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Abstract. Polyfold theory was developed by Hofer–Wysocki–Zehnder by finding commonalities
in the analytic framework for a variety of geometric elliptic PDEs, in particular moduli spaces of
pseudoholomorphic curves. It aims to systematically address the common difficulties of “com-
pactification” and “transversality” with a new notion of smoothness on Banach spaces, new local
models for differential geometry, and a nonlinear Fredholm theory in the new context. We shine
meta-mathematical light on the bigger picture and core ideas of this theory. In addition, we compiled
and condensed the core definitions and theorems of polyfold theory into a streamlined exposition,
and outline their application at the example of Morse theory.
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1. Introduction

One of the main tools in symplectic topology is the study of moduli spaces of pseudo-
holomorphic curves. Roughly speaking, one thinks of such a moduli space M as a
set of equivalence classes of smooth maps which satisfy the Cauchy–Riemann equation,
N@Ju WD

1
2
.duC J ı du ı j / D 0, where two maps u and v are equivalent provided there

exists a holomorphic automorphism � of the domain such that u D v ı �. Addition-
ally, one may wish to consider one or more standard modifications, like considering an
inhomogeneous Hamiltonian term, Lagrangian boundary conditions, point constraints, or
punctures with specified asymptotics. In most applications, one would like to associate
to such a moduli space a “compact regularization,” denoted M0, that is a compact mani-
fold/orbifold, possibly with boundary and corners, and that is unique up to the appropriate
notion of cobordism. Indeed, such a rich geometric structure, in which boundary strata are
related to lower dimensional components of other moduli spaces, is precisely what gives
rise to the rich algebraic structures appearing in applications such as Floer complexes [15]
and Symplectic Field Theory [13].

The current constructions of such regularized moduli spaces M0 all use essentially
similar ingredients: The Cauchy–Riemann equation is cast as a Fredholm problem, a
compactness theorem is proven in which the description of convergence to a “broken”
or “nodal” curve is provided, a gluing theorem is proven in which smooth curves are
constructed from the broken or nodal curves, and the issue of transversality is resolved in
order to obtain a smooth structure. Due to the length and technical complications that arise
in such a program, very few moduli space constructions in the literature are technically
complete. In fact, such completeness is often undesirable since it would lead to countless
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repetitions of “standard techniques” in slightly different settings, which would hide the
main ideas. On the other hand, subtle problems are easily overlooked when proofs merely
refer to techniques of other papers which are not complete either.

The polyfold theory, developed by H. Hofer, K. Wysocki, and E. Zehnder, aims to
provide an analytic framework within which technically complete proofs can be given in a
compact and instructive way. Additionally, the theory comes with a collection of “building
block” results which allow the theory to rapidly extend from a few model cases to a large
variety of different setups. The most important pair of features, perhaps, is the abstract
perturbation scheme and implicit function theorem which together resolve the transversal-
ity problem at a completely abstract functional-analytic level: Any compact moduli space
that admits a description as the zero set of a “Fredholm section of a polyfold bundle” can
be perturbed within this ambient space as if it was the zero set of a smooth section in a
finite dimensional bundle. Such a perturbation scheme then yields a natural representation
of the moduli space as a cobordism class of smooth, finite dimensional, closed manifolds –
in the case of trivial isotropy and empty boundary. In the case of nontrivial isotropy, which
is analogous to perturbing a section of an orbi-bundle, a multi-valued perturbation scheme
yields a cobordism class of weighted branched orbifolds.1 In cases involving boundary
(and corners), polyfold theory offers a relative perturbation scheme that allows one to
restrict the support of perturbations to a neighbourhood of the non-transverse part of the
moduli space (in practice often a complement of the boundary). This essentially reduces
the challenge of constructing “coherent perturbations”2 to ensuring that the combinatorics
of the gluing operations would allow for coherent perturbations if all involved moduli
spaces were cut out by smooth sections of finite dimensional bundles.

Let us briefly sketch the two core analysis issues for achieving such a powerful ab-
stract perturbation scheme, and how polyfold theory arises naturally as a means to resolve
these issues directly rather than circumvent them. Firstly, the reparametrization action
.�; u/ 7! u ı � by nondiscrete3 families of automorphisms � on an infinite dimensional
space of maps u is not classically differentiable in any usual Banach topology. (See
e.g. Example 2.4 and [53] for discussions of this phenomenon.) Hence a moduli space of
pseudoholomorphic curves is classically described by first giving the space of pseudoholo-
morphic maps a smooth structure by finding an equivariant (!) transverse perturbation,
and then quotienting this finite dimensional space by the — then smoothly acting —
reparametrizations. Such perturbations exist in many cases, e.g. by variation of the al-
most complex structure J , but in general transversality and equivariance are contradictory
requirements. These requirements can be achieved simultaneously for pseudoholomor-
phic maps only under significant geometric control of the maps — usually some type of
injectivity.

1Weighted branched orbifolds are a mild generalization of closed manifolds in the sense that they still have
natural fundamental classes, just with rational coefficients.

2Coherence of perturbations with gluing operations is a core requirement for all Floer-type theories arising
from moduli spaces (except for Gromov–Witten theory). The reason is that these theories not only construct
algebraic structures (e.g. a Floer differential @) from moduli spaces, but also deduce their algebraic properties
(e.g. @ ı @ D 0) by identifying the boundary of each moduli space with fiber products of other moduli spaces.

3Standard examples are the action of PSL.2;C/ on the space of maps u W CP 1! X via reparametrization,
or the action of R on the space of maps 
 W R! X via reparametrization.
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The novel approach of polyfold theory to this issue is to replace the classical notion
of differentiability with a new notion of scale differentiability. This allows one to give a
scale smooth structure to the infinite dimensional space of reparametrization-equivalence-
classes of maps, and it also allows one to express the Cauchy–Riemann operator as a
section over this space in such a way that the zero set of this section is precisely the moduli
space. Perturbations of this section then only need to be scale differentiable rather than
equivariant. On the other hand, this yields a new notion of smoothness that is sufficiently
strong for zero sets of transverse scale smooth sections to inherit a smooth structure in the
classical sense.

Secondly, almost all moduli spaces of pseudoholomorphic curves with regular do-
mains4 require a compactification by “nodal” or “broken” curves, which are described as
pseudoholomorphic maps from singular domains5. This precludes any description of the
compactified moduli space as a subset of a single Banach manifold of maps. Classically,
this compactification is constructed by gluing theorems after transversality is achieved.
This raises nontrivial difficulties for each newmoduli space problem— in particular, when
families of curves must be glued to form the boundary of moduli spaces of dimension
two or more. Here the novel notion of an sc-retract or splicing core (which formalize the
pregluing construction) allows polyfold theory to build ambient spaces of (equivalence
classes of) maps in which maps with singular domains have neighborhoods of maps with
both singular and regular domains. In fact, nodal curves in Gromov–Witten theory be-
come smooth interior points of an ambient space that consists of nodal and non-nodal
equivalence classes of maps that may or may not satisfy the PDE. Then part of the gluing
analysis is formalized as a Fredholm condition on the Cauchy–Riemann operator at nodal
curves, and other parts are replaced by an abstract implicit function theorem for Fredholm
sections over sc-retracts.

Together, these two ideas generate a fundamentally new version of nonlinear Fredholm
theory, which is stronger than the classical theory in that it includes an abstract perturbation
scheme in addition to an implicit function theorem. Furthermore, it is more flexible
in that it is expected to admit a description of any compactified moduli space M of
pseudoholomorphic curves as the zero set of a single “scale smooth Fredholm section”
Q� W eB ! eE in a “polyfold bundle” eE ! eB. Once such a description is given, the
abstract transversality package is a direct generalization of finite dimensional differential
geometry. More specifically, after verifying that Q��1.0/ is compact, one knows that there
exist arbitrarily small perturbations p W eB ! eE such that Q� C p is transverse to the zero
section; the zero set of such a perturbed section M0 WD .Qs C p/�1.0/ is a compact, finite

4Throughout, we will call the domain of a pseudoholomorphic map or curve “regular” if it is a smooth,
connected Riemann surface. Here “curve” stands for “map modulo reparametrization of the domain”, see
Remark 1.2. We will refer to the corresponding curves as “non-nodal” / “unbroken” or “smooth” since regularity
for maps or curves usually refers to surjectivity of the linearized Cauchy–Riemann operator.

5Throughout, we will call the domain of a pseudoholomorphic map or curve “singular” if it is not regular.
For example, the domain of a map representing a “nodal curve” consists of several connected Riemann surfaces
together with marked points which indicate the nodes at which the pseudoholomorphic map is required to satisfy
incidence conditions between pairs of marked points. For a “broken curve” the underlying domain is of the same
kind, but the marked points are considered as punctures at which the map generally doesn’t extend continuously
but has a certain asymptotic behaviour, with limits that are required to satisfy incidence conditions between pairs
of punctures.
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dimensional manifold (or orbifold, and possibly with boundary and corners); and the zero
sets for any two such perturbations are cobordant in the appropriate sense.

Hence one benefit of the polyfold approach is that the perturbation theorem sketched
above does not depend on specific properties of the moduli problem under study, but rather
it holds abstractly in the category of polyfolds. Consequently, the resolution of the difficult
transversality problem for moduli spaces is reduced to the simpler task of showing that the
moduli problem fits into the polyfold framework. On the other hand, a drawback of the
polyfold approach is that one must become at least minimally familiar with the language,
the new differentiable structures, and the basic results of the theory, which are dispersed
across many articles and hundreds (if not yet thousands) of pages written by H. Hofer,
K. Wysocki and E. Zehnder [25, 26, 30–39,41, 42].

As such, the goal of this paper is to distill the theory down to a few essential elements,
and to present these core ideas and suggested applications to any reader who wonders how
a moduli space is constructed from a differential equation and who knows what a Banach
space is. Furthermore, this should empower such a reader to evaluate the benefits and
applicability of polyfold theory, and provide the basics for dealing with this theory. More
specifically, those who do not usually touch a differential operator themselves should
be enabled to make sense of moduli space constructions written in polyfold language.
Readers who are considering applying polyfold theory in their own work should obtain
a road map, which should allow them to efficiently compile details from the large body
of work of Hofer–Wysocki–Zehnder — henceforth abbreviated by HWZ — with little
additional technical work. For that purpose this article is divided into the following two
parts, which are mostly independent of each other and may be of interest to different
readers.
I Meta-mathematics. This section provides some polyfold philosophy. We loosely de-
scribe the key elements of the theory, and we compare the polyfold approach to other
currently used approaches (namely “geometric” and “virtual”) by providing a road map
for each.
II Mathematics. This section provides the core definitions which are presented in a
streamlined fashion so that we may state the abstract transversality result as quickly as
possible. For several key ideas we present companion examples to illustrate either the
concept or its necessity in the theory.

For the sake of brevity, we restrict our presentation to the theory of M-polyfolds,
which deals with the case of the automorphism group acting freely (i.e. the case of
trivial isotropy) and yields solution spaces which have the structure of a manifold. The
most essential new concepts of polyfold theory are already contained in this part and
are best presented without the algebraic distraction of additional discrete group actions
(i.e. nontrivial isotropy). In cases of nontrivial discrete stablizers, the ambient space can
then be described as a polyfold — a groupoid whose spaces of objects and morphisms are
M-polyfolds — and transverse multisections of a polyfold bundle give the moduli spaces
the structure of a branched weighted orbifold. The latter ideas for dealing with discrete
symmetries have already been well established in the literature. The crucial new input is
the transversality package for M-polyfolds, which can be directly applied to polyfolds; see
Remark 2.7.
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The approaches and technical ingredients for moduli space problems discussed here
build on the shoulders of many researchers, in particular Donaldson, Floer, Fukaya,
Gromov, Hofer, Joyce, Li, Liu, McDuff, Oh, Ohta, Ono, Ruan, Salamon, Siebert, Taubes,
Tian, Wysocki, Zehnder. In order to neither offend nor misrepresent, we have decided to
not attempt to provide systematic citations except for elements of polyfold theory.

Acknowledgements. These notes grew out of a working group organized by the first
three authors at MSRI in fall 2009. We would like to thank this working group as well as
Helmut Hofer for their great help and stimulating discussions. Further useful comments
were provided by Sonja Hohloch, Urs Fuchs, Chris Wendl, participants of the 2014 “ECH
& Polyfolds” seminar at UC Berkeley, and the referee.

Part I. Traversing transversality troubles

In this meta-mathematical part, we will share our insights on the approaches to the
regularization of moduli spaces that are currently present in the literature. The main
goal here is to clarify the origin and novelty of the polyfold approach and show how a
different ordering of basic ingredients (implicit function theorem, quotient, gluing) results
in a more organized and automated theory of transversality. While we will not explicitly
discuss any concrete constructions, we encourage the readers to interpret all general
discussions in their favorite specific setting and then make appropriate adjustments to our
vague formulations. For instance, the discussion that follows can be adapted to Gromov–
Witten theory, various versions of Floer homology, various versions of contact homology,
Symplectic Field Theory, and other moduli space problems as well. In order to maximize
accessibility of the discussion that follows, we will useMorse theory as a common ground.
Of course, polyfolds are not needed to resolve transversality issues that arise in Morse
theory, however polyfolds do indeed apply to Morse theory, and the simplicity of such an
analytic setup will help to illuminate the core ideas arising in the polyfold theory.
Example 1.1 (CompactifiedMorsemoduli space). TheMorsemoduli spaceM consists of
trajectories between any pair of critical points of the gradient vector field of a Morse func-
tion f W X ! R on a Riemannianmanifold .X; g/. That is,M is made up of gradient flow
lines, i.e. maps 
 W R! X satisfying the gradient flow equation d

dt 
 � rf D 0 modulo
the automorphismgroupRwhich acts by shifts .s; 
/ 7! 
.sC�/. The compactificationM
of this moduli space consists of broken trajectories, which are tuples Œ
1�; : : : ; Œ
k � 2M
of any length k � 1 with matching limits limt!�1 
i�1.t/ D limt!1 
i .t/.
Remark 1.2 (Terminology). We will use the following terminology: A trajectory Œ
� is an
equivalence class of maps 
 W R! X , where Œ
1� D Œ
2� iff 
1.�/ D 
2.s0 C �/ for some
s0 2 R; a gradient trajectory or a flow line is a trajectory for which each representative
solves the gradient equation d

dt 
 D rf .
/. Similarly, a curve is an equivalence class
of triples .†; j; u/, where u W .†; j / ! X , and Œu1� D Œu2� iff u2 ı � D u1 for a
biholomorphism � W .†1; j1/ ! .†2; j2/; a pseudoholomorphic curve with respect to
some almost complex structure J onX is then a curve such that each representative solves
the Cauchy–Riemann equation N@Ju D 0.
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Remark 1.3 (Conventions). It will be convenient to distinguish betweenN D f1; 2; 3; : : :g
and N0 WD f0g [ N. More importantly, Ck.�;RN / for a Riemannian manifold � will
always denote the Banach space of k-fold continuously differentiable maps u W �! RN .
In particular, if � is noncompact, then we explicitly require any u 2 Ck.�;RN / to have
bounded derivatives up to order k, and we equip this space with the Ck-norm rather than
the Ckloc-topology. Similarly, for a Riemannian manifold X , we denote by Ck.�;X/ the
Banach manifold of maps u W �! X whose derivatives are bounded up to order k, and
whose image is precompact. It is equipped with the Ck-topology and modeled on the
Banach space Ck.�;RN / for N D dimX .

2. The essence of polyfolds

In this sectionwe discuss some of the foundational issues that arise in attempts to regularize
moduli spaces, and we provide a broad picture of polyfold theory via comparison to a
finite dimensional regularization theorem. In Sections 2.2 and 2.3 we then provide an
overview of the two fundamentally new concepts of scale calculus and sc-retractions on
which polyfold theory builds.

2.1. Some broad strokes. We begin by comparing the analytic framework of a typical
moduli space problem to a familiar problem in finite dimensions. In order to obtain an
efficient transversality theory for a given moduli space M, we aim to build an ambient
space B, a vector bundle over this space E ! B, and a section � W B! E so that the zero
set ��1.0/ ŠM represents the moduli space as a subset of the ambient space B.

Given such a description, we intuitively expect an implicit function theorem to equipM
with a smooth structure whenever the section � is transverse to the zero section of E ; and
we hope to achieve this transversality by some dense set of perturbations of � , with
the resulting regularized moduli space essentially independent of this choice. In finite
dimensions, this intuition is in fact valid and it can easily be made precise:
Theorem 2.1 (Finite dimensional regularization). Let E ! B be a smooth finite dimen-
sional vector bundle, and let s W B ! E be a smooth section such that s�1.0/ � B

is compact. Then there exist arbitrarily small, compactly supported, smooth perturba-
tion sections p W B ! E such that s C p is transverse to the zero section, and hence
.s C p/�1.0/ is a smooth manifold. Moreover, the perturbed zero sets .s C p0/�1.0/ and
.s C p/�1.0/ of any two such perturbations p; p0 W B ! E are cobordant.

Remark 2.2. At this point we can explain our notions of regularization and transversality.
The latter is a fixed and rigorous mathematical notion, and in this case it is the assertion
that at any solution x 2 .s C p/�1.0/ the image of the differential dx.s C p/ projects
surjectively to the fiber Ex . By the implicit function theorem, this equips .s C p/�1.0/
with a smooth structure, and it is customary to refer to the existence of a class of such
transverse perturbationsp as transversality. However, transversality does not yet guarantee
compactness of .s C p/�1.0/ or its uniqueness up to cobordism. It is this package
— the existence of a class of perturbations p 2 P , whose compact smooth zero sets
Mp WD .s C p/�1.0/ are unique up to cobordism — which we call the regularization
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of the solution space s�1.0/. More precisely, this allows us to associates to a possibly
rather singular space s�1.0/ DM (in practice this is the moduli space) the more regular
object of a cobordism class ŒM� WD ŒMp�. This regularization of M is independent of
the choice of perturbation p 2 P due to the existence of cobordisms Mp �Mq for any
other q 2 P .

The aim of this section can then be stated as the discussion of possible generalizations
of Theorem 2.1 that could provide an efficient regularization theory for moduli spaces.
Before doing this however, let us highlight two limitations of the finite dimensional
regularization theorem.

� Neither Theorem 2.1, nor any direct generalization of it provides equivariant
transversality. That is, if the section � is equivariant under a group action, then one
generally cannot require the transverse perturbation p to be equivariant as well. One
notable exception is the case of a finite group action, in which case one can generally find
transverse equivariant multisections. For nondiscrete groups, equivariance and transver-
sality are — except for rather special circumstances — nearly contradictory requirements.

� While transversality for perturbed sections can still be achieved if ��1.0/ is non-
compact, one cannot expect regularization. More specifically, our notion of regularization
demands not just transverality, but also uniqueness of the cobordism class of the zero
set of the perturbed moduli space, and such uniqueness is not obtained in general if the
unperturbed solution set is not compact.

For the application to moduli spaces, it is crucially important that the perturbed
zero set be regularized in the above manner because the topological invariants arising
from the moduli spaces are usually obtained by counting6 elements in the perturbed
solution space. For example, one counts gradient flow lines modulo translation to define
the differential in Morse homology, and a count of closed pseudoholomorphic curves
(i.e. pseudoholomorphic maps modulo reparametrization) defines the Gromov–Witten
invariants. This also points to the significance of equivariance: A generalization of
Theorem 2.1 would have to provide equivariant transversality if it was to be applicable to
the classical description of these moduli spaces in terms of equivariant sections. In order
to demonstrate this in an example, we return to Morse theory as a common ground and
recall its classical equivariant setup.

Example 2.3 (Equivariant setup for Morse theory). LetX be a closed smooth manifold of
positive dimension, let f W X ! R be a Morse function, and let g be a Riemannian metric
on X . The flow lines of the gradient vector field rf on X are the solutions 
 W R! X

of P
�rf .
/ D 0. Since these solutions are automatically smooth, there are many choices
of bundles E ! B so that �.
/ WD P
 � rf .
/ defines a section � W B ! E whose zeros
are the gradient flow lines. The regularization approaches discussed in §3 all require a
Fredholm setup — i.e. a choice of Banach manifold B and Banach bundle E ! B so that
the linearizations D
� W T
B ! E
 at solutions �.
/ D 0 are Fredholm operators. This
is generally achieved by working in suitable Sobolev spaces, but the expository purposes

6More generally one seeks to pull back differential forms from a target manifold X and integrate them over
the moduli space, which need not be well defined if the moduli space is not compact.
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of this section are better served by considering the simplified setup7

B D
˚

 2 C1.R; X/

ˇ̌
lim

s!˙1

.s/ 2 Crit.f /

	
; E D

S

2B E
 ; E
 D C0.R; 
�TX/:

Observe that if 
 2 B and �.
/ D 0, then for each s 2 R we also have �.�.s; 
// D 0,
where � is the translation action (often also called shift map)

� W R � C1.R; X/! C1.R; X/ given by �.s; 
/ WD 
.s C �/: (1)

Since the automorphism group Aut D R is non-compact, we must conclude that ��1.0/
is non-compact, unless it only consists of fixed points of the action, i.e. constant maps.
The moduli space of unbroken Morse trajectories is then defined as the quotient M WD

��1.0/=Aut of the zero set by this reparametrization action.
Similar to the above example, most (not yet compactified) moduli spaces of pseu-

doholomorphic curves have a description as quotient M WD ��1.0/=Aut of an Aut-
equivariant section � W B ! E over a Banach manifold B of maps (and often additional
parameters describing a variation of domain or equation), on which a Lie group Aut acts
by reparametrizations. We cannot expect any general regularization theory such as Theo-
rem 2.1 to apply to this type of setup for two reasons related to the limitations discussed
above:

� We are ultimately interested in the space M D ��1.0/=Aut of solutions modulo
reparametrization, so in order to be able to quotient the perturbed zero set by Aut, the
perturbation p in Theorem 2.1 would have to be Aut-equivariant.

� The automorphism group Aut, such as Aut D R in the above example, is usually
non-compact, and the moduli space does not just consist of fixed points of Aut, hence
��1.0/must be non-compact. Furthermore, even if Aut was compact, then in all nontrivial
examples the appearance of nodal (or broken) curves (or trajectories) is an additional source
of non-compactness.
However, in any general setup, even the finite dimensional theory provides neither equiv-
ariant transverse perturbations nor a regularization of non-compact zero sets. As such,
approaches to regularize moduli spaces split into several basic types:

� The geometric approach, discussed further in Section 3.1, makes use of special
geometric properties of a givenmoduli problem to find transverse equivariant perturbations
of a section with noncompact zero set. However, this only yields transversality; that
is, one still must construct a compactification and prove uniqueness up to cobordism,
and this additional work may require new ideas and substantial effort. The only major
abstract theorem used in this approach is the classical Sard–Smale theorem (where regular
points yield transversality) applied to manifolds of maps of a fixed domain, and hence it
cannot regularize moduli spaces in which the topology of the domain changes abruptly.
Consequently, such geometric approaches are not analagous to Theorem 2.1, since the
latter simultaneously yields transversality, compactness, and uniqueness.

7Note that the section in this simplified setup is generally not Fredholm since e.g. forX D R=Z and f D 0
the image of the linearized section f� 2 C1.R;R/ j lims!˙1 �.s/ D 0g ! C0.R;R/; � 7! P� does not
contain any C0-function � W R! R with divergent indefinite integral

R1
0 �.s/ ds or

R 0
�1 �.s/ ds.
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� Any abstract approach via some type of generalization of Theorem 2.1 must work
in a setting where the unperturbed solution space is compact and no further nondiscrete
symmetry of the perturbation is required. We roughly classify such approaches by the
dimensionality of the bundles involved:

– Several types of virtual approaches, which we discuss further in Section 3.2, work
with a highly generalized version of Theorem 2.1 for finite dimensional bundles over
groupoid-like structures or topological spaces with merely local smooth structures.

– The polyfold approach works with a direct generalization of Theorem 2.1 to infinite
dimensional bundle-like linear structures over infinite dimensional manifold-like
spaces with a global smooth structure.

Since the polyfold approach aims to be a unified perturbation theory for a broad class of
moduli problems, it must develop a regularization theory that directly applies to sections
of a bundle over the space B=Aut, and, in so doing, it removes the requirement that
perturbations must be equivariant (since Aut does not act on B=Aut). This is then one
step closer to a setting in which the unperturbed solution space ��1.0/ is compact, and
hence a full regularization theory can be hoped for, however doing analysis directly on
the space B=Aut raises a serious difficulty. We take a moment to highlight the failure of
differentiability of the action of reparametrization in the example of Morse theory.

Example 2.4 (Differentiability of translation action). In the notation of Example 2.3,
the development of a regularization theory would require some type of smooth structure
on the space B=Aut of C1-paths 
 W R ! X between two critical points, modulo the
reparametrization action of Aut D R. However, the translation action of R on C1.R; X/,
given by � in equation (1), is nowhere differentiable with respect to the C1-norms. At
first, one might think that � is differentiable at points .s0; 
0/ 2 R � C2.R/; for example,
at .0; 
0/ the differential, were it to exist, would necessarily be given by

“D.s0;
0/�“ W R � C1.R; 
�0 TX/ �! C1.R; 
�0 TX/
.S; �/ 7�! S d

dt 
0 C �:

Note here that the right hand side takes values in C1 only if 
0 is C2, so that this linear
operator is not even defined for 
0 2 C1.R/ n C2.R/. Moreover, the definition of the
directional derivative in a fixed direction .S; �/ 2 R � C1.R/ requires a linear approx-
imation estimate, which holds only if maxs2R

ˇ̌
P�.s C h/ � P�.s/

ˇ̌
! 0 as h ! 0. Con-

sequently, directional derivatives only exist in directions � whose derivative is uniformly
continuous, e.g. � 2 C2.R/. Similarly, the linear estimate required for differentiability,
maxk�kC1D1



 P�.� C h/ � P�.�/


1
! 0 as h ! 0 fails at any .s0; 
0/, so that the above

linear operator only provides directional derivatives in certain directions, and can never
be viewed as differential of � . Hence the best that can be said about differentiability
of � is that it is continuously differentiable as map R � C2 ! C1, and generally k-fold
continuously differentiable as map R � CkC` ! C`. For more details see Section 2.2.

Another idea might be to restrict � to the space of smooth paths and use a different
Banach topology. Note however that the restricted shift map is still not continuously



Polyfolds: A first and second look 141

differentiable in any standard Banach norm, since, for example, the potential differential

R � C1.R; X/ �! Hom
�
R � C1.R; 
�0 TX/; C1.R; 
�0 TX/

�
.s0; 
0/ 7�! “D.s0;
0/�“

is not continuous in the operator topology with respect to any fixed Hölder or Sobolev
norms on the spaces C1.R; X/ and C1.R; 
�0 TX/. In fact, this would in particular
require continuity of the map 
0 7! d

dt 
0, which, with the Arzelà–Ascoli theorem in mind,
is plausible only on finite dimensional subspaces of C1.R; X/.

Other moduli problems share this same difficulty: The reparametrization action of a
smooth family of automorphisms on a Hölder or Sobolev space of maps is not smooth in
a classical sense. The general consequence of this failure is that one cannot appeal to an
abstract slice theorem to obtain a Banach manifold structure on B=Aut.
Remark 2.5 (Local slices for maps modulo reparametrization). One may argue that,
despite its differentiability failure, the translation action in Example 2.3 of Aut D R on
B � C1.R; X/ nevertheless has local slices: for any hypersurfaceH � X , let UH � B be
the open set of maps 
 2 B which intersect H both transversely and exactly once. Then
BH D f
 2 UH

ˇ̌

.0/ 2 H g is a Banach manifold homeomorphic to UH=Aut. This

yields Banach manifold charts for B=Aut in the Morse theory example8 and similarly for
all other reparametrization actions encountered in moduli spaces of holomorphic curves.
However, the transition maps between these charts are generally only continuous. Indeed,
for any other hypersurface H 0 � X , the transition map BH \ UH 0 ! BH 0 is of the form

 7! �.s
 ; 
/, where s
 2 R is determined by 
.s
 / 2 H 0. Example 2.4 shows that maps
of this type are not continuously differentiable unless s
 is constant.

