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The Green–Tao theorem: an exposition
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Abstract. The celebrated Green-Tao theorem states that the prime numbers contain arbitrarily long
arithmetic progressions. We give an exposition of the proof, incorporating several simplifications
that have been discovered since the original paper.
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1. Introduction

In 2004, Ben Green and Terence Tao [23] proved the following celebrated theorem, re-
solving a folklore conjecture about prime numbers.

Theorem 1.1 (Green-Tao). The prime numbers contain arbitrarily long arithmetic pro-
gressions.

Our intention is to give a complete proof of this theorem. Although there have been
numerous other expositions [21, 22, 28, 29, 43, 45, 47], we were prompted to write this
note because of our recent work [7, 51] simplifying one of the key technical ingredients in
the proof. Together with work of Gowers [21], Reingold, Trevisan, Tulisiani, and Vadhan
[33], and Tao [42], there have now been substantial simplifications to almost every aspect
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of the proof. We have chosen to collect these simplifications and present an up-to-date
exposition in order to make the proof more accessible.

A key element in the proof of Theorem 1.1 is Szemerédi’s theorem [41] on arithmetic
progressions in dense subsets of the integers. To state this theorem, we define the upper
density of a set A ⊆ N to be

lim sup
N→∞

|A ∩ [N ]|
N

, where [N ] := {1, 2, . . . , N}.

Theorem 1.2 (Szemerédi). Every subset of N with positive upper density contains arbi-
trarily long arithmetic progressions.

Szemerédi’s theorem is a deep and important result and the original proof [41] is long
and complex. It has had a huge impact on the subsequent development of combinatorics
and, in particular, was responsible for the introduction of the regularity lemma, now a
cornerstone of modern combinatorics. Numerous different proofs of Szemerédi’s theo-
rem have since been discovered and all of them have introduced important new ideas that
grew into active areas of research. The three main modern approaches to Szemerédi’s
theorem are by ergodic theory [13, 15], higher order Fourier analysis [17, 18], and hyper-
graph regularity [20, 31, 34, 35, 46]. However, none of these approaches are easy. We
shall therefore assume Szemerédi’s theorem as a black box and explain how to derive the
Green-Tao theorem using it.

As the set of primes has density zero, Szemerédi’s theorem does not immediately im-
ply the Green-Tao theorem. Nevertheless, Erdős famously conjectured that the density
of the primes alone should guarantee the existence of long APs.1 Specifically, he conjec-
tured that any subset A of N with divergent harmonic sum, i.e.,

∑
a∈A 1/a = ∞, must

contain arbitrarily long APs. This conjecture is widely believed to be true, but it has yet
to be proved even in the case of 3-term APs.2

If not by density considerations, how do Green and Tao prove their theorem? The
answer is that they treat Szemerédi’s theorem as a black box and show, through a trans-
ference principle, that a Szemerédi-type statement holds relative to sparse pseudorandom
subsets of the integers, where a set is said to be pseudorandom if it resembles a random
set of similar density in terms of certain statistics or properties. We refer to such a state-
ment as a relative Szemerédi theorem. Given two sets A and S with A ⊆ S, we define the
relative upper density of A in S to be lim supN→∞ |A ∩ [N ]| / |S ∩ [N ]|.

Relative Szemerédi theorem. (Informally) If S is a (sparse) set of integers satisfying
certain pseudorandomness conditions andA is a subset of S with positive relative density,
then A contains arbitrarily long APs.

1For brevity, we will usually write AP for arithmetic progression and k-AP for a k-term AP.
2A recent result of Sanders [38] is within a hair’s breadth of verifying Erdős’ conjecture for 3-APs. Sanders

proved that every 3-AP-free subset of [N ] has size at most O(N(log logN)6/ logN), which is just slightly
shy of the logarithmic density barrier that one wishes to cross (see Bloom [4] for a recent improvement). In
the other direction, Behrend [2] constructed a 3-AP-free subset of [N ] of size Ne−O(

√
logN). There is some

evidence to suggest that Behrend’s lower bound is closer to the truth (see [39]). For longer APs, the gap is
much larger. The best upper bound, due to Gowers [18], is that every k-AP-free subset of [N ] has size at most
N/(log logN)ck for some ck > 0 (though for k = 4 there have been some improvements [24]).
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To prove the Green-Tao theorem, it then suffices to show that there is a set of “almost
primes” containing, but not much larger than, the primes which satisfies the required pseu-
dorandomness conditions. In the work of Green and Tao, there are two such conditions,
known as the linear forms condition and the correlation condition.

The proof of the Green-Tao theorem therefore falls into two parts, the first part being
the proof of the relative Szemerédi theorem and the second part being the construction of
an appropriately pseudorandom superset of the primes. Green and Tao credit the contem-
porary work of Goldston and Yıldırım [16] for the construction and estimates used in the
second half of the proof. Here we will follow a simpler approach discovered by Tao [42].

The proof of the relative Szemerédi theorem also splits into two parts, the dense model
theorem and the counting lemma. Roughly speaking, the dense model theorem allows
us to say that if S is a sufficiently pseudorandom set then any relatively dense subset
A of S may be “approximated” by a dense subset Ã of N, while the counting lemma
shows that the number of arithmetic progressions in A is close, up to a normalization
factor, to the number of arithmetic progressions in Ã. Since Ã is a dense subset of N,
Szemerédi’s theorem implies that Ã contains arbitrarily long APs and this in turn implies
that A contains arbitrarily long APs.

This is also the outline we will follow in this paper, though for each part we will
follow a different approach to the original paper. For the counting lemma, we will follow
the recent approach taken by the authors in [7]. This approach has significant advantages
over the original method of Green and Tao, not least of which is that a weakening of the
linear forms condition is sufficient for the relative Szemerédi theorem to hold. This means
that the estimates involved in verifying the correlation condition may now be omitted from
the proof.

In [7], the dense model theorem was replaced with a certain sparse regularity lemma.
However, as subsequently observed by Zhao [51], the original dense model theorem may
also be used. To prove the dense model theorem, we will follow an elegant method de-
veloped independently by Gowers [21] and by Reingold, Trevisan, Tulsiani, and Vadhan
[33].

The 3-AP case of Szemerédi’s theorem was first proved by Roth [36] in the 1950s.
While Roth’s theorem, as this case is usually known, is already a very interesting and
nontrivial result, the 3-AP case is substantially easier than the general result. In contrast,
when proving a relative Szemerédi theorem by transferring Szemerédi’s theorem down
to the sparse setting, the general case is not mathematically more difficult than the 3-
AP case. However, as one might expect, the notation for the general case can be rather
cumbersome. For this reason, we explain various aspects of the proof first for 3-APs and
only afterwards discuss how it can be adapted to the general case.

We begin, in Section 2, by presenting the Ruzsa-Szemerédi graph-theoretic approach
to Roth’s theorem. In particular, we present a graph-theoretic construction that will mo-
tivate the definition of the linear forms conditions, which we state in Sections 3 and 4,
first for Roth’s theorem, then for Szemerédi’s theorem. The dense model theorem and the
counting lemma are explained in Sections 5 and 6, respectively. We conclude the proof of
the relative Szemerédi theorem in Section 7. In Sections 8 and 9, we will construct the rel-
evant set of almost primes (or rather a majorizing measure for the primes) and show that
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it satisfies the linear forms condition. We conclude with some remarks about extensions
of the Green-Tao theorem.

2. Roth’s theorem via graph theory

One way to state Szemerédi’s theorem is that for every fixed k every k-AP-free subset of
[N ] has o(N) elements. It is not hard to prove that this “finitary” version of Szemerédi’s
theorem is equivalent to the “infinitary” version stated as Theorem 1.2.

In fact, it will be more convenient to work in the setting of the abelian group
ZN := Z/NZ as opposed to [N ]. These two settings are roughly equivalent for studying
k-APs, with the only difference being that ZN allows APs to wrap around 0. For example,
N − 1, 0, 1 is a 3-AP in ZN , but not in [N ]. To deal with this issue, one simply embeds
[N ] into a slightly larger cyclic group so that no k-APs wrap around zero. Working in
ZN , we will now show how Roth’s theorem follows from a result in graph theory.

Theorem 2.1 (Roth). If A ⊆ ZN is 3-AP-free, then |A| = o(N).

GA
X = ZN

Y = ZN Z = ZN

x

y z

x ∼ y iff
2x+ y ∈ A

x ∼ z iff
x− z ∈ A

y ∼ z iff
−y − 2z ∈ A

Figure 1. The construction in the proof of Roth’s theorem.

Consider the following graph construction (see Figure 1). Given A ⊆ ZN , we con-
struct a tripartite graph GA whose vertex sets are X , Y , and Z, each with N vertices
labeled by elements of ZN . The edges are constructed as follows (one may think of this
as a variant of the Cayley graph for ZN generated by A):

• (x, y) ∈ X × Y is an edge if and only if 2x+ y ∈ A;

• (x, z) ∈ X × Z is an edge if and only if x− z ∈ A;

• (y, z) ∈ Y × Z is an edge if and only if −y − 2z ∈ A.

Observe that (x, y, z) ∈ X × Y × Z forms a triangle if and only if all three of

2x+ y, x− z, −y − 2z
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are in A. These numbers form a 3-AP with common difference −x − y − z, so we see
that triangles in GA correspond to 3-APs in A.

However, we assumed that A is 3-AP-free. Does this mean that GA has no triangles?
Not quite. There are still some triangles in GA, namely those that correspond to trivial
3-APs inA, i.e., 3-APs with common difference zero. So the triangles inGA are precisely
those with x+y+z = 0. This easily implies that every edge inGA is contained in exactly
one triangle, namely the one that completes the equation x+ y + z = 0.

What can we say about a graph where every edge is contained in exactly one triangle?
The following result of Ruzsa and Szemerédi [37] shows that it cannot have many edges.

Theorem 2.2 (Ruzsa-Szemerédi). IfG is a graph on n vertices with every edge in exactly
one triangle, then G has o(n2) edges.

Our graph GA has 3N vertices and 3N |A| edges (for every x ∈ X , there are exactly
|A| vertices y ∈ Y with 2x+ y ∈ A and similarly for Y × Z and X × Z). So it follows
by Theorem 2.2 that 3N |A| = o((3N)2). Hence |A| = o(N), proving Roth’s theorem.

Theorem 2.2 easily follows from a result known as the triangle removal lemma, which
says that if a graph on n vertices has o(n3) triangles, then it can be made triangle-free by
removing o(n2) edges. Though both results look rather innocent, it is only recently [6, 10]
that a proof was found which avoids the use of Szemerédi’s regularity lemma.

We will not include a proof of Theorem 2.2 here, since this would lead us too far
down the route of proving Szemerédi’s theorem. However, if our purpose was not to prove
Roth’s theorem, then why translate it into graph-theoretic language in the first place? The
reason is that the counting lemma and pseudorandomness conditions used for transferring
Roth’s theorem to the sparse setting are most naturally phrased in terms of graph theory.3

We will begin to make this explicit in the next section.

3. Relative Roth theorem

In this section, we describe the relative Roth theorem. We first give an informal statement.

Relative Roth Theorem. (Informally) If S ⊆ ZN satisfies certain pseudorandomness
conditions and A ⊆ S is 3-AP-free, then |A| = o(|S|).

