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Games on graphs

Benjamin Allen and Martin A. Nowak

Abstract. Evolution occurs in populations of reproducing individuals. The trajectories and
outcomes of evolutionary processes depend on the structure of the population. Evolutionary
graph theory is a powerful approach to studying the consequences of spatial or social population
structure. The vertices of the graph represent individuals. The edges determine who interacts
with whom for game payoff and who competes with whom for reproduction. Interaction and
competition can be governed by the same graph or by two different graphs. In this paper, we
review the basic approach for evolutionary games on graphs and provide new proofs for key
results. We formalize the method of identity by descent to derive conditions for strategy selection
on finite, weighted graphs. We generalize our results to nonzero mutation rates, and to the case
where the interaction and competition graphs do not coincide. We conclude with a perspective
of open problems and future directions.
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1. Introduction

The mathematical study of evolution dates back to the work of Fisher, Haldane and
Wright, who laid the foundations of population genetics in the first half of the 20th
century. Mathematical modeling has become an indispensable tool in understand-
ing the traits, behaviors, and patterns that arise from the fundamental processes of
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mutation and natural selection. Precise mathematical descriptions of evolutionary
dynamics tell us what to look for empirically and how to interpret our findings.

Much early work on the mathematics of evolution deals with constant selection,
meaning that the reproductive rate of an individual is constant and depends only on
its own genetic material. Evolutionary game theory [54], [53], [17], [89], [118],
[37], [38], [66], [12] is the study of evolution when selection depends on the relative
abundance (D frequency) of strategies or phenotypes in the population. Interactions
that affect fitness are conceptualized as a game, with payoffs linked to reproductive
success.

Among other successes, evolutionary game theory has helped elucidate one of the
foundational questions of evolutionary theory: the problem of cooperation. From
microbes to humans, organisms cooperate in a variety of ways, often reducing their
own reproductive fitness to aid others. Mathematical analysis has shown that these
forms of costly cooperation cannot evolve unless there is some mechanism in the
evolutionary process that supports them [59].

Spatial structure is one such mechanism. Cooperators form clusters which can
prevail in competition with defectors. An approach to spatial evolutionary game
theory was formulated by Nowak and May [63], [64], who studied the Prisoners’
Dilemma and other games on lattices. In their model, interactions occur between
neighbors and successful individuals reproduce into neighboring sites. They found
that, depending on the payoff matrix, either cooperators or defectors may take over
the population, or they may coexist in either static or dynamic configurations. Their
work inspired many further investigations of evolutionary game dynamics on lattices
[62], [61], [22], [43], [57], [9], [55], [36], [81], [82].

More generally, spatial structure can be represented as a graph [48], [95]. Vertices
represent individuals, and edges represent spatial or social connections between them.
Individuals interact with neighbors on the graph, receiving an aggregate payoff. Births
and deaths then occur according to some update rule [48], [68]. The update rule is
an important aspect of the evolutionary process – different update rules can lead to
different traits being selected.

For example, let us consider a simplified Prisoner’s Dilemma on a regular graph
of degree k. There are two types of strategies. Cooperators pay a cost, c, for their
neighbors to receive a benefit, b. Defectors pay no cost and distribute no benefit. It
turns out that the “death-birth” update rule, which will be explained below, favors
evolution of cooperation if the benefit-to-cost ratio exceeds the graph degree, b=c > k

[68]. The fewer the number of neighbors per individual, the greater the scope for
cooperation to evolve. In contrast, for “birth-death” updating, cooperation is never
favored. These results were obtained with pair approximation [51], [21], a method
that is known to be inexact in general (e.g. [92], [104]); however, they agree with
later results obtained by exact methods [16], [14]. The b=c > k rule has since been
generalized to weighted graphs [110], [32] and to evolution with positive mutation
rate [5].
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The main goal of this work is to review and provide new proofs for the b=c > k

rule and its generalizations. We use the method of identity-by-descent [50], which
has the advantage of being both mathematically elegant and biologically intuitive.
A secondary goal is to develop a formalism allowing this method to be applied to
evolutionary games on graphs. We focus primarily on exact results for graphs with
symmetry, complementing earlier reviews [95], [82], [87] that take a wider view of
the field.

Our review is organized as follows. In Section 2 we present the basic model
for evolutionary games on graphs, and review a variety of update rules compatible
with this model. Section 3 presents a mathematical formalism for the method of
identity-by-descent. In Section 4 we apply this method to obtain conditions for the
success of cooperation in a simplified Prisoner’s Dilemma, including the b=c > k

rule and its generalization to arbitrary games on finite weighted graphs. Sections 5
and 6, respectively, further generalize these results to evolution with nonzero mutation
rates, and to populations whose interaction graph differs from the replacement graph.
Finally, in Section 7, we briefly review further directions and open problems in
evolutionary games on graphs. The proofs of intermediate lemmas are given in
the appendices.

2. Model: evolutionary games on graphs

2.1. Graph representation of population structure. We consider a population
structured as a weighted graph G with N � 2 vertices. Each vertex represents an
individual. The edge weight eij represents the frequency of interaction and replace-
ment between vertices i; j 2 G. We suppose the edges are undirected, eij D ej i ,
and normalized so that

P
j 2G eij D 1 for each i 2 G. We also suppose that G

has vertex-transitive symmetry, so that for any pair of vertices i; j 2 G, there is an
isomorphism � of G such that �.i/ D j . Intuitively, this symmetry condition means
that the graph looks the same from the vantage point of any vertex.

We define the Simpson degree, �, of a graph as [2]

� D
� X

j 2G

e2
ij

��1

:

The Simpson degree can be understood as the Simpson diversity [88] of neighbors
per vertex. It is equal to the inverse likelihood that two randomly chosen neighbors
(chosen with replacement and with probability proportional to edge weight) are the
same. The special case of an unweighted graph is recovered by supposing that all
edges have weight 1=k, where k is the graph degree. In this case we obtain � D k.
Thus, the Simpson degree generalizes the usual notion of graph degree (Figure 1).

In general, the graph G can have self-loops, which means that the diagonal val-
ues, ei i , can be positive. Self-loops allow an individual to interact with itself via
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� D 2 � D 9=5

(a) (b)

Figure 1. The Simpson degree � D � P
j 2G e2

ij

�
�1

for two weighted transitive graphs. Note
that for graph (a), which has equal edge weights to each neighbor, the Simpson degree equals
the graph degree.

the game and/or replace itself. In the case of no mutation (see Section 2.4), self-
replacement leaves the population state unchanged and the only effect of a self-loop
is self-interaction. If there is mutation, then self-replacement can change the state of
the population.

2.2. Game interaction and payoff. Interactions are modeled as a symmetric 2 � 2

game with payoff matrix

� C D

C R S

D T P

�
(1)

While the methods used here apply to arbitrary 2�2 payoff matrices, we use a notation
that is suggestive of cooperative dilemmas [60], with C representing cooperation
and D representing defection. In this context, R denotes the reward for a pair of
cooperators, T denotes the temptation to defect, S denotes the “sucker” payoff for
a cooperator being exploited by a defector, and P denotes the punishment for a
defecting pair. The most stringent form of cooperative dilemma is the Prisoners’
Dilemma, defined by T > R > P > S .

At each time-step, each individual i 2 G retains the weighted average payoff

fi D
X
j 2G

eij gij ; (2)

where gij is the payoff that i receives from playing with j .
The payoffs fi are then transformed by a mapping

fi 7! Fi D F.ıfi /;
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where F.x/ is a positive, increasing, differentiable function with F.0/ D F 0.0/ D 1.
For example, we can choose F.x/ D ex . The rescaled payoff Fi represents repro-
ductive rate or survival probability in models of genetic evolution, or the likelihood
to be imitated in models of cultural evolution. The parameter ı � 0 represents the
strength of selection – i.e., the extent to which the game payoff affects reproductive
success. We focus on weak selection (small positive ı), in which case we have the
expansion Fi D 1 C ıfi C O.ı2/.

2.3. Update rules. To define evolutionary dynamics on graphs, one must choose
an update rule – a scheme for determining birth and death events based on rescaled
payoff. A variety of update rules have been considered, including those listed below
(see also Figure 2). For consistency we describe these update rules in biological
language; however, they can be instantiated by either genetic reproduction or social
imitation.

� Birth-Death (BD) [68]: An individual i 2 G is chosen at random, with proba-
bility proportional to Fi , to reproduce. The offspring replaces the occupant of
a neighboring vertex j 2 G, chosen at random with probability proportional
to eij .

� Death-Birth (DB) [68]: An individual j 2 G is chosen at random, with
uniform probability, to be replaced. A neighboring individual i 2 G is chosen
to reproduce, with probability proportional to Fieij . The offspring of i replaces
the occupant of j .