ForMorse theory, one can avoid transitionmaps by reducingB to a small neighborhood
of the gradient flow lines. Then a regular level set of the Morse function can serve as
global hypersurface, since any map C1-close to a gradient flow line will have a unique,
transverse intersection with it. In general, however, such global hypersurfaces are rare, and
newmethods would be needed to show that the resulting algebraic invariant is independent
of their choice.

We conclude from the preceeding discussion that B=Aut usually has geometrically
constructed local slices, but the differentiability failure of the reparametrization action of
Aut obstructs the construction of a global smooth structure. The manner in which polyfold
theory resolves this difficulty constitutes one of the fundamentally new concepts of the
theory: A scale calculus of scale differentiable maps between scale Banach spaces; we
introduce this notion in more detail in Section 2.2. It has several crucial properties:

(i) In finite dimensions the scale calculus agrees with the classical calculus.
(ii) The chain rule holds.
(iii) It provides a framework in which reparametrization actions on infinite dimensional

function spaces, such as the translation action (1), are scale smooth.

8Strictly speaking, one has to restrict to a neighborhood of theMorse trajectories to ensure unique intersection
points, or one can use a more subtle slicing for the space of all nonconstant maps. Moreover, Banach charts in
the strict sense are obtained by composition with charts for BH . See Example 4.22 for details.
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At this point polyfold theory gives B=Aut the structure of a scale manifold. This is
essentially achieved in two steps, the first of which is to enrich the smooth structure on the
local slices BH to a scale structure. Roughly speaking, this scale structure is a sequence of
Banach spaces (e.g. Sobolev or Hölder spaces of increasing regularity) that are compactly
and densely embedded into nested subspaces of BH . The second step is then to modify the
notion of smoothness for the transition maps between the local slices by weakening it to
scale smoothness, which requires only slightly more than k-fold differentiability between
the Banach topologies in the scale sequence of distance k. Nevertheless, the resulting
scale calculus for scale manifolds is rich enough to establish a regularization theorem
along the lines of Theorem 2.1 for suitably defined scale smooth Fredholm sections with
compact zero set.

We note however, that this scale regularization still does not even apply to our Morse
theory example. Indeed, the trouble is that the space of Morse trajectories is non-compact
due to trajectory breaking.9 Similarly, most pseudoholomorphic curve moduli spaces are
compactified by adding nodal or broken curves. In either case, the ambient space B=Aut
has to be enlarged by fiber products of similar spaces in order to obtain an ambient spaceeB
on which a generalized Cauchy–Riemann operator can provide a sectione� whose zero sete��1.0/ DM is the compactified moduli space. The topology on these enlarged ambient
spaces is given by the images of open sets under a pregluing map, which roughly has the
form

˚ W .R0;1� � B � B �! eB :
In theMorse theory example this map joins the two domainsRtR into a single domainR,
and it interpolates between shifts of the two maps that are determined by the gluing
parameter in .R0;1�; here a gluing parameter equal to 1 corresponds to the broken
trajectories in eB. At this point, the natural expectation is to also use this pregluing map
(after fixing local slices BH � B of the Aut-action) as a chart map for the ambient spaceeB
near a broken trajectory. However, such pregluing maps are never injective. In fact, their
kernel varies with the gluing parameter, and only the broken trajectories are parametrized
uniquely. Polyfold theory resolves this issue by the second fundamentally new concept
of the theory: a differential geometry based on charts from retraction images, which we
introduce in more detail in Section 2.3. Roughly speaking, this allows one to view the
pregluing map as a chart map for an M-polyfold by enriching it with a scale smooth
retraction � on its domain so that the pregluing map ˚jim� restricted to the retraction
image10 is a homeomorphism to an open subset of eB. Diagrammatically we have

.R0;1� � BH � BH
˚ //

�
����

eB
im �
* 
 ˚jim�

77

9For example, a sequence of trajectories between critical points of Morse indices 0 and 2 may converge,
in the Gromov–Hausdorff topology on the images, to a broken trajectory comprised of one trajectory from the
index 0 to an index 1 critical point, and another trajectory from this index 1 to the index 2 critical point.

10Here the fact that this image of � is a topological retract of the domain of � has no significance; however
the retraction property � ı � D � is crucial for the development of scale calculus on these images.
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where
� .R0;1� is the space in which the gluing parameter is allowed to vary;
� BH is a local model for the unbroken trajectories; i.e. B=Aut;
� eB is the space of broken and unbroken trajectories;
� ˚ is the pregluing map;
� � is the sc-smooth retraction mapping to and from .R0;1� � BH � BH ;
� im� is the image of � which is contained in .R0;1� � BH � BH , and it serves as

local model for an M-polyfold;
� ˚

ˇ̌
im� is the pregluing map restricted to the image of the retraction, and it serves as

chart map; in other words it is a homeomorphism from the local M-polyfold model
to an open subset of eB.

Note that this is a drastically weaker notion of chart than that of a Banach manifold
chart. The strength of the M-polyfold notion is in the requirements of transition maps,
which involve the ambient space of the retraction and not just its image. For example,
the compatibility requirement for two charts, as above, which arise from different local
slices (i.e. BH and BH 0 of B=Aut) is that the induced map ��0 ı .˚jim�0/�1 ı ˚jim� ı �
(shown in the following diagram) is scale smooth between open subsets of the ambient
scale manifolds.

.R0;1� � BH � BH

�
����

eB .R0;1� � BH 0 � BH 0

�0
����

im �
* 


˚jim�

77

im �0T4
˚jim�0

gg

��0

[[

This provides the notion of anM-polyfold atlas for a topological space such aseB. Given the
notions of scale smoothness andM-polyfolds, HWZ then follow a relatively straightfoward
path to defining compatible notions of bundles and Fredholm sections, and they then
establish the followingM-polyfold regularization theorem, which is a direct generalization
of the finite dimensional regularization Theorem 2.1.
Theorem 2.6 (M-polyfold regularization). LeteE ! eB be an M-polyfold bundle, and let
Q� W eB ! eE be a scale smooth Fredholm section such that Q��1.0/ � eB is compact. Then
there exists a class of perturbation sections p W eB ! eE supported near Q��1.0/ such that
Q� Cp is transverse to the zero section and . Q� Cp/�1.0/ carries the structure of a smooth
compact manifold. Moreover, for any other such perturbation p0 W eB ! eE there exists a
smooth cobordism between . Q� C p0/�1.0/ and . Q� C p/�1.0/.

Remark 2.7 (Regularization for moduli spaces with nontrivial isotropy). Beyond Morse
theory, almost all moduli spaces that one may want to apply an abstract regularization
scheme to — in particular those consisting of pseudholomorphic curves in general sym-
plectic manifolds — require a further generalization of Theorem 2.6 to sections of a
polyfold bundle. This is because the analogue of the action in Example 2.3 (in particular
when functions on spheres are reparametrized) may have nontrivial discrete stablizers
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(also called isotropy groups). Then local slices as in Remark 2.5 still exist, but have to be
viewed modulo an action of the local isotropy group. This generalization is achieved by
the same principles as the generalization of Theorem 2.1 to sections of orbi-bundles. In
particular, the notion of a polyfold is obtained from the notion of an M-polyfold just like
the notion of an orbifold is obtained from the notion of a manifold.

More precisely, an atlas of a manifold can be described as a groupoid (a category with
invertible morphisms) whose space of objects is given by the disjoint union of the charts,
and with morphisms induced by the transition maps. Some further properties are required
in order for the realization of this category (the space of objects modulo morphisms) to
form a manifold, in particular the isotropy groups (given by the morphisms from an object
to itself) must be trivial. Dropping this last condition yields the notion of an atlas for an
orbifold; see e.g. [50]. In complete analogy, a polyfold is the realization of a groupoid
whose object and morphism spaces are M-polyfolds; see [33, §3].

Next, a section of an orbi-bundle can be described as a functor between groupoids,
i.e. a section of a vector bundle over the object space that is compatible with morphisms.
Since the object space is a manifold, the notions of smoothness and transversality directly
transfer to sections of orbi-bundles. It is only in the perturbation of sections that some new
considerations are needed to achieve compatibility with morphisms. In fact, transversality
is generally only achieved by multi-valued perturbations, as described in e.g. [11, 20].
However, this just adds an algebraic layer of more complicated book-keeping (best done
in categorical terms) to the analysis of smooth sections of vector bundles. Hence the same
categorical constructions can be based on the analysis of scale-smooth Fredholm sections
of M-polyfold bundles to yield a regularization theorem for scale-smooth Fredholm sec-
tions of polyfold bundles: There exists a class of multiperturbation sections so that the
perturbed zero sets are compact weighted branched orbifolds, and unique up to cobordism.
In particular, they carry fundamental classes (with rational coefficients), whose inverse
limit (constructed as in [53, Thm.7.5.4]) provides a well defined virtual fundamental class
on the moduli space.

With this frame of reference in place, we now introduce the two core ideas of polyfold
theory in more detail.

2.2. Scale calculus. In order to motivate sc-Banach spaces and sc-calculus, we begin
with a crucial observation: in almost all cases, the procedure to regularize a moduli
space of Morse trajectories or pseudoholmorphic curves will, at some point, quotient by
an action of a reparametrization group. Furthermore, unless a geometric perturbation
provides a smooth finite dimensional space of (smooth) solutions that is invariant under
this action, the reparametrizations will need to be considered on an infinite dimensional
space of maps. However, as discussed in Example 2.4, such actions are not continuously
differentiable in the classical sense. To explore this failure, we simplify theMorse theoretic
example further to a compact domain11 S1 Š R=Z and the target R, so that we consider

11For compact domains we have compact embeddings C`.S1/ ! Ck.S1/ for ` > k, whereas the Morse
setting with noncompact domainRwill require the use of weighted Sobolev spaces to obtain scale Banach spaces
as introduced below; see Lemma 4.10 for details.
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the modified shift map

� W R � C1.S1/! C1.S1/ given by �.s; 
/ WD 
.s C �/: (2)

The original motivation behind the development of scale calculus was to find a notion of
differentiability in which the map given in (2) was smooth, and this was essentially be
achieved by formalizing the weaker differentiability properties that the map � does satisfy.
To see this, we abbreviate Ck WD Ck.S1;R/, and note that one can verify the following:

(i) the map � W R � Ck ! Ck is continuous for each k 2 N;

(ii) the map � W R � CkC1 ! Ck is differentiable for each k 2 N, with differential

D� W .R � CkC1/ � .R � CkC1/! Ck

given by D.s;
/� .S; �/ D S�.s; 
 0/C �.s; �/;

(iii) for each k 2 N and .s0; 
0/ 2 R � CkC1, the differential D.s0;
0/� extends to a
bounded linear operator

D.s0;
0/� W R � Ck ! Ck I

(iv) the map .R � CkC1/ � .R � Ck/ ! Ck , given by .s; 
; S; �/ 7! D.s;
/�.S; �/ is
continuous for each k 2 N.

In particular, note that while the map � W R � Ck ! Ck fails to be differentiable for any
k 2 N, it nevertheless is continuous for each k 2 N, and it gains regularity when we
lower the regularity of the target space as in (ii). This suggests that it is undesireable to
consider � as a map to and from a fixed function space like Ck . On the other hand, the
various regularity properties of � and D� hold for each k 2 N. This suggests that instead
of thinking of � as a map R� Ck ! Ck for a fixed k 2 N, we should instead regard it as a
map between scales of spaces � W .R � Ck/k2N ! .Ck/k2N.

This collection of weaker differentiability properties then motivates the precise notion
of a scale Banach space (see Definition 4.5) which consists of a nested sequence of Banach
spaces, such as

E1 D C1.S1/ � E2 D C2.S1/ � E3 D C3.S1/ � � � � ;

which satisfy the following two properties:
� the inclusion of higher levels to lower levels is compact; e.g. for each ` > k, the

inclusions E` D C`.S1/! Ck.S1/ D Ek are compact (and hence continuous).

� the intersection of all spaces is dense in each level; e.g. the space of smooth functions
E1 WD C1.S1/ D \`2NC`.S1/ D \`2NE` is dense in each level Ck.S1/ D Ek .

Given two scale Banach spaces, such as .Ek D R � Ck/k2N and .Fk D Ck/k2N as
above, the notion of continuous scale differentiability (sc1) of a map � W E ! F is now
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given by formalizing the properties of the translation action (2) above. More specifically,
we require:

(i) the map � W Ek ! Fk is continuous for each k 2 N;
(ii) the map � W EkC1 ! Fk is differentiable for each k 2 N;
(iii) for each k 2 N and e 2 EkC1, the differential De� extends to a bounded linear

operator De� W Ek ! Fk ;
(iv) the mapEkC1�Ek ! Fk , given by .e; h/ 7! De�.h/ is continuous for each k 2 N.

In particular, property (i) is used as notion of scale continuity (sc0) and properties (iii)
and (iv) can be reformulated as scale continuity of the differential D� ; for further details
see Definition 4.16.

Taking the above as definition of sc1, the notions of higher scale regularity, namely sck
for k > 1, can be defined iteratively. One can furthermore verify that the translation
action � is scale smooth; in other words � is sck for all k 2 N0. See Example 4.20 for
further details. That � is scale smooth should not be surprising, since such regularity was
exactly what motivated this new definition of differentiability. A more surprising fact is
that the chain rule holds for sc1 maps. In other words, the composition of two maps of
sc1-regularity is again sc1, and the derivative of the composition is the composition of
derivatives. We note that this chain rule is not obvious from the above definition, and its
validity is somewhat surprising since the classical differentiability in (ii) is achieved at
only at the expense of a shift of 1 in scale level, and so it would seem that the composition
of two such maps should only be classically differentiable with a shift of 2 in scale level.
Nevertheless, the chain rule does hold; see Theorem 4.19 for further details.

Based on this new notion of differentiability which satisfies the chain rule, the further
notions of calculus and differential geometry generalize more or less naturally to a scale
calculus and scale differential geometry. The next remark spells out why in finite dimen-
sions these coincide with the classical notions and why they cannot coincide with Banach
space notions in infinite dimensions.
Remark 2.8. (i) The general definition of a scale Banach space requires compactness
of the inclusions EkC1 � Ek such as CkC1.S1/ � Ck.S1/, and this axiom is crucial for
the proof of the chain rule.

(ii) Due to the compactness requirement, the only scale Banach spaces of the form
E0 � E0 � � � � � E1 D E0 (i.e. all levels are identical) are those for which E0 is a
finite dimensional vector space. In such a case, all norms onE0 are equivalent. Hence the
notion of scale differentiability differs from the notion of classical differentiability on any
infinite dimensional Banach space.

(iii) Due to the density requirement, the only scale structure on a finite dimensional
vector space E0 is the trivial sequence E0 � E0 � � � � � E1 D E0, and thus scale
calculus in finite dimensions coincides with classical calculus; e.g. functions are sck iff
they are Ck .

(iv) The density condition requires that the intersection of all scales (i.e. the infinity
levelE1) is dense in eachEk . This means in particular that one can oftenmake arguments
onE1 and use continuous extension to the completionsEk with respect to different norms.
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Moreover, this reflects the philosophy that we ultimately study the “smooth” points inE1,
whose topology is defined by a sequence of norms. The scalesEk then arise as completions
in these norms.

As previously noted, scale calculus is still insufficient to describe spaces of trajec-
tories in which a sequence of unbroken gradient trajectories is allowed to converge to a
broken gradient trajectory. However, before moving on to the notion of sc-retracts and
M-polyfolds, which deal with these issues, we will first discuss how (uncompactified)
moduli spaces of flow lines — i.e. solutions of a flow ODE modulo reparametrizations —
can be described as the zero set of a scale smooth Fredholm section. This will also exhibit
the fact that the notions of scale Banach spaces and scale continuity are natural from yet
another point of view, namely that of elliptic operators. (In fact, scale structures did appear
before in this context, e.g. in [61], though not involving a new notion of differentiability.)

In the above simplification of the Morse example from paths to loops, let C1.S1;Rn/�
be the subset of C1-loops 
 W S1 ! Rn such that 
.s C �/ ¤ 
 for all s ¤ 0; i.e. S1
acts freely on C1.S1;Rn/�. Then one can give C1.S1;Rn/�=S1, which is the space of
non-constant loops in Rn modulo the reparametrization given in equation (2), a scale
smooth structure even though this action was not even classically differentiable. Further-
more, given a vector field, denoted X W Rn ! Rn, the flow lines (more precisely, the
unparametrized orbits of period 1) are the zeros of the scale smooth map

� W C
1.S1;Rn/�ı

S1 �!
C1.S1;Rn/� � C0.S1;Rn/ı

S1;


 7�!
�

; d

dt 
 �X.
/
�
:

(3)

In the Morse theory case, we study C1.R;Rn/�=R rather than C1.S1;Rn/�=S1, and
we consider a gradient vector field X D rf induced by a Morse function f and metric
on Rn. It is also necessary to restrict to a space of paths 
 W R ! Rn that converge
to critical points of f as s ! ˙1, and this necessitates a Fredholm setup in terms
of Sobolev spaces. Also note that, strictly speaking, the map � specified above should
actually be regarded as a section of a bundle, which here we have canonically trivialized
by 
�TRn Š S1 �Rn. In either case, to discuss the analytic properties of this differential
equation, we should now work in a local slice of the S1-action; that is, we work in
a codimension 1 subspace of C1.S1;Rn/. We will suppress this here since a finite
dimensional condition does not affect the analytic behavior substantially; for example, it
does not affect thewhether or not operator is Fredholm. In classical functional analysis, one
would call � a Fredholm section if its linearizations are Fredholm operators12. Indeed,
the linearized operator at 
 2 C1.S1;Rn/ is d

dt � D
X W C1.S1;Rn/ ! C0.S1;Rn/,
which is well known to be both Fredholm and elliptic.13 The corresponding elliptic
estimates and elliptic regularity are easily phrased in scale calculus terms by saying that

12A linear map between vector spaces is called Fredholm if it has finite dimensional kernel and cokernel.
13In the present setup, the Fredholm property crucially relies on compactness of the domain S1. To obtain

a Fredholm setup for Morse theory one has to work with Sobolev spaces on the noncompact domain R; see
Example 4.22.
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d
dt �D
X W

�
C1Ck.S1;Rn/

�
k2N0

!
�
C0Ck.S1;Rn/

�
k2N0

is a regularizing scale operator,
which is equivalent to the following properties:

(i) d
dt �D
X W C

1Ck.S1;Rn/! C0Ck.S1;Rn/ is a bounded operator for each k 2 N0;

(ii) if d
dt � � D
X� 2 C0Ck.S1;Rn/ for any k 2 N0 then � 2 C1Ck.S1;Rn/.

Moreover, the Fredholm property of d
dt �D
X W C

1.S1;Rn/! C0.S1;Rn/ together with
these scale regularity properties now abstractly imply the Fredholm property on every
scale k 2 N of d

dt � D
X W C1Ck.S1;Rn/! C0Ck.S1;Rn/; further details can be found
in Lemma 6.13. We note, however, that this does not provide a satisfactory Fredholm
property for the nonlinear section (3), since the listed properties are not sufficient to
establish an implicit function theorem – even assuming surjective linearizations. Indeed,
the difficulty is that such a theorem is proved by means of a contraction property of the
section in a suitable reduction. Since the contractionwill be iterated to obtain convergence,
it needs to act on a fixed Banach space like Ck.S1;Rn/ for a fixed k 2 N, rather than
between different scales. HWZ solve this issue by making the contraction property a
part of the definition of a Fredholm section, and thereby they effectively build an implicit
function theorem into the definition of a scale Fredholm section.

In light of this somewhat contrived definition, the miraculous feature then is that stan-
dard differential equations are in fact scale Fredholm. In practice, the desired contraction
property can be proven by establishing the classical Fredholm property of the linearized
section, a nonlinear version of the regularizing property (ii) above for the section itself,
classical differentiability of the section in all but finitely many directions, and certain weak
continuity properties of these partial derivatives (details are provided via Lemma 6.16).
These differentiability properties hold in applications to Morse theory and pseudoholo-
morphic curve moduli spaces since differentiability fails only in the directions of the
finitely many gluing parameters.

2.3. Retractions, splicings, and M-polyfolds. To discuss the second core idea of poly-
fold theory inmore detail, we return to theMorse theory case. For simplicity let us consider
the manifold X D Rn and assume that the Morse function f W Rn ! R has precisely
three critical points, denoted Crit f D fa; b; cg, which satisfy f .c/ > f .b/ > f .a/,
so that b D 0 2 Rn. Let Bca, Bba , and Bc

b
respectively be the spaces of parametrized

paths 
 W R ! Rn from a to c, from a to b, and from b to c. As in Example 2.3,
these spaces are invariant under the translation action � given in (1). Letting R D Aut
denote the automorphism group that acts via � , we then define the spaces of trajectories
(but not necessarily gradient trajectories) between critical points to be Bca=Aut, Bba=Aut,
and Bc

b
=Aut. These are topological spaces equipped with the quotient topologies induced

from the C1-topology on the parametrized paths.
In order to describe the compactified moduli spaceM of broken and unbroken Morse

trajectories from a to c as the zero set M D Q��1.0/ of a section Q� W eB ! eE , we need to
construct a topological spaceeB of broken and unbroken trajectories which containsM as
a compact subset. Furthermore, we wish that a suitable notion of smooth structure on eB
induces a smooth structure on Q��1.0/whenever the section is transverse in the appropriate
sense. In the following, the construction of local models for such a space near broken
trajectories will naturally give rise to sc-retractions.
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To begin, we equip the unbroken trajectory spaces with sc-structures by using local
slices as in Remark 2.5. For example, for the pair a; c we have Banach manifold charts
ˆ W Vca ! Bca=Aut of the form u 7! Œ�ca C u�, where �ca W R! Rn is a fixed smooth path
from a to c for which d

dt �
c
a.0/ ¤ 0, and Vca � fu 2 C1.R;Rn/ j hu.0/; d

dt �
c
a.0/ i D 0g is

neighborhood of u � 0. This is a local slice because �caCT0Vca � T�caB
c
a is a complement

to tangent space of the Aut-orbit through �ca , which is spanned by d
dt �

c
a .

While the transition maps between such charts are not differentiable in any known
Banach norm, they are scale smooth when Vca � E0 is considered as open subset of
an appropriate scale Banach space. Due to the noncompact domain, this needs a more
complicated scale than just Ek D C1Ck.R;Rn/; indeed, one should use exponentially
weighted Sobolev spaces as in Example 4.10. However, to simplify the exposition here
let us pretend that .Ek D C1Ck.R;Rn//k2N0 is an sc-Banach space. Then a cover by
charts of the above type gives Bca=Aut the structure of a scale manifold. By only varying
the reference path �ba (or �c

b
), we can obtain an analogous scale structure on Bba=Aut

(or Bc
b
=Aut). Now the set of unbroken and broken trajectories, without yet a topology, is

given by eB D BcaıAut t
BbaıAut � BcbıAut;

and our first goal is to equip this set with a topology which allows unbroken paths in Bca/Aut
to converge to broken paths in Bba/Aut�

Bc
b/Aut. Polyfold theory accomplishes this by building

on the well-known pregluing construction, which constructs unbroken trajectories near a
broken trajectory. More precisely, we fix representatives 
a; 
b for a broken trajectory�

Œ
a�; Œ
b�
�
2

BbaıAut � BcbıAut;
and choose charts forBba=Aut andBcb=Aut given by local slices: scale smooth submanifolds
Hb
a D �

b
a CVba � Bba andHc

b
D �c

b
CVc

b
� Bc

b
that contain 
a and 
b respectively. Then

for all sufficiently large R > 0 we define the pregluing map by

˚ W .R0;1/ �Hb
a �Hc

b ! Bca (4)
.R; ua; ub/ 7! ˚R.ua; ub/ WD ˇua.� C

R
2
/C .1 � ˇ/ub.� �

R
2
/;

where ˇ W R ! Œ0; 1� is a smooth cutoff function with ˇj.�1;�1� � 1 and ˇjŒ1;1/ � 0.
See Figure 1 for an illustration of the pregluing (and anti-gluing) map.

The topology on the space of broken and unbroken trajectories eB is now constructed
by viewing the pregluing map as map to the quotient Bca/Aut, extending this map to gluing
parameter R D 1 by .1; ua; ub/ 7!

�
Œua�; Œub�

�
, and requiring this extended pregluing

map to be open. In other words, a basis of open sets in eB is given by images under the
extended pregluing map of open subsets of product type

U WD .R0;1� �Hb
a �Hc

b � .0;1� �
�
�ba C C1.R;Rn/

�
�
�
�cb C C1.R;Rn/

�
:

Here the ambient space on the right can be equipped with a scale smooth structure (with
boundary) by replacing C1.R;Rn/ with a scale of weighted Sobolev spaces, as mentioned
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Figure 1. An example of plus gluing (i.e. pregluing) and minus gluing (i.e. anti-gluing) of two
smooth paths ua; ub from a to b and from b to c.
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above, and by fixing a homeomorphism Œ0; 1/ Š .0;1� that identifies the boundaries 0
and 1. The latter is the notion of a gluing profile, which in polyfold theory is usually
chosen as the exponential profile

Œ0; 1/ ! .0;1�; � 7! e1=� � e: (5)

The choice of the exponential gluing profile in particular ensures that the following
constructions extend scale smoothly to the boundary. One could also hope to obtain a
chart foreB near the broken path .Œ
a�; Œ
b�/ from the map

ˆ W U ! eB; .R; ua; ub/ 7!

(�
˚R .ua; ub/

�
I R <1;�

Œua�; Œub�
�
I R D1:

(6)

Although ˆjfR<1g is an sc-smooth map to Bca/Aut, it is far from being a local homeomor-
phism since it is not even a bijection except for its restriction to fR D 1g. To see this,
observe that for fixed R <1, the two maps˚R.ua; ub/ and˚R.ua C vC; ub C v�/ are
equal whenever v˙ have support in a sufficiently small neighborhood of˙1. At this point
the core idea of polyfold theory arises: obtain a chart by restricting ˆ to an appropriate
subset of U , which is then used as a local model for the scale smooth structure on eB. In
other words, we aim to achieve the following:

(i) Find a subset K � U for which ˆ
ˇ̌
K is a homeomorphism to its image.

