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18 September 1988

Dear Vadik,

Here is the promised letter.

Let there be given a DG Lie algebra g. Shift the grading on g down by 1 (that is,
what had degree i now has degree i − 1), dualize the resulting complex and use that to
generate a free supercommutative algebra (without unit). We get g∗⊕Λ2g∗⊕Λ3g∗⊕· · · .
On this structure, besides the differential arising from the differential in g there is also
the Chevalley differential, arising from the commutator in g. Using their sum as the total
differential, we get the commutative DG algebra C∗(g). If you don’t pay attention to the
fact that, generally speaking, V ∗∗ 6= V , then it represents the functor Hom(C∗(g), B) =
MC(g ⊗ B), where B is any commutative DG algebra and MC(g ⊗ B) is the set of
elements of g⊗B of degree 1 satisfying the Mauer–Cartan equations.

∗Translation from the Russian by Keith Conrad, who thanks Maria Gordina, Irina Nickolaeva and Dmitri
Orlov for their help.

Comment added by the author, 16 June 2014: At the time of my correspondence with Schechtman I
felt that I was trying to understand something known rather than inventing new things. Maybe my feeling was
correct. I wouldn’t be surprised if everything from my correspondence with Schechtman is already in Quillen’s
article “Rational Homotopy Theory" (maybe except for the word “operad"). See especially Section 7 of his
article. Anyway, the role of Quillen’s article was crucial.

Vladimir Drinfeld, Department of Mathematics, University of Chicago, Illinois 60637, USA
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Rigorously, it’s better to define the covariant functor F : DGLie → DGCocom,
where F (g) is the cofree commutative coalgebra generated by the shifted g, with the
understood differential. For any cocommutative DG algebra A we have

Hom(A,F (g)) = MC(Homk(A, g)).

Moreover we have the functor G : DGCocom→ DGLie such that

Hom(G(A), g) = MC(Homk(A, g)).

HereG(A) is the free Lie (super)algebra generated by the complexAwith grading shifted
up, and it’s sufficient to define the differential on the generators, that is, on A, and it is
equal to the sum of the differential A → A and the comultiplication A → Sym2(A) ⊂
G(A) (in case of characteristic 2, you have to write Γ2 instead of Sym2).

Since F and G are adjoints, we have morphisms A→ FG(A) and GF (g)→ g.

Theorem 1. These are quasi-isomorphisms.

This can all be “Sugawarized”. A DG Sugawara–Lie algebra is, by definition, a
Z-graded space g plus a differential of degree 1 on the cofree cocommutative coalge-
bra generated by g with grading shifted down by 1 (the square of the differential is 0).
Essentially this differential is defined by the assignment of mappings g → g, Λ2g → g,
Λ3g → g, · · · (the differential, commutator, and “higher” operations), and setting the
square of a differential to 0 determines an identity that all these operations must satisfy.
A Sugawara morphism is defined as a morphism of the corresponding commutative DG
coalgebras (a morphism of these DG coalgebras automatically takes primitive elements,
i.e., g, to primitive elements). Thus, the functor FSug : DGLie–Sug→ DGCocom is tau-
tological. In the same way we can also introduce DGCocom and GSug : DGCocom →
DGLie. If you consider FSug as a functor DGLie–Sug → DGCocom–Sug and GSug as
a functor DGCocom–Sug → DGLie–Sug, then they are adjoints: if g ∈ DGLie–Sug
and A ∈ DGCocom–Sug, then

HomSug(FSug(g), A) = Hom(GFSug(g), GSug(A))

= Hom(FSug(g), FGSug(A))

= HomSug(g, GSug(A)).

Therefore we have Sugawara morphisms g→ GFSug(g) and FGSug(A)→ A.
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Theorem 1′. These are quasi-isomorphisms.

Proof of theorems. First we show Theorem 1′ implies Theorem 1. For example, if g
is a genuine DG Lie algebra, then we have a morphism GF (g) → g and a Sugawara
morphism g → GF (g), for which the composite g → GF (g) → g is the identity (since
the Sugawara morphism g→ GF (g) comes from the actual morphism F (g)→ FGF (g)
and the composite F → FGF → F is the identity; this is a general property of adjoint
functors). Therefore if g → GF (g) is a quasi-isomorphism then GF (g) → g is also
a quasi-isomorphism. We prove now Theorem 1′, for example, that g → GFSug(g)
is a quasi-isomorphism. By definition GFSug(g) is the free Lie algebra generated by
g ⊕ Λ2g ⊕ Λ3g · · · . The differential on g ⊕ Λ2g ⊕ · · · maps Λkg →