To state the pseudorandomness conditions, let p = |S| /N (which may decrease as a
function of N ) and consider the graph GS . This is similar to GA, except that (x, y) ∈
X × Y is now made an edge if and only if 2x + y ∈ S, etc. The pseudorandomness
hypothesis now asks that the number of embeddings of K2,2,2 in GS (i.e., the number of
tuples (x1, x2, y1, y2, z1, z2) ∈ X ×X × Y × Y × Z × Z where xiyj , xizj , yizj are all
edges for all i, j ∈ {1, 2}) be equal to (1 + o(1))p12N6, where o(1) indicates a quantity
that tends to zero as N tends to infinity. This is asymptotically the same as the expected
number of embeddings of K2,2,2 in a random tripartite graph of density p or in the graph

3However, it is worth stressing that the bounds in the relative Roth theorem do not reflect the poor bounds
given by the graph theoretic approach to Roth’s theorem. While graph theory is a convenient language for
phrasing the transference principle, Roth’s theorem itself only appears as a black box and any bounds we have
for this theorem transfer directly to the sparse version.
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GS

X = ZN

Y = ZN Z = ZN

x

y z

x ∼ y iff
2x+ y ∈ S

x ∼ z iff
x− z ∈ S

y ∼ z iff
−y − 2z ∈ S

K2,2,2 & subgraphs,
e.g.,

Pseudorandomness hypothesis for S ⊆ ZN :
GS has asymptotically the expected number of embeddings of

Figure 2. Pseuodrandomness conditions for the relative Roth theorem.

GS formed from a random set S of density p. Assuming that p does not decrease too
rapidly with N , it is possible to show that with high probability the true K2,2,2-count in
these random graphs is asymptotic to this expectation. It is therefore appropriate to think
of our condition as a type of pseudorandomness.

For technical reasons, it is necessary to assume that this property of having the “cor-
rect” count holds not only for K2,2,2 but also for every subgraph H of K2,2,2. That is, we
ask that the number of embeddings ofH intoGS (with vertices ofH mapped into their as-
signed parts) be equal to (1 + o(1))pe(H)Nv(H). The full description is now summarized
in Figure 2, although we will restate it in more formal terms later on.

To see why this is a natural pseudorandomness hypothesis, we recall a famous result
of Chung, Graham, and Wilson [5]. This result says that several seemingly different
notions of pseudorandomness for dense graphs (i.e., graphs with constant edge density)
are equivalent. These notions are based, for example, on measuring eigenvalues, edge
discrepancy, subgraph counts, or codegree distributions. One rather striking fact is that
having the expected 4-cycle count turns out to be equivalent to all of the other definitions.

For sparse graphs, these equivalences do not hold. While having the correct count
for 4-cycles, which may be seen as the 2-blow-up of an edge (see Figure 3), still gives
some control over the distribution of edges in the graph, this property is no longer strong
enough to control the distribution of other small graphs such as triangles. This is where
the pseudorandomness condition described above becomes useful, because knowing that



The Green–Tao theorem: an exposition 255

we have approximately the correct count for K2,2,2, the 2-blow-up of a triangle, does
allow one to control the distribution of triangles.

2-blow-up−−−−−→ 2-blow-up−−−−−→

Figure 3. The 2-blow-up of a graph is constructed by duplicating each vertex.

We now sketch the idea behind the proof of the relative Roth theorem. We begin by
noting that Roth’s theorem can be rephrased as follows.

Theorem 3.1 (Roth). For every δ > 0, every A ⊆ ZN with |A| ≥ δN contains a 3-AP,
provided N is sufficiently large.

By a simple averaging argument (attributed to Varnavides [50]), this version of Roth’s
theorem is equivalent to the claim that A contains not just one, but many 3-APs.

Theorem 3.2 (Roth’s theorem, counting version). For every δ > 0, there exists
c = c(δ) > 0 such that every A ⊆ ZN with |A| ≥ δN contains at least cN2 3-APs,
provided N is sufficiently large.

To prove the relative Roth theorem from Roth’s theorem, assume that A ⊆ S ⊆ ZN
is such that |A| ≥ δ |S|. The first step is to show that there is a dense model Ã for A.
This is a dense subset of ZN such that |Ã|/N ≈ |A|/|S| ≥ δ and Ã approximates A in
the sense of a certain cut norm. The second step is to use this cut norm condition to prove
a counting lemma, which says that Ã and A contain roughly the same number of 3-APs
(after an appropriate normalization), i.e.,

(N/ |S|)3 |{3-APs in A}| ≈ |{3-APs in Ã}|.

Since the counting version of Roth’s theorem implies that |{3-APs in Ã}| ≥ cN2, the
relative Roth theorem is proved.

This discussion is fairly accurate, except for one white lie, which is that it is more
correct to think of Ã as a weighted function from ZN to [0, 1] than as a subset of ZN . It
will therefore be more convenient to work with the following weighted version of Roth’s
theorem. At this point, it is worth fixing some notation. We will write Ex1∈X1,...,xk∈Xk
as a shorthand for |X1|−1 · · · |Xk|−1

∑
x1∈X1

· · ·
∑
xk∈Xk . If the variables x1, . . . , xk or

the sets X1, . . . , Xk are understood, we will sometimes choose to omit them. We will
also write o(1) to indicate a function that tends to zero as N tends to infinity, indicating
further dependencies by subscripts when they are not understood.

Theorem 3.3 (Roth’s theorem, weighted version). For every δ > 0, there exists
c = c(δ) > 0 such that every f : ZN → [0, 1] with Ef ≥ δ satisfies

Ex,d∈ZN [f(x)f(x+ d)f(x+ 2d)] ≥ c− oδ(1). (1)

Note that when f is {0, 1}-valued, i.e., f = 1A is the indicator function of some set
A, this reduces to the counting version of Roth’s theorem. Up to a change of parameters,



256 D. Conlon, J. Fox, and Y. Zhao

Sets Functions

Dense
setting

A ⊆ ZN
|A| ≥ δN

f : ZN → [0, 1]
Ef ≥ δ

Sparse
setting

A ⊆ S ⊆ ZN
|A| ≥ δ |S|

f ≤ ν : ZN → [0,∞)
Ef ≥ δ, Eν = 1 + o(1)

Table 1. Comparing the set version with the weighted version.

the counting version also implies the weighted version. Indeed, to deduce the weighted
version from the counting version, let A = {x ∈ ZN | f(x) ≥ δ/2}. If Ef ≥ δ and
0 ≤ f ≤ 1, then |A| ≥ δN/2, so

Ex,d∈ZN [f(x)f(x+ d)f(x+ 2d)] ≥ (δ/2)3Ex,d∈ZN [1A(x)1A(x+ d)1A(x+ 2d)].

By the counting version of Roth’s theorem, this is bounded below by a positive constant
when N is sufficiently large.

When working in the functional setting, we also replace the set S by a function
ν : ZN → [0,∞). This function ν, which we call a majorizing measure, will be nor-
malized to satisfy4

Eν = 1 + o(1).

The subset A ⊆ S will be replaced by some function f : ZN → [0,∞) majorized by ν,
that is, such that 0 ≤ f(x) ≤ ν(x) for all x ∈ ZN (we write this as 0 ≤ f ≤ ν). The
hypothesis |A| ≥ δ|S| will be replaced by Ef ≥ δ. Note that ν and f can be unbounded,
which is a major source of difficulty. The main motivating example to bear in mind is
that when A ⊆ S ⊆ ZN , we take ν(x) = N

|S|1S(x) and f(x) = ν(x)1A(x), noting
that if |A| ≥ δ|S| then Ef ≥ δ. We refer the reader to Table 1 for a summary of this
correspondence.

We can now state the pseudorandomness condition in a more formal way. We modify
the graph GS to a weighted graph Gν , which, for brevity, we usually denote by ν. This is
a weighted tripartite graph with vertex sets X = Y = Z = ZN and edge weights given
by:
• νXY (x, y) = ν(2x+ y) for all (x, y) ∈ X × Y ;

• νXZ(x, z) = ν(x− z) for all (x, z) ∈ X × Z;

• νY Z(y, z) = ν(−y − 2z) for all (y, z) ∈ Y × Z.

We will omit the subscripts if there is no risk of confusion. The pseudorandomness con-
dition then says that the weighted graph ν has asymptotically the expected H-density for
any subgraph H of K2,2,2. For example, triangle density in ν is given by the expression
E[ν(x, y)ν(x, z)ν(y, z)], where x, y, z vary independently and uniformly over X , Y , Z,

4We think of ν as a sequence of functions ν(N), though we usually suppress the implicit dependence of ν
on N .



The Green–Tao theorem: an exposition 257

respectively. The pseudorandomness assumption requires, amongst other things, that this
triangle density be 1+o(1), the normalization having accounted for the other factors. The
full hypothesis, involving K2,2,2 and its subgraphs, is stated below.

Definition 3.4 (3-linear forms condition). A weighted tripartite graph ν with vertex sets
X , Y , and Z satisfies the 3-linear forms condition if

Ex,x′∈X, y,y′∈Y, z,z′∈Z [ν(y, z)ν(y′, z)ν(y, z′)ν(y′, z′)ν(x, z)ν(x′, z)ν(x, z′)ν(x′, z′)

· ν(x, y)ν(x′, y)ν(x, y′)ν(x′, y′)] = 1 + o(1) (2)

and also (2) holds when one or more of the twelve ν factors in the expectation are erased.
Similarly, a function ν : ZN → [0,∞) satisfies the 3-linear forms condition5 if

Ex,x′,y,y′,z,z′∈ZN [ν(−y− 2z)ν(−y′− 2z)ν(−y− 2z′)ν(−y′− 2z′)ν(x− z)ν(x′− z)
· ν(x− z′)ν(x′ − z′)ν(2x+ y)ν(2x′ + y)ν(2x+ y′)ν(2x′ + y′)] = 1 + o(1) (3)

and also (3) holds when one or more of the twelve ν factors in the expectation are erased.

Remark. The 3-linear forms condition (3) for a function ν : ZN → [0,∞) is precisely
the same as (2) for the weighted graph Gν .

We can now state the relative Roth theorem formally.

Theorem 3.5 (Relative Roth). Suppose ν : ZN → [0,∞) satisfies the 3-linear forms
condition. For every δ > 0, there exists c = c(δ) > 0 such that every f : ZN → [0,∞)
with 0 ≤ f ≤ ν and Ef ≥ δ satisfies

Ex,d∈ZN [f(x)f(x+ d)f(x+ 2d)] ≥ c− oδ(1).

Moreover, c(δ) may be taken to be the same constant which appears in (1).

Remark. The rate at which the o(1) term in (3.5) goes to zero depends not only on δ but
also on the rate of convergence in the 3-linear forms condition.

4. Relative Szemerédi theorem

As in the case of Roth’s theorem, we first state an equivalent version of Szemerédi’s
theorem allowing weights.