(ii) Equip sets K of this type with a notion of scale smooth structure.
We will see that this can be achieved by describing K as the image of a retraction on U .
Moreover, this retraction will appear naturally from the idea of keeping track of the
information lost during pregluing for R < 1. This is accomplishved via the so-called
anti-gluing map 	R, which is given by a complementary interpolation of the same shifts
as in the pregluing map˚R. More specifically, the combination of both maps is given by
a pair of reparametrizations together with multiplication by an invertible matrix of cutoff
functions: �

˚R.ua; ub/

	R.ua; ub/

�
D

�
ˇ 1 � ˇ

ˇ � 1 ˇ

� 
ua
�
� C

R
2

�
ub
�
� �

R
2

�! :
For each fixed R <1, this is a bijection by invertibility of the matrix at every t 2 R. In
fact, one can check that it gives rise to an sc-smooth diffeomorphism

� W f.R; ua; ub/ 2 U jR <1g ! BcaıAut � C1.R;Rn/

.R; ua; ub/ 7! �R.ua; ub/ WD
�
Œ˚R.ua; ub/�;	R.ua; ub/

�
:

Moreover, in appropriate charts for domain and target, each �R can be viewed as lin-
ear isomorphism T0Vba � T0Vcb ! T0Vca � C1.R;Rn/, which shows that ker	R is a
complement to ker˚R. This achieves the first aim and gives an approach to the second:

(i) The map ˆjK in (6) restricts to a bijection on

K WD
˚
.R; ua; ub/ � U j 	R .ua; ub/ D 0 or R D1

	
:

To check thatˆjK is a homeomorphism, one can use the observation that .R; ua; ub/ D
ˆ�1

�
Œv�
�
is the unique solution of �R.ua; ub/ D

�
Œv�; 0

�
.
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(ii) After possibly shrinking U , the latter gives rise to a description of the setK as fixed
point set of the sc-smooth map

r W U ! U ; r.R; ua; ub/ D

(
��1R

�
Œ˚R.ua; ub/�; 0

�
I R <1;

.R; ua; ub/I R D1:

In fact, thismap satisfies the retraction property rır D r since forR <1 it is of the
form ��1R ı pr ı�R, with pr.u; v/ WD .u; 0/ satisfying pr ı pr D pr. In particular,
K D r.U/ is an sc-retract; that is, it is the image of an sc-smooth retraction.

To accomplish our aims, it remains to show that K carries a meaningful notion of
scale smoothness. In other words, we need a notion of scale-differentiability for maps
‰ W K! F to some other sc-Banach space F. The notion of sc-continuity for such maps
is naturally given since K carries an sc-topology induced from U . The notion of sc1 from
scale calculus is also well defined ifK is an open subset of an sc-Banach space. However,
in our Morse theory example K has empty interior. Since r

ˇ̌
K D idK, a natural extension

of ‰ to a map from an open subset of an sc-Banach space is ‰ ı r W U ! F. We can then
define the map‰ W K! F to be sck if and only if the map‰ır W U ! F is sck . Similarly,
we define the tangent spaces TkK as fixed point set of the linearized retraction dkr . These
definitions makes sense (e.g. satisfy the chain rule and depend only on K, not the choice
of r) due to the retraction property r ı r D r . In particular, the latter implies that the
differential dr D dr ı dr is a retraction as well, so that the tangent bundle of an sc-retract
is an sc-retract itself. This establishes a notion of scale smooth structure on K, as aimed
for in (ii). Further details can be found in Example 5.9.

From this Morse theory example, we see the utility of an sc-smooth retraction
r W U ! U , which both characterizes the subset K D r.U/ on which a homeomorphic
chart mapˆ is defined, and provides a means to establish the notion of sc-differentiability
on this subset. Such sc-smooth maps satisfying the retraction property r ır D r are called
sc-smooth retractions, and their images are called sc-retracts. These sc-retracts, together
with a homeomorphism ˆ W K ! eB, form the local models of M-polyfolds. That is,
an M-polyfold is a topological space eB that is locally homeomorphic to sc-retracts, such
that the transition maps ˆ�1 ı ˆ0 W K0 ! K are sc-smooth in the sc-retract sense that
ˆ�1 ıˆ0 ı r 0 W U 0 ! U is sc-smooth. The above outline can be fleshed out to prove thateB
is an M-polyfold.

In suitable coordinates, the sc-smooth retraction for Morse theory introduced above,
and in fact all sc-retractions arising in applications to date, have a rather specific form,
namely

r W Œ0; 1/k � E! Œ0; 1/k � E given by r.v; e/ D .v; �ve/;

where E is an sc-Banach space, v is thought of as a gluing parameter, and �v W E ! E
is a family of linear projections. Note that the sc-smoothness conditions on r do not
require v 7! �v to be continuous in the operator topology, but just “pointwise” as map
.v; e/ 7! �ve. This allows the image �vE to jump in dimension as v varies. Such
retractions (given by a family of projections) are called splicings; the induced sc-retracts
are called splicing cores; and they were used as local models for M-polyfolds in the early
polyfold literature; c.f. [31–33].
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In order to achieve the ultimate goal of describing the compactified Morse moduli
space M as the zero set of a section Q� W eB ! eE in a bundle that is sufficiently rich for
a regularization theorem similar to Theorem 2.1, it remains to find a suitable notion of
Fredholm sections in M-polyfold bundles. Here a notion of finite dimensional kernels and
cokernels with constant index is necessary in order to have any hope for the zero set of a
transverse section to be a finite dimensional manifold. However, note that in the Morse
theory example, based on our expectation of what its zero set should be, the section in the
pregluing chart must roughly have the form

Q�.R; ua; ub/ D

(� d
dt
�
˚R.ua; ub/

�
� rf

�
˚R.ua; ub/

��
I R <1� d

dt ua � rf .ua/;
d
dt ub � rf .ub/

�
I R D1:

More specifically, the bundle eE ! eB must have fibers isomorphic to C0.R;Rn/ over
points such as Œ˚R.ua; ub/� in the interior of eB, and it must have fibers isomorphic to
C0.R;Rn/�C0.R;Rn/ over broken trajectories such as

�
Œua�; Œub�

�
. This can be achieved

by constructingeE from pregluing maps along the same lines as foreB. An important feature
of this construction is that, roughly speaking, the fibers ofeE jump in the same way as the
tangent space TeB. In turn, this will allow for a meaningful Fredholm theory.

To define the notion of a scale Fredholm section, one could try to proceed along the
lines of the construction of a scale smooth structure on an sc-retract K D r.U/. Note
however that the linearization of Q� ı r has infinite dimensional kernel as soon as dr does,
which in the Morse theory example is the case whenever R <1. At the same time, if K0
is the sc-retract modeling the bundle E , then TK0 has infinite codimension in each fiber
over R < 1. Polyfold theory obtains a Fredholm theory by introducing the notion of a
filled section, which in local charts is given as an sc-smooth extension � W U ! U 0 of the
section Q� W K ! K0 to open subsets of sc-Banach spaces. The filled section is required
to have the same zero set ��1.0/ D Q��1.0/ as the original section, and to not contribute
to the Fredholm index. In the setting of splicings, this means that the bundle splicing has
the form

� W Œ0; 1/k � E � F! Œ0; 1/k � E � F; �.v; e; f / D .v; �ve;…vf /;

so that the fibers ofeE ! eB are given by im…v over fvg� im�v , and there is an sc-smooth
family of isomorphisms ker…v Š ker�v between the kernels of the two splicings, as the
gluing parameter v varies. Such fillers can typically be constructed via the full gluing mape� D �

Œe̊�;e	�, where the nonlinear PDE must naturally be applied in the first factor, and
a linearized PDE provides an isomorphism that acts on the second factor.

Based on these Fredholm notions in the context of scale-calculus and sc-retracts, one
can then develop a perturbation and stability theory for scale Fredholm sections, which
culminates in the Regularization Theorem 2.6 stated above.

3. Road maps for regularization approaches

In this section we compare the polyfold approach to regularizing moduli spaces to the
geometric and virtual approaches in order to exhibit how the classical ingredients (com-
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pactness, quotienting by reparametrizations, Fredholm theory, gluing, etc.) are present in
each of the approaches but with changing order and significance. We will outline the basic
steps in each of these approaches via the example of Morse theory, and we do so using
the setup from Examples 1.1 and 2.3. In more general abstract terms, we are discussing
the regularization of a compactification M of a moduli space M, given by the solutions
to a PDE modulo the reparametrization action of an automorphism group Aut. Here and
throughout, we will assume that Aut acts freely on the space of solutions, which we recall
is always the case in Morse theory.

For a more detailed account of Morse theory along these lines, see [4, 57]. Note
however that the regularization of the Morse moduli spaces does not actually require
their study as moduli spaces of a PDE. Rather, an entirely finite dimensional setup as
spaces of trajectories under a smooth flow map yields the regularization as manifolds with
boundaries and corners most effectively, e.g. [63].

3.1. The geometric approach. In this sectionwedescribe techniques that obtain transver-
sality by perturbing (or exploiting) geometric structures in the moduli problem; we call
such techniques the “geometric approach.” In the case of Morse theory, the given moduli
problem is the compactifiedMorsemoduli spaceM for a fixedMorse functionf W X ! R
and any Riemannian metric g on X . This moduli space decomposes into (not necessarily
connected) componentsM.x�; xC/ of (possibly broken) Morse trajectories between pairs
of critical points x˙ 2 Crit f . The goal of regularization is to replaceM by a regularized
spaceM0, which is a manifold with boundary and corners with componentsM0.x�; xC/,
whose first boundary stratum (excluding the higher corner strata) is a fiber product of its
interior M0 �M0 with itself. In particular, it should have the form:

@M0
D M0

�
Critf

M0
D

S
x�;x;xC2CritfM

0.x�; x/ �M0.x; xC/:

The signed count of the 0-dimensional component ofM0 then defines the Morse differen-
tial @, and the boundary structure of the 1-dimensional component establishes @ ı @ D 0.
An additional step is then needed to prove independence of the induced Morse homology
from both the choice of regularization M0 and the choice of .f; g/. For other moduli
problems, we write M0 Q�M0 for analogous fiber products, even if we expect the regu-
larized moduli space to have no boundary (which is the case in Gromov–Witten). The
basic order of constructions in geometric approaches is: (1) transversality, (2) quotient,
(3) gluing; where reduction to finite dimensions occurs after transversality is achieved.
Such constructions can be roughly broken down into the following eight steps — with
adjustments in the case of “codimension 2 gluing” discussed later.

(1) Fredholm setup. Set up the PDE (e.g. gradient flow equation d
dt 
 � rf D 0) as

smooth section � W B! E of a Banach space bundle E ! B over a Banach manifold B of
maps (e.g. 
 W R ! X with suitable convergence to critical points). This section should
be Fredholm in the sense that the linearizations Db� W TbB! Eb at zeros b 2 ��1.0/ are
Fredholm operators. Moreover, the section � will be equivariant under the action of the
automorphism group Aut on E ! B, so that the uncompactified moduli space is given as
quotient of the zero set M D ��1.0/=Aut.
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(2) Geometric perturbations. Find a family of smooth sections .p W B ! E/p2P para-
metrized by a Banach manifold P , with the following properties.

(P1) For each p 2 P the perturbed solution space .� C p/�1.0/ is invariant under the
action of Aut. (Usually this is achieved by using Aut-equivariant sections p.)

(P2) For each p 2 P the perturbed solution space .� C p/�1.0/ has the same compacti-
fication properties as the unperturbed space ��1.0/.

(P3) The “universal moduli space” cM WD
˚
.b; p/ 2 B � P

ˇ̌
s.b/ C p.b/ D 0

	
is cut

out transversely and has the structure of a Banach manifold. That is, for each
.b; p/ 2 cM we have a surjective linearized operator TbB � TpP ! Eb , given by
.�; �/ 7! Db.s C p/.�/C �.b/.

(For Morse theory, the perturbations could be p.
/ D rf .
/ � r 0f .
/, where r 0 is the
gradient with respect to another metric g0 on X .)
(3) Sard–Smale theorem (automatic). Given a family of perturbations P as described,
the Sard–Smale theorem guarantees a comeagre14 set P reg � P of regular values of
the canonical projection pr W cM ! P . Moreover, a little functional analysis (see [51,
Lemma A.3.6]) shows that for p 2 P reg the perturbed section �p WD � C p is transverse
to the zero section, yet it is still Aut-equivariant. Hence, by the implicit function theorem,
��1p .0/ � B is a smooth submanifold of finite dimension on which Aut acts, and the
dimension is given by the Fredholm index. (For Morse theory, this would pick out the
metrics that satisfies the Morse-Smale condition: transversal intersection of stable and
unstable manifolds.)
(4) Quotient. Check that the action of Aut on ��1p .0/ is smooth, free, and properly
discontinuous. Then the moduli space Mp WD �

�1
p .0/=Aut is a smooth manifold.

(5) Gluing. Construct a gluing map Q̊ W .R0;1/ �Mp Q�Mp ,! Mp that is an em-
bedding (e.g. for fixed critical points it should map Mp.x�; x/ �Mp.x; xC/ to paths
parametrized by the gluing parameter .R0;1/ in Mp.x0; xC/). The construction of Q̊
involves a pregluing map ˚ W .R0;1/ � ��1p .0/ Q���1p .0/ ! B similar to (4), and an
implicit function theorem to determine exact solutions.
Small print on corners. This technique is usually only applied to glue 0-dimensional components
or compact subsets of the fiber product. More generally, to give a higher dimensional moduli space
the structure of a manifold with boundary and corners one would have to construct higher gluing
maps Q̊ W .R0;1/` � Q�`C1Mp ,!Mp which cover the overlap of the basic gluing maps, and
one would also need to check smoothness of transition maps and verify a cocycle condition.15

14A subset of a topological space is said to be comeagre if it is the countable intersection of sets with dense
interior. In a Baire space (such as any completemetric space), this implies density. Alternatively, the complement
of a comeagre set is meagre, i.e. the countable union of sets that are nowhere dense. Note however, that the
commonly used term “second category” only refers to sets that are not meagre, hence may fail to be dense.

15An abstract manifold (without underlying topological space) can be constructed from a tuple of open subsets
Ui � Rn by specifying transition maps �ij W Uij ! Uj on open subsets Uij � Ui that satisfy the cocycle
conditions �jk ı �ij D �ik on appropriate domains. Alternatively, rather than require cocycle conditions,
one could instead work with a given compact space M0 and simply construct the gluing maps as embeddings
into this. Then cocycle conditions for the transition maps hold automatically. Otherwise, this issue is known as
constructing “associative gluing maps.”
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(6) Coherence. Ensure that the choice of perturbation p can be made “coherently”; that
is, check that perturbations are compatible with the gluing map. Consequently Steps 2–5
are interwoven, and they are potentially organized by a hierarchy of connected components
of M, such as by the difference in Morse indices of x˙ for the components M.x�; xC/.

(7) Compactness. Check that the complement of the gluing image, Mp n im Q̊ , is
compact. Then construct a compactification of the perturbed moduli space as Mp D�
Mp t .R0;1� �Mp Q�Mp

�
= Q̊ . After choosing a homeomorphism .R0;1� Š Œ0; 1/,

this yields a smooth manifold with boundary f1g �Mp Q�Mp .

Small print on corners. If the gluing maps have overlaps, e.g. due to higher gluing maps, then one
would have to add their domains .R0;1�` � Q�`C1Mp to Mp and take the quotient by all gluing
maps. However, this requires the cocycle condition. If this can be satisfied, then f1g` � Q�`C1Mp

forms the `-th corner stratum ofMp .

(8) Invariance. Prove that the algebraic structures (e.g. the Morse chain complex) arising
from different choices in the previous steps, in particular the choice of perturbation, are
equivalent in an appropriate sense (e.g. chain homotopic). This usually involves the
construction of a cobordism from a moduli space involving a homotopy of choices.

When applied to a moduli space of pseudoholomorphic curves, Steps 1–3 remain
unchanged, with B consisting of maps from a fixed Riemann surface †, possibly with
additional marked points and possibly varying complex structure on †. (Note that we
cannot work with a Deligne–Mumford type space of Riemann surfaces modulo biholo-
morphisms, since the corresponding space of maps and surfaces does not have a natural
Banach manifold structure; see [53, §3.2].) Then the section � is given by the Cauchy–
Riemann operator — but possibly with further conditions on (for example) the evaluation
map at the marked points. Finally, Aut is the group of holomorphic automorphisms of
the underlying complex curve †. (In the case of varying complex structures, one usually
reduces the space of complex structures so that there are no further automorphisms.)
Here the requirement that Aut acts freely on ��1p .0/ is rather restrictive since it excludes
perturbed solutions uwith nontrivial isotropy, that is � ¤ id† such that uı� D u. IfAut-
equivariant transversality can be achieved in Step 2, then nontrivial finite isotropy groups
could be allowed in Step 4 with the result of ��1p .0/=Aut being an orbifold. However,
holomorphic curves with nontrivial isotropy also lack the injectivity properties that are
needed for the common approaches to achieving transversality (P3); see Remark 3.1. In
special cases, it might be possible to overcome this transversality issue by enriching the
geometric approach with “groupoid” or “multivalued perturbation”16 methods.

More abstractly, the existence of perturbations as required in Step 2 is not a general
fact for equivariant Fredholm sections, since many useful classes of perturbations (like
the class of compact perturbations) need not preserve the compactness properties of the
solution set for general non-linear Fredholm problem. Furthermore, the equivariance and
transversality properties (P1) and (P3) are often mutually exclusive requirements.

For the Cauchy–Riemann operator N@J , the natural geometric structure to perturb is the
given almost complex structure J . This means that the perturbationsp 2 P are of the form

16A sketch can e.g. be found in [56, §5], but note that the proof of the local slice theorem there requires more
geometric methods — e.g. slicing conditions — rather than an implicit function theorem for the action.
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p.u/ D 1
2
.J � J 0/du ı j for some other almost complex structure J 0. From the abstract

functional analytic point of view, this is a perturbation of the same order as the differential
operator, so the Fredholm property is preserved only by a homotopy of semi-Fredholm
operators (using the elliptic estimates for each Cauchy–Riemann operator together with the
connectedness of the space of compatible almost complex structures). For the compactness
property (P2) we need to use our geometric understanding of J -holomorphic curves for
any compatible J to see that Gromov compactness persists. However, comparing the
requirements for equivariance (P1) and transversality (P3), as in the following remark,
one sees that almost complex structures only provide the required set of perturbations if,
roughly speaking, the pseudoholomorphicmaps are somewhere injective along any orbit of
a point in the domain† under the automorphism action. This follows from the invariance
of J along Aut-orbits in †. Further common geometric perturbations are Hamiltonian
vector fields. These are lower order (compact) perturbations, which otherwise are used in
close analogy to the perturbations in the almost complex structure.
Remark 3.1. Small print on injectivity requirements. Let us semi-formally unravel the equiv-
ariance property (P1) and the universal transversality property (P3) when we perturb by a space J
of possibly domain dependent compatible almost complex structures J W †! J .M;!/.

(P1) Invariance of the solution set fu W † ! M j N@J u D 0g under reparametrization by an
automorphism � W †! † requires J W †! J .M;!/ to satisfy J ı � D J . In particular,
J.z/ must be constant along orbits z 2 f�.z0/ j� 2 Autg of the automorphism group, and
the same holds for infinitesimal variations Y 2 TJJ .

(P3) Transversality of the universal moduli space at N@J u D 0 requires, roughly speaking, that the
only element � 2 ker.Du N@J /� in the kernel of the dual linearized Cauchy–Riemann operator
that satisfies

R
†h �.z/ ı j; Y.z; u.z//dzu i D 0 for all Y 2 TJJ is � D 0.

Assuming �.z0/ ¤ 0 in contradiction to (P3), linear algebra guarantees the existence of Y 2 TJJ
such that h �.z0/ ı j; Y.z0; u.z0//dz0u i > 0, as long as dz0u ¤ 0. We then wish to cut off Y
near .z0; u.z0// 2 † �M so that the integrand h �.z/ ı j; Y.z; u.z//dzu i remains positive for all
z 2 †. However, Y is forced by (P1) to be constant along the Aut-orbit through z0, so that we need
to use cutoff in M near u.z0/. The latter can only be guaranteed if we have u.�.z0// ¤ u.z0/

for all �.z0/ ¤ z0; in other words, the J -holomorphic map u needs to be injective along the orbit
through z0, and additionally, z0 can not be a singular point of u.

On the other hand, we usually have unique continuation for the Cauchy–Riemann equation along
Aut-orbits, due to the invariance of J along these Aut-orbits. For the dual linearized operator this
means that for .Du N@J /�� D 0 and �jV � 0 on some open subset V � † we obtain �Aut�V � 0 on
the orbit of V . Hence it suffices to have injectivity of u and nonvanishing of du somewhere along
almost every Aut-orbit in †. The most important cases are the following.
� For pseudoholomorphic sphereswith zero, one, or twofixedmarked points, the automorphism

group acts transitively on † D S2, so that it suffices to find some z0 2 S2 with dz0u ¤ 0

and u�1.u.z0// D u.z0/. In fact, by [49, 51] the set of such “injective points” is dense
unless u is multiply covered. This is equivalent to the existence of some nontrivial Möbius
transformation � W S2 ! S2 for which u ı � D u, which can be stated more elegantly by
saying u has a nontrivial isotropy group.

� For pseudoholomorphic disks with zero or one marked points on the boundary, it similarly
suffices to have one “injective point”. However, there now exist nowhere injective disks that
are not multiply covered, i.e. have trivial isotropy group. An example is the “lantern”: a disc
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mapping toM D S2 with boundary on the equator that wraps two and a half times around
the sphere.

� For Floer trajectories, i.e. pseudoholomorphic strips (disks with two marked points) or
cylinders (spheres with two marked points, but with a Hamiltonian perturbation that breaks
the S1-symmetry), the automorphism group is R. So it suffices to find for almost every
t0 2 Œ0; 1� (or t0 2 S1) a point s0 2 R with d.s0;t0/u ¤ 0 and u.s; t0/ ¤ u.s0; t0/ for all
s ¤ s0. In fact, unless the trajectory is constant (i.e. @su � 0), the set of such points .s0; t0/
is dense by [18].

Further injectivity requirements for the transversality of pseudholomorphicmaps arise,
for example in SFT, from invariance conditions for the almost complex structures on
the target M . Apart from such cases, transversality can be obtained by this geometric
Sard–Smale method for any stable domain †. (This excludes tori and spheres or disks
with less than 3 marked points; where points in the interior of a disk count double.)
However, any bubbling in a space of pseudholomorphic curves (i.e. blow-up of the gradient)
leads to unstable sphere or disk components, so that this basic version of the geometric
regularization approach is firmly restricted to cases in which bubbling can be a priori
excluded — or at least the dimension of spaces of nowhere injective bubbles is controlled
by underlying injective curves. The first prominent case considered aspherical symplectic
manifolds, in which Floer [15] excluded bubbles by their nonzero energy. This argument
has a direct generalization to monotone settings [54], where a proportionality between
energy and Fredholm index allows one to exclude sphere or disk bubbling in moduli
spaces of small dimension. Finally, in semi-positive symplectic manifolds, the multiply
covered spheres have to be localized on simple spheres, whose codimension in the moduli
space is at least 2, so that, for example, Gromov–Witten moduli spaces can be regularized
to pseudo-cycles; see [51].

Moving on to the compactness properties of spaces of pseudoholomorphic maps, the
common singularity formations are “bubbling”, where energy concentrates, “breaking”,
where energy escapes into noncompact ends of the domain or target, and the formation of
“nodes” which might be allowed in the underlying space of Riemannian surfaces. With the
exception of sphere bubbles and interior nodes, these can be compactified along the lines
of Steps 4–6, leading to boundaries and corners, and thus invariance of solution counts
only up to some algebraic equivalence as in Step 7. Sphere bubbling and interior nodes can
also be treated analogously, although they give rise to interior points (or codimension 2
points that do not contribute to the pseudo-cycle) of the compactified moduli space as
follows.

.50/ Gluing. Due to an extra rotation parameter at the node, the gluing map (for a single
node) is of the form Q̊ W .R0;1/ � S1 �Mp Q�Mp ,!Mp .
.70/ Compactness. By choosing a homeomorphism from

�
.R0;1/ � S

1
�
[ f1g to the

open unit disk, one could construct a smooth manifold in which sphere bubbles (or
interior nodes) are interior points. However, smooth compatibility of the gluing maps is
generally hard to achieve, so that this technique is mostly used to deduce compactness up
to codimension 2 singularities.
.80/ Invariance. With the perturbed and compactified moduli spaces being closed (or
pseudo-cycles), one obtainswell defined counts of solutions (or more generally one obtains
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a well defined integral over the solution set) by regularizing moduli spaces that involve an
interpolating 1-parameter family of perturbations; in turn, such spaces provide a cobordism
between a pair moduli spaces obtained from different choices of perturbation, and such a
cobrodism then guarantees counts (or integrals) are independent of initial perturbation.

Finally, let usmention twomore special cases of the geometric regularization approach.
The simplest is the case of pseudoholomorphic curves of small genus with positive index
in a four dimensional symplectic manifold, for which automatic transversality guaran-
tees sujrectivity of the linearized Cauchy–Riemann operator for every choice of almost
complex structure. This approach has been used successfully in a variety applications;
see [24, 27, 67].

An example with more general perturbations is the construction of spherical Gromov–
Witten invariants developed in [10]. (This approach was also used in [14] and recently
generalized to the positive genus case in [23]; Ionel lays the foundations for a similar
approach in [43].) Here the idea is to fix a Donaldson hypersurface in such a way that the
marked points given by intersections with the hypersurface stabilize every pseudoholomor-
phic map in a given homology class. Letting B be a sufficiently small neighborhood of the
pseudoholomorphic maps, one then obtains an Aut-invariant map to a Deligne–Mumford
space of marked Riemann surfaces. One can then work with a space of perturbations P
that is given by families of almost complex structures over the Deligne–Mumford space.
In other words, the almost complex structure J.u/ is no longer defined pointwise, but may
depend on the position of the intersections of u with the Donaldson hypersurface. This
approach then yields regularizations in the form of pseudo-cycles, unique up to rational
cobordism, and hence rational Gromov–Witten invariants.

3.2. The virtual approach. The analytic starting point of the “virtual approach” is the
observation that the solution set of the Cauchy–Riemann operator restricted to a local slice
of the Aut-action (as in Remark 2.5) is homeomorphic to an open subset of the moduli
space. Since this is a Fredholm section, one can find a finite dimensional reduction; in
other words, one can find a section of a finite dimensional bundle and a homeomorphism
from its zero set to an open subset of the moduli space. Alternatively, one could view this
procedure as finding a finite dimensional obstruction bundle over an open subset ofB=Aut
that covers the cokernel of the linearized Cauchy–Riemann operators. Both versions of
this approach then aim to work in a finite dimensional category (either just for the fibers
of the obstruction bundle or for both fibers and base in finite dimensional reductions) to
associate a “virtual fundamental class” to the compactified moduli spaceM; for example,
sometimes one aims to find a Čech homology class ŒM�� 2 LH.MIQ/ induced by a
special type of Kuranishi atlas � on M as in [53]. We base this exposition on the latter,
and consequently we do not explicitly discuss obstruction bundle techniques, which would
proceed along similar lines.

The overall structure of the virtual approach reorders the basic ingredients of the
geometric approach from (1) transversality, (2) quotient, (3) gluing to (1) quotient,
(2) transversality, (3) gluing, and it aims to reduce the problem to a finite dimensional
setting as quickly as possible. A main feature of this approach is that it provides a natural
setting for dealing with nonfree actions. Let us only note here that this introduces an
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additional finite group action, or groupoid structure, in the second of the following steps,
and it additionally requires equivariance in the further steps.

