D e‚n for n D 0; 1; : : : :

In view of the recursion (5.4),

FCn D
eFCn and F �n D

eF �n for n D 0; 1; : : : :

Consequently,
Cn D eC n for n D 0; 1; : : : ;

where Cn and eC n are the mvf’s defined by (5.12) which correspond to fˇng1nD0 and
f Q̌ng

1
nD0, respectively. In view of item (2) in Theorem 5.6, we have that

�n D e�n for n D 0; 1; : : :

and hence
�.�/ D e�.�/ for � 2 T:
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Theorem 5.11. If Un and Vn are as in (5.25) and (5.26), respectively, then

ˇnC1 D V
�
n f


.n/
nn g
�1=2


.nC1/
nC1;0f


.nC1/
00 g

�1
f

.n/
00 g

1=2Un

D V �n f

.n/
nn g

1=2
f

.nC1/
nC1;nC1g

�1

.nC1/
nC1;0f


.n/
00 g
�1=2Un; (5.29)

.Ip � ˇ
�
nC1ˇnC1/

1=2
D U �nC1f


.nC1/
00 g

�1=2
f

.n/
00 g

1=2Un

D U �n f

.n/
00 g

1=2
f

.nC1/
00 g

�1=2UnC1; (5.30)

and .Ip � ˇnC1ˇ
�
nC1/

1=2
D V �nC1f


.nC1/
nC1;nC1g

�1=2
f
 .n/nn g

1=2Vn

D V �n f

.n/
nn g

1=2
f

.nC1/
nC1;nC1g

�1=2VnC1: (5.31)

Proof. In view of formulas (5.25) and (5.26), the recursion�
F �nC1.�/ FCnC1.�/

�
D
�
�F �n .�/ FCn .�/

�
H.ˇnC1/

can be rewritten as�
E�nC1.�/ ECnC1.�/

�
D
�
�E�n .�/ ECn .�/

� �Vn 0

0 Un

�
H.ˇnC1/

�
V �nC1 0

0 U �nC1

�
:

Thus, in view of (2.10),

H.ˇnC1/ D

�
V �n 0

0 U �n

�"


.n/
nn 0

0

.n/
00

#�1=2
�

"
Ip 


.nC1/
nC1;0f


.nC1/
00 g�1



.nC1/
0;nC1f


.nC1/
nC1;nC1g

�1 Ip

#

�

"


.nC1/
nC1;nC1 0

0 

.nC1/
00

#1=2 �
VnC1 0

0 UnC1

�
: (5.32)

Consequently, both formulas in (5.30) and (5.31) drop out easily from the 11 and 22 blocks
of (5.32). Both formulas in (5.29) can be obtained from the 12 and 21 blocks of (5.32)
with the help of (5.30) and (5.31).

6. The reproducing kernel Hilbert space B.Fn/

Let fF˙
k
gn
kD0

be the matrix polynomials defined by (5.3) in terms of the strict contractions
ˇ0; : : : ; ˇn 2 Cp�p . In view of Lemma 5.7, item (3) of Theorem 5.5 and (4.6) the p � p
blocks F �n .�/ and FCn .�/ of the p � 2p mvf

Fn.�/ D
�
�F �n .�/ FCn .�/

�
meet the conditions

detFCn .�/ ¤ 0 for � 2 D (6.1)
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and
.FCn /

�1F �n 2 Sp�pin : (6.2)

Thus, in the terminology of [3] adapted to D, Fn.�/ is a de Branges matrix and the space

B.Fn/ D fp � 1 vvf’s f : .FCn /�1f 2 H
p
2 and .�F �n /

�1f 2 .H
p
2 /
?
g (6.3)

endowed with the inner product

hf; giB.Fn/
def
D

1

2�

Z 2�

0

g.ei� /�fFCn .e
i� /FCn .e

i� /�g�1f .ei� /d� (6.4)

is a de Branges space.

Lemma 6.1. If fF˙
k
gn
kD0

are the matrix polynomials defined by (5.3) in terms of the strict
contractions ˇ0; : : : ; ˇn 2 Cp�p , then

f 2 B.Fn/” f 2 H
p
2 	 �

nC1H
p
2 : (6.5)

Proof. By Theorem 5.5, .F˙n /˙1 2Wp�p
C and .��nF �n /˙1 2Wp�p

� . Therefore,

.FCn /
�1f 2 H

p
2 if and only if f 2 Hp

2

and
.�F �n /

�1
2 .H

p
2 /
? if and only if ��n�1f 2 .Hp

2 /
?:

Thus, (6.5) holds.

It will be convenient to let �!.�/ D 1 � �!. This function plays an important role
because

Ip

�!.�/
is a RK (reproducing kernel) forHp

2 if j!j < 1:

This statement means that
Ip

�!
u D

u

�!
2 H

p
2

and �
f;
u

�!

�
st
D u�f .!/

for every choice of u 2 Cp , ! 2 D and f 2 Hp
2 . This can be shown by Cauchy’s formula.

Analogously,

�
Ip

�!.�/
is a RK for .Hp

2 /
? if j!j > 1:
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Theorem 6.2. If fF˙
k
gn
kD0

are the matrix polynomials defined by (5.3) in terms of the
strict contractions ˇ0; : : : ; ˇn 2 Cp�p , then B.Fn/ is a RKHS with RK

Kn!.�/ D �
Fn.�/jpFn.!/

�

�!.�/

D

8<:F
C
n .�/F

C
n .!/

� � �!F �n .�/F
�
n .!/

�

�!.�/
if �! ¤ 1

�f.F �n /
0.�/F �n .�/

� � .FCn /
0.�/FCn .�/

� C N�F �n .�/F
�
n .�/

�g if � 2 T;
(6.6)

where � D ! D �.

Proof. There are two facts to verify for every choice of ! 2 C, u 2 Cp and f 2 B.Fn/:

Kn!u 2 B.Fn/ (6.7)
and

hf;Kn!uiB.Fn/ D u
�f .!/: (6.8)

The justification is broken into steps:

1. Verification of (6.7). Since Kn0 .�/ D FCn .�/FCn .0/�, the assertion is clear if ! D 0.
The proof for ! ¤ 0 rests on the identity

FCn .�/F
C
n .�/

�
D F �n .�/F

�
n .�/

� for � 2 T; (6.9)

which extends to

FCn .�/.F
C
n /

#.�/ D F �n .�/.F
�
n /

#.�/ for � ¤ 0; (6.10)

or, equivalently to

FCn .1=!/F
C
n .!/

�
D F �n .1=!/F

�
n .!/

� for ! ¤ 0: (6.11)

Thus,

Kn!.�/ D
fFCn .�/ � F

C
n .1=!/gF

C
n .!/

� C fF �n .1=!/ � �!F
�
n .�/gF

�
n .!/

�

�!.�/

is a matrix polynomial of degree at most n if ! ¤ 0.

2. Verification of (6.8) when j!j < 1. In view of (6.4),

hf;Kn!uiB.Fn/ D h.F
C
n /
�1f; .FCn /

�1Kn!uist

D

�
.FCn /

�1f;
FCn .!/

�

�!
u �

.FCn /
�1.�!/F �n F

�
n .!/

�

�!
u

�
st

D

�
.FCn /

�1f;
FCn .!/

�

�!
u

�
st
�

�
.�F �n /

�1f;
!

�!
F �n .!/

�u

�
st
:

The second inner product is equal to zero sinceu=�! 2 Hp
2 if! 2 D and .�F �n /�1f 2 .H

p
2 /
?.
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This completes the proof, since�
.FCn /

�1f;
FCn .!/

�

�!
u

�
st
D u�FCn .!/F

C
n .!/

�1f .!/

D u�f .!/;

because Ip=�! is a RK forHp
2 if ! 2 D.

3. Verification of (6.8) when j!j > 1. If j!j > 1 and u 2 Cp , then�
.FCn /

�1f;
FCn .!/

�

�!
u

�
st
D 0:

Thus,

hf;Kn!uiB.Fn/ D �

�
.�F �n /

�1f;
!

�!
F �n .!/

�u

�
st

D u�f .!/;

since �Ip=�! is a RK for .Hp
2 /
? if j!j > 1.

4. Verification of (6.8) when j!j D 1. Given ! 2 T, we can construct a sequence
f!kg

1
kD0

, with j!kj > 1 for k D 0; 1; : : : and

lim
k"1

!k D !:

If u 2 Cp , then using Step 3 we have

u�f .!k/ D hf;K
n
!k
uiB.Fn/ for k D 0; 1; : : : :

Thus, as f is a vector polynomial,

u�f .!/ D lim
k"1

u�f .!k/ D lim
k"1
hf;Kn!k iB.Fn/ D hf;K

n
!iB.Fn/:

Theorem 6.3. If fF˙n g
1
nD0 and fE

˙
n g
1
nD0 are the matrix polynomials defined by (5.3) in

terms of the Schur parameters fˇng1nD0 and the Fourier coefficients, respectively, of a
density � which satisfies (D1) and (D2), then:
(1) The sequence of spaces fB.Fn/g1nD0 is ordered by inclusion, i.e.,

B.Fn/ � B.FnC1/ � Lp2 .T; �/ for n D 0; 1; : : : (6.12)

and the inclusions are isometries.
(2) The orthogonal projection PB.Fn/ of �

�1
! Q�1Q.!/�u onto B.Fn/ is

PB.Fn/
Q�1Q.!/��

�!
u D Kn!u

for n D 0; 1; : : : and ! 2 D.
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(3) For every choice of ! 2 D and u 2 Cp

�n
def
D





Q�1Q.!/���!
u �Kn!u





2
�

D u�
Q.!/�1Q.!/��

�!.!/
u � u�Kn!.!/u: (6.13)

(4) �n ! 0 as n " 1.

Proof. The proof is broken into steps.

1. Verification of (1). Assertion (1) is clear from item (2) of Theorem 5.6 and the
characterization of B.Fn/ as a p � 1 vector polynomials of degree at most n with inner
product

hf; giB.Fn/ D
1

2�

Z 2�

0

g.ei� /��.ei� /f .ei� /d�:

2. Verification of (2). If ˛; ! 2 D and u; v 2 Cp , then

v�
�
PB.Fn/

Q�1Q.!/�

�!
u

�
.˛/ D

�
Q�1Q.!/��

�!
u;Kn˛v

�
�

D

�
Q.!/��

�!
u;QKn˛v

�
st

D

�
QKn˛v;

Q.!/��

�!
u

�
st

D
˚
u�Q.!/�1Q.!/Kn˛ .!/v

	�
D v�Kn!.˛/u:

Since both sides are polynomials the equality is valid for every point ˛ 2 C.

3. Verification of (3). If u 2 Cp , ! 2 D f D ��1! Q�1Q.!/��u and P def
D PB.Fn/, then,

since P is an orthogonal projection,



Q�1Q.!/���!
u �Kn!u





2
�

D k.I � P /f k2� D kf k
2
� � kPf k

2
�

D
u�Q.!/�1Q.!/��u

1 � �!.!/
� u�K!.!/u:

4. Verification of (4). Let

Q!.�/ D
Q.�/�1Q.!/��

�!.�/
:

If ! 2 D and u 2 Cp , then

Q!.�/u D
1X
jD0

�j �j where
1X
jD0

k�j k <1:
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Let fn.�/ D
Pj
jD0 �

j �j . In view of (2),

kQ!u �Kn!uk2� D min
f 2B.Fn/

kQ!u � f k2�:

Therefore,

kQ!u �Kn!uk2� � kQ!u � fnk
2
� � �kQ!u � fnk

2
st

D �

1X
jDnC1

k�j k
2
! 0 as n " 1:

Let

Dn.�/ D
Cn.�/C Cn.�/

�

2
and

hf; giDn D
1

2�

Z 2�

0

g.ei� /�Dn.e
i� /f .ei� /d�

for f; g 2 Lp2 .T; �/.
Theorem 6.4. If fF˙n g

1
nD0 and fE

˙
n g
1
nD0 are matrix polynomials defined in terms of the

fˇng
1
nD0 the Schur parameters and the Fourier coefficients, respectively, of a density �

that satisfies (D1) and (D2), then:
(1) The p � 2p mvf

En.�/ D
�
�E�n .�/ ECn .�/

�
;

is a de Branges matrix,

B.En/ D B.Fn/ for n D 0; 1; : : :

and

Kn!.�/ D �
En.�/jpEn.!/

�

�!.�/

D

8<:E
C
n .�/E

C
n .!/

� � �!E�n .�/E
�
n .!/

�

�!.�/
if �! ¤ 1

�f.E�n /
0.�/E�n .�/

� � .ECn /
0.�/ECn .�/

� C N�E�n .�/E
�
n .�/

�g;

(6.14)

where � D � D ! 2 T.
(2) hf; f iB.En/ D hf; f iB.Fn/ D hf; f iDn D hf; f i� for n D 0; 1; : : : :
(3) The RK Kn!.�/ can also be expressed as

Kn!.�/ D

nX
j;kD0

�j 

.n/

jk
!k (6.15)

and

Kn!.�/ D

nX
jD0

E�j .�/E
�
j .!/

�: (6.16)
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Proof. The proof of (1) and (2) is immediate from (6.6) using the identities (5.25)
and (5.26).

In order to show (6.15), it suffices to check that Zn!.�/ D �j 

.n/

jk
!k is a RK for

B.En/ D B.Fn/. In view of (6.5), Zn! clearly belongs to B.En/. If u 2 Cp and
f .�/ D �mfm for 0 � m � n, then, in view of item (6) of Theorem 5.5 and item (2) of
Theorem 5.6,

hf;Zn!uiB.En/ D
1

2�

Z 2�

0

u�Zn!.e
i� /�ECn .e

i� /��ECn .e
i� /�1feim�fngd�

D
1

2�

Z 2�

0

u�Zn!.e
i� /�

(
Cn.e

i� /C Cn.e
i� /�

2

)
feim�fngd�

D
1

2�

Z 2�

0

u�Zn!.e
i� /��.ei� /feim�fngd�

D

nX
j;kD0

!ku�

.n/

kj

�
1

2�

Z 2�

0

ei.m�j /��.ei� /d�

�
fm

D u�

0B@ nX
kD0

h


.n/

k0
� � � 


.n/

kn

i264��m:::
�n�m

375
1CAfm

D u�!mfm

D u�f .!/:

Since h�; �i is linear in the first argument,

u�f .!/ D hf;Zn!uiB.En/ for f 2 B.En/:

Thus, Zn!.�/ is a RK for B.En/. Since there is only one RK for a RKHS, (6.15) holds.
We will now show formula (6.16). Since E�j is a matrix polynomial of degree j with

invertible top coefficient, there exist matrices A1; : : : ; An belonging to Cp�p such that

Kn!.�/ D

nX
jD0

E�j .�/Aj :

Thus, as

u�E�k .!/ D hE
�
k ; K

n
!uiB.En/ for u 2 Cp;

(2.4) can be used to check that Aj D E�j .!/
� for j D 0; : : : ; n.



32 H. Dym and D. P. Kimsey

Corollary 6.5. If � is a density that satisfies (D1) and (D2), then



.n/

jk
D 


.n/
jn f


.n/
nn g
�1


.n/

nk
for j; k D 0; : : : ; n; (6.17)

0 � 

.n�1/
00 D 


.n/
00 � 


.n/
0n f


.n/
nn g
�1


.n/
n0 � 


.n/
00 � Q.0/

�1Q.0/�� (6.18)
and

0 � 

.n�1/
n�1;n�1 D 


.n/
nn � 


.n/
n0 f


.n/
00 g
�1


.n/
0n � 


.n/
nn � R.0/

��R.0/�1 (6.19)

for n D 1; 2; : : : .

Proof. The identity (6.17) follows readily from comparing the expressions for Kn!.�/
given in (6.15) and (6.16) since E�j .�/ D

Pj
mD0 �

m

.j /
mj f
jj g

�1=2.
In view of formulas (6.13), (6.14) and (6.16),

0 � E�n .0/E
�
n .0/

�
D Kn0 .0/ �K

n�1
0 .0/

D ECn .0/E
C
n .0/

�
�ECn�1.0/E

C
n�1.0/

�
� Q.0/�1Q.0/��

for n D 1; 2; : : : . The statements in (6.18) follow easily, since ECn .0/ D f

.n/
00 g

1=2 and
E�n .0/ D 


.n/
0n f


.n/
nn g
�1=2.

The statements in (6.19) follow by applying (6.18) to the reverse polynomials eECn , eE�n
and the identity e
 .n/

jk
D 


.n/

n�j;n�k
for 0 � j; k � n:

Theorem 6.6. The Schur parameters fˇng1nD0 corresponding to a density � that meets
the constraints (D1) and (D2) are subject to the bounds

kˇnk � k

.n/
0n f


.n/
nn g
�1=2
k for n D 1; 2; : : : (6.20)

and
1X
jDn

kˇj k
2
� tracefQ.0/�1Q.0/�� � 
 .n�1/00 g for n D 1; 2; : : : : (6.21)

Proof. Since Un is unitary, formulas (5.7) and (5.27) imply that

ˇ�nˇn D Y
�1
n

n


.n/
00 � 


.n�1/
00

o
Y ��n

and hence, with the help of (6.18), that

kˇnk
2
D kˇ�nˇnk � kY

�1
n k k


.n/
00 � 


.n�1/
00 k kY ��n k � k


.n/
00 � 


.n�1/
00 k: (6.22)

D k

.n/
0n f


.n/
nn g
�1


.n/
n0 k D k


.n/
0n f


.n/
nn g
�1=2
k
2:

The inequality (6.21) is obtained from the preceding sequence of inequalities by noting
that

k

.n/
00 � 


.n�1/
00 k � tracef
 .n/00 � 


.n�1/
00 g;

since 
 .n/00 � 

.n�1/
00 � 0, and hence that

nCkX
jDn

kˇj k
2
� tracef
 .nCk/00 � 


.n�1/
00 g � tracefQ.0/�1Q.0/�� � 
 .n�1/00 g:
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7. CMV matrices

In this section, we will show how to generate a unitary operator A on `p2 that has a
factorization in terms of a unitary matrix ˇ�1 2 Cp�p and the Schur parameters fˇng1nD0
of a density � that satisfies (D1). If ˇ�1 D Ip , then A is the matrix representation of
the operator of multiplication by � in Lp�p2 .T; �/ with respect to an orthonormal basis
that will be constructed in terms of the matrix polynomials fF˙n g1nD0 that are defined in
terms of the Schur parameters fˇng1nD0 of �. This matrix is completely specified by the
Schur parameters of �. If ˇ�1 D Ip and p D 1, then this construction is due to Cantero,
Moral and Velásquez [8]. The case when ˇ�1 D Ip and p > 1 was considered first in
Simon [32] (see also Simon, Damanik and Pushnitski [9]).

Let f‰ng1nD0 be a sequence of mvf’s belonging to Lp�p2 .T; �/ and fAng1nD0 be a
sequence of matrices belonging to Cp�p . We will write

F.�/ D

1X
nD0

‰n.�/An for F 2 Lp�p2 .T; �/

if

lim
n"1

�
F �

nX
jD0

‰jAj ; F �

nX
jD0

‰jAj

�
�

D 0p�p; (7.1)

i.e.,

lim
n"1

Z 2�

0

�
F.ei� / �

nX
jD0

‰j .e
i� /Aj

��
�.ei� /fF.ei� / �

nX
jD0

‰j .e
i� /Aj gd� D 0p�p:

Definition 7.1. A sequence of p � p mvf’s f‰ng1nD0 in Lp�p2 .T; �/ will be called an
“orthonormal basis” for Lp�p2 .T; �/ if:

(i) Œ‰m; ‰n�� D

(
Ip if m D n
0p�p if m ¤ n:

(ii) There exists a sequence fAng1nD0 of p � p matrices such that (7.1) holds for each
F 2 L

p�p
2 .T; �/.