� Pairwise comparison (PC) [96], [36], [84]: An individual j 2 G is chosen at
random, with uniform probability, to potentially be replaced. A neighboring
individual i 2 G is chosen with probability eij to potentially reproduce. With
probability �.Fi � Fj /, individual i produces an offspring that replaces the
occupant of j ; otherwise, no reproduction occurs. Here � is an increasing
function that is bounded between 0 and 1 and has the property that �.x/��.�x/

is differentiable at x D 0. Examples include �.x/ D .1 C e�x/�1 [96], [36],
[113] and �.x/ D xC=M , where xC D max.x; 0/ and M is the maximum
possible value of Fj � Fi [36], [84].

� Imitation (IM) [68]: This update rule is defined only for unweighted graphs.
An individual j 2 G is chosen, at random with uniform probability, to be
replaced. An individual i 2 G is chosen from among j and its immediate
neighbors, with probability proportional to Fi , to reproduce. The offspring of
i replaces the occupant of j . Note that for IM updating, an individual can be
replaced by its own offspring.

� Birth-death with payoff affecting death (BD-D) [32], [109]: An individual
i 2 G is chosen at random, with uniform probability, to reproduce. The
offspring replaces the occupant of a neighboring vertex j 2 G, chosen at
random with probability proportional to eij =Fj .
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� Death-birth with payoff affecting death (DB-D) [32], [109]: An individual
j 2 G is chosen at random, with probability inversely proportional to Fj , to
be replaced. A neighboring individual i 2 G is chosen to reproduce, with
probability proportional to eij . The offspring of i replaces the occupant of j .

BD or BD-D DB or DB-D

PC IM

Figure 2. Schematic illustration of update rules on graphs. For BD, a reproducer is chosen
proportionally to rescaled payoff, and its offspring replaces a neighbor chosen proportionally to
edge weight. BD-D is the same as BD except that the reproducer is chosen uniformly and the
neighbor to be replaced is chosen proportionally to (edge weight)/(rescaled payoff). For DB,
a vertex is chosen uniformly to be replaced, and a neighbor is chosen proportionally to (edge
weight)�(rescaled payoff) to reproduce into this vertex. DB-D is the same as DB except that the
vertex to be replaced is chosen inversely proportionally to rescaled payoff and the reproducing
neighbor is chosen proportionally to edge weight. For PC, a vertex is chosen uniformly to
potentially be replaced, and a neighbor is chosen proportionally to edge weight; this neighbor
reproduces with probability depending on the difference in rescaled payoffs. For IM, a vertex is
chosen uniformly to be replaced, and a reproducer is chosen proportionally to rescaled payoff
from among this vertex and its neighbors. Formal descriptions are given in the main text.

2.4. Mutation. The mutation rate is denoted by u, where 0 � u � 1. With prob-
ability 1 � u, the offspring inherits the type of the parent. With probability u, the
offspring adopts type C or D with equal probability.
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2.5. The evolutionary Markov chain. Overall, this stochastic process is described
by the evolutionary Markov chain M. Each state can be written as a string s D
.s1; : : : ; sN / 2 fC; DgN , where si 2 fC; Dg denotes the type currently occupying
vertex i . Summarizing the process described above, transitions in M occur as follows:

(1) Each individual i 2 G is assigned the rescaled payoff Fi D F.ıfi /, where fi

is the weighted average payoff obtained from neighbors as given in Eq. (2).

(2) A reproducer i 2 G and an offspring location j 2 G are chosen according to
the specified update rule.

(3) The new state s0 D .s0
1; : : : ; s0

N / is determined by s0
k

D sk for all k ¤ j and

s0
j D

8̂<
:̂

si with probability 1 � u,

C with probability u=2,

D with probability u=2.

3. The method of identity by descent

We study the assortment of types under this process using the idea of identity by
descent (IBD) [50]. In biological terms, we say two individuals are IBD if no mutation
separates either of them from their common ancestor. In particular, every individual
is IBD to itself, and a child is IBD to its parent if and only if the child was born
without mutation. At any given time IBD is an equivalence relation on the set of
living individuals, whose equivalence classes can be understood as clonal subtypes
of the population (Figure 3). Identity-by-descent methods have been applied to a
variety of problems in evolution [91], [83], [110], [6], [116]. Here we present a
formalism for identity-by-descent that enables its application to evolutionary games
on graphs.

We introduce the IBD-enriched evolutionary Markov chain zM, an augmentation
of M that incorporates the current IBD relation as an aspect of the state. States of zM

are written as pairs .s; �/, where s 2 fC; DgN is a string describing the type occupying
each vertex as before, and � is an equivalence relation on the vertices of G. The IBD
status of vertices i; j 2 G in a given state is described by the variable �ij , which
equals one if i and j are IBD and zero otherwise.

Transitions in zM occur by the following process: First, a reproducer i 2 G and
an offspring location j 2 G are chosen according to Steps 1 and 2 of Section 2.5.
Then the new state .s0; �0/ is determined as follows:

� s0
k

D sk for all k 2 G n fj g. (The types of individuals who are not replaced
remain unchanged.)

� �0
k`

D �k` for all k; ` 2 G n fj g. (IBD relationships among individuals who
are not replaced remain unchanged.)
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Figure 3. A sample identity-by-descent (IBD) partition on a lattice. Two individuals are IBD
if no mutation separates either from their common ancestor. IBD is an equivalence relation on
the set of living individuals, the equivalence classes of which represent clonal subtypes. In the
IBD-enriched evolutionary Markov chain zM, the current IBD partition is regarded as an aspect
of the population state.

� �0jj D 1. (The new individual is IBD to itself.)

� One of the following events occurs:

– with probability 1 � u, s0
j D si and �0

jk
D �0

kj
D �ki for all k ¤ j ,

– with probability u=2, s0
j D C and �0

jk
D �0

kj
D 0 for all k ¤ j ,

– with probability u=2, s0
j D D and �0

jk
D �0

kj
D 0 for all k ¤ j .

(The first of these events represents faithful reproduction, in which case the
new individual inherits the type and IBD relationships of its parent. The latter
two represent mutation, in which case the new individual is equally likely to
be either type and is IBD to none but itself.)

We denote the transition probability from state .s; �/ to state .s0; �0/ in zM by
p.s0;�0/!.s;�/. The n-step transition probability between these states is denoted by

p
.n/

.s0;�0/!.s;�/
.

We observe that, in the IBD-enriched evolutionary Markov chain zM, s.t C 1/ is
conditionally independent of �.t/, given s.t/. That is, changes in the distribution of
types depend only on the current distribution of types, with no additional dependence
on IBD relationships. Thus the evolutionary Markov chain M can be recovered from
zM by forgetting the IBD component of the state.

The following lemma shows that, with mutation, zM has a unique stationary dis-
tribution, under which individuals that are IBD are guaranteed to have the same type:
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Lemma 1. For 0 < u � 1, zM has a unique stationary distribution f�.s;�/g.s;�/.

For any states .s; �/ and .s0; �0/, limn!1 p
.n/

.s0;�0/!.s;�/
D �.s;�/. Any state .s; �/ with

�.s;�/ > 0 has the property that si D sj for any pair i; j 2 G with �ij D 1.

We denote expectations in the stationary distribution f�.s;�/g of zM by using the
brackets h i.

3.1. Neutral drift. We now consider the case ı D 0, representing purely neutral
drift between types C and D. In this case, all of the update rules considered above
reduce to the same process, which is also called the noisy voter model [33].

For neutral drift, the IBD relationships at time t C 1 depend only on the IBD
relationships at time t , in the sense that �.t C 1/ is conditionally independent of s.t/

given �.t/. Specifically, for i ¤ j , we have

�ij .t C 1/ D

8̂̂
<̂
ˆ̂̂:

�ij .t/ with probability .N � 2/=N ,

�i`.t/ with probability e j̀ .1 � u/=N for each ` 2 G,

� j̀ .t/ with probability e`i .1 � u/=N for each ` 2 G,

0 with probability 2u=N .