(1) Compactness. Construct the compactified moduli space M as a compact (usually
metrizable) topological space containing M as well as M Q�M, and which possibly
contains higher fiber products.
(2) Quotient (local). View the uncompactified moduli space as subset M � B=Aut of
the quotient space of maps as in the geometric approach, and for any Œu� 2 M find a
local slice. That is, find a Banach submanifold BH � B such that Aut�BH ! B is a
homeomorphism to an open subset. Since Aut generally does not act differentiably on
infinite dimensional spaces of maps like B, this requires a geometric construction as in
Remark 2.5, for example.
(3) Fredholm setup and almost transversality (local). Set up the PDEas a smoothFred-
holm section � W BH ! E jBH of a Banach space bundle such that ��1.0/ is homeomor-
phic to an open neighborhood of the center, Œu� 2M, of the local slice. From this, and a
choice of finite dimensional obstruction bundle bE ! BH that covers the cokernels of the
linearized PDE, construct a finite dimensional reduction, which by definition is a smooth
section s W B ! E of a finite dimensional E ! B over a manifold B such that s�1.0/ is
homeomorphic to a neighborhood of Œu� 2M.
(4) Gluing (local). Construct finite dimensional reductions for the higher strata of M
from a gluing construction. The standard gluing analysis does not provide smooth sections
s W B ! E in this case, but an appropriate notion of stratified smoothness should suffice.
(5) Semi-local transversality and quotient compatibility (transition data). Establish
compatibility of the local finite dimensional reductions by forming direct sums of the
obstruction bundles near overlaps inM. This requires one to refine the choice of obstruc-
tion bundles in Steps 3 and 4 such that they are transverse on the overlaps. The direct sum
construction also involves pullbacks of the obstruction bundles by an action of Aut, due
to the changing local slices in Step 2. To ensure smoothness and differentiability of the
pullback bundles, specific geometric constructions of the obstruction bundles are needed.
(6) Kuranishi regularization (automatic). A general abstract theory associates a virtual
fundamental class ŒM�vir to any covering of M by finite dimensional reductions that are
suitably compatible. Roughly speaking, the Kuranishi charts and transition data form
categories eB;eE and a functores W eB ! eE so that M is identified with the realization
of the subcategory jes�1.0/j (which by definition is the subspace of objects at which the
section vanishes, modulo the equivalence relation generated by the morphisms). The
abstract theory then aims17 to provide a class of perturbation functors ep W eB ! eE such
that j.esCep/�1.0/j inherits the structure of a compact manifold, and that up to some type
of cobordism is independent of p.
(7) Coherence. IfM consists of several components and an identification of the boundary
@ŒM�K with a fiber product ŒM�K Q�ŒM�K is desired, then Steps 2–6 need to choose the

17As stated, there exists no such general result in the literature. All current approaches struggle with ensuring
the Hausdorff and compactness properties of the zero set, so at best they find the required perturbations in a
smaller category whose realization still contains M.
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local slices, obstruction bundles, and abstract perturbations “coherently”; in other words
they much be chosen to be compatible with the gluing maps. (We note that, potentially,
these interwoven steps can be organized by a hierarchy of connected components of M.)
(8) Invariance. Prove that the algebraic structures arising from different choices in the
previous steps, in particular the choice of local slices and obstruction bundles, are equiv-
alent. This involves the construction of a virtual fundamental chain on Œ0; 1� �M from
local finite dimensional reductions which reduce to two given choices on f0g �M and
f1g �M.

At present, the applicability of the virtual approach to pseudholomorphic curve spaces
is being revisited. The recent [53] discusses a number of fundamental analytic and
topological issues in [20, 22, 45, 46] (one of which is discussed in Example 5.8), while
itself only providing a theory for severely limited cases in which geometric methods are
known to apply. Our hope is that a nontrivial convex span of all these publications should
lead to a theory that is not only solid but also understood by more people than just the
respective authors.

Assuming that a functional theory for the abstract regularization Step 6 is established,
the virtual approach does allow one to regularize more moduli problems, yet does not seem
to eliminate repetitivework in the other steps. In particular, any application to a newmoduli
problem still requires some new geometric insight to find appropriate local slices in Step 2
and obstruction bundles in Step 3 that transform appropriately under the automorphism
action; this is similar to finding a special set of perturbations in the geometric approach.
The Fredholm setup in Step 3 is also somewhat more complicated than in the geometric
approach, since the local slice condition must be incorporated. Next, the gluing analysis
in Step 4 is exactly the same as that in the geometric approach, but the smoothness
requirements on the finite dimensional reductions in fact require a more refined analysis
than in some geometric regularizations, which merely construct a pseudocycle. Moreover,
some additional technical work is required to obtain the transversality of obstruction
bundles needed in Step 5. Finally, coherence and invariance in Steps 7 and 8 again require
the same amount of work and sometimes nontrivial ideas as in the geometric approach.
Remark 3.2. Relation between Kuranishi atlases and polyfold Fredholm sections. A
description of M as the zero set of a Fredholm section in a polyfold bundle, as outlined
in Section 3.3 below, is expected to induce an equivalence class of Kuranishi-type atlases
for M. The rough idea is that this setting allows one to perform Steps 1–5 of the virtual
regularization scheme abstractly (or rather, they are already part of the polyfold setup).
This requires choosing obstruction spaces that locally cover the cokernel; with different
choices yielding equivalent atlases in the sense of having a common refinement (for details
see e.g. [53]).

In the case of trivial isotropy, the stabilization construction for classical Fredholm
sections can be obtained, see for example in [11], and it yields a global finite dimensional
reduction (also referred to as an atlas with one chart); in other words,M can be described
as the zero set of a single section of a finite dimensional bundle. In the case of nontrivial
isotropy, and under the additional assumption that at every solution there exists a choice of
obstruction space on which the isotropy group of the given point acts trivially, the above
stabilization construction generalizes, and it yields a global finite dimensional reduction
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to a section of an orbi-bundle. To the best of the last author’s understanding, this assump-
tion coincides with the notion of “semi-effective d-orbifold” for which regularization is
discussed in [44]. In this case, however, the regularization in Step 6 can be quoted directly
from Theorem 2.1 or its generalization to orbibundles. Similarly, the Euler class approach
of [60] seems to go through under this additional assumption, and it yields a similar global
finite dimensional reduction.

In the general case, [68] proposes that finite dimensional reduction of Fredholm
sections of polyfold bundles yields more general Kuranishi atlases with several charts.
This resulting class of Kuranishi atlases should have well controlled transition maps
which allow for a converse construction, which would yeild an equivalence between
polyfold Fredholm sections and certain Kuranishi atlases.

3.3. The polyfold approach. The polyfold approach, just like the geometric one, aims
to associate to a compactified moduli space M, a smooth compact manifold M0, pos-
sibly with boundary @M0 D M0 Q�M0, which is unique up to the appropriate notion of
cobordism. In order to achieve this, and eliminate a lot of the repetitive work in the
applications, this approach fundamentally changes the basic order of ingredients from
(1) transversality, (2) quotient, (3) gluing in the geometric approach and (1) quotient,
(2) transversality, (3) gluing in the virtual approach to the order (1) quotient, (2) gluing,
(3) transversality, and remains in an infinite dimensional setting until transversality is
achieved. The following eight steps provide an outline of the regularization procedure for
a given moduli problem offered by the polyfold approach. [Additionally, in italics, we will
compare each step to related constructions in the other approaches to demonstrate how
significant amounts of technical work are automatized in the polyfold approach.]

(1) Compactness. Construct a (metrizable) topological space eB that contains the com-
pactified moduli space M as compact subset. Roughly speaking, eB can be obtained
from the quotient space eBŒ0� WD B=Aut, which contains the moduli space M of smooth
(i.e. non-nodal or unbroken) solutions of the PDE, by adding strataeBŒ`� of singular maps
(e.g. `-fold broken, or with ` nodes) that need not satisfy the PDE, in the same way asM
is obtained fromM by adding strata of singular solutions.18 These higher strata consist of
large function spaces which will not, in general, solve the given PDE but will contain the
compactification points of the moduli space,MnM. [This is the same starting point as in
the obstruction bundle version of the virtual approach. It is only slightly more complicated
than topologizing the compactified moduli spaceM in Step 1 of the virtual approach and
Step 7 of the geometric approach.]

(2) Quotient (global). Give eBŒ0� D B=Aut a scale smooth structure as a “scale Banach
manifold” by finding local slices as in Remark 2.5. That is, find Banach submanifolds
BH � B such that Aut�BH ! B is a homeomorphism to an open subset, and check that
the transitionmaps are scale smooth. Do the samewith each singular stratumeBŒ`�, which is
given by a fiber product of two or more copies of the main stratum, e.g.eBŒ1� Š eBŒ0� Q�eBŒ0�.
[The local slices are the same as those required in Step 2 of the virtual approach. Their
existence and scale smoothness follow from triviality of isotropy groups (which we assume

18More precisely, the pregluing map of step 3 defines the neighborhoods of broken or nodal maps.
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throughout) and similar basic analytic properties of the action as those used to establish
Step 4 of the geometric approach.]
(3) Pregluing. Give the main stratum eB a generalized smooth structure near the strata of
singular maps. In order to construct charts centered at once broken or nodal map in eBŒ1�,
use a pregluingmap of the form˚ W G��U0 Q�U1 ! eBŒ0� for open setsUi � eBŒ0� (realized
as local slices Ui ,! B). Here the space of gluing parameters is G� D .R0;1/ in the
case of a broken or boundary nodal map, whereas G� D .R0;1/ � S1 for the case of an
interior node. In either case, the pregluing map is extended by f1g � U0 Q�U1 mapping to
the corresponding broken or nodal maps in the singular stratum eBŒ1� � eB. We then give
G WD G� [ f1g a smooth structure by “a choice of gluing profile,” which is a choice of
identification with an interval Œ0; 1/ Š G with f0g Š f1g in the boundary case, and an
open disk with1 at the center in the interior case.

To make up for the lack of injectivity of these pregluing maps, follow a “gluing and
antigluing” procedure outlined in Section 2.3, to form an sc-retract R � G � U0 Q�U1, on
which the restriction of ˚ is a homeomorphism to an open subset of eB. Analogously,
construct such M-polyfold charts near the higher strata eBŒ`� of multiply broken or nodal
maps ineB from pregluing maps˚ W G`� Q�iD`iD0Ui ! eB on multiple fiber products of local
slices. In order to obtain scale smooth transition maps between these charts as well as
the local slice charts arising from Step 2, the safe choice is an exponential gluing profile
as in (5). [This is a mild extension of the pregluing construction that provides the basis
for an intricate Newton iteration in the gluing analysis of Step 5 (or 50) in the geometric
approach and Step 4 in the virtual approach. The novelty is in the interpretation as chart
maps. The construction of these charts and scale smoothness of transition maps should
usually be obtained by combining basic local building blocks19 in the literature with a
Deligne–Mumford theory for the space of underlying domains.]
(4) Fredholm setup. After gathering the compatible charts constructed in Steps 2 and 3
to an M-polyfold structure on eB, analogously construct an M-polyfold bundle eE ! eB
such that the PDE (e.g. the gradient flow or Cauchy–Riemann operator) forms a section
� W eB ! eE with ��1.0/ D M. Check that the section � is a scale smooth polyfold
Fredholm section. [The bundle eE could be constructed in one stroke with the ambient
spaceeB by adding fibers that are essentially given by the requirement of the PDE forming
a section. This bundle as well as the regularity and Fredholm property of the section
should again usually be obtained from patching together local building blocks for which
Fredholm properties are established in the literature. For regular domains (smooth,
connected Riemann surfaces), the Fredholm property is essentially the same as in Step 1
of the geometric approach and Step 3 of the virtual approach. For nodal or broken
domains, the polyfold Fredholm property formalizes part of the gluing analysis, namely it
essentially follows from the quadratic estimates that are required in the gluing analysis of
the other approaches.]
(5) Transversality (automatic). At this point the general transversality and implicit func-
tion theorem forM-polyfolds provides a class of perturbationsp W eB!eE with the property

19At present, only the building blocks for smooth domains and interior nodes are readily available in [38].
Work on the cases of breaking, Lagrangian boundary problems, and boundary nodes is in progress and discussed
below.
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thatMp WD .�Cp/
�1.0/ � eB is a smooth finite dimensional submanifold with boundary

and corners, and for any other choice p0 in this class there is a suitable cobordism be-
tweenMp0 andMp . The interior / boundary / corners of the perturbed moduli spaceMp

are given by its intersection with the interior @0eB / boundary @1eB / corners @k�2eB of the
ambient space eB. If there are no interior nodes, then each breaking or boundary node
contributes 1 to the corner index k; in other words, the k-th corner stratum is given by
the fiber products @keB D eBŒk� Š Q�k�B/Aut�. If all nodes are interior, then eB has no
boundary or corner strata, since the gluing parameters S1 � .R0;1/ are compactified to
an open disk; here a gluing parameter equal to 1 corresponds to a nodal map, which
is still an interior point. In the case of mixed types of breakings and nodes, only those
with gluing parameters .R0;1/ (not those with an extra S1 factor) affect the boundary
and corner stratification (i.e. contribute to the corner index k). [Contrary to Step 2 of
the geometric and Steps 3 and 5 of the virtual approach, no special geometric class of
perturbations or a priori transversality of obstruction bundles is required for this entirely
abstract perturbation scheme.]

(6) Coherence (mostly automatic). If the regularized moduli space is expected to have
boundary given by fiber products of its connected components, then the corresponding
coherent perturbations can be obtained from an extension of the polyfold transversality
theorem to “polyfold Fredholm sections with operations” as outlined in [41]. In this
case the expected boundary stratification is reflected in the fact that the boundary of the
M-polyfold eB can be identified with a fiber product @0eB Q�@0eB Š @1eB of its interior. An
“operation” is essentially a continuous extension of this identification to a (not necessarily
injective or single valued) map eB Q�eB ! eB n @0eB DW @eB with which the section � is
compatible – roughly � j@eB D � Q�� . If one can now establish combinatorial properties,
essentially amounting to a prime decomposition, for the operation on the level of con-
nected components �0.eB/ Q��0.eB/ ! �0.eB/, then a refined abstract construction of the
perturbations in step 5 yields a class of transverse perturbations that are additionally com-
patible with the operation on eB.20 As direct consequence, the boundary (not including
corners) @1Mp D � j�1

@1eB.0/ D � j�1
@0eB.0/ Q�� j�1@0eB.0/ D Mp Q�Mp is given by the fiber

product of the interior. Algebraic structures induced by such perturbed moduli spaces
then automatically satisfy a “master equation” of the type @mp D mp Q�mp . [This abstract
coherent perturbation scheme is essentially just a formalization of iterative schemes that
exist in various applications. The polyfold approach allows one to formulate this scheme
abstractly since pullback to fiber products and extension to the interior automatically pro-
vides further abstract scale smooth perturbations, whereas in the geometric and virtual
approach some care is required to preserve a specific geometric type of perturbations in
such constructions.]

20This simple formulation holds in the absence of “diagonal relators” — connected components ofeB that
can be glued to themselves. Such “self-gluing” does occur in several instances of e.g. general SFT. It can be
dealt with by allowing a more general transversality to the boundary strata which still yields smooth perturbed
moduli spaces with boundary and corners. However, it no longer ensures that the corner stratification is induced
from the ambient one — thus e.g. allowing boundaries of the moduli space to lie in corners of the ambient
M-polyfold. The counts of such moduli spaces then yield more involved algebraic structures than the “master
equation” mentioned here.
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(7) Invariance (partially automatic). The algebraic structures arising from different
choices of perturbations in Step 5 are automatically equivalent due to the cobordisms
between different perturbations. Invariance for different choices in the setup of � still has
to be proven independently, however this is accomplished via a similar M-polyfold setup
for a family of sections. In particular, the variation of the almost complex structure has to
be treated this way, since it does not fit into the class of abstract perturbations in Step 5.
[Though formally similar to the essential invariance questions in the geometric and virtual
approach, the polyfold approach has several readily available tools to obtain the required
cobordisms with much less effort than the corresponding Steps 8 of the other approaches.
These are discussed further below.]

The last step of this road map highlights two particular strengths of the polyfold
approach. Firstly, independence from the choice of perturbations is simply automatic,
whereas it needs to be proven separately in the geometric approach. Compared with the
virtual approach, the abstract regularization step in the latter also provides some automatic
invariance — though at best for a fixed cobordism class of Kuranishi structures. Here it
is worth noting that the ambient M-polyfold for a given moduli problem can essentially
be constructed naturally; in other words, the construction only depends on a few explicit
choices such as the Sobolev completion and a “gluing profile” Œ0; r0/ Š .R0;1�.21 Stated
differently, M-polyfold charts that arise from different choices of local slices or local
coordinates in the pregluing are compatible.

On the other hand, a Kuranishi structure a priori depends more substantially on the
inexplicit choice of local slices and obstruction bundles, so the virtual approach requires a
nontrivial proof of cobordism between the Kuranishi structures arising from different sets
of choices.

Secondly, the polyfold approach even provides a framework for proving invariance
under further variations of the PDE. Namely, if this variation can be described as scale
smooth family of polyfold Fredholm sections .��/�2Œ0;1� of a fixed M-polyfold bundleeE ! eB, then Œ0; 1� � eB ! eE , .�; b/ 7! ��.b/ is a polyfold Fredholm section whose
abstractly given transverse perturbations provide cobordisms between the regularizations
for � D 0 and � D 1.

Finally, the greatest benefit of polyfold theory is its ability to provide regularizations
of a wide variety of moduli problems based on a relatively small amount of technical work
that moreover is easily transferrable to related moduli problems. The presently developing
applications are all closely related to pseudoholomorphic curves, but further applications
to gauge theoretic elliptic PDEs are easily imaginable. For the moment, we restrict our
attention to pseudoholomorphic curve moduli problems, and we briefly list those theories
for which a polyfold framework has been developed, is under development, is expected

21At present, all known polyfold constructions use the same “exponential gluing profile” v 7! e1=v � e, and
the only choice in theW 2;3Ck

ık
Sobolev completions is a sequence .ık/k2N0 of exponential decay parameters

as in Lemma 4.10. The question of comparing invariants resulting from different choices of such global data
has not been addressed at this time. However, note that it could be reduced to cases in which there is a smooth
injection from one into the other polyfold bundle. We then expect that this embedding could be used to pull back
a large class of admissible perturbations (e.g. those supported away from nodes) that should suffice for achieving
transversality and thus identifying the invariants.
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to result from the same techniques, or is hoped for as nontrivial extension of existing
techniques.

Morse theory. An example in [30] sketches out the construction of a Fredholm section
in an M-polyfold bundle whose zero set is the moduli spaces of (unbroken, broken,
and multiply broken) gradient trajectories in a closed Riemannian manifold with Morse
function. A more thorough construction is being developed in [3]. A description of Morse
trajectory spaces as moduli spaces of solutions of a PDE (though really an ODE) and a
geometric regularization of low index moduli spaces from this point of view is available
in textbook format in [57].
Gromov–Witten theory. Moduli spaces of closed (possibly nodal) pseudoholomorphic
curves of arbitrary genus in any closed symplectic manifold are described as the zero set of
a polyfold Fredholm section (in an orbifold type bundle modeled on M-polyfolds) in [38].
Introductory material on genus zero Gromov–Witten moduli spaces and a geometric
regularization in semipositive symplectic manifolds is available in textbook format in [51].
Symplectic field theory. The primary motivation for the development of polyfold theory
was the regularization issue for moduli spaces of pseudoholomorphic buildings in non-
compact symplectic cobordisms — specifically curves in cylindrically-ended cobordisms
between manifolds with non-degenerate stable Hamiltonian structures. These SFT moduli
spaces were introduced in [13], and their description as the zero set of a polyfold Fredholm
section is expected as the next publication in the program of Hofer–Wysocki–Zehnder [39].
Hamiltonian Floer theory. Moduli spaces of (possibly broken) Floer trajectories be-
tween periodic orbits of a nondegenerate Hamiltonian vector field in any closed symplec-
tic manifoldM are special cases of SFT moduli spaces for the cobordism R � S1 �M .
Thus a description as the zero set of a Fredholm section in a polyfold bundle will arise
from [39]. Partial results on the Fredholm property near broken trajectories are available
in [64]. This polyfold setup will specialize to a Fredholm section in an M-polyfold bundle
if sphere bubbling can be excluded a priori. Hamiltonian Floer theory was first developed
by Floer [15], and further introductory material can be found in [56].
Arnold conjecture via S1-equivariance. Floer proved the Arnold conjecture for mono-
tone symplectic manifolds in [17] by constructing a moduli space cobordism between
Hamiltonian Floer moduli spaces and Morse trajectory spaces. This proof was general-
ized to a variety of settings, with the main obstacle being the need for an S1-equivariant
regularization. In the polyfold framework, this approach to the Arnold conjecture would
require a setup in which a transverse perturbation can be pulled back from a quotient by a
scale smooth S1-action. The analogous finite dimensional quotient theorems are expected
to generalize to actions on polyfolds under suitable analytic conditions. A first rigorous
study in a Morse theoretic model case is intended to follow after [3].
PSS morphism. An alternative approach to proving the Arnold conjecture was proposed
in [55] based on a moduli space of pseudoholomorphic spheres with one Hamiltonian end
and one marked point coupled to a Morse flow line. The direct approach again required
an S1-equivariant regularization and was not published in technical detail. However, this
approach can be algebraically refined so that the regularization issues reduce to obtaining
a polyfold Fredholm description for trees of pseudoholomorphic spheres with one or two
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Hamiltonian ends; these are again special cases of SFT moduli spaces (see [2] for further
details). Given a polyfold setup for the latter and a manifold with boundary and corner
structure on compactified spaces of finite or half infinite Morse trajectories from [63], a
fiber product construction provides a polyfold Fredholm description for compactifications
of all relevant PSS moduli spaces; these spaces involve a finite or half infinite Morse
trajectory coupled to one or two trees of spheres with a Hamiltonian end.
Pseudoholomorphic disks. Moduli spaces of pseudoholmorphic disks with Lagrangian
boundary condition can be compactified in different ways. One of the first such com-
pactifications, involving nodal disks, was introduced in [22] with the aim of constructing
an A1-algebra on a certain completion of singular chains on the Lagrangian. Closely
related moduli spaces, which in addition allow for Morse trajectories between the disks,
was introduced in [9, 19, 21] and further developed in [62] with the aim of constructing
an A1-algebra on the Morse complex of the Lagrangian. The corresponding building
blocks of pseudoholomorphic curves with Lagrangian boundary conditions and boundary
marked points connected by Morse trajectories are in the process of being described by
an M-polyfold Fredholm section in [48]. Under the assumption of pseudoholomorphic
spheres being a priori excluded, this should yield an A1-algebra over Z or Z2. In the
presence of pseudoholomorphic spheres these building blocks are expected to combine
with the existing building blocks of pseudoholomorphic curves with interior nodes via a
general patching technique that is being developed in [39]. The combined Fredholm setup
is expected to yield an A1-algebra over Q.
Lagrangian Floer theory and Fukaya category. By adding building blocks of striplike
ends with Lagrangian boundary condition, one should obtain a polyfold setup for La-
grangian Floer theory, which was introduced in [16]. By lifting this setup to domains
given by more involved Deligne–Mumford-type spaces of punctured disks, one should
moreover obtain a polyfold setup allowing one to define Fukaya categories as introduced
in [22, 59].
Relative SFT. Finally, the previous moduli spaces can be generalized from domains
with striplike ends and Lagrangian boundary conditions to SFT-type holomorphic curves
with boundary in cylindrically-ended symplectic cobordisms and boundary values on
Lagrangian cobordisms between Legendrian submanifolds. While the general algebraic
structure of such theories is unclear, the moduli spaces should have a relatively straight
forward description as the zero sets of polyfold Fredholm sections, and the boundary
stratifications are expected to govern the induced algebra. A special case of this setup
would provide a polyfold framework for Legendrian contact homology, which originated
in [8] and was generalized in [12].
Morse–Bott degeneracies. The scope of [39] is to provide a regularization of the moduli
space of non-compact curves in cylindrically-ended cobordisms such as R � V where
.V; � D ker�/ is a contact manifold. A crucial requirement here is a choice of contact
form � for which all Reeb orbits are non-degenerate. Similar nondegeneracy conditions
are necessary in all previously mentioned moduli space setups. Though technically much
more involved, it seems possible that analysis in [39] may generalize and be applicable to
the case in which the orbits are Morse–Bott degenerate. Morse–Bott contact homology
would be a special case of such a theory; for introductory material see [5].
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Pseudoholomorphic quilts. The building blocks for Gromov–Witten, Lagrangian Floer
theory, and pseudoholomorphic disks should also combine to give a polyfold setup for the
moduli spaces of pseudoholomorphic quilts introduced in [65]. Indeed, this is expected
since seam conditions are locally equivalent to Lagrangian boundary conditions in a
product. The novel figure eight bubble, however, has no description in terms of previous
Cauchy–Riemann-type PDE’s, since it involves tangential seams. The basic analysis
towards a polyfold Fredholm description was established in [7].

Part II. Presenting palatable polyfolds

In thismathematical part, we present the core definitions of polyfold theory in a streamlined
fashion so that wemay state a precise version of the abstract regularization result as quickly
as possible. For each of the new key concepts we present examples of their application to
Morse trajectory spaces as in Example 1.1.

4. Scale calculus

4.1. Scale topology and scale Banach spaces. We begin by introducing sc-topological
spaces. While this notion is not explicitly defined by HWZ, it is implicitly present in much
of the theory. (For instance, sc-Banach spaces, relatively open subsets in partial quadrants,
sc-smooth retracts, (M-)polyfolds, and strong polyfold bundles all carry sc-topologies.)

Definition 4.1. Let X be a metrizable topological space. An sc-topology on X consists
of a sequence of subsets .Xk � X/k2N0 , each equipped with a metrizable topology, such
that the following hold.

(i) X D X0 as topological spaces.

(ii) For each k > j there is an inclusion of sets Xk � Xj , and the inclusion map
Xk ! Xj is continuous with respect to the Xk and Xj topologies.

We will refer to .Xk/k2N0 , or X, or sometimes simply to X , as an sc-topological space.
An sc-topology .Xk/k2N0 is called dense if it has the following property.

(iii) The subset X1 WD
T
k2N0 Xk is dense in each Xj .

An sc-topology .Xk/k2N0 is called precompact if it has the following property.

(iv) For each p 2 Xk and j < k, there exists a neighborhood Ojk � Xk of p, whose
closure in Xj is compact.

Note that an sc-topological space X is related to a multitude of topologies — namely,
for every k 2 N0 the Xk-topology is defined on the subset Xk � X , or any of its subsets.
So by standard topological terms, such as openness or compactness, we will always refer
to the X0 topology, which makes sense for all subsets of X — unless a different ambient
space Xk and its topology are specified.
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Remark 4.2. (i) Any topological spaceX carries the trivial sc-topology .XkDX/k2N0 .
This is a dense sc-topology and satisfies the compactness property if and only ifX is locally
compact22.

(ii) If X D .Xk/k2N0 is an sc-topological space and Y � X0 a subset, then Y inherits
an sc-topology .Yk WD Y \ Xk/k2N0 . In general, if X is dense and precompact, then
Y WD .Yk/k2N0 need not inherit either of these properties. However, open subsets Y � X
do inherit density and precompactness from X by Lemma 4.4 below.

Example 4.3. The collection of k times continuously differentiable functions on the line,
all ofwhose derivatives are bounded, forms an sc-topological space .Xk WDCk.R;R//k2N0 ,
where each Xk is equipped with the topology induced by the Ck-norm. It satisfies the
density axiom since X1 D C1.R;R/. However, it does not satisfy the precompactness
property, due to the noncompactness of the domain R. Indeed, if f 2 C1.R;R/ has
compact support, then the sequence .fn.�/ WD f .� C n//n2N is bounded on every scale,
but does not contain a convergent subsequence on any scale. Hence for g0 2 Xk any
Xk-neighborhood fg j kg � g0kCk � �g still contains a sequence gn D g0 C

�
kf kCk

fn

that has no Xj -convergent subsequence for j < k.
Ifwe use the compact domainS1DR=Z, the sc-topological space .XkWDC k.S1;R//k2N0

is dense and satisfies the precompactness property by the Arzelà–Ascoli Theorem. Due
to its linear structure, this is also the first example of an sc-Banach space as discussed in
Section 2.2 and rigorously defined below.

