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Flows on networks: recent results and perspectives
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The broad research thematic of flows on networks was addressed in recent years by many re-
searchers, in the area of applied mathematics, with new models based on partial differential
equations. The latter brought a significant innovation in a field previously dominated by more
classical techniques from discrete mathematics or methods based on ordinary differential equa-
tions. In particular, a number of results, mainly dealing with vehicular traffic, supply chains
and data networks, were collected in two monographs: Traffic flow on networks, AIMSciences,
Springfield, 2006, and Modeling, simulation, and optimization of supply chains, SIAM, Philadel-
phia, 2010. The field continues to flourish and a considerable number of papers devoted to the
subject is published every year, also because of the wide and increasing range of applications:
from blood flow to air traffic management. The aim of the present survey paper is to provide
a view on a large number of themes, results and applications related to this broad research di-
rection. The authors cover different expertise (modeling, analysis, numeric, optimization and
other) so to provide an overview as extensive as possible. The focus is mainly on developments
which appeared subsequently to the publication of the aforementioned books.
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1. Introduction

The expression “flows on networks” is used to denote at the same time a collection of
practical problems, ranging from vehicular traffic on urban roads to blood circulatory
system in humans, as well as a wealth of mathematical models to represent and study
such problems. Our point of view is that of macroscopic models, which describe
the reality looking at aggregate quantities, such as average particle densities and
velocities, and their evolution in time. More precisely, in the last ten to fifteen years,
models based on partial differential equations proved to be useful for the analysis,
simulation and control of network flows. In particular, for large systems they may
present advantages over microscopic models, focusing on each particle of the system,
and discrete time ones (such as discrete events). Obviously such advantages are more
or less evident depending on the specific characteristics and dimensions of the given
problem.

Let us start by providing some examples of engineering, bio-medical and socio-
economical networks. We will then turn to a specific mathematical framework, which
will be the common theme for this review paper. In Figure 1, we represent in a
compact way a collection of practical problems, which provides a reasonably rich
selection of the possible applications of our methods. The common features are
those of a state space described by a network (a topological graph) and a dynamics
given by solutions to systems of partial differential equations. To start with, let
us mention problems involving real fluids, thus physical flows on networks. These
include irrigation channels with flowing water [51], [14], gas pipelines [10] and blood
circulation [66]. The physics of these three problems is very different: in irrigation
channels water presents one surface in contact with the air and the others in contact
with the channel boundaries, while in gas pipelines there is a uniform (often circular)
surface of contact with the tube. Finally, in blood flow, the boundary is as in gas
pipelines, but the tube itself (vessel) is elastic and changes shape depending on the
flow strength.

One of the most studied example is that of vehicular traffic, where fluid dynamic
models were used, for a single road, since the 50s with the seminal work of Lighthill–
Whitham and Richards (see [71] for the networks case). Another example is that of
air traffic management, where the flow occurs on routes in the airspace [120].

Less expected applications include supply chains, where the first model was pro-
posed in the seminal paper [6] passing to the limit in discrete-event queuing systems.
Also data and telecommunication networks may be described by conservation laws,
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Figure 1. Applications of models based on partial differential equations.

under suitable assumptions, when looking the dynamics at intermediate time scales
[58]. Finally, we will deal also with mechanical structures formed by elastic com-
ponents, each admitting one dimensional descriptions. Our key example of that is
a vascular stent placed in an artery [121], where the flow is linked to displacement
waves.

Let us now pass to our general mathematical framework. Consider a system of
balance laws in one space dimension of the form

@tuC @xf .u/ D g.t; x; u/; (1)

where t 2 RC is time, x 2 R is the space variable, f is the flow and g the source
term. More precisely, we are interested in the evolution equation (1) on a network (or
topological graph), consisting of a collection of one-dimensional manifolds connected
at nodes. In most cases (1) is equipped with further algebraic conditions imposed
on vertices of the network. Fix a vertex x�, then such conditions can be written
compactly as

‰
�
t; u.t; x�C/� D 0 (2)

(assuming that each link adjacent to x� is parametrized by an interval of the type
Œx�; b�). We will also consider the case of a time-varying vertex position, thus with
x� D x�.t/. Then the coupling involves an ordinary differential equation for x�:

‰
�
t; x�.t/; Px�.t/; Rx�.t/; u.t; x�.t/C/

� D 0:

The physical properties of the system under consideration will induce a specific choice
of the function ‰. For instance, in vehicular traffic we will impose conservation of
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cars, traffic distribution coefficients and flow maximization. For simplicity, we focus
on the case of a single node. This is not a major restriction, since, due to finite speed
of propagation of waves, one can easily extend the results in the case of complex
networks, see [71].

The paper is organized as follows. Section 2 presents results on existence of
solutions and includes both the case of a single conservation law and systems of
conservation laws. Section 3 provides various models to which the theory can be
applied: vehicular traffic, gas pipelines, supply chains, data and telecommunication
networks, irrigation channels and blood flow. Section 4 considers more complex
situations where a coupling of different systems of equations (ODE–PDE or PDE–
PDE) is needed. Also in this case various examples are provided, such as the piston
problem, sewer systems, supply chains and blood flow. Section 5 considers con-
trolled systems, where the control acts within the coupling condition at the vertex
‰. The main examples are provided by vehicular traffic and gas pipelines. Section 6
presents some numerical methods for conservation laws on networks. For sake of
space we briefly review numerical coupling conditions for finite volume schemes
and then show how numerical methods for multi-dimensional models can be used to
deduce coupling conditions for one-dimensional reductions. Section 7 will present
two specific applications of the developed methods: The study of optimal shape of
vascular stents and vehicular traffic monitoring using GPS data from mobile sensors.
Finally, Section 8 will present open problems and future perspectives of this rich
research field.

2. Theoretical results

A general network is represented by a directed graph G composed by a finite number
of edges connected by vertices or junctions. We use a directed graph to model the
network, since for most of the applications we present here, there is a preferred
direction for the network flow. For example, in an unidirectional car traffic road,
vehicles direction is given a priori. The direction of particles may also be given by
the presence of “pumps”, compressors in gas pipeline network and the heart in the
human circulatory system.

For the sake of simplicity, we restrict the attention to a very special network, com-
posed by n edges (labeled by Ii and modeled by the real interval .0;1/) connected
by a single junction J . We remark that this simplification does not imply a loss of
generality: this is due to the fact that the hyperbolic systems we consider here, have
the property that waves propagate with finite velocity. With similar arguments as
in [71], one can prove that results for a single junction can be generalized to the case
of an arbitrary network.
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Finally, we deal with the system8̂̂<
ˆ̂:
@tu1 C @xf1.u1/ D g1.t; x; u1/;

:::

@tun C @xfn.un/ D gn.t; x; un/;

(3)

each equation being defined for t � 0 and x � 0, and coupled through the nodal
condition

‰
�
u1 .t; 0C/ ; : : : ; un .t; 0C/

� D 0: (4)

Here, for every j 2 f1; : : : ; ng, uj W Œ0; T /�Ij ! �j , fj W RNj ! RNj , gj W Œ0; T /�
Ij � RNj ! RNj , T 2 .0;C1� and �j is a subset of RNj . In some applications,
the function ‰ defining the nodal condition (4) can depend explicitly also from time
t ; under suitable assumptions all the results of this section can be extended to this
case. We supplement (3) and (4) with the initial condition8̂̂<

ˆ̂:
u1.0; x/ D u1;0.x/; x > 0;

:::

un.0; x/ D un;0.x/; x > 0;

(5)

where, for every j 2 f1; : : : ; ng, uj;0 W Ij ! �j are given functions. For brevity we
introduce the notation

u D

2
64
u1

:::

un

3
75 ; f .u/ D

2
64
f1.u1/
:::

fn.un/

3
75 ; g.t; x; u/ D

2
64
g1.t; x; u1/

:::

gn.t; x; un/

3
75 ; (6)

and we rewrite (3), (4) and (5) in the form8̂̂
<
ˆ̂:
@tuC @xf .u/ D g.t; x; u/;

‰
�
u.t; 0C/� D 0;

u.0; x/ D u0:

(7)

Definition 2.1. Fix Ou D . Ou1; : : : ; Oun/ 2 Qn
j D1�j and T 2 �0;C1�. A function

u 2 C0
�
Œ0; T /I OuCL1

�
RCIQn

j D1�j

��
is a weak solution to the Cauchy problem (7)

on Œ0; T / if the following conditions hold.

(1) For all ' 2 C1
c

�
� � 1; T Œ�RCI R

�
and for j 2 f1; : : : ; ng,Z T

0

Z
RC

�
uj @t' C fj .uj /@x'

�
dx dt C

Z
RC

uj;0.x/'.0; x/ dx

D �
Z T

0

Z
RC

g' dx dt:
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(2) For a.e. t 2 .0; T /, the limits uj .t; 0C/ exist and satisfy the condition
‰
�
u1.t; 0C/; : : : ; un.t; 0C/

� D 0.

In this section we present some existence results for the Cauchy problem (7). In
general the steps for obtaining existence and well-posedness of such a problem are
the following ones. First one considers the homogeneous case, i.e., g D 0,8̂̂<

ˆ̂:
@tuC @xf .u/ D 0;

‰
�
u.t; 0C/� D 0;

u.0; x/ D u0.x/;

(8)

and applies the wave-front tracking technique (see for example [71]). This technique
is based on the solutions to classical Riemann problems (see for example [23]) and
to Riemann problems at the nodal points. More precisely, a Riemann problem at the
node is the following Cauchy problem:8̂̂ˆ̂̂̂̂ˆ̂̂̂̂

<̂
ˆ̂̂̂̂ˆ̂̂̂̂ˆ̂̂:

@tu1 C @xf1.u1/ D 0; t > 0; x � 0;
:::

@tun C @xfn.un/ D 0; t > 0; x � 0;

‰
�
u1 .t; 0C/ ; : : : ; un .t; 0C/

� D 0; t > 0;

u1.0; x/ D Nu1;0; x � 0;
:::

un.0; x/ D Nun;0; x � 0;

(9)

where, for every j 2 f1; : : : ; ng, Nuj;0 2 �j .
Once well-posedness is obtained for g D 0, the full case usually follows through

operator splitting technique, along the lines initiated in [55]. The source term is
treated as an ordinary differential equation, where u depends on time t and on the
space variable as parameter. A Lipschitz type condition for g and a uniform bound ofˇ̌
@xg.t; x; u/

ˇ̌
by anL1 functionK.x/ are the classical assumptions, which guarantee

the well-posedness of the system (7).
In general, solutions u to the Cauchy problem (7) have BV regularity with respect

to the space variable x. In the sequel, if u is a BV function, then TV.u/ denotes the
total variation of the function u.

2.1. The scalar case. In this part we treat the scalar case, i.e. we assume that each
equation in (3) is indeed a scalar equation, so that Nj D 1 for every j 2 f1; : : : ; ng.
We also assume that the source terms gi are constantly equal to 0.

Moreover we put �j D Œ0; 1� for every j and on the fluxes fj 2 C2
�
Œ0; 1�I R

�
we make the following assumptions:
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(1) fj .0/ D fj .1/ D 0;

(2) either fj is strictly concave or fj is strictly convex.

Denote, for every j 2 f1; : : : ; ng, with �j 2 .0; 1/ the unique point in .0; 1/ such that
f 0

j .�j / D 0.
First, let us introduce the definition of the solution to the Riemann problem (9) in

this case.

Definition 2.2. A collection of functions uj 2 C0.Œ0; T /IL1
loc.Ij // is a solution to

the Riemann problem (9) if the following conditions hold.

(1) For every j 2 f1; : : : ; ng, k 2 Œ0; 1� and every Q' W Œ0; T Œ�Ij ! R smooth,
positive with compact support in �0;CT Œ� �Ij n f0g�, we have

Z T

0

Z
Ij

�
juj � kj@ Q'

@t
C sgn.uj � k/.fj .uj / � fj .k//

@ Q'
@x

�
dxdt � 0:

(2) For every j 2 f1; : : : ; ng and for a.e. t 2 .0; T /, the function x 7! uj .t; x/

has a representation with bounded total variation.

(3) For a.e. t > 0 we have

‰
�
u1.t; 0C/; : : : ; un.t; 0C/

� D 0;

where uj stands for the version with bounded total variation.

(4) For every j 2 f1; : : : ; ng, uj .0; x/ D uj;0 for a.e. x 2 Ij .

The construction of solutions will be based on the concept of Riemann solver at
the node introduced in the following definition.

Definition 2.3. A Riemann solver R� is a function

R� W Œ0; 1�n �! Œ0; 1�n; .u1;0; : : : ; un;0/ 7�! . Nu1; : : : ; Nun/;

satisfying the following conditions:

(1) ‰ . Nu1; : : : ; Nun/ D 0;

(2) for every j 2 f1; : : : ; ng, the classical Riemann problem8̂̂̂
<
ˆ̂̂:
ut C fj .u/x D 0; x 2 R; t > 0;

u.0; x/ D
´

Nuj ; if x < 0;

uj;0; if x > 0;

is solved with waves with positive speed;
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(3) the consistency condition

R�
�
R�.u1;0; : : : ; un;0/

� D R�.u1;0; : : : ; un;0/

holds.

Remark 2.4. By Definition 2.3, a Riemann solver produces a solution to the Rie-
mann problem (9), which respects the condition ‰

�
u1.t; 0C/; : : : ; un.t; 0C/

� D 0.
Moreover the image of a Riemann solver is the trace at x D 0 of a solution to the
Riemann problem; this fact is described by point 2 of Definition 2.3, which prescribes
that the generated waves have positive speed.

Now we state the three key properties of a Riemann solver, which will ensure the
necessary bounds on approximate solutions (via wave-front tracking) and thus the
existence of solutions to Cauchy problems. First we need some additional notation.

Definition 2.5. We say that .u1;0; : : : ; un;0/ is an equilibrium for the Riemann solver
R� if

R�.u1;0; : : : ; un;0/ D .u1;0; : : : ; un;0/:

Definition 2.6. We say that a datum uj 2 Œ0; 1� is a good datum if either ui 2 Œ0; �i �

and fi is concave or ui 2 Œ�i ; 1� and fi is convex.
We say that a datum uj 2 Œ0; 1� is a bad datum if it not a good datum.

The first property requires that equilibria are determined only by bad data values,
more precisely:

Definition 2.7. We say that a Riemann solver R� has the property (P1) if the fol-
lowing condition holds. Given .u1;0; : : : ; un;0/ and .u0

1;0; : : : ; u
0
n;0/ two initial data

such that uj;0 D u0
j;0 whenever either uj;0 or u0

j;0 is a bad datum, then

R�.u1;0; : : : ; un;0/ D R�.u0
1;0; : : : ; u

0
n;0/:

The second property gives bounds on the increase of the flux variation for waves
interacting with J . More precisely the latter should be bounded in terms of the
strength of the interacting wave as well as the variation in the incoming fluxes.

Definition 2.8. We say that a Riemann solver R� has the property (P2) if there exists
a constant C � 1 such that the following condition holds. For every equilibrium
.u1;0; : : : ; un;0/ of R� and for every wave .uj;0; uj / (j 2 f1; : : : ; ng) interacting
with J at time Nt > 0 and producing waves in the arcs according to R� , we have

TVf .NtC/ � TVf .Nt�/
� C min

˚jfj .uj;0/� fj .uj /j;
ˇ̌P

fj . Ouj />0 fj . Ouj / �P
fj .uj;0/>0 fj .uj;0/

ˇ̌�
;

(10)

where we denoted by Ouj the traces at J of the waves produced by the Riemann solver
R� .
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Remark 2.9. It is natural, for car traffic, to consider junctions composed by incom-
ing and outgoing roads. Incoming roads can be described by the interval .�1; 0/,
while the outgoing ones by the interval .0;C1/. In this situation the flux func-
tions fj are all concave and positive. Therefore the terms

P
fj .uj;0/>0 fj .uj;0/ andP

fj . Ouj />0 fj . Ouj /, in vehicular traffic, correspond respectively to the sum of outgoing
fluxes before and after the wave interaction. Consequently, in (10) of Definition 2.8,
the term

P
fj . Ouj />0 fj . Ouj / �P

fj .uj;0/>0 fj .uj;0/ is the sum of the outgoing fluxes

after the interaction minus the sum of outgoing fluxes before the interaction.