Let fF˙n g1nD0 denote the matrix polynomials given by (5.3) that are defined in terms
of the Schur parameters fˇng1nD0 of a density � which meets the constraint (D1) and set�

�2k.�/

�2kC1.�/

�
D ��k

�
FC
2k
.�/

F �
2kC1

.�/

�
for k D 0; 1; : : : (7.2)

and �
y2k.�/

y2kC1.�/

�
D

�
��kF �

2k
.�/

��k�1FC
2kC1

.�/

�
for k D 0; 1; : : : : (7.3)

Definition 7.2. Let � be a density which meets the constraint (D1) and ˇ�1 2 Cp�p be
unitary. The CMV matrix based on � and ˇ�1 is the operator A W `p2 ! `

p
2 given by

e�m A en D

(
Œ��n; �m��ˇ�1 if m D 0; 1; : : : and n D 0
Œ��n; �m�� if m D 0; 1; : : : and n D 1; 2; : : : :

(7.4)
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If ˇ�1 D Ip in Definition 7.2, then

A D V �1M�V; (7.5)

where V W `p2 ! L
p�p
2 .T; �/ is given by V en D �n and M� denotes the operator of

multiplication by � in Lp�p2 .T; �/.
Theorem 7.3. If fF˙n g

1
nD0 are the matrix polynomials generated by (5.3) in terms of the

Schur parameters of a density � that satisfies (D1) and f�ng1nD0 and fyng1nD0 are given
by (7.2) and (7.3), respectively, then:

(i) f�ng1nD0 is an “orthonormal basis” of Lp�p2 .T; �/.
(ii) fyng1nD0 is an “orthonormal basis” of Lp�p2 .T; �/.

Proof. The proof of (i) is broken into steps. The proof of (ii) is similar.

1. Verification of the orthonormality of f�ng1nD0. If m D n, then, it follows readily from
items (3) and (4) in Theorem 5.6,

Œ�m; �m�� D

(
ŒFCm ; F

C
m �� if m is even

ŒF �m ; F
�
m �� if m is odd

D Ip:

If m ¤ n, then we may assume, without loss of generality, that m > n. It follows
from (2.8) and (5.26) that

ŒF �m ; �
kIp�� D 0p�p for k D 0; : : : ; m � 1:

If m D 2j C 1, then

Œ�2jC1; �
k�j Ip�� D Œ�

�jF �2jC1; �
k�j Ip�� D 0p�p for k D 0; : : : ; 2j;

i.e.,
Œ�2jC1; �

iIp�� D 0p�p for � j � i � j:
Therefore,

Œ�2jC1; �i �� D 0p�p for i D 0; : : : ; 2j;
i.e.,

Œ�m; �n�� D 0p�p for m > n when m is odd.
It follows from (2.6) and (5.25) that

ŒFCm ; �
m�kIp�� D 0p�p for k D 0; : : : ; m � 1:

Thus, if m D 2j and j > 0, then

Œ�2j ; �
j�kIp�� D Œ�

�jFC2j ; �
j�kIp�� D 0p�p for k D 0; : : : ; 2j � 1:

Therefore,
Œ�2j ; �i �� D 0p�p for i D 0; : : : ; 2j � 1;

i.e.,
Œ�m; �n�� D 0p�p for m > n when m is even.
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2. f�ng1nD0 is a basis for L
p�p
2 .T; �/. It follows from (5.25) and (2.1) that

FC
k
.�/ D Ak Cmatrix linear combinationf�; : : : ; �kg; (7.6)

where Ak 2 Cp�p is invertible. Similarly, by using (5.26) and (2.2),

F �k .�/ D �
kBk Cmatrix linear combinationf1; : : : ; �k�1g: (7.7)

The proof that item (ii) in Definition 7.1 holds follows easily from (7.6), (7.7) and the fact
that mvf’s of the form

Pn
kD�n �

kAk are dense in Lp�p2 .T; �/.

Corollary 7.4. If � is a density that satisfies (D1) and F 2 Lp�p2 .T; �/, then

F.�/ D

1X
nD0

�n.�/ŒF; �n�� D

1X
nD0

yn.�/ŒF; yn��: (7.8)

Proof. Both formulas in (7.8) follow immediately from Theorem 7.3.

Lemma 7.5. If � is a density that satisfies (D1), then

��n.�/ D

1X
mD0

�m.�/e�mAB
�en for � 2 T; (7.9)

where

B D

26664
ˇ�1 0 0 � � �

0 Ip 0 � � �

0 0 Ip
:::

:::
: : :

37775 : (7.10)

Proof. By (7.8), the coefficient in the expansion

��n.�/ D

1X
mD0

�m.�/Œ��n; �m��

can be evaluated as
Œ��n; �m�� D e

�
mAB

�en:

It will be convenient to introduce the unitary matrices

An D

�
�ˇ�n .Ip � ˇ

�
nˇn/

1=2

.Ip � ˇnˇ
�
n/
1=2 ˇn

�
for n D 0; 1; : : : : (7.11)
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Theorem 7.6. The CMV matrix A based on a density � that satisfies (D1) and a unitary
matrix ˇ�1 2 Cp�p admits the factorization:

A D AoddAevenB; (7.12)

where

Aodd D

26664
A1 0 0 � � �

0 A3 0 � � �

0 0 A5
:::

:::
: : :

37775 ; Aeven D

26664
Ip 0 0 � � �

0 A2 0 � � �

0 0 A4
:::

:::
: : :

37775 ; (7.13)

B is given by (7.10) and the blocks fAng1nD0 are defined in terms of the Schur parameters
of � by (7.11).

Proof. It follows from (7.4) that

e�m AB� en D Œ��n; �m��:

In view of Corollary 7.4, the mvf �n can be expressed as

�n.�/ D

1X
kD0

yk.�/Pk ;

where

Pk D Œ�n; yk �� for k D 0; 1; : : : ;

and hence

Œ��n; �m�� D

1X
kD0

Œ�yk ; �m��Pk

D

1X
kD0

Œ�yk ; �m��Œ�n; yk ��:

(7.14)

The rest of the proof is broken into steps and is devoted to showing

e�m Aodd ek
def
D Œ�yk ; �m��

D

8̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂:

�ˇ�2nC1 if k D m D 2n
ˇ2nC1 if k D m D 2nC 1
.Ip � ˇ2nC1ˇ

�
2nC1/

1=2 if m D 2nC 1 and k D 2n
.Ip � ˇ

�
2nC1ˇ2nC1/

1=2 if m D 2n and k D 2nC 1
0p�p otherwise

(7.15)
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and

e�k Aeven en
def
D Œ�n; yk ��

D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

Ip if k D n D 0
�ˇ�2mC2 if k D n D 2mC 1
ˇ2mC2 if k D n D 2mC 2
.Ip � ˇ2mC2ˇ

�
2mC2/

1=2 if k D 2mC 2 and n D 2mC 1
.Ip � ˇ

�
2mC2ˇ2mC2/

1=2 if k D 2mC 1 and n D 2mC 2
0p�p otherwise

(7.16)

1. Verification of (7.15). The recursion (5.4) can be rewritten as

�F �k .�/ D F
�
kC1.�/.Ip � ˇkC1ˇ

�
kC1/

1=2
� FC

k
.�/ˇ�kC1 (7.17)

and FC
k
.�/ D FC

kC1
.�/.Ip � ˇ

�
kC1ˇkC1/

1=2
� �F �k .�/ˇkC1: (7.18)

SinceH.ˇkC1/�1 D H.�ˇkC1/, the recursion (5.4) can also be written as

F �kC1.�/ D �F
�
k .�/.Ip � ˇkC1ˇ

�
kC1/

1=2
C FC

kC1
.�/ˇ�kC1 (7.19)

and FC
kC1

.�/ D FC
k
.�/.Ip � ˇ

�
kC1ˇkC1/

1=2
C F �kC1.�/ˇkC1: (7.20)

If k D 2n, then (7.17) can be reexpressed as

�y2n.�/ D �2nC1.�/.Ip � ˇ2nC1ˇ
�
2nC1/

1=2
� �2n.�/ˇ

�
2nC1 (7.21)

and hence, with the help of Theorem 7.3, it is easily checked that

Œ�y2n; �2n�� D �ˇ
�
2nC1; (7.22)

Œ�y2n; �2nC1�� D .Ip � ˇ2nC1ˇ
�
2nC1/

1=2; (7.23)
and Œ�y2n; �m�� D 0p�p for m D 0; : : : ; 2n � 1; 2nC 2; : : : : (7.24)

If k D 2n, then (7.20) can be reexpressed as

�y2nC1.�/ D �2n.�/.Ip � ˇ
�
2nC1ˇ2nC1/

1=2
C �2nC1.�/ˇ2nC1 (7.25)

and hence by another application of Theorem 7.3, it is easily checked that

Œ�y2nC1; �2nC1�� D ˇ2nC1; (7.26)

Œ�y2nC1; �2n�� D .Ip � ˇ
�
2nC1ˇ2nC1/

1=2 (7.27)
and Œ�y2nC1; �m�� D 0p�p for m D 0; : : : ; 2n � 1; 2nC 2; : : : : (7.28)

Formulas (7.22)–(7.24) and (7.26)–(7.28) serve to justify (7.15).
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2. Verification of (7.16). Since �0.�/ D y0.�/ D Ip it follows easily from Theorem 7.3
that

Œ�0; ym�� D Œy0; ym��

D

(
Ip if m D 0
0p�p if m > 0

(7.29)

and

Œ�m; y0�� D Œ�m; �0��

D

(
Ip if m D 0
0p�p if m > 0:

(7.30)

If k D 2n � 1, then (7.19) can be reexpressed as

y2n.�/ D �2n�1.�/.I � ˇ2nˇ
�
2n/

1=2
C �2n.�/ˇ

�
2n for n D 1; 2; : : : : (7.31)

Using (7.31) and Theorem 7.3, it is easily checked that

Œ�2n; y2n�� D ˇ2n for n D 1; 2; : : : ; (7.32)

Œ�2n�1; y2n�� D .Ip � ˇ2nˇ
�
2n/

1=2; (7.33)
and Œ�m; y2n�� D 0p�p for m D 0; : : : ; 2n � 2; 2nC 1; : : : : (7.34)

If k D 2n � 1 in (7.18), then multiplying both sides by ��n we obtain

y2n�1.�/ D �2n.�/.I � ˇ
�
2nˇ2n/

1=2
� �2n�1.�/ˇ2n for n D 1; 2; : : : : (7.35)

Using (7.35) and Theorem 7.3, it is easily checked that

Œ�2n�1; y2n�1�� D �ˇ
�
2n for n D 1; 2; : : : ; (7.36)

Œ�2n; y2n�1�� D .Ip � ˇ
�
2nˇ2n/

1=2; (7.37)
and Œ�m; y2n�1�� D 0p�p for m D 0; : : : ; 2n � 2; 2nC 1; : : : : (7.38)

Formulas (7.29), (7.30), (7.32)–(7.34) and (7.36)–(7.38) serve to justify (7.16).

Let cn D .Ip � ˇ
�
nˇn/

1=2 and dn D .Ip � ˇnˇ
�
n/
1=2 for n D 1; 2; : : : : The next

formula is presented to convey some idea of the structure of the CMV matrix A:

A D

266666664

�ˇ�1ˇ�1 �c1ˇ
�
2 c1c2 0 0 � � �

d1ˇ�1 �ˇ1ˇ
�
2 ˇ1c2 0 0 � � �

0 �ˇ�3d2 �ˇ�3ˇ2 �c3ˇ
�
4 c3c4 � � �

0 d3d2 d3ˇ2 �ˇ3ˇ
�
4 ˇ3c4 � � �

0 0 0 �ˇ�5d4 �ˇ�5ˇ4 � � �

:::
:::

:::
:::

:::
: : :

377777775 : (7.39)
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We will now introduce an alternative CMV matrix C W `p2 ! `
p
2 based on a density�

that satisfies (D1) and a unitary matrix ˇ�1 2 Cp�p by interchanging the role of the basis
f�j g

1
jD0 and the basis fyj g

1
jD0. Let

e�m C en D

(
ˇ�1Œ�yn; ym�� if m D 0 and n D 0; 1; : : :

Œ�yn; ym�� if m D 1; 2; : : : and n D 0; 1; : : : :
(7.40)

If ˇ�1 D Ip , then
C D eV �1M�

eV ; (7.41)

where eV en D yn for n D 0; 1; : : :, or, equivalently,

e�m C en D Œ�yn; ym��: (7.42)

Theorem 7.7. The alternative CMV matrix C based on a density� that satisfies (D1) and
a unitary matrix ˇ�1 2 Cp�p has the factorization:

C D BAevenAodd; (7.43)

where B, Aeven and Aodd are as in Theorem 7.6.

Proof. It follows from (7.40) that

e�mB�C en D Œ�yn; ym��:

In view of Corollary 7.4, the mvf yn can be expressed as

yn.�/ D

1X
kD0

�k.�/Pk ;

where
Pk D Œyn; �k �� for k D 0; 1; : : : ;

and hence

Œ�yn; ym�� D

1X
kD0

Œ�yn; �kPk ��

D

1X
kD0

P �k Œ�yn; �k ��

D

1X
kD0

Œ�k ; ym��Œ�yn; �k ��

D

1X
kD0

Œ�k ; ym��Œ�yn; �k ��: (7.44)

Assertion (7.43) follows directly from (7.44) using the identifications made in (7.15)
and (7.16).
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The next formula is presented to convey some idea of the structure of the alternative
CMV matrix C:

C D

266666664

�ˇ�1ˇ
�
1 ˇ�1c1 0 0 0 � � �

�ˇ�2d1 �ˇ�2ˇ1 �c2ˇ
�
3 c2c3 0 � � �

d2d1 d2ˇ1 �ˇ2ˇ
�
3 ˇ2c3 0 � � �

0 0 �ˇ�4d3 �ˇ�4ˇ3 �c4ˇ
�
5 � � �

0 0 d4d3 ˇ4ˇ3 �ˇ4ˇ
�
5 � � �

:::
:::

:::
:::

:::
: : :

377777775 : (7.45)

Theorem 7.8. Suppose � and e� are densities which both meet the constraint (D1) and
ˇ�1 and Q̌�1 are unitary matrices belonging to Cp�p . If the CMV matrix A based on �
and ˇ�1 and the CMV matrix eA based on e� and Q̌�1 coincide, i.e.,

A D eA; (7.46)

then ˇ�1 D Q̌�1 and � D e�.

Proof. Let fˇng1nD0 and f Q̌ng1nD0 be the Schur parameters corresponding to � and e�,
respectively. Let cn D .Ip �ˇ�nˇn/1=2, dn D .Ip �ˇnˇ�n/1=2, Qcn D .Ip � Q̌�n Q̌n/1=2 and
Qdn D .Ip � Q̌n Q̌

�
n/
1=2 for n D 0; 1; : : : : Then, since

d1ˇ�1 D e�1 A e0 D e�1 eA e0 D Qd1 Q̌�1;

and d1 and Qd1 are both positive definite, whereas ˇ�1 and Q̌�1 are both unitary, the
uniqueness of the polar decomposition implies that

d1 D Qd1 and ˇ�1 D Q̌�1:

We will now show ˇn D Q̌n for n D 0; 1; : : : by induction. First note that we have
ˇ0 D Q̌0 D 0p�p by construction (see Remark 4.4). In view of ˇ�1 D Q̌�1 and

�ˇ�1ˇ�1 D e�0 A e0 D e�0 eA e0 D � Q̌�1 Q̌�1;

ˇ1 D Q̌1:

If ˇm D Q̌m for m D 2n, then the formulas

ˇ�2nC1d2n D e�2n A e2n�1 D e�2neA e2n�1 D Q̌�2nC1 Qd2n;

clearly imply that ˇ2nC1 D ˇ2nC1. If ˇm D Q̌m for m D 2nC 1, then the formulas

c2nC1ˇ
�
2nC2 D e�2n A e2nC1 D e�2n A e2nC1 D Qc2nC1 Q̌�2nC2

clearly imply that ˇ2nC2 D ˇ2nC2.
Finally, as ˇn D Q̌n for n D 0; 1; : : :, the proof that � D e� on T is completed by

invoking Theorem 5.10.
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Theorem 7.9. Suppose� and e� are densities which both meet the constraint (D1). If the
alternative CMV matrix C based on � and ˇ�1 and the alternative CMV matrixeC based
on e� and Q̌�1 coincide, i.e.,

C DeC; (7.47)

then ˇ�1 D Q̌�1 and �.�/ D e�.�/ for � 2 T.

Proof. The proof is completed in much the same way as Theorem 7.8.

8. Convergence results

We begin with four lemmas.
Lemma 8.1. If fAng1nD0 is a sequence of p�p positive definite matrices andA is a p�p
positive definite matrix, then

lim
n"1
kAn � Ak D 0” lim

n"1
kA1=2n � A1=2k D 0: (8.1)

Proof. In view of the well known formula, see, e.g., (17.39) in [17],

A1=2 � fAng
1=2
D

sin.�=2/
2�

Z 1
0

x1=2.xIp C An/
�1.An � A/.xIp C A/

�1dx:

Thus,

kA1=2 � fAng
1=2
k �

�
1

2�

Z 1
0

x1=2k.xIp C A/
�1
kk.xIp C An/

�1
kdx

�
� kAn � Ak

� �kAn � Ak;

for some constant � > 0, which justifies the implication H) in (8.1). The converse
implication follows from the fact that

kAn � Ak D kA
1=2
n .A1=2n � A1=2/C .A1=2n � A1=2/A1=2k

� .kA1=2n k C kA
1=2
k/kA1=2n � A1=2k

� .kA1=2n � A1=2k C 2kA1=2k/kA1=2n � A1=2k:

Lemmas 8.2 and 8.3 are well known results, see, e.g., Delsarte, Genin and Kamp [13].
Lemma 8.2. If P1; : : : ; Pn are p �p Hermitian matrices and Pj � Ip for j D 1; : : : ; n,
then

kP1 � � �Pn � Ipk � kP1k � � � kPnk � 1: (8.2)

Proof. If A1 D U �DU , where U is unitary andD D diag.�1; : : : ; �p/ with

�1 � � � � � �p � 1;
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then

kP1 � Ipk D kU
�DU � Ipk D kU

�.D � Ip/U k

D kD � Ipk D �1 � 1

D kP1k � 1:

Thus, (8.2) holds for n D 1. If n > 1 and the inequality is valid for n � 1, then

kP1P2 � � �Pn � Ipk � kP1.P2 � � �Pn � Ip/k C kP1 � Ipk

D kP1k.kP2k � � � kPnk � 1/C kP1k � 1;

which coincides with (8.2).

Lemma 8.3. If fAng1nD0 is a sequence of p � p positive semidefinite matrices and
Bn D .Ip C A0/ � � � .Ip C An/, then

lim
n"1

Bn D B and B is invertible (8.3)

if and only if
1X
nD0

kAnk <1: (8.4)

Proof. If m > n, then

kBm � Bnk � kBnkk.Ip C AnC1/ � � � .Ip C Am/ � Ipk

� kBnkfkIp C AnC1k � � � kIp C Amk � 1g:

Therefore, since
kIp C Aj k D 1C kAj k � exp kAj k;

it is readily checked that

kBm � Bnk � exp
� nX
jD1

kAj k

�8<:exp
� mX
jDnC1

kAj k

�
� 1

9=; :
Thus, if (8.4) is in force, fBng1nD0 tends to a limit B 2 Cp�p by the Cauchy convergence
criterion. Moreover, as

1 � detBn � detBnC1 � detB;

B is invertible.
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Conversely, if (8.3) is in force, then (8.4) holds, since

detB � detBn D det.Ip C A0/ � � � det.Ip C An/

�

nY
jD0

.1C kAj k/

� 1C

nX
jD0

kAj k:

Lemma 8.4. If ˇn 2 Cp�p and kˇj k � � < 1 for j D 1; 2; : : :, then

1 �

nY
jD1

.1C kˇj k/ � exp

8<: nX
jD1

kˇj k

9=; (8.5)

and

1 �

nY
jD1

.1 � kˇj k/
�1

�

nY
jD1

1C kˇj k

1 � kˇj k
� exp

8<: 2

1 � �

nX
jD1

kˇj k

9=; : (8.6)

If
P1
jD0 kˇnk <1, then

nY
jD1

.1C kˇj k/ and
nY
jD1

.1C kˇj k/

converge to finite positive limits as n " 1.

Proof. The bounds in (8.5) and the lower bound in (8.6) are self-evident. The upper bound
in (8.6) follows from the observation that

1

1 � kˇj k
�
1C kˇj k

1 � kˇj k
D 1C

2kˇj k

1 � kˇj k

� 1C
2

1 � �
kˇj k � exp

�
2

1 � �
kˇj k

�
:

Finally, the asserted existence of the finite positive limits follows from themonotonicity
of the two sequences and the bounds in (8.5) and (8.6).
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Lemma 8.5. If F 2Wp�p and kIp � F kW � " < 1, then

(1) F is invertible inWp�p .