(3)

3.2. IBD probabilities. We define the IBD probability qij of vertices i; j 2 G

to be the stationary probability that the occupants of these vertices are IBD under
neutral drift: qij � h�ij iıD0. These IBD probabilities characterize the patterns of
spatial assortment generated by neutral drift. Summing over all cases in Eq. (3), with
�ij .t C 1/ and �ij .t/ replaced by their stationary expectations qij , yields

qij D
´

1; i D j;
1�u

2

P
k2G.ekiqkj C ekj qki /; i ¤ j:

(4)

To quantify how IBD probability scales with the distance between nodes, we define
q.n/ as the average IBD probability among nodes that are separated by a random walk
of length n in G:

q.n/ D
X
j 2G

p
.n/
ij qij D 1

N

X
i;j 2G

p
.n/
ij qij : (5)

Above, p
.n/
ij denotes the probability that a random walk of length n starting at i

(with step probabilities given by edge weights) will terminate at j . Since edges are
undirected, these probabilities are symmetric: p

.n/
ij D p

.n/
j i for each i; j 2 G. We

use p.n/ as shorthand for the probability p
.n/
i i that such a walk terminates at its initial

vertex. (By symmetry, this probability does not depend on the initial vertex i .) The
probabilities p.n/ and q.n/ are related by the following lemma:
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Lemma 2. For all 0 < u � 1 and n � 0,

q.n/ D p.n/ C �
q.nC1/ � p.n/q.1/

�
.1 � u/: (6)

Intuitively, Eq. (6) decomposes the probability q.n/ – that individuals at two ends
of an n-step random walk are IBD – into two cases: either they are the same individual
(with probability p.n/), or they are distinct and the younger one is the non-mutant
offspring of a parent IBD to the older one. In the second case, the walk from the older
one to the parent of the younger is n C 1 steps long and does not return to its starting
vertex at the nth step.

We now let n ! 1 in Eq. (6). Vertex transitivity implies that limn!1 p
.n/
ij D

1=N for all i; j 2 G; that is, random walks become equally likely to terminate at
each node as the walk length tends to infinity. Thus p.n/ converges to 1=N in this
limit, while q.n/ converges to Nq, the probability that two individuals chosen randomly
(with replacement) are IBD. Substituting in (6), we obtain

.1 � u/q.1/ D 1 � Nu Nq: (7)

Now substituting in Eq. (6) yields

q.n/ D .1 � u/q.nC1/ C Nu Nq p.n/: (8)

Next we consider the limit of small mutation rate. From Eq. (4) we see that
limu!0 qij D 1 for all i; j 2 G. (Intuitively, all individuals become IBD in the limit
of rare mutation.) This observation implies the following low-mutation expansion of
Eq. (8):

q.n/ � q.nC1/ D u
�
Np.n/ � 1

� C O.u2/: (9)

3.3. Assortment relative to a focal individual. We now consider the assortment of
types around a typical individual of type C. By symmetry, we may choose an arbitrary
vertex 0 2 G as the focus of our analysis. We consider the stationary distribution
on zM conditioned on 0 being C. We denote expectations in this conditional distri-
bution by h i ıD0

s0DC
. The following lemma describes assortment under this conditional

distribution:

Lemma 3. For all 0 < u � 1 and i 2 G,

(i) Pr
ıD0

Œsi D Cjs0 D C; �0i D 1� D 1,

(ii) Pr
ıD0

Œsi D Cjs0 D C; �0i D 0� D 1
2
,

(iii) Pr
ıD0

Œsi D Cjs0 D C� D 1 C q0i

2
:
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In words, if it is given that vertex 0 has type C, then under neutral drift, (i) indi-
viduals IBD to 0 also have type C, (ii) individuals not IBD to 0 have 1

2
probability

to be C on average, and therefore (iii) overall, vertex i has type C with probability
.1 C q0i /=2.

To quantify how assortment scales with distance, we let s.n/ denote the probability
that the individual at the end of an n-step random walk from 0 is of type C in this
conditional distribution:

s.n/ D
X
i2G

p
.n/
0i Pr

ıD0
Œsi D Cjs0 D C� D 1 C q.n/

2
:

4. Conditions for evolutionary game success

Using the above analysis of IBD probabilities, we now derive conditions for strategy
selection under weak selection. We start with a simplified Prisoner’s Dilemma game
and then generalize to arbitrary games of the form (1).

4.1. Conditions for evolutionary success. We quantify evolutionary success in two
ways, depending on whether mutation is present. If there is no mutation (u D 0),
a natural metric for success is the fixation probability �C, defined as the probability
of absorption in the all-C state C D .C; : : : ; C/ of M, from an initial state with one
C and the rest D. The reverse fixation probability �D is defined as the probability of
absorption in D D .D; : : : ; D/, from an initial state with one D and the rest C. We
say that cooperation is favored if �C > �D.

If there is mutation (u > 0), we instead consider the expected frequency hxi of
cooperators under the stationary distribution, where x denotes their frequency in a
particular state:

x D 1

N
jfi 2 G W si D Cgj : (10)

We say cooperation is favored if cooperators are more abundant than defectors on
average – that is, if hxi > 1

2
.

In the low-mutation limit (u ! 0), the conditions �C > �D and hxi > 1
2

coincide
with each other [4]. In fact, they both become equivalent to the condition [67]�

@.b0 � d0/

@ı

	
ıD0
s0DC

> 0: (11)

Above, 0 denotes the focal individual, b0 is the probability that this individual re-
produces in a given state, and d0 is the probability that it is replaced. The brackets
h i ıD0

s0DC
denote expectations in the stationary distribution of the neutral drift process,

conditioned on 0 being of type C. The relations among these success conditions are
made precise in the following theorem:
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Theorem 4. Consider the family of evolutionary Markov chains Mu;ı with fixed
game, graph, and update rule, where the mutation rate 0 � u � 1 and selection
strength ı > 0 are allowed to vary. Then

(1) Strategy C is favored for fixed u > 0, in the sense that hxiu;ı > 1=2 for all
sufficiently small ı > 0, if and only if

�
@
�
.1 � u/b0 � d0

�
@ı

	
ıD0
s0DC

> 0: (12)

(2) Strategy C is favored in the sense that hxiu;ı > 1=2 for all sufficiently small
u > 0 and ı > 0 if and only if

lim
u!0

�
@.b0 � d0/

@ı

	
ıD0
s0DC

> 0:

(3) Strategy C is favored for u D 0, in the sense that �C > �D for all sufficiently
small ı > 0, if and only if

lim
u!0

�
@.b0 � d0/

@ı

	
ıD0
s0DC

> 0:

The factor 1 � u in Condition (12) represents a mutational bias due to differential
birth rates; for example, if type C reproduces more often than type D, there will be
more mutations from C to D than vice versa. This effect disappears in the limit of
low mutation, or if either birth or death rates are constant across individuals in every
state [67].

4.2. The simplified Prisoner’s Dilemma. We first consider a simplified Prisoners’
Dilemma game in which cooperators pay a cost c > 0 to generate a benefit b > c to
the other player. The payoff matrix for this simplified game is

� C D

C b � c �c

D b 0

�
: (13)

We let f .n/ denote the expected payoff of an individual at the terminus of an
n-step walk from the focal individual 0, conditioned on 0 being of type C. From the
game matrix (13), we see that

f .n/ D �cs.n/ C bs.nC1/ D 1

2

� � c C b � cq.n/ C bq.nC1/
�
: (14)

We now separate into cases based on the update rule.
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4.2.1. Birth-Death, pairwise comparison, and DB-D updating. For BD, PC, or
DB-D updating, Condition (11) reduces to f .0/ > f .1/. That is, cooperation is
favored if and only if the focal cooperator has greater payoff than its neighbors, on
average. This result follows directly from the definitions of these update rules and
the assumed properties of the rescaling function F .

By Eq. (14), the condition f .0/ > f .1/ is equivalent to

�c
�
q.0/ � q.1/

� C b
�
q.1/ � q.2/

�
> 0:

Now applying (8) and invoking Theorem 4, we obtain

Theorem 5. Cooperation is favored (�C > �D) in the Prisoners’Dilemma game (13)
on a weighted vertex-transitive graph G of size N , with BD, PC, or DB-D updating
and no mutation, for all sufficiently small ı > 0, if and only if

� c.N � 1/ C b.Np.1/ � 1/ > 0: (15)

Recalling that p.1/ is the edge weight of self-loops in G, we note that cooperation
is never favored if p.1/ D 0:

Corollary 6. For the Prisoners’Dilemma game (13) on a weighted vertex-transitive
graph G with no self-loops (p.1/ D 0), with BD, PC, or DB-D updating and no
mutation, cooperation is disfavored (�C < �D) for all sufficiently small ı > 0.

A necessary condition for cooperation to be favored, which is approximately
sufficient for large populations (N � 1), is bp.1/ > c. This means that the benefit
bp.1/ that a cooperator gives to itself via self-interaction must exceed the cost c. Thus
for BD, PC, and DB-D updating, cooperation is favored only if self-loops make this
cooperation self-serving rather than costly.

4.2.2. Death-Birth and BD-D updating. For DB or BD-D updating, Condition
(11) reduces to f .0/ > f .2/. That is, cooperation is favored if and only if the
focal cooperator has greater payoff than its neighbors-of-neighbors, on average. By
Eq. (14), this condition is equivalent to

�c
�
q.0/ � q.2/

� C b
�
q.1/ � q.3/

�
> 0:

Applying Eq. (9) twice to the respective coefficients of b and c, we obtain

Theorem 7. Cooperation is favored (�C > �D) in the Prisoners’Dilemma game (13)
on a weighted vertex-transitive graph with DB or BD-D updating and no mutation,
for all sufficiently small ı > 0, if and only if

�c
�
N C Np.1/ � 2

� C b
�
Np.1/ C Np.2/ � 2

�
> 0:

We note that p.2/ D P
k2G e2

ik
D ��1, where � is the Simpson degree of G.