Theorem 4.1 (Szemerédi’s theorem, weighted version). For every k ≥ 3 and δ > 0,
there exists c = c(k, δ) > 0 such that every f : ZN → [0, 1] with Ef ≥ δ satisfies

Ex,d∈ZN [f(x)f(x+ d)f(x+ 2d) · · · f(x+ (k − 1)d)] ≥ c− ok,δ(1). (4)

5We will assume that N is odd, which simplifies the proof of Theorem 3.5 without too much loss in gener-
ality. Theorem 3.5 holds more generally without this additional assumption on N .
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The setup for the relative Szemerédi theorem is a natural extension of the previous
section. Just as our pseudorandomness condition for 3-APs was related to the graph-
theoretic approach to Roth’s theorem, the pseudorandomness condition in the general
case is informed by the hypergraph removal approach to Szemerédi’s theorem [20, 31,
34, 35, 46].

Instead of constructing a weighted graph as we did for 3-APs, we now construct a
weighted (k − 1)-uniform hypergraph corresponding to k-APs. For example, for 4-APs,
the 3-uniform hypergraph corresponding to the majorizing measure ν : ZN → [0,∞) is
4-partite, with vertex sets W,X, Y, Z, each with N vertices labeled by elements of ZN .
The weighted edges are given by:
• νWXY (w, x, y) = ν(3w + 2x+ y) on W ×X × Y ;
• νWXZ(w, x, z) = ν(2w + x− z) on W ×X × Z;
• νWYZ(w, y, z) = ν(w − y − 2z) on W × Y × Z;
• νXY Z(x, y, z) = ν(−x− 2y − 3z) on X × Y × Z.

The linear forms 3w + 2x + y, 2w + x − z, w − y − 2z,−x − 2y − 3z are chosen
because they form a 4-AP with common difference −w − x − y − z and each linear
form depends on exactly three of the four variables. The pseudorandomness condition
then says that the weighted hypergraph ν contains asymptotically the expected count of
H whenever H is a subgraph of the 2-blow-up of the simplex K(3)

4 . Here K(3)
4 is the

complete 3-uniform hypergraph on 4 vertices, that is, with vertices {w, x, y, z} and edges
{wxy,wxz,wyz, xyz}, while the 2-blow-up of K(3)

4 is the 3-uniform hypergraph con-
structed by duplicating each vertex in K(3)

4 and joining all those triples which correspond
to edges in K(3)

4 . Explicitly, this 2-blow-up has vertex set {w1, w2, x1, x2, y1, y2, z1, z2}
and edges wixjyk, wixjzk, wiyjzk, xiyjzk for all i, j, k ∈ {1, 2}.

For general k, we are concerned with K
(k−1)
k , the complete (k − 1)-uniform hy-

pergraph on k vertices, while the pseudorandomness condition again asks that a certain
weighted k-partite (k−1)-uniform hypergraph contains asymptotically the expected count
for every subgraph of the 2-blow-up of K(k−1)

k . This 2-blow-up is constructed analo-
gously to the 2-blow-up of K(3)

4 above and has 2k vertices and k2k−1 edges.
For k-APs, the corresponding linear forms are given by the expressions

∑k
i=1(j−i)xi,

for each j = k, k − 1, . . . , 1. The condition (5) below is now the natural extension of the
3-linear forms condition (3). When viewed as a hypergraph condition, it asks that the
count for any subgraph of the 2-blow-up of K(k−1)

k be close to the expected count.
Definition 4.2 (Linear forms condition). A function ν : ZN → [0,∞) satisfies the k-
linear forms condition6 if

E
x
(0)
1 ,x

(1)
1 ,...,x

(0)
k ,x

(1)
k ∈ZN

[ k∏
j=1

∏
ω∈{0,1}[k]\{j}

ν
( k∑
i=1

(j − i)x(ωi)
i

)nj,ω]
= 1 + o(1) (5)

for any choice of exponents nj,ω ∈ {0, 1}.
6As in the footnote to Definition 3.4, in our proof of Theorem 4.3 we will make the simplifying assumption

that N is coprime to (k − 1)!. In the proof of the Green-Tao theorem, one can always make this assumption.
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Now we are ready to state the main result in the proof of the Green-Tao theorem.

Theorem 4.3 (Relative Szemerédi). Suppose k ≥ 3 and ν : ZN → [0,∞) satisfies the
k-linear forms condition. For every δ > 0, there exists c = c(k, δ) > 0 such that every
f : ZN → [0,∞) with 0 ≤ f ≤ ν and Ef ≥ δ satisfies

Ex,d∈ZN [f(x)f(x+ d)f(x+ 2d) · · · f(x+ (k − 1)d)] ≥ c− ok,δ(1). (6)

Moreover, c(k, δ) may be taken to be the same constant which appears in (4).

Remark. The rate at which the o(1) term in (6) goes to zero depends not only on k and δ
but also on the rate of convergence in the k-linear forms condition for ν.

Now we outline the proof of the relative Szemerédi theorem. This is simply a rephras-
ing of the outline given after Theorem 3.2 for the unweighted version of the relative Roth
theorem. We start with 0 ≤ f ≤ ν and Ef ≥ δ. In Section 5, we prove a dense model the-
orem which shows that there exists another function f̃ : ZN → [0, 1] which approximates
f with respect to a certain cut norm.7 Note that f̃ is bounded (hence “dense” model) and
Ef̃ ≥ δ−o(1). In Section 6, we establish a counting lemma which says that the weighted
k-AP counts in f and f̃ are similar, that is,

Ex,d[f(x)f(x+d) · · · f(x+(k−1)d)] = Ex,d[f̃(x)f̃(x+d) · · · f̃(x+(k−1)d)]−o(1).

The right-hand side is at least c(k, δ) − ok,δ(1) by Szemerédi’s theorem (Theorem 4.1).
Thus the relative Szemerédi theorem follows. We now begin the proof proper.

5. Dense model theorem

Given g : X×Y → R, viewed as an edge-weighted bipartite graph with vertex setX∪Y ,
the cut norm of g, introduced by Frieze and Kannan [12] (also see [30, Chapter 8]), is
defined as

‖g‖� := sup
A⊆X,B⊆Y

|Ex∈X,y∈Y [g(x, y)1A(x)1B(y)]| . (7)

For a weighted 3-uniform hypergraph g : X × Y × Z → R, we define

‖g‖� := sup
A⊆Y×Z, B⊆X×Z, C⊆X×Y

|Ex∈X,y∈Y,z∈Z [g(x, y, z)1A(y, z)1B(x, z)1C(x, y)]| .

(The more obvious alternative, where we range A,B,C over subsets of X,Y, Z, respec-
tively, gives a weaker norm that is not sufficient to guarantee a counting lemma.) More
generally, given a weighted r-uniform hypergraph g : X1 × · · · ×Xr → R, define

‖g‖� := sup |Ex1∈X1,...,xr∈Xr [g(x1, . . . , xr)1A1
(x−1)1A2

(x−2) · · · 1Ar (x−r)]| , (8)

7In the original Green-Tao approach, they required f̃ and f to be close in a stronger sense related to the
Gowers uniformity norm. The cut norm approach we present here requires less stringent pseudorandomness
hypotheses for applying the dense model theorem but a stronger counting lemma.
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where the supremum is taken over all choices of subsets Ai ⊆ X−i :=
∏
j∈[r]\{i}Xj ,

i ∈ [r], and we write

x−i := (x1, x2, . . . , xi−1, xi+1, . . . , xr) ∈ X−i

for each i. We extend this definition of cut norm to ZN : for any function f : ZN → R,
define

‖f‖�,r := sup |Ex1,...,xr∈ZN [f(x1 + · · ·+ xr)1A1
(x−1)1A2

(x−2) · · · 1Ar (x−r)]| ,
(9)

where the supremum is taken over all A1, . . . , Ar ⊆ Zr−1
N . It is easy to see that this is

a norm. Equivalently, it is the hypergraph cut norm applied to the weighted r-uniform
hypergraph g : ZrN → R with g(x1, . . . , xr) = f(x1 + · · ·+ xr). For example,

‖f‖�,2 := sup
A,B⊆ZN

|Ex,y∈ZN [f(x+ y)1A(x)1B(y)]| .

The main result of this section is the following dense model theorem (in this particular
form due to the third author [51]). It gives a condition under which it is possible to
approximate an unbounded (or sparse) function f by a bounded (or dense) function f̃ .

Theorem 5.1 (Dense model). For every ε > 0, there exists an ε′ > 0 such that the
following holds. Suppose ν : ZN → [0,∞) satisfies ‖ν − 1‖�,r ≤ ε′. Then, for ev-
ery f : ZN → [0,∞) with f ≤ ν, there exists a function f̃ : ZN → [0, 1] such that
‖f − f̃‖�,r ≤ ε.
Remark. One may take ε′ = exp(−ε−C) whereC is some absolute constant (independent
of r and, more importantly, N ).

A more involved dense model theorem (using a norm based on the Gowers uniformity
norm rather than the cut norm) was used by Green and Tao in [23]. Its proof was sub-
sequently simplified by Gowers [21] and, independently, Reingold, Trevisan, Tulsiani,
and Vadhan [32]. Here we follow Gowers’ approach, but specialized to ‖·‖�,r, which
simplifies the exposition.

It will be useful to rewrite Ex,y[f(x+y)1A(x)1B(y)] in the form 〈f, ϕ〉 = Ex[f(x)ϕ(x)]
for some ϕ : ZN → R. We have, by a change of variable,

Ex,y[f(x+ y)1A(x)1B(y)] = Ex,z[f(z)1A(x)1B(z − x)] = 〈f, 1A ∗ 1B〉 ,

where the convolution is defined by h1 ∗h2(z) := Ex[h1(x)h2(z−x)]. Let Φ2 denote the
set of all functions that can be written as a convex combination of convolutions 1A ∗ 1B
with A,B ⊆ ZN . We then have, by convexity,

‖f‖�,2 = sup
A,B⊆ZN

|〈f, 1A ∗ 1B〉| = sup
ϕ∈Φ2

|〈f, ϕ〉|.

More generally, given r functions h1, . . . , hr : Zr−1
N → R, define their generalized con-

volution (h1, . . . , hr)
∗ : ZN → R by

(h1, . . . , hr)
∗(x) = Ey1,...,yr∈ZN

y1+···+yr=x
[h1(y2, · · · , yr)h2(y1, y3, . . . , yr) · · ·hr(y1, · · · , yr−1)].
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For example, when r = 2, we recover the usual convolution (h1, h2)∗ = h1 ∗ h2. We
similarly have

‖f‖�,r = sup
A1,...,Ar⊆Zr−1

N

|〈f, (1A1
, . . . , 1Ar )

∗〉| = sup
ϕ∈Φr

|〈f, ϕ〉|,

where Φr is the set of all functions ϕ : ZN → R that can be written as a convex combi-
nation of generalized convolutions (1A1

, 1A2
, . . . , 1Ar )

∗ with A1, . . . , Ar ⊆ Zr−1
N . The

next lemma establishes a key property of Φr.

Lemma 5.2. The set Φr is closed under multiplication, i.e., if ϕ,ϕ′ ∈ Φr, then ϕϕ′ ∈ Φr.