(2) 1 � " � kF kW � 1C ".
(3) 1

1C"
� kF �1kW �

1
1�"

:

Proof. The identity
F.�/ D Ip C F.�/ � Ip

implies that

kIpkW � kIp � F kW � kF kW � kIpkW C kF � IpkW ;

which is equivalent to (2).
Next, if � 2 T and u 2 Cp , then

kF.�/uk D ku � .Ip � F.�/uk

� kuk � kIp � F.�/kWkuk

D .1 � "/kuk

Therefore, F.�/ is invertible for � 2 T and hence, by item (1) of Theorem 5.1, (1) holds.
Finally, the lower bound in (3) follows from the inequalities

1 D kF �1F kW � kF
�1
kWkIp C .F � Ip/kW

� kF �1kW.1C "/;

whereas the upper bound follows from the inequalities

kF �1kW D kIp C F
�1
� IpkW � kIpkW C kF

�1.Ip � F /kW

� 1C "kF �1kW :

Corollary 8.6. If fGng1nD0 is a sequence inWp�p such that G�1n 2Wp�p and

lim
n"1
kGn �GkW D 0 and G�1 2Wp�p; (8.7)

then
lim
n"1
kG�1n �G

�1
kW D 0: (8.8)

Proof. In view of (8.7), for any " < 1, there exists a positive integer n" such that

kG�1Gn � IpkW � " < 1 for n � n":

Thus, it follows from item (3) of Lemma 8.5,

kG�1n GkW �
1

1 � "
for n � n":



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 45

Consequently,

kG�1n �G
�1
kW D kG

�1
n .G �Gn/G

�1
kW

D kG�1n GG�1.G �Gn/G
�1
kW

� kG�1n GkWkG
�1
k
2
WkG �GnkW

! 0 as n " 1.

Lemma 8.7. If the matrix polynomials fF˙n g
1
nD0 are defined by (5.3) in terms of a given

sequence of strict contractions fˇng1nD0 with ˇ0 D 0p�p and
P1
nD0 kˇnk < 1 and Xn

and Yn are given by (5.6) and (5.7), respectively, then:
(i) Xn ! X1 as n " 1, where X1 2 Cp�p is nonsingular.
(ii) Yn ! Y1 as n " 1, where Y1 2 Cp�p is nonsingular.
(iii) X�1n ! X�11 as n " 1.
(iv) Y �1n ! Y �11 as n " 1.

Proof. The proof is broken into steps.

1. Verification of (i) and (ii). If

Aj D .Ip � ˇnˇ
�
n/
�1=2
� Ip for j D 0; 1; : : : ;

then
Xn D .Ip C A0/ � � � .Ip C An/:

Since An � 0 and

kAj k D
1

f1 � kˇj k2g1=2
� 1 D

1

f.1 � kˇj k/.1C kˇj k/g1=2
� 1

�
1

1 � kˇj k
� 1

D
kˇj k

1 � kˇj k
;

it is readily seen that
P1
nD0 kAnk < 1. Therefore, (i) follows from Lemma 8.3. The

proof of (ii) is similar.

2. Verification of (iii) and (iv). Assertion (iii) follows readily from Corollary 8.6 applied
to the sequence fXng1nD0. The verification of (iv) is similar.

Lemma 8.8. If the matrix polynomials fE˙n g
1
nD0 are defined by (2.1) and (2.2) in terms

of the Fourier coefficients of a density � that satisfies (D1) and (D2), then

lim
n"1
f

.n/
00 g

1=2
D Q.0/�1 � 0 (8.9)

and
lim
n"1
f
 .n/nn g

1=2
D R.0/�1 � 0: (8.10)



46 H. Dym and D. P. Kimsey

Proof. If u 2 Cp and ! D 0 in (6.13), then, in view of Theorem 6.3,

lim
n"1

u�.Q.0/�2 � FCn .0/F
C
n .0/

�/u D 0:

Therefore, since



.n/
00 D F

C
n .0/F

C
n .0/

�
D ECn .0/E

C
n .0/

� for n D 0; 1; : : : ;

lim
n"1

u�.Q.0/�2 � 

.n/
00 /u D 0:

In view of (8.1),
lim
n"1

u�.Q.0/�1 � f

.n/
00 g

1=2/u;

i.e., (8.9) holds.
We will now prove (8.10). It follows from (8.9) that

lim
n"1
f
 .n/nn g

1=2
D eQ.0/�1 � 0:

Taking advantage of the identification (3.4), (8.10) is readily obtained.

Corollary 8.9. If the matrix polynomials fE˙n g1nD0 are defined by (2.1) and (2.2) in terms
of the Fourier coefficients of a density � that satisfies (D1) and (D2), then

detQ.0/ D detR.0/: (8.11)

Proof. This follows easily from (8.9) and (8.10), since det 
 .n/00 D det 
 .n/nn .

Lemma 8.10. If the matrix polynomials fE˙n g1nD0 are defined by (2.1) and (2.2) in terms
of the Fourier coefficients of a density � that satisfies (D1) and (D2) and u 2 Cp , then

lim
n"1
k.Q�1 �ECn /uk� D 0; (8.12)

lim
n"1
k.Q�1Q.0/�1 � FCn F

C
n .0/

�/uk� D 0; (8.13)

lim
n"1
k.R�� � ��nE�n /uk� D 0 (8.14)

and
lim
n"1
k.R��R.0/�1 � ��nF �n X

�
n /uk� D 0: (8.15)

Proof. If u 2 Cp , then (8.12) follows from item (4) in Theorem 6.3 with ! D 0 and (8.9).
Indeed,

k.Q�1 �ECn /uk� D k.Q
�1ECn .0/

�
�ECn E

C
n .0/

�/ECn .0/
��uk�:

Assertion (8.13) follows directly from item (4) in Theorem 6.3 with ! D 0.
If e�.�/ D �. N�/ D eQ.�/eQ.�/, where eQ˙ 2Wp�p

C then, it follows from (8.12) that

lim
n"1
k.eQ�1 � eECn /uke� D 0; (8.16)

where eECn is given by (3.2). Assertion (8.14) drops out easily from (8.16) in view of the
identifications (3.4) and (3.2).

Assertion (8.15) can be obtained from (8.13) in a similar fashion.
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9. The Schur parameters of a positive spectral density in the Wiener
algebra are summable (the harder half of Baxter’s theorem)

In this section the convergence results established in Section 8 will be strengthened
with the help of a matrix version of Baxter’s inequality. The main conclusion in this
section, Theorem 9.6, is verified in complete detail. This result was obtained earlier by
Geronimo [21] via a matrix generalization of Baxter’s inequality due to Hirschman [26].
Corollary 9.1. If A 2 Cp�p and kIp � Ak � " < 1, then:
(1) A is invertible.

(2) 1 � " � kAk � 1C ".
(3) 1

1C"
� kA�1k � 1

1�"
.

The following theorem depends heavily on the matrix extension of Baxter’s inequality,
which is presented in Appendix C.
Theorem 9.2. If fE˙n g

1
nD0 are matrix polynomials based on the Fourier coefficients of a

density � that satisfies (D1) and (D2), then

lim
n"1
kQ�1Q�10 �E

C
n f


.n/
00 g

1=2
kW D 0 (9.1)

and
lim
n"1
kR��R�10 � �

�nE�n f

.n/
nn g

1=2
kW D 0: (9.2)

Moreover,

(1) kQ�1 �ECn kW ! 0 as n " 1.

(2) kR�� � ��nE�n kW ! 0 as n " 1.

(3) kQ � .ECn /�1kW ! 0 as n " 1.

(4) kR� � .��nE�n /�1kW ! 0 as n " 1.

(5) kCn � CkW ! 0 as n " 1.

Proof. The proof of (9.1) and (9.2) drops out from Theorem C.1. The rest of the proof is
broken into steps.

1. Verification of (1) and (2). It follows from Theorem C.1 that there exists a constant �
so that

kECn f

.n/
00 g

1=2
kW � �

for n � 0. Thus, as (1) holds if and only if kQ�1Q�10 �ECn Q�10 kW ! 0 as n " 1 and

kQ�1Q�10 �E
C
n Q

�1
0 kW � �n C `n

where
�n D kQ

�1Q�10 �E
C
n f


.n/
00 g

1=2
kW
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and
`n D kE

C
n .f


.n/
00 g

1=2
�Q�10 /kW

� kECn kWkf

.n/
00 g

1=2
�Q�10 k

� �kf

.n/
00 g
�1=2
kkf


.n/
00 g

1=2
�Q�10 k

� �kQ0kkf

.n/
00 g

1=2
�Q�10 k

we obtain (1) by using (8.9), (9.1) and the monotonicity in (6.18).
The proof of (2) is similar.

2. Verification of (3) and (4). Assertion (3) follows from item (3) of Lemma 8.5 and (1).
Assertion (4) is proved similarly.

3. Verification of (5). In view of item (6) of Theorem 5.5 and (5.22),�
Cn.�/C Cn.�/

�

2

�
D FCn .�/

��FCn .�/
�1
D ECn .�/

��ECn .�/
�1:

Thus, using (1) we have

lim
n"1





�Cn C C �n2

�
�Q�Q






W
D 0: (9.3)

But asQ.�/�Q.�/ D �.�/ D fC.�/CC.�/�g=2 and Cn and C belong toWp�p
C , (5) can

be obtained from (9.3).

In view of formulas (5.17), (5.25) and (5.26), it is readily checked that the mvf

„n.�/
def
D ‚n.�/

�
V �n 0

0 U �n

� �
��n�1Ip 0

0 Ip

�
;

D
1

2

�
fIp C Cn.�/

�g��nE�n .�/ fIp � Cn.�/gE
C
n .�/

fIp � Cn.�/
�g��nE�n .�/ fIp C Cn.�/gE

C
n .�/

�
:

Corollary 9.3. If � is a density that satisfies (D1) and (D2), then

lim
n"1
k„n �„1kW D 0; (9.4)

where

„1.�/ D
1

2

�
fIp C C.�/

�gR.�/�� fIp � C.�/gQ.�/
�1

fIp � C.�/
�gR.�/�� fIp C C.�/gQ.�/

�1

�
(9.5)

for � 2 T.

Proof. Assertion (9.4) follows easily from items (3)–(5) in Theorem 9.2.
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Lemma 9.4. If � is a density which satisfies (D1) and (D2) and if the mvf „1 defined
in (9.5) is written in block form as

„1 D

"
„
.11/
1 „

.12/
1

„
.21/
1 „

.22/
1

#
and

�.�/
def
D

�
�11 �12
�21 �22

�
D Z2„1.�/

�Z2; with Z2 D
�
0 Ip
Ip 0

�
; (9.6)

then:

(i) � is jp-unitary on T.

(ii) E�12 C�22 is invertible on T for every contractive matrix E 2 Cp�p .

(iii) The identity

.E�12 C�22/
�1.E�11 C�21/ D .„

.11/
1 E C„.12/1 /.„.21/1 E C„.22/1 /�1

holds on T for every contractive matrix E 2 Cp�p .

Proof. The verification of (i) is easy, sinceZ� D Z andZ�jpZ D �jp . The verification
of (ii) follows easily from the identity

�22.�/
��22.�/ D �12.�/

��12.�/C Ip;

which is the 22 block of �.�/�jp�.�/ D jp . Finally, (iii) holds if and only if

.E�11 C�21/.„
.21/
1 E C„.22/1 / � .E�12 C�22/.„

.11/
1 E C„.12/1 / D 0p�p (9.7)

on T. But the left-hand side of (9.7) can be rewritten as

�
E Ip

� ��11
�21

� h
„
.21/
1 „

.22/
1

i �
E

Ip

�
�
�
E Ip

� ��12
�22

� h
„
.11/
1 „

.12/
1

i �
E

Ip

�
D
�
E Ip

� ��11 �12
�21 �22

�
jp

"
„
.21/
1 „

.22/
1

„
.11/
1 „

.12/
1

#�
E

Ip

�
D
�
E Ip

�
Z„�1ZjpZ„1

�
E

Ip

�
D
�
Ip E

�
„�1.�jp/„1

�
E

Ip

�
D �

�
Ip E

�
jp

�
E

Ip

�
D 0p�p

on T.
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Remark 9.5. IfQ.�/�1 D
P1
jD0 �

jLj and R.�/�1 D
P1
jD0 �

jMj , then

Q0L0 D R0M0 D Ip

and the convergence in Wp�p indicated in (9.1) and (9.2) is equivalent to

lim
n"1

� nX
jD0




LjL0 � nX
jD0



.n/
j0




C 1X
jDnC1

kLjL0k

�
D 0 (9.8)

and

lim
n"1

� nX
jD0




M �jM0 �

nX
jD0



.n/
n�j;n




C 1X
jDnC1

kM �jM0k

�
D 0; (9.9)

respectively.
The proof of the next theorem is modeled on the proof of (x) implies (xii) in Theo-

rem 5.2.2 of Simon [31], which treats the scalar case p D 1. Simon credits his proof to a
“clever argument of Baxter [5]”.
Theorem 9.6. If fˇng1nD0 are the Schur parameters based on a density � which satis-
fies (D1), then

1X
nD0

kˇnk <1: (9.10)

Proof. The proof is broken into steps.

1. The matrix polynomials fE˙n g
1
nD0 defined by (2.1) and (2.2) obey the recursion:

ECn .�/E
C
n .0/

�1
�ECn�1.�/E

C
n�1.0/

�1
D �E�n�1.�/ˇ

0
n for n D 1; 2; : : : (9.11)

with
ˇ0n D VnˇnU

�
n�1E

C
n�1.0/

�1 for n D 1; 2; : : : : (9.12)

The recursion (5.18) implies that

FCn .�/.Ip � ˇ
�
nˇn/

1=2
D �F �n�1.�/ˇn C F

C
n�1.�/;

which, upon invoking the formulas

FCn .�/ D E
C
n .�/Un; F �n .�/ D E

�
n .�/Vn

and

Un.Ip � ˇ
�
nˇn/

1=2
D f


.n/
00 g
�1=2
f

.n�1/
00 g

1=2Un�1

D ECn .0/
�1ECn�1.0/Un�1;

can be rewritten as (9.11).
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2. The inequality

2kR0f

.n�1/
n�1;n�1g

1=2ˇ0nk � kR
�E�n�1ˇ

0
nkW

� kR�ECn E
C
n .0/

�1
kW � kR

�ECn�1E
C
n�1.0/

�1
kW (9.13)

holds for n D 1; 2; : : : :

The inequality

R.�/�ECn�1.�/E
C
n�1.0/

�1
D R.�/�ECn .�/E

C
n .0/

�1
�R.�/��E�n�1.�/ˇ

0
n (9.14)

is easily obtained from (9.11), or, equivalently, in terms of the notation

A.�/ D

nX
jD�1

�jAj D R.�/
�ECn .�/E

C
n .0/

�1

and B.�/ D

nX
jD�1

�jBj D R.�/
��E�n�1.�/ˇ

0
n;

can be restated as

R.�/�ECn�1.�/E
C
n�1.0/

�1
D

nX
jD�1

�jAj �

nX
jD�1

�jBj :

Thus, as ECn�1 is a polynomial of degree at most n � 1,

An D Bn D R
�
0f


.n�1/
n�1;n�1g

1=2ˇ0n for n D 1; 2; : : :

and hence that

kR�ECn�1E
C
n�1.0/

�1
kW �

nX
jD�1

kAj k C

nX
jD�1

kBj k � 2kBnk

D kR�ECn E
C
n .0/

�1
kW C kR

�E�n�1ˇ
0
nkW � 2kBnk:

Consequently, (9.13) holds.

3. If 0 < " < 1, �n D R0f

.n�1/
n�1;n�1g

1=2 and ‰n.�/ D R.�/���nE�n .�/, then there exists
a positive integer n" such that

k�n � Ipk � " and k‰n�1 � IpkW � " if n � n": (9.15)

The existence of n" follows from items (2) and (4) in Theorem 9.2.

4. k�nˇ0nk � .1 � "/kˇ
0
nk if n � n". In view of the bound (9.15) and Lemma 8.5, �n is

invertible and .k��1n k/�1 � 1 � ". Therefore,

kˇ0nk D k�
�1
n �nˇ

0
nk � k�

�1
n kk�nˇ

0
nk;

i.e.,
k�nˇ

0
nk � k�

�1
n k
�1
kˇ0nk � .1 � "/kˇ

0
nk if n � n":
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5. kR�E�n�1ˇ
0
nkW � .1C "/kˇ

0
nk if n � n". Clearly,

kR�E�n�1ˇ
0
nkW � kR

�E�n�1kWkˇ
0
nk

D k‰n�1kWkˇ
0
nk

D k‰n�1 � Ip C IpkWkˇ
0
nk

� fk‰n�1 � IpkW C 1gkˇ
0
nk;

which is equivalent to the asserted inequality when n � n" by the second bound in (9.15).

6. If n � n", then

2kDnˇ
0
nk � kR

�E�n�1ˇ
0
nkW � .1 � 3"/kQ

�1
0 k
�1
kˇnk

for n D 0; 1; : : : :

By Steps 4 and 5, if n � n", then

2k�nˇ
0
nk � kR

�E�n�1ˇ
0
nkW � .1 � 3"/kˇ

0
nk

Moreover, since Vn and Un�1 are unitary matrices,

kˇnk D kV
�
n ˇ
0
nE
C
n�1.0/Un�1k

� kV �n ˇ
0
nkkE

C
n .0/Un�1k

D kˇ0nkkE
C
n .0/k

� kˇ0nkkQ
�1
0 k;

sinceECn .0/ D f

.n/
00 g

1=2 � Q�10 . The asserted conclusion drops out easily by combining
the two inequalities.

7. Verifying (9.10). If we let �" D 1
1�3"
kQ�10 k, then it follows from Steps 2 and 6 that

nCkX
jDn

kˇj k � �"fkR
�EC

nCk
EC
nCk

.0/�1kW � kR
�ECn�1E

C
n�1.0/

�1
kWg

� �"kR
�
kWkE

C

nCk
EC
nCk

.0/�1kW

� �"kR
�
kW

˚
kEC

nCk
EC
nCk

.0/�1 �Q�1Q0kW C kQ
�1Q0kW

	
:

Thus,
1X
jDn

kˇj k � �"kR
�
kWkQ

�1Q0kW if n � n":

and hence (9.10) holds.
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10. Asymptotics for CMV matrices

Throughout this section we will assume that� is a density which satisfies (D1) and (D2).
In view of Theorem 9.6, the Schur parameters fˇng1nD0 corresponding to � satisfy

1X
nD0

kˇnk <1:

Theorem 10.1. If fˇng1nD0 are the Schur parameters of a density � which satisfies (D1)
and (D2) and u 2 Cp , then

lim
n"1
k.Q�1Q.0/�1 � FCn Y1/uk� D 0 (10.1)

and lim
n"1
k.R��R.0/�1 � ��nF �n X

�
1/uk� D 0; (10.2)

where X1 and Y1 are nonsingular matrices given in Lemma 8.7.

Proof. Assertion (10.1) follows directly from (8.13), Yn ! Y1 as n " 1, the identifica-
tion given in item (1) of Theorem 5.5 and

k.Q�1Q.0/�� � FCn Y1/uk� � k.Q
�1Q.0/�� � FCn Yn/uk� C kF

C
n .Yn � Y1/uk�

D k.Q�1Q.0/�� � FCn Yn/uk� C k.Yn � Y1/uk:

Assertion (10.2) is shown in much the same way using (8.15) and the identification given
in item (2) of Theorem 5.5.

Theorem 10.2. If � is a density that satisfies (D1) and (D2) and fUng1nD0 and fVng1nD0
are sequences of unitary matrices given in (5.25) and (5.26), respectively, then there exist
unitary matrices U1 and V1 such that

lim
n"1

Un D U1 (10.3)

and lim
n"1

Vn D V1; (10.4)

respectively.

Proof. In view of (5.27),
Un D f


.n/
00 g
�1=2Yn;

whence (10.3) follows easily from (8.9) and item (ii) of Lemma 8.7, which is applicable
due to Theorem 9.6. The fact that U1 is unitary is self-evident.

The verification of (10.4) is similar.

Definition 10.3. Given the CMV matrix A based on the unitary matrix ˇ�1 2 Cp�p and
a density � which satisfies (D1) and (D2), the scattering matrix ˆ is given by

ˆ.�/ D ˇ�1R.�/
�Q.�/�1 for � 2 T: (10.5)
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Remark 10.4. The definition of ˆ in formula (10.5) is motivated by asymptotics which
appear in Theorem 10.5.