Lemma 4.4. LetX D .Xk/k2N be a dense, precompact sc-topological space. Let Y � X0
be an open subset. Then for Yk WD Y \Xk , with the relative topology induced by Xk , the
collection .Yk/k2N forms a dense, precompact sc-topological space.

Proof. The axioms for the sc-topology X transfer directly to .Yk/k2N, so it remains to
verify the density and precompact conditions. For that purpose first note that Yj � Xj is
open for all j 2 N, since it is the preimage of the open set Y � X0 under the continuous
inclusion Xj ! X0.

Density of Y1 D X1 \ Y in a fixed Yj then follows from the density of X1 � Xj ,
since any Xj -convergent sequence X1 3 xn ! y 2 Yj has its tail contained in the open
subset Yj , so that the tail is a Yj -convergent sequence in X1 \ Y D Y1.

To prove precompactness of Y, we fix j < k and p 2 Yk . Then precompactness of X
provides a neighborhood Ojk � Xk of p, whose closure in Xj is compact. On the other
hand, p 2 Xj has a closed neighborhood basis by metrizability of the Xj -topology. In
particular, we can find a closed Xj -neighborhood Bj of p that is contained Bj � Yj in
the open subset Yj � Xj . Since the inclusion Xk ! Xj is continuous, the preimage
Bj \ Xk is also a neighborhood of p 2 Xk . Now Bj \ Ojk � Y \ Xk D Yk is the
required Xk — and hence Yk — neighborhood of p. Indeed, it is an intersection of the
Xk-neighborhoods Bj \Xk andOjk . Its Yj -closure Bj \ clXj .Ojk/ is compact since it
is a closed subset of the compact subset clXj .Ojk/ of a Hausdorff space.

22Recall,X is locally compact if for each point p 2 X there exists a neighborhood of p which is compact.
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After this gentle introduction to the basic idea of “scales” providing different topologies
on dense subsets of the same space, we introduce the ambient spaces of scale calculus,
which have a linear structure as well as a dense precompact sc-topology.

Definition 4.5. An sc-Banach space (sc-Hilbert23 space) E consists of a Banach (Hilbert)
space E, together with a linear scale structure. The latter is a sequence of linear sub-
spaces E D E0 � E1 � E2 � � � �, each equipped with a Banach norm k � kk (Hilbert
inner product h�; �ik), so that the induced sequence of topological spaces forms a dense
precompact sc-topology.

In the context of scale manifolds and M-polyfolds, we will also use the notion of scale
smooth structures, which are given by local models in scale Banach spaces; in other words,
the models only locally have a linear scale structure. We will usually refer to both as scale
structures with the precise meaning clarified by the context.

Lemma 4.6. Let E be a sc-Banach space. Then for each j < k the linear inclusions
Ek ! Ej are compact (and hence bounded).

Proof. First, since the .Ek/k2N form an sc-topology, the inclusion Ek ! Ej for each
j < k is continuous, and hence bounded. Next, the precompactness condition implies
that there exists an open neighborhood Ojk � Ek of 0 which has compact closure in Ej .
Thus we find � > 0 so that fx 2 Ek W kxkk < �g has compact closure inEj . By rescaling,
this proves that any Ek-bounded subset has compact closure in Ej ; in other words the
inclusion Ek ! Ej is compact.

Remark 4.7. (i) There exists a natural productE�F of sc-Banach spaces given by the
scale structure .E � F /k WD Ek � Fk . The analogous product for sc-topologies preserves
density as well as precompactness.

(ii) An sc-Banach space induces an sc-topology on the space itself and on any of its
open subsets, which is both dense and precompact.

(iii) Any scale Ej of an sc-Banach space .Ek/k2N0 inherits an sc-structure .Ej;k WD
EjCk/k2N0 . This is not the sc-topology induced on the subset Ej � E0, but a new
(dense, precompact) sc-topology on a dense subset, obtained by a shift which ensures
precompactness.

Example 4.8. Any finite dimensional Banach space E carries the trivial sc-structure
.Ek D E/k2N0 . Due to the density requirement for EkC1 � Ek , there are no nontrivial
sc-structures on finite dimensional spaces. Moreover, the compactness requirement (ii)
implies that any sc-Banach space withEkC1 D Ek must be locally compact and therefore
finite dimensional. For n 2 Nwewill denote byRn andCn the real and complexEuclidean
space with standard norm and trivial sc-structure.

23We will develop all of scale calculus in the general setting of scale Banach spaces. The regularization
theorems (c.f. Theorems 6.1 and 6.28) as stated below will require all scale structures to be sc-Hilbert spaces,
since this guarantees the existence of smooth cutoff functions. Note however that it should be sufficient to have
scale-smooth cutoff functions, which may well exist on the sc-Banach spaces arising from Sobolev spaces with
p ¤ 2 introduced in Example 4.9 below (while the existence of classically smooth cutoff functions is a highly
nontrivial question).
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The moduli spaces of holomorphic curves, to which we wish to apply polyfold theory,
usually work with domains that are either compact or have strip-like or cylindrical ends,
which are conformally equivalent to Œ0; 1��RC or S1�RC as appropriate. The following
are the prototypical examples for sc-Banach spaces (and sc-Hilbert spaces in case p D 2)
of maps on such domains.
Example 4.9. Let † be a compact Riemannian manifold, `; n 2 N0, and 1 � p < 1.
Then the Sobolev space W `;p.†;Rn/ can be equipped with an sc-structure�

Ek D W
`Ck;p.†;Rn/

�
k2N0

:

Here the Sobolev spaces are defined as

W m;p.†;Rn/ WD
˚
u W †! Rn

ˇ̌
juj; jDuj; : : : ; jDmuj 2 Lp.†/

	
with the norm kukWm;p D

�R
†
jujpCjDujpC� � �C jDmujp

� 1
p , where Dmu is the tensor

denoting the m-th differential of the map u.
Lemma 4.10. Let n 2 N, ` 2 N0, 1 � p <1, and ı0 2 R. Then the weighted Sobolev
space W `;p

ı0
.R;Rn/ can be equipped with sc-structures�

Ek D W
`Ck;p

ık
.R;Rn/

�
k2N0

for any weight sequence ı D .ık/k2N0 with k > j ) ık > ıj . Here

W
m;p

ı
.R;Rn/ WD

˚
u W R! Rn

ˇ̌
s 7! eısˇ.s/u.s/ 2 W m;p

	
is the Sobolev space of weight ı 2 R given by the norm kukWm;p

ı
D keısˇukWm;p , where

ˇ 2 C1.R; Œ�1; 1�/ is a symmetric cutoff function with ˇ.�s/ D �ˇ.s/, ˇjfs�0g � 0, and
ˇjfs�1g � 1. (Different choices of ˇ yield the same space with equivalent norms.)

Proof. The inclusion Ek D W
`Ck;p

ık
.R;Rn/ � W

`Cj;p

ım
.R;Rn/ D Em for k > j

exists since eıksˇ � eıj sˇ . It is compact since the restriction W `Ck;p

ık
.R;Rn/ !

W
`Cj;p

ık
.Œ�R;R�;Rn/ is a compact Sobolev imbedding for any finite R � 1 (due to the

loss of derivatives k > j , see [1]) and the restriction W `Ck;p

ık
.R;Rn/ ! W

`Ck;p

ıj
..R n

Œ�R;R�/;Rn/ converges to 0 in the operator norm as R ! 1 (due to the exponential
weight supjsj�R eıj sˇ.s/e�ıksˇ.s/ D e�.ık�ıj /R).

The smooth points u 2 E1 are those smooth maps u 2 C1.R;Rn/whose derivatives
decay exponentially, sups2R eısˇ.s/j@Ns u.s/j <1 for all N 2 N0 and every submaximal
weight ı < supk2N0 ık . (In case of an unbounded weight sequence ı, this means that the
maps decay faster than any linear exponential.) In particular, the compactly supported
smooth functions are a subset C10 .R;Rn/ � E1; and these are dense in any weighted
Sobolev space (for p <1).

Note that in typical applications, sc-Banach spaces must be chosen so that an elliptic
regularity result will hold between scales; see the regularization property of scale operators
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as discussed at the end of Section 2.2 above and Definition 6.10 below. Consequently, it
should not be surprising that certain Sobolev spaces arise as sc-Banach spaces. Another
natural candidate is the collection of Hölder spaces .Ck;˛/k2N for ˛ 2 .0; 1/, however
such spaces do not form an sc-Banach space because the infinity level, C1, is not dense
in any given finite scale.24 This difficulty can be resolved simply by defining the levels
of an sc-Banach space to be the closure of the smooth functions in each level; in other
words, define Ek WD clCk;˛ .C1/. This idea holds more generally, as the following lemma
illustrates.

Lemma 4.11. Let E0 be a Banach space, and let E0 � E1 � E2 � � � � be a nested
sequence of linear subspaces, each equipped with a Banach norm k � kk . Suppose further
that the inclusion maps Ek ! Ej are compact for each j < k, but also assume that
E1 WD \k2NEk is not dense so .Ek/k2N is not an sc-Banach space. Define bEk WD
clEk .E1/; then .bEk/k2N (equipped with the norms k � kk) is an sc-Banach space.

Proof. We begin by observing that by continuity of the inclusion Ek ,! Ej , the closurebEk D clEk .E1/ is a subset of bEj D clEk .E1/ for any j < k. Moreover, the inclusion
map bEk ,! bEj is compact since it is the restriction of a continuous compact map.
(For compactness note that any bounded set � � bEk is bounded in Ek as well, and
hence clEj .�/ � Ej is compact. However, this closure is also a subset of bEj by
construction, so that� is precompact in bEj .) Finally,E1 � bEk is dense for each k 2 N0
by construction. In fact, we have

T
k2N0

bEk D E1 since this intersection is nested
between E1 and

T
k2N0 Ek D E1.

Finally, we can define scale continuity for maps between open subsets of sc-Banach
spaces by the same notion as for general sc-topological spaces, namely requiring continuity
on every scale.

Definition 4.12. Let X and Y be equipped with sc-topologies. A map f W X ! Y is
called sc-continuous, abbreviated sc0, if for each k 2 N0 the restriction f jXk W Xk ! Yk
is continuous.

4.2. Scale differentiability and scale smoothness. The differences between standard
and scale calculus in infinite dimensions stems exclusively from the following novel notion
of scale differentiability and its implications. This notion is chosen such that, on the one
hand reparametrizations act differentiably on spaces of functions as in Example 4.15, and
on the other hand the chain rule is satisfied, see Theorem 4.19.

Definition 4.13. An sc0 map f W E! F between sc-Banach spaces is continuously scale
differentiable, abbreviated sc1, if for every x 2 E1 there exists a bounded linear operator

24For example, the function x 7! jxj˛ cannot be approximated by differentiable functions in the C0;˛ norm.
Indeed, convergence fn.x/ � jxj˛ ! 0 in C0;˛ would imply limn!1 limx!0 jxj�˛

ˇ̌
.fn.x/ � jxj

˛/ �

.fn.0/� j0j
˛/
ˇ̌
D 0. On the other hand, if the functions fn are differentiable at 0, then the limit for˙x > 0

can be rewritten as limn!1 limx!0
ˇ̌
˙
fn.x/�fn.0/

x
jxj1�˛ � 1

ˇ̌
D limn!1 j ˙ f 0n.0/ 01�˛ � 1j D 1

since 1� ˛ > 0; a contradiction.
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Dxf W E0 ! F0 such that

f .x C h/ � f .x/ � Dxf .h/



F0

khkE1
������!
khkE1!0

0

and the map E1 � E0 ! F0 given by .x; h/ 7! Dxf .h/ is sc0 with respect to the
sc-structure .EkC1 �Ek/k2N0 .

While this notion is structurally similar to the classical definition of continuous dif-
ferentiability, in that it contains the existence of a bounded linear operator Dxf and a
notion of continuous variation with x, it differs in two essential ways: Firstly, the classical
pointwise differentiability uses khkE0 in the difference quotient, rather than khkE1 , and
requires differentiability at every point x 2 E0, rather than just on E1. In other words, it
looks like we are just requiring f to restrict to a differentiable map E1 ! F0.

Secondly, classical continuous differentiability from E1 to F0 requires the continuity
of the differential E1 ! L.E1; F0/; x 7! Dxf with respect to the operator norm.25 On
the other hand, classical continuous differentiability from E0 to F0 requires continuity of
the differential as map E0 ! L.E0; F0/. Thus we see that scale differentiability is an
intermediate notion, in which the differential is required to exist as a bounded operator
Dxf 2 L.E0; F0/, but only for x 2 E1, and the continuity requirement is weaker in that
it only requires pointwise convergence kDx�f .h/ � Dxf .h/kF0 ! 0 for fixed h 2 E0
as kx� � xkE1 ! 0, rather than convergence of operators supkhkE0D1 kDx�f .h/ �
Dxf .h/kF0 ! 0 as kx� � xkE0 ! 0. However, at this point scale differentiabiliy adds
requirements at every scale: The restrictions Dxf jEk of the differential have to induce a
map EkC1 ! L.Ek ; Fk/, which is continuous in the pointwise sense as above. (Equiva-
lently, this map is continuous with respect to the compact open topology on L.E0; F0/.)
These considerations lead to the following comparison between classical and scale differ-
entiability.
Remark 4.14. (i) On a finite dimensional vector space with trivial sc-structure, the

notion of scale differentiability is the same as classical differentiability.
(ii) Assume that the restricted maps f jEk W Ek ! Fk are classically C1 for every

k 2 N0. Then f is sc1 by [35, Prop. 1.9].
(iii) Assume that f W E ! F is sc1, then the induced maps f jEkC1 W EkC1 ! Fk are

classically C1 for every k 2 N0 by [35, Prop. 1.10].
(iv) By [35, Prop. 2.1] an sc0 map f is sc1 if and only if the following holds for every

k 2 N0.

(a) The restricted map f jEkC1 W EkC1 ! Fk is classically C1. In particular, the
differential Df W EkC1 ! L.EkC1; Fk/; x 7! Dxf is continuous.

(b) The differentials Dxf W EkC1 ! Fk for x 2 EkC1 extend to a continu-
ous map EkC1 �Ek ! Fk ; .x; h/ 7! Dxf .h/. In particular, each extended
differential Dxf W Ek ! Fk is bounded.

25The space of bounded linear operators L.H;K/ D fD WH ! K linear
ˇ̌
kDkL <1g between Banach

spacesH;K is itself a Banach space with norm kDkL WD suph¤0
kDhkK
khkH

<1.
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The motivating example for the development of scale calculus is the action of repara-
metrizations on map spaces, which we give here in the simplest form of real valued
functions on S1.
Example 4.15. Recall that the translation action on S1 WD R=Z, which is similar to
Example 2.4 and given by

� W R � C0.S1/! C0.S1/; .s; 
/ 7! 
.s C �/;

has directional derivatives only at points .s0; 
0/ 2 R � C1.S1/ and is in fact nowhere
classically differentiable. However, � is sc1 if we equip C0.S1/ with the sc-structure
.Ck.S1//k2N0 of Example 4.3. Indeed, the differential is

D.s0;
0/�.S; �/ D S P
0.s0 C �/ C �.s0 C �/ D S�.s0; P
0/C �.s0; �/;

which for fixed .s0; 
0/ 2 R � CkC1.S1/ is a bounded operator R � Ck.S1/! Ck.S1/,
and for varying base point is a continuous map R � CkC1.S1/ �R � Ck.S1/! Ck.S1/.

More conceptually, the notion of scale differentiability can equivalently be phrased as
the existence and scale continuity of a tangent map.
Definition 4.16. The sc-tangent bundle of a Banach space E D .Ek/k2N0 is

TE WD E1 �E0 with sc-structure .EkC1 �Ek/k2N0 :

The tangent map of an sc1 map f W E! F is

Tf W TE! TF; .x; h/ 7!
�
f .x/;Dxf .h/

�
:

Here a point .p; v/ 2 TE in the sc-tangent space is viewed as tangent vector v 2 E0
at the base point p 2 E1. Hence, the sc-tangent bundle of E is a bundle TE ! E1 over
the dense subspace E1 � E whose fiber at each point is the entire vector space E0 D E.
We can now give a brief defininition of scale differentiability and extend it naturally to
notions of k times sc-differentiable and the notion of sc-smoothness.
Definition 4.17. Let f W E! F be a sc0 map between sc-Banach spaces.

(i) f is sc1 if the tangent map Tf W TE! TF exists and is sc0.
(ii) f is sck for k � 2 if the tangent map Tf is sck�1.
(iii) f is scale smooth, abbreviated sc1, if the tangent map Tf is sck for all k 2 N0.

Remark 4.18. Scale calculus with boundary and corners. The notions of tangent
bundle, sc0 map, tangent map, sck , and sc1 extend naturally to maps defined on open sets
U � E of sc-Banach spaces and relatively open sets U � Œ0;1/k � E in sectors (special
cases of the “partial quadrants” defined by HWZ). Indeed, scale continuity is defined with
respect to the induced topology on the subset U ; the differentialDxf must still satisfy the
limiting property as displayed in Definition 4.13 however only under the slightly weaker
condition that x C h 2 U1 as khkE1 ! 0; and the differential .x; h/ 7! Dxf .h/ maps
U1 �E0 ! F0 and is scale continuous. See Definition 1.14 of [40].
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Note that in order to build a new sc-differential geometry based on the notion of scale
differentiability, it is crucially important that the chain rule holds. Indeed, we state this
as a sample from the large body of work in which HWZ reprove the standard calculus
theorems in the framework of sc-calculus. The proof in [31, Thm. 2.16] makes crucial use
of the compactness assumption on the scale structure in Definition 4.5 (ii).

Theorem4.19 (ChainRule). LetE;F;G be sc-Banach spaces, and suppose thatf WE! F
and g W F! G are sc1 maps. Then g ı f W E! G is sc1 and T.g ı f / D Tg ı Tf .

Finally, we can use the chain rule to prove scale smoothness of the translation action.

Example 4.20. The tangent map of Example 4.15,

T� W R � C1.S1/ � R � C0.S1/ ! C1.S1/ � C0.S1/
.s0; 
0; S; �/ 7!

�
�.s0; 
0/; S � �.s0; P
0/C �.s0; �/

�
can be expressed as composition of sum, multiplication, derivative C1.S1/ ! C0.S1/,

 7! P
 , and the translation � W R�C0.S1/! C0.S1/ itself. All of these are sc-continuous,
and, by linearity, the first three are in fact sc1. Hence, by the chain rule (stated above as
Theorem 4.19), T� is as scale differentiable as � . This proves that the translation � is in
fact sc1.

4.3. Scale manifolds. The scale calculus on Banach spaces can now be used to obtain a
variation of the notion of a Banachmanifold by replacing Banach spaces with scale Banach
spaces and by replacing smoothness requirements with scale smoothness. This new notion
of scale manifold coincides with the classical notion of manifold in finite dimensions by
Example 4.8 and Remark 4.14 (i); for a precise definition of scale manifold, see [31, §2.4].
In infinite dimensions, neither notion is stronger than the other, however in applications
most Banach manifolds could be equipped with an additional scale structure.

In practice, scale manifolds are of limited utility, since they are not general enough
for moduli problems involving broken trajectories or nodal curves, and they are a rather
special case of the more general notion of an M-polyfold. Nevertheless, they serve as
a useful stepping stone between Banach manifolds and M-polyfolds, and we will use
them here to illuminate the concept of scale smoothness by outlining how the space of
maps, modulo reparametrization, is given the structure of a scale manifold; that is, it has
metrizable topology, it is locally homeomorphic to open subsets of scale Banach spaces,
and the induced transition maps are scale smooth. In order to prevent isotropy, we restrict
ourselves to maps from S1 to S1 of degree 1,

B WD
˚

 2 C1.S1; S1/

ˇ̌
deg 
 D 1

	
:

By identifying S1 D R=Z, we observe that the translation action � from Example 4.15
descends to an action S1 � B ! B, which by the degree restriction is free. Next, we
will sketch how to construct local slices for the action of Aut D S1 on B along the lines
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of Remark 2.5, and, from these observations, we will obtain sc-manifold charts for the
quotient space B=Aut.
� For any fixed a 2 S1, one can check that the space of maps that transversely

intersect a at 0 2 S1, denoted

Ba WD
˚

 2 B

ˇ̌

.0/ D a; d0
 ¤ 0

	
;

is a local slice; in other words, the map Ba ! B=Aut, 
 7! Œ
� is a local homeo-
morphism.

� Each Ba is locally homeomorphic to an open set in the model Banach space

E0 WD
˚
� 2 C1.S1;R/

ˇ̌
�.0/ D 0

	
;

via the map E0 ! Ba, � 7! 
 C � .mod Z/ centered at a fixed 
 2 Ba.
� The Banach space E0 can be equipped with the scale structure

Ek WD
˚
� 2 C1Ck.S1;R/

ˇ̌
�.0/ D 0

	
:

� For any a 2 S1 and 
 2 Ba there exists a sufficiently small open ball Na;
 � E0
such that the composition of maps E0 ! Ba ! B=Aut restricts to a homeomor-
phism ˆa;
 W Na;


�
! Ua;
 to a neighborhood of Œ
� 2 B=Aut.

� Thus B=Aut is covered by (topological) Banach manifold charts, whose domainE0
is enriched with a scale structure.

In order to equip B=Aut with the structure of a scale manifold, it remains to check
scale smoothness of the transition maps, given by

ˆ�1a2;
2 ıˆa1;
1 W E0 � ˆ�1a1;
1.Ua2;
2/ �! E0

� 7�! �.s� ; 
1 C �/ � 
2;

where s� 2 R is determined26 by 
1.s�/ C �.s�/ D a2. These transition maps are not
classically differentiable but we can check that they are scale smooth by the following
steps; c.f. [35, §4.1].

� The map 
 7! s
 from a C1 neighborhood of 
2 to a neighborhood I2 � R of 0,
given by solving 
.s
 / D a2 for s
 2 I2, is well defined for sufficiently small choices of
the neighborhoods. It is C1, by the implicit function theorem, if the neighborhoods are
also chosen to guarantee transversality. Next, one can differentiate the implicit equation
for s
 to check that the variation of s
 with 
 2 Ck is k times continuously differentiable.
This proves property a) of Remark 4.14 (iv). To check the refined continuity required in b)
one inspects the expression for the differential that arises from the implicit equation. After
employing the classically smooth map � 7! 
1 C � to model the problem on a Banach
space, this shows that the map � 7! s� is sc1.

26In general, there may be several solutions to the equation 
1.s�/C �.s�/ D a2, however a unique solution
can be determined by the C1-smallness condition �.s� ; 
1 C �/ � 
2. See Remark 4.21 for further details.
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� Note that ˆ�1a2;
2 ı ˆa1;
1 is a composition of the above map with addition and
translation. The latter was shown to be sc1 in Example 4.20. Addition is classically
smooth on each level, hence scale smooth. Now the chain rule for composition of scale
smooth maps, Theorem 4.19, implies scale smoothness of the transition map.

In order to conclude that B=Aut is a scale manifold, it now remains to check that its
quotient topology (in which the chart maps are local homeomorphisms) is Hausdorff and
paracompact. The latter follows if we can cover B=Aut with finitely many charts, and the
Hausdorff property holds if the equivalence relation induced by Aut is closed (preserved
in limits).
Remark 4.21. Small print on uniqueness in the slicing conditions. In general, the implicit
equation 
1.s� / C �.s� / D a2 for s� may have a large irregular set of solutions, but the formula
for the transition maps ˆ�1a2;
2 ı ˆa1;
1 , and similarly the proof of injectivity of each chart ˆa;
 ,
requires a unique solution. Since we guaranteed trivial isotropy, this uniqueness can be achieved by
solving for s� in a small subdomain of R.

More precisely, one can construct the local slice near Œ
2� in a neighborhood Ua2;
2 that is given
as quotient of an �-neighborhood around 
2 2 C1.S1; S1/ so that for given ı > 0 the following
holds: For each equivalence class Œ
0� 2 Ua2;
2 , there exists a (not necessarily unique) s0 2 S1 so
that dC1.
0.s0 C �/; 
2/ < � and

dC1.
0.s C �/; 
2/ � � ) js � s0j < ı:

In other words, the set of shifts of 
0 which are �-close to 
2 in C1 is a 2ı-small interval in S1.
Moreover, the constants �; ı > 0 can be chosen so that for each 
 in the �-neighborhood of 
2
there exists a unique js2j < ı for which 
.s2/ D a2 and 
 0.s2/ ¤ 0. Consequently, for any choice
of �12 2 Na1;
1 with the property that ˆa1;
1.�12/ 2 Ua1;
1 \ Ua2;
2 , one can find a shift value
s12 2 R=Z with the property that 
1.s12/C �12.s12/ D a2; furthermore for each � � �12 there
exists a unique s� satisfying js12 � s� j < ı which solves 
1.s� /C �.s� / D a2. For a more detailed
construction of �; ı see e.g. [3, 30, 47].

For a more general quotient of nonconstant, continuously differentiable functions modulo trans-
lation, denoted by C1nc.S1/=S1, the above constructions will just provide a scale orbifold structure
due to the possible finite stabilizers G � S1, fixing a map �.G; 
/ D 
 . This can be seen above
as the lifts from B=Aut to a C1 neighborhood of the center of the chart 
2 being unique only up to
shift by a tuple of intervals G C .s0 � ı; s0 C ı/, where G � S1 is the isotropy group of 
2.

We end this section by transferring the previous slicing construction to maps with
noncompact domain R, as required for the application to Morse theory.

Example 4.22 (Scale smooth structure on trajectory spaces). For simplicity we will
consider a Morse function f W X ! R where X D Rn. In order to construct the space
of (not necessarily Morse) trajectories between two critical points a ¤ b, we begin by
fixing a reference path ba 2 C1.R; X/ from limt!�1  ba .t/ D a to limt!1  ba .t/ D b,
whose derivative has compact support. Then we define a metric space of paths from a

to b by27

Bba WD
˚

 2 W

2;2
loc .R; X/

ˇ̌
9 v 2 W 2;2.R; X/ s.t. 
 D  ba C v

	
:

27One can check that Bba does not depend on the choice of reference path  ba as specified above.
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Now let the automorphism group Aut WD R act on Bba by the translation action as in
Example 2.3,

� W R �W 2;2.R; X/! W 2;2.R; X/ given by �.s; 
/ WD 
.s C �/: (7)

Then we define the space of trajectories from a to b as the metric space

eBba WD BbaıAut; d.Œ
1�; Œ
2�/ WD inf
t2R
k
1.t C �/ � 
2.�/kW 2;2 :

This space can be given the structure of an sc-manifold in the following manner. For
any given point Œ � 2 eBba, we pick a representative  2 Bba such that  0.0/ ¤ 0. (For
simplicity we also assume that  is constant near˙1.) Then the following open subsets
of Banach spaces will provide local models for Bba and eBba,
U WD

˚
u 2 W 2;2.R; X/

ˇ̌
kukW 2;2 < �

	
; V  WD

˚
u 2 U 

ˇ̌
h 0.0/; u.0/i D 0

	
:

Here �; ı > 0 are chosen so that
(i) the map ‰ W V  ! eBba given by ‰.u/ D Œ C u� is injective,
(ii) for each u 2 U , the restrictedmap Cu W .�ı; ı/! X has unique and transverse

intersection with the hyperplaneH WD fp 2 X j hp �  .0/;  0.0/i D 0g.
Then the fact that v 2 V  implies . C v/.0/ 2 H , together with the above two
conditions, guarantees that ‰ W V  ! eBba given by u 7! ŒuC  � is a local chart for eBba;
in other words, it is a homeomorphism to an open subset.