Proof. It suffices to show that if ϕ = (1A1
, · · · , 1Ar )∗ and ϕ′ = (1B1

, . . . , 1Br )
∗, where

A1, . . . , Ar, B1, . . . , Br ⊆ Zr−1
N , then ϕϕ′ ∈ Φr. For any y = (y1, . . . , yr) ∈ ZrN , we

write Σy = y1 + · · ·+ yr and y−i = (y1, . . . , yi−1, yi+1, . . . , yr) ∈ Zr−1
N . Then, for any

x ∈ ZN , we have

ϕ(x)ϕ′(x) = E y,y′∈ZrN
Σy=Σy′=x

[1A1
(y−1)1B1

(y′−1) · · · 1Ar (y−r)1Br (y′−r)]

= E y,z∈ZrN
Σy=x,Σz=0

[1A1(y−1)1B1(y−1 + z−1) · · · 1Ar (y−r)1Br (y−r + z−r)]

= E y,z∈ZrN
Σy=x,Σz=0

[1A1∩(B1−z−1)(y−1) · · · 1Ar∩(Br−z−r)(y−r)]

= Ez∈ZrN
Σz=0

[(1A1∩(B1−z−1), . . . , 1Ar∩(Br−z−r))
∗(x)].

This expresses ϕϕ′ as a convex combination of generalized convolutions. Thus ϕϕ′ ∈
Φr.

For the rest of this section, we fix the value of r and simply write ‖·‖ for ‖·‖�,r and
Φ for Φr. We have ‖f‖ = supϕ∈Φ|〈f, ϕ〉|. An important role in the proof is played by
the dual norm, which is defined by ‖ψ‖∗ = sup‖f‖≤1 〈f, ψ〉. It follows easily from the
definition that |〈f, ψ〉| ≤ ‖f‖ ‖ψ‖∗.

It is also easy to show that the unit ball for this dual norm is the convex hull of the
union of Φ and −Φ. To see that the convex hull is contained in the unit ball, we note that
each element of Φ ∪ (−Φ) is in the unit ball and apply the triangle inequality to deduce
that the same holds for convex combinations. For the reverse implication, suppose that ψ
is in the unit ball of ‖·‖∗ but not in the convex hull of Φ ∪ (−Φ). Then, by the separating
hyperplane theorem, there exists f such that |〈f, ϕ〉| ≤ 1 for all ϕ ∈ Φ ∪ (−Φ) and
〈f, ψ〉 > 1. But the first inequality implies that ‖f‖ ≤ 1 and so, by the second inequality,
‖ψ‖∗ > 1, contradicting our assumption. By Lemma 5.2, this now implies that the unit
ball for the dual norm is closed under multiplication. Thus, for every ϕ,ψ : ZN → R, we
have

∥∥(ϕ/ ‖ϕ‖∗)(ψ/ ‖ψ‖∗)
∥∥∗ ≤ 1, i.e.,

‖ϕψ‖∗ ≤ ‖ϕ‖∗ ‖ψ‖∗ . (10)

Finally, we note that ‖·‖ ≤ ‖·‖1 and ‖·‖∞ ≤ ‖·‖
∗. The first inequality follows since

‖f‖ = sup
ϕ∈Φ
|〈f, ϕ〉| = sup

ϕ∈Φ
|Exf(x)ϕ(x)| ≤ Ex|f(x)| = ‖f‖1 .
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The second inequality follows from duality or by letting x′ be a value for whichψ achieves
its maximum and taking f(x) = N for x = x′ and 0 otherwise. It is then straightforward
to verify that this function satisfies ‖f‖ ≤ 1 and

‖ψ‖∗ ≥ |〈f, ψ〉| = |ψ(x′)| = ‖ψ‖∞ .

Proof of Theorem 5.1. We may assume without loss of generality that ε ≤ 1
10 . It suffices

to show that there exists a function f̃ : ZN → [0, 1 + ε/2] with ‖f − f̃‖ ≤ ε/2. Suppose,
for contradiction, that no such f̃ exists. Let

K1 := {f̃ : ZN → [0, 1 + ε/2]} and K2 := {h : ZN → R | ‖h‖ ≤ ε/2}.

We can view K1 and K2 as closed convex sets in RN . By assumption, f /∈ K1 +K2 :=
{f̃+h : f̃ ∈ K1, h ∈ K2}. Therefore, sinceK1+K2 is convex, the separating hyperplane
theorem implies that there exists some ψ : ZN → R such that

(a) 〈f, ψ〉 > 1, and

(b) 〈g, ψ〉 ≤ 1 for all g ∈ K1 +K2.

Note that since 0 ∈ K1,K2, we have K1,K2 ⊂ K1 +K2. Therefore, in (b), we may take
g = (1 + ε/2)1ψ>0 ∈ K1, obtaining 〈1, ψ+〉 ≤ (1 + ε/2)−1. Here x+ := max{0, x} and
ψ+(x) := ψ(x)+. On the other hand, ranging g over K2, we obtain ‖ψ‖∞ ≤ ‖ψ‖

∗ ≤
2/ε, since if 〈g, ψ〉 ≤ 1 for all g with ‖g‖ ≤ ε/2, then 〈g, ψ〉 ≤ 2/ε for all g with ‖g‖ ≤ 1.

By the Weierstrass polynomial approximation theorem, there exists some polynomial
P such that |P (x)− x+| ≤ ε/8 for all x ∈ [−2/ε, 2/ε]. Let P (x) = pdx

d + · · · +
p1x + p0 and R = |pd| (2/ε)d + · · · + |p1| (2/ε) + |p0| (it is possible to take P so that
R = exp(ε−O(1))).

We write Pψ to mean the function on ZN defined by Pψ(x) = P (ψ(x)). Using the
triangle inequality, (10), and ‖ψ‖∗ ≤ 2/ε, we have

‖Pψ‖∗ ≤
d∑
i=0

|pi| ‖ψi‖∗ ≤
d∑
i=0

|pi| (‖ψ‖∗)i ≤
d∑
i=0

|pi| (2/ε)i = R.

Therefore, since we are assuming that ‖ν − 1‖ ≤ ε′,

|〈ν − 1, Pψ〉| ≤ ‖ν − 1‖ ‖Pψ‖∗ ≤ ε′R.

Since ‖ψ‖∞ ≤ 2/ε, we have ‖Pψ − ψ+‖∞ ≤ ε/8. Hence,

〈ν, Pψ〉 ≤ 〈1, Pψ〉+ ε′R ≤ 〈1, ψ+〉+ ε/8 + ε′R ≤ (1 + ε/2)−1 + ε/8 + ε′R.

Also, we have ‖ν‖1 = 〈ν, 1〉 ≤ ‖ν − 1‖ + 1 ≤ 1 + ε′, where we used 〈ν − 1, 1〉 ≤
‖ν − 1‖ ‖1‖∗ and ‖1‖∗ = 1. Thus,

〈f, ψ〉 ≤ 〈f, ψ+〉 ≤ 〈ν, ψ+〉 ≤ 〈ν, Pψ〉+ ‖ν‖1 ‖Pψ − ψ+‖∞
≤ (1 + ε/2)−1 + ε/8 + ε′R+ (1 + ε′)ε/8.

Since ε ≤ 1
10 , the right-hand side is at most 1 when ε′ is made sufficiently small (e.g.,

ε′ = ε/(8R)), but this contradicts (a) from earlier. The dense model theorem follows.
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6. Counting lemma

In this section, we prove the counting lemma. We will focus principally on the graph case,
Theorem 6.2 below, since this case contains all the important ideas and is notationally
simpler. The hypergraph generalization is then discussed towards the end of the section.

For graphs, the counting lemma says that if two weighted graphs are close in cut
norm, then they have similar triangle densities. To be more specific, we consider weighted
tripartite graphs on the vertex set X ∪ Y ∪ Z, where X , Y , and Z are finite sets. Such a
weighted graph g is given by three functions gXY : X ×Y → R, gXZ : X ×Z → R, and
gY Z : Y × Z → R, although we often drop the subscripts if they are clear from context.
We write ‖g‖� = max{‖gXY ‖� , ‖gXZ‖� , ‖gY Z‖�}.

We first consider the easier case of counting in dense (i.e., bounded weight) graphs
(see, for example, [30]).

Proposition 6.1 (Triangle counting lemma, dense setting). Let g and g̃ be weighted tri-
partite graphs on X ∪ Y ∪ Z with weights in [0, 1]. If ‖g − g̃‖� ≤ ε, then

|Ex∈X,y∈Y,z∈Z [g(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| ≤ 3ε.

Proof. Unless indicated otherwise, all expectations are taken over x ∈ X , y ∈ Y , z ∈ Z
uniformly and independently. From the definition (7) of the cut norm, we have that

|Ex∈X,y∈Y [(g(x, y)− g̃(x, y))a(x)b(y)]| ≤ ε (11)

for every function a : X → [0, 1] and b : Y → [0, 1] (since the expectation is bilinear in a
and b, the extrema occur when a and b are {0, 1}-valued, so (11) is equivalent to (7)). It
follows that

|E[g(x, y)g(x, z)g(y, z)− g̃(x, y)g(x, z)g(y, z)]| ≤ ε,

since the expectation has the form (11) if we fix any value of z. Similarly, we have

|E[g̃(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g(y, z)]| ≤ ε

and
|E[g̃(x, y)g̃(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| ≤ ε.

The result then follows from telescoping and the triangle inequality.

This proof does not work in the sparse setting, when g is unbounded, since (11) re-
quires a and b to be bounded. The main result of this section, stated next for graphs (the
hypergraph version is stated towards the end of the section), gives a counting lemma as-
suming 0 ≤ g ≤ ν for some ν satisfying the linear forms condition. This is one of the
main results in our paper [7].

Theorem 6.2 (Relative triangle counting lemma). Let ν, g, g̃ be weighted tripartite graphs
on X ∪ Y ∪ Z. Assume that ν satisfies the 3-linear forms condition (Definition 3.4),
0 ≤ g ≤ ν, and 0 ≤ g̃ ≤ 1. If ‖g − g̃‖� = o(1), then

|Ex∈X,y∈Y,z∈Z [g(x, y)g(x, z)g(y, z)− g̃(x, y)g̃(x, z)g̃(y, z)]| = o(1).
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The proof uses repeated application of the Cauchy-Schwarz inequality, a standard
technique in this area, popularized by Gowers [17, 18, 19, 20]. The key additional
idea, introduced in [7, 8], is densification (see Figure 4). After several applications of
the Cauchy-Schwarz inequality, it becomes necessary to analyze the 4-cycle density:
Ex,y,z,z′ [g(x, z)g(x, z′)g(y, z)g(y, z′)]. To do this, one introduces an auxiliary weighted
graph g′ : X × Y → [0,∞) defined by g′(x, y) := Ez′ [g(x, z′)g(y, z′)] (this is basically
the codegree function). Note that we benefit here from working with weighted graphs.
The expression for the 4-cycle density now becomes Ex,y,z[g′(x, y)g(x, z)g(y, z)].

x

y z

z′

g

g

E[g(x, z)g(x, z′)g(y, z)g(y, z′)] = E[g′(x, y)g(x, z)g(y, z)]

x

y z

g′

g′(x, y) =
Ez′∈Z [g(x, z′)g(y, z′)]

g

g

Figure 4. The densification step in the proof of the relative triangle counting lemma.