Thus for graphs with no self-loops, we obtain
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Corollary 8. Cooperation is favored (�C > �D) for the Prisoners’ Dilemma game
(13) on a weighted vertex-transitive graph with no self-loops, with DB or BD-D
updating and no mutation, for all sufficiently small ı > 0, if and only if

b

c
>

N � 2

N=� � 2
:

For large population size, this condition becomes approximately b=c > �, a
generalization of the b=c > k rule [68] to weighted graphs. In the case of unweighted
graphs, substituting � D k yields the condition

b

c
>

N � 2

N=k � 2
; (16)

a finite-population correction to the b=c > k rule obtained by Taylor et al. [110] and
Chen [14].

4.2.3. Imitation updating. For IM updating on an unweighted vertex-transitive
graph of degree k, Condition (11) reduces to

f .0/ >
2

k C 2
f .1/ C k

k C 2
f .2/:

Applying Eqs. (14) and (9), we obtain

Theorem 9. Cooperation is favored (�C > �D) for the Prisoners’Dilemma game (13)
on a vertex-transitive graph with IM updating and no mutation, for all sufficiently
small ı > 0, if and only if

b

c
>

N.k C 2/ � 2k � 2

N � 2k � 2
:

In fact, this result holds for all regular graphs, not only vertex-transitive graphs
[14]. For large populations, this condition becomes approximately b=c > k C 2, a
result obtained by Ohtsuki et al. [68] using pair approximation.

4.3. Arbitrary 2 � 2 matrix games. We now move to general 2 � 2 matrix games
of the form (1), retaining the strategy labels C and D for convenience. A powerful
theorem of Tarnita et al. [106] allows conditions for success in arbitrary 2 � 2 games
to be determined from analysis of the simplified game (13). This theorem guarantees
that, for a broad class of evolutionary processes based on games of the form (1), there
is a “structure coefficient” 	 , independent of R, S , T , and P , such that strategy C is
favored if and only if 	R C S > T C 	P . Here we state this theorem for Markov
chains on fC; DgN , although the original result applies to a more general class of
processes.
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Theorem 10 ([106]). For fixed N and for each s; s0 2 fC; DgN , let ps!s0.M/ be
differentiable, real-valued functions of a 2�2 matrix M with the following properties:

(i) The collection fps!s0.M/gs;s02fC;DgN are transition probabilities of an ergodic
Markov chain on fC; DgN for each M.

(ii) For s 2 fC; DgN , let Ns 2 fC; DgN be the result of replacing each C with D,
and vice versa, in s. Then

ps!s0

�
a11 a12
a21 a22

� D pNs!Ns0

�
a22 a21
a12 a11

�
:

(iii) For M D �
0 1
0 0

�
, hxi > 1

2
, where x is defined as in Eq. (10) and the brackets

indicate expectation under the stationary distribution.

Then there exists a real number 	 such that, for any R; S; T; P 2 R, the Markov chain
defined by

˚
ps!s0

�
ıR ıS
ıT ıP

�

s;s0

has the property that hxi > 1=2 for all sufficiently
small ı > 0 if and only if 	R C S > T C 	P .

Condition (ii) above asserts that the process is symmetric with respect to in-
terchanging the strategy labels C and D. Condition (iii) ensures that C has greater
expected frequency than D in a game that trivially favors C.

In the case of evolutionary dynamics on graphs, 	 depends on the graph, update
rule, and mutation rate, but not on the game. The advantage of this result is that
the value of 	 – and therefore the success condition for an arbitrary game of the
form (1) – can be obtained by considering only a restricted family of games such as
the simplified Prisoner’s Dilemma (13). In particular, combining Theorems 4, 5, 7,
9 and 10, we have

Corollary 11. Strategy C is favored (�C > �D) in the game (1) on a weighted vertex-
transitive graph with no mutation, for all sufficiently small ı > 0, if and only if
	R C S > T C 	P , where

	 D

8̂̂ˆ̂<
ˆ̂̂̂:

1 C p.1/ � 2
N

1 � p.1/
for BD, PC, or DB-D updating,

1 C 2p.1/ C p.2/ � 4
N

1 � p.2/
for DB or BD-D updating.

In particular, if the graph has no self loops,

	 D

8̂̂̂
<
ˆ̂̂:

N � 2

N
for BD, PC, or DB-D updating,

� C 1 � 4�
N

� � 1
for DB or BD-D updating.

For IM updating on an unweighted vertex-transitive graph, the same result holds with

	 D k C 3 � 4.kC1/
N

k C 1
:
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5. Nonzero mutation

We now study games on graphs with mutation. This mutation may be genetic, or it may
represent random strategy exploration in a social learning model [112]. High rates
of mutation dilute the assortment of like types. This dilution can thwart cooperative
strategies whose success depends on spatial clustering [5], [114].

5.1. Generating function expressions for IBD probabilities. We first derive ex-
pressions for IBD probabilities that are valid for arbitrary mutation rates. These
expressions are in terms of the random walk generating function (or Green’s func-
tion)

Gij .z/ D
1X

nD0

p
.n/
ij zn: (17)

Montroll and Weiss [56] provide a general method for obtaining Gij on lattices (see
also [46]). We use G as a shorthand for Gi i (which, by vertex-transitivity, does not
depend on i ).

Lemma 12. For all 0 < u < 1 and i; j 2 G,

qij D Gij .1 � u/

G .1 � u/
:

Lemma 13. For all 0 < u < 1 and n � 0,

q.nC1/ D q.n/ � p.n/
�
G .1 � u/

��1

1 � u
:

In particular,

q.1/ D 1 � �
G .1 � u/

��1

1 � u
:

The expected IBD probability for two vertices chosen randomly with replacement is

Nq D 1

Nu G .1 � u/
:

For nonzero mutation rates, we use hxi > 1
2

as our criterion for success. By
Theorem 4 this criterion reduces to Condition (12) under weak selection. We now
obtain conditions for strategy selection under BD and DB updating; other update
rules may be analyzed similarly.
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5.2. Birth-Death. For BD updating, Condition (12) for evolutionary success with
mutation becomes

.1 � u/

�
@

@ı

F0P
j 2G Fj

	
ıD0
s0DC

�
�

@

@ı

X
i2G

ei0FiP
j 2G Fj

	
ıD0
s0DC

> 0:

This condition reduces to f .0/ � f .1/ � u.f .0/ � Nf / > 0, where Nf is the average
payoff over all vertices. (The term with u represents mutational bias due to differential
birth rates; see Section 4.1.) Upon substituting Nf D .�c Cb/.1C Nq/=2 and applying
Eq. (14), we obtain

Theorem 14. On a weighted vertex-transitive graph with BD updating and mutation
rate 0 < u < 1, cooperation is favored (hxi > 1

2
) in the Prisoners’ Dilemma game

(13) for all sufficiently small ı > 0, if and only if

� c
�
1 � q.1/ � u.1 � Nq/

� C b
�
q.1/ � q.2/ � u.q.1/ � Nq/

�
> 0: (18)

Strategy C is favored in the general game (1) for all sufficiently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D 1 � q.2/ � u.1 C q.1/ � 2 Nq/

1 � 2q.1/ C q.2/ � u.1 � q.1//
:

The values of q.n/ and Nq – and hence the conditions for success – can be ob-
tained for any particular graph G using Lemma 13.

5.3. Death-Birth. For DB updating, Condition (12) reduces to f .0/ > f .2/. Ap-
plying Eqs. (14) and (9) yields:

Theorem 15. On a weighted vertex-transitive graph with DB updating and mutation
rate 0 < u < 1, cooperation is favored (hxi > 1

2
) in the Prisoners’ Dilemma game

(13) for all sufficiently small ı > 0, if and only if

� c
�
1 � q.2/

� C b
�
q.1/ � q.3/

�
> 0: (19)

Strategy C is favored for the general game (1) for all sufficiently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D 1 C q.1/ � q.2/ � q.3/

1 � q.1/ � q.2/ C q.3/
:

Allen et al. [5] examined the dependence of Condition (19) on u for a variety
of graph families. In each case, the critical b=c ratio for the success of coopera-
tion increases with u, confirming the intuition that mutation impedes cooperation by
diluting the spatial assortment of cooperators.
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6. Different interaction and replacement graphs

It is sometimes natural to consider different sets of edge weights for replacement
and interaction [72], [110], [73]. This means that the frequency of game interaction
between vertices i and j may differ from the frequency with which their occupants
can replace each other.