Now we state the property (P3): a wave interacting with J and a flux decrease on
a specific arc should also give rise to a decrease in the incoming fluxes.

Definition 2.10. We say that a Riemann solver R� has the property (P3) if, for every
equilibrium .u1;0; : : : ; un;0/ of R� and for every wave .uj;0; uj / (j 2 f1; : : : ; ng)
with fj .uj / < fj .uj;0/ interacting with J at time Nt > 0 and producing waves in the
arcs according to R� , we haveX

fj . Ouj />0

fj . Ouj / �
X

fj .uj;0/>0

fj .uj;0/;

where we denoted by Ouj the traces at J of the waves produced by the Riemann solver
R� .

We also introduce the property (PS) of a Riemann solver, which guarantees that
the solution of the Cauchy problem depends in a Lipschitz continuous way on the
initial condition.

Definition 2.11. We say that a Riemann solver R� has the property (PS) if, for every
equilibrium .u1;0; : : : ; un;0/ of R� and for every wave .uj;0; uj / (j 2 f1; : : : ; ng)
interacting with J at time Nt > 0 and producing waves in the arcs according to R� ,
we have

TVf .NtC/ � TVf .Nt�/:
The main result is the following theorem.

Theorem2.12. Consider theCauchyproblem (8)andaRiemann solverR� satisfying
the properties (P1), (P2) and (P3). Assume that initial conditions uj;0 are bounded
variation functions for every j 2 f1; : : : ; ng.

Then there exists .u1.t; x/; : : : ; un.t; x//, a weak solution at J , such that

(1) for every j 2 f1; : : : ; ng, uj .0; x/ D uj;0.x/ for a.e. x 2 Ij ;

(2) for a.e. t > 0,

R�.u1.t; 0C/; : : : ; un.t; 0C// D .u1.t; 0C/; : : : ; un.t; 0C//:

If R� has the property (PS), then the solution .u1.t; x/; : : : ; un.t; x// depends in
a Lipschitz continuous way on the initial condition (5).
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A proof of the previous result is in [72]. The existence of solutions part is based
on the wave-front tracking technique (see [23], [71]); the key estimate consists in
obtaining a uniform bound for the total variation of the flux of the approximate
solutions. The Lipschitz continuity of the solution on the initial condition has been
proved by using generalized differentials; see [24].

2.2. The system case. In this subsection, we deal with the case of systems. For
simplicity, we consider only the case whereNj D 2 for every j 2 f1; : : : ; ng and we
assume that �j is an open subset of R2 for every j 2 f1; : : : ; ng.

We introduce classical assumptions on the flux functions.

(F) For every j 2 f1; : : : ; ng, the flux fj is a smooth function such that:

(a) the Jacobian matrixDfj .u/ is strictly hyperbolic for u 2 �j , i.e. for every
u 2 �j , Dfj .u/ has two distinct real eigenvalues such that

�j;1.u/ < �j;2.u/

with corresponding right eigenvectors rj;1.u/ and rj;2.u/;

(b) for every i 2 f1; 2g, the i -th characteristic field of fj is either genuinely
nonlinear, i.e.

r�j;i .u/ � rj;i .u/ ¤ 0 for all u 2 �j ;

or linearly degenerate, i.e.

r�j;i .u/ � rj;i .u/ D 0 for all u 2 �j :

(‰) We say that a function‰ 2 C1
�Qn

j D1�j I Rn
�

satisfies the assumption (‰) at

the point Nu D . Nu1; : : : ; Nun/ 2 Qn
j D1�j if

det
�
Du1

‰. Nu/r2. Nu/; � � �Du1
‰. Nu/r2. Nu/� ¤ 0: (11)

We have the following well-posedness result, whose proof is contained in [46].

Theorem 2.13. Let n 2 N, n � 2 and assume (F). Fix an n-tuple of states Nu0 2 �n

such that the Riemann problem (9) with initial datum Nu0 admits u D Nu0 as a solution
to (9) in the sense of Definition 2.1. Let‰ satisfy assumption (‰) at the point Nu0 and
assume that �1. Nu1;0/ < 0 < �2. Nu2;0/. Then there exist positive numbers ı, L and a
map S W Œ0;1Œ�D ! D such that

(1) D � ˚
u 2 Nu0 C L1.RCI�n/ W TV.u/ � ı

�
;

(2) for u 2 D , S0u D u and for s; t � 0, SsStu D SsCtu;

(3) for u;w 2 D and s; t � 0, kStu � SswkL1 � L
�ku � wkL1 C jt � sj�;

(4) if u 2 D is piecewise constant, then for t > 0 sufficiently small, Stu coincides
with the juxtaposition of the solutions to Riemann problems centered at the
points of jumps or at the junction.
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Moreover, for every u 2 D , the map t 7! Stu is a solution to the Cauchy
problem (7).

The proof is based on the wave-front tracking technique, which allows one the
construction of approximate piecewise constant solutions. Bounds on the total vari-
ation allows one, through the Helly Compactness Theorem, to prove the existence
of solutions. The use of Bressan–Liu–Yang functional [30] ensures that the approxi-
mate solutions and their limits are L1 Lipschitz continuous with respect to the initial
datum. Results of this type are local in the u-space, in the sense that the initial datum
u0 in (8) is required to satisfy

u0 2 Nu0 C L1 and TV.u0 � Nu0/ < ı

for a sufficiently small ı. The requirement (‰) at the node is a transversality condition
between the gradient of ‰ and the eigenvectors of Df . This condition, through an
application of the Implicit Function Theorem, allows one to obtain suitable estimates
on interactions at the nodal point. The case of systems withNj > 2 can be treated in
a similar way. The fundamental assumptions are that the characteristic velocities at
Nu0 are all different from 0 and that the function ‰ satisfies a suitable transversality
condition at the point Nu0.

Remark that the introduction of a source term typically makes it impossible to
obtain global in time existence results. In general, without any invariance condition,
the source term may cause a drift of the solution in the u-space, exiting the neighbor-
hood of u� where the Implicit Function Theorem can be applied and hence Riemann
problems can be solved.

3. Models

Several “real situations” are described by nonlinear hyperbolic systems of balance
laws on networks. Among them we recall: traffic flow, gas pipelines, supply chain
models, telecommunication networks, systems of open canals and blood flow in
arteries.

For all the previous situations, we present a rigorous mathematical description,
including both the system considered in each arc of the network and the coupling
conditions at junctions. Clearly both the systems and the coupling conditions depend
on the applications and they have been derived according to physical and model-
ing considerations. Since the section is devoted to models, no theoretical result is
presented here.

3.1. Traffic flow on road networks. The use of conservation laws in the modeling
of traffic dynamics goes back to the pioneering works of Lighthill–Whitham [109]
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and Richards [117], introducing the (LWR) model

@t�.t; x/C @xf .�.t; x// D 0;

where � 2 Œ0; �max� is the density of cars at time t and at position x, f .�/ D �v.�/ is
the flux and v is a given function depending only on the density. Typically, the flux f
is a C2 concave function such that f .0/ D f .�max/ D 0. Without loss of generality,
we assume that �max D 1. The case of car traffic on network has been considered in
various papers; see for instance [41], [95], [100], [71].

In traffic, it is customary to define a junction by a finite number of incoming
and outgoing roads. Incoming roads are described by the half line .�1; 0/, while
outgoing roads by the interval .0;C1/. Clearly with the position x 7! �x the
incoming roads can be represented by the interval .0;C1/, fitting the notations of
this paper. For a junction withm1 incoming roads andm2 outgoing ones, one is thus
lead to consider the system8<

:
@t�j C @xf .�j / D 0; x 2 R�; j 2 ¹1; : : : ; m1º;
@t�j C @xf .�j / D 0; x 2 RC; j 2 ¹m1 C 1; : : : ; m1 Cm2º:

(12)

At the nodal point x D 0, one prescribes the conservation of cars, which reads

m1X
j D1

f .�j .t; 0// D
m1Cm2X

j Dm1C1

f .�j .t; 0//: (13)

This is not sufficient to isolate a unique solution to the Riemann problem at the
node; hence one should consider other additional rules. One possibility is to also
consider first the preference of drivers and then the maximization of the flux through
the junction. The preference of drivers can be described by introducing a Markov
matrix

A D

0
B@

˛m1C1;1 � � � ˛m1Cm2;1

:::
: : :

:::

˛m1C1;m1
� � � ˛m1Cm2;m1

1
CA

whose entries j̨;i 2 Œ0; 1� are the percentage of traffic coming from the i -th incoming
road and going to the j -th outgoing road. Therefore, if we denote by �j the flux exiting
the j -th incoming road or the flux entering the j -th outgoing road, then we have

.�m1C1; : : : ; �m1Cm2
/> D A � .�1; : : : ; �m1

/>: (14)

Imposing also the maximization of the flux through the junction, i.e.

max .�1 C � � � C �m1
/; (15)



Flows on networks 59

the Riemann problem at the node admits a unique solution; see [41]. In [41], it is
also proved that the Cauchy problem for (12) with nodal conditions (13), (14) and
(15) admits an entropy admissible solution, defined for every time interval Œ0; T �.
In general the solution does not depend in a Lipschitz continuous way on the initial
condition. A counterexample is given in [41].

It is interesting to note that the existence and well-posedness properties for the
Cauchy problem associated to (12) depend on the choice of the nodal conditions;
see [72].

A different approach, based on a vanishing viscosity approximation, to the Cauchy
problem for (12) was developed in [40].

In case of high traffic, the LWR model is not so satisfactory; hence one can
consider a model of the second order on the network, for example the Aw–Rascle
model or a phase-transition one. The Aw–Rascle model [8] is defined by8<

:@t�C @x.y � ��C1/ D 0

@ty C @x

�
y2

�
� y��

� D 0:
(16)

In (16), � is the density of the cars, y D �vC ��C1 is a generalized momentum, v is
the velocity of the cars and � > 0 is a constant. Therefore the complete system reads8̂̂ˆ̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂:

8<
:
@t�j C @x.yj � ��C1

j / D 0;

@tyj C @x.
y2

j

�j
� yj�

�
j / D 0;

x < 0; j 2 f1; : : : ; m1g ;
8<
:
@t�j C @x.yj � ��C1

j / D 0;

@tyj C @x.
y2

j

�j
� yj�

�
j / D 0;

x > 0; j 2 fm1 C 1; : : : ; m1 Cm2g :

Similar to the LWR case, it is possible to impose nodal conditions which prescribe the
conservation of the number of cars, the preference of drivers and the maximization of
the flux passing through the junction. In [70], it is shown that the previous conditions
are not sufficient to isolate a unique solution on the outgoing roads. Hence three
different additional rules have been considered in [70]: The minimization of the
density, the maximization of the speed of cars and the minimization of the total
variation of the solution. Each of the previous rules permits to define a well-defined
Riemann solver and the corresponding Cauchy problem admits a solution which is
defined globally in time, but locally in space.

Different coupling conditions have been presented in [88] using homogenization
methods on the outgoing arcs. This approach is specially designed for the Aw–
Rascle–Zhang model and uses the fact that the second conservation law for y may be
reformulated as

yt C vyx D 0:
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The phase transition model, defined independently in [19], [48], has the form8̂̂̂
<
ˆ̂̂:
@t�C @x.�V / D 0 if .�; q/ 2 �f ;´
@t�C @x.�vc.�; q// D 0;

@tq C @x.qvc.�; q// D 0;
if .�; q/ 2 �c ;

where �f and �c denote respectively the free phase and the congested one, � is
the density of cars, V is the maximal velocity, vc is the speed of cars in �c and q
is a “generalized” momentum. With the same technique as in [43], it is possible to
consider the Cauchy problem for the phase-transition model on a junction and to find
a solution to that Cauchy problem.

3.2. Gas dynamics in pipelines. Historically, Euler equations of gas dynamics have
been the paradigm according to which the theory of conservation (or balance) laws
has been developed. Also in the case of nodal points, (high-pressure) gas pipelines
provide stimulating real problems, see for instance [11], [10], [42], [45], [46], [49],
[81], [96].

In a typical real pipe the ratio between pipe length and diameter is large enough to
justify the use of Euler equations in one space dimension, or approximations thereof.
Therefore, the natural setting for gas pipeline models consists of n pipes connected
at a fixed point, say x� D 0, and the gas is described through the isentropic Euler
equations so that (1) consists of n copies of the p-system, i.e., in (6) we set

uj D
"
�j

qj

#
; fj .u/ D

"
qj

qj
2

�j
C p.�j /

#
;

gj .t; x; u/ D
2
4 0

�� qj jqj j
�j

� �j Ng sin j̨ .x/

3
5 ;

where the pressure law p can be, for instance, the usual � -law p.�/ D 	 �� . Above,
gj is a typical source term with a zero component in the mass equation, while the
second component describes the effect Ng sin j̨ .x/ of gravity ( j̨ .x/ being the slope of
the j -th pipe at x) and the effect �� q ˇ̌qˇ̌=� of friction (� being a constant parameter)
on the balance of momentum. Remark that in the case n D 2 the present setting may
also describe the dynamics of gas flowing in a pipe with a kink [96].

The 1D framework allows a rather simple modeling structure and, mostly, very fast
numerical integration. A model in one space dimension well describes the dynamics
within a pipe, but hardly covers geometry effects at a junction, which is clearly a
familiar 3D phenomenon. As a consequence, the literature offers several different
choices for the nodal condition (2), depending on the specific needs of each particular
situation. In the engineering literature, the nodal conditions are typically supplied
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with parameters whose values are empirically justified. A numerical study of one-
and two-dimensional situations can be found in [84], [91].

In the subsonic setting, condition (2) has to provide n conditions to single out a
unique solution to the Riemann problem (7). One component of ‰, say the first,

‰1.u/ D
nX

j D1

aj qj (17)

ensures the conservation of mass. Here, aj is the surface section of the j -th pipe.
The other components of‰ may impose, for instance, equal pressure at the node,

‰j .u/ D p.�j / � p.�1/; j D 2; : : : ; n; (18)

or the continuity of the dynamic pressure at the node,

‰j .u/ D aj

�
qj

2

�j

C p.�j /

�
� a1

�
q1

2

�1

C p.�1/

�
; j D 2; : : : ; n: (19)

We refer to [11], [10], [42], [46] and to the references therein for more details on
the related modeling and computational results. On the other hand, the nodal point
may well be a model for a compressor station between n D 2 pipes having the same
section a1 D a2. In this case, the nodal condition consists of (17), while (18) is
replaced, for instance, by

‰2.t; u/ D q2

��
p.�2/

p.�1/
� 1

�.��1/=�
�

�….t/

see Section 3.1 in [45], Formula (4.9) in Section 4.4 of [110] or [119]. Here, … is
proportional to the power exerted by the compressor. This framework naturally leads
to various control problems, where the open-loop control… D ….t/ has to be chosen
to satisfy suitable optimality criteria, see [15], [79], [45], [63], [81]. Closed-loop
control problems, where … depends on the traces u1.t; x�C/ and u2.t; x�C/ of the
state of the fluid, were studied in the case of smooth solutions in [62], [81].

For completeness, we recall that the above has been partly extended to the case
of the full 3 � 3 system of Euler equations in [47], [49].