At first glance, it seems that our reasoning is circular. Our aim was to estimate a
certain triangle density expression but we have now returned to another triangle density
expression. However, g′ behaves much more like a dense weighted graph with bounded
edge weights, so what we have accomplished is to replace one of the “sparse” gXY by a
“dense” g′XY . If we do this two more times, replacing gY Z and gXZ with dense counter-
parts, the problem reduces to the dense case, which we already know how to handle.

We begin with a warm-up showing how to apply the Cauchy-Schwarz inequality (there
will be many more applications later on). The following lemma shows that the 3-linear
forms condition on ν implies ‖ν − 1‖� = o(1), which we need to apply the dense model
theorem, Theorem 5.1.

Lemma 6.3. For any ν : X × Y → R,

‖ν − 1‖� ≤ (Ex,x′∈X,y,y′∈Y [(ν(x, y)−1)(ν(x′, y)−1)(ν(x, y′)−1)(ν(x′, y′)−1)])1/4.
(12)

Remark. The right-hand side of (12) is the Gowers uniformity norm of ν−1. The lemma
shows that the cut norm is weaker than the Gowers uniformity norm. To see ‖ν − 1‖� =
o(1), we expand the right-hand side of (12) into an alternating sum of linear forms in ν,
each being 1 + o(1) by the linear forms condition, so that the alternating sum cancels to
o(1).
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Proof. By repeated applications of the Cauchy-Schwarz inequality, we have, for A ⊆ X
and B ⊆ Y ,

|Ex,y[(ν(x, y)− 1)1A(x)1B(y)]|4

≤
∣∣Ex[(Ey[(ν(x, y)− 1)1B(y)])21A(x)]

∣∣2
≤
∣∣Ex[(Ey[(ν(x, y)− 1)1B(y)])2]

∣∣2
= |Ex,y,y′ [(ν(x, y)− 1)(ν(x, y′)− 1)1B(y)1B(y′)]|2

≤ Ey,y′ [(Ex[(ν(x, y)− 1)(ν(x, y′)− 1)])21B(y)1B(y′)]

≤ Ey,y′ [(Ex[(ν(x, y)− 1)(ν(x, y′)− 1)])2]

= Ex,x′,y,y′ [(ν(x, y)− 1)(ν(x′, y)− 1)(ν(x, y′)− 1)(ν(x′, y′)− 1)].

The lemma then follows.

The next lemma is crucial to what follows. It shows that in certain expressions a factor
ν can be deleted from an expectation while incurring only a o(1) loss.
Lemma 6.4 (Strong linear forms). Let ν, g, g̃ be weighted tripartite graphs onX∪Y ∪Z.
Assume that ν satisfies the 3-linear forms condition, 0 ≤ g ≤ ν, and 0 ≤ g̃ ≤ 1. Then

Ex∈X,y∈Y,z,z′∈Z [(ν(x, y)− 1)g(x, z)g(x, z′)g(y, z)g(y, z′)] = o(1)

and the same statement holds if any subset of the four g factors are replaced by g̃.

Proof. We give the proof when none of the g factors are replaced. The other cases require
only a simple modification. By the Cauchy-Schwarz inequality, we have

|Ex,y,z,z′ [(ν(x, y)− 1)g(x, z)g(x, z′)g(y, z)g(y, z′)]|2

≤ Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2g(y, z)g(y, z′)] Ey,z,z′ [g(y, z)g(y, z′)]

≤ Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2ν(y, z)ν(y, z′)] Ey,z,z′ [ν(y, z)ν(y, z′)].

The second factor is at most 1 + o(1) by the linear forms condition. So it remains to ana-
lyze the first factor. We have, by another application of the Cauchy-Schwarz inequality,∣∣Ey,z,z′ [(Ex[(ν(x, y)− 1)g(x, z)g(x, z′)])2ν(y, z)ν(y, z′)]

∣∣2
= |Ex,x′,y,z,z′ [(ν(x, y)−1)(ν(x′, y)−1)g(x, z)g(x, z′)g(x′, z)g(x′, z′)ν(y, z)ν(y, z′)]|2

= |Ex,x′,z,z′ [Ey[(ν(x, y)−1)(ν(x′, y)−1)ν(y, z)ν(y, z′)]g(x, z)g(x, z′)g(x′, z)g(x′, z′)]|2

≤ Ex,x′,z,z′ [(Ey[(ν(x, y)−1)(ν(x′, y)−1)ν(y, z)ν(y, z′)])2g(x, z)g(x, z′)g(x′, z)g(x′, z′)]

· Ex,x′,z,z′ [g(x, z)g(x, z′)g(x′, z)g(x′, z′)]

≤ Ex,x′,z,z′ [(Ey[(ν(x, y)−1)(ν(x′, y)−1)ν(y, z)ν(y, z′)])2ν(x, z)ν(x, z′)ν(x′, z)ν(x′, z′)]

· Ex,x′,z,z′ [ν(x, z)ν(x, z′)ν(x′, z)ν(x′, z′)].

Using the 3-linear forms condition, the second factor is 1+o(1) and the first factor is o(1)
(expand everything and observe that all the terms are 1 + o(1) and the signs make all the
1’s cancel).
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Proof of Theorem 6.2. If ν is identically 1, we are in the dense setting, in which case
the theorem follows from Proposition 6.1. Now we apply induction on the number of
νXY , νXZ , νY Z which are identically 1. By relabeling if necessary, we may assume with-
out loss of generality that νXY is not identically 1. We define auxiliary weighted graphs
ν′, g′, g̃′ : X × Y → [0,∞) by

ν′(x, y) := Ez[ν(x, z)ν(y, z)],

g′(x, y) := Ez[g(x, z)g(y, z)],

g̃′(x, y) := Ez[g̃(x, z)g̃(y, z)].

We refer to this step as densification. The idea is that even though ν and g are possibly
unbounded, the new weighted graphs ν′ and g′ behave like dense graphs. The weights
on ν′ and g′ are not necessarily bounded by 1, but they almost are. We cap the weights
by setting g′∧1 := max{g′, 1} and ν′∧1 := max{ν′, 1} and show that the capping has
negligible effect. We have

E[g(x, y)g(x, z)g(y, z)−g̃(x, y)g̃(x, z)g̃(y, z)] = E[gg′−g̃g̃′] = E[g(g′−g̃′)]+E[(g−g̃)g̃′],
(13)

where the first expectation is taken over x ∈ X, y ∈ Y, z ∈ Z and the other expectations
are taken over X × Y (we will use these conventions unless otherwise specified). The
second term on the right-hand side of (13) equals E[(g(x, y)− g̃(x, y))g̃(x, z)g̃(y, z)] and
its absolute value is at most ‖g − g̃‖� = o(1) (here we use 0 ≤ g̃ ≤ 1 as in the proof of
Proposition 6.1). So it remains to bound the first term on the right-hand side of (13). By
the Cauchy-Schwarz inequality, we have

(E[g(g′ − g̃′)])2 ≤ E[g(g′ − g̃′)2] E[g] ≤ E[ν(g′ − g̃′)2] E[ν]

= Ex,y[ν(x, y)(Ez[g(x, z)g(y, z)− g̃(x, z)g̃(y, z)])2] Ex,y[ν(x, y)].

The second factor is 1+o(1) by the linear forms condition. By Lemma 6.4, the first factor
differs from

Ex,y[(Ez[g(x, z)g(y, z)− g̃(x, z)g̃(y, z)])2] = E[(g′ − g̃′)2] (14)

by o(1) (take the difference, expand the square, and then apply Lemma 6.4 term-by-term).
The 3-linear forms condition implies that E[ν′] = 1 + o(1) and E[ν′2] = 1 + o(1).

Therefore, by the Cauchy-Schwarz inequality, we have

(E[|ν′ − 1|])2 ≤ E[(ν′ − 1)2] = o(1). (15)

We want to show that (14) is o(1). We have

E[(g′ − g̃′)2] = E[(g′ − g̃′)(g′ − g′∧1)] + E[(g′ − g̃′)(g′∧1 − g̃′)]. (16)

Since 0 ≤ g′ ≤ ν′, we have

0 ≤ g′ − g′∧1 = max{g′ − 1, 0} ≤ max{ν′ − 1, 0} ≤ |ν′ − 1|. (17)
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Using (15) and (17), the absolute value of the first term on the right-hand side of (16) is
at most

E[(ν′ + 1)|ν′ − 1|] = E[(ν′ − 1)|ν′ − 1|] + 2E[|ν′ − 1|] = o(1).

Next, we claim that
‖g′∧1 − g̃′‖� = o(1). (18)

Indeed, for any A ⊆ X and B ⊆ Y , we have

Ex,y[(g′∧1 − g̃′)(x, y)1A(x)1B(y)] = E[(g′∧1 − g̃′)1A×B ]

= E[(g′∧1 − g′)1A×B ] + E[(g′ − g̃′)1A×B ].

By (17) and (15), the absolute value of the first term is at most E[|ν′ − 1|] = o(1). The
second term can be rewritten as

Ex,y,z[1A×B(x, y)g(x, z)g(y, z)− 1A×B(x, y)g̃(x, z)g̃(y, z)],

which is o(1) by the induction hypothesis (replace νXY , gXY , g̃XY by 1, 1A×B , 1A×B ,
respectively, and note that this increases the number of {νXY , νXZ , νY Z}which are iden-
tically 1). This proves (18).

We now expand the second term on the right-hand side of (16) as

E[(g′ − g̃′)(g′∧1 − g̃′)] = E[g′g′∧1]− E[g′g̃′]− E[g̃′g′∧1] + E[g̃′2]. (19)

We claim that each of the expectations on the right-hand side is E[(g̃′)2] + o(1). Indeed,
we have

E[g′g′∧1]− E[(g̃′)2] = Ex,y,z[g′∧1(x, y)g(x, z)g(y, z)− g̃′(x, y)g̃(x, z)g̃(y, z)],

which is o(1) by the induction hypothesis (replace νXY , gXY , g̃XY by 1, g′∧1, g̃
′, respec-

tively, which by (18) satisfies ‖g′∧1 − g̃′‖� = o(1), and note that this increases the num-
ber of {νXY , νXZ , νY Z} which are identically 1). One can similarly show that the other
expectations on the right-hand side of (19) are also E[(g̃′)2] + o(1). Thus (19) is o(1) and
the theorem follows.

The main difficulty in extending Theorem 6.2 to hypergraphs is notational. As dis-
cussed in Section 4, to study k-APs, we consider (k − 1)-uniform k-partite weighted hy-
pergraphs. The vertex sets will be denotedX1, . . . , Xk (in applicationXi = ZN for all i).
We writeX−i := X1×· · ·×Xi−1×Xi+1×· · ·×Xk and x−i := (x1, . . . , xi−1, xi+1, . . . , xk)
for any x = (x1, . . . , xk) ∈ X1 × · · · × Xk. Then a weighted hypergraph g consists of
functions g−i : X−i → R for each i = 1, . . . , k. As before, we drop the subscripts if they
are clear from context. We write ‖g‖� = max{‖g−1‖� , . . . , ‖g−k‖�}, where ‖g−i‖� is
the cut norm of g−i defined in (8).