⊕k
i=1 Λig and the

differential onGFSug(g) is the sum of two terms, one of which comes from the differential
on g ⊕ Λ2g ⊕ Λ3g ⊕ · · · and the second comes from the standard comultiplication on
g⊕ Λ2g⊕ Λ3g⊕ · · · . We introduce on g⊕ Λ2g⊕ Λ3g⊕ · · · the filtration

g ⊂ g⊕ Λ2g ⊂ g⊕ Λ2g⊕ Λ3g ⊂ · · · ,

where elements of Λkg are given degree k. Extend this filtration to the free Lie algebra
generated by g⊕Λ2g⊕· · · . We get a filtration of the complexGFSug(g) by subcomplexes
and the first term in the filtration is g.

It remains to prove that all factors of this filtration, except the first, are quasi-isomorphic
to 0. For example, the third factor is Λ3g ⊕ (g ⊗ Λ2g) ⊕ Lie3(g), where Lie3(g) is the
component of degree 3 of the free Lie algebra generated by g. The differential here is the
sum of two terms, of which the first preserves the summands Λ3g, g⊕ Λ2g, and Lie3(g),
and the second acts thus: 0→ Λ3g→ g⊗Λ2g→ Lie3(g)→ 0. It’s sufficient to prove the
acyclicity of the second term in the differential. But here the initial Sugawara–Lie algebra
structure doesn’t matter (you can just consider it to be 0): we simply need to show that
if A is a cofree supercommutative coalgebra, then, introducing the usual differential on
the free Lie algebra generated by A[−1] (where [−1] is the shift of the grading) we get a
complex whose cohomology sits in the lowest dimension. This fact is apparently standard
(our complex reduces to the cotangent complex of the algebra A∗ or, perhaps, k ⊕ A∗).
The fact that FGSug(A) → A is a quasi-isomorphism is proved even more simply (the
fact needed for this from the cohomology of free Lie algebras is quite standard).

Remarks. (1) If g is a DG Sugawara–Lie algebra and A is a cocommutative DG coal-
gebra then

Hom(A,FSug(g)) = MC(Homk(A, g)).

Here Homk(A, g) is a DG Sugawara–Lie algebra and the Mauer–Cartan equation
has to be written in terms of higher operations: dω+ 1

2! [ω, ω]+ 1
3! [ω, ω, ω]+· · · = 0.

(2) If as A for use the chain complex of a simply connected space, tensored with Q,
then G(A) is a DG Lie algebra whose cohomology is (homotopy groups)⊗Q. Of
course the grading has to be shifted so that k-dimensional chains in A get degree
−k and the k-dimensional homotopy groups get degree 1 − k. See R.M. Hain
“Iterated integrals and homotopy periods” (Nauka 1988).1

1The original book, in English, is Mem. Amer. Math. Soc. 47 no. 291 (1984).
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Questions. (1) Where are these facts written down (I did not find them in the book of
Hain after a cursory glance)?

(2) Why are Sugawara operads acyclic?

(3) What is the nature of the duality between commutative DG algebras and DG Lie
algebras? There is an analogous duality between associative DG algebras and,
again, associative DG algebras. Is there a general concept of duality of operads?2

Let’s pass to the deformation theory. Since there is no general theory (to devise one
is one of the problems), let’s consider two typical examples. In each of them DG Lie
algebras arise.

Example 1. Deformations of associative algebras.

In order to give a vector space V the structure of an associative algebra, we have
to pick an f ∈ Hom(V ⊗ V, V ) that satisfies a certain quadratic relation. It’s conve-
nient to consider on

⊕∞
n=1 Hom(V ⊗n, V ) the structure of a Lie superalgebra, identifying⊕∞

n=1 Hom(V ⊗n, V ) with the space of superderivations of the cofree coassociative su-
percoalgebra

⊕∞
n=1 V

⊗n. Then the condition on f can be written in the form 1
2 [f, f ] = 0.

Fix any f0 such that 1
2 [f0, f0] = 0. Linearizing the equation to 1

2 [f0 + h, f0 + h] = 0 we
get [f0, h] = 0. The complex

⊕∞
n=1 Hom(V ⊗n, V ) arises with the differential d = ad f0.

This DG Lie algebra, as is known, is responsible for deformations. The precise assertion,
subsuming all earlier assertions on this theme made in the literature, is the following.
For simplicity we remove from our DG Lie algebra its zeroth component Hom(V, V )
(this corresponds to the fact that we are intending to get a variety of associative algebra
structures on V not factored by the action of GL(V )), apply the functor F and dualize
(in order to get an algebra, not a coalgebra). This algebra sits in degrees ≤ 0. Take its
0-dimensional cohomology.