A drift-flux model for a two-phase gas was considered in [13] in the isothermal
case under a no-slip assumption. Here, (1) and (2) can be used, with (6) and

uj D

2
664

�1
j

�2
j

.�1
j C �2

j /vj

3
775 ; fj .uj / D

2
664

�1
j v

�2
j v

.�1
j C �2

j /
	
.vj /

2 C a2

2



3
775 ; g.t; x; u/ D 0:

Here, �i
j is the density of the i -th component in the j -th pipe and vj is the fluid speed,

common to both phases in the j -th pipe. The sound speed a is assumed to be the
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same for all phases, see [12] for a more general setting. At the junction, the nodal
condition (2) imposes the conservation of the total mass of each phase, similarly
to (17). Besides, it is usually required that all velocity flows at the junction are equal
so that

‰j .u/ D 1

2
.v2

j � v2
1/C a2

2
log

�1
j C �2

j

�1
1 C �2

1

; j D 2; : : : ; n: (20)

The existence of weak solutions to (1), (2), (17) and (20) for constant initial data with
separated wave speeds was obtained in Proposition 3.1 of [13].

In order to capture effects of the 3D situation, numerical integration [84], [91]
of multi-dimensional formulation of gas dynamics close to a nodal point have been
performed. A local zooming has been introduced and a 2D domain D models the
area at the nodal point. Then, for .x; y/ 2 D and the usual � -law for p the isentropic
Euler equations

@t

0
B@ �

�u

�v

1
CAC @x

0
B@ �u

�u2 C p.�/

�uv

1
CAC @y

0
B@ �v

�uv

�v2 C p.�/

1
CA D 0 (21)

are solved numerically. For piecewise constant initial data comparisons of flow and
pressure computations by nodal conditions (17)–(18) and (17)–(19) with numerical
averaging of solutions .�; �u; �v/ of (21) have been studied [91]. For initial data and
small velocities vj;0 the results should have qualitatively a similar behavior. Further
studies exist for the Euler equations [84].

3.3. Product flow in supply chains. A continuum description of the product density
in high-volume production lines has been derived and analyzed [6]. The governing
equations are of the type (1), where

u D

2
64
u1

:::

un

3
75 ; f .u/ D

2
64
f1.u1/
:::

fn.un/

3
75 and fj .uj / D minfvjuj ; 
j g: (22)

Here, the index j refers to the supplier, uj is the product density; vj , respectively

j , is the non-negative constant production velocity, respectively capacity, see [7],
[76], [77]. Similarly to traffic flow networks, we distinguish between the l suppliers
delivering to the nodal point atx� D 0 and then�l suppliers receiving goods fromx�.
But differently from what happens in traffic modeling, due to possible differences in
the total capacities of the different suppliers, the total mass is typically not conserved
at the node. Therefore, the dynamics of the suppliers 1; : : : ; l is coupled through
a priori unknown new functions q1.t/; : : : ; ql.t/ describing the amount of goods
waiting in suitable buffers when the lines they have to enter are congested. This leads
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to a time-dependent coupling condition of the type (2), namely

‰.t; u/ D
Z t

t0

	 lX
j D1

fj

�
uj .s; 0�/

� �
nX

j DlC1

fj

�
uj .s; 0C/

� 

ds � qj .t/C qj .t0/:

(23)
Clearly, (23) is not sufficient to obtain a well-posed Riemann problem at the node
and therefore is complemented by the j D l C 1; : : : ; n coupling conditions

‰j .t; u/ D qj .t/ � qj .t0/C
Z t

t0

	
fj

�
uj .s; 0C/

� �
lX

kD1

j̨k.s/fk

�
uk.s; 0�/

� 

ds

(24)
that prescribe how the goods are distributed among the outgoing lines. Indeed, the
known parameter j̨k.t/ 2 Œ0; 1� is the portion of good flowing from the k-th line
that have to enter the j -th one at time t , for k D 1; : : : ; l and j D l C 1; : : : ; n.

The well-posedness of the Riemann problem (7), (22)–(24), as well as that of
the corresponding Cauchy problem, is proved in [56], [87]. An extension of the
model (22) has been proposed in [57], [60] to treat the case of supply chains with spa-
tially and temporally depending capacities. Therein,
j D 
j .t; x/ and equation (22)
is replaced by uj D .�j ; 
j / and fj .u/ D �

(22);�
�, respectively. Coupling condi-
tions of the form (2) are proposed conserving total mass and the value of
. Existence
of solutions to the Cauchy problem for initial data with zero total variation in 
 has
been established in Theorem 3 of [57].

3.4. Data flow on telecommunication networks. The transport of data packages
on internet is modeled by using conservation laws on networks [58], [59]. Each
connection between two servers corresponds to an edge connecting two nodal points.
In each line, the transmission of packets can be described by the scalar conservation
law

@t�C @xf .�/ D 0; (25)

where � D �.t; x/ is the density of packets and

f .�/ D
´

Nv �; 0 � � � �;

Nv � �max��
�max��

; � � � � �max:

Here Nv is the constant velocity of the packets, �max is the maximum density and
� 2 .0; �max/ is a parameter, which is related to the probability of packets loss.
The model (25) on a junction composed by m1 incoming transmission line and m2

outgoing ones is considered in [59].
At the nodal point the Riemann solver is defined according to the following rules:

(1) the flux passing through the junction is the maximal possible;
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(2) once the flux through the junction is determined, then priority coefficients
distribute the flux among the various transmission lines.

A proof for existence of the corresponding Cauchy problem is given in [59].

3.5. Networks of open canals. Water flow in open canals [16], [79], [102] can be
described by the Saint-Venant equations in one space dimension, which read as´

@taC @x.va/ D 0;

@tv C @x

�
v2

2
C gH.a/

� D �S.a; v/: (26)

Here, a is the wet cross section, v is the velocity, g is the gravity constant,H D H.a/

is the water height corresponding to a and S D S.a; v/ is a source term, which takes
care of the slope of the channel and of the friction due to the slope. At a junction
between n canals, we are lead to consider n copies of (26), with unknowns aj and
vj , coupled with the nodal condition8<

:
Pn

j D1 aj vj D 0;

1
2
vj

2 C Ng h.aj / D 1
2
v1

2 � Ng h.a1/; j D 2; : : : ; n;

see [46], [102], ensuring the conservation of water and the Bernoulli law to be satisfied
at the junction.

3.6. The arterial network. Blood flow through the arterial network can be modeled
by the following reduced, 1D hyperbolic system [34]:8<

:
@taC @x.av/ D 0;

@t .av/C @x.˛av
2/C a

�
@xp.a/ D �2 ˛

˛ � 1�v:
(27)

Here, x denotes the distance along the center line of the artery (see Figure 2),
a D a.x; t/ is the (scaled) cross-sectional vessel area at position x and time t ,
v D v.x; t/ is the cross-sectional average fluid velocity, � is the kinematic viscos-
ity coefficient (� � 3:2 � 10�6m2=s for blood), and ˛ is the so called “Coriolis
coefficient” [65], or the correction factor that takes into account the fact that the re-
sulting equation models the conservation of average momentum, and not the actual
momentum. It is associated with the closure problem, typical for dimension reduc-
tion in nonlinear problems [34]. The value of ˛ is associated with the assumption
on the horizontal velocity profile for this model. If one assumes the Poiseuille flow
(quadratic velocity profile associated with Newtonian fluids), we obtain ˛ D 4=3.
For the plug velocity profile (associated with the non-Newtonian nature of blood
flow), ˛ D 11=10.

In this model p D p.a/ denotes the fluid pressure, which is a function of the
cross-sectional area a. The relationship between p and a specifies the mechanical
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Figure 2. A sketch of an artery and cross-sectional area in equations (27).

properties of arterial walls (constitutive relation). Typically, the linear elastic mem-
brane equation, also known as the Law of Laplace, is assumed:

p.a/ D pref C hE

.1 � �2/R0

�r
a

a0

� 1
�

D pref C ˇ

�r
a

a0

� 1
�
; (28)

where R0 is the radius of the reference cylinder, a0 D R2
0, h is the thickness of the

arterial wall (membrane thickness), E the Young’s modulus of elasticity, and � is
the Poisson ratio. We denoted by pref the reference (external) pressure, namely, the
pressure at which the displacement of the arterial wall is zero, i.e., the cross-sectional
area a D a0. For the corresponding nonlinear membrane model see [37].

Equations (27) can be derived from the full set of Navier–Stokes equations for an
incompressible, viscous fluid, by assuming axial symmetry of the domain and of the
flow. They are obtained after averaging the full 3D axially symmetric Navier–Stokes
equations, and assuming an ad hoc closure for the form of the axial velocity profile.
The resulting equations (27) are not in conservation form.

By assuming smooth solutions, system (27) is equivalent to the following system
written in conservation form:8̂<

:̂
@taC @xq D 0;

@tq C @x

�
˛
q2

a
C 1

�
�.a/

�
D �2 ˛

˛ � 1�
q

a
;

(29)

where q D av is the fluid momentum of the averaged problem, and

�.a/ D
Z a

a0

Qa p0. Qa/d Qa:

The conservation of mass principle for the full 3D problem translates into the con-
servation of “volume” (quantity a), described by the first equation in (29), while the
averaged fluid momentum q satisfies a balance law (the second Newton law of motion)
for the average problem, described by the second equation in (29). We emphasize
again that for solutions involving jump discontinuities, systems (27) and (29) are not
equivalent.



66 A. Bressan, S. Čanić, M Garavello, M. Herty, and B. Piccoli

A further simplification, assuming smooth solutions, leads to the system8̂<
:̂
@taC @xav D 0;

@tv C @x

�
˛
v2

2
C 1

�
�.a/

�
D �2 ˛

˛ � 1�v;
(30)

which is the Saint-Venant system (26). For ˛ D 1 the quantity v2

2
C 1

�
�.a/ under the

spatial derivative in the second equation corresponds to the scaled total (or dynamic)
pressure by the constant density �.

Each of the systems (27), (29) or (30), describes the flow of blood in a single vessel.
For a network problem, system (27), (29) or (30) holds for each artery meeting at a
given node. Suppose for a moment, that system (27) is used to describe blood flow
for each artery meeting at a node. To study the interaction of waves described by
equations (27) at a node, the equations holding along each branch are coupled at the
node by imposing some physically reasonable coupling conditions. The typical ones
are:

� conservation of mass at the node, and

� continuity of pressure (or even total pressure) at the node.

Suppose that there are n branches meeting at a node. The continuity of mass flux at
a node is then given by

nX
j D1

.˙1/aj vj D 0; (31)

where the plus or minus sign in (31) depends on the parametrization of the incom-
ing/outgoing branches. The parametrization typically reflects the direction of flow.

Regarding the continuity of pressure (or total pressure) at the node, two differ-
ent coupling conditions related to the behavior of the pressure/total pressure at the
branching point have been used in literature. One describes the continuity of pressure
p appearing in equation (27) [114]:

p1 D pj ; j D 2; : : : ; n;

while the other, used in e.g., [66], requires continuity of the total flux in the second
equation of (30), (or, equivalently, the flux in (29)), which describes the continuity of
total pressure at the node:

˛�
v2

1

2
C �.a1/ D ˛�

v2
j

2
C �.aj /; j D 2; : : : ; n:

This condition corresponds to the second coupling condition in the Saint-Venant
model (26). Rewritten in terms of the state variables .a; q/ appearing in problem (29)
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this condition reads

˛�
q2

1

2a1

C �.a1/ D ˛�
q2

j

2aj

C �.aj /; j D 2; : : : ; n:

Thus, the following two sets of coupling conditions have been used in hemody-
namics literature:

´ Pn
j D1 ˙aj vj D 0;

p1 D pj

μ
;

8̂<
:̂
Pn

j D1 ˙aj vj D 0;

˛�
v2

1

2
C �.a1/ D ˛�

v2
j

2
C �.aj /

9>=
>; :

4. Model fusion

In recent years a significant effort was devoted by applied mathematicians to the
modeling of “real systems” by partial differential equations, thus dealing with the
macroscopic scale of the problem. Such effort enriched the already wide spectrum
of available mathematical models, many of which were focused on the microscopic
scale. Therefore researchers and practitioners face now an unprecedented opportu-
nity in model choice. In turn this poses the problem of identifying the “best” model.
It is common opinion that different mathematical frameworks present different char-
acteristics, thus the best modeling approach is obtained by combining more than one
model.

A typical situation is that of a large complex road network, with a small portion
of it requiring a fine modeling and the remaining part for which a coarse model is
sufficient. This leads to the necessity of combining different models using coupling
conditions at interfaces.

In this section we present two different situations. The first one consists in a
mixed system, composed by ODEs and PDEs with a moving boundary; the second
one deals with the coupling, at a fixed boundary, of two different macroscopic traffic
models. In both cases, we present both the mathematical description and a theoretical
result about existence of solutions for the Cauchy problem.

4.1. Mixed ODEs–PDEs Systems. When nodal conditions are coupled with or-
dinary differential equations, the conditions allowing the well-posedness are more
intricate. Moreover, key questions about the existence of solutions globally in time
remain mostly unanswered.
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Let us consider the following mixed systems, composed by hyperbolic balance
laws and ordinary differential equations:8̂̂̂

ˆ̂<
ˆ̂̂̂̂:

@tuC @xf .u/ D g.u/; x > �.t/;

b
�
u.t; �.t/C/� D B.t; w.t//;

Pw D F
�
t; u.t; �.t/C/; w.t/�;

P�.t/ D …
�
w.t/

�
:

(32)

Here the unknowns are u D u.t; x/, w D w.t/ and � D �.t/. u is defined for t � 0

and x � �.t/, w for t � 0 and � , the boundary for the partial differential equation,
for t � 0. Let � 	 Rn be an open set and fix the reference states Ou 2 �, Ow 2 Rm

and Ox 2 R. For ı > 0, define the sets

U D fu 2 OuC .BV \ L1/.RI Rn/ W u.R/ 
 �g;
Uı D fu 2 U W TV.u/ � ıg:

In order to present the well-posedness for (32), we introduce the following conditions.

(f) f 2 C4.�I Rn/ is smooth and such that, for all u 2 �, Df.u/ is strictly
hyperbolic and each characteristic field is either genuinely nonlinear or linearly
degenerate.

For u 2 � and i D 1; : : : ; n, call �i .u/ the i -th eigenvalue of Df.u/ and ri .u/ the
corresponding right eigenvector. By (f), we may assume that �i�1.u/ < �i .u/ for
all u 2 � and i D 2; : : : ; n.

(g) For ı > 0, g W Uı ! L1.RI Rn/ is such that for suitable L1; L2 > 0,

kg.u/ � g.u0/kL1 � L1ku � u0kL1 and TV
�
g.u/

� � L2

for all u; u0 2 Uı .

(…) … 2 C0;1.RmI R/.

(NC) There exist c > 0 and ` 2 f1; 2; : : : ; n � 1g such that �`. Ou/ < …. Ow/ � c and
�`C1. Ou/ > …. Ow/C c.

The above non-characteristic (NC) condition on f is coordinated with the following
assumption on b, which describes how the boundary data are assigned.

(b) b 2 C1.�I Rn�`/ is such that

det
�
Dub. Ou/�r`C1. Ou/ r`C2. Ou/ � � � rn. Ou/�� ¤ 0:

Condition (b) is the assumption on the assignment of boundary data in a noncharac-
teristic problem for a conservation law, see for instance [2], [3], [44], [118]. Besides,
it imposes b to be not invertible. The case of an invertible b would formally corre-
spond to ` D 0 in (b) and would allow the decoupling of system (32) in a PDE and a
separate ODE.
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(F) The map F W RC �� � Rm �! Rm is subject to the following conditions:

(F.1) For all u 2 � and w 2 Rm, the function t 7! F.t; u; w/ is Lebesgue measur-
able.

(F.2) For every compact subset K of � � Rm, there exists CK > 1 such that for all
t 2 RC and .u1; w1/; .u2; w2/ 2 K��F.t; u1; w1/ � F.t; u2; w2/

��
Rm � CK

�ku1 � u2kRn C kw1 � w2kRm

�
:

(F.3) There exists a function C 2 L1
loc.R

CI RC/ such that for all t > 0, u 2 � and
w 2 Rm, ��F.t; u; w/��

Rm � C.t/
�
1C kwkRm

�
:

(B) B 2 C1.RC � RmI Rn�`/ is locally Lipschitz, i.e., for every compact subset
K of Rm there exists a constant zCK > 0 such that, for every t > 0 andw 2 K,���� @

@t
B.t; w/

����
Rn�`

C
���� @
@w
B.t; w/

����
Rn�`

� zCK :

Now we pass to the problem (32), providing a rigorous definition of its solution.