The appropriate generalization of the 3-linear forms condition involves counts for the
2-blow-up of the simplex K(k−1)

k . We say that a weighted hypergraph ν satisfies the
k-linear forms condition (the hypergraph version of Definition 4.2) if

E
x
(0)
1 ,x

(1)
1 ∈X1,...,x

(0)
k ,x

(1)
k ∈Xk

[ k∏
j=1

∏
ω∈{0,1}[k]\{j}

ν(x
(ω)
−j )

]
= 1 + o(1)
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and also the same statement holds if any subset of the ν factors (there are k2k−1 such
factors) are deleted. Here x(ω)

−j := (x
(ω1)
1 , . . . , x

(ωj−1)
j−1 , x

(ωj+1)
j+1 , . . . , x

(ωk)
k ) ∈ X−j .

The following theorem generalizes Theorem 6.2.

Theorem 6.5 (Relative simplex counting lemma). Let ν, g, g̃ be weighted (k−1)-uniform
k-partite weighted hypergraphs on X1 ∪ · · · ∪ Xk. Assume that ν satisfies the k-linear
forms condition, 0 ≤ g ≤ ν and 0 ≤ g̃ ≤ 1. If ‖g − g̃‖� = o(1), then

|Ex1∈X1,...,xk∈Xk [g(x−1)g(x−2) · · · g(x−k)− g̃(x−1)g̃(x−2) · · · g̃(x−k)]| = o(1).

The proof of Theorem 6.5 is a straightforward generalization of the proof of Theo-
rem 6.2. We simply point out the necessary modifications and leave the reader to figure
out the details (a full proof can be found in our paper [7], but it is perhaps easier to reread
the graph case and think about the small changes that need to be made).

The proof proceeds by induction on the number of ν−1, . . . , ν−k which are not iden-
tically 1. When ν = 1, we are in the dense setting and the proof of Proposition 6.1 easily
extends. Now assume that ν−1 is not identically 1. We have extensions of Lemmas 6.3
and 6.4, where in the proof we have to apply the Cauchy-Schwarz inequality k − 1 times
in succession. For the densification step, we define ν′, g′, g̃′ : X−1 → [0,∞) by

ν′(x−1) = Ex1∈X1
[ν(x−2) · · · ν(x−k)],

g′(x−1) = Ex1∈X1
[g(x−2) · · · g(x−k)],

g̃′(x−1) = Ex1∈X1
[g̃(x−2) · · · g̃(x−k)].

The rest of the proof works with minimal changes.

7. Proof of the relative Szemerédi theorem

We are now ready to prove the relative Szemerédi theorem using the dense model theorem
and the counting lemma following the outline given in Section 4.

Proof of Theorem 4.3. The k-linear forms condition implies that ‖ν − 1‖�,k−1 = o(1)
(by a sequence of k − 1 applications of the Cauchy-Schwarz inequality, following
Lemma 6.3). By the dense model theorem, Theorem 5.1, we can find f̃ : ZN → [0, 1]
so that ‖f − f̃‖�,k−1 = o(1).

Let X1 = X2 = · · · = Xk = ZN . For each j = 1, . . . , k, define the linear form
ψj : X−j → ZN by

ψj(x1, . . . , xj−1, xj+1, . . . , xk) :=
∑

i∈[k]\{j}

(j − i)xi.

Construct (k − 1)-uniform k-partite weighted hypergraphs ν, g, g̃ on X1 ∪ · · · ∪ Xk by
setting

ν−j(x−j) := ν(ψj(x−j)), g−j(x−j) := f(ψj(x−j)), g̃−j(x−j) := f̃(ψj(x−j))
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(in the first definition, the left ν−j refers to the weighted hypergraph and the second ν
refers to the given function on ZN ). We claim that

‖ν−j − 1‖� = ‖ν − 1‖�,k−1 (20)

and
‖g−j − g̃−j‖� = ‖f − f̃‖�,k−1 (21)

for every j (in both (20) and (21) the left-hand side refers to the hypergraph cut norm (8)
while the right-hand side refers to the cut norm (9) for functions on ZN ). We illustrate
(21) in the case when k = j = 4 (the full proof is straightforward). The left-hand side of
(21) equals

sup
A1,A2,A3⊆Z2

N

∣∣∣Ex1,x2,x3∈ZN [(f − f̃)(3x1 + 2x2 + x3)1A1(x2, x3)1A2(x1, x3)1A3(x1, x2)]
∣∣∣ ,

(22)
while the right-hand side of (21) equals

sup
B1,B2,B3⊆Z2

N

∣∣∣Ex1,x2,x3∈ZN [(f − f̃)(x1 + x2 + x3)1B1
(x2, x3)1B2

(x1, x3)1B3
(x1, x2)]

∣∣∣ .
(23)

These two expressions are equal8 up to a change of variables 3x1 ↔ x1 and 2x2 ↔ x2.
It follows from (21) that ‖g − g̃‖� = ‖f − f̃‖�,k−1 = o(1). Moreover, the k-linear

forms condition for ν : ZN → [0,∞) translates to the k-linear forms condition for the
weighted hypergraph ν. It follows from the counting lemma, Theorem 6.5, that

Ex1,...,xk∈ZkN [g−1(x−1) · · · g−k(x−k)] = Ex1,...,xk∈ZkN [g̃−1(x−1) · · · g̃−k(x−k)] + o(1).
(24)

The left-hand side is equal to

Ex1,...,xk∈ZkN [f(ψ1(x−1)) · · · f(ψk(x−k))] = Ex,d∈ZN [f(x)f(x+d) · · · f(x+(k−1)d)],

which can be seen by setting x = ψ1(x−1) and d = x1 + · · · + xk so that ψj(x−j) =
x+(j−1)d. A similar statement holds for the right-hand side of (24). So (24) is equivalent
to

Ex,d∈ZN [f(x)f(x+d) · · · f(x+(k−1)d)] = Ex,d∈ZN [f̃(x)f̃(x+d) · · · f̃(x+(k−1)d)]+o(1),

which is at least c(k, δ)− ok,δ(1) by Theorem 4.1, as desired.

8. Constructing the majorant

In this section, we use the relative Szemerédi theorem to prove the Green-Tao theorem.
To do this, we must construct a majorizing measure for the primes that satisfies the linear
forms condition.

8Here we use the assumption in the footnote to Definition 4.2 that N is coprime to (k − 1)!. Without this
assumption, it can be shown that the two norms (22) and (23) differ by at most a constant factor depending on
k, which would also suffice for what follows.
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Rather than considering the set of primes itself, we put weights on the primes, a
common technique in analytic number theory. The weights we use will be related to
the well-known von Mangoldt function Λ. This is defined by Λ(n) = log p if n = pk

for some prime p and positive integer k and Λ(n) = 0 if n is not a power of a prime
(actually, the higher powers p2, p3, . . . play no role here and we will soon discard them
from Λ). That these are natural weights to consider follows from the observation that the
Prime Number Theorem is equivalent to

∑
n≤N Λ(n) = (1 + o(1))N .

A difficulty with using Λ is that it is biased on certain residue classes. For example,
every prime other than 2 is odd. This prevents us from making any pseudorandomness
claims unless we can somehow remove these biases. This is achieved using the W-trick.
Let w = w(N) be any function that tends to infinity slowly with N . Let W =

∏
p≤w p

be the product of primes up to w. The trick for avoiding biases mod p for any p ≤ w is to
consider only those primes which are congruent to 1 (mod W ). In keeping with this idea,
we define the modified von Mangoldt function by

Λ̃(n) :=

{
φ(W )
W log(Wn+ 1) when Wn+ 1 is prime,

0 otherwise.

The factor φ(W )/W is present since exactly φ(W ) of theW residue classes modW have
infinitely many primes and a strong form of Dirichlet’s theorem9 tells us that the primes
are equidistributed among these φ(W ) residue classes, i.e.,

∑
n≤N Λ̃(n) = (1 + o(1))N

as long as w grows slowly enough withN . From now on, we will work with Λ̃ rather than
Λ. Our main goal is to prove the following result, which says that there is a majorizing
measure for Λ̃ which satisfies the linear forms condition.

Proposition 8.1. For every k ≥ 3, there exists δk > 0 such that for every sufficiently
large N there exists a function ν : ZN → [0,∞) satisfying the k-linear forms condition
and ν(n) ≥ δkΛ̃(n) for all N/2 ≤ n < N .

Using this majorant with the relative Szemerédi theorem, we obtain the Green-Tao
theorem.

Proof of Theorem 1.1 assuming Proposition 8.1. Define f : ZN → [0,∞) by
f(n) = δkΛ̃(n) if N/2 ≤ n < N and f(n) = 0 otherwise. By Dirichlet’s theorem,∑
N/2≤n<N f(n) = (1/2 + o(1))δkN , so Ef ≥ δk/3 for large N . Since 0 ≤ f ≤ ν and

ν satisfies the k-linear forms condition, it follows from the relative Szemerédi theorem,
Theorem 4.3, that E[f(x)f(x + d) · · · f(x + (k − 1)d)] ≥ c(k, δk/3) − ok,δ(1). There-
fore, for sufficiently large N , we have f(x)f(x + d) · · · f(x + (k − 1)d) > 0 for some

9In fact, Dirichlet’s theorem, or even the Prime Number Theorem, are not necessary to prove the Green-
Tao theorem, though we assume them to simplify the exposition. Indeed, a weaker form of the Prime Number
Theorem asserting that there are at least cN/ logN primes up to N for some c > 0 suffices for our needs
(this bound was first proved by Chebyshev and a famous short proof was subsequently found by Erdős; see [1,
Ch. 2]). Furthermore, in place of Dirichlet’s theorem, a simple pigeonhole argument shows that for each W ,
some residue class b (mod W ) contains many primes (whereas we use Dirichlet’s theorem to take b = 1).
The proof presented here can easily be modified to deal with general b, though the notation gets a bit more
cumbersome as b could vary with W . An analysis of this sort is necessary to prove a Szemerédi-type statement
for the primes (see Section 10), since we do not then know how our subset of the primes is distributed on
congruence classes.
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N/2 ≤ x < N and d 6= 0 (the d = 0 terms contribute negligibly to the expectation).
Since f is supported on [N/2, N), we see that x, x + d, . . . , x + (k − 1)d is not only
an AP in ZN but also in Z, i.e., has no wraparound issues. Thus (x + jd)W + 1 for
j = 0, . . . , k − 1 is a k-AP of primes.

How do we construct the majorant ν for Λ̃(n)? Recall that the Möbius function µ is
defined by µ(n) = (−1)ω(n) when n is square-free, where ω(n) is the number of prime
factors of n, and µ(n) = 0 when n is not square-free. The functions Λ and µ are related
by the Möbius inversion formula

Λ(n) =
∑
d|n

µ(d) log(n/d).

In Green and Tao’s original proof, the following truncated version of Λ (motivated by
[16]) was used to construct the majorant. For any R > 0, define

ΛR(n) :=
∑
d|n
d≤R

µ(d) log(R/d).

Observe that if n has no prime divisors less than or equal to R, then ΛR(n) = logR.
Tao [42] later simplified the proof by using the following variant of ΛR, where the restric-
tion d ≤ R is replaced by a smoother cutoff.