In order to give the trajectory space eBba the structure of an sc-manifold, it remains to
exhibitV  as an open subset of an sc-Banach space and to verify that the transitionmaps in-
duced by different choices of centers Œ �, or representatives  , are sc1-diffeomorphisms.
For the first step, recall the sc-structure W 2Ck;2

ık
.R;Rn/ from Lemma 4.10, where we fix

a weight sequence28 0 D ı0 < ı1 < ı2 < � � � . The slicing condition cuts out closed
codimension 1 subspaces from each scale, which then yields an sc-Banach space with
scales Ek WD

˚
u 2 W

2Ck;2
ık

.R;Rn/
ˇ̌
h 0.0/; u.0/i D 0

	
so that V  � E0 is an open

subset. Finally, scale smoothness of the transition maps is proven by arguments similar to
those above for the case of trajectories parametrized by S1.
Remark 4.23. Small print on covering by charts with smooth center. There is a subtle but
important point to be made about the above example, namely that our local chart is centered at the
point Œ ba � 2eBba which is represented by a C1 map  ba . For all standard applications like gradient
flow lines, Floer trajectories, or pseudoholomorphic curves, it is essential that this base map be C1.
This is due in part to the fact that (equivalence classes of) maps of any regularity near this base
point need to be obtained by exponentiating vector fields along the base map. However, there is no
well defined notion of a CkC` vector field along a Ck map for ` > 0, and even if there was, then the
map resulting from exponentiation (e.g. addition in the simplest case) would only be Ck . This also
points to the second issue of transition maps between different charts centered at Ck , which is that
maps generally do not preserve CkC` regularity for ` > 0, and hence will not be scale continuous,
let alone scale smooth.

28In order to capture all Morse-trajectories, it will be important to choose this sequence so that sup ık <
infkxkD1minp2fa;b;cgjD2fp.x; x/j. We do not make use of this condition in the present example however.
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Note however, that by constructing only charts with C1 centers, we run the risk of failing to
cover the given topological space despite the fact that (equivalence classes of) C1 maps are dense
in this total space. Indeed, it is worth recalling that the rational numbers are dense in the reals
and can be covered by a countable collection of open intervals, the union of which can be made
to have arbitrarily small measure. Consequently this collection of charts (given by the open sets)
does not cover all of R. This is a general issue in constructing atlases for a scale manifold, or more
generally M-polyfolds. There are two approaches for dealing with this issue. First, in the standard
applications, all elements of the compactified moduli space are in fact represented by C1 maps.
Hence one could redefine the scale manifold (or M-polyfold) as the subset that is covered by the
charts with C1 centers. This possibly smaller set still contains the compactified moduli space, and
if it is the zero set of an appropriate Fredholm section, then an M-polyfold perturbation scheme
and implicit function theorem can be used to regularize it. Note that the invariance part of the
regularization would now also have to address changes in the cover used for perturbation, and thus
in the ambient M-polyfold used. Roughly speaking, any two such covers should cover a common
open neighborhood of the compactified moduli space, which itself is an M-polyfold within which
the moduli space can be regularized.

As a second approach, one could try to control the size of the charts with C1 centers in such a
way that density of the C1 points guarantees that the whole space is covered by charts. Note that
in fact a local lower bound on the chart size would suffice. This is the argument by which usual
Sobolev completions of maps are given the structure of a Banach manifold, but it is complicated by
slicing conditions in the polyfold applications. To prove such a bound, [38] develop the following
technique that can also be employed in other standard applications: To show that a given point,
which is represented by a map of less than C1 regularity, lies within a chart with C1 center,
we build a “tentative chart” centered at the given representative in the same way as if it was C1.
This involves geometric constructions like choosing a transverse hypersurface, which are possible
at general centers if we choose the basic regularity of maps in the total space sufficiently high. For
pseudoholomorphic curves, this (again) motivates using spaces of W 3;2 maps, since the Sobolev
embedding to C1 ensures that the notion of transversality to a hypersurface is meaningful. The
resulting tentative chart is a homeomorphism to an open subset of the total space, just with less
smooth structure on its domain (e.g. an open subset in a Banach space instead of a scale Banach
space). Then, by density of the C1 points in the total space, the corresponding points will also
be dense in the domain of the tentative chart, where they correspond to C1 maps near the given
representative. One can now “re-center” the tentative chart at these C1 maps to obtain new charts
whose size is controlled analogously to the radii of balls of varying center that are contained in a
given ball. More concretely, one uses the geometric choices (e.g. of transverse hypersurface) of
the tentative chart in the construction of charts centered at the C1 maps within the tentative chart.
Then the size of the new scale-smooth charts (which is related to injectivity radii and preserving the
transversality) is bounded below for centers in a neighborhood of the original center. This, in turn,
ensures that this original center is contained in the new charts whose C1 centers are sufficiently
close.

5. M-Polyfolds

This section defines the notion of an M-polyfold, which is something akin to a manifold
locally modeled on scale smooth retractions. In order to provide a roadmap, we begin by
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stating the definition of an M-polyfold, which is obtained by simply replacing the notion
of charts and smooth transition maps in the definition of a classical manifold with the
generalized concepts that will be the topic of discussion in this section. As a running
application, we will consider examples from Morse theory to illuminate the definitions
and theorems of this section.
Definition 5.1. AnM-polyfold is a metrizable space X together with an open covering by
the images of M-polyfold charts (see Definition 5.4), which are compatible in the sense
that the transition map induced by the intersection of the images of any two charts is scale
smooth (see Definition 5.12).

The notions ofM-polyfold charts and scale smoothness between their local models will
be developed in Sections 5.1 and 5.2. As for manifolds, we will then see in Section 5.3
that a notion of M-polyfold with boundary (and corners) can be obtained by allowing
M-polyfold charts with boundary (and corners) and by making sense of scale smoothness
on their underlying local models.
Remark 5.2. Topological small print.

(i) Just as for finite dimensionalmanifolds, any covering by compatible charts induces amaximal
atlas of compatible charts, which is more commonly viewed as manifold or M-polyfold structure on
a given space.

(ii) One could weaken the assumption of metrizability in Definition 5.1 to the assumption that
the topological space X be Hausdorff and paracompact. Then, because X is covered by M-polyfold
charts, which (just like manifold charts) provide local homeomorphisms to a metrizable space, it
immediately follows that X is locally metrizable; indeed, any point has a neighborhood on which
the subspace topology is metrizable. Thus X will automatically be metrizable by the Smirnoff
metrization theorem [52, Thm. 42.1]. We note that, conversely, metric spaces are automatically
paracompact (by e.g. [52, Thm. 41.4]), and hence allow partitions of unity subordinate to any open
cover.

(iii) The definition of M-polyfolds in [32] works under the assumption of second countability
instead of the assumption of paracompactness; this ensures that the zero set s�1.0/ � X of a
transverse section s over X inherits the structure of a manifold, which is commonly defined to be
second countable, Hausdorff (which follows from being a subset of a Hausdorff space), and locally
homeomorphic to Euclidean space (which follows from an implicit function theorem). This was
updated in [40] thanks to two observations. Firstly, since the theory is limited to compact zero
sets s�1.0/, second countability follows from metrizability. Secondly, paracompactness suffices for
the existence of partitions of unity, as mentioned above.

(iv) We will define the notion of an M-polyfold modeled on sc-retracts in scale Banach spaces.
However, the regularization Theorem 6.1 will require M-polyfolds modeled on sc-retracts in scale
Hilbert spaces. This guarantees the existence of scale smooth cutoff functions.

Example 5.3 (Space of broken and unbroken trajectories). The simplest example ofMorse
trajectory breaking can be discussed by considering a Morse function f W Rn ! R with
critical points Crit f D fa; b; cg so that b D 0 and infkxk>R f .x/ < f .a/ < f .b/ < f .c/
for some R � 1.29 The constructions of Example 4.22 equip the spaces of unbroken

29As example of such a Morse function one could take the 2-sphere R2 [ f1g with one maximum c, one
saddle point b, and two minima at a and1. Then Mc

a is given by a single one-parameter family of unbroken
trajectories converging to two different broken trajectories at the ends.
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trajectories eBba, eBcb , and eBca with unique scale topologies and scale smooth structures for
any fixed weight sequence, and in particular induce a natural W 2;2-topology. Given any
metric on Rn, the assumption infkxk>R f .x/ < f .Crit f / guarantees that the space of
Morse trajectories Mc

a D fŒ
� 2
eBca j P
 � rf .
/ D 0g is compact up to breaking at b.

Here the space of broken trajectories from a to c, broken at b, is given by the Cartesian
product eBba � eBcb and hence also inherits a natural W 2;2-topology and structure of an
sc-manifold. In order to build an M-polyfold X c

a which contains the compactified Morse
trajectory space Mc

a as compact zero set of a Fredholm section, we need to equip the
union of the spaces of broken and unbroken trajectories

X c
a WD

eBca t eBba �eBcb D BcaıAut t BbaıAut � BcbıAut
with a topology so that a sequence of gradient trajectories may converge to a broken
trajectory. We achieve this by defining the notion of convergence in X c

a as follows: For
p1 D Œ
� 2 eBca, we say pn ! p1 if and only if the tail of the sequence is contained
in eBca and pn ! Œ
� in the W 2;2-topology. For p1 D .Œ
1�; Œ
2�/ 2 eBba � eBcb , we say
pn ! p1 if and only if there exist local charts ˆ W V � ! eBba and ‰ W V  ! eBc

b
and

convergent sequences .0;1� 3 Rn ! 1, V  3 v n ! v
 
1, and V � 3 v�n ! v

�
1 for

which the tail satisfies

pn D

(�
˚Rn

�
� C v

�
n ;  C v

 
n

��
I Rn <1�

Œ� C v
�
n �; Œ C v

 
n �
�
I Rn D1

and p1 D
�
Œ� C v�1�; Œ C v

 
1�
�
:

Here˚ is the pregluing map given in Section 2.3,

˚ W .R0;1/ �
�
� C V �

�
�
�
 C V  

�
! Bca (8)

.R; 
� ; 
 / 7! ˚R.

� ; 
 / WD ˇ
�.� C R

2
/C .1 � ˇ/
 .� � R

2
/;

where ˇ W R! Œ0; 1� is a smooth cutoff function with ˇj.�1;�1� � 1 and ˇjŒ1;1/ � 0.
In other words, a sequence of unbroken or broken trajectories converges to a broken

trajectory if and only if the sequence and limit are the image of a convergent triple
.Rn; v

�
n ; v

 
n / withRn !1 under the prospective chart map resulting from the pregluing

map,

.R; 
� ; 
 / 7!

(�
˚R.


� ; 
 /
�
I R <1;�

Œ
� �; Œ
 �
�
I R D1:

Note that the topologies induced on the subsets of unbroken trajectories eBca and broken
trajectories eBba �eBcb agree with the W 2;2-topologies constructed in Example 4.22.

5.1. M-polyfold charts. To introduce the notion of charts for M-polyfolds, let us again
move backwards and start with the main definition, which is a direct generalization of a
(scale) Banach manifold chart.
Definition 5.4. An M-polyfold chart for a second countable and metrizable topological
space X is a triple .U; �;O/ consisting of an open subset U � X , an sc-retract O � E
(see Definition 5.5) in an sc-Banach space E, and a homeomorphism � W U ! O.
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A scale manifold chart is the special case of the above definition in the case that the
sc-retractsO are all open subsets in E. Due to the scale structure, a scale Banach manifold
chart has a slightly richer structure than a Banach manifold chart, which is obtained by
replacing open subsets in Banach spaces with open subsets in scale Banach spaces. The
notion of an M-polyfold chart, however, will be much more general in the sense that the
sets O will no longer need to be open (in fact, as subsets they may have empty interior),
however they will have the structure of being the image of a scale smooth retraction on E.
In particular, this allows a single neighborhood U in X to have two M-polyfold charts
� W U ! O � E and �0 W U ! O0 � E0 in which E and E0 are not isomorphic, but
nevertheless �0 ı ��1 W O! O0 is sc-smooth.

Definition 5.5. A scale smooth retraction (for short sc-retraction) on an sc-Banach spaceE
is an sc1 map r W U ! U � E defined on an open subset U � E, such that r ı r D r , and
hence r jr.U/ D id jr.U/. A sc-retract in E is a subset O � E that is the image r.U/ D O
of an sc-retraction on E. (We will see that most subsequent notions are independent of the
choice of r .)

Comparing the above definition with the classical notion of retract, we note that an
sc-retraction is a retraction of the open set U and not the ambient space E. The latter
is relevant only for the notion of smoothness on U . Hence, in particular, an sc-retract
in E is not a retract of E, but could have nontrivial topology, though such topological
considerations are of little importance to M-polyfolds.

Next, we present a special case of sc-retracts, namely sc-smooth splicing cores, which
were introduced as basic models for M-polyfolds in [30–32] and later got generalized
to sc-retracts in [26, 35, 41]. Since this notion of splicing will likely no longer be used,
we allow ourselves to change the notation and restrict to a further special case (using a
finite dimensional parameter space V ). All sc-retractions relevant for Morse theory and
holomorphic curve moduli spaces can be put into this setup of “splicing with finitely many
gluing parameters,” which is also helpful for developing a simplified notion of Fredholm
sections; see Section 6.2.

Definition 5.6. A sc-smooth splicing on an sc-Banach space E0 is a family of linear
projections

�
�v W E0 ! E0

�
v2U

, which then necessarily satisfy �v ı �v D �v , that
furthermore are parametrized by an open subset U � Rd in a finite dimensional space in
such a way that the associated map

� W U � E0 ! E0; .v; f / 7! �v.f /

is sc1. In particular, each projection restricts to a bounded linear operator �vjE 0m 2
L.E 0m; E

0
m/ on each scale, but these may not vary continuously in the operator topology

with v 2 U .
The splicing core of a splicing .�v/v2U is the subset of Rd � E0 given by the images

of the projections,

K� WD
˚
.v; e/ 2 U � E0 j�ve D e

	
D

[
v2U

fvg � im�v � Rd � E0:
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Remark 5.7. Any sc-smooth splicing
�
�v W E0 ! E0

�
v2U

for U � Rd induces an
sc-retraction on Rd � E0, which is given by the open set U WD U � E0 and the map

r� W U � E0 ! U � E0; .v; e/ 7! .v; �ve/:

The image of this retraction is the splicing core K� D r�.U � E0/.
Here we may observe that splicings on a finite dimensional space E0 D .E 0/m2N0 have

splicing cores that are homeomorphic to open subsets in Euclidean spaces because the
pointwise continuity automatically implies continuity in the operator topology L.E 0; E 0/,
and hence the dimension of the images �v.E 0/ must be locally constant. Thus, the notion
of an M-polyfold modeled on open subsets of splicing cores in finite dimensional spaces
will reproduce the definition of a finite dimensional manifold.

We end this subsection by presenting two examples of sc-smooth retractions: Exam-
ple 5.8 can also be found in [30] and [35, Ex. 1.22]. Although it has exceedingly little
to do with polyfolds for moduli problems, it does serve as an important visual reminder
that — unlike their classical counterparts — sc-smooth retracts may have locally varying
dimension and yet simultaneously support an sc-smooth structure. It also has a fascinating
connection to Kuranishi structures. Example 5.9 introduces the retraction which can be
used in Morse theory to glue the space of broken trajectories to the space of unbroken
trajectories.
Example 5.8 (A “finite dimensional” retract). Fix a non-negative function ˇ 2 C10 for
which kˇkE0 D kˇkL2 D 1. We consider the sc-Banach space E D

�
W
k;2
ık
.R;R/

�
k2N0

as in Lemma 4.10 with ı0 D 0. Define a family of linear projections �t W E0 ! E0 for
t 2 R by L2-projection onto the subspace spanned by ˇt WD ˇ.e1=t C �/ for t > 0 and
ˇt WD 0 for t � 0. The corresponding retraction

R � E! R � E; .t; e/ 7! .t; �t .e// D

(�
t; hf; ˇt iL2ˇt

�
I t > 0

.t; 0/I t � 0

is sc1 (see [35, Lemma 1.23]), and it is a retraction (in fact, a splicing). The sc-retract
(i.e. the splicing core) is given by

f.t; 0/ j t � 0g [ f.t; sˇt / j t > 0; s 2 Rg;

which is (in the topology ofR�E0) homeomorphic to the subset ofR2 given by .�1; 0��
f0g [ .0;1/ � R and depicted in Figure 2.

A similar topological space appears in the theory of Kuranishi structures, where
a moduli space is covered by finitely many charts M D

S
iD1;:::;N  i .s

�1
i .0/=Gi /,

each of which is homeomorphic to a finite group quotient of the zero set s�1i .0/ of a
section si W Ui ! Ei in a finite dimensional bundle. Here the regularization approach
(simplified to the case of trivial isotropy groups Gi ) is to find compatible perturbations �i
of these sections so that one obtains a compact manifold from the resulting quotient
space

F
iD1;:::;N .si C �i /

�1.0/= � of perturbed zero sets modulo transition maps. One
might hope to achieve the compactness from local compactness of an ambient space
such as

F
iD1;:::;N Ui= �. However, the basic nontrivial example with domains Ui of



184 O. Fabert, J. W. Fish, R. Golovko and K. Wehrheim

varying dimensions is given by U1 D R and U2 D .0;1/ � R with equivalence relation
U1 3 x � .x; 0/ 2 U2 for x > 0. The quotient space .R t .0;1/ � R/= � has a natural
bijection with the splicing core K obtained above, but the natural quotient topology on
this space is very different from the relative topology on K induced from the ambient
sc-Banach space. While both of these spaces fail to be locally compact, K nevertheless
carries a natural metric, whereas the Kuranishi quotient space fails to be first countable,
and thus it cannot be metrizable; see [53, Ex. 6.1.14].

Figure 2. A subset of R2 homeomorphic to an sc-smooth retract.

Example 5.9 (Retraction arising from pregluing). Let us more rigorously construct the
sc-retract outlined in Section 2.3, where we motivated it by the need of a chart that covers
both broken and unbroken trajectories. Building on the notation and spaces introduced in
Example 4.22, the pregluing and antipregluing maps

˚ W .0; v0/ � V
�
� V  ! Bca; 	 W .0; v0/ � V

�
� V  ! W 2;2.R; X/

are given by

˚v.u;w/ WD ˇ � �
�
Rv
2
; uC �

�
C .1 � ˇ/ � �

�
�Rv
2
; w C  

�
	v.u;w/ WD .ˇ � 1/ � �

�
Rv
2
; uC �

�
C ˇ � �

�
�Rv
2
; w C  

�
;

where ˇ W R! Œ0; 1� is a smooth cut-off function with ˇ
ˇ̌
.�1;�1�

D 1 and ˇ
ˇ̌
Œ1;1/

D 0.
Moreover, we use the gluing profile� W .0; 1/ 7! .0;1/; v 7! Rv WD e

1=v�e restricted to
.0; v0/ � .0; 1/ so that the antigluing contributions .ˇ�1/�.�CR2 / and ˇ .��

R
2
/ vanish

for R > Rv0 . As in Section 2.3, this gives rise to a retraction r W Œ0; v0/ � V � � V  !
Œ0; v0/ � V

� � V  given by

r.v; u;w/ WD

(
��1 ı pr ı�.v; u;w/ if v > 0;
.v; u;w/ if v D 0;

where � D .˚;	/, and pr is the canonical projection to the first factor. For each fixed
gluing parameter v 2 Œ0; v0/, we see that r.v; �; �/ is given by the unpleasant formula�

u

w

�
7! �

�
�

 

�
C

�
�
�
�Rv
2
; �
�

0

0 �
�
Rv
2
; �
��� ˇ 1 � ˇ

ˇ � 1 ˇ

��1 �
1 0

0 0

�
�

�
ˇ 1 � ˇ

ˇ � 1 ˇ

��
�
�
Rv
2
; �
�

0

0 �
�
�Rv
2
; �
���uC �

w C  

�
:
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The upshot of such an unsightly formulation is that it is then elementary to show that the
map r will be sc-smooth provided that the following two maps are sc-smooth:

R �W 2;2.R; X/! W 2;2.R; X/ .v; u/ 7!

(
�
�
�Rv
2
; Q̌
�
� u if v > 0;

u if v D 0;
(9)

R �W 2;2.R; X/! W 2;2.R; X/ .v; u/ 7!

(
�
�
Rv
2
; Ǒ
�
� �
�
Rv; u

�
if v > 0;

0 if v D 0;
(10)

where Q̌ is a smooth function with support near f�1g and Ǒ is a smooth function with
compact support. This is essentially the content of [35, Prop. 2.8]; consequently the map r
defined above is in fact an sc-smooth retraction.

5.2. Scale calculus for sc-retracts. Sc-retracts and splicing cores are naturally equipped
with the sc-topology induced from the ambient sc-Banach space, so we already have a
well-defined notion of scale continuous maps between them. Moving towards the notion
of scale smooth maps between sc-retracts, we next note that, somewhat surprisingly,
sc-retracts have a well-defined notion of a tangent bundle. Indeed, observe that since
r ı r D r , it follows by the chain rule that the associated tangent map Tr W TU ! TU
satisfies Tr ı Tr D Tr on the open subset TU WD .E1 \ U/ �E0 � TE of the sc-tangent
bundle TE D .Ek �EkC1/k2N0 . In other words Tr is an sc-retraction. Consequently, we
simply define the sc-tangent bundle of a retract as the image of an associated sc-retraction.

Definition 5.10. The sc-tangent bundle of an sc-retract O � E is the image TO WD
Tr.TU/ � TE of the tangent map for any choice of retraction r W U ! U � E with
r.U/ D O. In particular, its fibers are the tangent spaces30 at p 2 O \E1,

TpO WD Tr.fpg �E0/ D fpg � imDpr � fpg �E0:

Of course, at first the definition of sc-tangent bundle looks entirely ad hoc, however it
reproduces Definition 4.16 of TE D E1 � E0 (arising from the retraction r D idE), it is
generally well defined, and it coincides with the tangents of paths in the retract as follows;
see [40, Prop. 2.4, Lemma 2.29].

Lemma 5.11. Let r W U ! U � E be an sc-retraction with r.U/ D O.

(i) Let r 0 W U 0 ! U 0 � E be another sc-retraction with r 0.U 0/ D O. Then Tr.TU/ D
Tr 0.TU 0/, hence TO is well defined.

(ii) The E0-closure of the set of tangent vectors to scale smooth paths in O through a
given smooth point p 2 O \ E1 coincides with the tangent space of the retract
at p,

clE0
˚�

.0/; 
 0.0/

� ˇ̌

 W .��; �/! E sc1; 
..��; �// � O; 
.0/ D p

	
D TpO:

30Here we used the fact that each differential Dpr W E ! E at p 2 O \ E1 is a retraction as well, and,
since it is linear, it is a projection whose image imDpr D ker.idE0 �Dpr/ is the kernel of the complementary
projection idE0 �Dpr .



186 O. Fabert, J. W. Fish, R. Golovko and K. Wehrheim

Guided by this notion (but not explicitly using it), the notions of scale differentiability
and scale smoothness for maps between open subsets of sc-Banach spaces can be general-
ized to sc-retracts. This notion will in particular be used in the compatibility condition on
the transition maps between different M-polyfold charts �i W Ui ! Oi for i D 1; 2 with
overlap X � U1 \ U2 ¤ ;. Here Oi � Ei are sc-retracts in possibly different sc-Banach
spaces, so we need a notion of scale smoothness of the transition map

�2 ı �
�1
1 W O1 � �1.U1 \ U2/ �! O2:

Since �1 is a homeomorphism, it maps the overlap �1.U1 \ U2/ � O1 to an open subset
of the sc-retract O1 D r1.U1/ given by some choice of retraction r1 W U1 ! E1. Since
the latter is continuous, its preimage U12 WD r�11

�
�1.U1 \ U2/

�
� E1 is open, so the

retraction r1jU12 is an sc-retraction on E1 with image r1.U12/ D �1.U1 \ U2/. Thus it
remains to define the notion of scale smoothness for maps between sc-retracts in different
sc-Banach spaces.
Definition 5.12. Let f W O ! R be a map between sc-retracts O � E and R � F, and
let �R W R! F denote the inclusion map. Then we say that f is sck for k 2 N or k D1
if �R ı f ı r W U ! F is sck for some choice of sc-retraction r W U ! U � E with
r.U/ D O. In particular, a bijection f W O ! R is called sc-diffeomorphism if both f
and f �1 are sc1.

The definition of the regularity of a map f W O ! R is independent of the choice
of the sc-retraction with r.U/ D O by the following lemma. We provide a proof of this
result since it seems so unlikely and yet elementary.
Lemma 5.13. Let f W O ! R be a map between sc-retracts O � E and R � F, let
ri W Ui ! Ui � E for i D 1; 2 be two retractions with ri .Ui / D O, and set k 2 N0 or
k D1. Then �R ı f ı r W U ! F is sck if an only if �R ı f ı r 0 W U 0 ! F is sck .

Proof. Since O � U \ U 0 is the fixed point set of both r and r 0, we have the identities
r 0ır D r onU as well as r ır 0 D r 0 onU 0. Thus we have �Rıf ır D �Rıf ır 0ır , so that
the sck regularity of �R ı f ı r 0 implies that of �R ı f ı r by the chain rule Theorem 4.19
for composition with the sc1 map r . The reverse implication holds analogously.

Example 5.14 (M-polyfold charts and transition maps in Morse theory). In Example 5.9,
we constructed a retraction, which arises in Morse theory from the pregluing map˚. We
now build on that example, and we indicate how such retracts provide local models for the
space of broken and unbroken trajectories X c

a D
eBca teBba �eBcb defined in Example 5.3.

Recall that eBca and eBba �eBcb were given the structure of an sc-manifold in Example 4.22.
Using the previous notation, the local charts are given by

ˆ W V � ! eBba; u 7! Œ� C u� and ‰ W V  ! eBcb; v 7! Œ C w�:

To obtain a local chart centered at a broken trajectory .Œ��; Œ �/, we use pregluing, as in
Example 5.9, to obtain a retraction r�; W Œ0; 1/� V � � V  ! Œ0; 1/� V � � V  , whose
image is an sc-retract O�; . Then an M-polyfold chart for X c

a is given by

„ W O�; 
! X ; „.v; u;w/ D

(�
˚Rv .uC �;w C  /

�
if v ¤ 0�

ŒuC ��; Œw C  �
�

if v D 0:
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The restricted maps „ W O�; \ fv D 0g ! eBba �eBcb and „ W O�; \ fv ¤ 0g ! eBca
are in fact sc-diffeomorphisms. In particular one can check injectivity with respect to v
by observing that Rv governs the distance between the intersection points of˚Rv .uC �,
w C  / with the hyperplanes H� and H . In order to show that the sc-manifold charts
foreBca, together with charts .„;O�; / arising from pregluing, indeed yield anM-polyfold
structure for X c

a , we must verify that the induced transition maps are sc-smooth. To
that end, we can write, for example, the transition map between two pregluing charts
„0�1 ı„ W O�; ! O�0; 0 , where they are defined, as�

˚��1.�.v/�s.u/Ct.w//

��1�
�
�
s.u/Ct.w/

2
;˚v.uC �;w C  /

��
:

Here � W .0; 1/ 7! .0;1/ is the gluing profile, � is the translation map (7), and the
functions u 7! s.u/, w 7! t .w/ are determined by the equation .u C �/.s.u// 2 H�0

and .w C  /.t.w// 2 H 0 , where H�0 ;H 0 � X are the hyperplanes used as slicing
conditions, as in Example 4.22. After expanding this expression, one can see that the
sc-smoothness of the transition map „0�1 ı „ follows from the sc-smoothness of the
functions s; t , proven as in Section 4.3, and maps (9), (10). Compatibility of pregluing
charts with “interior charts” for eBca is checked similarly, so that one indeed obtains an
M-polyfold structure on X c

a .