Definition 4.1. Let T > 0. A triple .u;w; �/ with

u 2 C0
�
Œ0; T �I U

�
; w 2 W 1;1

�
Œ0; T �I Rm

�
; � 2 W 1;1 �

Œ0; T �I Rm
�

is a solution to (32) on Œ0; T � with initial datum .u0; w0; x0/ such that u0 2 U with
u0.x/ D Ou for x < x0, w0 2 Rm and x0 2 R, if

(1) u is an entropy admissible solution to´
@tuC @xf .u/ D g.u/; x > ��.t/;
b
�
u.t; ��.t/C/

� D B�.t/

on Œ0; T � with B�.t/ D B
�
t; w.t/

�
, ��.t/ D �.t/ and initial datum u0;

(2) w solves ´
Pw D F�.t; w/; t 2 RC;
w.0/ D w0

on Œ0; T � with F�.t/ D F
�
t; u.t; �.t/C/; w� a.e.

(3) �.t/ D x0 C R t

0
…
�
w.�/

�
d� for a.e. t 2 Œ0; T �.

The following result holds; for a proof see [21].

Theorem 4.2. Let (f), (g), (…), (NC), (b), (F) and (B) hold. Assume that b. Ou/ D
B.0; Ow/. Then, there exist positive numbers ı,,L, Tı , domains yDt (for t 2 Œ0; Tı �)
and maps yP .t; t0/ W yDt0 ! yDt0Ct (t0; t0 C t 2 Œ0; Tı �) such that
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(1)
�
Uı �Bı. Ow/� . Ox � ı; Ox C ı/

� 	 yDt 	 �
U� �B�. Ow/� . Ox �; Ox C/

�
;

(2) for all t0; t1; t2 with t0 2 Œ0; Tı/, t1 2 Œ0; Tı � t0/ and t2 2 Œ0; T � t0 � t1�,
then yP .t2; t0 C t1/ B yP .t1; t0/ D yP .t1 C t2; t0/ and yP .0; t0/ D Id;

(3) for t0 2 Œ0; Tı/, t 2 Œ0; Tı � t0�, and .u;w; x/; . Nu; Nw; Nx/ 2 yDt0�� yP .t; t0/.u;w; x/ � yP .t; t0/. Nu; Nw; Nx/��
L1�Rm�R

� L
�ku � NukL1 C kw � NwkRm C jx � Nxj� I

(4) for all .u0; w0; x0/ 2 yD0, the map t ! yP .t; 0/.u0; w0; x0/, defined for
t 2 Œ0; Tı �, solves (32) in the sense of Definition 4.1.

We consider here several examples of applications. Only in Examples 4.4 and 4.8
the boundary is indeed a moving boundary.

Example 4.3 (The Piston Problem 1). Consider a rectilinear tube filled with fluid
to the right of a piston. In the isentropic (or isothermal) case this system can be
described, using Lagrangian coordinates, by the p-system coupled with an ordinary
differential equation governing the piston. More precisely8̂̂ˆ̂<

ˆ̂̂̂:

@t� � @xv D 0;

@tv C @xp.�/ D 0;

V D v.t; 0C/;
PV D ˛ � �P.t/ � p.�.t; 0C//�;

(33)

where t is time, x the Lagrangian mass coordinate, � the specific volume, v the
Lagrangian speed of the flow, p the pressure in the fluid, V the speed of the piston,
P.t/ the (given) pressure to the left of the piston and ˛ is the ratio between the section
of the tube and the mass of the piston. This problem has been widely considered in the
literature, but mainly with pistons having assigned movements, see for instance [112],
[113] or [98], § 99. Here, on the contrary, the acceleration of the piston is due to
the difference between the pressure of the fluid on its right and that of the outer
environment on its left. The problem (33) can be written in the form (32) by putting

u D
 
�

v

!
; f .u/ D

 
�v;
p.�/

!
; g.u/ D 0;

b.u/ D v; w D V; B.t; w/ D w

F.t; u; w/ D ˛
�
P.t/ � p.�/�; ….w/ D 0:

Under suitable assumptions, Theorem 4.2 applies to this case; see also [20].
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Example 4.4 (The Piston Problem 2). As in Example 4.3, consider a rectilinear
and horizontal tube filled with fluid to the right of a piston. In the isentropic (or
isothermal) case this system can be described using the Eulerian description of the
p-system, which leads to the following system:8̂̂̂

ˆ̂̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂̂̂:

@t�C @xq D 0;

@tq C @x

�
q2

�
C p.�/

� D 0;

V .t/ D q.t; �.t/C/
�.t; �.t/C/ ;

PV D ˇ
�
pext.t/ � p��.t; �.t/C/��;

P�.t/ D V.t/:

(34)

Here, � denotes the gas density, q its linear momentum, pext a given external pressure,
and ˇ is the ratio between the section of the tube and the mass of the piston. The
problem (34) can be written in the form (32) by putting

u D
 
�

q

!
; f .u/ D

 
q

q2

�
C p.�/

!
; g.u/ D 0;

b.u/ D q

�
; w D V; B.t; w/ D w;

F.t; u; w/ D ˇ
�
pext.t/ � p.�/�; ….w/ D w:

Under suitable assumptions, Theorem 4.2 applies to this case; see also [20].

Example 4.5 (Sewer system with a manhole). Consider a single junction in a sewer
network. At x D 0, a junction joins k horizontal pipes to one vertical manhole. All
pipes start at the junction, so that each of them is referred to an abscissa x 2 RC.
The flow in the i -th tube, for i D 1; : : : ; n, can be described by the Saint-Venant
equations [61], see also [54] or formula (108.1) in [98],8<

:
@tAi C @xQi D 0;

@tQi C @x

	
Q2

i

Ai
C pi .Ai /



D 0

ensuring the conservation of mass and momentum. Ai is the wet cross sectional
area, Qi the flow in the x direction and pi is a function representing the hydrostatic
pressure. As boundary condition, we require the equality of all the hydraulic heads
at the junction, that is,

1

2g

Qi1.t; 0C/2
Ai1.t; 0C/2

C hi1

�
Ai1.t; 0C/

� D 1

2g

Qi2.t; 0C/2
Ai2.t; 0C/2

C hi2

�
Ai2.t; 0C/

�
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for all t � 0 and all i1; i2 2 f1; : : : ; kg, where hi .Ai / is the height of water in the i -th
tube and g is the gravitational acceleration. Therefore we denote by Oh.t/ the value
1

2g
Qi .t;0C/2

Ai .t;0C/2 C hi

�
Ai .t; 0C/

�
which indeed does not depend on i .

The conservation of mass at the junction is expressed by

QM

� Oh.t/; hM .t/
�C

kX
iD1

Qi .t; 0C/ D 0;

where QM . Oh; hM / is the flow into the manhole. The level hM , which is the height
of the water inside the storage, changes according to

PhM .t/ D QM

� Oh.t/; hM .t/
�CQext.t/

AM

:

Here,AM is the horizontal cross section of the manhole andQext.t/ is a given external
inflow into the manhole. Finally, energy conservation gives

QM

� Oh.t/; hM .t/
� D sgn

� Oh.t/ � hM .t/
�
AM

q
2gj Oh.t/ � hM .t/j:

We are thus lead to study the system8̂̂ˆ̂̂̂̂ˆ̂̂̂̂ˆ̂<
ˆ̂̂̂̂ˆ̂̂̂̂ˆ̂̂̂:

@tAi C @xQi D 0; i D 1; : : : ; n;

@tQi C @x

�
Q2

i

Ai

C pi .Ai /

�
D 0; i D 1; : : : ; n;

Oh.t/ D 1

2g

Qi .t; 0C/2
Ai .t; 0C/2 C hi

�
Ai .t; 0C/

�
; i D 1; : : : ; n;

hM .t/ D � 1

2g A2
M

�Pk
iD1Qi .t; 0C/

�ˇ̌Pk
iD1Qi .t; 0C/

ˇ̌C Oh.t/;
PhM .t/ D 1

AM

�
Qext.t/ �Pk

iD1Qi .t; 0C/
�
;

which falls within the class (32) under the following positions:

u D

0
BBBBBB@

A1

Q1

:::

Ak

Qk

1
CCCCCCA
; f .u/ D

0
BBBBBBB@

Q1

Q2
1

A1
C p1.A1/
:::

Qk

Q2
k

Ak
C pk.Ak/

1
CCCCCCCA
;

w D hM ; F .t; u; w/ D sgn. Oh � hM /

q
2gj Oh � hM j C 1

AM

Qext.t/;
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B.t; w/ D

0
BBB@
0
:::

0

hM

1
CCCA ; b.u/ D

0
BBBBBBB@

1
2g

Q2
2

A2
2

C h2.A2/ � Oh
:::

1
2g

Q2
k

A2
k

C hk.Ak/ � Oh
� 1

2g A2
M

�Pk
iD1Qi

�ˇ̌̌Pk
iD1Qi

ˇ̌̌
C Oh

1
CCCCCCCA
:

Example 4.6 (Supply chains). We now consider a single node of a network of supply
chains, connecting n suppliers. Assume we have ` incoming suppliers and n � `

outgoing ones. Each outgoing supplier is composed out of a processor and a queue
in front of it. For the incoming ones we consider only a processor. The work done
by a processor is modeled by

@t�i .t; x/C @x

�
vi�i .t; x/

� D 0; x 2 RC; t 2 RC; i D 1; : : : ; n;

where�i is the density of goods in the i -th processor andvi is the (constant) processing
velocity. To guarantee the correct orientation of flow, we have vj < 0 for j D 1; : : : ; `

and vk > 0 for k D `C 1; : : : ; n, respectively. For the load qk of goods stored in the
k-th queue, we impose the conservation of mass:

Pqk.t/ D f in
k .t/ � f out

k .qk/; k D `C 1; : : : ; n;

where f in
k

is the inflow and f out
k

is the outflow from the queue to the k-th processor.
The distribution matrix A.t/ D �

ajk.t/
�
, for j D 1; : : : ; ` and k D ` C 1; : : : ; n,

assigns the percentage ajk of the goods exiting processor j and lining up into the
k-th queue. Thus, the inflow f in

k
is given by

f in
k .t/ D

X̀
j D1

ajk.t/ vj �j .t; 0/; k D `C 1; : : : ; n:

For the outflow we use the relaxed formulation, as presented in [5],

f out
k .qk/ D min

�
qk.t/

�
; 
k

�
; k D `C 1; : : : ; n;

with the relaxation parameter � > 0 small and 
k the maximal capacity of the k-th
processor. Existence and uniqueness for the non-relaxed case were shown in [87], by
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directly using wave front tracking. Then this problem is of type (32), by the positions

u D

0
B@
�1

:::

�n

1
CA ; f .u/ D

0
B@
v1�1

:::

vn�n

1
CA ;

w D

0
B@
q`C1

:::

qn

1
CA ; F .t; u; w/ D

0
BB@
P`

j D1aj`C1.t/ vj �j �min
˚

1
�
q`C1; 
`C1

�
:::P`

j D1 ajn.t/ vj�j � min
˚

1
�
qn; 
n

�
1
CCA;

b.u/ D

0
B@
v`C1�`C1

:::

vn�n

1
CA ; B.t; w/ D

0
BB@

min
˚

1
�
q`C1; 
`C1

�
:::

min
˚

1
�
qn; 
n

�
1
CCA :

Example 4.7 (Blood flow). Following [64] (formulæ (2.3), (2.12), (2.14)), Section 2
of [1], [67] and [34], we consider the 1D model for blood flowing through an artery
(29), coupled with a 0D (lumped parameter) model describing the averaged mass and
flow rate in a given terminal compartment of the circulatory system (e.g., capillary
bed, venous circulation), see also [116] and the references therein. The former is
modeled by a 1D system of balance laws, as discussed in Section 3.6, while the latter
is a system of ordinary differential equations for the mean pressure and flow rate over
the whole compartment:8̂̂ˆ̂̂̂̂

<̂
ˆ̂̂̂̂ˆ̂̂:

@taC @xq D 0;

@tq C @x

�
˛ q2

a
C 1

�
�.a/

� D �2 ˛
˛�1

� q
a
;

a.t; 0C/ D a0

�
1C p�pref

ˇ

�2
;

PP D � 1
C
QC 1

C
q.t; 0/;

PQ D �R
L
QC 1

L
P � 1

L
P.t; l/:

(35)

Here, we used the following notation:

t time a arterial cross-section
x length along the artery q arterial flow rate
˛ Coriolis coefficient � blood density
� D R a

a0
Qa p0. Qa/d Qa � viscosity coefficient

a0 reference cross-section p D p.a/ arterial blood pressure
ˇ arterial wall elasticity

P compartmental mean C compartmental capacitance
Q compartmental mean flow rate R compartmental resistance
L compartmental inductance P.t; l/ outlet compartmental pressure
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From (28) one can see thatˇD.hE/=..1��2/
p
a0/ andp.a/Dpref Cˇ.

p
a=a0�1/.

Problem (35) is of type (32) with the positions

u D
 
a

q

!
; f .u/ D

 
q

˛
�

q2

a
C 1

�
�.a/

�
!
;

w D
 
P

Q

!
; F .t; u; w/ D

 
� 1

C
QC 1

C
q

1
L
P � R

L
QC 1

L
….t/

!
;

b.u/ D a; g.u/ D �2 ˛

˛ � 1�
q

a
; B.t; w/ D a0

�
1C p � pref

ˇ

�2

:

Example 4.8 (Gas-particle interaction). We consider the following model describing
the evolution of a solid body inside a compressible fluid:8̂̂ˆ̂̂̂̂ˆ̂̂̂̂

<̂
ˆ̂̂̂̂ˆ̂̂̂̂ˆ̂̂:

8̂<
:̂
@t�C @xq D 0;

@tq C @x

�
q2

�
C p.�/

�
D �g �; x ¤ �.t/;

q
�
t; �.t/��

�
�
t; �.t/�� D q

�
t; �.t/C�

�
�
t; �.t/C� D V;

PV D �g � p
�
�.t; �.t/C/� � p��.t; �.t/�/�

m
P�.t/ D V:

(36)

The space variable x is a vertical coordinate oriented upwards; � and q are the fluid
mass and linear momentum density above and below the particle; p D p.�/ is the
pressure law; V is the speed of the particle sited in �.t/ and m is its mass; g is
gravity. A justification of the speed law for PV in (36) is provided by the conservation
of energy. System (36) can not be written exactly in the form (32), since here we
are considering a copy of the p-system also for x < �.t/. However existence results
for (36) can be obtained with similar techniques; see [22].

4.2. Coupling of traffic models at boundary. We present here a coupling at the
boundary between two macroscopic models of traffic, namely the Lighthill–Whitham–
Richards model and a phase transition model, both of them are based on partial dif-
ferential equations. The literature contains some other couplings between different
traffic models. Among them we recall: the coupling between the follow the leader
and Aw–Rascle [99] and the coupling between the follow the leader and a phase
transition model [74]. The follow the leader model consists of ordinary differential
equations; hence the last two are examples of ODE–PDE coupling.
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Let us consider the following system:8̂̂̂
ˆ̂̂̂<
ˆ̂̂̂̂̂
:̂

@t�C @x.� Qv.�// D 0 if x < 0; t > 0;8̂̂̂
<
ˆ̂̂:
@t�C @x.�V / D 0 if .�; q/ 2 �f ;´
@t�C @x.�vc.�; q// D 0;

@tq C @x.qvc.�; q// D 0
if .�; q/ 2 �c ;

if x > 0; t > 0:
(37)

Here the evolution of car traffic is described, for x < 0, by the Lighthill–Whitham–
Richards model ([109], [117]), while, for x > 0, by the phase transition model,
introduced in [19]. In the LWR model, the relevant quantities are the density � and
the velocity Qv, which is a given function depending only on �. In the phase transition
model,�f and�c denote respectively the free and congested phase, � is the density
of cars, q is a “momentum”, V is the maximum speed and vc is the velocity of cars
in the congested phase �c .