In Theorem 10.5 we shall let�
‰2k.�/

‰2kC1.�/

�
D

�
ˇ�1R.�/

��2k.�/

R.�/��2kC1.�/

�
for � 2 T (10.6)

and � e‰2k.�/e‰2kC1.�/
�
D

�
Q.�/y2k.�/

Q.�/y2kC1.�/

�
for � 2 T; (10.7)

where f�ng1nD0 and fyng1nD0 are given by (7.2) and (7.3), respectively.
Theorem 10.5. If A is the CMV matrix and C is the alternative CMV matrix based
on a density � which satisfies (D1) and (D2) and the unitary matrix ˇ�1 2 Cp�p ,
ˆ D ˇ�1R

�Q�1 and u 2 Cp , then the following asymptotics hold in Lp2 .T; Ip/ norm:

‰2n.�/ D �
�nˆ.�/Q.0/�1Y �11 C o.1/; (10.8)

‰2nC1.�/ D �
nC1R.0/�1X��1 C o.1/; (10.9)e‰2n.�/ D �nˆ.�/�ˇ�1R.0/��X��1 uC o.1/ (10.10)

and e‰2nC1.�/ D ��n�1Q.0/�1Y �11 C o.1/; (10.11)

where X1 and Y1 are as in Lemma 8.7 and f‰ng1nD0 and fe‰ng1nD0 are given by (10.6)
and (10.7), respectively. Moreover, if ˇ�1 D Ip , then�

‰0.�/ ‰1.�/ � � �
�
A D �

�
‰0.�/ ‰1.�/ � � �

�
(10.12)

and
�e‰0.�/ e‰1.�/ � � � �

C D �
�e‰0.�/ e‰1.�/ � � � �

: (10.13)

Proof. Let fˇng1nD0 denote the Schur parameters of �. In view of Theorem 9.6,P1
nD0 kˇnk <1. Thus, X1 and Y1 exist due to Lemma 8.7.
The proof is broken into steps.

1. Verification of (10.8) and (10.9). It follows from (10.1) that

lim
n"1
k.R�Q�1Q.0/�1 �R�FC2nY1/ukst D 0:

Thus, in view of (7.2) and the unitarity of ˇ�1,

lim
n"1
k.��nˇ�1R

�Q�1Q.0/�1 � ˇ�1R
��2nY1/ukst D 0:

Therefore, since ˆ.�/ D ˇ�1R.�/�Q.�/�1, (10.8) holds.
We will now verify (10.9). It follows from (10.2) that

lim
n"1
k.R.0/�1X��1 ��.2nC1/R�F �2nC1/ukst D 0:

Thus, in view of (7.2) and the unitarity of ˇ�1,

lim
n"1
k.R.0/�1X��1 � �

�n�1R��2nC1/ukst D 0:
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2. Verification of (10.10) and (10.11). Assertions (10.10) and (10.11) are proved in a
similar manner to (10.8) and (10.9), respectively, using (7.3).

3. Verification of (10.12) and (10.13). If ˇ�1 D Ip , then, in view of (7.8) with
F.�/ D ‰n.�/,

�
‰0.�/ ‰1.�/ � � �

�
A en D

1X
mD0

‰m.�/Œ��n; �m��

D R�
1X
mD0

�m.�/Œ��n; �m��

D R���n.�/

D �‰n.�/:

The proof of (10.13) is similar.

11. Generating a positive spectral density from a summable sequence
of strict contractions (the easier half of Baxter’s theorem)

In this section we shall show that each sequence ˇ0; ˇ1; : : : of p � p matrices with

ˇ0 D 0p�p; kˇnk < 1 and
1X
nD0

kˇnk <1

can be identified as the Schur parameters of exactly one density � which meets the
constraints in (D1). This result is known, see, e.g., [12] and [21], and will provide a
converse to Theorem 9.6. Given fˇng1nD0, withˇ0 D 0p�p and kˇnk < 1 forn D 0; 1; : : :,
define ‚n, as in (5.2), for n D 0; 1; : : : and the matrix polynomials fF˙n g1nD0 via (5.3).
Let

Dn.�/ D F
C
n .�/

��FCn .�/
�1
D F �n .�/

��F �n .�/
�1 for � 2 T: (11.1)

In view of Theorem 5.5, it is easily seen that the mvf Dn satisfies (1.1) and (1.2) for
n D 0; 1; : : : :

Theorem 11.1. Let fˇng1nD1 be a given sequence of p � p strict contractions, i.e.,
kˇnk < 1 for n D 1; 2; : : : : If

P1
nD1 kˇnk < 1, then there exists exactly one density �

for which (D1) is in force with Schur parameters equal to the given sequence fˇng1nD0,
where ˇ0 D 0p�p . Moreover,

lim
n"1
k� � .FCn /

��.FCn /
�1
kWD 0 (11.2)

and lim
n"1
k� � .F �n /

��.F �n /
�1
kWD 0: (11.3)

Before proving Theorem 11.1, we first need some preliminary results.
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Lemma 11.2. If the matrix polynomials fF˙n g1nD0 are defined by (5.3) in terms of a given
sequence of strict contractions fˇng1nD0 with ˇ0 D 0p�p , then:

(i) For all 0 � j; k � n,

ŒF �j ; F
�
k �Dn D

(
Ip if j D k
0p�p if j ¤ k:

(ii) For all 0 � j; k � n,

Œ��jFCj ; �
�kFC

k
�Dn D

(
Ip if j D k
0p�p if j ¤ k:

Proof. In view of the identification given in item (5) of Theorem 5.5,

Dn.�/ D
Cn.�/C Cn.�/

�

2
for � 2 T; (11.4)

where Cn is the mvf given by (5.12). In view of (11.4) and the chain of equalities,
beginning at (5.21), carried out in Step 2 of the proof of Theorem 5.6, (i) holds. The proof
of (ii) is carried out in much the same way using the chain of equalities in Step 4 of the
proof of Theorem 5.6.

Lemma 11.3. The matrix polynomials fF˙n g
1
nD0 defined by (5.3) in terms of a given

sequence of strict contractions fˇng1nD0 with ˇ0 D 0p�p and

kˇnk � � < 1 for n D 0; 1; : : :

are subject to the bounds

exp

8<:�
�

2

1 � �

� nX
jD1

kˇj k

9=; � kF˙n .�/k � exp

8<: 2

1 � �

nX
jD1

kˇj k

9=; (11.5)

for � 2 T and n D 0; 1; : : : :

Proof. The proof is broken into steps.

1. Verification of the bounds�
1 � kˇnC1k

1C kˇnC1k

�
kF �n .�/k � kF

�
nC1.�/k � kF

�
n .�/k

�
1C kˇnC1k

1 � kˇnC1k

�
(11.6)

for � 2 T and n D 0; 1; : : : :

The recursion (5.4) implies

F �nC1.�/ D .�F
�
n .�/C F

C
n .�/ˇ

�
nC1/.Ip � ˇnC1ˇ

�
nC1/

�1=2

D F �n .�/f�Ip C F
�
n .�/

�1FCn .�/ˇ
�
nC1g.Ip � ˇnC1ˇ

�
nC1/

�1=2 (11.7)
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and hence, as F �n .�/�1FCn .�/ is unitary for � 2 T,

kF �nC1.�/k � kF
�
n .�/k.1C kˇnC1k/k.Ip � ˇnC1ˇ

�
nC1/

�1=2
k:

Let ˇnC1 D USV � be the singular value decomposition for ˇnC1, where U and V are
unitary, S D diag.s1; : : : ; sp/ and s1 � � � � � sp � 0. Then,

.Ip � ˇnC1ˇ
�
nC1/

�1=2
D U.Ip � S

2/�1=2U �

and hence

k.Ip � ˇnC1ˇ
�
nC1/

�1=2
k D

1q
1 � s21

D
1p

1 � kˇnC1k2
:

Thus,

kF �nC1.�/k � kF
�
n .�/k

(
1C kˇnC1kp
1 � kˇnC1k2

)

D kF �n .�/k

�
.1C kˇnk/

2

1 � kˇnC1k2

�1=2
� kF �n .�/k

�
1C kˇnC1k

1 � kˇnC1k

�
;

which justifies the upper bound in (11.6).
The equality (11.7) implies that

F �n .�/ D F
�
nC1.�/.Ip � ˇnC1ˇ

�
nC1/

1=2.�Ip � F
�
n .�/

�1FCn .�/ˇ
�
nC1/

�1 (11.8)

for � 2 T. Since

.Ip � ˇnC1ˇ
�
nC1/

1=2
D U.I � S2/1=2U �;

k.Ip � ˇnC1ˇ
�
nC1/

1=2
k < 1 � 1C kˇnC1k:

Thus, upon invoking the inequality

k.Ip � A/
�1
k �

1

1 � kAk

for A 2 Cp�p with kAk < 1 and the unitarity of F �n .�/�1FCn .�/,

kF �n .�/k � kF
�
nC1.�/k

�
1C kˇnC1k

1 � kˇnC1k

�
;

which justifies the lower bound in (11.6).
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2. Verification of (11.5). The bounds

nY
jD0

�
1 � kˇjC1k

1C kˇjC1k

�
kF �0 .�/k � kF

�
nC1.�/k � kF

�
0 .�/k

nY
jD0

�
1C kˇjC1k

1 � kˇjC1k

�
(11.9)

follow from (11.6). In view ofF �0 .�/ D Ip and (8.6), the bounds for kF �nC1.�/k advertised
in (11.5) are readily obtained from (11.9). The bounds for kFCnC1.�/k in (11.5) follow
from (11.1).

Theorem 11.4. If the matrix polynomials fF˙n g
1
nD0 are defined by (5.3) in terms of a

given sequence of strict contractions fˇng1nD0 with ˇ0 D 0p�p and
P1
nD0 kˇnk < 1,

then:

(i) There exists a mvf A 2Wp�p
C such that A�1 2Wp�p

C ,

kFCn � AkW ! 0 as n " 1 (11.10)
and k.FCn /

�1
� A�1kW ! 0 as n " 1: (11.11)

(ii) There exists a mvf B 2Wp�p
C such that B�1 2Wp�p

C ,

k�n.F �n /
�
� BkW ! 0 as n " 1 (11.12)

and k��n.F �n /
��
� B�1kW ! 0 as n " 1: (11.13)

Proof. The proof is broken into steps. Let fXng1nD0 and fYng1nD0 be given by (5.6) and
(5.7), respectively.

1. If kn D kFCn Y
�1
n kW and `n D kF �n X

�1
n kW , then fkng1nD0 and f`ng

1
nD0 are bounded.

Using the recursion (5.4), it is readily checked that

F �nC1.�/X
�1
nC1 D f�F

�
n .�/C F

C
n .�/ˇ

�
nC1gX

�1
n (11.14)

and FCnC1.�/Y
�1
nC1 D f�F

�
n .�/ˇnC1 C F

C
n .�/gY

�1
n : (11.15)

Consequently,

kF �nC1X
�1
nC1kW � kF

�
n X

�1
n kW C kF

C
n ˇ
�
nC1X

�1
n kW

and kFCnC1Y
�1
nC1kW � kF

�
n ˇnC1Y

�1
n kW C kF

C
n Y

�1
n kW :

Thus, if we let

an D kF
�
n X

�1
n kW C kF

C
n Y

�1
n kW for n D 0; 1; : : : ;
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then

anC1 � an C kF
C
n ˇ
�
nC1X

�1
n kW C kF

�
n ˇnC1Y

�1
n kW

� an C kF
C
n Y

�1
n kWkYnkkˇnC1kkX

�1
n k C kF

�
n X

�1
n kWkkXnkkˇnC1kkY

�1
n k

� an.1C �kˇnC1k/; (11.16)

where, in view of Lemma 8.7,

� D sup
nD0;1;:::

fkYnkkX
�1
n k; kY

�1
n kkXnkg <1:

Iterating the bound (11.16), since a0 D 1, it is easily seen that,

knC1 C `nC1 D anC1 � a0

nY
jD0

.1C �kˇjC1k/

� exp

8<:� nX
jD0

kˇjC1k

9=; ;
which serves to justify the boundedness of the sequences fkng1nD0 and f`ng1nD0, sinceP1
jD0 kˇj k <1.

2. fFCn Y
�1
n g

1
nD0 is a Cauchy sequence inW

p�p
C . Ifm > n � 0, then, in view of (11.15),

kFCm Y
�1
m � F

C
n Y

�1
n kW �

m�1X
jDn

kF �j ˇjC1Y
�1
j kW

D

m�1X
jDn

kF �j X
�1
j XjˇjC1Y

�1
j kW

�

m�1X
jDn

kF �j X
�1
j kWkXj kkˇjC1kkY

�1
j k

� Q�

m�1X
jDn

kˇjC1k;

where, in view of Step 1 and Lemma 8.7,

Q� D sup
jD0;1;:::

faj kXj kkY
�1
j kg <1;

Thus, as
m�1X
jDn

kˇjC1k ! 0 as m; n " 1;

Step 2 holds.
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3. fFCn g
1
nD0 is a Cauchy sequence inW

p�p
C . This follows from the sequence of inequal-

ities

kFCm � F
C
n kW D kF

C
m Y

�1
m Ym � F

C
n Y

�1
n YnkW

D .FCm Y
�1
m � F

C
n Y

�1
n /Ym C F

C
n Y

�1
n .Ym � Yn/kW

� kFCm Y
�1
m � F

C
n Y

�1
n kWkYmk C kF

C
n Y

�1
n kWkYm � Ynk

and Step 2. Therefore, there exists A 2Wp�p
C such that (11.10) holds.

4. Verification of A�1 2Wp�p
C . In view of Lemma 11.3,

exp

8<:�
�

2

1 � �

� 1X
jD1

kˇj k

9=; � kF �n .�/k � exp

8<: 2

1 � �

1X
jD1

kˇj k

9=; ;
where � as in the statement of Lemma 11.3. Consequently, there exists a subsequence
fnkg

1
kD0

of f0; 1; : : :g and a mvf P on D such that

lim
k"1
kFCnk .�/

�1
� P.�/k D 0 at each point � 2 D. (11.17)

We claim that P.�/ D A.�/�1. In view of (11.17),

kIp � A.�/P.�/k D kF
C
nk
.�/FCnk .�/

�1
� A.�/P.�/k

� kFCnk .�/kkF
C
nk
.�/�1 � P.�/k C kFCnk .�/ � A.�/kkP.�/k

! 0 as k " 1:

Therefore, as A.�/ is invertible for all � 2 D, it follows from item (2) of Theorem 5.1 that
A�1 2Wp�p

C .

5. Verification of (11.11). Since

k.FCn /
�1
� A�1kW D k.F

C
n /
�1.A � FCn /A

�1
kW

� k.FCn /
�1
kWkA � F

C
n kWkA

�1
kW ;

it suffices to show that k.FCn /�1kW is bounded. But, in view of (11.10),

lim
n"1
kFCn A

�1
� IpkWD 0: (11.18)

Thus, using Lemma 8.5 we have any 0 < " < 1,

kA.FCn /
�1
kW <

1

1 � "
for n sufficiently large (11.19)

and hence

k.FCn /
�1
kW D kA

�1A.FCn /
�1
kW

� kA�1kWkA.F
C
n /
�1
kW

�

�
1

1 � "

�
kA�1kW for n sufficiently large.
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6. Verification of (ii). The verification of (ii) is carried out in much the same way as the
verification of (i) in Steps 1–5. We will outline the major steps. In view of (11.14) and
(11.15),

k��.nC1/F �nC1X
�1
nC1kW � k�

�nF �n X
�1
n kW C kF

C
n ˇ
�
nC1X

�1
n kW

and kFCnC1Y
�1
nC1kW � k�

�nF �n ˇnC1Y
�1
n kW C kF

C
n Y

�1
n kW ;

which can be used to show that f��nF �n X�1n g1nD0 is a Cauchy sequence in Wp�p
� . Con-

sequently, one can show that f��nF �n g1nD0 is also a Cauchy sequence in Wp�p
� . Thus,

there exists a mvf B 2 Wp�p
C such that (11.12) holds. The verification of B�1 2 Wp�p

C

and (11.13) is completed in a way similar to Step 3 and 4, respectively.

We are now ready to prove Theorem 11.1.

Proof of Theorem 11.1. The proof is broken into steps.

1. There exists a density � which satisfies (1.1), (1.2), (11.2) and (11.3). In view of
items (i) and (ii) in Theorem 11.4, there exist mvf’s A and B with A˙1 and B˙1 both
belonging to Wp�p

C such that (11.10)–(11.13) hold. If

�.�/ D A.�/��A.�/�1 for � 2 T; (11.20)

then (11.2) follows from (11.11) and the bound

kA��A�1 � .FCn /
��.FCn /

�1
kW

� kA��kWkA
�1
� .FCn /

�1
kW C kA

��
� .FCn /

��
kWk.F

C
n /
�1
kW :

The limit (11.3) follows from (11.2) and (11.1).
By an argument based on (11.13) that is similar to verification of (11.20), it follows

that
lim
n"1
kB�1B�� � .��nF �n /

��.��nF �n /
�1
kWD 0

and hence that, in addition to (11.20), � admits the second factorization

�.�/ D B.�/�1B.�/�� for � 2 T: (11.21)

2. The matrix polynomials fF˙n g
1
nD0 satisfy

ŒF �j ; F
�
k �� D

(
Ip if j D k
0p�p if j ¤ k;

(11.22)

Œ��jFCj ; �
�kFC

k
�� D

(
Ip if j D k
0p�p if j ¤ k

(11.23)

and (1.3).
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If 0 � j; k � n, then item (i) in Lemma 11.2 guarantees that

1

2�

Z 2�

0

F �k .e
i� /�Dn.e

i� /F �j .e
i� /d� D ŒF �j ; F

�
k �Dn (11.24)

D

(
Ip if j D k
0p�p if j ¤ k:

Thus, as
k.F �k /

�.Dn ��/F
�
j kW � kF

�
k kWkDn ��kWkF

�
j kW

tends to 0 as n " 1, the limit as n " 1 can be brought inside the integral to obtain

1

2�

Z 2�

0

F �k .e
i� /��.ei� /F �j .e

i� /d� D

(
Ip if j D k
0p�p if j ¤ k:

(11.25)

Thus, (11.22) holds.
The proof of (11.23) is completed in much the same way from item (ii) in Lemma 11.2.

In view of F �0 .�/ D Ip , (1.3) follows from (11.25).

3. The Schur parameters of � are equal to fˇng1nD0. Let f˛ng1nD0 denote the Schur
parameters of �. In view of (11.22) and (11.23), we may use Theorem 5.8 to obtain
sequences of unitary matrices fMng

1
nD0 and fNng1nD0 so that

FCn .�/ D E
C
n .�/Mn (11.26)

and F �n .�/ D E
�
n .�/Nn: (11.27)

Consequently, the matrix polynomials fF˙n g1nD0 generated by fˇng1nD0,�
F �nC1.�/ FCnC1.�/

�
D
�
�F �n .�/ FCn .�/

�
H.ˇnC1/

can be written as�
E�nC1.�/ ECnC1.�/

�
D
�
�E�n .�/ ECn .�/

� �Nn 0

0 Mn

�
H.ˇnC1/

�
N �nC1 0

0 M �nC1

�
:

Thus, as the last recursion can also be written in terms of the Schur parameters f˛ng1nD0
of � as�
E�nC1.�/ ECnC1.�/

�
D
�
�E�n .�/ ECn .�/

� �Vn 0

0 Un

�
H.˛nC1/

�
V �nC1 0

0 U �nC1

�
;�

Nn 0

0 Mn

�
H.ˇnC1/

�
N �nC1 0

0 M �nC1

�
D

�
Vn 0

0 Un

�
H.˛nC1/

�
V �nC1 0

0 U �nC1

�
must hold for n D 0; 1; : : : : Therefore, by the uniqueness of the polar decomposition,
Z1 D V1, and, continuing by induction,

Zn D Vn for n D 0; 1; : : : :
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In much the same way, using (5.30), one can show that

Mn D Un for n D 0; 1; : : : :

Therefore,
H.˛nC1/ D H.ˇnC1/ for n D 0; 1; : : :

and hence
˛nC1 D ˇnC1 for n D 0; 1; : : : :

4. � is unique. The asserted uniqueness has been established in Theorem 5.10.