Definition 8.2. Let χ : R→ [0, 1] be any smooth, compactly supported function. Define

Λχ,R(n) := logR
∑
d|n

µ(d)χ

(
log d

logR

)
.

In our application, χwill be supported on [−1, 1], so only divisors dwhich are at most
R are considered in the sum. Note that ΛR above corresponds to χ(x) = max{1−|x|, 0},
which is not smooth. The following proposition, which we will prove in the next section,
gives a linear forms estimate for Λχ,R.

Proposition 8.3 (Linear forms estimate). Fix any smooth function χ : R → [0, 1] sup-
ported on [−1, 1]. Letm and t be positive integers. Let ψ1, . . . , ψm : Zt → Z be fixed lin-
ear maps, with no two being multiples of each other. Assume thatR = o(N1/(10m)) grows
withN andw grows sufficiently slowly withN . LetW :=

∏
p≤w p. Write θi := Wψi+1.

Let B be a product
∏t
i=1 Ii, where each Ii is a set of at least R10m consecutive integers.

Then

Ex∈B [Λχ,R(θ1(x))2 · · ·Λχ,R(θm(x))2] = (1 + o(1))

(
Wcχ logR

φ(W )

)m
, (25)

where o(1) denotes a quantity tending to zero as N → ∞ (at a rate that may depend on
χ, m, t, ψ1, . . . , ψm, R, and w), and cχ is the normalizing factor

cχ :=

∫ ∞
0

|χ′(x)|2 dx.
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Now we construct the majorizing measure ν and show that it satisfies the linear forms
condition.

Proposition 8.4. Fix any smooth function χ : R → [0, 1] supported on [−1, 1] with
χ(0) = 1. Let k ≥ 3 and R := Nk−12−k−3

. Assume that w grows sufficiently slowly
with N and let W :=

∏
p≤w p. Define ν : ZN → [0,∞) by

ν(n) :=

{
φ(W )
W

Λχ,R(Wn+1)2

cχ logR when N/2 ≤ n < N,

1 otherwise.
(26)

Then ν satisfies the k-linear forms condition.

Note that while Λχ,R is not necessarily nonnegative, ν constructed in (26) is always
nonnegative due to the square on Λχ,R.

Proof of Proposition 8.1 assuming Proposition 8.4. Take δk = k−12−k−4c−1
χ . It suffices

to verify that for N sufficiently large we have δkΛ̃(n) ≤ ν(n) for all N/2 ≤ n < N . We
only need to check the inequality when Wn + 1 is prime, since Λ̃(n) is zero otherwise.
We have

logR = k−12−k−3 logN ≥ k−12−k−4 log(WN + 1) = cχδk log(WN + 1),

where the inequality holds for sufficiently large N provided w grows slowly enough.
When Wn+ 1 is prime, we have Λχ,R(Wn+ 1) = logR, so

δkΛ̃(n) = δk
φ(W )

W
log(Wn+ 1) ≤ δk

φ(W )

W
log(WN + 1) ≤ φ(W )

W

logR

cχ
= ν(n),

as claimed.

Proof of Proposition 8.4 assuming Proposition 8.3. We need to check that

Ex∈ZtN [ν(ψ1(x)) · · · ν(ψm(x))] = 1 + o(1) (27)

whenever ψ1, . . . , ψm, m ≤ k2k−1, are the linear forms that appear in (5) or any subset
thereof. Note that no two ψi are multiples of each other.

To use the two-piece definition of ν, we divide the domain ZN into intervals. Let
Q = Q(N) be a slowly increasing function of N . Divide ZN into Q roughly equal
intervals and form a partition of ZtN into Qt boxes, as follows:

Bu1,...,ut =

t∏
j=1

([ujN/Q, (uj + 1)N/Q) ∩ ZN ) ⊆ ZtN , u1, . . . , ut ∈ ZQ.

Then, up to a o(1) error (due to the fact that the boxes do not all have exactly equal sizes),
the left-hand side of (27) equals

Eu1,...,ut∈ZQ [Ex∈Bu1,...,ut [ν(ψ1(x)) · · · ν(ψm(x))]].



The Green–Tao theorem: an exposition 273

We say that a box Bu1,...,ut is good if, for each j ∈ [m], the set {ψj(x) : x ∈ Bu1,...,ut}
either lies completely in the subset [N/2, N) of ZN or completely outside this subset.
Otherwise, we say that the box is bad. We may assume Q grows slowly enough that
N/Q ≥ R10m. From Proposition 8.3 and the definition of ν, we know that for good
boxes,

Ex∈Bu1,...,ut [ν(ψ1(x)) · · · ν(ψm(x))] = 1 + o(1).

For bad boxes, we use the bound ν(n) ≤ 1 + φ(W )
W

Λχ,R(Wn+1)2

cχ logR . By expanding and
applying (25) to each term, we find that

Ex∈Bu1,...,ut [ν(ψ1(x)) · · · ν(ψm(x))] = O(1)

(it is bounded in absolute value by 2m + o(1)). It remains to show that the proportion of
boxes that are bad is o(1).

Suppose Bu1,...,ut is bad. Then there exists some i such that the image of the box
under ψi intersects both [N/2, N) and its complement. This implies that there exists
some (real-valued) x ∈

∏t
j=1[ujN/Q, (uj + 1)N/Q) ⊆ (R/NZ)t with ψi(x) = 0 or

N/2 (mod N ). Letting y = Qx/N , we see that y ∈
∏t
j=1[uj , uj + 1) ⊆ (R/QZ)t

satisfies ψi(y) = 0 or Q/2 (mod Q). This implies that ψi(u1, . . . , ut) is either O(1) or
Q/2 + O(1) (mod Q). Since ψi is a nonzero linear form, at most a O(1/Q) fraction of
the tuples (u1, . . . , ut) ∈ ZtQ have this property. This can be seen by noting that if we
fix all but one of the coordinates, there will be O(1) choices for the final coordinate for
which ψi is in the required range. Taking the union over all i, we see that the proportion
of bad boxes is O(1/Q) = o(1).

9. Verifying the linear forms condition

In this section, we prove Proposition 8.3. There are numerous estimates along the way. To
avoid getting bogged down with the rather technical error bounds, we first go through the
proof while skipping some of these details (i.e., by only considering the “main term”). The
approximations are then justified at the end, where we collect the error bound arguments.
We note that all constants will depend implicitly on χ,m, t, ψ1, . . . , ψm.

Expanding the definition of Λχ,R, we rewrite the left-hand side of (25) as

(logR)2m
∑

d1,d′1,...,dm,d
′
m∈N

 m∏
j=1

µ(dj)χ

(
log dj
logR

)
µ(d′j)χ

(
log d′j
logR

)Ex∈B [1dj ,d′j |θj(x) ∀j ].

(28)
Since µ(d) = 0 unless d is square-free, we only need to consider square-free
d1, d

′
1, . . . , dm, d

′
m. Also, since χ is supported on [−1, 1], we may assume that

d1, d
′
1, . . . , dm, d

′
m ≤ R. Let D denote the lcm of d1, d

′
1, . . . , dm, d

′
m. The width of

the box B is at least R10m in each dimension, so, by considering a slightly smaller box
B′ ⊆ B such that each dimension of B′ is divisible by D ≤ R2m, we obtain

Ex∈B [1dj ,d′j |θj(x) ∀j ] = Ex∈ZtD [1dj ,d′j |θj(x) ∀j ] +O(R−8m).
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Therefore, as there are at most R2m choices for d1, d
′
1, . . . , dm, d

′
m, we see that, up to an

additive error of O(R−6m log2mR), we may approximate (28) by

(logR)2m
∑

d1,d′1,...,dm,d
′
m∈N

 m∏
j=1

µ(dj)χ

(
log dj
logR

)
µ(d′j)χ

(
log d′j
logR

)Ex∈ZtD [1dj ,d′j |θj(x) ∀j ].

(29)
Let ϕ be the Fourier transform of exχ(x). That is,

exχ(x) =

∫
R
ϕ(ξ)e−ixξ dξ.

Substituting and simplifying, we have

χ

(
log d

logR

)
=

∫
R
d−

1+iξ
logRϕ(ξ) dξ.

We wish to plug this integral into (29). It helps to first restrict the integral to a compact
interval I = [− log1/2R, log1/2R]. By basic results in Fourier analysis (see, for exam-
ple, [40, Chapter 5, Theorem 1.3]), since χ is smooth and compactly supported, ϕ decays
rapidly, that is, ϕ(ξ) = OA((1 + |ξ|)−A) for any A > 0. It follows that for any A > 0,

χ

(
log d

logR

)
=

∫
I

d−
1+iξ
logRϕ(ξ) dξ +OA(d−1/ logR(logR)−A). (30)

We write

zj :=
1 + iξj
logR

and z′j :=
1 + iξ′j
logR

.

We have χ(log d/ logR) = O(d−1/ logR) (we only need to check this for d ≤ R since χ
is supported on [−1, 1]). Using (30), we have

m∏
j=1

χ

(
log dj
logR

)
χ

(
log d′j
logR

)
=

∫
I

· · ·
∫
I

m∏
j=1

d
−zj
j d′j

−z′jϕ(ξj)ϕ(ξ′j) dξjdξ
′
j

+OA

(logR)−A
m∏
j=1

(djd
′
j)
−1/ logR

 . (31)

Using (31), we estimate (29) (error bounds are deferred to the end) by

(logR)2m

∫
I

· · ·
∫
I

∑
d1,d′1,...,dm,d

′
m∈N

Ex∈ZtD [1dj ,d′j |θj(x) ∀j ]

m∏
j=1

µ(dj)d
−zj
j µ(d′j)d

′
j
−z′jϕ(ξj)ϕ(ξ′j) dξjdξ

′
j .

(32)
We are allowed to swap the summation and the integrals because I is compact and the
sum can be shown to be absolutely convergent (the argument for absolute convergence
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is similar to the error bound for (32) included towards the end of the section). Splitting
d1, d

′
1, . . . , dm, d

′
m in (32) into prime factors, we obtain

(32) = (logR)2m

∫
I

· · ·
∫
I

∏
p

Ep(ξ) ·
m∏
j=1

ϕ(ξj)ϕ(ξ′j) dξjdξ
′
j , (33)

where ξ = (ξ1, ξ
′
1, . . . , ξm, ξ

′
m) ∈ I2m and Ep(ξ) is the Euler factor

Ep(ξ) :=
∑

d1,d′1,...,dm,d
′
m∈{1,p}

Ex∈Ztp [1dj ,d′j |θj(x) ∀j ]

m∏
j=1

µ(dj)d
−zj
j µ(d′j)d

′
j
−z′j .

We have Ep(ξ) = 1 when p ≤ w (recall the W -trick, so p - θj(x) = Wψj(x) + 1 for all
j when p ≤ w). When p > w, the expectation in the summand equals 1 if all dj , d′j are
1, 1/p if djd′j = 1 for all except exactly one j, and is at most 1/p2 otherwise (here we
assume that w is sufficiently large so that no two ψi are multiples of each other mod p).
It follows that for p > w,

Ep(ξ) = 1− p−1
m∑
j=1

(p−zj + p−z
′
j − p−zj−z

′
j ) +O(p−2) = (1 +O(p−2))E′p(ξ),

where, for any prime p,

E′p(ξ) :=

m∏
j=1

(1− p−1−zj )(1− p−1−z′j )

1− p−1−zj−z′j
.