The coupling conditions at x D 0 between the two models are the conservation
of the number of vehicles passing through x D 0, which reads as

�b
l Vmax

�
1 � �b

l

R

�
D
8<
:
V�b

r if .�b
r ; q

b
r / 2 �f ;

V�
R��

�b
r

	
R

�b
r

� 1


.1C qb

r / if .�b
r ; q

b
r / 2 �c ;

and the maximization of the flux through x D 0. Under suitable assumption on the
model, the following result holds. The complete set of assumptions and the proof are
given in [73].

Theorem4.9. Fix�l 2 BV..�1; 0/I Œ0; R�/ and .�r ; qr/ 2 BV..0;C1/I�f [�c/.
Then there exists

� O�l ; . O�r ; Oqr/
�
, a weak solution to (37), such that

(1) O�l.0; x/ D �l.x/ for a.e. x < 0;

(2) . O�r.0; x/; Oqr.0; x// D .�r.x/; qr.x// for a.e. x > 0;

(3) for a.e. t > 0, the trace at x D 0 of the solution respects the coupling condi-
tions.

Remark 4.10. One can also consider the symmetric situation in which the phase
transition model is used in x < 0 and the LWR model is used in x > 0. The coupling
conditions can be defined in a similar way and an analogous of Theorem 4.9 holds;
see [73].

5. Control and optimization

Different control and optimization questions, depending on the applications, arise on
networks. These can be divided among several groups leading to different analytical
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and numerical techniques. Here we present three different control problems, solved
with different techniques. The first one deals with the existence of Nash equilibria
for traffic flow on networks in the case of different groups of drivers. The second one
considers an optimization procedure of the traffic flow through the junctions. Finally,
in the last example, a gas pipeline is considered. Some other important applications,
like systems of open canals, production lines, water contamination detection, routing
in Internet traffic, are not described in this survey.

5.1. Nash equilibria. In this section we take a somewhat different point of view,
regarding traffic flow as the outcome of a decision problem. We assume that each
individual driver has a cost '.�d / for early departure and an additional cost  .�a/

for late arrival. On a general network of roads, the arrival time �a is determined by
(i) the departure time �d , (ii) the route taken to reach the destination, and (iii) the
overall traffic pattern, which of course depends globally on the decisions of all other
drivers. The objective of minimizing the total cost'.�d /C .�a/ leads to two distinct
mathematical problems.

(P1) Global optimization problem. Find departure times and routes to destinations
in order to minimize the sum of all costs to all drivers.

(P2) Nash equilibrium problem. Find departure times and routes to destinations
in such a way that no driver can lower his own cost '.�d /C '.�a/ by changing his
departure time or switching to a different route.

Note that (P1) is relevant in the case of a central planner who can decide the
departure time and the route of every car. On the other hand, (P2) models the more
realistic situation where each driver is free to choose his own departure time and
route, in order to minimize his own personal cost. The existence, uniqueness, and
characterization of solutions to the above problems has been recently studied in [26],
[27], [29] in the case of a single road, and in [28] for a network of roads. We survey
here the main results.

Let B1; : : : ; Bm be the nodes of the network, and call �ij the arc connecting Bi

with Bj . The flow of cars along �ij is described by the conservation law

�t C Œ� vij .�/�x D 0: (38)

Here t is time and x 2 Œ0; Lij � is the space variable along the arc �ij . By � D �.t; x/

we denote the traffic density, while the map � 7! vij .�/ is the speed of cars as
function of the density. We assume that vij is a continuous non-increasing function.
If vij .0/ > 0 we say that the arc �ij is viable. If the two nodes i , j are not directly
linked by a road, we simply takevij � 0, so that the arc is not viable. The conservation
laws (38) are supplemented by suitable boundary conditions at points of junctions,
which will be discussed later.
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We consider n groups of drivers traveling on the network, having different de-
parture and arrival nodes, or different cost functions. For k 2 f1; : : : ; ng, we let
Gk be the total number of drivers in the k-th group. All these drivers depart from a
node Bd.k/ and arrive at a node Ba.k/, but can choose different paths to reach their
destination. Of course, it is assumed that there exists at least one chain of viable arcs

�
:D �
�

i.0/;i.1/
; �

i.1/;i.2/
; : : : ; �

i.��1/;i.�/

�
with i.0/ D d.k/ and i.�/ D a.k/, connecting the departure node Bd.k/ with the
arrival node Ba.k/. We shall denote by

V
:D ˚
�1; �2; : : : ; �N

�
the set of all viable paths (i.e. concatenations of viable arcs) which do not contain any
closed loop. For a given k 2 f1; : : : ; ng, let Vk 
 V be the set of all viable paths for
the k-drivers, connecting Bd.k/ with Ba.k/. By Uk;p.t/ we denote the total number
of drivers of the k-th group, traveling along the viable path �p , who have departed
before time t .

Definition 5.1. A departure distribution function t 7! Uk;p.t/ is a bounded, non-
decreasing, left-continuous function, such that

Uk;p.�1/
:D lim

t!�1Uk;p.t/ D 0:

Given group sizes G1; : : : ; Gn � 0, we say that a set of departure distribution func-
tions fUk;pg is admissible if it satisfies the constraintsX

p

Uk;p.C1/ D Gk; k D 1; : : : ; n: (39)

SinceGk is the total number of drivers in the k-th group, the admissibility condi-
tion (39) means that, sooner or later, every driver of each group has to depart. If the
function Uk;p is absolutely continuous, its derivative will be denoted by

Nuk;p.t/ D d

dt
Uk;p.t/:

Clearly, Nuk;p measures the rate of departures of k-drivers traveling along �p .
The overall traffic pattern can be determined by (i) the departure distribution

functions Uk;p. � /, (ii) the conservation laws (38) describing the traffic density on
each road, and (iii) a suitable set of conditions at junctions. The departure and arrival
costs for drivers of the k-th group will be denoted by 'k. � /,  k. � /, respectively.

Definition 5.2. An admissible family fUk;pg of departure distributions is globally
optimal if it minimizes the sum of all costs to all drivers.
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Definition 5.3. An admissible family fUk;pg of departure distributions is a Nash
equilibrium solution if no driver of any group can lower his own total cost by changing
departure time or switching to a different path to reach destination.

In other words, calling Ap.t/ the arrival time of a driver who starts at time t and
travels along the path �p , the family fUk;pg is globally optimal if it minimizes the
Stieltjes integral

J
:D
X
k;p

Z �
'k.t/C  k.Ap.t//

�
dUk;p.t/

among all admissible departure distributions.
On the other hand, if fUk;pg is a Nash equilibrium solution, then all drivers in

the same group must bear the same total cost. In particular, there must be constants
c1; : : : ; cn such that:

(i) For every t in the support of the measure dUk;p , one has

'k.t/C  k.Ap.t// D ck :

(ii) For all t 2 R, one has

'k.t/C  k.Ap.t// � ck :

We emphasize that the arrival times Ap.t/ heavily depend on the overall traffic con-
ditions, i.e. on all the departure rates Uk;p in a global, highly nonlinear way. A
first result on the existence of a global optimum and of an equilibrium solution on
networks was proved in [28], under the following assumptions.

(A1) For every viable arc �ij , the flux function � 7! Fij .�/ D �vij .�/ is continuous,
concave down, and non-negative on some interval Œ0; N�ij �, with Fij .0/ D
Fij . N�ij / D 0. We shall denote by ��

ij 2�0; N�ij / the unique value such that

F.��
ij / D F max

ij

:D max
�2Œ0; N�ij �

Fij .�/; F 0
ij .�/ > 0

for every � 2 Œ0; ��
ij /.

(A2) For each k 2 f1; : : : ; ng, the cost functions 'k ,  k are continuously differen-
tiable and satisfy

'0
k.t/ < 0;  0

k.t/ > 0; lim
jt j!1

�
'k.t/C  k.t/

� D C1:

(A3) Drivers arriving at a node Bi from all incoming roads, and who wish to travel
along the arc �ij , are placed in a buffer (of unlimited capacity) at the en-
trance of this outgoing arc. Their place in the queue is determined by the time
at which they arrive at Bi , first-come, first-serve. If the queue has nonzero
length, then the flux at the entrance of the arc �ij is maximum possible:
Fi;j .t; 0C/ D F max

ij .
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Remark 5.4. According to (A2), the cost for early departure is strictly decreasing
in time, while cost for late arrival is strictly increasing. The assumption that these
costs tend to infinity as t ! ˙1 coincides with common sense and guarantees that
in a globally optimal as well as in an equilibrium solution the departure rates are
compactly supported.

Remark 5.5. In the engineering literature (see for example [68]) it is common to
consider a cost of the formD.t/C‰

�
t CD.t/�TA

�
, defined as the sum of the total

duration of the trip D.t/ plus a penalty ‰ if the arrival time does not coincide with
the target time TA. Calling �a.t/ D t CD.t/ the arrival time of a driver departing at
time t , this cost can be written in the form

D.t/C‰
�
t CD.t/ � TA

� D �t C �
�a.t/C‰

�
�a.t/ � TA

��
D '.t/C  .�a.t//;

with '.t/
:D �t ,  .�/ :D � C‰.� � TA/.

Remark 5.6. The assumption (A3) greatly simplifies the dynamics at each node Bi .
With reference to Figure 3, by (A3) the traffic density on any outgoing arc �ij can
never affect the flow along any incoming arc �ki . In particular this implies that, along

Biki

ij
Bj

Figure 3. A generic node of the network.

every arc �ij , the density satisfies � 2 Œ0; ��
ij � and the characteristic speed remains

positive:
F 0

ij .�/ D vij .�/C �v0
ij .�/ � 0:

Notice that this assumption rules out phenomena such as a “spill-back”, where the
congestion of an outgoing road �ij produces a queue propagating backwards along
an incoming road �ki .

In the above setting, the main results proved in [28] are as follows.

Theorem 5.7 (Existence of a globally optimal solution). Let the flux functions Fij ,
the cost functions 'k ,  k , and the dynamics at intersections satisfy the assumptions
(A1)–(A3). Then, for any given population sizes G1; : : : ; Gn > 0, there exists an
admissible set of departure distributions fUk;pg providing a globally optimal solution
to the traffic flow problem.

Theorem 5.8 (Existence of a Nash equilibrium solution). Let the assumptions
(A1)–(A3) hold.
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(i) For any given population sizesG1; : : : ; Gn > 0, there exists at least one admis-
sible family of departure distributions fUk;pg which yields a Nash equilibrium
solution.

(ii) In any Nash equilibrium solution, all departure rates Nuk;p D d
dt
Uk;p are

uniformly bounded and have compact support.

Following the direct method of the Calculus of Variations, a globally optimal

solution is constructed in [28] by taking the limit of a minimizing sequence fU .�/

k;p
g��1

of admissible departure distributions. The existence of the limit is guaranteed by the
“tightness” of the sequence of approximating measures. Namely, for each � > 0

there exists T > 0 (independent of n) such that the total number of drivers departing
at times t … Œ�T; T � is lower than ".

In the much simpler case where the network reduces to a single road and all drivers
have the same departure and arrival cost, it was proved in [26] that the globally optimal
solution and the equilibrium solution are unique. Here the departure distributionU. � /
for the Nash equilibrium can be obtained as the unique pointwise supremum of a
family of admissible distributions, satisfying an additional constraint. The continuous
dependence of this equilibrium solution was studied in [29], where the flux function
or the cost functions ',  were varied.

On the other hand, the existence result stated in Theorem 5.8 for a network of
roads is proved by a fixed point argument. By its nature, this topological technique
cannot yield information about uniqueness or continuous dependence of the Nash
equilibrium.

5.2. Instantaneous control of traffic flow networks. Many existing papers re-
garding traffic flow on a road network use a (Markov) distribution matrix to distribute
traffic flow at intersections [71], [88], [101], [41]. In applications the values of this
distribution matrix are not fixed a priori but subject to optimization [86], [69], [80]. In
practice, this corresponds to dynamic deviation suggestions for drivers. We discuss
the case of feedback controls obtained using instantaneous control. This technique
has first been applied in computational fluid dynamics [94], [93]. Here, we survey
some results from [85], [80] in a setting of a single traffic intersection with three
connected roads j D 1 and j D 2; 3. We assume that the road j D 1 is incoming
and the roads j D 2; 3 are outgoing. The incoming road is parameterized by .�1; 0�

and the outgoing ones by Œ0;1/, respectively, the node being at x D 0. We consider,
on the road j , the Lighthill–Whitham–Richards model [109]:

@t�j C @xfj .�j / D 0; fj .�/ D �vj .�/: (40)

The coupling condition imposed at x D 0 include the time-dependent distribution

Markov matrix AJ .t/ WD �
˛.t/; 1 � ˛.t/�>. The conservation of mass through the
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vertex is therefore given by

 
f2.�2.t; 0//

f3.�3.t; 0//

!
D AJ .t/f1.�1.t; 0//: (41)

As detailed in the previous section, additional conditions at node J are required in
order to obtain unique boundary values for the density �j .t; 0/, see also [40], [71],
[88]. In the case of three connected arcs, the coupling conditions can be solved
explicitly and we refer to [85] for more details. Equations (40), (41) have to be
supplemented by initial conditions on each road j . In the control context the function
t ! ˛.t/ is subject to optimization. Denote by � ! Fj .�/ a non-negative, convex
cost functional measuring the density of cars on road j . Also, assume that there is a
desired distribution parameter ˛�. For a weighting parameter ı > 0 we optimize for
AJ .t/ to minimize the following cost functional:

1

2

Z 0

�1

Z 1

0

F1

�
�1.t; x/

�
dtdx C 1

2

3X
j D2

Z 1

0

Z 1

0

Fj

�
�j .t; x/

�
dtdx

C ı

2

Z 1

0

.˛.t/ � ˛�/2 dt:

(42)

However, instead of solving an optimal control problem we apply an instantaneous
control (IC) concept. The IC proceeds by an implicit Euler semi-discretization in time
applied to equations (40), (41). Denote by tk the k-th time-step of fixed length � .
The control ˛.t/ is assumed to be piecewise constant on each interval .tk; tkC1�, i.e.,

˛.t/ D
X

k

˛kC1�.tk ;tkC1�.t/:

The control value ˛kC1 is obtained by solving the problem (42) for given values
�k

j .x/ on each road j and given prior control ˛k . Denote by HkC1 a discretization
of the cost functional (42) on Œtk; tkC1� by the trapezoidal rule:

HkC1 D ı

4

�
.˛kC1 � ˛�/2 C .˛k � ˛�/2

�C 1

4

Z 0

�1
F1

�
�kC1

1 .x/
�C F1

�
�k

1 .x/
�
dx

(43)C 1

4

3X
j D2

Z 1

0

Fj

�
�kC1

j .x/
�C Fj

�
�k

j .x/
�
dx:

Problem (43) is an approximation on a single time interval and its solution is
only a suboptimal solution compared with the full optimal control problem for (42).



Flows on networks 83

However, problem (44) can be solved explicitly:

minHkC1 subject to 0 � ˛kC1 � 1; AJ .t
kC1/ D .˛kC1; 1 � ˛kC1/;

�kC1
j .x/ � �k

j .x/

�
C fj .�

kC1
j .x//x D 0; 

f2.�
kC1
2 .0//

f3.�
kC1
3 .0//

!
D AJ .t

kC1/f1.�
kC1
1 .0//:

(44)

Note that the minimum to problem (44) (if it exists) only depends on the state of
the system .�k

j .x//j at time tk and therefore ˛kC1 is indeed a closed loop control.
The value of ˛kC1 may be obtained as solution to the first-order optimality system
(45) to problem (44). We denote by PI the projection to the set I . The first-order
optimality conditions are given by (45) to (47). The functions pj .x/ are obtained
as solution to equations (47) and (48). Then, the first-order optimality condition is
given by equation (45).