The population structure in this case is described by a pair of graphs with the
same vertex set V : the replacement graph GR, with edge weights feij gi;j , and the
interaction graph GI with edge weights fwij gi;j . Each time-step, each individual i 2
V plays the game with its neighbors in GI, and retains the w-weighted average payoff
fi from these interactions, rescaled to Fi D F.ıfi /. Once payoffs are obtained, the
update rule (BD or DB) is applied as described above, using the replacement graph
GR.

We require that the graphs GR and GI have joint transitive symmetry. This means
that for every pair of vertices i; j 2 V , there is a bijection T of V such that T .i/ D j

and, for every pair h; ` 2 V , wT .h/T .`/ D wh` and eT .h/T .`/ D eh`. (In other words,
for every pair i; j 2 V , there is an isomorphism T of both GR and GI that maps i to
j .) We also require that the adjacency matrices of GR and GI commute.

We define a .n; m/-random walk to be a random walk with n steps taken using
the weights feij g of GR, and m steps taken using the weights fwij g of GI. By
commutativity of the adjacency matrices, the order in which these steps are taken
does not affect the probability of termination at a particular vertex. We define p.n;m/

as the probability that such a random walk terminates at its starting vertex, and q.n;m/

as the stationary probability that it terminates at a vertex IBD to the initial vertex.
Translating our earlier results into this notation, we have, for 0 < u < 1,

q.n;0/ D p.n;0/ C �
q.nC1;0/ � p.n;0/q.1;0/

�
.1 � u/;

q.1;0/ D 1 � Nu Nq
1 � u

D 1 � ŒG .1 � u/��1

1 � u
;

q.n;0/ � q.nC1;0/ D u
�
Np.n;0/ � 1

� C O.u2/:

Furthermore, a straightforward variation on the proof of Lemma 2 shows that

q.n;m/ D p.n;m/ C �
q.nC1;m/ � p.n;m/q.1;0/

�
.1 � u/;

which admits the low-mutation expansion

q.n;m/ � q.nC1;m/ D u
�
Np.n;m/ � 1

� C O.u2/:

We again choose a focal node 0, and consider the stationary distribution condi-
tioned on 0 being a cooperator. In the case of the simplified Prisoner’s Dilemma game
(13), the expected payoff f .n;0/ at the terminus of an .n; 0/-random walk from 0 is

f .n;0/ D 1

2

� � c C b � cq.n;0/ C bq.n;1/
�
:
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6.1. Birth-Death, pairwise comparison, and DB-D updating. Following the ar-
guments of Section 4.2.1, we obtain that cooperation is favored under BD, PC, or
DB-D updating if and only if f .0;0/ > f .1;0/. This means that the focal cooperator
must have greater payoff, on average, than its neighbors in the replacement graph.
This condition yields the following result:

Theorem 16. For any pair .GR; GI/ of replacement and interaction graphs, with BD,
PC, or DB-D updating and no mutation, cooperation is favored (�C > �D) for the
Prisoners’Dilemma game (13) for all sufficiently small ı > 0, if and only if

�c.N � 1/ C b.Np.0;1/ � 1/ > 0:

If GI has no self-loops (p.0;1/ D 0), cooperation is disfavored (�C < �D) for the
Prisoners’Dilemma game (13) for all sufficiently small ı > 0. Strategy C is favored
in the general game (1) for all sufficiently small ı > 0 if and only if 	RCS > T C	P ,
where

	 D 1 C p.0;1/ � 2
N

1 � p.0;1/
:

For large populations, the condition for success in the Prisoners’ Dilemma game
(13) is approximately bp.0;1/ > c. Thus we again find that, under BD updating,
cooperation is only favored if the direct benefit to the cooperator, bp.0;1/, outweighs
the cost c.

In the case of positive mutation rates and BD updating, Condition (12) becomes
.1 � u/f .0;0/ > f .1;0/ � u Nf , yielding:

Theorem 17. For any pair .GR; GI/ of replacement and interaction graphs, with BD
updating and mutation rate 0 < u < 1, cooperation is favored (hxi > 1

2
) in the

Prisoners’Dilemma game (13) for all sufficiently small ı > 0, if and only if

�c
�
1 � q.1;0/ � u.1 � Nq/

� C b
�
q.0;1/ � q.1;1/ � u.q.0;1/ � Nq/

�
> 0:

Strategy C is favored in the general game (1) for all sufficiently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D 1 � q.1;0/ C q.0;1/ � q.1;1/ � u
�
1 C q.0;1/ � 2 Nq�

1 � q.1;0/ � q.0;1/ C q.1;1/ � u
�
1 � q.0;1/

� :

6.2. Death-Birth andBD-Dupdating. For DB or BD-D updating with no mutation,
Condition (11) becomes f .0;0/ > f .2;0/, yielding:

Theorem 18. For any pair .GR; GI/ of replacement and interaction graphs, with
DB or BD-D updating and no mutation, cooperation is favored (�C > �D) in the
Prisoners’Dilemma game (13) for all sufficiently small ı > 0, if and only if

� c
�
N C Np.1;0/ � 2

� C b
�
Np.0;1/ C Np.1;1/ � 2

�
> 0: (20)
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Strategy C is favored in the general game (1) for all sufficiently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D 1 C p.1;0/ C p.0;1/ C p.1;1/ � 4
N

1 C p.1;0/ � p.0;1/ � p.1;1/
:

For large populations with no self-loops in GR or GI, Condition (20) becomes
approximately bp.1;1/ > c. This result was obtained by Ohtsuki et al. [73], [72]
(using pair approximation) in the case that the interaction and replacement graphs are
unweighted.

For positive mutation rates and DB updating, Condition (12) reduces to f .0;0/ >

f .2;0/, yielding:

Theorem 19. For any pair .GR; GI/ of replacement and interaction graphs, with DB
updating and mutation rate 0 < u < 1, cooperation is favored (hxi > 1

2
) in the

Prisoners’Dilemma game (13) for all suffciently small ı > 0, if and only if

�c
�
1 � q.2;0/

� C b
�
q.0;1/ � q.2;1/

�
> 0:

Strategy C is favored in the general game (1) for all suffciently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D 1 C q.0;1/ � q.2;0/ � q.2;1/

1 � q.0;1/ � q.2;0/ C q.2;1/
:

6.3. Imitation. For IM updating with no mutation, Condition (11) reduces to

f .0/ >
2

kR C 2
f .1/ C kR

kR C 2
f .2/;

where kR is the degree of the replacement graph. This leads to:

Theorem 20. For any pair .GR; GI/ of unweighted replacement and interaction
graphs, with IM updating and no mutation, cooperation is favored (�C > �D) in the
Prisoners’Dilemma game (13) for all sufficiently small ı > 0, if and only if

�c
�
N.kR C 2/ � 2kR � 2

� C b
�
N kRp.1;1/ � 2kR � 2

�
> 0:

Strategy C is favored in the general game (1) for all sufficiently small ı > 0 if and
only if 	R C S > T C 	P , where

	 D kR C 2 C kRp.1;1/ � 4.kRC1/
N

kR C 2 � kRp.1;1/
:

7. Extensions

We now briefly review the many extensions of this theory that have been considered,
highlighting general themes and directions for future investigation.
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7.1. Other instances of the b=c > k rule. The condition b=c > k elegantly ex-
presses how spatial structure can promote the evolution of cooperation. If the benefit-
to-cost ratio exceeds the number of neighbors per individual, then the advantage co-
operators gain through assortment outweighs the harm of exploitation by defectors.
The precise statement (a special case of Corollary 8) is that, on unweighted vertex-
transitive graphs of degree k with DB or BD-D updating, cooperation is favored in
the Prisoners’ Dilemma game (13) for sufficiently weak selection if and only if

b

c
>

N � 2

N=k � 2
����!
N !1

b

c
> k: (21)

This rule also applies in a number of cases not covered by the mathematical
framework developed above. Chen [14] showed that Condition (21) holds for all finite
k-regular graphs, not only those that are vertex-transitive. Cox, Durrett and Perkins
[16] proved that the b=c > k rule also holds for infinite lattices Zd of dimension
d � 3. (In this case, infinite population size requires that fixation probability be
replaced by a suitable notion of “taking over”.)

7.2. Update rules and the fate of cooperation. One of the most intriguing aspects
of spatial evolutionary game theory is the effect of the update rule. As we have
seen, the conditions for success in the absence of mutation reduce to f .0/ > f .1/

for BD, PC, and DB-D updating; f .0/ > f .2/ for DB and BD-D updating; and
f .0/ > 2

kC2
f .1/ C k

kC1
f .2/ for IM updating. In each case, the payoff of the focal

cooperator is compared to a weighted average of payoffs at various distances. The
weighting depends on the update rule.