12. Generating a positive spectral density from
a unitary operator of the form (7.12)

Let ˇ�1 be a p�p unitary matrix and fˇng1nD1 be a sequence of p�p strict contractions
which satisfy

1X
nD1

kˇnk <1:

Let fung1nD1 be a sequence of 2p � 2p unitary matrices given by

un D

�
�ˇ�n .Ip � ˇ

�
nˇn/

1=2

.Ip � ˇnˇ
�
n/
1=2 ˇn

�
for n D 1; 2; : : : :

and
U D UoddUevenV; (12.1)

where

Uodd D

26664
u1 0 0 � � �

0 u3 0 � � �

0 0 u5
:::

:::
: : :

37775 ; Ueven D

26664
Ip 0 0 � � �

0 u2 0 � � �

0 0 u4
:::

:::
: : :

37775
and

V D

26664
ˇ�1 0 0 � � �

0 Ip 0 � � �

0 0 Ip
:::

:::
: : :

37775 :
Since un is unitary for n D 1; 2; : : :, it is readily checked that U W `p2 ! `

p
2 is unitary.
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Theorem 12.1. Let fˇng1nD1 be a sequence of p � p strict contractions with

1X
nD1

kˇnk <1:

If U is the unitary operator on `p2 given by (12.1), then there is exactly one density �
meeting the constraint (D1) and one unitary matrix ˇ�1 2 Cp�p with the property that U
is the CMV matrix based on the mvf � and ˇ�1 (see Definition 7.2).

Proof. Let ˇ0 D 0p�p . If fˇng1nD0 satisfies
P1
nD0 kˇnk <1, then, using Theorem 11.1,

there exists exactly one density � which satisfies (D1) and the Schur parameters of � are
given by fˇng1nD0. Let A denote the CMV based matrix based on � and ˇ�1. It follows
from Theorem 7.6 that A D U. The fact that there is only exactly one density � which
meets (D1) and exactly one unitary matrix ˇ�1 so that U is the CMV matrix based on �
and ˇ�1 follows from Theorem 7.8.

13. A Nehari problem

In this section a number of important connections with a Nehari problem in Wp�p are
summarized. Most of the facts follow from the fundamental study of the Nehari problem
in a general setting by Adamjan, Arov and Krein [2]. For the convenience of the reader
proofs that are adapted mostly from [2] to the present simpler setting are presented in
Appendix C. However, Theorem 13.5 and Corollary 13.6 are based on the work of Treil
and Volberg [35].

Let Wp�p denote the set of ˆ 2Wp�p on T for which the Hankel operatorb�ˆ D qMˆjHp
2

is strictly contractive, i.e., kb�ˆk < 1, and let N .ˆ/ denote the set of all mvf’s‰ 2Wp�p

with k‰.�/k � 1 for every point � 2 T for which

ˆ �‰ 2Wp�p
C : (13.1)

It is readily checked that

‰ 2 N .ˆ/” q‰f D q f̂ for every f 2 Hp
2 :

In order to simplify the typography we shall abuse notation a little and shall allow
operators that act on p � 1 vvf’s to act on p � k mvf’s with the understanding that they
act column by column. Thus, for example, if

F D
�
f1 � � � fk

�
2 H

p�k
2 ;

then b�ˆF is interpreted as
hb�ˆf1 � � � b�ˆfki : (13.2)
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The main result will be to parameterize N .ˆ/ in terms of a linear fractional transfor-
mation

T‚ŒE� D .�11E C �12/.�21E C �22/
�1

based on a 2p � 2p mvf

‚ D

�
�11 �12
�21 �22

�
(13.3)

with blocks

�11 2Wp�p
� ; ��12 2Wp�p

� ; ��1�21 2Wp�p
C and �22 2Wp�p

C (13.4)

that will be defined in terms of the p � p positive definite matrices

M D Œ.I �b��ˆb�ˆ/�1Ip; Ip�st and N D Œ.I �b�ˆb��ˆ/�1��1Ip; ��1Ip�st (13.5)

when ˆ 2Wp�p .
Theorem 13.1. If ˆ 2Wp�p , then there exists exactly one mvf ‚ of the form indicated
in (13.3) such that"

I �b�ˆ
�b��ˆ I

#�
��1�11 �12
��1�21 �22

�
D

�
��1N�1=2 0

0 M�1=2

�
: (13.6)

Moreover,
(1) �#11.0/ D N 1=2, �#12.0/ D 0p�p , �21.0/ D 0p�p and �22.0/ DM 1=2.
(2) ‚ is jp unitary on T, i.e.,

‚.�/�jp‚.�/ D ‚.�/jp‚.�/
�
D jp for � 2 T: (13.7)

(3) T‚Œ� � is unitary on T for every mvf � 2Wp�p such that �.�/�.�/� D Ip for � 2 T.
(4) k�11.�/�1�12.�/k � ı < 1 and k�22.�/�1�21.�/k � " < 1 for � 2 T.
(5) .�21E C �22/˙1 2Wp�p

C if E 2 Sp�p \Wp�p
C .

(6) .�11 C �12E�/˙1 2Wp�p
� if E 2 Sp�p \Wp�p

C .

Proof. The proofs of items (1)–(4) are presented in Subsection D.2; (5) and (6) are verified
in Subsection D.5.

Let ˆ.�/ D
P1
nD�1 �

nˆn belong toWp�p with ˆ0 in the matrix ball

fN�1=2ˇM�1=2 C C0 W ˇ 2 Cp�p and ˇ�ˇ � Ipg; (13.8)

with center
C0 D �.b�ˆp��1.I �b��ˆb�ˆ/�1M�1/0: (13.9)

We now introduce a second Hankel operatorbG.ˇ/ˆ f Deq f̂ D �q��1 f̂ for f 2 H
p
2 ; (13.10)

in whicheq denotes the orthogonal projection of Lp2 onto �.Hp
2 /
? and ˇ 2 Cp�p is a

contraction.
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The operators

.G
.ˇ/
ˆ �/j D

1X
kD0


jCk�k for j D 0; 1; : : : (13.11)

and .�ˆ�/j D

1X
kD0


jCkC1�k for j D 0; 1; : : : ; (13.12)

with 
j D ˆ�j for j D 0; 1; : : : ; (13.13)

are the counterparts in `p2 of the operators bG.ˇ/ˆ and b�ˆ, respectively.
It is readily checked that

kbG.ˇ/ˆ k D kG.ˇ/ˆ k and kb�ˆk D k�ˆk:
Moreover,

G
.ˇ/
ˆ � D Y
0Y

�� C T �ˆ C Y Y
��ˆT

�� for � 2 `p2 (13.14)

and

0 D �Y

��ˆT
�.I � ��ˆ�ˆ/

�1YM�1 CN�1=2ˇM�1=2; (13.15)

where

Y � D col.�; 0; : : : ; 0/ 2 `p2 for � 2 Cp;
Y �� D �0 2 Cp for � D col.�0; �1; : : :/ 2 `p2 ;
T � D col.0; �0; �1; : : :/ 2 `p2 for � D col.�0; �1; : : :/ 2 `p2 ;

and T �� D col.�1; �2; : : :/ 2 `p2 for � D col.�0; �1; : : :/ 2 `p2 :

Theorem 13.2. If ˆ 2 Wp�p , ‚ is specified by (13.6) and ˇ 2 Cp�p with ˇ�ˇ � Ip ,
then

.�21ˇ C �22/
˙1
2Wp�p

C ; (13.16)

.�11ˇ C �12/
˙1
2Wp�p

� (13.17)

and
dim kerfI � .bG.ˇ/ˆ /�bG.ˇ/ˆ g D dim kerfIp � ˇ�ˇg: (13.18)

If ˇ�ˇ D Ip , then

bG.ˇ/ˆ .�21ˇ C �22/ D .�11ˇ C �12/; (13.19)

.bG.ˇ/ˆ /�.�11ˇ C �12/ D .�21ˇ C �22/; (13.20)

kbG.ˇ/ˆ k D 1 (13.21)

and
f.�21ˇ C �22/u W u 2 Cpg D ker fI � .bG.ˇ/ˆ /�bG.ˇ/ˆ g (13.22)

is a p dimensional subspace ofHp
2 .
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Proof. See Subsection D.4.

Let Xp�p denote the class of p � p mvf’s X 2 Wp�p which are unitary on T and
admit a factorization of the form

X.�/ D X�.�/XC.�/
�1 for � 2 T; (13.23)

with .X�/˙1 2Wp�p
� and .XC/˙1 2Wp�p

C .
Theorem 13.3. If ˆ 2Wp�p and ‚ is specified by (13.6), then

N .ˆ/ D fT‚ŒE� W E 2 Sp�p \Wp�p
C g (13.24)

and
N .ˆ/ \Xp�p

D fT‚ŒE� W E 2 Cp�p and is unitaryg: (13.25)

Proof. See Subsection D.5 for the proof of the inclusion

fT‚ŒE� W E 2Wp�p
C \ Sp�pg � N .ˆ/

in (13.24), Subsection D.7 for the proof of the inclusion

N .ˆ/ � fT‚ŒE� W E 2Wp�p
C \ Sp�pg

in (13.24) and the verification of (13.25).

Corollary 13.4. If ˆ 2Wp�p , ‚ is specified by (13.6) and

‰ D T‚Œˇ� for some unitary matrix ˇ 2 Cp�p;

then (the Fourier coefficients of ‰)

‰�k D

(
N�1=2ˇM�1=2 � .�ˆT

�d/0M�1=2 if k D 0
ˆ�k if k D 1; 2; : : : ;

(13.26)

where

d D

264.�22/0.�22/1
:::

375 :
Moreover, if bG.ˇ/‰ Deq‰jHp2 ;
then

.bG.ˇ/‰ f /.�/ D .‰0 C

1X
jD1

��j 
j /f0 C �.b�ˆ p��1f /.�/ (13.27)

for f D
P1
jD0 �

jfj belonging toH
p
2 .

Proof. See Subsection D.8.
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Theorem 13.5. The set Xp�p is a subset of the set Wp�p , i.e., if X 2 Xp�p , then the
Hankel operator b�X D qX jHp

2
is strictly contractive.

Proof. Let
�X .�/ D X�.�/

�X�.�/ for � 2 T:

Then, in view of the presumed unitarity of X on T,

�X .�/ D XC.�/
�XC.�/ for � 2 T:

Moreover, there exist a pair of positive constants 0 < a < b such that

aIp � �X .�/ � bIp for � 2 T:

Therefore, the averages

AI .�
˙1
X / D

1

jI j

Z
I

�X .e
i� /˙1d�

over any subinterval I of Œ0; 2�� of length jI j are subject to the bounds

AI .�X / � bIp and AI .�
�1
X / � a

�1Ip:

Consequently,

kAI .�X /
1=2AI .�

�1
X /

1=2
k � kAI .�X /

1=2
kkAI .�

�1
X /

1=2
k

� .b=a/1=2;

i.e., �X meets the Treil–Volberg matrix Muckenhoupt condition (A2) in [35], and hence,
by the main result of [35], the angle between the “past”

z�.�X / D clsf�j � W j � �1 and � 2 Cpg

in Lp2 .T; �X / and the “future”

zC.�X / D clsf�j � W j � 0 and � 2 Cpg

in Lp2 .T; �X / is strictly positive:

supfjhf�; fCi�X j W f� 2 z�.�X /, fC 2 zC.�X / and kf�k�X D kfCk�X D 1g < 1:
(13.28)

But

hf�; fCi�X D hX�f�; X�fCist

D hX�f�; XXCfCist:

Therefore, since g� D X�f� belongs to .Hp
2 /
?, gC D XCfC belongs to Hp

2 and
kf˙k�X D kgCkst,

hf�; fCi�X D hg�; XgCist D hg�;
b�XgCist: (13.29)
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Furthermore, since
XC maps zC.�X / bijectively ontoHp

2

and
X� maps z�.�X / bijectively onto .Hp

2 /
?

it follows readily from (13.28) and (13.29) that

kb�Xk � � < 1:
Corollary 13.6. If �.�/ D Q.�/�Q.�/ D R.�/R.�/� for � 2 T withQ˙1 2Wp�p

C and
R˙1 2Wp�p

C , then the Hankel operator b�F D qF jHp
2
with symbol

F.�/ D R.�/�Q.�/�1 for � 2 T

is strictly contractive.

Proof. It suffices to show that F 2 Xp�p , which is self-evident.

14. Explicit formulas for the rational case

This section is adapted from [16], where all rational solutions of amatricial Nehari problem
based on a Hankel operator � W Hp

2 .…C/ ! H
p
2 .…�/, where …C and …� denote the

right half plane and left half plane, respectively.
Let Rp�p denote the set of p � p rational mvf’s. Let ˆ.�/ D

P1
nD�1 �

nˆn belong
to Wp�p and suppose ˆ�.�/ D

P�1
nD�1 �

nˆn belongs to Rp�p and admits a minimal
realization of the form

ˆ�.�/ D C.�In � A/
�1B; (14.1)

where A 2 Cp�p with �.A/ � D, B 2 Cn�p and C 2 Cp�n. Let

Fo.�/ D C.�In � A/
�1; Fc.�/ D B

�.In � �A
�/�1; (14.2)

Po D
1

2�

Z 2�

0

Fo.e
i� /�Fo.e

i� /d� and Pc D
1

2�

Z 2�

0

Fc.e
i� /�Fc.e

i� /d�: (14.3)

If kb�ˆk < 1, then In � PoPc and In � PcPo are invertible (see Lemma 14.10). In
addition, let

Mo D fFo.�/u W u 2 Cpg and Mc D fFc.�/u W u 2 Cpg (14.4)

be endowed with the inner product

hFou; FoviMo
D v�Pou and hFcu; FcviMc

D v�Pcu;

respectively.
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The assumption that the realization given in (14.1) is minimal means that the pair
.C;A/ is observable and the pair .A;B/ is controllable, i.e.,

n�1\
jD0

ker CAj D f0g and
n�1\
jD0

ker B�.A�/j D f0g:

Thus, if Fo.�/u D 0 for every � 2 C n �.A/, then u D 0. Similarly, if Fc.�/u D 0 for
every � 2 C n �#.A/, where

�#.A/ D f1= N� W � 2 �.A/ n f0gg;

then u D 0. Consequently, the n columns of Fo.�/ and Fc.�/ form a basis for Mo and
Mc , respectively. Moreover, Po and Pc are both positive definite matrices.

Let NR.ˆ/ denote the set of all mvf’s ‰ 2Wp�p \Rp�p with

‰�.�/ D

0X
nD�1

�nˆn 2 Rp�p

and k‰.�/k � 1 for every point � 2 T. The main result of this section is devoted
to obtaining explicit formulas for the blocks �jk , j; k D 1; 2, in the linear fractional
transformation T‚ŒE� in Theorem 13.3.
Theorem 14.1. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then

NR.ˆ/ D f.�11E C �12/.�21E C �22/
�1
W E 2 Sp�p \Rp�p

g; (14.5)

where

�11.�/ D �Fo.�/.In � PcPo/
�1PcC

�
fC.In � PcPo/

�1PcC
�
g
�1=2; (14.6)

�12.�/ D Fo.�/Pc.In � PoPc/
�1PoBfB

�.In � PoPc/
�1PoBg

�1=2; (14.7)

�21.�/ D �Fc.�/Po.In � PcPo/
�1PcC

�
fC.In � PcPo/

�1PcC
�
g
�1=2; (14.8)

and �22.�/ D Fc.�/.In � PoPc/
�1PoBfB

�.In � PoPc/
�1PoBg

�1=2: (14.9)

Moreover,

‚.�/

�
��1Ip 0

0 Ip

�
D

�
��1�11.�/ �12.�/

��1�21.�/ �22.�/

�
D

�
C 0

0 B�

� �
�In � A 0

0 In � �A
�

��1 �
P�1c �In
�In P�1o

��1
�

�
C �N�1=2 0

0 BM�1=2

�
; (14.10)

where

N D C.In � PcPo/
�1PcC

�
� 0

and M D B�.In � PoPc/
�1PoB � 0:

The proof of Theorem 14.1 will be deferred until the end of the section.
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Lemma 14.2. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then the
spaces Mo and Mc are both n-dimensional RKHS’s with RK’s

Ko!.�/ D Fo.�/P
�1
o Fo.!/

� for �; ! 2 C n �.A/ (14.11)
and Kc!.�/ D Fc.�/P

�1
c Fc.!/

� for �; ! 2 C n �#.A/: (14.12)

Proof. Since the realizations in (14.2) are minimal, Mo and Mc are both n dimensional
spaces, to prove the assertion for Mo, it suffices to show that:
(1) Ko!u 2Mo for every u 2 Cp and ! 2 C n �.A/.

(2) hf;Ko!uiMo
D u�f .!/ for every u 2 Cp and f 2Mo.

If u 2 Cp and ! 2 C n �.A/, then Ko!.�/u D Fo.�/v for v D P�1o Fo.!/
�u. Thus, (1)

holds. Next if f D Fov, where v 2 Cp , then

hf;Ko!uiMo
D hFov;K

o
!uiMo

D hFov; FoP
�1
o Fo.!/

�uiMo

D u�Fo.!/P
�1
o Pov

D u�Fo.!/v

D u�f .!/:

Thus, (2) holds.
The verification for Mc is completed in much the same way.

Lemma 14.3. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then:
(i) P0 is the only solution of the Stein equation

C �C D Po � A
�PoA: (14.13)

(ii) Pc is the only solution of the Stein equation

BB� D Pc � APcA
�: (14.14)

Proof. Since �.A/ � D,

Po D
1

2�

Z 2�

0

Fo.e
i� /�Fo.e

i� /d�

D
1

2�

Z 2�

0

.In � e
i�A�/�1C �C.In � e

�i�A/�1d�

D
1

2�

Z 2�

0

(
1X
jD0

.ei�A�/j

)
C �C

(
1X
kD0

.e�i�A/k

)
d�

D C �C C A�

(
1

2�

Z 2�

0

� 1X
jD1

ei.j�1/� .A�/j�1
�
C �C

� 1X
kD1

e�i.k�1/�Ak�1
�
d�

)
A

D C �C C A�PoA:
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Thus, Po is a solution of (14.13). P0 is the only solution of (14.13) because �.A/ � D
and hence

�.A/ \ �#.A/ D ;;

(see, e.g., Theorem 18.2 in [17]).
The verification of (ii) is similar.

Remark 14.4. Since �.A/ � D,

Po D

1X
jD0

.A�/jC �CAj (14.15)

and Pc D

1X
jD0

.A/jBB�.A�/j : (14.16)

The recipe for Po and Pc given in (14.15) and (14.16) follows easily from (14.13) and
(14.14), respectively.

Lemma 14.5. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then:

(i) The mvf
�o.�/ D Ip � .� � 1/Fo.�/P

�1
o .In � A

�/�1C �

is inner with respect to C n D.

(ii) The mvf
�c.�/ D Ip � .1 � �/Fc.�/P

�1
c .In � A/

�1B

is inner with respect to D.

Proof. With the help of (14.13), it is readily checked

� Ip C �o.�/�o.!/
�
D .1 � �!/Fo.�/P

�1
o Fo.!/

� (14.17)

and hence that �o is inner with respect to C n D.
Similarly, with the help of (14.14), it is readily checked that

Ip � �c.�/�c.!/
�
D .1 � �!/Fc.�/P

�1
c Fc.!/

� (14.18)

and hence �c is inner with respect to D.

Lemma 14.6. If ˆ 2 Wp�p and ˆ� has a minimal realization given by (14.1) and
f 2 H

p
2 , then

.b�ˆf /.�/ D Fo.�/ � 1
2�

Z 2�

0

Fc.e
i� /�f .ei� /d�

�
(14.19)

for every point � 2 C n �.A/.