Claim: We get a maximal ideal of the ring of functions on the space of associative
algebras completed at the point f0.

This is a tautology (especially if we note that 1
2 [f0 + h, f0 + h] = dh+ 1

2 [h, h]).

It’s natural to introduce the hypervariety of associative algebra structures on V such
that

(1) the algebra of functions on it is a DG algebra concentrated in degrees ≤ 0, whose
0-dimensional cohomology is the algebra of functions on the usual variety,

(2) the completions of this DG algebra are constructed as indicated above.

In this case the global object differs little from the local one: the corresponding algebra
is simply a Chevalley complex, constructed from

⊕∞
n=1 Hom(V ⊗n, V ) (for which, since

we are not completing, that Chevalley complex should be understood as a direct sum,
not a direct product). This is seen more clearly in coordinates: if we simply write the

2See comment (1) at the end.
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associativity condition crijc
`
rk = c`irc

r
jk then we now introduce new odd unknowns ξ`ijk

and write crijc
`
rk − c`ircrjk = dξ`ijk etc.

This is all satisfied for the deformations of commutative algebras and Lie algebras
(instead of cofree coassociative coalgebras it’s necessary to use the corresponding Lie
coalgebras and cocommutative coalgebras – again duality!)

In the previous example, for a complete picture it was necessary to factor out by the
action of GL(V ). But BRST and Feigin teach that instead of a naive factorization (espe-
cially when the action is not free) it’s better to adjoin odd variables. It’s the same thing as
applying our functor F on all DG Lie algebras (including the zeroth component)3. By the
way, if k has nonzero characteristic, then there may be problems here since adjoining odd
variables is coarser than accounting for the action of a group (since these “odd variables”
depend only on the action of the Lie algebra).

Example 2. Let M be a smooth projective variety. How do we construct the DG Lie
algebra responsible for the deformations of M? Its cohomology is, of course, Hi(M,Θ),
where Θ is the tangent bundle of M . The DG algebra itself is simpler to construct in the
C-analytic situation (Θ-valued forms of type (0, q)). In the case of an arbitrary field of
characteristic 0 we have to use the Thom–Sullivan complex corresponding to some open
covering, or construct a Sugawara structure on the usual Cech complex.

At first glance, in characteristic p there must arise the problem of commutative cochains,
Steenrod operations, and all such things. The simplest effect of this type (in character-
istic 2) would be the nonequality [α, α] 6= 0, α ∈ H1(M,Θ). It’s possible, however,
to show that if α ∈ H1(M,Θ) then [α, α] = 0. Moreover, it’s possible to define an
α2 ∈ H2(M,Θ) for every α ∈ H1(M,Θ) so that (α + β)2 = α2 + β2 + [α, β]. The
proof uses the fact that in any characteristic, besides the Lie algebra of vector fields there
is a formal group of automorphisms, and more precisely a Hopf algebra corresponding to
this group. This is a Hopf algebra B such that its primitive elements are vector fields and,
moreover, B is formally cosmooth in the sense that if from the coalgebra Ker(B

ε→ k)
we construct a DG Lie algebra by applying the functor G, then this DG algebra has only
one-dimensional cohomology (which are the primitive elements). Note that if the charac-
teristic of k is not 0 then the universal enveloping algebra is not formally cosmooth.

Conjecture. (from which we could get the DG Lie algebra responsible for deformations
of M )

Let there be a cosimplicial Hopf algebra A0 ⇒ A1 · · · for which all Ak are cocom-
mutative and formally cosmooth. Let gk be the primitive elements of Ak. Then on the
complex g0 → g1 → g2 → · · · there is the structure of a DG Sugawara–Lie algebra
(more precisely, a class of such structures, connected to each other by Sugawara isomor-
phisms).