PŒ0;1�

�
ı�

2
.˛kC1 � ˛�/C f1.�

kC1
1 .0//

�
p2.0/ � p3.0/

� � D 0; (45)

pj

�
� f 0

j .�
kC1
j .x//@xpj D ��

2
F 0

j .�
kC1
j .x//; (46)

p1.0/ D ˛kC1p2.0/C .1 � ˛kC1/p3.0/: (47)

Theorem 5.9. Assume Fj are convex, fj concave and at least C1 in their respective
arguments. If @xpj .x/ is non-negative for j D 1; : : : ; 3, then the function HkC1 is
convex in ˛kC1.

The proof follows from Theorem 4.1 in [85]. The computed control ˛kC1 is
suboptimal compared with a solution to problem (48):

min
0�˛.t/�1

1

2

Z T

0

.˛.t/ � ˛�/2dt C
Z T

0

Z 0

�1
F1.�1.t; x// dxdt

C
3X

j D2

Z T

0

Z 1

0

Fj .�j .t; x// dxdt

(48)

subject to (40) and (41).

So far, for networks no rigorous results on problem (48) exist. The main difficulty
in the theoretical analysis of (48) is the non-differentiability in L1 of the semi-group
�t�j generated by the conservation law (40), see, e.g., Example 1 of [31]. A calculus
for the first-order variations of �t�j with respect to initial conditions �0 has been es-
tablished in Theorems 2.2 and 2.3 of [31] for general 1-D systems of conservation laws
with a piecewise Lipschitz continuous �0 that contains finitely many discontinuities.
Therein, the concept of generalized first-order tangent vectors has been introduced to
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characterize the evolution of variations with respect tou0, see equations (2.16)–(2.18)
in [31]. This result has been extended to BV initial data in [25], [17] and lead to the
introduction of a differential structure for �0 ! �t�0, called shift-differentiability,
see e.g. [17], Definition 5.1. Related to that equations for the generalized cotangent
vectors have been introduced for 1-D systems in [32], Proposition 4. These adjoint
equations consist of a nonconservative transport equation ([32], equation (4.2)) and
an ordinary differential equation ([32], equations (4.3)–(4.5)) for the tangent vector
and shift in the positions of possible shocks in �.t; x/, respectively. Necessary con-
ditions for a general optimal control problem including explicit boundary conditions
have been established in Theorem 1 of [32]. However, this result was obtained using
strong assumptions on �0 (see Remark 4 in [32] and Example 5.5 in [17]). Analytical
results for optimal control problems in the case of a scalar hyperbolic conservation
law with a convex flux have also been developed using a different approach in [122].
For all approaches, the extension of the results to the network case is still open.

5.3. Controllability and optimal control of gas networks . We discuss control-
lability [81] and optimal control problems for flow in gas networks [45], [90] while
similar results are also available in the context of connected open canals, see for
example [16], [50], [51], [105], [82], [106], [78], [107], [108]. So far, controllability
results exist only in the realm of strong C1 solutions leading to strong bounds on
initial and desired data. We recall a recent result on controllability of gas networks
[81]. Similar results also exist for open canals where the main difference is the source
term and the pressure in the momentum equation. In the case of gas networks, results
have been established for p.�/ D a2� and a source term modeling pipe wall friction.
In the case of open canals, the pressure is p.h/ D g

2
h2 and a friction term due to

the slope of the canal is considered. A controllability result for the general p-system
with general source term is only available if it is a particular case of the general
controllability result for quasi-linear systems [105].

To exemplify the ideas we consider a network of two connected pipes with a
controllable compressor station located at vertex J with two connected pipes. In the
following the pipes are labeled j D 1 and j D 2 for the incoming and outgoing pipe,
respectively. We also assume that pipe one is parametrized such that x 2 Œ�L; 0� DW
I1 and pipe two such that x 2 Œ0; L� DW I2 with the node being the compressor at
x D 0. In case of C1 solutions the governing equations in quasilinear form on pipes
j 2 f1; 2g are

@tyj C Aj .yj /@xyj D Gj .t; x; yj / in Ij � Œ0; T �;
‰.y1.t; 0/; y2.t; 0// � u.t/ D 0;

(49)

and boundary conditions at x D �L and x D L. In case of gas networks we have
y D .�; q/ and a friction source term of the type G.y/ D .0;�c0

qjqj
�
/> for a non-

negative constant c0. The flux function is F.y/ D .q; q2

�
C a2�/> with sound speed
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a andAj D DyF.y/. The function t ! u.t/ is the (unknown) control. In the case of
a gas network, u.t/ � 0may correspond to the power applied at a compressor station
at time t . If supplied with enough power, the compressor increases the pressure
downstream in order to balance the friction effects. A similar control is also active in
the case of water flow in open canals. Here, u.t/ models the opening of underflow
gates in connected canal systems. The spill of the underflow gate is used to regulate
the water level downstream. The coupling condition in the case of a compressor [45]
is given by

‰ D
�
q1.t; 0/ � q2.t; 0/; �q2.t; 0/

�
�2.t; 0/

�1.t; 0/

	

� 1
��

for some 	 > 0. Given finite times T > zT > 0 we consider exact controllability
to a desired boundary data yB.t/ which should be attained at x D L, for t � t�
and t� 2 . zT ; T /. The initial data yj .t; 0/ and boundary data at x D �L are given.
Then, the controllability problem is to find a solution u 2 C1.0; T / such that (49)
has a classical solution on Œ0; T � that satisfies the exact controllability condition
y2.t; L/ D yB.t/ for all t 2 Œt�; T �.
Theorem 5.10. Assume that Aj are smooth functions and the matrices possess two
real eigenvalues �j

i for i D 1; 2. Let zT be sufficiently large and choose t� 2 . zT ; T /.
Assume any solution yj fulfills �j

1.yj / < 0 < �
j
2.yj /. Then, there exists a number

ı > 0 such that for all initial and boundary data of C1-norm lower than ı and which
are additionally C1-compatible at x D 0 and all desired data yB 2 C1.0; T / with
kyBk � ı the following statement holds true.

There exists a control function u 2 C1.0; T / such that y2.t; L/ D yB.t/ for all
t 2 Œt�; T �.

The assumption on the sign of the eigenvalues is crucial to all existing controlla-
bility results and allows one to determine a priori the outgoing and incoming charac-
teristics at the boundary. The C1-compatibility condition ensures the existence of a
global C1 solution yj in Œ0; T � � Ij . More details are given in Theorem 3.2 of [81].
The result also extends to perturbations of stationary solutions: Consider a subsonic
steady-state solution to (49) and corresponding boundary data yB . Then, there exists
a small C1 neighborhood of the boundary data and a C1 control u such that exact con-
trollability holds for all data from the neighborhood ([81], Theorem 3.2). The results
extend to tree-like networks having as many compressor stations as desired boundary
data. The result also extends to coupled systems of general quasi-linear equations and
general nonlinear coupling conditions‰. The precise assumptions are found in [81],
Theorem 2.1. The global exact controllability of quasi-linear hyperbolic systems has
been studied also in [108], [82]. Therein, the exact controllability is used to describe
the problem to drive the system to a desired state at a given finite time. The results for
networks extend those by driving the state at some node to a given desired state and
by using nodal controls instead of initial value controls. The simpler case of linear
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coupling conditions ‰.y1.t; 0/; y2.t; 0// D A.y1.t; 0/; y2.t; 0// is studied in [82],
[50]. A result for nodal control in the case of tree-like networks has been discussed in
[107]. Therein, all conservative variables are controlled independently and the results
apply for the Saint-Venant equation only. There is a relation to the exact boundary
observability of flows in a tree-like network of open canals [78] where it has been
shown that the initial data can be determined by the observation of the boundary data.

Next, we present results on the existence of optimal controls in the presence
of discontinuities [46], [45]. We consider equation (49) in conservative form for
y D .y1; y2/ with

@tyj .t; x/C @xF.yj / D Gj .t; x; yj /; ‰.y.0// � u.t/ D 0: (50)

The result for the optimal control problem heavily relies on the analytical properties
of the solution. Denote by Et .y0; u/ the weak solution to equation (50) for initial
data y0 D .y1;0; y2;0/ 2 L1, control u 2 L1 both of small TV-norm and sufficiently
close in L1 to a subsonic constant . Ny; Nu/ such that ‰. Ny1; Ny2/ � Nu D 0. It can be
proven that E fulfills the following estimate for all t 2 Œ0; T �:

kEt .y0; u/ � Et . Qy0; Qu/k � L

�
ky0 � Qy0k C

Z t

0

ku.s/ � Qu.s/kds
�
:

This bound immediately yields an existence result for the optimal control u. � / to the
nonlinear constrained problem (51).

Theorem 5.11. Assume functions J0 and J1 are non-negative and lower semicontin-
uous with respect to the L1-norm in their respective arguments u and y D .y1; y2/.
Then, for some ı > 0 and given initial condition y0 2 f NyCL1.RCI R2/, TV.y/ � ıg,
the problem

min J0.u/C
Z T

0

J1.Es.y0; u//ds (51)

admits a minimum on˚
u 2 NuC L1.RC/; TV.u/C TV.y0/C k‰.y0.0C// � u.0C/k � ı

�
:

The proof follows from Proposition 2.4 of [45]. Theorem 5.11 holds true for
general 2 � 2 balance laws and we refer to [45] for more details. In particular, the
result applies to the control of pumping stations in water networks and underflow
gates in open canals, where the dynamics is described by Saint-Venant equations.
For a further characterization of the minimum to (51) a first-order optimality system
is required. As in the case of traffic flow discussed above, so far no stronger results
are available. We refer to the discussion at the end of the previous section for further
references. A formal computation of adjoint equations and corresponding coupling
conditions has been used in numerical methods and we refer, for example in the case
of the Euler equations, to [90]. For the isothermal Euler equations those equations
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have been derived in [90]. For constant initial data the adjoint coupling conditions
together with the adjoint equations to (50) are a well-posed problem having a unique
solution. No further results in this direction have been proposed so far.

6. Numerics

The discussed flow problems on networks are spatially one-dimensional hyperbolic
balance laws. There exists a vast literature on possible numerical schemes to discretize
system (3) which we do not review at this point due to lack of space.

We first focus on the discretization of the coupling condition (4) in the realm of
finite-volume schemes. For a general introduction to finite volume schemes we refer
for example to the textbooks [97], [104].

We then consider multi-dimensional models, which can be used to deduce cou-
pling conditions for the one-dimensional reductions. Specifically examples are pro-
vided for car traffic and gas pipes.

6.1. Coupling conditions for finite volume schemes. The equations (3) are ap-
proximated numerically using a finite volume method on a regular grid of cell size
xiC1 � xi D x and time step tmC1 � tm D t , chosen so that the CFL condition
[52] �maxt � x is satisfied, where �max is the largest wave speed. The discretiza-
tion is done for each component uj separately. In a finite volume method the cell
average xUm

j;i of uj in cell i at time tm is given by

xUm
j;i WD 1

x

Z x
iC 1

2

x
i� 1

2

uj .x; t
m/ dx:

The evolution of the cell average over time t is

xUmC1
j;i D xUm

j;i � t

x

	
.Fj /

m

iC 1
2

� .Fj /
m

i� 1
2



C xGm

j;i ; (52)

where in Godunov’s method [75] .Fj /
m

iC 1
2

D Fj . xUm
j;i ;

xUm
j;iC1/ denotes the numerical

flux for uj .t; x/ through the boundary between cells i and i C 1 and where xGn
j;i is

an approximation to 1
�x

R tmC1

tm

R x
iC 1

2
x

i� 1
2

gj .t; x; uj .x; t// dxdt obtained by a suitable

quadrature rule. In Godunov’s method the exact solution to a Riemann problem
posed at the cell boundary i C 1

2
is used to define the numerical flux .Fj /

m

iC 1
2

. Then

in Godunov’s method the numerical approximation to uj .t; x/ is obtained by the
piecewise constant reconstruction

uj .t; x/ D
X

i

X
m

xUm
j;i �Œx

i� 1
2

;x
iC 1

2
��Œtm;tmC1�.t; x/: (53)
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The coupling condition (4) at the node induces a boundary condition for equa-
tion (4). Numerically, a construction of boundary values can be provided under the
assumptions on Nuj;0 given by Theorem 2.13 and condition (11) on ‰. To fix the
notation we assume that at time tm the cell averages in the first cell i D 0 of the
connected arcs (parameterized by x > 0) are given by xUm

j;0 for j D 1; : : : ; n and
that they are sufficiently close to Nuj;0 such that condition (11) holds true. Denote by
� ! L	.u0; �/ the 	-th Lax curve through the state u0 for 	 D 1; 2. Then, using
Newton’s method we solve for .��

1 ; : : : ; �
�
n / the nonlinear system

‰
�
L2. xUm

1;0; �1/; : : : ;Ln. xUm
n;0; �n/

� D 0: (54)

A unique solution exists due to (11). The boundary value xUmC1
j;0 at time tmC1 is then

given by equation (52) for i D 0 and with

xUm
j;�1 WD L2. xUm

j;0; �
�
j /: (55)

Obvious modifications of this construction allow one to treat also incoming arcs
(parameterized by x < 0) and coupling conditions including ordinary differential
equations or controls. The construction yields a first-order approximation to the
coupling condition. So far, no higher order discretizations of coupling conditions
have been proposed in the literature.

6.2. Multi-dimensional approximation of coupling conditions. In many flow
models on networks the correct coupling condition connecting the dynamics on dif-
ferent arcs is not known in full detail. However, its precise form is crucial from many
point of views: it determines the applicability of the model, as well as its theoretical
properties and the numerical implementation. In this section we present two ideas to
at least numerically derive and validate coupling conditions for flow models. Here,
the node is not considered as single point but as a multi-dimensional domain. We ex-
emplify the ideas by studying an example in traffic flow [86] and the Euler equations
of gas dynamics [84]. Other examples are found in the literature [91], [92]. Unfor-
tunately, so far no theory which rigorously allows one to derive coupling conditions
from multi-dimensional flow descriptions exists.

The idea presented in [84] is to use a numerical study of an extended two-
dimensional model for a T-shaped intersection to investigate proposed coupling con-
ditions. A theoretical discussion of conditions in the one-dimensional case has been
carried out for the Euler equations in [47]. The resolution at the node is achieved by
introducing a local zooming of the situation, see for example Figure 4. This yields
a two-dimensional domain representing the T-shaped intersection fitting with corre-
sponding initial flow conditions in each arc. The governing equations in the zoomed
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Figure 4. Multi-dimensional approximation for coupling conditions at nodes in the case of traffic
flow (right) and gas dynamics (middle). The generic one-dimensional situation is depicted at the
left. The multi-dimensional approximations are used to obtain nodal conditions for the generic
situation.

region are given by the polytropic Euler system:8̂̂ˆ̂̂̂̂
<̂
ˆ̂̂̂̂ˆ̂̂:

@t�C @x.�u/C @y.�v/ D 0;

@t .�u/C @x.u
2�C p/C @y.�uv/ D 0;

@t .�v/C @x.�uv/C @y.v
2�C p/ D 0;

@tE C @x.u.E C p//C @y.v.E C p// D 0;

E D p

� � 1 C 1

2
�.u2 C v2/:

(56)

We now assign initial data according to the connected arcs, see (57) for the example
depicted in Figure 4. We compute a fully evolved solution using a high-order finite-
volume numerical scheme and average on subdomains. The resulting values are then
compared with the predictions of the coupling conditions of the one-dimensional
model [47]. This approach is motivated by the following considerations: The one-
dimensional model is typically used for simulation purposes since it is computa-
tionally less expensive than the two-dimensional model, see Table 1. Further, it
is assumed that the two-dimensional dynamics happen on a much faster timescale
compared to the dynamics in the arcs. Hence, we use the simulation results for the
one-dimensional model. We therefore consider only the region close to the center of
the computational domain. Furthermore, we know that in the case of constant initial
data, the theoretical results predict constant states at the intersection. Hence, we are
interested in time-independent values obtained by two-dimensional computations.
This motivates the averaging procedures given by equation (58). If one is interested
in the transient behavior, the results of the two-dimensional simulations should be
used as follows: For a combination of data the tables of the two-dimensional results
yield the state which eventually will be attained by the dynamics at the intersection.
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Table 1. CPU times in seconds for a two- and a one-dimensional model on a tree-shaped
geometry and three connected pipes, respectively.