CMV matrices, Baxter’s theorem, scattering and de Branges spaces 73

Proof. If A D diag.!1; : : : ; !n/ and ej , j D 1; : : : ; n, denotes the standard basis of Cn,
then

.�In � A/
�1
D

nX
jD1

ej e
�
j

� � !j
:

It is readily seen that

.b�ˆf /.�/ D .q f̂ /.�/

D

nX
jD1

qC
ej e
�
j

� � !j
Bf

D q

8<: nX
jD1

C ej e
�
jB

�
f � f .!j /

� � !j

�
C

nX
jD1

C ej e
�
jB

�
f .!j /

� � !j

�9=;
D

nX
jD1

C

 
ej e
�
j

� � !j

!
Bf .!j /;

since
f .�/ � f .!j /

� � !j
2 H

p
2 and

f .!j /

� � !j
2 .H

p
2 /
?

when !j 2 D. Therefore,

.b�ˆf /.�/ D C.�In � A/�1 nX
kD1

eke
�
kBf .!k/:

Thus, upon invoking Cauchy’s formula forHp
2 ,

f .!k/ D
1

2�

Z 2�

0

f .ei� /

1 � !ke�i�
d�;

it follows that

.b�ˆf /.�/ D C.�In � A/�1 � 1
2�

Z 2�

0

.In � Ae
�i� /�1Bf .ei� /d�

�
:

D C.�In � A/
�1

�
1

2�

Z 2�

0

.B�.In � e
�i�A�/�1/�f .ei� /d�

�
D Fo.�/

�
1

2�

Z 2�

0

Fc.�/
�f .ei� /d�

�
:

This completes the proof of (14.19) when A is diagonal. The preceding argument can
easily be adjusted to obtain the same conclusionwhenA is diagonalizable. Therefore, since
the n�n diagonalizable matrices are dense inCn�n, (14.19) holds for anyA 2 Cn�n.
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Lemma 14.7. If ˆ 2 Wp�p and ˆ� has a minimal realization given by (14.1) and
h.�/ D

P1
nD0 �

�nhn belongs to �.H
p
2 /
?, then�

p
h

1 � �!

�
.�/ D

(
h.1=!/
1 � �!

if ! 2 D n f0g
h0 if ! D 0:

(14.20)

Proof. If h 2 �.Hp
2 /
?, u 2 Cp and � 2 D, then

u�
�
p
f

�!

�
.�/ D

�
h

�!
;
u

��

�
D

�
h#u

��
;
1

�!

�
D

�
h#u

��

�
.!/

D
u�h.1=!/

�!.�/

D
u�h.1=!/

1 � �!
if ! 2 D n f0g:

If ! D 0, then (14.20) follows from the evaluation .ph/.�/ D h0.

Lemma 14.8. If ˆ 2 Wp�p and ˆ� has a minimal realization given by (14.1) and
g 2 .H

p
2 /
?, then

.b��ˆg/.�/ D Fc.�/ � 12�
Z 2�

0

Fo.e
i� /�g.ei� /d�

�
(14.21)

for � 2 C n �#.A/.

Proof. If g 2 .Hp
2 /
? and A D diag.!1; : : : ; !n/, then

.b��ˆ g/.�/ D .pB�.�In � A�/�1C �g/.�/
D .pB�

nX
jD1

ej e
�
j

1 � �!j
C ��g/.�/

Let h.�/ D �g.�/ and write h.�/ D
P1
nD0 �

�nhn. Using Lemma 14.7 we get

.b��ˆ g/.�/ D nX
jD1

B�

 
ej e
�
j

1 � �!j

!
nX
kD1

eke
�
kC
�h.!k/

D B�.In � �A
�/�1

nX
kD1

eke
�
kC
�h.1=!k/
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D Fc.�/

nX
kD1

eke
�
kC
�h.!k/: (14.22)

Formula (14.21) is obtained from (14.22) using Cauchy’s formula.

Lemma 14.9. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then:

(i) The formulas b�ˆFcu D FoPcu and b��ˆFov D FcPov hold for every choice of
u; v 2 Cn.

(ii) If g 2 .Hp
2 /
? and hg; Fouist D 0 for every u 2 Cp , then b��ˆg D 0.

(iii) If f 2 Hp
2 and hf; Fcuist D 0 for every u 2 Cp , then b�ˆf D 0.

Proof. Assertions (i)–(iii) follow easily from (14.19) and (14.21), respectively.

Lemma 14.10. If ˆ 2 Wp�p and ˆ� has a minimal realization given by (14.1),
P
1=2
c PoP

1=2
c D UDU �, where U 2 Cn�n is a unitary matrix with columns u1; : : : ; un

andD D diag.s21 ; : : : ; s2n/ and s1 � � � � � sn > 0,

fj D FcP
�1=2
c uj and gj D

�
1

sj

�
FoP

1=2
c uj for j D 1; : : : ; n;

then:

(1) b�ˆfj D sjgj and b��ˆgj D sjfj for j D 1; : : : ; n.
(2) hfj ; fkist D hgj ; gkist D

(
0 if j ¤ k
1 if j D k:

(3) hfj ; gkist D 0 for j; k D 1; : : : ; n.

(4) In � PcPo and In � PoPc are invertible matrices.

Proof. Assertion (1)–(4) are an easy consequence of the formulas advertised in item (i)
of Lemma 14.9. We will now check that In � PcPo is invertible. In view of

In � PcPo D P
1=2
c .In � P

1=2
c PoP

1=2
c /P�1=2c ;

In � PcPo is invertible if and only if In � P 1=2c PoP
1=2
c is invertible. In view of (1),

.I �b��ˆb�ˆ/fj D fj �b��ˆsjgj
D .1 � s2j /fj for j D 1; : : : ; n:

Thus, as I � b��ˆb�ˆ is a positive operator and fj is an eigenvector corresponding to the
eigenvalue 1 � s2j , 1 � sj > 0 for j D 1; : : : ; n. Thus, In � PcPo is invertible, and
consequently, In � PoPc is also invertible.
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Lemma 14.11. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then

f.I �b��ˆb�ˆ/�1Ipg.�/ D Fc.�/.In � PoPc/�1PoB (14.23)

for � 2 C n �.A/, and

f.I �b�ˆb��ˆ/�1��1Ipg.�/ D Fo.�/.In � PcPo/�1PcC � (14.24)

for C n �#.A/. Moreover, the positive definite matrices M and N defined in (13.5) can
be written as

M D B�.In � PoPc/
�1PoB (14.25)

and N D C.In � PcPo/
�1PcC

�: (14.26)

Proof. The proof is broken into steps.

1. Verification of (14.23) and (14.24). It is readily seen that (14.23) is equivalent to

1X
jD0

f.b��ˆb�ˆ/j Ipg.�/ D 1X
jD0

Fc.�/.PoPc/
jPoB: (14.27)

But
kX
jD0

f.b��ˆb�ˆ/j Ipg.�/ D kX
jD0

Fc.�/.PoPc/
jPoB (14.28)

can be checked by induction on k using formulas (14.19) and (14.21). Thus, (14.27) holds
and so must (14.23).

The verification of (14.24) is similar.

2. Verification of (14.25) and (14.26). In view of (14.23),

M
def
D Œ.I �b��ˆb�ˆ/�1Ip; Ip�st
D ŒFc.In � PoPc/

�1PoB; Ip�st

D ŒFc ; Ip�st.In � PoPc/
�1PoB

D B�
�
1

2�

Z 2�

0

B�.In � e
i�A�/�1d�

�
.In � PoPc/

�1PoB

D B�
1X
kD0

�
1

2�

Z 2�

0

eik�fA�gkd�

�
.In � PoPc/

�1PoB

D B�.In � PoPc/
�1PoB:

The verification of (14.26) is similar using (14.24).
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Theorem 14.12. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then:

(i) The n-dimensional RKHS Mo can be identified as

Mo D .H
p
2 /
?
	 �o.H

p
2 /
?

with RK

Ko!.�/ D �
Ip � �o.�/�o.!/

�

�!.�/
for �; ! 2 C n �#.A/:

(ii) The n-dimensional RKHS Mc can be identified as

Mc D .H
p
2 /	 �c.H

p
2 /

with RK

Kc!.�/ D
Ip � �c.�/�c.!/

�

�!.�/
for �; ! 2 C n �.A/:

Proof. The formula for Ko!.�/ and Kc!.�/ follow from (14.17) and (14.18), respectively.
The identifications for Mo and Mc follow from Lemma 14.9 and Theorem 14.13.

Theorem 14.13. If ˆ 2Wp�p and ˆ� has a minimal realization given by (14.1), then:

(i) The Hankel operator b�ˆ maps Mc injectively onto Mo and

kerb�ˆ D Hp
2 	Mc : (14.29)

(ii) The Hankel operator b��ˆ maps Mo injectively onto Mc and

kerb��ˆ D .Hp
2 /
?
	Mo: (14.30)

Proof. Assertion (i) follows easily from the definition of Mc given in (14.4) and the
formula (14.19), since .C;A/ is an observable pair: if b�ˆf D 0 for f 2 Mc , then
f D Fcu for some u 2 Cp and

b�ˆf D b�ˆu D FoPcu D 0:
Thus, as .C;A/ is an observable pair and Pc is invertible, u D 0. Therefore,b�ˆ maps the
n-dimensional space Mc injectively onto the n-dimensional space Mo. Finally, (14.29)
follows from (14.19).

Assertion (ii) is proved in much the same way since

.b��ˆFou/.�/ D Fc.�/Pou
and, as .A;B/ is a controllable pair, .B�; A�/ is an observable pair.
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Proof of Theorem 14.1. In view of (13.24), it suffices to justify the formulas advertised in
(14.6)–(14.9). In view of (14.23) and (14.25),

�22.�/ D Fc.�/.In � PoPc/
�1PoBM

�1=2

D Fc.�/.In � PoPc/
�1PoBfB

�.In � PoPc/
�1PoBg

�1=2: (14.31)

The formula for �12 can be obtained from (D.15) using (14.31) and item (i) of Lemma 14.9.
The verification of the formulas for �11 and �21 are similar.

It is readily checked that

‚.�/

�
��1Ip 0

0 Ip

�
D

�
C 0

0 B�

� �
�In � A 0

0 In � �A
�

��1
�

�
.In � PcPo/

�1Pc Pc.In � PoPc/
�1Po

Po.In � PcPo/
�1Pc .In � PoPc/

�1Po

�
�

�
C �N�1=2 0

0 BM�1=2

�
: (14.32)

As �
P�1c �In
�In P�1o

��1
D

�
.In � PcPo/

�1Pc Pc.In � PoPc/
�1Po

Po.In � PcPo/
�1Pc .In � PoPc/

�1Po

�
;

(14.10) follows directly from (14.32).

Remark 14.14. The matrix eP D �P�1o �In
�In P�1o

�
appearing in (14.10) is positive definite. By a Schur complement argument,

eP D �In �Po
0 In

� �
P�1c � Po 0

0 P�1o

� �
In 0

�Po In

�
D

�
In �Po
0 In

� �
P
�1=2
c fIn � P

1=2
c PoP

1=2
c gP

�1=2
c 0

0 P�1o

� �
In 0

�Po In

�
:

We have already observed in the proof of Lemma 14.10 that the eigenvalues of the positive
definite matrix P 1=2c PoP

1=2
c lie in .0; 1/. Thus,

In � P
1=2
c PoP

1=2
c � 0

and consequently eP � 0.
15. An inverse scattering problem

In this section there is partial overlap of the connection between the considered Nehari
problem and a discrete analogue of an inverse scattering problem considered by Krein and
Melik-Adamjan [28].
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Theorem 15.1. Ifˆ 2Wp�p ,‚ is defined by (13.6) andˆ D T‚ŒE� for a unitary matrix
E 2 Cp�p , then there exists exactly one factorization

ˆ.�/ D UR.�/�Q.�/�1 for all points � 2 T (15.1)

with the following properties:

(1) Q˙1 2Wp�p
C and R˙1 2Wp�p

C .

(2) Q.0/ � 0 and R.0/ � 0.

(3) Q.�/�Q.�/ D R.�/R.�/� for all points � 2 T.

(4) The integral
1

2�

Z 2�

0

Q.ei� /�Q.ei� /d� D Ip:

(5) U 2 Cp�p is a unitary matrix.

Proof. The proof is broken into steps.

1. ˆ admits at least one factorization of the form (15.1). Let

Q.�/ D f�21.�/E C �22.�/gZV for � 2 D; (15.2)

where

Z D

�
1

2�

Z 2�

0

Œ�21.e
i� /E C �22.e

i� /��Œ�21.e
i� /E C �22.e

i� /�d�

��1=2
and V 2 Cp�p is a unitary matrix such that

Q.0/ D �22.0/ZV � 0;

and
R.�/ D V �ZfE��#11.�/C �

#
12.�/gU for � 2 D; (15.3)

where U 2 Cp�p is a unitary matrix such that

R.0/ D V �ZE��#11.0/U � 0:

By Theorem 13.1, .�11EC�12/˙1 2Wp�p
� and .�21EC�22/˙1 2Wp�p

C . Consequently,
in view of (15.2) and (15.3),Q˙1 2Wp�p

C and R˙1 2Wp�p
C . As

R.�/�Q.�/�1 D U �T‚ŒE� for � 2 T;
ˆ.�/ D UR.�/�Q.�/�1 for � 2 T

and the factorization above satisfies properties (1)–(5).
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2. ˆ admits exactly one factorization of the form (15.1) that meets constraints (1)–(5). If

ˆ D UR�Q�1 D eUeR�eQ�1 on T;

are two factorizations such that (1)–(5) hold, theneR��eU �UR� D eQ�1Q on T: (15.4)

Therefore, since eQ�1Q 2Wp�p
C and eR��eU �UR� 2Wp�p

� ,eQ.�/�1Q.�/ D K for K 2 Cp�p:

However, since

Ip D
1

2�

Z 2�

0

Q.ei� /�Q.ei� /d� D
1

2�

Z 2�

0

eQ.ei� /�eQ.ei� /d�;
K must be unitary, and, as Q.0/ D eQ.0/K, the uniqueness of the polar decomposition
for the positive definite matricesQ.0/ and eQ.0/ forces

K D Ip

and, consequently,
Q.�/ D eQ.�/ for � 2 T:

Therefore,
R.0/U �eU D eR.0/;

and as R.0/ � 0 and eR.0/ � 0, another application of the uniqueness of the polar
decomposition leads to the conclusion

U D eU :
Thus,

R.�/ D eR.�/ for � 2 T
and the proof of Step 2 is complete.

Definition 15.2. If A is a CMV matrix based on a density � that satisfies (D1) and (D2)
and a unitary matrix ˇ�1 2 Cp�p , then we will write A 2W.
Corollary 15.3. If ˆ 2 Wp�p , ‚ is defined by (13.6) and ˆ D T‚ŒE� for a unitary
matrix E 2 Cp�p , then there exists exactly one CMV matrix A 2 W whose scattering
matrix is ˆ.

Proof. In view of Theorem 15.1, there exists exactly one factorization

ˆ.�/ D UR.�/�Q.�/�1 for � 2 T; (15.5)

where Q, R and U satisfy properties (1)–(5) in Theorem 15.1. In view of Theorem 9.6,
the CMV matrix A based on �.�/ D Q.�/�Q.�/ and ˇ�1 D U belongs to the class W.
Moreover, in view of Definition 10.3, ˆ is the scattering matrix of A. The asserted
uniqueness of A follows from the uniqueness of the factorization (15.5).

Remark 15.4. If, in the proof of Theorem 15.1, Z D Ip , then in formulas (15.2)
and (15.3),

V D Ip and U D E:
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16. A mvf of the form (10.5) is a solution
of a related Nehari problem

In the following theorem, we shall let T‚ŒE� be as in (13.3).
Theorem 16.1. Suppose ˆ 2Wp�p and ˇ�1 2 Cp�p is a unitary matrix such that:

(i) ˆ D ˇ�1R�Q�1 is unitary on T.
(ii) Q˙1; R˙1 2Wp�p

C ,Q.0/ � 0 and R.0/ � 0.

(iii) 1
2�

R 2�
0
Q.ei� /�Q.ei� /d� D Ip .

Then

(1) kb�ˆk < 1.
(2) There exists exactly one mvf ‚ 2W2p�2p which satisfies (13.6).
(3) ˆ D T‚ŒE� for some unitary matrix E 2 Cp�p .

Proof. In view of the hypotheses (i)–(iii), ˆ and R�Q�1 both belong the class Xp�p .
It follows from Corollary 13.6 that kb�R�Q�1k < 1. But, since kb�ˆk D kb�R�Q�1k,
(2) follows immediately. Assertion (2) has already been observed in Theorem 13.1.
Assertion (3) follows directly from (13.25).

A. Scalar results

In this short appendix a number of formulas that have been established earlier for p � 1
are reviewed in the special case that p D 1 in terms of the notation introduced in Section 3.
This leads to simplifications and helps to ease comparisons with the extensive literature
that is available for classical scalar orthogonal polynomials on T.
Theorem A.1. If fE˙n g1nD0 are the polynomials defined by (2.1) and (2.2), respectively, in
terms of the Fourier coefficients of a density� 2W1�1 which satisfies (D1) and fF˙n g1nD0
are the polynomials defined by (5.3) in terms of the Schur parameters fˇng1nD0, then:

(1) 
 .n/
jk
D 


.n/

kj
D 


.n/

n�k;n�j
for j; k D 0; : : : ; n.

(2) E�n .�/ D F �n .�/ and ECn .�/ D FCn .�/.
(3) �n.ECn /#.�/ D E�n .�/ and �n.E�n /#.�/ D ECn .�/.

(4) ˇn D 
 .n/n0 f

.n/
00 g
�1 D 


.n/
n0 f


.n/
nn g
�1:

Proof. If p D 1, then, �.�/ D �.�/ for � 2 T, and consequently

�j D ��j for j D 0;˙1; : : : :

Therefore, the Toeplitz matrices TnŒ�� and TnŒe�� satisfy
TnŒe�� D T nŒ�� and e�n D �n D �Tn ;
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i.e.,


.n/

jk
D 


.n/

kj
D 


.n/

n�k;n�j
:

Thus, (1) holds.
Next, formulas (5.28) and (5.27) imply that the unitary 1 � 1 matrices Un and Vn are

both positive. Therefore Un D Vn D 1 and hence (2) holds, thanks to the two formulas
in (5.25).

Finally, (3) is a straightforward computation and (4) follows from (1) and formu-
las (5.29) and (5.30), since Un D Vn D 1 and the terms in the indicated formulas
commute.

Remark A.2. Let f�ng1nD0 be the sequence of polynomials constructed by the Gram-
Schmidt procedure in (1.1.1) of Simon [31] with respect to a density � 2 W1�1 that
satisfies (D1). In Theorem 1.5.2 of [31], Simon constructed a sequence f˛ng1nD0 such that

j˛nj < 1 for n D 0; 1; : : :
and �

�nC1.�/ b�nC1.�/� D ���n.�/ b�n.�/�H.�˛n/ for n D 0; 1; : : : ; (A.1)

whereH.˛n/ is given by (4.6) andb�n.�/ D �n�#
n.�/.

Let fF �n g1nD0 denote the polynomials defined by (5.3) in terms of the Schur parameters
fˇng

1
nD0 of � 2 W1�1. Since fF �n .�/g1nD0 and f�ng1nD0 are orthonormal sequences of

polynomials with respect to � with positive leading coefficients, it follows from Theo-
rem 5.8,

�n.�/ D F
�
n .�/ for n D 0; 1; : : : : (A.2)

Comparing (A.1) and (5.3), it follows easily that

˛n D �ˇnC1 for n D 0; 1; : : : : (A.3)

B. Dictionary for matrix polynomials and Schur parameters

To ease the comparison between results formulated in this paper and those that are pre-
sented in the basic references [9], [10] and [21], a dictionary of notation is presented
below.

Let� be ap�p density which satisfies (D1). A sequence of p�pmatrix polynomials
fAn.�/g

1
nD0 will be called LMOP (left matrix orthogonal polynomials) with respect to �

if the leading matrix coefficient of An.�/ is an invertible matrix and

1

2�

Z 2�

0

Am.e
i� /�.ei� /An.e

i� /� D ımnIp for m; n D 0; 1; : : : :

Similarly, a sequence of p � p matrix polynomials fBn.�/g1nD0 will be called RMOP
(right matrix orthogonal polynomials) with respect to � if the leading matrix coefficient
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of Bn.�/ is an invertible matrix and

1

2�

Z 2�

0

Bm.e
i� /��.ei� /Bn.e

i� / D ımnIp for m; n D 0; 1; : : : :

The acronyms LMOPn (resp. RMOPn) stand for the left (resp. right) orthogonal matrix
polynomials of degree nwith respect to�; LCn denotes the leading coefficient; SP denotes
the Schur parameters with respect to �.

Object This paper [9] [10] [21]

LMOPn �nFCn

�
1

�

��
D 'Ln .�/ D Pn.�/ D �L.�; n/

LCn Yn �Ln Mn J.n; n/

RMOPn F �n .�/ D 'Rn .�/ D Qn.�/ D �R.�; n/

LCn Xn �Rn Nn K.n; n/

SPn �ˇnC1 D ˛n D !n D �n

Table 2.

Warning. In [10] and [21] Schur parameters are denoted by fEng1nD0: We have chosen
new notation to avoid confusion with the matrix orthogonal polynomials ECn and E�n that
used in this paper.