For update rules leading to the f .0/ > f .1/ condition, cooperation cannot be
favored in the Prisoners’ Dilemma game (13), except in cases where self-loops allow
for cooperation to be self-serving. This result is often explained (e.g. [49]) in terms
of scales of interaction and competition. The condition f .0/ > f .1/ suggests an in-
direct competition for space at distance one, the same scale as game interaction. The
concurrence of these scales is said to cancel the positive effects of cooperation. How-
ever, given that BD and similar update rules provide no benefit to (non-self-serving)
cooperation even when the replacement and interaction graphs differ (Theorem 16),
this explanation appears incomplete. From the derivation of Theorem 5, this effect
appears more directly due to the fact that q.1/ < q.2/ (or q.0;1/ < q.1;1/ in the case
GR ¤ GI) for graphs with no self-loops, which implies that the immediate neighbors
of the focal cooperator receive more benefit than the focal cooperator does. For up-
date rules leading to f .0/ > f .2/, the success of cooperation (for sufficiently large
b=c) results from the fact that q.1/ > q.3/ (or q.0;1/ > q.2;1/) in the absence of
self-loops, from which it follows that the focal cooperator receives more benefit than
do its neighbors at distance two.
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7.3. Evolutionary stability and replicator dynamics. Evolutionary game theory
was formulated in the context of well-mixed (non-spatial) populations. It is therefore
interesting to look for spatial analogues of fundamental concepts arising in non-spatial
evolutionary game theory.

One such concept is evolutionary stability. An evolutionarily stable strategy (ESS)
[54], [53], [37] is a strategy over which no sufficiently rare alternative strategy has
an advantage. For the 2 � 2 matrix game

� A B

A a b

B c d

�
;

strategy A is evolutionarily stable if and only if

.a > c/ or .a D c and b > d/:

In particular, a > c is sufficient for the evolutionary stability of A. Ohtsuki and
Nowak [71] used pair approximation to obtain analogues of the a > c condition on
graphs. For example, they found that, with DB updating, the condition

.k2 � 1/a C b > .k2 � k � 1/c C .k C 1/d

is sufficient for the evolutionary stability of A under weak selection (and is necessary
except in the nongeneric case that equality holds).

Another fundamental concept of non-spatial evolutionary game theory is repli-
cator dynamics, a system of ordinary differential equations describing strategy fre-
quencies over time, assuming reproductive rates proportional to game payoff [111],
[37], [38], [66]. Ohtsuki and Nowak [70], again using pair approximation, derived
spatial analogues of these equations on graphs under various update rules. A more
rigorous spatial analogue of replicator dynamics was provided by Cox, Durrett, and
Perkins [16] in their study of evolutionary dynamics on square lattices of dimension
� 3. They showed that, under a sequence of renormalizations of space and time,
the dynamics of local strategy densities converge to a solution to a certain partial
differential equation. This PDE describes how strategies propagate through space,
and can be interpreted as a spatial replicator equation.

7.4. Different games affecting birth and death. The interactions that affect repro-
duction in a given population may differ from those affecting survival. To explore
the evolutionary consequences of such a difference, Débarre et al. [20] developed a
general framework in which birth and death probabilities may depend on different
games. They obtained a generalization of Theorems 16 and 18 in which there are
two values of 	 : one for the game affecting birth and another for the game affecting
death.
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7.5. Non-weak selection. The results proven here hold for weak selection – that is,
they are valid only for sufficiently small ı > 0. This is a natural regime to consider,
as it describes the case that game interactions comprise only a small component of
an individual’s overall fitness. However, there are many scenarios in biological and
cultural evolution in which interactions have a large effect on fitness. It is therefore
desirable to obtain results that are valid beyond the weak selection regime.

Non-weak selection presents new mathematical difficulties, since the dynamics
can no longer be viewed as a perturbation of neutral drift. Exact results have only
been obtained for very simple graph structures such as the cycle [69] and the star
[11], [35] (Figure 4). Non-weak selection is represented by using the game payoffs
fi directly – rather than their rescalings Fi D F.ıfi / – to determine birth and death

Cycle Star

Figure 4. The cycle (one-dimensional periodic lattice) and the star are two simple graph struc-
tures for which exact conditions for evolutionary success under non-weak selection can be
obtained.

probabilities according to the update rule. (Note that this approach requires that
the entries of the payoff matrix be nonnegative; thus it applies to the general game
(1) with R; S; T; P � 0 but not to the simplified Prisoners’ Dilemma game (13)).
For the cycle with DB updating and in the limit N ! 1, cooperation is favored
if and only if R.R C S/ > P.P C T / [69]. For BD updating, the condition is
R C S > T C P , which is the same as the condition for success in large well-mixed
populations [108], [65], [39], and which is never satisfied for Prisoners’ Dilemma
games (T > R > P > S).

For other graph structures, our understanding of evolutionary game dynamics
with non-weak selection comes primarily from simulations [36], [95], [82], [78]. For
example, Roca et al. [81], [82] performed Monte Carlo simulations of cooperation
games on lattices and random regular graphs, systematically varying the game pa-
rameters, graph degree, and update rule. Their major finding is that the effects of
spatial structure on the evolution of cooperation depend strongly on both the game
and the update rule, in a way that is not easily summarized in any general law.
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7.6. Asymmetric graphs. Biological and social networks are often strongly asym-
metric [93], [1], [58]. It is therefore of great interest to understand strategy selection
for games on asymmetric graphs. Exact analysis is difficult beyond simple cases such
as the star graph [11], [35], but extensive simulation results are available [84], [28],
[95, 7], [78], [120].

A well-known simulation study of Santos et al. [84] shows that scale-free networks
[93], [1], [58] with PC updating strongly promote cooperation in Prisoners’ Dilemma
and Snowdrift games. However, Tomohiko [44] found (using pair approximation
and simulation) that for DB updating and weak selection on asymmetric graphs,
the b=c > k condition generalizes to b=c > hknni, where hknni is the expected
average degree among nearest neighbors of a randomly chosen vertex. For fixed
average degree hki, hknni increases with degree heterogeneity. In the idealized case
of infinite, degree-uncorrelated scale-free graphs, hknni is infinite and cooperation is
never favored in the Prisoner’s Dilemma game (13). Thus the question of whether
scale-free networks promote cooperation is strongly dependent on the update rule.

7.7. Multi-strategy games. So far we have considered only games with two strate-
gies. Many other types of interactions can be modeled using games with more than
two strategies, represented by n � n matrices.

One particularly interesting class of multi-strategy games is rock-paper-scissors
games, in which each of three strategies bests another and is bested by the third.
On two-dimensional lattices, simulations show the system typically settles into a
dynamic pattern in which the three strategies persist and continually invade each
others’ territory [102], [103], [104]. For other graph structures, a different dynamical
behavior is possible, in which the population spends increasing amounts of time
dominated by each strategy in sequence [102], [103], [86], [97], [101], similar to the
convergence to heteroclinic attractors found in the case of well-mixed populations
[52], [37], [38]. These results are reviewed in depth by Szabo and Fath [95].

Another important multi-strategy game is the Prisoners’ Dilemma with reactive
strategies. In this case, the Prisoners’Dilemma game is played repeatedly (often with
a constant continuation probability per round), and each player’s choice may depend
on what has happened in previous rounds. The best-known reactive strategy is Tit-for-
Tat (TFT), in which a player initially plays C and subsequently mirrors the opponent’s
choice in the previous round [8]. When paired against other TFT players or those who
play only C (ALLC), both players receive the “reward” payoff R each round; when
paired against those who play only D (ALLD), both players receive the “punishment”
payoff P each round after the first (recall T > R > P > S for Prisoners’ Dilemma
games). Simulation of the evolutionary dynamics of the strategies ALLC, ALLD, and
TFT on lattices and random regular graphs reveals a variety of possible behaviors –
including fixation of ALLD, coexistence of only ALLC and ALLD, and coexistence
of all three strategies – depending on the game parameters and graph topology [100].
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The structure coefficient theorem [106], a crucial tool in our analysis of two-
strategy games, can be generalized to games with n strategies [107]. For a wide class
of evolutionary processes based on n � n matrix games, the condition for the success
of strategy i takes the form

.	1ai i C Naij � Naj i � 	1 Najj / C 	2. Naij � Najk/ > 0:

Above, aij are the elements of the payoff matrix, and the bars indicate arithmetic
averages over all values of the indices j and k. The structure coefficients 	1 and 	2

depend on the population structure, update rule, and mutation rate, but do not depend
on the game matrix. Here success is defined as having expected frequency greater
than 1

n
in the mutation-selection stationary distribution. As in the 2 � 2 case, this

result allows the condition for success in a general game to be obtained from analysis
of special classes of games.