2D 1D
Grid CPU [sec] Grid CPU [sec]

40 � 40 19.41 40 0.71
80 � 80 172.95 80 2.79
120 � 120 615.51 120 6.28
240 � 240 >15 min 240 24.14

In more detail, we prescribe initial data in the depicted arcs or pipes one to three
by U D .�; �u;E/ as

U.x; y; 0/ D

8̂̂<
ˆ̂:
.�1;0; q1;0; 0; E1;0/; .x; y/ 2 Pipe 1;

.�2;0; 0; q2;0; E2;0/; .x; y/ 2 Pipe 2;

.�3;0; q3;0; 0; E3;0/; .x; y/ 2 Pipe 3;

(57)

where .�i;0; qi;0; Ei;0/ is the constant initial data. The size of the domain in the
artificial new variable is Nw. We compute at every time step the cell averages xUi for
ı 2 .0;1/ W

xUi .ı; t/ WD 1

j�ı
i j
Z


ı
i

U.x; y; t/ dxdy; i D 1; : : : ; 3: (58)

The domains �ı
i are overlapping domains with size ı C Nw � Nw. They extend in the

direction of the arcs with length ı and overlap in an area of size Nw2. For a given
tolerance � we simulate the two-dimensional model (56) and (57) until time � such
that

3X
iD1

@t sup
�

k@ı
xUi .�; �/k2 � �: (59)

The termination criterion is a measure for the current dynamics inside each subdo-
main and indicates changes in the averaged moments. The criterion proposed implies
that only the traces of the solution near the intersection is important to the compar-
ison. Exiting waves are lost to the comparison. In the one-dimensional model we
observe waves moving out of the intersection leaving boundary values zUi indepen-
dent of time behind. Hence, for sufficiently small ı we average on domains�ı

i which
are close to the center of our computational domain and consider only traces of the
two-dimensional solution. The measure (59) indicates whether or not we reached
stationary values for the averaged moments. Once we satisfied the termination crite-
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rion we denote by Ui .�; 0/ the reference values for comparison with the theoretical
predictions, see also [84].

We show that even in the case of single intersection, a full two-dimensional simula-
tion is computationally expensive. We compare the computational times for the two-
dimensional simulation on a T-shaped intersection geometry with a one-dimensional
simulation on three connected pipes until time T D 0:5 using a second-oder finite
volume scheme. Nodes with three connected arcs are most common when consid-
ering applications in gas pipeline systems. A detailed report where the final states
obtained by the coupling conditions proposed in [47] as well as the averaged values of
the numerical simulation is given in [84]. In general, the complex two-dimensional
dynamics cannot be fully captured by the one-dimensional models and we can only
verify if the qualitative behavior coincides. We observe similar trends and the per-
sistence of qualitative features and the order of magnitude of the values is the same.
Arcs with higher values for the density, velocity and energy in the theory correspond
to those in the numerical simulation. Numerical examples are given in Figure 5.

Figure 5. First line: Graph of the numerical solution �.t; �; �/ obtained by simulation of the two-
dimensional situation over time. The volume averaged two-dimensional results are indicated by
a cross (X). The theoretical predictions are indicated by a dot. Second line: Solution �.t; x/2d

and �ana.t; x/ in middle and right part of the picture, respectively. The node is located at x D 0.
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Therein, we report the graph of the densities �ana.t; x/ and �2d .t; x/ on a single
connected arc. For given initial data the multi-dimensional Euler equations with
initial data as in (57) is solved and the volume averaged two-dimensional results
are shown. We further compute the values obtained from the coupling conditions
proposed in [47]. Those are then used to numerically simulate the one-dimensional
model. The full two-dimensional solution is averaged along the pipe and shown for
comparison. The initial data generates a more complex wave pattern in the two-
dimensional situation and we therefore cannot expect to have a constant state once
all interactions have taken place. However, close to the node also the solution in the
multi-dimensional case approaches a constant value at zero.

For traffic flow networks a different procedure has been proposed in [86]. Here,
traffic flow on unidirectional roads at a motorway junction is described by a number
of roads which merge or disperse. A numerical simulation of a model with multiple
roads and considering a long-time limit leads to comparable coupling conditions in
traffic flow. To exemplify the procedure and the results consider the situation of
Figure 4. The Aw–Rascle–Zhang [8], [124] approach to the full multi-lane equations
with N roads labeled by ˛ and with density �˛.t; x/ and velocity u˛.t; x/ on lane ˛
are

@t�˛ C @x.�˛u˛/ D
�

1

T L
˛�1

�˛�1 � 1

T R
˛

�˛

�
.1 � ı˛;1/

C
�

1

T R
˛C1

�˛C1 � 1

T L
˛

�˛

�
.1 � ı˛;N /;

@t .�˛u˛/C @x.�˛u˛w˛/ D
�

1

T L
˛�1

u˛�1�˛�1 � 1

T R
˛

u˛�˛

�
.1 � ı˛;1/

C
�

1

T R
˛C1

u˛C1�˛C1 � 1

T L
˛

u˛�˛

�
.1 � ı˛;N /;

w˛ D u˛ C p.�˛/:

We refer to [8] for more details on the function p and theoretical properties of the
conservation law. The terms T L;R

˛ are the lane changing rates from lane ˛ to the left
or to the right. For u˛ D U.�˛/, the equations simplify to a scalar multi-lane traffic
flow model:

@t�˛ C @x.U.�˛/�˛/ D
�

1

T L
˛�1

�˛�1 � 1

T R
˛

�˛

�
.1 � ı˛;1/

C
�

1

T R
˛C1

�˛C1 � 1

T L
˛

�˛

�
.1 � ı˛;N /:

(60)

In general, a full network flow is accurately described by the multi-lane equations.
To save computational time, one restricts the model to a single lane on most part of
each arc and, via a local zooming, uses multiple lanes only close to nodes. Consider
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the situation of Figure 4 with a one-dimensonal scalar traffic flow model

@t�i C @x�iU.�i / D 0 (61)

posed on the three connected arcs i D 1; 2; 3. For simplicity let the node be located
at x D 0. Coupling conditions for the one-dimensional model and corresponding
boundary values N�.t; 0/ have been proposed for example in [96], [71]. We model
the local traffic by a two-lane situation .N D 2/ where the first road merges into the
second road. The first road is also closed at x1. In the area .x0; x1/ cars change only
from lane one to two, i.e., T R

2 D 0 and T L
1 is chosen as 1=T L

1 D !.1 � �2/=T
�.x/

where T � is linearly decreasing function for x 2 .x0; x1/. The initial conditions in
the case of equation (60) are

�1.x; 0/ D �1;0H.x � x1/C �2;0H.x1 � x/; �2.x; 0/ D �3;0H.x1 � x/:

The values �i;0, i D 1; 2; 3, are the boundary values at time t of the one-dimensional
models at the node, i.e., �i;0 D �i .t; 0/. In order to obtain boundary values for
equation (61) we assume the region of the node in model (60) is of order � � 1.
Rescaling the domain and the lane changing rates accordingly leads to T L;R

˛ !
�T

L;R
˛ . In rescaled coordinates Ox D x=� we look now for the asymptotic values of

model (60) at t; x ! 1. The desired boundary values N�i .t C t; 0/ for (61) for
small times t are then given by

N�1 D �1.t D 1; x D �1/; N�2 D �2.t D 1; x D �1/;

N�3 D �2.t D 1; x D 1/:

A numerical comparison can be found in [86]. Therein, the multi-lane model has
been computed for different (constant) initial conditions and different type of nodes
in the case of the Lighthill–Whitham–Richards model. The multi-lane model and the
boundary values N�i proposed in [41] give nearly coinciding results if the outgoing
roads are initially empty. In other cases the difference in the predicted boundary values
can reach up to order one. Comparisons with coupling conditions proposed for the
Aw–Rascle model [88], [70] have not yet been obtained. Furthermore, a comparison
for a larger multi-lane network with one-dimensional models is still open.

7. Applications

We present here two successful applications of the theory and numeric developed in
the previous sections. More precisely we first focus on the use of GPS data from
mobile sensor to monitor the load of large road networks. Then we describe the
theory of metallic frame structures and its application to the case of vascular stents.



94 A. Bressan, S. Čanić, M Garavello, M. Herty, and B. Piccoli

7.1. Traffic monitoring from mobile sensors using GPS data. The use of data
to monitor traffic has a long history. Traditional methods to gather information on
average flows and velocities were mainly based on static sensors, such as radars, coils
etc. More recently cameras were used, mostly to detect flow at highways entrances
or other critical points of large networks.

The most impressive revolution in this area is represented by the use of data (mostly
given by GPS devices) from mobile sensors. The latter include both the case of smart
mobile phones as well as onboard car equipments. More precisely we will briefly
describe two main projects: The so called Mobile Millennium Project of the group led
by Alex Bayen at the University of California at Berkeley and the traffic monitoring
system implemented by Octo Telematics in Italy and various European capitals.

7.1.1. Mobile Century experiment and Mobile Millennium project. The Mobile
Century experiment is a prototype data collection system, which was launched on
February 8, 2008 and used to estimate traffic conditions for a day on I-880 near San
Francisco, CA. The experiments involved 165 UC Berkeley students, 100 vehicles
carrying Nokia N95 phones driving repeatedly in loops of six to ten miles in length for
eight hours. The highway section was selected because of frequent heavy congestion.
The vehicles monitored by the system represented a penetration (number of cars
monitored as percentage of the total) of approximately 2% to 5%. Moreover, data
were also collected by existing loop detectors to assess the experiment results. A
fairly complete account of the experiment achievements can be found in [83] and a
description of the mathematical methods (including flows on networks using PDE
models) can be found in [123].

This experiment further evolved in a monitoring system for the San Francisco bay
area, called Mobile Millennium, see .

Figure 6. Considered part of the Grande Raccordo Anulare of Rome, Italy (by Google maps).

http://traffic.berkeley.edu
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7.1.2. Octotelematics and clear boxes. The company Octo Telematics S.p.a.© (see
) collects data obtained from a special set of sensors mounted on cars, named clear
box. Each clear box registers data at some time instants, then sends the information
to the base for processing. Final data include position (by a GPS unit) and velocity of
the car, as well as registration (measurement) time and processing time. The system
is used to monitor traffic on the Italian highway network as well as in a number of
European big cities.

An experiment on the use of data from clear boxes in combination with a model
based on conservation laws was presented in [53]. Data were collected from cars
traveling on the Rome urban area, more precisely on a part of the Grande Raccordo
Anulare (GRA) in Rome, Italy. GRA is a circular urban highway with three lanes
for each direction, see Figure 6, with speed limit of 130 km/h. The whole GRA is in
general highly congested, and long queues are usual. At the time of the experiments
around 750,000 cars (in Italy) were equipped with clear boxes, while now the number
exceeds 1.5 million, with penetration rate more than 2%. All data were gathered on
June 19, 2009 (Friday), from 6 a.m. to 11 a.m. In Figure 7 we report the space-time
positions registered by the sensors for each direction of the GRA. The size of the
circles denotes the velocity (small circle stands for small velocity while large circle
stands for large velocity).
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Figure 7. Data plot, North!South direction (left) and South!North direction (right). The space
(km) is reported on the x-axis and the time (min) on the y-axis. Circle’s size is proportional to
the velocity of the cars.

7.2. Metallic frame structures (with J. Tambača). Hyperbolic nets, which do not
have an a priori association with flows, arise in many applications, such as, for exam-
ple, bridge structures in civil engineering (see, e.g., [115] and the references therein),
cardiovascular applications, design of tissue scaffolds, etc. A prototypical example
of a hyperbolic net that will be considered in this section comes from cardiovascular
treatment and it models a cylindrical metallic mesh, called stent, that is inserted into a
human blood flow conduit (e.g., coronary artery) to counteract disease-induced blood

http://www.octotelematics.it
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flow constriction; see Figure 8. Classical approaches in biomedical engineering liter-

Figure 8. Example of a stent used in coronary angioplasty.

ature model the mechanical properties of stents by approximating a stent as a single
3D elastic body, typically using commercial software packages based on 3D finite
element method structure approximations. It is well-known that simulating slender
objects such as stent struts using 3D approaches is computationally very expensive,
typically producing simulation results with poor accuracy do to insufficient mesh re-
finement, limited by the large memory requirements. To get around these difficulties,
in [121], [38] it was proposed to model stents as hyperbolic nets, approximating the
slender stent struts using the theory of 1D curved rods. The stent mesh is described
as a non-directed graph in R3 whose edges correspond to stent struts. This leads to a
hyperbolic stent net problem.

To model endovascular stents and, more generally, the entire class of hyperbolic
net problems, the following three main steps need to be addressed:

(1) Geometry. Describing how individual components, such as stent struts, com-
prise a complex global net structure such as stent. This is given by a mathe-
matical description of a stent net domain as a graph, with parameterizations of
the graph’s edges modeling the middle lines of each stent strut;

(2) Physics. Describing the mechanical properties of each individual component.
This is given by a set of mathematical equations describing the physical con-
servation/balance laws and the constitutive laws satisfied by each component.
In the stent application the stent struts will be modeled using the Antman–
Cosserat curved rod model (63)–(67) [4].

(3) Coupling conditions. Describing the mechanics of contact between the in-
dividual components (stent struts). This is given by a set of contact/coupling
conditions.

The Antman–Cosserat model for a single curved rod can be written in the form
of a system of nonlinear hyperbolic balance laws [4]:

@t .g.U // D @s.h.U //C k.U /; t > 0; s 2 Œ0; l�; (62)

where t > 0 corresponds to time, and s 2 Œ0; l� is the spatial coordinate that parame-
terizes the middle line of the curved rod. Here, g is a (possibly) nonlinear combination
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of the state variables, h is the flux and k the source term. A particular form of these
functions can be deduced from system (63)–(67). The middle line of the curved rod
at time t is parameterized by r.s; t/. The state variable U D .d1;d2;d3;u; v;!;p/

contains 21 unknown functions that correspond to the following physical and geo-
metric quantities:

� .d1;d2;d3/ is the local coordinate system defined by the cross-sections of
the curved rod. The cross-sections are spanned by the vector functions d1 and
d2, where d3 WD d1 � d2. Vectors fd1;d2;d3g are orthonormal;

� components ui of u in the local basis fd ig (u D P3
iD1 uid i ) measure flexure

(u1 andu2), and torsion (u3), where u is defined via @sd i D u�d i , i D 1; 2; 3;

� components vi of v WD @sr in the local basis fd ig (v D P3
iD1 vid i ) measure

shear (v1 and v2), and dilatation (v3);

� !, which is defined via @td i WD !�d i , i D 1; 2; 3, is associated with angular
velocity of the cross-sections of the curved rod;

� p WD @tr describes the velocity of the middle line of the curved rod.

To simplify the presentation of the Antman–Cosserat model we denote by D the
matrix consisting of the local coordinate vectors, D WD .d1;d2;d3/ 2 SO.3/. The
Antman–Cosserat curved rod model can now be described by the following system
of equations (see equations (9.2)–(9.3d) on p. 298 in [4]):

@td i D ! � d i ; i D 1; 2; 3; (63)

@tu D @s! � u � !; (64)

@tv D @sp; (65)

@t .�DJD>!/ D @sm C v � n C l ; (66)

�A@tp D @sn C f : (67)

Here, m and n are the contact moment and contact force, respectively, while f and l

are the outside forcing terms. The constant A > 0 describes the cross-sectional area,
while J is a positive definite, diagonal matrix, containing the information about the
geometry of cross-sections.