The asserted equalities in rows 1 and 3 follow by repeated applications of the following
elementary fact:
Lemma B.1. If T; S; Y 2 Cp�p , Y is invertible, T Y �1 � 0, SY �1 � 0 and T D US

with U unitary, then T D S .

Proof. Under the given assumptions

T Y �1 � 0 and T Y �1U � � 0:

Therefore, by the uniqueness of the polar decomposition of a matrix, U D Ip .

The verification of the equalities in the above table is divided into steps.

1. Verification of the equalities for the LMOP and RMOP. By definition,

FC0 .�/ D '
L
0 .�/ D P0.�/ D �

L.�; 0/ D Ip (B.1)

and F �0 .�/ D '
R
0 .�/ D Q0.�/ D �

R.�; 0/ D Ip: (B.2)

In [9],
�LnC1f�

L
n g
�1
� 0 and f�Rn g

�1�RnC1 � 0 for n D 0; 1; : : : : (B.3)

Similarly, in [10],

MnC1fMng
�1
� 0 and fNng

�1NnC1 � 0 for n D 0; 1; : : : ; (B.4)
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whereas, in [21],

J.nC 1; nC 1/�J.n; n/�� � 0 for n D 0; 1; : : : (B.5)
and K.n; n/��K.nC 1; nC 1/� � 0 for n D 0; 1; : : : : (B.6)

Wewill now verify the equalities in row 1 of the table. The verification of the equalities
in row 3 is carried out in a similar way using the fact that FCn .0/ is invertible and hence
the leading coefficient of �nFCn .1= �/� is invertible. In view of Theorem 5.8, there exist
a sequence of p � p unitary matrices fHng1nD0 such that

'Rn .�/H
�
n D E

�
n .�/ for n D 0; 1; : : : :

Consequently,
�Rn H

�
n D f


.n/
nn g

1=2

and, hence,

Hnf�
R
n g
�1�RnC1H

�
nC1 D f


.n/
nn g
�1=2
f

.n/
nC1;nC1g

�1=2

D Vn.Ip � ˇnC1ˇ
�
nC1/

1=2V �nC1 for n D 0; 1; : : : ;

where (5.31) was used to obtain the last line. Thus,

V �n Hnf�
R
n g
�1�RnC1H

�
nC1VnC1 � 0;

However, as V0 D H0 D Ip and f�R0 g�1�R1 � 0 and

f�R0 g
�1�R1 H

�
1 V1 � 0;

Lemma B.1 impllies thatH1 D V �1 . One can continue inductively and deduce that

Hn D V
�
n for n D 0; 1; : : : :

Therefore,
'Rn .�/ D E

�
n .�/Vn for n D 0; 1; : : : :

Since E�n .�/Vn D F �n .�/ (see (5.26)), the first equality in row 1 of the table holds. The
remaining equalities are verified in a similar manner.

2. Verification of the equalities for SP. In view of the identifications made in Step 1, the
recursion appearing above formula (3.12) in [9] can be rewritten as�

F �nC1.�/ FCnC1.�/
�
D
�
�F �n .�/ FCn .�/

�
H.�˛n/ for n D 0; 1; : : : ;

which, upon comparison with (5.4) implies that

H.�˛n/ D H.ˇnC1/ for n D 0; 1; : : : :

Therefore, the equality �ˇnC1 D ˛n for n D 0; 1; : : : follows from (4.3). The remaining
equalities in row 5 of the table follow from the identifications for the matrix orthogonal
polynomials.
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C. Baxter’s inequality

In this section we present a matrix version of Baxter’s inequality that is adapted from a
paper of Findley [20].
Theorem C.1. If� meets condition (D1), h.�/ D

Pn
jD0 �

jhj is a p � p matrix polyno-
mial,

gk D

(Pn
jD0�k�jhj for k D 0; : : : ; n

0 for k � �1 and k � nC 1

and g.�/ D
Pn
jD0 �

jgj , then for every choice of " 2 .0; 1/, there exists a positive
integer n" such that

khkW �

(�
kQ��kW C kR

�1kW
�2

1 � "
C k��1kW

)
kgkW when n � n": (C.1)

Proof. Let

.…b
af /.�/ D

bX
jDa

�jfj for mvf’s f D
1X

jD�1

�jfj in Wp�p

and set

p.�/ D

�1X
jD�1

�j .�h/j and f .�/ D

1X
jDnC1

�j .�h/j :

(To keep the notation in mind, think of p as the past and f as the future.) Then the
following four identities are valid for every point � 2 T:

�.�/h.�/ D p.�/C g.�/C f .�/; (C.2)
Q.�/h.�/ D Q.�/��p.�/CQ.�/��g.�/CQ.�/��f .�/; (C.3)
R.�/�h.�/ D R.�/�1p.�/CR.�/�1g.�/CR.�/�1f .�/; (C.4)

and
h.�/ D �.�/�1p.�/C�.�/�1g.�/C�.�/�1f .�/: (C.5)

The identity (C.5) implies that

khkW � kQ
�1
kWkQ

��pkW C k�
�1
kWkgkW C kR

��
kWkR

�1f kW : (C.6)

The rest of the proof is broken into steps.

1. Verify the inequality

k…�1�1Q
��f kW � k…

�.nC2/
�1 Q��kWkf kW : (C.7)

LetQ.�/�� D L.�/ D
P0
jD�1 �

jLj and f .�/ D
P1
jDnC1 �

jfj . Then

k…�1�1Lf kW D k…
�1
�1f.…

�.nC2/
�1 L/f gkW

� k…�.nC2/�1 LkWkf kW ;

which is equivalent to (C.7).
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2. Verify the inequality

k…1nC1R
�1pkW � k…

1
nC2R

�1
kWkpkW : (C.8)

Let R.�/�1 D
P1
jD0 �

jMj and p.�/ D
P�1
jD�1 �

jpj . Then

k…1nC1R
�1pkW D k…

1
nC1f.…

1
nC2R

�1/pgkW

� k…1nC2R
�1
kWkpkW ;

which is equivalent to (C.8).

3. Verify the inequality

kQ��pkW � kQ
��
kWkgkW C k…

�.nC2/
�1 Q��kWkRkWkR

�1f kW (C.9)

Since…�1�1Q��p D Q��p, formula (C.3) implies that

Q��p C…�1�1 fQ
��g CQ��f g D …�1�1Qh D 0:

Therefore,

kQ��pkW D k…
�1
�1 fQ

��g CQ��f g kW

� kQ��kWkgkW C k…
�1
�1Q

��f kW :

The inequality (C.9) now follows easily from the last inequality, (C.7) and the observation
that

kf kW D kRR
�1f kW � kRkWkR

�1f kW :

4. Verify the inequality

kR�1f kW � k…
1
nC2R

�1
kWkQ

�
kWkQ

��pkW C kR
�1
kWkgkW : (C.10)

Since…1nC1.R�1f / D R�1f , formula (C.4) implies that

…1nC1R
�1p C…1nC1R

�1g CR�1f D …1nC1R
�h D 0:

Therefore,

kR�1f kW D k…
1
nC1

˚
R�1p CR�1g

	
kW

� k…1nC1R
�1pkW C kR

�1
kWkgkW :

The inequality (C.10) now follows easily from the last inequality, (C.8) and the observation
that

kpkW D kQ
�Q��pkW � kQ

�
kWkQ

��pkW :
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5. Verify (C.1). Fix " 2 .0; 1/ and choose n" so large that

k…�.nC2/�1 Q��kWkRkW � " and k…1nC2R
�1
kWkQ

�
kW � " when n � n":

Then, by (C.9) and (C.10), the sum

kQ��pkW C kR
�1f kW

� "
˚
kQ��pkW C kR

�1f kW
	
C
˚
kQ��kW C kR

�1
kW

	
kgkW ;

since kQ�1kW D kQ��kW and kR�1kW D kR��kW . Thus, by (C.6),

khkW �
˚
kQ�1kW C kR

��
kW

	 ˚
kQ��pkW C kR

�1f kW
	
C k��1kWkgkW

�

(�
kQ��kW C kR

�1kW
�2

1 � "
C k��1kW

)
kgkW :

D. Proofs for the Nehari problem

D.1. Preliminary observations.
Lemma D.1. If ˆ 2 Wp�p , 
j D ˆ�j for j D 1; 2; : : : and f .�/ D

P1
kD0 �

kfk
belongs toHp

2 , then

.b�ˆf /.�/ D 1X
jD1

��j
1X
kD0


jCkfk D �
�1

1X
jD0

��j .�ˆf/j for � 2 T; (D.1)

where f denotes the vector in `p2 with components fk , k D 0; 1; : : :, and

k�ˆk D kb�ˆk: (D.2)

Proof. If ˆ.�/ D
P1
nD�1 �

nˆn, then

.b�ˆf /.�/ D .q f̂ /.�/

D

1X
jD1

��j
1X
kD0

ˆ�j�kfk

which agrees with the first formula in (D.1). The second formula in (D.1) follows
from (13.12). Formula (D.2) follows from the Plancherel formula for Fourier series.

Lemma D.2. If ˆ 2 Wp�p , 
j D ˆ�j for j D 1; 2; : : : and g.�/ D
P1
kD1 �

�kgk
belongs to .Hp

2 /
?, then

.b��ˆg/.�/ D 1X
jD0

�j

 
1X
kD1


�jCkgk

!
D

1X
jD0

�j .��ˆT
�g/j for � 2 T; (D.3)

where g denotes the vector in `p2 with components gk , k D 0; 1; : : : :
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Proof. If g.�/ D
P1
kD1 �

�kgk belongs to .Hp
2 /
?, then

.b��ˆg/.�/ D .pMˆ�g/.�/

D p

1X
jD�1

�j

 
1X

kD�1

ˆ�j�kgk

!

D

1X
jD0

�j

 
1X
kD1


�jCkgk

!
:

This justifies the first equality in (D.3); the second follows from (13.12).

Lemma D.3. If ˆ 2Wp�p , thenb�ˆ�kf D q�kb�ˆf for f 2 Hp
2 and k D 0; 1; : : : (D.4)

and b��ˆ��kg D p��kb��ˆg for g 2 .Hp
2 /
? and k D 0; 1; : : : : (D.5)

Proof. If f 2 Hp
2 and k D 0; 1; : : :, then clearly

b�ˆ�kf D q�k.pC q/ f̂ D q�kq f̂ D q�kb�ˆf;
which justifies (D.4). The verification of (D.5) is similar.

Let

‚.�/ D

24�11.�/ �12.�/

�21.�/ �22.�/

35 def
D

24P1jD0 ��jaj P1
jD1 �

�j bjP1
jD1 �

j cj
P1
jD0 �

jdj

35 : (D.6)

With the help of Lemmas D.1 and D.2 it is readily checked that ‚.�/ is a solution
of (13.6) in the Wiener algebra W2p�2p if and only if the system of equations�

I ��ˆ
���ˆ I

� �
a T �b
T �c d

�
D

�
YN�1=2 0

0 YM�1=2

�
(D.7)

for the vectors

a D

264a0a1
:::

375 ; b D

264b0b1
:::

375 ; c D

264c0c1
:::

375 ; d D

264d0d1
:::

375 ;
admits a solution with a, b, c and d in `p1 . Since the operator �ˆ is compact in `p2 , a
theorem that seems to have originated with Krein (see e.g., the discussion in Gohberg
and Zambickii [24], Lemma 7.1 in Adamjan, Arov and Krein [1], and the formulation in
Theorem 3.1 in [18]) guarantees that �ˆ has the same nonzero spectrum in both `p1 and `p2
(as well as a host of other Banach spaces). Therefore, since k�ˆk < 1 as an operator
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from `p2 into itself and the columns of the right hand side of (D.7) belong to `p1 , the vectors
a, b, c and d belong to `p�p1 , as needed.

It is useful to note that (D.7) is equivalent to the four equations:

a D �ˆT �cC YN�1=2 D .I � �ˆ��ˆ/
�1YN�1=2I (D.8)

c D T ��ˆa (and hence c0 D 0p�p)I (D.9)

d D ��ˆT
�bC YM�1=2 D .I � ��ˆ�ˆ/

�1YM�1=2I (D.10)
b D T �ˆd (and hence b0 D 0p�p): (D.11)

Thus, for example, Lemma D.2 implies that

b��ˆ��1�11 D 1X
jD0

�j f��ˆT
�T agj :

Consequently,

��1�21 D b��ˆ��1�11” 1X
jD0

�j cjC1 D

1X
jD0

�j f��ˆT
�T agj

” T �c D ��ˆa:

The remaining identifications are verified in much the same way. Moreover,

G
.ˇ/
‰ .cˇ C d/� D .aˇ C b/� (D.12)

and .G
.ˇ/
‰ /�.aˇ C b/� D .cˇ C d/�: (D.13)

D.2. Verification of items (1)–(4) in Theorem 13.1. The preceding discussion guar-
antees the existence of exactly one mvf solution ‚ with blocks �jk , j; k D 1; 2, of the
form (13.4) to the equation (13.6). The rest of the proof is divided into a number of steps.

1. Verification of (1) of Theorem 13.1. This follows from the formulas for the the blocks
in (13.6):

��1�11 D b�ˆ��1�21 C ��1N�1=2 D .I �b�ˆb��ˆ/�1��1N�1=2; (D.14)

�12 D b�ˆ�22; (D.15)

��1�21 D b��ˆ��1�11; (D.16)

and �22 D b��ˆ�12 CM�1=2 D .I �b��ˆb�ˆ/�1M�1=2: (D.17)

Thus, for example, in view of formula (13.5),

�22.0/ D Œ.I �b��ˆb�ˆ/�1M�1=2; Ip�st
D Œ.I �b��ˆb�ˆ/�1Ip; Ip�stM�1=2 DM 1=2:

The verification of the formula �#11.0/ D N 1=2 is similar; the verification of the remaining
two formulas is easy.
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2. Verification of (2) of Theorem 13.1. In view of (D.16),

h�k��1�21u; �
�1�21vist D h�

k��1�21u;b��ˆ��1�11vist
D hb�ˆ�k��1�21u; ��1�11vist
D hq�kb�ˆ��1�21u; ��1�11vist
D h�k.��1�11 � �

�1N�1=2/u; ��1�11vist

for k D 0; 1; : : : and u; v 2 Cp . Therefore,

h�k.��11�11 � �
�
21�21/u; vist D h�

kN�1=2u; �11vist

D

(
hN�1=2u;N 1=2vist if k D 0
0p�p if k D 1; 2; : : :

D

(
Ip if k D 0
0p�p if k D 1; 2; : : : :

Since

�11.�/
��11.�/ � �21.�/

��21.�/ D f�11.�/
��11.�/ � �21.�/

��21.�/g
�;

the Fourier coefficients

.��11�11 � �
�
21�21/k D 0 also for k D �1;�2; : : : :

Thus,
�11.�/

��11.�/ � �21.�/
��21.�/ D Ip for every point � 2 T: (D.18)

This justifies the 11 block of the first asserted identity in (13.7). The remaining identities:

�11.�/
��12.�/ � �21.�/

��22.�/ D 0 for � 2 T (D.19)
and �12.�/

��12.�/ � �22.�/
��22.�/ D �Ip for � 2 T (D.20)

are verified in much the same way. The second asserted identity in (13.7) is immediate
from the first.

3. Verification of

.�21E C �22/
�1
2Wp�p and .�11 C �12E/

�1
2Wp�p

for E 2Wp�p and kE.�/k � 1 when � 2 T.

If ��.�21.�/E.�/C �22.�// D 0 for some vector � 2 Cp and some point � 2 T, then
it follows from the 22 block of the formula ‚.�/jp‚.�/� D jp on T:

�22.�/�22.�/
�
D �21.�/�21.�/

�
C Ip for � 2 T; (D.21)
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implies that

��� D ��f�22.�/�22.�/
�
� �21.�/�21.�/

�
g�

D ���21.�/fE.�/E.�/
�
� Ipg�21.�/

�� � 0:

Therefore, � D 0, and hence .�21E C �22/ is invertible on T; .�21E C �22/�1 2 Wp�p

follows by item (1) of Theorem 5.1.
The proof of the second assertion is easily modelled on the proof of the first starting

from the 11 block of the formula

‚.�/jp‚.�/
�
D jp for � 2 T:

4. Verification of (3) of Theorem 13.1. Let ‰.�/ D .T‚Œ� �/.�/. Since .�21� C �22/�1 2
Wp�p by Step 3, ‰ belongs to Wp�p . By a straightforward calculation,

Ip �‰.�/
�‰.�/ D f�21.�/� C �22.�/g

��.Ip � �
��/f�21.�/ˇ C �22.�/g

�1

D 0p�p for � 2 T;

since �.�/�.�/� D Ip .

5. Verification of (4) of Theorem 13.1. Let X.�/ D �22.�/�1�21.�/. In view of (D.21),

X.�/X.�/� D Ip � �22.�/
�1�22.�/

�� for � 2 T:

Since kX.�/k is continuous on T and kX.�/k < 1 for each point � 2 T, there exists
0 � " < 1 such that

kX.�/�1k D k�22.�/
�1�21.�/k � " < 1 for � 2 T:

This completes the proof of the second assertion in (6); the proof of the first is similar.

D.3. The one step extension. In this subsection we shall show that if ˆ 2Wp�p , then:
(1) The Hankel operator bG‰ı D Qq‰ıjHp

2
based on the mvf

‰ı.�/ D 
0 C

�1X
jD�1

�jˆj D 
0 C

1X
jD1

��j 
j

is contractive if and only if 
0 is in the matrix ball

fN�1=2KM�1=2 C C0 W K 2 Cp�p and K�K � Ipg (D.22)

with center

C0 D �Y
��1T

�.I � ��1�1/
�1YM�1 (D.23)

D �Y ��1T
���1 .I � �1T T

���1 /
�1�1Y; (D.24)

where �1 is defined below in (D.25).
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(2) If K is unitary, then kbG‰ık D 1 and
dim ker .I � bG�‰ıbG‰ı/ D p:

The construction is based on the one step extensionmethod ofAdamjan, Arov andKrein [2]
and is adapted from [2] with some variations based on the analysis in [18].

It is convenient to work in the (discrete) time domain. Towards this end, let

�j D

26664

j 
jC1 
jC2 � � �


jC1 
jC2 
jC3 � � �


jC2 
jC3 
jC4 � � �

:::
:::

:::
: : :

37775 for j D 1; 2 (D.25)

denote the Hankel operators on `p2 based on the Fourier coefficients fˆ�j g1jD1 and let

G D
�
A �1

�
D

�

0 C

B �2

�
(D.26)

with

A D

�

0
B

�
; B D �1Y and C D Y ��1: (D.27)

Thus,
k�2k � k�1k D k�ˆk < 1;

and, in terms of this notation, the matricesM and N in (13.5) can be expressed as

N D Y �.I � �1�
�
1 /
�1Y and M D Y �.I � ��1�1/

�1Y: (D.28)

It is readily checked that

GG� � I” AA� � I � �1�
�
1

” .I � �1�
�
1 /
�1=2AA�.I � �1�

�
1 /
�1=2
� I

” A�.I � �1�
�
1 /
�1A � I:

Thus, upon expressing .I � �1��1 /�1 in block form as

.I � �1�
�
1 /
�1
D

�
Z11 Z12
Z21 Z22

�
; with Z11 2 Cp�p; (D.29)

it is easily seen that GG� � I if and only if

�

�0 B�

� �Z11 Z12
Z21 Z22

� �

0
B

�
� I: (D.30)
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The rest of the discussion is broken into steps.

1. Z11 D Y
�.I � �1�

�
1 /
�1Y D fI � C.I � ��2�2/

�1C �g�1 D N

and
Z12 D Z11C�

�
2 .I � �2�

�
2 /
�1:

Since �1 D
�
C

�2

�
,

I � �1�
�
1 D

�
I � CC � �C��2
��2C

� I � �2�
�
2

�
D

�
I �C��2W

�1

0 I

� �
X 0

0 W

� �
I 0

�W �1�2C
� I

�
;

with

X D I � CC � � C��2 .I � �2�
�
2 /
�1�2C

�

D I � C.I � ��2�2/
�1C �

and W D I � �2�
�
2 :

Therefore, X is invertible,�
Z11 Z12
Z21 Z22

�
D .I � �1�

�
1 /
�1

D

�
I 0

W �1�2C
� I

� �
X�1 0

0 W �1

� �
I C��2W

�1

0 I

�
;

and hence
Z11 D Y

�.I � �1�
�
1 /
�1Y D X�1

is invertible, and
Z12 D X

�1C��2W
�1:

2. Z22 �Z21Z�111 Z12 D .I � �2�
�
2 /
�1. By Schur complements,

.Z22 �Z21Z
�1
11 Z12/

�1
D
�
0 I

� �Z11 Z12
Z21 Z22

��1 �
0

I

�
D
�
0 I

�
.I � �1�

�
1 /

�
0

I

�
D
�
0 I

�
.I �

�
C

�2

� �
C � ��2

�
/

�
0

I

�
D I � �2�

�
2 :
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3. GG� � I if and only if

.
�0 C B
�Z21Z

�1
11 /Z11.
0 CZ

�1
11 Z12B/ � I � B

�.Z22 �Z21Z
�1
11 Z12/B: (D.31)

This follows easily from (D.30).