It then follows that

∏
p

Ep(ξ) =
∏
p>w

(1 +O(p−2))E′p(ξ) = (1 +O(w−1))

∏
p≤w

E′p(ξ)

−1∏
p

E′p(ξ).

(34)

Recall that the Riemann zeta function

ζ(s) :=
∑
n≥1

n−s =
∏
p

(1− p−s)−1

has a simple pole at s = 1 with residue 1 (a proof is included towards the end). This
implies that ∏

p

E′p(ξ) =

m∏
j=1

ζ(1 + zj + z′j)

ζ(1 + zj)ζ(1 + z′j)
≈

m∏
j=1

zjz
′
j

zj + z′j
, (35)

where ≈ denotes asymptotic equality. Here we use |z1| , |z′1| , . . . , |zm|, |z′m| =
O((logR)−1/2) as ξ1, ξ′1, . . . ξm, ξ

′
m ∈ I . For p ≤ w, we make the approximation

E′p(ξ) ≈ (1− p−1)m. Hence,∏
p≤w

E′p(ξ) ≈
∏
p≤w

(1− p−1)m =

(
φ(W )

W

)m
. (36)
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Substituting (34), (35), and (36) into (33), we find that

(33) ≈ (logR)2m

(
W

φ(W )

)m ∫
I

· · ·
∫
I

m∏
j=1

zjz
′
j

zj + z′j
ϕ(ξj)ϕ(ξ′j) dξjdξ

′
j . (37)

It remains to estimate the integral∫
I

∫
I

zjz
′
j

zj + z′j
ϕ(ξj)ϕ(ξ′j) dξjdξ

′
j =

1

logR

∫
I

∫
I

(1 + iξj)(1 + iξ′j)

2 + i(ξj + ξ′j)
ϕ(ξj)ϕ(ξ′j) dξjdξ

′
j .

We can replace the domain of integration I = [− log1/2R, log1/2R] by R with a loss
of OA(log−AR) for any A > 0 due to the rapid decay of ϕ given by ϕ(ξ) = OA((1 +
|ξ|)−A). We claim∫

R

∫
R

(1 + iξ)(1 + iξ′)

2 + i(ξ + ξ′)
ϕ(ξ)ϕ(ξ′) dξdξ′ =

∫ ∞
0

|χ′(x)|2 dx = cχ. (38)

Using
1

2 + i(ξ + ξ′)
=

∫ ∞
0

e−(1+iξ)xe−(1+iξ′)x dx,

we can rewrite the left-hand side of (38) as∫ ∞
0

(∫
R
ϕ(ξ)(1 + iξ)e−(1+iξ)x dξ

)2

dx.

The expression in parentheses is −χ′(x), so (38) follows. Substituting (38) into (37) we
arrive at the desired conclusion, Proposition 8.3.

Error estimates. Now we bound the error terms in the above analysis.
Simple pole of Riemann zeta function. Here is the argument showing that ζ(s) =

(s−1)−1+O(1) whenever Re s > 1 and s−1 = O(1). We have (s−1)−1 =
∫∞

1
x−s dx.

So

ζ(s)− 1

s− 1
=

∞∑
n=1

n−s −
∫ ∞

1

x−s dx =

∞∑
n=1

∫ n+1

n

(n−s − x−s) dx.

The n-th term on the right is bounded in magnitude by O(n−2). So the sum is O(1).

Estimate (32). We want to bound the difference between (32) and (29). This means
bounding the contribution to (29) from the error term in (31). Taking absolute values
everywhere, we bound these contributions by

�A (logR)O(1)−A
∑

d1,d
′
1,...,dm,d

′
m

sq-free integers

Ex∈ZtD [1dj ,d′j |θj(x) ∀j ](d1d
′
1 · · · dmd′m)−1/ logR

= (logR)O(1)−A
∏
p

∑
d1,d′1,...,dm,d

′
m∈{1,p}

Ex∈Ztp [1dj ,d′j |θj(x) ∀j ](d1d
′
1 · · · dmd′m)−1/ logR.
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The expectation Ex∈Ztp [1dj ,d′j |θj(x) ∀j ] is 1 if all di and d′i are 1 and at most 1/p
otherwise. We continue to bound the above by

≤ (logR)O(1)−A
∏
p

1 + p−1
∑

d1,d
′
1,...,dm,d

′
m∈{1,p}

not all 1’s

(d1d
′
1 · · · dmd′m)−1/ logR


= (logR)O(1)−A

∏
p

(
1 + p−1((p−1/ logR + 1)2m − 1)

)
≤ (logR)O(1)−A

∏
p

(
1− p−1−1/ logR

)−O(1)

= (logR)O(1)−Aζ(1 + 1/ logR)O(1).

So the difference between (32) and (29) isOA((logR)O(1)−A), which is small as long
as we take A to be sufficiently large.

Estimate in (35). We have |zj |, |z′j | = O(log−1/2R) since |ξj |, |ξ′j | ≤ log1/2R. So

m∏
j=1

ζ(1 + zj + z′j)

ζ(1 + zj)ζ(1 + z′j)
=

m∏
j=1

((zj + z′j)
−1 +O(1))

(z−1
j +O(1))(z′j

−1 +O(1))

= (1 +O(log−1/2R))

m∏
j=1

zjz
′
j

zj + z′j
. (39)

Estimate in (36). If |z| log p = O(1) (which is the case for p ≤ w), then

1−p−1−z = 1−p−1e−z log p = 1−p−1(1+O(|z| log p)) = (1−p−1)(1+O(|z|p−1 log p)).

It follows that for all p ≤ w and ξ1, ξ′1, . . . , ξm, ξ
′
m ∈ I , we have

E′p(ξ) =

(
1 +O

(
log p

p log1/2R

))
(1− p−1)m

and, hence, ∏
p≤w

E′p(ξ) =

(
1 +O

(
w

log1/2R

)) ∏
p≤w

(1− p−1)m. (40)

Estimate in (37). Using (34), (39), and (40), we find that the ratio between the two
sides in (37) is 1 + O(1/w + w/ log1/2R) = 1 + o(1), as long as w grows sufficiently
slowly.
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10. Extensions of the Green-Tao theorem

We conclude by discussing a few extensions of the Green-Tao theorem.

Szemerédi’s theorem in the primes. As noted already by Green and Tao [23], their
method also implies a Szemerédi-type theorem for the primes. That is, every subset of the
primes with positive relative upper density contains arbitrarily long arithmetic progres-
sions.

One elegant corollary of this result is that there are arbitrarily long APs where every
term is a sum of two squares. This result follows from a combination of the well-known
fact that every prime of the form 4n+ 1 is a sum of two squares with Dirichlet’s theorem
on primes in arithmetic progressions, which tells us that roughly half the primes are con-
gruent to 1 (mod 4). Even this innocent-sounding corollary was open before Green and
Tao’s paper.

Gaussian primes contain arbitrarily shaped constellations. The Gaussian integers is
the set of all numbers of the form a + bi, where a, b ∈ Z. This set is a ring under the
usual definitions of addition and multiplication for complex numbers. It is also a unique
factorization domain, so it is legitimate to talk about the set of Gaussian primes. Tao [44]
proved that an analogue of the Green-Tao theorem holds for the Gaussian primes.

We say that A ⊆ Zd contains arbitrary constellations if, for every finite set
F ⊆ Zd, there exist x ∈ Zd and t ∈ Z>0 such that x + tf ∈ A for every f ∈ F . Tao’s
theorem then states that the Gaussian primes, viewed as a subset of Z2, contain arbitrary
constellations. Just as the Green-Tao theorem uses Szemerédi’s theorem as a black box,
this theorem uses the multidimensional analogue of Szemerédi’s theorem, first proved by
Furstenberg and Katznelson [14]. This states that every subset of Zd with positive upper
density10 contains arbitrary constellations. The Furstenberg-Katznelson theorem also fol-
lows from the hypergraph removal lemma and the approach taken by Tao is to transfer this
hypergraph removal proof to the sparse context. It may therefore be seen as a precursor
to the approach taken here.

Multidimensional Szemerédi theorem in the primes. Let P denote the set of primes in
Z. It was shown recently by Tao and Ziegler [48] and, independently, by Cook, Magyar,
and Titichetrakun [9], that every subset of P d of positive relative upper density contains
arbitrary constellations. A short proof was subsequently given in [11] (though, like [48],
it assumes some difficult results of Green, Tao, and Ziegler that we will discuss later in
this section).

Although both this result and Tao’s result on the Gaussian primes are multidimen-
sional analogues of the Green-Tao theorem, they are quite different in nature. Informally
speaking, a key difficulty in the second result is that there is a strong correlation between
coordinates in P d (namely, that all coordinates are simultaneously prime), whereas there

10A setA ⊆ Zd has positive upper density if lim supN→∞
∣∣A ∩ [−N,N ]d

∣∣ /(2N + 1)d > 0. We say that
A ⊆ S ⊆ Zd has positive relative upper density if lim supN→∞

∣∣A ∩ S ∩ [−N,N ]d
∣∣ / ∣∣S ∩ [−N,N ]d

∣∣ >
0.
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is no significant correlation between the real and imaginary parts of a typical Gaussian
prime (after applying an extension of the W -trick).

The primes contain arbitrary polynomial progressions. We say that A ⊆ Z contains
arbitrary polynomial progressions if, whenever P1, . . . , Pk ∈ Z[X] are polynomials in
one variable with integer coefficients satisfying P1(0) = · · · = Pk(0) = 0, there is
some x ∈ Z and t ∈ Z>0 such that x + Pj(t) ∈ A for each j = 1, . . . , k. A striking
generalization of Szemerédi’s theorem due to Bergelson and Leibman [3] states that any
subset of Z of positive upper density contains arbitrary polynomial progressions. To date,
the only known proofs of this result use ergodic theory.

For primes, an analogue of the Bergelson-Leibman theorem was proved by Tao and
Ziegler [49]. This result states that any subset of the primes with positive relative upper
density contains arbitrary polynomial progressions. In particular, the primes themselves
contain arbitrary polynomial progressions. It seems plausible that the simplifications out-
lined here could also be used to simplify the proof of this theorem.

The number of k-APs in the primes. The original approach of Green and Tao (and the
approach outlined in this paper) implies that for any k the number of k-APs of primes
with each term at most N is on the order of N2

logk N
. In subsequent work, Green, Tao,

and Ziegler [25, 26, 27] showed how to determine the exact asymptotic. That is, they
determine a constant ck such that the number of k-APs of primes with each term at most
N is (ck + o(1)) N2

logk N
. More generally, they determine an asymptotic for the number of

prime solutions to a broad range of linear systems of equations.
The proof of these results also draws on the transference technique discussed in this

paper but a number of additional ingredients are needed, most notably an inverse theo-
rem describing the structure of those sets which do not contain the expected number of
solutions to certain linear systems of equations. It is this result which is transferred to the
sparse setting when one wishes to determine the exact asymptotic.

Acknowledgments. We thank Yuval Filmus, Mohammad Bavarian, and the anonymous
referee for helpful comments on the manuscript.
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