Anyway, in characteristic 0 there is an honest DG Lie algebra, which means an honest
commutative DG algebra (by the way, from the fact that dimH∗(M,Θ) < ∞ it follows

3See comment (2) at the end.
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that this commutative DG algebra can be chosen pro-free with a finite number of genera-
tors). Let’s suppose that H0(M,ΘM ) = 0 and, moreover, Aut(M) = {e}. Then we can
speak about the moduli hyperspace completed at a given point. Question: how to define
a moduli hyperspace globally? What is, generally, a hyper-ringed space, hyperscheme,
etc.? How to glue them together? What does it mean to say “deformation of M with base
SpecB,” where B is a commutative DG algebra?4 If, let’s say, B sits in degrees ≤ 0, and
B0 is a complete local ring, then, probably, as in the usual case, a deformation of an open
affine chart Ui ⊂ M is trivial, but nontriviality occurs from the way they are glued. The
difference from the usual theory of deformations must apparently arise from the follow-
ing: let Ũi be a trivially deformed Ui; we must give for each pair (i, j) an isomorphism
φij between the open subset of Ũi corresponding to Ui ∩ Uj and the open subset of Ũj

corresponding to Ui ∩Uj ; in the usual theory it’s required that φijφjk = φik, but now we
have to require that there is a homotopy between φijφjk and φik and that there are higher
homotopies.

I see two instructive examples. The first one is to compute the moduli hyperspace
of abelian varieties (for rigidity, with a marked point). Here the DG Lie algebra is quasi-
isomorphic to the DG algebra of Θ-valued constant (0, q)-forms, in which the commutator
is 0. Therefore the corresponding commutative DG algebra is isomorphic to its own
cohomology, i.e., one simply needs to find some sheaf of supercommutative Z-graded
algebras O = O0 ⊕O1 ⊕ · · · on the moduli space of abelian varieties, with O0 the usual
sheaf of functions. From general considerations O is locally freely generated over O0 by
certain generators (finitely many in each dimension). From this O1 and O2/Λ

2O1 are
easy to find. Question: can we describe the extension 0→ Λ2O1 → O2 → O2/Λ

2O1 →
0?

Second example: for a smooth variety M , find the part of the Hilbert hyperscheme
parametrizing finite subschemes of degree 1 (!!!). Generally, if Y is a subscheme of M
then the tangent space at Y in the Hilbert scheme is HomOM

(IY ,OY ), and its “higher
analogues”5 are apparently ExtiOM

(IY ,OY ). The commutator in
⊕

i Exti−1(IY ,OY )

is probably defined by the formula [a, b] = axb − bxa, where x ∈ Ext1(OY , IY ) is the
canonical element. In the case when Y is a point, a DG Lie algebra with commutator 0 is
obtained, and the same problem arises as with the moduli hyperspace of abelian varieties.

I’d like it if you and Sasha Beilinson and others thought about all these themes.

Sincerely,

Volodya

4See comment (3) on the next page.
5See comment (4) on the next page.
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Extra comments and references added by B. Toën

(1) Koszul duality for quadratic operads appears in [2, 3]. A general form of Koszul
duality forEn-algebras, n ∈ [1,∞] has been expressed as an equivalence of certain
∞-categories in [4].

(2) This is the infinitesimal analogue of taking the quotient stack by the natural action
of GL(V ) (see [6] Quotient stacks in §3.3). See also [7] Prop. 2.2.6.8 and 2.2.6.9,
for a construction of the global derived moduli stack of algebra structures whose
tangent complex is the one described by Drinfeld.

(3) It is possible to define a global derived stack (in the sense of [6] §3.3) of flat and
proper schemes. By definition it consists of the∞-functor sending a commutative
simplicial ring B to the ∞-groupoid of derived schemes X , together with a flat
and proper morphism X −→ SpecB. The resulting derived stack is not an Artin
derived stack (in the sense of [6] Def. 3.1) because of the existence of formal de-
formations of smooth projective varieties which are not algebraizable (this can be
fixed as usual by fixing polarizations). It is however a well defined derived stack
with many nice infinitesimal properties, and in particular possesses a tangent com-
plex and an obstruction theory. The cohomology groups of this tangent complex, at
a point corresponding to a proper scheme M , are given by the higher cohomology
spaces Hi(M,ΘM ). We refer to [5] for more results in this direction.

(4) The higher structures described here correspond to the tangent complex of the de-
rived quot scheme, as considered for instance in [1], rather than of the derived
Hilbert scheme. For the structure sheaves of subschemes, the derived quot scheme
and the derived Hilbert scheme share the same underlying scheme. However, the
derived structures differ, as already noted in [1] (see also the footnote in [6] on
page 12). This is a general phenomenon: a given classical moduli problem might
have different natural derived extensions, depending on how one “thinks” of this
moduli problem. Here the two different derived extensions correspond to the two
natural ways of considering the structure sheaf of a sub-scheme, either as a quasi-
coherent O-module or as a quasi-coherent commutative O-algebra. One could in-
troduce a hierarchy of different derived extensions by also considering these struc-
ture sheaves as quasi-coherent En-O-algebras for various n.
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