7.8. Multiplayer games. Many biological and social interactions involve more than
two individuals. Such interactions can be modeled as multiplayer games. Payoffs
in multiplayer games are described by multidimensional arrays in place of matrices.
The evolutionary dynamics of strategies in such games exhibit a wide variety of
behaviors even in well-mixed populations [26], [27]. Exact conditions for success
in a general multiplayer game have been obtained in the case of a cycle [115], but
analysis is difficult for more complex graph structures. The current state of the art in
multiplayer games on graphs is reviewed by Perc et al. [76].

The most commonly studied multiplayer game is the public goods game, a social
dilemma in which players choose whether or not to contribute to a public good. The
overall payoff (an increasing function of the total contributions) is shared equally
among all players. As in the Prisoners’ Dilemma, noncooperation is the only evolu-
tionarily stable strategy in a well-mixed population. In spatial versions [96], [85], the
game is played among groups consisting of a vertex and its nearest neighbors. For
PC updating, degree heterogeneity was found to have a positive effect on cooperation
in public goods games [85]; however, as in other cases, this effect is likely dependent
on the update rule.

One variation on public goods games is to suppose that the public good diffuses
spatially, so that it is shared unequally depending on proximity to the producer [2],
[10]. This mimics the sharing of public goods in microbial colonies [18], [41]. In
this case, for DB updating, weak selection, and large population size, cooperation is
favored if and only if b=c > .�0 C �1/�1, where c is the cost of production, b is the
total benefit shared by all recipients, �0 is the fraction of public goods retained by
the producer, and �1 is the average fraction of public goods retained by each of the
producer’s immediate neighbors [2].

7.9. Dynamic graphs. A final extension is to suppose that the graph itself may
change along with the distribution of strategies. For example, social or spatial rela-
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tionships may change based on prior interactions [90], [23], [75], [74] reputations
[25], or other factors [99], [98], [105], [119], [13]. While a great variety of models
have been explored (as reviewed by Perc and Szolnoki [77]), a general theme is that
cooperation is enhanced by mechanisms that allow cooperators to self-segregate, and
hindered by mechanisms that break links between cooperators or allow defectors to
infiltrate cooperator clusters.

7.10. Connections to empirical work. The inspiration for evolutionary games on
graphs comes from genetic evolution in spatially structured populations, and from
cultural evolution driven by social learning on networks. While the questions explored
here are mathematically interesting in their own right, it is also important to ask what
they reveal about the evolution of cooperation in nature and society.

The biological predictions of spatial evolutionary game theory can be tested via
microorganism experiments. Microbes cooperate in a variety of ways, often by pro-
ducing chemical public goods [18], [29]. A number of experiments [42], [15] have
shown that group or patch structure, with limited dispersal between patches, can pro-
mote public goods cooperation. Fewer studies have investigated the effects of spatial
structure directly. The evidence so far is that spatial structure can also promote co-
operation [45], [19], [41], but this effect depends also on how widely the public good
is shared [47]. It is also important to ask what kinds of update rules best describe
evolution in microbial colonies [3].

Predictions regarding cultural evolution can be tested using human behavioral
experiments, in which subjects interact via matrix games with their neighbors and
can see their neighbors’ strategies and payoffs. Experiments involving static graphs
[114], [94], [31], [34] show little evidence so far of a spatial benefit to cooperation.
There are a number of possible explanations: that the update rules used by subjects
do not support cooperation [30], [34], that subjects have a high rate of strategy ex-
ploration (analogous to mutation) [114], or simply that the payoff matrices used in
these experiments do not meet theoretically necessary thresholds for the success of
cooperation (e.g. b=c > k) [80]. In contrast, experiments involving dynamic net-
works with active partner choice [24], [79], [117], [40] show a significant benefit to
cooperation.

8. Outlook

Evolutionary game theory on graphs is a rich and elegant framework for studying how
spatial population structure affects the evolution of social behavior. The conditions
for evolutionary success are now well-understood for 2 � 2 games on graphs with
symmetry under weak selection. However, there are many open problems involving
asymmetric graphs, non-weak selection, and dynamic graphs. Identity-by-descent
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analysis, formalized via the IBD-enriched evolutionary Markov chain, is a powerful
tool for studying spatial evolutionary dynamics in the weak selection regime.

As we have seen, the choice of update rule significantly affects the outcomes of
evolutionary game competition. This has several implications for evolutionary theory.
When modeling a specific evolutionary scenario, the update rule should be carefully
chosen to correspond to the mechanisms of replacement in the population under study.
For more abstract investigations, it is important to consider a variety of update rules
in order to fully understand the evolutionary consequences of spatial structure. The
strong dependence on update rules also highlights the need for mathematically general
approaches to spatial evolution [106], [107], [4], [20], in which different update rules
can be considered under a common framework.
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initiative at Harvard University is supported by a grant from the John Templeton
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Appendix A. Proofs regarding identity-by-descent

Lemma 1. For 0 < u � 1, zM has a unique stationary distribution f�.s;�/g.s;�/.

For any states .s; �/ and .s0; �0/, limn!1 p
.n/

.s0;�0/!.s;�/
D �.s;�/. Any state .s; �/ with

�.s;�/ > 0 has the property that si D sj for any pair i; j 2 G with �ij D 1.

Proof. Let .s0; �0/ be the state in which s0
i D C for all i 2 G (all individuals have

type C) and �0ij D 0 for all i ¤ j (no two individuals are IBD). This state can be
reached from any other state in at most N steps (with each step involving a mutation
to type C). Thus zM has a single closed communicating class C containing .s0; �0/,
and all states not in C are transient. Thus zM has a unique stationary distribution,
supported in C . Since the probability of transition from .s0; �0/ to itself is nonzero,
the dynamics of zM restricted to C are aperiodic, proving the convergence claim.

For the third claim, we let � � fC; DgN � …G denote the set of states of zM

that satisfy the desired property. Transitions out of the set � have zero probability
according to the defined transition probabilities of zM. Thus all recurrent states of zM

are in �, proving the claim.

Lemma 2. For all 0 < u � 1 and n � 0,

q.n/ D p.n/ C �
q.nC1/ � p.n/q.1/

�
.1 � u/:

Proof. In the main text we showed that the qij satisfy the recurrence relations

qij D
´

1 if i D j ;
1�u

2

P
k2G.ekiqkj C ekj qki / if i ¤ j .

(22)
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Combining these with the definition of q.n/, Eq. (5), yields

q.n/ D 1

N

X
i;j 2G

p
.n/
ij qij

D 1

N

X
i2G

p
.n/
i i qi i C 1 � u

2N

X
i;j 2G
i¤j

X
k2G

p
.n/
ij .ekiqkj C ekj qki /

D p.n/ C 1 � u

2N

X
i;j;k2G

i¤j

p
.n/
ij ekiqkj C 1 � u

2N

X
i;j;k2G

i¤j

p
.n/
ij ekj qki :

We now examine the second term:

1 � u

2N

X
i;j;k2G

i¤j

p
.n/
ij ekiqkj D 1 � u

2N

X
j;k2G

� X
i2G

ekip
.n/
ij qkj � ekj p

.n/
jj qkj

�

D 1 � u

2N

� X
j;k2G

p
.nC1/

kj
qkj � p.n/

X
j;k2G

ekj qkj

�

D 1 � u

2

�
q.nC1/ � p.n/q.1/

�
:

By a similar argument, the third term is also equal to 1�u
2

�
q.nC1/ � p.n/q.1/

�
. This

completes the proof.

Lemma 3. For all 0 < u � 1 and i 2 G,

(i) Pr
ıD0

Œsi D Cjs0 D C; �0i D 1� D 1,

(ii) Pr
ıD0

Œsi D Cjs0 D C; �0i D 0� D 1
2
.

(iii) Pr
ıD0

Œsi D Cjs0 D C� D 1 C q0i

2
:

Proof. Claim (i) follows directly from Lemma 1. For Claim (ii), we consider the
function � W fC; DgN �…G ! fC; DgN �…G that switches the type of all individuals
not IBD to 0. That is, �.s; �/ D .Qs; �/ where, for all i 2 G,

Qsi D

8̂<
:̂

si if �i0 D 1,

C if �i0 D 0 and si D D,

D if �i0 D 0 and si D C.

Notice that the IBD relation � is unchanged by the action of �. Since types C and D
are interchangeable in the neutral drift (ı D 0) case, � commutes with the dynamics
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of zM in the sense that p�.s;�/!�.s0;�0/ D p.s;�/!.s0;�0/ for any pair of states .s; �/

and .s0; �0/. Turning now to stationary probabilities, Lemma 1 implies that for any
recurrent state .s; �/ of zM,

��.s;�/ D lim
n!1 p

.n/

�.s;�/!�.s;�/
D lim

n!1 p
.n/

.s;�/!.s;�/
D �.s;�/:

Thus stationary probabilities are also preserved by the action of �. It follows that
for each fixed i 2 G, the set f.s; �/ W s0 D C; �0i D 0; si D Cg has the same
stationary probability as the set f.s; �/ W s0 D C; �0i D 0; si D Dg, proving Claim
(ii). Finally, Claim (iii) follows from combining Claims (i) and (ii) with the definition
q0i D h�0i iıD0.