5.3. M-polyfoldswith boundaries and corners. The notion ofM-polyfolds with bound-
ary and corners is central for applications. For instance, in Morse theory the broken
trajectories form the boundary of an M-polyfold whose interior are the unbroken trajec-
tories. More precisely, the once broken trajectories are the smooth part of the boundary
(the codimension 1 part of the boundary strata), and the k-fold broken trajectories are the
codimension k part of the boundary strata; here, corners are understood as k � 2. We will
develop this notion by introducing boundaries and corners into the notions of sc-retracts
(where it requires a nontrivial modification to allow for an implicit function theorem later
on) and then introducing sc-smoothness, following Remark 4.18. We begin by considering
a special case of the notion of a partial quadrant,31 which we call an sc-sector, and we
introduce the degeneracy index which will be used to define the boundary and corner
strata.
Definition 5.15. A sc-sectorC is the subsetC D Œ0;1/k�E � Rk�E in the product of a
finite dimensional spaceRk and an sc-Banach spaceE. Its degeneracy index dC W C ! N0
is given by counting the number of coordinates in Rk that equal to 0; in other words,

dC
�
.xi /iD1;:::;k ; e

�
D #

˚
i 2 f1; : : : ; kg j xi D 0

	
:

Remark 5.16 (Degeneracy index vs. gluing parameters). In practice, sc-sectors are usually
of the form Œ0;1/k � R` � E, where E is a function space and the first two factors are
gluing parameters. For example, for charts near a once-broken Morse-trajectory we would
have k D 1 and ` D 0; near a twice-broken Morse-trajectory we would have k D 2

and ` D 0. In this way, we think of the degeneracy index as a means of measuring in

31For a general definition of partial quadrants; see [31].
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which “corner-stratum” a point lies: a point with degeneracy index of zero, one, or two is
respectively an interior point, boundary point, or corner point. However, the degeneracy
index does not necessarily measure the number of regular components of a curve or
trajectory (whose domains are smooth, connected Riemann surfaces). For instance, near a
nodal curve (or cusp curve) in Gromov–Witten theory, the pregluing construction involves
two shift parameters .R; �/ 2 .R0;1/ � S1. These can be encoded in a single complex
gluing parameter c � 0 2 C by R D e1=jcj and � D arg.c/, which is naturally extended
by c D 0 2 C corresponding to the nodal curves. Hence a chart near a curve with one
nodal point will involve an sc-sector with k D 0 and ` D 2, and near a curve with two
nodal points the sc-sector has k D 0 and ` D 4; that is, all of these sc-sectors are in fact
sc-Banach spaces. This indicates the important point that nodal curves in Gromov–Witten
theory have degeneracy index zero; in other words, all such nodal curves are interior
points of the ambient M-polyfold as well as the regularized moduli space.

Unfortunately, scale smooth bijections between open subsets of sc-sectors do not
generally preserve the degeneracy index. However, the following refined notion of an
sc-retract in an sc-sector will guarantee “corner recognition” as stated in the subsequent
theorem. First, however, we need to introduce the notion of direct sums in sc-Banach
spaces.

Definition 5.17. Let E be an sc-Banach space. Two linear subspaces X; Y � E0 split E
as a sc-direct sum E D X ˚sc Y if

(i) both X; Y � E0 are closed and .X \ Em/m2N0 ; .Y \ Em/m2N0 are scale Banach
spaces;

(ii) on every level m 2 N0 we have the direct sum Em D .X \Em/˚ .Y \Em/.

We call Y the sc-complement of X .

Definition 5.18. Let U � Œ0;1/k � E be a relatively open set in an sc-sector. Then
r W U ! U is a neat sc-retraction if it satisfies r ı r D r and the following regularity and
neatness conditions.

(i) r is sc1; that is, the restriction r jU int to the open subset U int WD U \ .0;1/k �
E � Rk � E is sc1 in the sense of Definition 4.17, and the iterated tangent
map T`r on T : : :TU int D

�
U \ .0;1/k � E`

�
� } extends32 to an sc0 map on

T : : :TU WD
�
U \ Œ0;1/k �E`

�
� } for all ` 2 N0.

(ii) For every “smooth point” p 2 r.U/ \ .Rk � E1/ in the retract, the tangent space
TpO Š imDpr � Rk �E is sc-neat with respect to the sc-sector Œ0;1/k �E, that
is it has an sc-complement Y � f0g � E so that Rk � E D imDpr ˚ Y .

(iii) Every point in the retract p 2 r.U/ has an approximating sequence pn ! p of
“smooth points” .pn/n2N � r.U/ \ E1 in the same corner stratum, that is with
dC .pn/ D dC .p/.

32Here } is a complicated product of sc-Banach spaces, arising from iterating Definition 4.16 of the sc-
tangent bundle. For example, } is trivial for ` D 0, for ` D 1 we have } D Rk �E1, and for ` D 2 it is
} D Rk �E1 �Rk �E1 �Rk �E0. The point is that an extension to the boundary only appears in the first
factor.
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A sc-retract with corners in the sc-sector Œ0;1/k � E is a subset O � Œ0;1/k � E
that is the image r.U/ D O of a neat sc-retraction r W U ! U � Œ0;1/k � E.

The neatness condition is phrased by HWZ as having a sc-complement Y � C in the
partial quadrant C . For the sc-sector C D Œ0;1/k � E this is equivalent to Y � f0g � E
and implies that imDpr projects surjectively to the Rk factor. It is our understanding that
this condition a weaker notion of neatness that has been introduced in [40] and is still
sufficient for regularization.

The neatness conditions (ii) and (iii) were added in the generalization from splicings
to retracts, since splicings satisfy them automatically, as we show in the following.
Remark5.19.An sc-splicingwith corners is a family of linear projections

�
�v WE0!E0

�
v2U

as in Definition 5.6, with the exception that we allow splicings parametrized by open sub-
sets U � Œ0;1/k � Rd�k in finite dimensional sectors. The corresponding sc-retraction
r� W U�E0 ! U�E0, .v; e/ 7! .v; �ve/ then is a neat sc-retraction on Œ0;1/k�Rd�k�E0,
as can be seen by checking conditions (ii) and (iii).

(ii) The “smooth points” are .v; e/ 2 U � E 01, and the differential of the retraction
is D.v;e/r� W .X; Y / 7!

�
X;D.v;e/�.X; Y /

�
, so that the tangent space to the retract

O D im r� at .v; e D �ve/ is

T.v;e/O D imD.v;e/r� D
�
X;D.v;e/�.X; 0/C �vY

�
:

We claim that it has an sc-complement Rd �E0 D imD.v;e/r� ˚ imL given by the image
of the sc0 operator L W Rd �E0 ! Rd �E0, .X; Y / 7!

�
0; Y ��vY

�
, which is contained

in f0Rk g �Rd�k �E1 (in fact, in f0Rd g �E1). Indeed, the decomposition is given by an
sc0 isomorphism where we abbreviate ZX;Y D Y � D.v;e/�.X; 0/,

Rd � E0 �! imD.v;e/r� � imL
.X; Y / 7�!

�
.X;D.v;e/�.X; 0/C �vZX;Y /; .0; .id��v/ZX;Y /

�
:

(iii) For any point in the splicing core .v; e/ 2 K� we obtain a “smooth” approximat-
ing sequence by picking E 01 3 ei ! e, since then .v; �v.ei // ! .v; �v.e// D .v; e/,
and the degeneracy index is preserved since it is determined by v 2 Œ0;1/k � Rd�k .

Observe that, if given an sc-retract (or splicing core) with corners O � Œ0;1/k � E,
we can restrict the degeneracy index from the ambient sector (where E D Rd�k � E0 in
the case of a splicing) to a well defined map dO W O! N0. That this is well defined also
under “sc1 diffeomorphisms” between retracts is proven in [40, Prop. 2.24].
Proposition 5.20. Let f W O ! O0 be an sc1 diffeomorphism between open subsets of
splicing cores with corners – that is a sc1 bijection with sc1 inverse f �1 W O0 ! O.
Then it intertwines the degeneracy indices; in other words dO D dO0 ı f .

With this language in place, we define the notion of an M-polyfold with boundary and
corners in more technical detail than previously outlined. Here I can be any index set.
Definition 5.21. AnM-polyfold with corners is a second countable andmetrizable spaceX
together with an open covering X D

S
i2I Ui by the images under homeomorphisms
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�i W Ui ! Oi from sc-retracts with boundary and corners Oi � Œ0;1/ki � Ei . These
chart maps are required to be compatible in the sense that the transition map is sc1 for
any i; j 2 I with Ui \ Uj ¤ ;; in other words, this requires sc1 regularity of the map

�j ı �j ı �
�1
i ı ri W Œ0;1/

ki � Ei � r�1i
�
�i .Ui \ Uj /

�
�! Œ0;1/kj � Ej ;

where ri is any sc-retract with boundary on Œ0;1/ki � Ei with image Oi .
An M-polyfold with corners modeled on sc-Hilbert spaces is a metrizable space with

compatible charts as above, such that each Ei is an sc-Hilbert space in the sense of
Definition 4.5.

Taking ki D 0 for all i 2 I in the above definition reproduces the notion of
an M-polyfold without boundary. Restricting to ki D 0 or 1 provides the definition
of an M-polyfold with boundary (but no corners). Unfortunately, such a notion of “cor-
nerless” M-polyfold is not applicable to general moduli spaces of Morse trajectories or
pseudoholomorphic curves with Lagrangian boundary values, even if their “expected di-
mension” does not allow for corners. This is because the M-polyfold must contain all —
however nongeneric — unperturbed solutions.

Due to Proposition 5.20 and the sc0 regularity of transition maps, we now obtain two
stratifications of an M-polyfold with corners. Neither of these will be a stratification in
the sense of Whitney; they are just sequences of subsets of X . To obtain a stratification by
“regularity” we denote the scales of the sc-Banach spaces Ei in the domain of the chart
maps �i by Ei D .Ei;m/m2N0 , and the dense subset by Ei;1 � Ei;m.

Definition 5.22. Let X be an M-polyfold with corners. For k 2 N0 the k-th corner
stratum X .k/ � X is the set of all x 2 X such that in some chart dOi .�i .x// D k.

For m 2 N0 the m-th regularity stratum Xm � X is the set of all x 2 X such that for
some chart (and hence for all charts) we have �i .x/ 2 Œ0;1/ki � Ei;m. In particular, the
smooth points of X are those x 2 X with �i .x/ 2 Œ0;1/ki �Ei;1 for all charts; in other
words, the smooth points are those in the intersection

T
m2N0 Xm.

Observe that “corner strata” are disjoint, with one dense stratum, whereas the “regu-
larity strata” are nested and all dense in X .

Example 5.23 (Corner and regularity strata inMorse theory). To see examples of the above
strata in an M-polyfold, we again consider the Morse trajectory spaces of Example 4.22.
Using notation of Definition 5.22 we see that the m-th regularity stratum of X D X c

a ,
denoted Xm, is given by union of two sets:

(i) equivalence classes of the form Œ�Cu�� 2 eBca for which � 2 C1 is constant outside
of a compact domain and u� 2 W mC2;2

ım
,

(ii) pairs of equivalence classses of the form .Œ�Cu� �; Œ Cu �/ 2 eBba�eBcb for which
�; 2 C1 are constant outside of a compact domain and u� ; u 2 W mC2;2

ım
.

This demonstrates that the regularity strata are determined by the degree of differentiability
(i.e. regularity) of the maps (or pairs thereof) representing points in our M-polyfold. This
is further justification for calling the infinity level the space of “smooth points”.
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To identify the corner strata in our Morse theory example, we employ Example 5.14
which provides local models and shows that

X .0/
D eBca and X .1/

D eBba �eBcb :
If the Morse function had additional critical points, say d 2 Rn with f .a/ < f .b/ <

f .c/ < f .d/, then one could build an M-polyfold X D X d
a which contains all broken

and unbroken trajectories between a and d . Its corner strata would be given by

X .0/
D eBda ; X .1/

D eBba �eBdb t eBca �eBdc ; X .2/
D eBba �eBba �eBca:

As before, the unbroken trajectories comprise the “interior points” X .0/, and the once
broken trajectories comprise the “boundary points” X .1/ essentially because there exist
local charts given by pregluing maps of the form given in Example 5.14 which attach each
of the spaces eBba �eBdb and eBca �eBdc to eBda using a single gluing parameter v 2 Œ0; 1/. To
establish that X .2/ D eBba �eBba �eBca one must construct an sc-retract on Œ0; 1/ � Œ0; 1/ �
W 2;2 �W 2;2 �W 2;2 and a pregluing map .v1; v1; ua; ub; uc/ 7! ˚Rv1 ;Rv1 .ua; ub; uc/
which attaches the twice broken trajectories to the once broken and unbroken trajectories.
By doing so, one shows that the twice broken trajectories are “corner points” in X .2/.

Finally, we note that it is tempting to think of the corner stratum as measuring com-
plexity of broken or nodal objects (for example, as a count of number of components, or as
a count of the number of non-vanishing gluing parameters needed to construct a smooth,
i.e. non-nodal and unbroken, map or trajectory), however this is completely incorrect.
Indeed, as mentioned in Remark 5.16, the closed curves arising in Gromov–Witten theory
may have many nodal components, which then requires many gluing parameters to be
attached to the space of non-nodal curves; however each of these gluing parameters lies
in an open disk rather than in a neighborhood of 0 in Œ0; 1/ (or more generally Œ0; 1/k).
Consequently, all nodal curves in Gromov–Witten theory have degeneracy index zero, or
equivalently all boundary and corner strata are empty.

6. Strong bundles and Fredholm sections

With the notion of scale smoothness and M-polyfolds in place, the purpose of this section
is to introduce the remaining notions of bundles and Fredholm sections that are used in the
statement of the polyfold regularization theorem. Recall that this result uses M-polyfolds
as ambient spaces and associates a unique cobordism class of smooth compact manifolds
to each suitable Fredholm section. Here and throughout we will discuss neither isotropy
(which requires a generalization to groupoids modeled on M-polyfolds with orbifolds
as perturbed zero sets) nor orientations (which require determinant line bundles of the
Fredholm sections). Boundaries and corners are discussed further in Remark 6.29. Let us
moreover mention that, while we introduce the notion of bundles and Fredholm sections
in the general framework of retractions, the implicit function and regularization theorems
are presently published only in the more restrictive setting of splicings. To guide the
presentation we begin with the statement and vague introduction of the new notions,
which will then be made precise in a step by step manner in the following sections.



192 O. Fabert, J. W. Fish, R. Golovko and K. Wehrheim

Theorem 6.1 (Polyfold regularization, [32, Thm. 5.22]). Let pr W Y ! X be a strong
M-polyfold bundle with corners (see Definition 6.7) modeled on sc-Hilbert spaces, and let
s W X ! Y be a proper Fredholm section (see Definition 6.19). Then there exists a class
of scC-sections � W X ! Y (see Definition 6.10) supported near s�1.0/ such that sC � is
transverse to the zero section and .sC �/�1.0/ carries the structure of a smooth compact
manifold with corners.

Moreover, for any other such perturbation �0 W X ! Y there exists a smooth compact
cobordism between .s C �0/�1.0/ and .s C �/�1.0/.

Some of the notions here can be easily defined by copying the notions from classical
differential geometry. In particular we introduce a first, rather weak, notion of bundle.

Definition 6.2.

(i) A map f W X ! Y between two M-polyfolds is sc1 if it pulls back to sc1 maps
 ı f ı ��1 W O � �.U \ V /! R in any pair of charts � W X � U ! O � E,
 W Y � V ! R � F. In particular, a bijection f W X � U ! V � Y
between open subsets of M-polyfolds is called sc-diffeomorphism if it pulls back to
sc-diffeomorphisms between open subsets of any pair of charts.

(ii) A topological M-polyfold bundle is an sc1 surjection pr W Y ! X between two M-
polyfolds together with a real vector space structure on each fiber Yx WD pr�1.x/ �
Y over x 2 X . (That is, each Yx is equipped with compatible multiplication by R
and addition, and hence a unique zero vector 0x 2 Yx .) 33

(iii) A section of pr W Y ! X is an sc1 map s W X ! Y such that pr ı s D idX . It is
called proper34 if its zero set s�1.0/ is compact in the relative topology of X ,

s�1.0/ WD
˚
x 2 X

ˇ̌
s.x/ D 0x 2 Yx

	
� X :

The notion of an M-polyfold bundle, introduced in Section 6.1, will be a vast strength-
ening of this notion of a surjection with linear structure on the fiber, in which the local
models for the total space Y are generalized splicing cores, and which are given by fam-
ilies of projections that are parametrized by the retract; the latter is the local model for
the base X . When it comes to Fredholm theory, the notion of a Fredholm section will
implicitly require a “fillability” property of the local models for the bundle – namely an
even closer relationship between the retractions modeling Y and X . Here the idea is that
there is a scale smooth family of isomorphisms between the fibers of the complementary
splicing modeling Y and a “normal bundle” to the retract that models the base X . This
ensures that the “virtual vector bundleYx�TxX ” has isomorphic fibers so that a nonlinear
Fredholm theory is possible.

33The analogous classical notion of topological bundle also requires local trivializations. We avoid this
condition here since the polyfold notion of trivializations in Definition 6.6 will not yield identifications of the
fibers.

34For applications, for example to Gromov–Witten moduli spaces, one should think of X as consisting of
equivalence classes of maps of a fixed homology class. The related notion of “component-properness” would
allow one to consider an M-polyfold that contains maps of any homology class, where compactness of s�1.0/
is only required in each fixed connected component.
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Furthermore, an M-polyfold bundle is “strong” essentially if it allows for a dense set of
compact sections — whose linearizations are compact operators, which thus can be used
to perturb Fredholm sections to achieve transversality. The corresponding sections will be
called scC, and are more formally introduced at the end of Section 6.1. Finally, the notion
of a Fredholm section is discussed in Section 6.2, and Section 6.3 gives a more technical
description of the admissible class of perturbations (which, in particular, are required to
preserve the compactness of the resulting zero set).

6.1. M-polyfold bundles. The preliminary notion of a bundle over an M-polyfold in
Definition 6.2 (ii) is refined by the restriction to the following local models. These models
generalize the classical notion of a local model for a Banach bundle, which we recall are
trivial bundles over open subsets in a Banach space.
Definition 6.3. Let O � Œ0;1/k � E be an sc-retract with corners in the sense of
Definition 5.18, and let F be an sc-Banach space. Then a sc-bundle retract over O in F is
a family of subspaces .Rp � F/p2O that are scale smoothly parametrized by p 2 O in
the following sense: There exists a sc-retraction of bundle type,

U � F �! Œ0;1/k � E � F; .v; e; f / 7�!
�
r.v; e/;….v;e/f

�
; (11)

given by a neat sc-retraction r W U ! Œ0;1/k � E with image r.U/ D O and a family of
linear projections….v;e/ W F! F that are parametrized by .v; e/ 2 U , and whose images
for p D .v; e/ 2 O are the given subspaces…p.F/ D Rp .

To any such retract we associate the M-polyfold bundle model

prO W R D
S
p2Ofpg �Rp �! O; .p; f / 7�! p:

Retractions of bundle-type are retractions themselves, and hence support sc-calculus
as before. In particular, and also as before, the local model is given by the retract and
ambient space, whereas the choice of projections….v;e/ is auxiliary.
Remark 6.4. Continuing the comparison with the notion of splicings fromRemark 5.19, a
special case of an sc-bundle retract is the splicing core associated to an sc-bundle splicing

U � E0 � F �! E0 � F; .v; e; f / 7! .�ve;…vf /

given by two families of projections �v and…v on E0 and F respectively. Of interest is the
fact that they are parametrized by the same open subset U � Œ0;1/k � Rd�k in a finite
dimensional sector, and they are scale smooth in the sense of Definitions 5.6 and 5.18. In
the notation of [31], these are models for M-polyfolds of type 0 in that we do not allow
the “projections in the fiber”… to be parametrized by the splicing coreK� , but just by its
gluing parameters U . This appears to be sufficient for applications to Morse theory and
holomorphic curve moduli spaces. In this setting, the M-polyfold bundle model

prK� W
[
v2U

fvg � �v.E0/ �…v.F/ �! K� D
[
v2U

fvg � �v.E0/

is fillable if there exists a family of isomorphisms f Cv W ker�v
Š
! ker…v such that

U � E0 ! F, .v; e/ 7! f Cv .e � �ve/ is sc1.
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Example 6.5. The construction of a bundle splicing for Morse theory is briefly discussed
in Section 2.3. When the ambient space of the Morse trajectories is X D Rn, then the
splicing in the fiber is essentially the same as for the base with the following modifications:
Firstly, the fiber does not require hypersurface slicing conditions; secondly, the regularity
of functions in the fiber is one less than that in the base, so the section 
 7! .
; P
/ is scale
continuous. Finally, the maps in the fiber converge to 0 on both ends.

Now we can refine the notion of a topological M-polyfold bundle from Defini-
tion 6.2 (ii) by requiring the bundle to be locally sc-diffeomorphic to an M-polyfold
bundle model.

Definition 6.6. An M-polyfold bundle is an sc1 surjection pr W Y ! X between two
M-polyfolds together with a real vector space structure on each fiber Yx WD pr�1.x/ � Y
over x 2 X such that, for a sufficiently small neighborhood U � X of any point in X ,
there exists a local sc-trivialization ˆ W Y � pr�1.U / ! R. The latter is an sc1
diffeomorphism to an sc-bundle retract R D

S
p2Ofpg � Rp � E � F that covers an

M-polyfold chart � W U ! O � E in the sense that prO ıˆ D � ı pr, and preserves the
linear structure in the sense thatˆjYx W Yx ! f�.x/g�R�.x/ is an isomorphism in every
fiber over x 2 U .

To obtain a good set of perturbations for Fredholm sections, we refine this notion further
by requiring the existence of a “subbundle of higher regularity”, analogous to the fibers
W 1;p.S2; u�TM/ � Lp.S2; u�TM/ of a bundle overW 1;p-regular maps u W S2 !M .
These “higher regularity fibers” will be the target spaces for “lower order perturbations”
of the section — in this case the Cauchy–Riemann operator N@J W W 1;p.S2;M/ !S
ufug � L

p.S2; ƒ0;1 ˝ u�TM/. In [31] this is formalized by introducing double
filtrations and new notions of scale smoothness with respect to these scales. We have
chosen a more minimalist, yet equivalent, route. Note here that in our notation, one should
think of the ambient space for the base retract E and the ambient space for the fibers F
as sc-Banach spaces such as E D

�
W 1Cm.S2;Cn/

�
m2N0

and F D
�
W m.S2;Cn/

�
m2N0

whose scales are shifted by the order of the differential operator that we wish to encode as
section of the bundle. For that purpose we introduce the notation F1 WD .FmC1/m2N0 for
the scale structure induced by F on its subspace F1 as mentioned in Remark 4.7.

Definition 6.7. AnM-polyfold bundle pr W Y ! X is called strong if it has trivializations
in strong M-polyfold bundle models that are strongly compatible in the following sense.

(i) A strong sc-retraction of bundle type is a retraction R W U � F! Œ0;1/k �E� F,
.v; e; f / 7!

�
r.v; e/;….v;e/f

�
as in (11) that restricts to an sc1 map U � F1 !

Œ0;1/k �E�F1, i.e. a retraction in the sc-Banach space
�
Rk �Em �FmC1

�
m2N0

.

(ii) A strongM-polyfold bundle model is the projection prOWR D
S
p2Ofpg�Rp!O

from the total space of a strong sc-bundle retract .Rp � F/p2O to its base retractO
as in Definition 6.3, where R is the image of a strong retraction of bundle type.

(iii) Two local sc-trivializations ˆ W pr�1.U / ! R � Œ0;1/k � E � F, and ˆ0 W
pr�1.U 0/! R0 � Œ0;1/k0 �E0 �F0 to strong M-polyfold bundle modelsR! O
and R0 ! O0 are strongly compatible if their transition map restricts to a scale
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smooth map with respect to the ambient sc-sectors Œ0;1/k �E�F1 and Œ0;1/k
0

�

E0 � F01. That is, we require sc1 regularity of the map between these sectors in
sc-Banach spaces of

�R0ıˆ
0
ıˆ�1ıR W R�1

�
ˆ
�
pr�1.U\U 0/

��
\Œ0;1/k�E�F1 �! Œ0;1/k

0

�E0�F01

for any strong sc-retraction of bundle type with R.U � F/ D R (and hence
R.U � F1/ D R \ .U � F1/) and the inclusion �R0 W R0\ .U 0�F 01/ ,! Œ0;1/k

0

�

E 00 � F
0
1.

For a strong M-polyfold bundle W Y ! X we denote by prjY1 W Y1 ! X the subbundle
of vectors Y 2 Y such that for some (and hence any) trivialization ˆ W pr�1.U /! R �
Œ0;1/k�E�F to a strongM-polyfold bundle model we haveˆ.Y / 2 Œ0;1/k�E0�F1.

Remark 6.8. Note that sc-bundle splicings in our simplified version of Remark 6.4 are
automatically strong. Indeed, scale smoothness of a family of projections U � F! F,
.v; f / 7! …vf directly implies scale smoothness of the restriction U � F1 ! F1, since
the dependence on f is linear — hence smooth once sc0 — and the scale structure on
U � Rk is trivial, hence it is oblivious to the shift in scales.

Example 6.9. In the example of Morse theory, the total space of the bundle over a space of
unbroken trajectorieseBca iseEca D �Bca �W 1;2.R;Rn/

�
=R, where R acts by simultaneous

shift on both factors. This explains why the construction of charts only requires slicing
conditions for the base. The total space of the M-polyfold bundle over the space of broken
and unbroken trajectories X c

a is then Yca D eEca teEba �eEcb , with the topology given by
pregluing similar to Example 5.3.

In the bundle over unbroken trajectories, the “higher regularity fibers” discussed
below are f
g � W 1C`;2

ı`
.R; 
�X/ for 
 2 W 2Ck;2

loc \ eBca and ` D k C 1. Whereas
in case X D Rn with 
�X Š Rn, these fibers are well defined for any ` > k, and
the general case of a nonlinear ambient space X only allows for ` D k C 1. This is
because the W 1C`;2

ı`
-completion of sections of 
�X requires a connection on 
�X , or

local trivializations, whose parallel transport and transition maps can only be as regular
as 
 , so a W 1C`;2

ı`
-norm is well defined only for 1C ` � k C 2.

The restriction to “higher regularity fibers” prjY1 W Y1 ! X of any strong M-polyfold
bundle is an M-polyfold bundle in its own right, since Y1 is an M-polyfold with local
models in strong sc-retractions of bundle type in Œ0;1/k�E�F1, which are compatible by
restriction of the strong compatibility requirement for the trivializations of Y ! X . The
construction of these bundles uses the strongness assumption crucially; so, for example,
the topological subbundle Y2 D fY 2 Y jˆ.Y / 2 Œ0;1/k � E0 � F2g over X does
not inherit a scale smooth structure, unless, for example, one additionally knows that all
sc-bundle retracts are given by families of projections …p W F2 ! F2 that are scale
smooth as a map .Em �F2Cm/m2N ! .F2Cm/m2N, which has no direct implication to or
from regularity as a map .Em � F1Cm/m2N ! .F1Cm/m2N.
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Note that we still obtain more useful M-polyfold bundles from the regularity stratifi-
cations on the M-polyfolds Y and Y1 that are given by Definition 5.22 (and which induce
different stratifications on Y1 � Y). The regularity strata of Y resp. Y1 are

Ym D
˚
Y 2 Y jˆ.Y / 2 Œ0;1/k �Em � Fm in some chart ˆ

	
;

Y1m D
˚
Y 2 Y jˆ.Y / 2 Œ0;1/k �Em � FmC1 in some chart ˆ

	
:

Note that the restriction prjYm WYm ! Xm is anotherM-polyfold bundle since pr.Ym/�Xm
by scale continuity, prjYm locally surjects onto Xm in the M-polyfold bundle models, and
the local trivializations are given by restriction of those for p. Similarly, the restriction
prjY1m WY

1
m ! Xm is another M-polyfold bundle for each m 2 N0, so each regularity

stratum Xm of the base supports two bundles Ym and Y1m. The fibers of the latter embed
compactly and densely into the fibers of the former. In fact, the motivation for introducing
strong bundles is the need for “compact perturbations,” which we can now define rigor-
ously as sections of Y1. In addition, we introduce an abstract notion that encodes elliptic
regularity for differential operators. To begin, we recall the notion of scale smooth section
from Definition 6.2 (iii).