4. fI � B�.I � �2��2 /
�1Bg�1 D Y �.I � ��1�1/

�1Y DM . Since �1 D
�
B �2

�
,

I � ��1�1 D

�
I � B�B �B��2
���2B I � ��2�2

�
:

Therefore, as

I � B�B � B��2.I � �
�
2�2/

�1��2B D I � B
�.I � �2�

�
2 /
�1B;

I � ��1�1 D

�
I �B��2.I � �

�
2�2/

�1

0 I

� �
I � B�.I � �2�

�
2 /
�1B 0

0 I � ��2�2

�
�

�
I 0

�.I � ��2�2/
�1��2B I

�
and the advertised formula drops out by computing the 11 block of .I � ��1�1/�1.

5. The inequality GG� � I holds if and only if


0 2 fN
�1=2KM�1=2 C C0 W K 2 Cp�p and K�K � Ipg;

where
C0 D �Y

��1T
���1 .I � �1T T

���1 /
�1�1Y:

In view of the formulas in Steps 1 and 4, the constraint (D.31) can be reexpressed as

.
�0 C B
�Z21Z

�1
11 /N.
0 CZ

�1
11 Z12B/ �M

�1:

But this holds if and only if

N 1=2.
0 CZ
�1
11 Z12B/M

1=2
D K

is a contraction, i.e., if and only if


0 D N
�1=2KM�1=2 �Z�111 Z12B

D N�1=2KM�1=2 � C��2 .I � �2�
�
2 /
�1B

D N�1=2KM�1=2 C C0;

with
C0 D �C�

�
2 .I � �2�

�
2 /
�1B:

But this is the same as the formula for C0 in (D.24), since �2 D �1T .
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6. If 
0 is in the matrix ball (D.22) and G is defined by (D.26), then

dim ker .I �G�G/ D dim ker.Ip �K�K/:

If � 2 `p2 \ ker.I �G�G/ and G� D �, then � and � must satisfy the following system
of equations:


0�0 C CT
�� D �0 (D.32)

B�0 C �2T
�� D T �� (D.33)


�0 �0 C B
�T �� D �0 (D.34)

C ��0 C �
�
2T
�� D T ��: (D.35)

Equations (D.33) and (D.35) imply that

T �� D .I � �2�
�
2 /
�1
fB�0 C �2C

��0g

and T �� D .I � ��2�2/
�1
f��2B�0 C C

��0g:

But, upon inserting the last two formulas into (D.32) and (D.34) it follows that

f
0 C C.I � �
�
2�2/

�1��2Bg�0 D fI � C.I � �
�
2�2/

�1C �g�0

D N�1�0;

by the formulas in Step 1 and, similarly, with the aid of the formulas in Step 4,

f
�0 C B
�.I � �2�

�
2 /
�1�2C

�
g�0 DM

�1�0:

The last two displayed formulas reduce to

KM�1=2�0 D N
�1=2�0 and K�N�1=2�0 DM

�1=2�0

when 
0 belongs to the matrix ball specified in Step 5. But this in turn leads easily to the
conclusion:

.I �G�G/� D 0 H) that the components of � D
�
Y ��

T ��

�
D

�
�0
T ��

�
meet the constraints

.Ip �K
�K/M�1=2�0 D 0 (D.36)

and
T �� D .I � ��2�2/

�1
f��2B C C

�N 1=2KM�1=2g�0: (D.37)

A lengthy but straightforward calculation serves to establish the converse: Thus,

.I �G�G/� D 0 ” (D.36) and (D.37) hold.

Therefore, the assertion in Step 6 holds.
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D.4. The proof of Theorem 13.2. Let bG.ˇ/ˆı denote the Hankel operator based on the mvf
ˆı 2Wp�p

� with Fourier coefficients fˆkg0kD�1, where ˆ0 is given by (13.8). Then,

.bG.ˇ/ˆı f /.�/ D .ˆ0 C 1X
jD1

��j 
j /f0 C �.b�ˆR0f /.�/; (D.38)

where in (D.38)

.R0f /.�/ D
f .�/ � f .0/

�
;

and, in view of assertion (2) in Subsection C.3,

kbG.ˇ/ˆı k D 1:
Moreover, with the help of (D.38), it is readily checked that

bG.ˇ/ˆı .�21ˇ C �22/ D �11ˇ C �12: (D.39)

Thus,

h.I � .bG.ˇ/ˆı /�bG.ˇ/ˆı /.�21ˇ C �22/; .�21ˇ C �22/ist
D h�21ˇ C �22; �21ˇ C �22ist � hbG.ˇ/ˆı .�21ˇ C �22/;bG.ˇ/ˆı .�21ˇ C �22/ist
D h�21ˇ C �22; �21ˇ C �22ist � h�11ˇ C �12; �11ˇ C �21ist D 0;

since .�11ˇ C �12/.�21ˇ C �22/�1 is unitary on T.

1. Verification of formulas (13.19), (13.20) and (13.22). Since I�.bG.ˇ/ˆı /�bG.ˇ/ˆı is positive
semidefinite, the preceding set of displayed formulas imply that

0p�p D .I � .bG.ˇ/ˆı /�bG.ˇ/ˆı /.�21ˇ C �22/ D �21ˇ C �22 � .bG.ˇ/ˆı /�.�11ˇ C �12/;
which justifies (13.20); (13.19) is verified in (D.39). Suppose next that .I � .bG.ˇ/ˆı /�bG.ˇ/ˆı /f D 0
and set

g D f � .�21ˇ C �22/u

with u D �22.0/
�1f .0/. Then, since g.0/ D 0 and g 2 ker fI � .bG.ˇ/ˆı /�bG.ˇ/ˆı g, for-

mula (13.27) implies that

kgk2 D kbG.ˇ/ˆı gk2 D kb�ˆk2 � kb�ˆk2kgk2
and hence, as kb�ˆk < 1, that g D 0. Thus, ker fI � .bG.ˇ/ˆı /�bG.ˇ/ˆı g is spanned by the p
columns of the mvf �21ˇ C �22.
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2. If ˇ 2 Cp�p and ˇˇ� D Ip , then .�21ˇ C �22/�1 2 Wp�p
C . It suffices to show that

the mvf F.�/ D �21.�/ˇC �22.�/ is invertible in D. Theorem 13.1 guarantees that F.�/
is invertible for � 2 T. If there exists a point ! 2 D and a vector u 2 Cp such that
F.!/u D 0, let

b!.�/ D
� � !

1 � !�
for � 2 D:

Then b�1! Fu 2Wp�1
C and

kbG.ˇ/ˆı Fuk D keqb!ˆb�1! Fuk D keqb!bG.ˇ/ˆı b�1! Fuk

� kbG.ˇ/ˆı b�1! Fuk � kb�1! Fuk

D kFuk D k.bG.ˇ/ˆı /�bG.ˇ/ˆı Fuk
� kbG.ˇ/ˆı Fuk:

Therefore,
kbG.ˇ/ˆı b�1! Fuk2 D kb�1! Fuk2;

i.e.,
b�1! Fu is in the kernel of the operator I � .bG.ˇ/ˆı /�bG.ˇ/ˆı :

Thus, in view of (13.22), there exists a vector v 2 Cp such that

b!.�/
�1F.�/u D F.�/v for � 2 D; (D.40)

which is only possible when u D v D 0.

3. If ˇ 2 Cp�p and ˇˇ� D Ip , then .T‚Œˇ��ˆ/ 2Wp�p
C . In view of (D.14) and (D.15),

qf�11ˇ C �12 �ˆ.�21ˇ C �22/g D q�q��1�11ˇ � q�b�ˆ��1�21ˇ
D qN�1=2 D 0:

Therefore,
.�11ˇ C �12/ �ˆ.�21ˇ C �22/ 2Wp�p

C

and hence, in view of Step 2,

.�11ˇ C �12/.�21ˇ C �22/
�1
�ˆ 2Wp�p

C :

4. If ˇ 2 Cp�p and ˇˇ� D Ip , then .�11ˇ C �12/�1 2Wp�p
� . The formula�

Ip E
�
‚.�/�jp‚.�/

�
E

Ip

�
D 0p�p

leads easily to a second formula for the linear fractional transformation T‚ŒE� for every
mvf E 2Wp�p \ Sp�p:

T‚ŒE� D T
`
‚ŒE�

def
D .��11 C E��12/

�1.��21 C E��22/: (D.41)



98 H. Dym and D. P. Kimsey

Thus, if � and � are contractive mvf’s in Wp�p , then

T‚Œ�� � T‚Œ� � D T
`
‚Œ�� � T‚Œ� �

D .��11 C ��
�
12/
�1.� � �/.�21� C �22/

�1:

Therefore, if ˛; ˇ 2 Cp�p are unitary, then

.��11 C ˛�
�
12/
�1.˛ � ˇ/ D .T‚Œ˛� � T‚Œˇ�/.�21ˇ C �22/

and hence as the right hand side of the last formula belongs to Wp�p
C thanks to Step 3,

so does the left hand side. The stated result follows easily by choosing unitary matrices ˛
and ˇ for which ˛ � ˇ is invertible (e.g., ˇ D �˛).

D.5. Verification of the inclusion fT‚[E] W E 2 Sp�p \Wp�p

C
g � N .ˆ/ in the

setting of Theorem 13.3 and (5) and (6) in Theorem 13.1. The verification is divided
into steps.

1. ��122 2 Wp�p
C . To this point, we know that �22 2 Wp�p

C , ��122 2 Wp�p
C and if ˇ 2

Cp�p with ˇˇ� D Ip , then .�21ˇC�22/�1 2Wp�p
C . Thus, ifX.�/ def

D �22.�/
�1�21.�/ˇ,

then
f�22.X C Ip/g

�1
D .Ip CX/

�1��122 2Wp�p
C ; (D.42)

and hence, as �22 2Wp�p
C ,

.Ip CX/
�1
2Wp�p

C :

Consequently,

G D fIp �XgfIp CXg
�1
2Wp�p

C

and
G D fIp �XgfIp CXg

�1

D f2Ip � .Ip CX/gfIp CXg
�1

D 2fIp CXg
�1
� Ip

also belongs to Wp�p
C , since kX.�/k � " < 1 for � 2 T by item (6) of Theorem 13.1. It

is easily seen that

G.�/CG.�/� D 2fIp CX.�/
�
g
�1
fIp �X.�/

�X.�/gfIp CX.�/g
�1
� 0

for � 2 T, and hence G.�/CG.�/ � 0 for � 2 D. Thus, the mvf

S.�/ D fIp �G.�/gfIp CG.�/g
�1

belongs to Sp�p \Wp�p
C and X.�/ D S.�/ for � 2 D. Consequently,

.Ip CX/ 2Wp�p
C and ��122 2Wp�p

C

by (D.42).
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2. ��111 2Wp�p
� . The proof is completed in much the same way as the proof of Step 1.

3. The mvf T‚Œ0p�p� D �12�
�1
22 belongs to N .ˆ/. Since ��122 2 Wp�p

C , it suffices to
check that ˆ�22 � �12 2Wp�p

C . But this follows easily from (D.15).

4. .�11 � �12��122 �21/ 2Wp�p
C . In view of the identity

�11 � �12�
�1
22 �21 D �11 � .�12�

�1
22 �ˆ/�21 �ˆ�21

and Step 1, it suffices to show that �11�ˆ�21 2Wp�p
C . But this follows from (D.14) and

the observation that

q.�11 �ˆ�21/ D q�fq��1�11 �b�ˆ��1�21g
D q�q��1N�1=2 D qN�1=2 D 0:

5. .�11 � �12��122 �21/
�1 2Wp�p

C . In view of (13.7),

��11.�11 � �12�
�1
22 �21/ D �

�
11�11 � �

�
11�12�

�1
22 �21

D ��11�11 � �
�
21�22�

�1
22 �21 D Ip:

Therefore,
.�11 � �12�

�1
22 �21/

�1
D ��11 2Wp�p

C :

6. .�21EC �22/�1 2Wp�p
C and .�11C �12E�/�1 2Wp�p

� . To verify the first assertion,
it suffices to show that the mvf �21E C �22 is invertible in D. Suppose to the contrary that

f�21.!/E.!/C �22.!/g� D 0 for some ! 2 D and � 2 Cp:

Then
k�k D k�22.!/

�1�21.!/E.!/k � "k�k;

thanks to item (4) of Theorem 13.1 and the maximum modulus principle applied to the
mvf ��122 �21 which is holomorphic onD and belongs toWp�p

C thanks to Step 1. Therefore,
� D 0.

The second assertion is verified in much the same way, with the help of item (4) of
Theorem 13.1 and Step 2.

7. T‚ŒE� 2 N .ˆ/. It suffices to show that T‚ŒE��ˆ 2Wp�p
C . In view of Step 1 in D.5

and the identity

T‚ŒE� �ˆ D T‚ŒE� � T‚Œ0p�p�C T‚Œ0p�p� �ˆ

this reduces to showing that T‚ŒE� � T‚Œ0p�p� 2 Wp�p
C . But this is immediate from

Steps 4 and 6 of D.5, since

T‚ŒE� � T‚Œ0p�p� D .�11 � �12�
�1
22 �21/E.�21E C �22/

�1:
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D.6. A preliminary bound.
Lemma D.4. If P 2 Cp�p and P C P � � �Ip for some � > 0, then P is invertible and

kP�1k � 2��1: (D.43)

If A 2 Cp�p and kAk < 1, then Ip C A is invertible and

.Ip C A/
�1
C .Ip C A

�/�1 � Ip: (D.44)

Proof. If P C P � � �Ip and hPv; vi D �C i�, with �, � 2 R, then

2� D h.P C P �/v; vi � �hv; vi D �kvk2:

Thus, as
j�j �

p
�2 C �2 D jhPv; vij � kPvkkvk;

it is easily seen that
kPvk � �2�1kvk for v 2 Cp; (D.45)

i.e., P is invertible and (D.43) follows by setting u D Pv in (D.45).
Next, if kAk < 1, then Ip C A is invertible. If

V D .Ip � A/.Ip C A/
�1

D f2Ip � .Ip C A/gfIp C Ag
�1

D 2.Ip C A/
�1
� Ip;

then V C V � � 0. Finally, since .Ip C A/�1 D .V C Ip/=2,

.Ip C A/
�1
C .Ip C A

�/�1 D Ip C .V C V
�/=2 � Ip;

i.e., (D.44) holds.

D.7. Verification of (13.25) and the inclusionN .ˆ/ � fT‚[E] W E 2Wp�p

C
\Sp�pg

in the setting of Theorem 13.3. If ‰ 2 N .ˆ/ and

E.�/ D .T‚�1 Œ‰�/.�/ for � 2 T;

then E 2Wp�p and kE.�/k � 1 for � 2 T and‚�1.�/ exists due to (13.7). It remains to
show that E 2Wp�p

C \ Sp�p . The proof is divided into steps.

1. E.Ip C �
�1
22 �21E/

�1 2Wp�p
C . Step 3 of D.5 guarantees that

T‚Œ0p�p� D �12�
�1
22 2 N .ˆ/

and, hence, �12��122 �ˆ 2Wp�p
C . Thus,

‰ � �12�
�1
22 D .‰ �ˆ/ � .�12�

�1
22 �ˆ/ 2Wp�p

C :
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Assertion 1 is an easy consequence of the formula

‰ � �12�
�1
22 D T‚ŒE� � �12�

�1
22

D .�11 � �12�
�1
22 �21/E.�21E C �22/

�1;

since
��122 and .�11 � �12�

�1
22 �21/

�1

belong to Wp�p
C by Steps 1 and 5 of Subsection D.5, respectively.

2. .Ip C ��122 �21E/ 2Wp�p
C . Since ��122 �21 2Wp�p

C , Step 1 and the identity

Ip � �
�1
22 �21E.Ip C �

�1
22 �21E/

�1
D .Ip C �

�1
22 �21E/

�1

imply that the mvf
F D .Ip C �

�1
22 �21E/

�1
2Wp�p

C :

Since
k�22.�/

�1�21.�/E.�/k � k�22.�/
�1�21.�/k � " < 1

by item (4) of Theorem 13.1, Lemma D.4 implies that

F.�/C F.�/� � Ip for � 2 T

and, hence, by the Poisson formula

F.rei� /C F.rei� /� D
1

2�

Z 2�

0

1 � r2

jei� � rei� j2
fF.ei� /C F.ei� /�gd�

�
1

2�

Z 2�

0

1 � r2

jei� � rei� j2
Ipd�

D Ip;

for 0 � r < 1. Thus, by another application of Lemma D.4, F.�/ is invertible for every
point � 2 D. Thus,

F �1 D Ip C �
�1
22 �21E 2Wp�p

C :

3. E 2 Wp�p
C \ Sp�p . Steps 1 and 2 clearly imply that E 2 Wp�p

C . Since kE.�/k � 1
for � 2 T the maximum modulus principle yields that kE.�/k � 1 for � 2 D and hence
E 2Wp�p

C \ Sp�p .

4. Verification of (13.25) in Theorem 13.3. Suppose first thatX 2 N .ˆ/\Xp�p . Then,
in view of (13.24),

X D T‚ŒE� for some E 2 Sp�pin \Wp�p:

Thus,
X�XC D Y�YC

with
Y� D �11 C �12E

� and YC D E.�21E C �22/
�1:
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Therefore, since X˙1� 2Wp�p
� , X˙1C 2Wp�p

C , Y ˙1� 2Wp�p
� and YC 2Wp�p

C ,

Y �1� X� D YCX
�1
C belongs to Wp�p

� \Wp�p
C ;

i.e.,
Y �1� X� D YCX

�1
C D K 2 Cp�p:

But this implies that

X�.�/ D Y�.�/K and YC.�/ D KXC.�/ for all points � 2 T

and hence, as X�.�/ and Y�.�/ are invertible, that K is an invertible matrix and, conse-
quently, Y �1C also belongs toWp�p

C . Therefore,

E˙1 2Wp�p
C \ Sp�pin :

But this means that both E and E� belong to Wp�p
C and hence that E 2 Cp�p and is

unitary.
Conversely, if E is a unitary p � p matrix, then, (13.16) and (13.17) guarantee that

.�11E C �12/
˙1
2Wp�p

� and .�21E C �22/
˙1
2Wp�p

C ;

respectively. Thus,
T‚ŒE� D X�XC;

with X� D �11E C �12 and XC D .�21E C �22/
�1, implies that T‚ŒE� 2 Xp�p . This

completes the proof, since T‚ŒE� 2 N .ˆ/ by formula (13.24).

D.8. Proof of Corollary 13.4. Since ˇ is a unitary matrix, Theorem 13.3 guarantees that
‰ 2 N .ˆ/ and hence that ‰ �ˆ 2Wp�p

C . Therefore,

‰�k D ˆ�k for k D 1; 2; : : : :

It remains to evaluate ‰0. In view of formulas (D.6) and the identity

�11.�/ˇ C �12.�/ D ‰.�/f�21.�/ˇ C �22.�/g for � 2 T;

it is easily seen by matching the coefficients of �0 that

a0ˇ D ‰0d0 C

1X
kD1

‰�k.ckˇ C dk/

D ‰0d0 C

1X
kD1


kckˇ C

1X
kD1


kdk

D ‰0d0 C

1X
kD1


kC1.T
�c/kˇ C

1X
kD0


kC1.T
�d/k

D ‰0d0 C f�ˆ.T
�cg0ˇ C f�ˆT �.d/g0:
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Thus, as a0 D f�ˆT �cg0 CN�1=2 and d0 DM 1=2, it follows that

‰0 D
n
N�1=2ˇ � .�ˆT

�d/0
o
M�1=2;

which coincides with (13.26).
The verification of (13.27) is a straightforward calculation.
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