This system is supplemented with the constitutive relations describing the given
material via

m D Dm.D>u;D>v/ and n D Dn.D>u;D>v/;

where m and n are the corresponding constitutive functions. Hyperelastic rods were,
for example, considered in [38] (which means that there exists a stored energy function
W such that the functions m and n can be obtained as the partial derivatives of W

with respect to the first and second variable, respectively).
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The set of three equations appearing in (63) describe the evolution of the cross-
section. The second and third vector equations described by (64) and (65) are just the
compatibility conditions among the second-order derivatives (e.g., vector equation
(65) reads vt D rst D r ts D ps). The last two vector equations, namely equations
(66) and (67), describe the balance of angular momentum (the angular impulse-
momentum law) and the balance of linear momentum (the linear impulse-momentum
law), respectively.

Equations (63)–(67) need to be supplemented with initial and boundary condi-
tions. The boundary conditions in our case are the coupling conditions that hold at
the vertices where stent struts meet.

Two types of coupling conditions are physically reasonable and consistent with
the global weak formulation of the stent problem [39], [18]:

(1) The kinematic coupling conditions which require continuity of velocities at
the vertex. More precisely, for each vertex v the velocities pj , j D 1; : : : ; n,
of the middle lines, and the velocities !j , j D 1; : : : ; n, of the cross-sections
of the n rods meeting at v, must satisfy

!1 D !j and p1 D pj ; j D 1; : : : ; n:

(2) The dynamic coupling conditions which require balance of contact forces and
contact moments of all the rods meeting at the same vertex v. More precisely,

nX
j D1

˙mj D 0 and
nX

j D1

˙nj D 0;

where the plus or minus sign depends on the parameterization of each branch
meeting at the vertex v (incoming vs. outgoing branches). The solution of
the stent net problem is independent of the choice of parameterization of the
branches.

One can further show that the eigenvalues of the sub-system (64)–(67) are ˙p

i

where 
i > 0 are the eigenvalues of r.m; n/. Since there is no differentiation
with respect to the spatial variable s in the three equations described by (63), the
corresponding eigenvalues of the Jacobian matrix of the flux function are all zero.
Thus, system (63)–(67) has 21 eigenvalues (characteristic speeds), nine of which as
zero, and the remaining 12 eigenvalues come in pairs ˙p


i , i D 1; : : : ; 6, with

i > 0.

7.2.1. Simplified problem: the nonlinear wave system. Mathematical properties
of theAntman–Cosserat model are similar to those of the first-order system associated
with the nonlinear wave equation: ut t D .f .u/ux/x:

ut D w; (68)

vt D wx; (69)
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wt D .f .u/v/x : (70)

The corresponding characteristic speeds of system (68)–(70) are given by �1 D
0; �2;3 D ˙pf .u/. The first equation does not contain the flux term, just as the
equations in (63). The second equation (69) is the compatibility condition among the
second-order derivatives which reflects the same condition as the equations (64), (65)
in the Antman–Cosserat model. Finally, the third equation (70) incorporates the main
physics in the problem, describing the balance of momentum, just as the equations
(66) and (67). Specifying the form of f as a function of u determines the physical
properties of the nonlinearly elastic string, modeled by (68)–(70).

A net/network problem in which the physics of each edge is modeled by the non-
linear wave equation satisfies the following coupling conditions at vertex v, joining
n branches of the net:

(1) Continuity of displacement (which implies continuity of velocity):

u1 D uj ; j D 1; : : : ; n:

(2) Balance of contact forces:
nX

j D1

f .uj /ujx
D 0:

Weak formulation. Suppose, for the moment, that our net consists of one vertex
v joining n branches, each parameterized so that x D 0 corresponds to v, with
x 2 .0; l/. To get a weak formulation of the net problem, consider n copies of the
nonlinear wave equation holding along each branch. Multiply each equation by a
test function �j 2 H 1.Œ0; l�/, j D 1; : : : ; n, corresponding to the displacement of
the j � th branch, and integrate by parts with respect to x from 0 to l . To obtain
a weak formulation of the (global, coupled) net problem, which is defined on the
union of n edges meeting at v, take the sum, as j D 1; : : : ; n. Define the test
space for the displacement u of the global net problem to be given by V D f� D
.�1; : : : ; �n/ W �k 2 H 1.Œ0; l�/; �1.0/ D � � � D �m.0/g. Notice that the continuity
of the displacement at vertex v is included in the definition of the test space via the last
set of conditions in V . After summing over all the edges meeting at v, one obtains,
for all � 2 V ,

d2

dt2

nX
j D1

Z l

0

uj�jdx C
nX

j D1

Z l

0

f .ui /@xuj @x�jdx

D
nX

j D1

f .uj .l; t//@xuj .l; t/�j .l/ �
nX

j D1

f .uj .0; t//@xuj .0; t/�j .0/:

(71)

After taking into account the kinematic coupling condition in V , one can see that
the last term in this equation is exactly the left-hand side of the dynamic contact
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condition (2) above, multiplied by �i .0/ which all have the same value at the vertex.
Setting this term equal to zero enforces the dynamic coupling condition. To complete
the weak formulation of the problem, we supplement this integral formulation with
initial data, and with boundary data at x D l . Thus, the weak formulation of the net
problem reads: for every � 2 V we have

d2

dt2

nX
j D1

Z l

0

uj�jdx C
nX

j D1

Z l

0

f .ui /@xuj @x�jdx

D
nX

j D1

f .uj .l; t//@xuj .l; t/�j .l/:

With this approach both the PDE and the coupling conditions are satisfied simulta-
neously and naturally in the corresponding weak formulation.

Figure 9 shows numerical simulation using a conforming Finite Element Method
of a net with 8 vertices forming a cube in 3D. The initial displacement, shown in the
first panel on the left, gives rise to two waves, traveling in opposite directions. The
two waves interacts with a vertex, giving rise to a reflected and a transmitted wave,
while, at the same time, displacing the location of the vertex itself.

Figure 9. Solution of the nonlinear wave equation utt D ..0:5 C u2/ux/x on a net with 8
vertices and 3 edges meeting at each vertex (the cube skeleton). The exterior cube shown in all
the figures is not a part of the net, but serves as a reference frame for all the figures. The initial
displacement u is shown in the figure on the left, and the initial velocity is ut D 0. The initial
hump breaks into two waves traveling in opposite directions as shown in the second figure from
the left, until each wave starts interacting with a vertex. As a result, the vertex is displaced, as
shown in the third figure from the left, and the reflected and transmitted waves form, as shown
in the fourth figure from the left. This scenario continues along the net.

A complete analysis of this problem is open. The results obtained for this sim-
plified problem will shed light on the structure of solutions to the more complicated
stent net problem, and the corresponding class of net problems in general.
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8. Future perspectives

Among the many possible extensions of the current state of research on flow on
networks, we will only point out some problems of interest. We split the presentation
between the different covered topics discussing modeling, theoretical and numerical
directions of possible future research.

8.1. Modeling. From the modeling point of view many applications require a large-
scale network with an interest often not on the detailed dynamics but in global flow
properties. There are in general two ways to proceed either by reducing the dynamics
or by homogenization of fine-scale dynamics.

A typical approach in deriving simplified models on network models is to start
from the full multi-dimensional problem (e.g., a 3D problem), and perform dimension
reduction using some clever averaging techniques to obtain a reduced, 1D model, that
holds on each branch (edge) of the large-scale 1D hyperbolic network. In nonlinear
problems, averaging the multi-dimensional problem gives rise to closure problems.
Depending on the application at hand, such a problem can be resolved by either
assuming an ad hoc closure (see, e.g., [34]), or by designing a clever dimension
reduction approach that gives rise to a reduced problem without an ad hoc closure
(see, e.g., [35], [111]). Once a reduced model is obtained, the next question is to
impose the “correct” coupling conditions between the different branches (edges). A
particular choice for the coupling conditions determines the particular physics of the
underlying problem. Different coupling conditions give rise to a different network
problems. From the mathematics point of view, it is desirable to prove, using rigorous
analysis, that the coupling conditions used in the given network problem are consistent
with the full 3D formulation of the problem. This is difficult to prove in general, but
there are examples where this can been done. One example is the 1D hyperbolic
net problem arising in modeling metallic frame structures such as stents, discussed
in 7.2. Starting from 3D elasticity, it was shown in [39], [18] that the two coupling
conditions discussed in 7.2 requiring continuity of velocity of displacement, and
balance of contact forces at each vertex of the net, are consistent with 3D elasticity.
Proving this kind or result for general net and network problems is open, and it
depends on the particular application at hand. Therefore, proving that a given 1D
hyperbolic network problem is consistent with the original full multi-dimensional
problem is generally open.

On the other hand, starting from a given possibly large scale 1D hyperbolic net-
work, it is also of interest to derive a multi-dimensional models to capture global flow
properties. This may be called homogenization with respect to the graph structure.
Here, instead of resolving the detailed dynamics, the focus is on deriving equations
for average flow properties leading possibly to a true multi-dimensional hyperbolic
equation for averaged quantities. A procedure to derive such equations has been in-
vestigated in [89]. Therein, a 1D linear transport model on arcs and a simple queuing
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dynamics at nodes has been considered. The multi-dimensional hyperbolic equation
has been derived using a kinetic equation posed on an extended state space including
the graph topology of the network. Mean-field and Chapman–Enskog expansion lead
to an equation on multiple spatial dimensions. However, the extension to the general
problem including in particular the nonlinear transport discussed in this review is still
unsettled.

Models involving 1D hyperbolic nets and networks also arise in multi-physics
and multi-scale problems that incorporate different physical phenomena occurring at
different spatial and temporal scales. From the computational point of view, using
reduced, 1D hyperbolic net models in a global, multi-physics problem is particularly
suitable making the coupled multi-physics problem solvable in a relatively reason-
able time frame. Examples include coupling the stent net problem, discussed in
Section 7.2, with the motion of an elastic/viscoelastic arterial wall and blood flow
[36], coupling the stent net problem with biochemistry and porous medium equations
to study drug release into arterial tissue of drug-eluting stents [125], the coupling of
the 1D hyperbolic net model describing the mechanical properties of metallic frame
buildings with a 3D model of fluid flow describing the swaying of buildings exposed
to strong winds, etc. Modular computational schemes are particularly useful for such
simulations [33]. However, various analysis questions related to the coupling of the
reduced 1D hyperbolic net models with multi-dimensional models in a multi-physics
problem are still open. They relate to both the analysis of the underlying computa-
tional models as well as to the study of existence, and, more generally, well-posedness
of the underlying solutions.

8.2. Theory. From the theoretical point of view the most challenging current prob-
lems are probably the control questions for flows on networks. Today, there exist
results on the optimal control as well as controllability and stabilization of flows on
networks by many authors treating scalar and systems case. From the application
point of view also the design of networks (e.g. number and degree of nodes) with
dynamics governed by hyperbolic equations is an open problem. For a recent result
in the case where the dynamics could be computed explicitly we refer to [103]. How-
ever, the general nonlinear case as well as more general coupling conditions are not
covered and remain open for future investigations.

Different control problems may be discussed using the Nash equilibria approach.
Here, many theoretical questions remain still open. For example, an important open
question is whether the results presented in Section 5.1 remain valid if the assumption
(A3) in Section 5.1 is replaced by more realistic conditions determining the flow at
intersections. For example, it would be of interest to investigate the existence of
global optima and Nash equilibrium solutions in connection with the Riemann solvers
at junctions proposed in [41], [71]. Another interesting question is the dynamic
stability of the equilibrium solution discussed in Section 5.1. Assume that, day after
day, each driver can change his own departure time seeking to lower the sum of his
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departure and arrival cost. As a result, the distribution of departures as well as the
overall traffic pattern will change each day. This leads to a dynamical system on
the space of all departure distributions, having Nash equilibria as steady states. It is
natural to expect that, after several days, the departure distribution should converge to
a Nash equilibrium. To study this problem, for a single group of drivers traveling on
a single road, two specific models were introduced in [29]. Surprisingly, numerical
simulations suggest that the unique Nash equilibrium is unstable, while the orbits
approach a chaotic attractor. No theoretical analysis has yet proved or disproved this
conjecture.

8.3. Numerics. From a numerical point of view the intense research on theoretical
properties of conservation laws on networks is not well matched by suitable numerical
analysis. In particular, when treating nonlinear source terms it is known that the
resolution of stationary states needs special treatment leading to the class of well-
balanced schemes. Also, for large-scale networks high-order numerical schemes may
be interesting in order to reduce the number of points required for the resolution of the
underlying dynamics on a single arc. The question of a high-order resolution of the
coupling condition as well as the extension of well-balanced schemes for networks
could be directions of possible future research.

Further, the control results presented are also not yet accompanied by suitable
numerical methods for various reasons. Preliminary results on the discretization
of Lyapunov functions used for controllability questions have been obtained in [9].
Therein it has been shown that the theoretically expected decay rate is obtained also
for a class of finite volume schemes. However, the result is limited to a single arc
and the extension to networks still open. Similar results on numerical schemes for
solving an optimal control problem on networks are still missing. The development
of efficient numerical methods having similar properties as theory suggests would be
highly desirable for future applications.

Another direction concerns the development of efficient numerical methods for
multi-physics and multi-scale problems. Here, one obstacle is the possibly different
time-scales arising. A network model governed by hyperbolic transport is typically
solved with an explicit in time scheme. This way the graph structure may be exploited
using highly parallel codes. However, if an underlying micro-dynamics is on faster
time-scale an implicit in time scheme would be more desirable. This would immedi-
ately couple the dynamics on different arcs. The problem to design methods to treat
simultaneously coupled problems over various time scales in the case of network flow
problems is still unsolved.
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[121] J. Tambača, M. Kosor, S. Čanić, and D. Paniagua, Mathematical modeling of endovascular
stents. SIAM J. Appl. Math. 70 (2010), 1922–1952. Zbl 05837575 MR 2011f:74048

[122] S. Ulbrich, Optimal control of nonlinear hyperbolic conservation laws with source terms.
Habilitation thesis, Technical University München, München 2001.

[123] D. B. Work, S. Blandin, O.-P. Tossavainen, B. Piccoli, and A. M. Bayen, A traffic
model for velocity data assimilation. Appl. Math. Res. Express. AMRX (2010), 1–35.
Zbl 1187.90098 MR 2773421

[124] H. M. Zhang, A non-equilibrium traffic model devoid of gas-like behavior. Transport.
Res. B 36 (2002), 275–290. doi: 10.1016/S0191-2615(00)00050-3

[125] P. Zunino, Drug-eluting stents modeled using 1d hyperbolic network. Private communi-
cation.

Received December 6, 2013; revised January 20, 2014

http://zbmath.org/?q=an:0832.35093
http://www.ams.org/mathscinet-getitem?mr=1246461
http://zbmath.org/?q=an:1119.93045
http://www.ams.org/mathscinet-getitem?mr=2323048
http://zbmath.org/?q=an:1143.90006
http://www.ams.org/mathscinet-getitem?mr=2357759
http://zbmath.org/?q=an:05837575
http://www.ams.org/mathscinet-getitem?mr=2596508
http://zbmath.org/?q=an:1187.90098
http://www.ams.org/mathscinet-getitem?mr=2773421
http://dx.doi.org/10.1016/S0191-2615(00)00050-3

	Introduction
	Theoretical results
	The scalar case
	The system case

	Models
	Traffic flow on road networks
	Gas dynamics in pipelines
	Product flow in supply chains
	Data flow on telecommunication networks
	Networks of open canals
	The arterial network

	Model fusion
	Mixed ODEs–PDEs Systems
	Coupling of traffic models at boundary

	Control and optimization
	Nash equilibria
	Instantaneous control of traffic flow networks
	Controllability and optimal control of gas networks 

	Numerics
	Coupling conditions for finite volume schemes
	Multi-dimensional approximation of coupling conditions

	Applications
	Traffic monitoring from mobile sensors using GPS data
	Metallic frame structures (with J. Tambaca)

	Future perspectives
	Modeling
	Theory
	Numerics

	References