Definition 6.10. Let pr W Y ! X be a strong M-polyfold bundle. We denote the space
of sc1 sections by

�.pr/ WD
˚
s W X ! Y sc1

ˇ̌
pr ı s D IdX

	
:

The subset of scC sections �C.pr/ � �.pr/ consists of the sections s W X ! Y1 with
values in Y1, that are in fact scale smooth as sections of Y1 ! X , or equivalently
�C.pr/ Š �.prjY1/.

Moreover, we call a section s 2 �.pr/ regularizing if the following implication holds:

m 2 N0; x 2 Xm; s.x/ 2 Y1m H) x 2 XmC1:

The space of regularizing sections is equivalently defined and denoted by

� reg.pr/ WD
˚
s 2 �.pr/

ˇ̌
8m 2 N0 W s�1.Y1m/ � XmC1

	
:

Finally, we can phrase the fact that compact perturbations preserve elliptic regularity
as some property of the appropriate sections,

s 2 � reg.pr/; � 2 �C.pr/ H) f C � 2 � reg.pr/:

Example 6.11. In the case of Morse theory, a change in the metric from g to g0
corresponds to an scC perturbation �.
/ D

�

;rgf .
/ � rg

0

f .
/
�
of the section

s.
/ D
�

; d

dt 
 � r
gf .
/

�
. However, in the case of Cauchy–Riemann operators, a per-

turbation of the almost complex structure from J to J 0 fails to be scC since the principal
part of �.u/ D

�
u; .J 0�J /@tu

�
is a differential operator of the same order as the principal

part u 7! @suC J@tu of the section.
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6.2. Fredholm sections in M-polyfold bundles. Contrary to previous sections, we will
work our way up towards the most general notion of Fredholm sections, starting with
linear Fredholm operators and then proceeding via nonlinear Fredholm maps on sc-
Banach spaces. Once this is accomplished, we will introduce the useful alternative notion
of Fredholm maps with respect to a splitting into (finitely many) gluing parameters and an
sc-Banach space. The discussion in these stages is essentially copied from [64].

We begin with [31, Def. 2.8] of an sc-Fredholm operator in terms of sc-direct sums
E D X ˚sc Y , which are defined in general as the splitting inducing an sc0 isomorphism
E ! .X \ Em/m2N0 � .Y \ Em/m2N0 . This includes the nontrivial requirement that
each sequence in the latter sc-product is in fact a scale structure on X and Y respectively.
In particular, this implies that finite dimensional factors of an sc-direct sum must be
contained in E1. We spell out the sc-direct sum requirements in detail below, though
they will subsequently be simplified.
Definition 6.12. Let E;F be sc-Banach spaces. A sc-Fredholm operator L W E! F is a
linear map L W E0 ! F0 that satisfies the following.

(i) The kernel kerL is finite dimensional and has a sc-complement E D kerL˚sc X

in the sense that kerL � E1 and X � E0 is a subspace on which Xm WD
.X \ Em/m2N0 induces a scale structure such that Em D kerL ˚ Xm is a direct
sum on every scale m 2 N0.

(ii) The imageL.E0/ has a finite dimensional sc-complement F D L.E0/˚scC in the
sense that .L.E0/ \ Fm/m2N0 induces a scale structure on L.E0/ and C � E1 is
a finite dimensional subspace such that Fm D .L.E0/ \ Fm/˚ C is a direct sum
on every scale m 2 N0.

(iii) The operator restricts to a sc-isomorphism LjX W X ! L.E0/ in the sense that
LjXm W Xm ! L.E0/ \ Fm is a bounded isomorphism on every scale m 2 N0.

The Fredholm index of L is ind.L/ WD dim kerL � dim.F0/imL/.
In practice one can prove the linear Fredholm property by checking the following

simplified list of properties.
Lemma 6.13 ([64, Lemma 3.6]). Let E;F be sc-Banach spaces. Then a linear map
L W E0 ! F0 is an sc-Fredholm operator if and only if it satisfies the following.

(i) L is sc0; that is, all restrictions LjEm W Em ! Fm for m 2 N0 are bounded linear
operators.

(ii) L is regularizing; that is, e 2 E0 and Le 2 Fm for any m 2 N implies e 2 Em.

(iii) L W E0 ! F0 is a Fredholm operator, that is, it has finite dimensional kernel kerL
and cokernel F0/

L.E0/
.

Indeed, [64, §3.5] shows that regularizing sc0 operators, which are Fredholm on the
0-scale restrict to Fredholm operators LjEm W Em ! Fm on every scale, and have
isomorphic kernel and cokernel. Then, a little more functional analysis provides the
sc-complements required by the more complicated notion of sc-Fredholm operator.
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Example 6.14. The prototypical examples of sc-Fredholm operators are the following
elliptic operators:
� d

dt W C
1.S1/ ! C0.S1/ is an sc-Fredholm operator from

�
C1Ck.S1/

�
k2N0

to�
Ck.S1/

�
k2N0

.
� The Cauchy–Riemann operator @J W W 1;p.S2;Cn/! Lp.S2; ƒ0;1 ˝J Cn/ with

respect to J D i on Cn and j D i on S2 D CP1 is given by u 7! 1
2
.J ı du ı

j C du/. (Its target is the Lp-closure of the smooth, .J; j /-antilinear Cn-valued
1-forms on S2.) It is an sc-Fredholm operator from

�
W 1Ck;p.S2;Cn/

�
k2N0

to�
W k;p.S2;Cn/

�
k2N0

for any 1 < p <1.
Indeed, the sc0-property of these operators is a formalization of the fact that linear differ-
ential operators of degree d are bounded as operators between appropriate function spaces
(e.g. Hölder or Sobolev spaces), with a difference of d in the differentiability index. The
regularizing property, in this context, is simply the statement of elliptic regularity. Finally,
the elliptic estimates for an operator and its dual generally hold on all scales similar to the
boundedness above, and this implies the Fredholm property on all scales.

Next, we need a notion of a nonlinear Fredholm map on sc-Banach spaces that allows
for an implicit function theorem for sc1 maps with surjective linearization. This cannot
simply be obtained by adding “sc-” in appropriate places to the classical definition of
Fredholm maps since the implicit function theorem is usually proven by means of a
contraction property in a suitable reduction. Since the contraction will be iterated to
obtain convergence, it needs to act on a fixed Banach space rather than between different
levels of an sc-Banach space. In classical nonlinear Fredholm theory, this contraction
form follows from the continuity of the differential in the operator norm, and, in particular,
continuity of the differential in the operator topology is indeed necessary to obtain the
contraction property which allows one to use Banach’s fixed point theorem. However, for
the generalized Cauchy–Riemann operators involved in the description of holomorphic
curve moduli spaces, this stronger differentiability will not hold as soon as their domain
contains gluing parameters which act on functions by reparametrization. This issue is
resolved in [32, Def. 3.6]35 by making the contraction property a part of the definition of
Fredholm maps.36
Definition 6.15. Let ˆ W E! F be a sc1 map between sc-Banach spaces E;F. Then ˆ
is sc-Fredholm at 0 if the following holds:

(i) ˆ is regularizing as germ: For every m 2 N there exists �m > 0 such that
ˆ.e/ 2 FmC1 and kekEm � �m implies e 2 EmC1.

(ii) There exists an sc-Banach spaceW and sc-isomorphisms (i.e. linear sc0 bijections)
h W E! Rk �W and g W F! R` �W for some k; ` 2 N0 such that

g ıˆ ı h�1 W .v; w/ 7! g.ˆ.0//C
�
A.v;w/;w � B.v;w/

�
;

35The following definition is not explicitly given in the current work of HWZ. It is obtained from the definition
of a polyfold Fredholm section of a strong bundle as the special case of a section in a trivial bundle with trivial
splicing.

36Note that a classical “contraction property” would be an estimate such as (12) for some � < 1. However,
Fredholm stability (preservation of the contraction property under appropriate perturbations) turns out to require
this kind of estimate for arbitrarily small contraction factors � > 0, just allowing for � -dependent domains.
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where A W Rk �W! R` is any sc1 map and B W Rk �W!W is a contraction
germ: For every m 2 N0 and � > 0 there exists �m > 0 such that for all v 2 Rk
and w1; w2 2W with kvkRk ; kw1kWm ; kw2kWm � �m we have

B.v;w1/ � B.v;w2/

Wm � �kw1 � w2kWm : (12)

This definition, however, raises the question of how this “contraction germ normal
form” is established in practice. Recall that in the example of Cauchy–Riemann operators,
it was the presence of gluing that motivated the development of an alternative nonlinear
Fredholm notion in [64], based on the observation that the gluing parameters usually
are the only source of non-differentiability, and after splitting off a finite dimensional
space of gluing parameters one deals with classical C1-maps on all scale levels. The
resulting notion of a Fredholm property with respect to a splitting E Š Rd � E0 is just
slightly stronger than the definition via contraction germs, but should be more intuitive
for applications to Morse theory as well as holomorphic curve moduli spaces. In fact, in
practice the Fredholm property in [41, Thm. 8.26] and [38, Prop. 4.8] is proven implicitly
via this stronger differentiability. We formalize this approach in the following Lemma
where we denote open balls centered at 0 in a level Em of a scale space by

BEmr WD
˚
e 2 Em

ˇ̌
kekm < r

	
for r > 0:

Lemma 6.16 ([64, Thm. 4.4]). Let ˆ W E! F be a sc1 map between sc-Banach spaces
E;F such that the following holds.

(i) ˆ is regularizing as germ in the sense of Definition 6.15 (i).

(ii) E Š Rd � E0 is an sc-isomorphism and for every m 2 N0 there exists �m > 0 such
that ˆ.r; �/ W BE

0
m

�m ! Fm is differentiable for all jr jRd < �m, and its differential
DE0ˆ.r0; e0/ W E0 ! F, e 7! d

dtˆ.r0; e0 C te/jtD0 in the direction of E0 has the
following continuity properties:

(a) For fixedm 2 N0 and r 2 BRd
�m

the differential operatorBE
0
m

�m ! L.E 0m; Fm/,
e 7! DE0ˆ.r; e/ is continuous, and the continuity is uniform in a neighborhood
of .r; e/ D .0; 0/. That is, for any ı > 0 there exists 0 < �m;ı � �m such that
for all .r; e/ 2 BRd

�m;ı
� B

E 0m
�m;ı we have

DE0ˆ.r; e/h�DE0ˆ.r; e
0/h



Fm
� ıkhkE 0m ; 8ke

0
�ekE 0m � �m;ı ; h 2 E

0
m:

(b) For any sequencesRd 3r�!0 and e� 2BE
0
m

1 with


DE0ˆ.r

� ; 0/e�



Fm
�!
�!1

0

we also have


DE0ˆ.0; 0/e

�



Fm
�!
�!1

0.

(iii) The differential DE0ˆ.0; 0/ W E0 ! F is sc-Fredholm. Moreover DE0ˆ.r; 0/ W
E0 ! F0 is Fredholm for all jr jRd < �0, with Fredholm index equal to that for
r D 0, and it is weakly regularizing; that is, ker DE0ˆ.r; 0/ � E1.

Then ˆ is sc-Fredholm at 0 in the sense of Definition 6.15.
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Note here that condition (ii-a) requires the differential DE0ˆ.r; e/ to be continuous in
the operator topology under variations of e, but not of r . (It is only the first continuity
that is uniform in r .) This is why the second part of condition (iii) does not simply follow
from Fredholm stability.
Example 6.17. For unbroken Morse trajectories, the principal part of the section roughly
takes the formˆ.
/ D d

dt 
 �rf .
/ in local charts. It satisfies conditions (ii) and (iii) of
the above Lemma since it is in fact classically smooth as map

�
�ca CW

kC2;2
ık

.R;Rn/
�
!

W
kC1;2
ık

.R;Rn/, where �ca is a smooth reference path from a to c.
In order to move on to a Fredholm notion for sections of M-polyfold bundles, we need

to introduce the notion of a filling. This is a device that turns the local study of the section,
possibly defined only as map between nontrivial retracts with tangent bundles of locally
varying dimensions, into the equivalent local study of a “filled” sc-Fredholm map from
an open set of an sc-Banach space to another fixed sc-Banach space.
Definition 6.18. Let s W O ! R, s.p/ D .p; f .p// be an sc1 section of an M-polyfold
bundle model prO W R ! O as in Definition 6.3, whose base is an sc-retract O �
Œ0;1/k � E containing 0 2 Œ0;1/k � E, and with fibers Rp � F for p 2 O. Then a
Fredholm filling at 0 for s over O consists of
� a neat sc-retraction of bundle type R W U � F ! U � F, R.p; h/ D

�
r.p/;…ph

�
on an open subset U � Œ0;1/k � E such that r.U/ D O and …pF D Rp for all
p 2 O,

� an sc1 map f W U ! F that is sc-Fredholm at 0 in the sense of Definition 6.15,
with the following properties:

(i) Nf jO D f ;
(ii) if p 2 U such that Nf .p/ 2 Rr.p/ then p D r.p/, that is p 2 O;
(iii) The linearization of the map Œ0;1/k � E ! F, p 7! .idF�…r.p// Nf .p/ at 0

restricts to an isomorphism from kerD0r to ker…0.
Note that conditions (i) and (ii) imply equality of the zero sets Nf �1.0/ D f �1.0/,

since the vector 0 lies in every fiber Rr.p/. Condition (iii) ensures that the Fredholm
index of any two fillers is the same. In particular, if f .p/ D 0, then the linearization
Dpf W TpO ! Rp has the same kernel as Dp Nf W TpU ! F, and the cokernels of both
maps are identified by the inclusion Rp � F.
Definition 6.19. An sc1 section s W X ! Y of an M-polyfold bundle is an sc-Fredholm
section if s is regularizing in the sense of Definition 6.10 and for each x 2 X1 there
is a local sc-trivialization ˆ W pr�1.U / ! R in the sense of Definition 6.6 over a
neighborhood U � X of x with ˆ.x; 0/ D 0, such that ˆ�s has a Fredholm filling in the
sense of Definition 6.18.

Now the Fredholm index of an sc-Fredholm section s W X ! Y at a point p 2 s�1.0/
can be defined as the Fredholm index of its linearization Dps W TpX ! Yp . This
linearization is in any local trivialization given by the linearization of the fiber part Dpf ,
and has the same Fredholm index as the linearization Dp Nf of any filler Nf . In fact, [40,
Prop. 6.2] shows that this index is constant on path-connected components of X .
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Example 6.20. In applications to splicings obtained from pregluing constructions as
in Example 5.9, a canonical candidate for a Fredholm filling is given by applying the
linearized operator on the image of the antigluing, while the nonlinear operator (the
gradient flow or Cauchy–Riemann operator) acts only on the image of the gluing. In the
case of Morse theory, this is being worked out in [3]. For an analogous simplified case of
Hamiltonian Floer theory; see [64].

Recall that scC-sections play the role of perturbations. The following stability result
(which was first proven in [32] under slightly different assumptions) is extremely important
for the perturbation theory. It is the polyfold analogue of the classical Fredholm theory
fact that the sum of a Fredholm operator and a compact operator is again Fredholm.
Theorem 6.21 ([40, Prop. 3.10, Thm. 3.15]). Let pr W Y ! X be a strong M-polyfold
bundle. Then for any sc-Fredholm section s W X ! Y and scC section � W X ! Y1 the
section s C � W X ! Y is again sc-Fredholm, and has the same Fredholm index as s on
each path-connected component of X .

6.3. Transverse perturbations and the implicit function theorem. Finally, with the
notions of bundles and Fredholm sections in place, we can introduce the polyfold regu-
larization Theorem 6.1 more rigorously, beginning with the notion of transversality and
an implicit function theorem for transverse Fredholm sections. Here and throughout, we
fix an M-polyfold bundle pr W Y ! X , which mainly is assumed to have no boundary
or corners (i.e. X D X .0/ and X .`/ D ; for ` � 1 in the notation of Definition 5.22).
The case of Fredholm sections over M-polyfolds with boundaries and corners is discussed
separately.
Definition 6.22. A scale smooth section s W X ! Y is called transverse (to the zero
section) if for every x 2 s�1.0/ the linearization Dxs W TxX ! Yx is surjective.
Here the linearization Dxs is represented by the differential D�.x/.… ı f ı r/jT�.x/O W
T�.x/O ! …�.x/.F/ in any local sc-trivialization pr�1.U /

�
!

S
p2O…p.F/ which

covers � W X � U �
! O D r.U/ � E and transforms s to p 7! .p; f .p//.

Theorem 6.23 ( [32, Thm. 5.14]). Let s W X ! Y be a transverse sc-Fredholm section.
Then the solution set M WD s�1.0/ inherits from its ambient space X a smooth structure
as finite dimensional manifold. Its dimension is given by the Fredholm index of s and the
tangent bundle is given by the kernel of the linearized section, TxM D ker Dxs.

If X has boundary and corners then the charts � W X � U �
! O D r.U/ � C take

values in an sc-sector C D Œ0;1/k � E and the implicit function theorem, in addition
to surjectivity of the linearization Dxs, also requires some type of transversality of the
kernel Kx WD ker D�.x/.… ı f ı r/jT�.x/O � Rk � E at any solution x 2 s�1.0/ to
the boundary strata. Since by the regularization property the solution set s�1.0/ � X1
consists of smooth points, we can choose the chart so that �.x/ D 0 2 C is the point with
highest degeneracy index in the sc-sector. Then the classical transversality notion is the
following.37

37[32, Def. 4.10] requires neatness with respect to the partial quadrant D0r.Œ0;1/k �E/ � T0O Š TxX .
This is equivalent to our simplified notion by linear algebra using the fact that Kx is finite dimensional by
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Definition 6.24. A subset K � Rk � E is neat with respect to the sector Œ0;1/k � E if
the projection PrRk W K ! Rk is surjective.

A section s W X ! Y over an M-polyfold X with nonempty boundary @X DS
`�1 X .`/ is called neatly transverse if it is transverse in the sense of Definition 6.22

and each kernelKx of the linearized operators at solutions x 2 s�1.0/ is neat with respect
to an M-polyfold chart with maximally degenerate sc-sector.

In particular, neatness requires sufficiently high dimension dimKx � k, so that
solution sets of transverse sections with neat kernels cannot intersect boundary strata of
degeneracy index higher than the Fredholm index. The corresponding implicit function
theorem is the following.

Theorem 6.25 ([32, Thm. 5.22]). Let s W X ! Y be a neatly transverse sc-Fredholm
section over an M-polyfold X with nonempty boundary. Then the solution set M WD

s�1.0/ inherits from its ambient space X a smooth structure as a finite dimensional
manifold with boundary and corner stratification M.`/ D s�1.0/ \ X .`/.

Remark 6.26. For purposes beyond the scope of this exposition38 HWZ also introduce
the following weaker notion39 of transversality to the boundary strata:
The subset Kx � Rk � E is in good position to the sector Œ0;1/k � E if either the
projection PrRk W Kx ! Rk is surjective or if PrRk W Kx ! Rk is injective and Kx is
spanned by vectors in .0;1/k � E. A section s W X ! Y over an M-polyfold X with
nonempty boundary @X D

S
`�1 X .`/ is said to have kernels in good position if each

kernel Kx of the linearized operators at solutions x 2 s�1.0/ is in good position w.r.t. an
M-polyfold chart with maximally degenerate sc-sector.
This notion of boundary transversality still provides an implicit function theorem, in which
just the control of boundary strata is less precise, see [32, Thm. 5.22].
Let s W X ! Y be a transverse sc-Fredholm section over an M-polyfold X with nonempty
boundary, and suppose that it has kernels in good position. Then the solution set M WD

s�1.0/ inherits from its ambient spaceX a smooth structure as finite dimensional manifold
with boundary and corner stratification M.`/ � s�1.0/ \

S
k�` X .k/.

the Fredholm property of the section (hence under the above neatness condition one finds an sc-complement
of Kx � Rk � E in f0g � E) and that imD0r D T0O projects onto Rk by the neatness condition on the
sc-retraction r .

38The construction of coherent perturbations does not always allow one to achieve neatness by perturbations.
Roughly speaking, if a moduli problem can be glued to itself, then the negative index solutions in a family occur
in arbitrarily high degeneracy indices. In the operations formalism of HWZ, this is reflected in the occurrence
of “diagonal relators”; it also appears in geometric regularizations such as [59, §10e], where transversality is
achieved by a “delay function method”.

39 [32, Def. 4.10] again works in the partial quadrant D0r.Œ0;1/k � E/ � T0O Š TxX , but we may
simplify this to a condition in C D Œ0;1/k � E since D0rjKx D idKx by the retraction property of r .
With that in mind, we rephrased the conditions of Kx \ C � C having open interior and an sc-direct sum
Rk � E D Kx ˚N such that k C n 2 C , k 2 C for knk=kkk sufficiently small. Indeed, in the case of
prRk .Kx/ ¤ Rk our simplified notion clearly implies these conditions. On the other hand, the first condition
implies that Kx has a basis of vectors in C , and in fact in .0;1/k � E, unless Kx is entirely contained in
a boundary face of C . The latter is excluded by the second condition which must hold for some vectors n
transverse to that face.
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As in the classical situation, an sc-Fredholm section need not generally be transverse,
in which case the above implicit function theorems do not apply. However, one can
achieve transversality by perturbation with scC-sections, which are essentially compact
perturbations of the Fredholm section and were introduced in Definition 6.10; they exist
if Y ! X is a strong M-polyfold bundle in the sense of Definition 6.7. In order to
construct appropriate perturbations from these, one moreover needs to work with smooth
cutoff functions, which will be provided by assuming one works with ambient sc-Hilbert
structures, rather than sc-Banach structures, as introduced in Definition 4.5. (See the
discussion there for a possible extension to sc-Banach structures with scale smooth cutoff
functions.)

Additionally, we now need to be concerned with preserving the compactness of the
unperturbed solution set s�1.0/. Recall from Definition 6.2 (iii) that a section s W X ! Y
is called proper if s�1.0/ is compact. In order to preserve compactness one can make use
of the compactness of the embedding F1 ,! F0 in the scale structure of the ambient space
of the fibers of the bundle pr W Y ! X . More precisely, recall that the fibers Yx for x 2 X
are locally isomorphic to subspaces

�
Rp � F

�
p2O parametrized by an sc-retract O, and

the transition maps preserve the fibersRp \ F1, so they form another M-polyfold bundle
Y1 ! X . By restricting the F1-norm to the fibers and patching these local fiber-wise
norms together with smooth cutoff functions on X , one now obtains an auxiliary norm on
the dense subset Y1 � Y in the following sense.

Definition 6.27. An auxiliary norm N for the strong M-polyfold bundle pr W Y ! X is a
continuous map N W Y1 ! Œ0;1/ such that the restriction to each fiber pr�1.x/ \ Y1 for
x 2 X is a complete norm.

Moreover, if s W X ! Y is a proper section, then a pair of an auxiliary normN and an
open neighborhood U � X of s�1.0/ is said to control compactness if for any scC-section
� W X ! Y1 with supp � � U and supx2X N.�.x// � 1 the perturbed solution set
.s C �/�1.0/ � X is compact.

Any two auxiliary norms are equivalent in a neighborhood of the compact solution
set s�1.0/ by [32, Lem. 5.8]. Moreover, [32, Thm. 5.12] proves that neighborhoods
controlling compactness exist for any given auxiliary norm. Here the compactness holds
with respect to the basic X0 topology, but by [32, Thm. 5.11] can be strengthened to the
topology on X1 (given by simultaneous convergence in all topologies on X1 � Xm)
if the section s W X ! Y (and hence also s C �) is assumed to be sc-Fredholm. With
these notions in place we can finally state a technically complete version of the M-polyfold
regularization Theorem 6.1, which — in the case without boundary — simultaneously
achieves compactness and transversality of the perturbed solution space, as well as a
uniqueness up to cobordism.

Theorem 6.28 ([32, Thm. 5.22]). Let pr W Y ! X be a strongM-polyfold bundle modeled
on sc-Hilbert spaces, and let s W X ! Y be a proper Fredholm section.

(i) For any auxiliary norm N W Y1 ! Œ0;1/ and neighborhood s�1.0/ � U � X
controlling compactness, there exists an scC-section � W X ! Y1 with supp � � U
and supx2X N.�.x// < 1, and such that s C � is transverse to the zero section. In
particular, .s C �/�1.0/ carries the structure of a smooth compact manifold.
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(ii) Given two transverse perturbations �i W X ! Y1 for i D 0; 1 as in (i), controlled by
auxiliary norms and neighborhoods .Ni ;Ui / controlling compactness, there exists
an scC-sectione� W X � Œ0; 1�! Y1 such that f.x; t/ 2 X � Œ0; 1� j s.x/Ce�.x; t/g
is a smooth compact cobordism from .s C �0/�1.0/ to .s C �1/�1.0/. For details,
see Remark 5.16 of [40].

Note here that one can choose the perturbations in part (i) “small” in the following
ways: Given a pair .N;U/ that controls compactness, we can apply Theorem 6.28 with
the auxiliary norm ı�1N scaled by any ı > 0 and any neighbourhood U 0 � U of the zero
set s�1.0/. In fact, it suffices to have U 0 contain the part of the zero set where s is not
transverse. As a result, we obtain a perturbation � of small norm supx2X N.�.x// < ı

and, more importantly, small support near the nontransverse part of s�1.0/. The latter,
very much unlike any geometric perturbation scheme, allows us to preserve parts of the
solution space that are already cut out transversely. Moreover, the second smallness
control on perturbations is useful when solutions in s�1.0/ satisfy a desirable property
(e.g. positivity of intersections). If this property is open with respect to the topology
on X (e.g. the H 3-topology, which is stronger than C1), then the perturbation � can
be chosen with support sufficiently close to s�1.0/ so that the perturbed solutions in
.s C �/�1.0/ � s�1.0/ [ supp � still have the same property.
Remark 6.29 (Regularization with boundary and corners). The regularization theo-
rem 6.28 generalizes directly to strong bundles Y ! X over M-polyfolds with boundary
and corners in two versions corresponding to the notion of transversality to the boundary
strata.

Firstly, (i) holds with s C � neatly transverse, and hence .s C �/�1.0/ a compact
manifold with boundary and corners, whose corner strata are given by its intersection
with the corresponding boundary strata of X . Moreover, (ii) provides a cobordism with
boundary and corners in the sense that its intersection with each stratum X .`/ � Œ0; 1� is a
cobordism between .s C �0/�1.0/ \ X .`/ and .s C �1/�1.0/ \ X .`/.

Secondly, under additional conditions on the perturbations discussed in Remark 6.26,
the transverse perturbations s C � in (i) can still be constructed to have kernels in good
position, and hence .s C �/�1.0/ is a compact manifold with boundary and corners.
Then (ii) provides a cobordism with boundary and corners in the sense that its corner
strata are cobordisms between the corner strata of .s C �0/�1.0/ and .s C �1/�1.0/.
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