Lemma 12. For all 0 < u < 1 and i; j 2 G,

qij D Gij .1 � u/

G .1 � u/
: (23)

Proof. The stationary IBD probabilities qij are the unique solution to the recurrence
relations (22). We show that the quotients

˚
Gij .1 � u/

ı
G .1 � u/



i;j

satisfy these
recurrence relations and therefore are equal to fqij gi;j . By definition we have that
for i D j ,

Gij .1 � u/

G .1 � u/
D G .1 � u/

G .1 � u/
D 1:

In the case i ¤ j ,

1 � u

2

X
k2G

�
eki

Gkj .1 � u/

G .1 � u/
C ekj

Gki .1 � u/

G .1 � u/

�

D 1 � u

2G .1 � u/

� 1X
nD0

X
k2G

eikp
.n/

kj
.1 � u/n C

1X
nD0

X
k2G

ejkp
.n/

ki
.1 � u/n

�

D 1

2G .1 � u/

� 1X
nD0

p
.nC1/
ij .1 � u/nC1 C

1X
nD0

p
.nC1/
j i .1 � u/nC1

�

D Gij .1 � u/

G .1 � u/
:

Above, in equating
P1

nD0 p
.nC1/
ij .1 � u/nC1 with Gij .1 � u/, we have made use of

the fact that p
.0/
ij D 0 for i ¤ j , and thus the zeroth-order term of Gij .1 � u/ is zero.

Lemma 13. For all 0 < u < 1 and n � 0,

q.nC1/ D q.n/ � p.n/
�
G .1 � u/

��1

1 � u
: (24)
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In particular,

q.1/ D 1 � �
G .1 � u/

��1

1 � u
: (25)

The expected IBD probability for two vertices chosen randomly with replacement is

Nq D 1

Nu G .1 � u/
: (26)

Proof. We first obtain Eq. (25). For any vertex i , we write q.1/ as

q.1/ D
X
j 2G

eij qij

D 1

G .1 � u/

X
j 2G

eij Gij .1 � u/

D 1

G .1 � u/

1X
nD0

X
j 2G

eij p
.n/
ij .1 � u/n

D 1

.1 � u/ G .1 � u/

1X
nD0

p.nC1/.1 � u/nC1

D 1

.1 � u/ G .1 � u/

�
G .1 � u/ � 1

�

D 1 � �
G .1 � u/

��1

1 � u
:

This verifies Eq. (25). For the case n � 1, we rewrite Eq. (6) as

q.nC1/ D q.n/ � p.n/

1 � u
C p.n/q.1/:

Substituting for q.1/ from Eq. (25) yields Eq. (24). Eq. (26) is obtained by substituting
Eq. (25) into Eq. (7) and solving for Nq, or alternatively, by averaging Eq. (23) over
all j 2 G and using the series definition (17) for Gij .

Appendix B. Proofs regarding evolutionary success

Here we prove Theorem 4, which gives a general condition for evolutionary success
under weak selection. We begin by considering the stationary distribution of M

conditioned on both types being present. We recall that C and D denote the states of
M consisting of all C’s and all D’s, respectively. For any u; ı with 0 < u � 1 and
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ı � 0, the probability �sj…fC;Dg of a state s 2 fC; DgN n fC; Dg in this conditional
stationary distribution is given by

�sj…fC;Dg.u; ı/ D �s.u; ı/

1 � �C.u; ı/ � �D.u; ı/
:

Lemma 14. Let Mu;ı denote the evolutionary Markov chain with fixed game, graph,
and update rule, where the mutation rate 0 < u � 1 and selection strength ı > 0 are
allowed to vary. Then �sj…fC;Dg.u; ı/ extends uniquely to a smooth, rational function
of .u; ı/ 2 Œ0; 1� � Œ0; 1/.

Proof. We first note that, for all update rules considered here, the transition proba-
bilities ps!s0.u; ı/ of M are smooth, rational functions of .u; ı/ 2 Œ0; 1� � Œ0; 1/.

Allen and Tarnita showed in the proof of Theorem 3 of [4] that, for all .u; ı/ 2
.0; 1� � Œ0; 1/, the �sj…fC;Dg are stationary probabilities for a reduced Markov chain
Mj…fC;Dg on fC; DgN n fC; Dg. The transition probability between states s and s0 of
Mj…fC;Dg is

ps!s0.u; ı/ C ps!C.u; ı/rC!s0.u; ı/ C ps!D.u; ı/rD!s0.u; ı/:

Above, rC!s0.u; ı/ (resp., rD!s0.u; ı/) denotes the probability that, from initial state
C (resp., D), the first excursion from the set fC; Dg is to s0. Thus the conditional
stationary probabilities �sj…fC;Dg are the unique solution to the finite system of equa-
tions

�sj…fC;Dg.u; ı/ D
X

s0j…fC;Dg
�s0j…fC;Dg.u; ı/ (27)

� �
ps0!s.u; ı/ C ps0!C.u; ı/rC!s.u; ı/ C ps0!D.u; ı/rD!s.u; ı/

�
:

It follows (e.g., from Cramer’s rule) that the conditional stationary probabilities
�sj…fC;Dg are smooth, rational functions of .u; ı/ 2 .0; 1� � Œ0; 1/.

It only remains to understand how these conditional stationary probabilities behave
as u ! 0. We therefore consider the limit of the system (27) as .u; ı/ ! .0; ı0/

for some ı0 � 0. We note that transitions from state D to a state s ¤ D occur
with probability of order um, where m is the number of C’s in s (i.e., the number of
mutations required for this transition). So as .u; ı/ ! .0; ı0/, transitions out of D
become dominated by those going into states with exactly one C. By symmetry, each
of these states is equally likely to arise from such a transition. It follows that

lim
.u;ı/!.0;ı0/

rD!s.u; ı/

D 
C
s �

´
1
N

if 9i such that si D C and sj D D; 8j ¤ i ,

0 otherwise.
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Similarly,

lim
.u;ı/!.0;ı0/

rC!s.u; ı/

D 
D
s �

´
1
N

if 9i such that si D D and sj D C; 8j ¤ i ,

0 otherwise.

Let �.t/, defined for t > 0, be a path in .0; 1��Œ0; 1/ with limt!0 �.t/ D .0; ı0/.
Substituting �.t/ for .u; ı/ in (27) and taking the limit t ! 0, we obtain

lim
t!0

�sj…fC;Dg
�
�.t/

� D
X

s0j…fC;Dg
lim
t!0

�s0j…fC;Dg
�
�.t/

�
(28)

� �
ps0!s.0; ı0/ C ps0!C.0; ı0/ 
D

s C ps0!D.0; ı0/ 
C
s

�
:

Allen and Tarnita [4] (Proof of Theorem 3) show that the system of equations (28) can
be solved uniquely for flimt!0 �sj…fC;Dg.�.t//g. Since the coefficients of this system
do not depend on the path � , the limit lim.u;ı/!.0;ı0/ �sj…fC;Dg.u; ı/ is well-defined
(i.e., independent of the path � ).

Theorem 4. Consider the family of evolutionary Markov chains Mu;ı with fixed
game, graph, and update rule, where the mutation rate 0 � u � 1 and selection
strength ı > 0 are allowed to vary. Then

(1) Strategy C is favored for fixed u > 0, in the sense that hxiu;ı > 1=2 for all
sufficiently small ı > 0, if and only if

�
@
�
.1 � u/b0 � d0

�
@ı

	
ıD0
s0DC

> 0: (29)

(2) Strategy C is favored in the sense that hxiu;ı > 1=2 for all sufficiently small
u > 0 and ı > 0 if and only if

lim
u!0

�
@.b0 � d0/

@ı

	
ıD0
s0DC

> 0:

(3) Strategy C is favored for u D 0, in the sense that �C > �D for all sufficiently
small ı > 0, if and only if

lim
u!0

�
@.b0 � d0/

@ı

	
ıD0
s0DC

> 0:

Proof. Claim (1) is proven by Nowak et al. in [67] (Appendix A, Theorem 2). For
Claim (2), we observe that the bracketed quantity in the left-hand side of (29) is zero
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for s 2 fC; Dg; thus the expectation of this quantity is unchanged if it is taken over
the conditional stationary distribution f�sj…fC;Dgg instead of the stationary distribution
f�sg. Claim (2) now follows from Lemma 14, i.e., from the fact that the left-hand side
of (29) is a rational function of .u; ı/ that is smooth at .0; 0/ according to Lemma 14.
Finally, Claim (3) follows from combining Claim (2) with Theorem 6 of [4].
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