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Abstract. Synchronization of weakly coupled oscillators is ubiquitous in biological and chemical
complex systems. Recently, research on collective dynamics of many-body systems has been
received much attention due to their possible applications in engineering. In this survey paper, we
mainly focus on the large-time dynamics of several synchronization models and review state-of-art
results on the collective behaviors for synchronization models. Following a chronological order,
we begin our discussion with two classical phase models (Winfree and Kuramoto models), and
two quantum synchronization models (Lohe and Schrodinger—-Lohe models). For these models,
we present several sufficient conditions for the emergence of synchronization using mathematical
tools from dynamical systems theory, kinetic theory and partial differential equations in a unified
framework.
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1. Introduction

The jargon “synchronization” is a compound word made of syn (the same) and chronous
(time) in Greek, and it represents a phenomenon in which rhythms of weakly coupled
oscillators are adjusted to the common frequency due to their weak interactions between
oscillators. The phase-locking and frequency synchrony in an ensemble of oscillators
are ubiquitous in coupled oscillator models in various scientific areas such as biology,
engineering, physics, and social sciences, etc. Despite of its natural appearance [15]
in our nature, its scientific report was a rather recent event compared to long history of
human beings. In the middle of seventeenth century, Christian Huygens observed an
anti-phase synchronization of two pendulum clocks hanging over the common bar on the
wall, and reported his observation to Royal Academy of Sciences with the title “Of an odd
kind of sympathy”. This was the first event that synchronization became a science topic,
and Huygens’ naked eye observation was finally experimentally confirmed by a group of
physicists in Georgia Tech [14] in the early 21st century. After Huygens’ observation,
synchronization has been reported on and off in early 20th century by several scientists
such as Lord Rayleigh, Edward Appleton, and Balthasar van der Pol, to name a few (see
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a book [76] for a brief history of synchronization). In particular, Nobert Wiener was
interested in the synchronous behaviors of a-rhythms arising from the coupled neurons in
human brain. In [86], he had discussed a synchronization phenomenon of «-rhythms, but it
was pretty immature to verify and study such a collective phenomenon using an advanced
technology such as MRI (see [80]). However, Wiener’s enthusiasm on synchronization of
a-rhythm was transferred to Arthur Winfree. As his bachelor thesis, he tried to explain
Wiener’s curiosity using a mathematical model. He proposed the first mathematical
model for synchronization and succeed to explain synchronization phenomenon using this
model, which was published later as a paper in [88]. Soon after Winfree’s work, a physicist
Yoshiki Kuramoto introduced another simple ODE model in [58]. In a thermodynamic
limit in [57], he showed that the kinetic Kuramoto model exhibits a phase-transition like
phenomenon in a bifurcation diagram in asymptotic order parameter vs. coupling strength.
Furthermore, he derived an explicit representation for the critical coupling strength in his
self-consistent analysis. However, some of tacit assumptions in self-consistent analysis are
still unclear to verify [1,79]. The Kuramoto model contains two competing mechanisms:
intrinsic randomness and nonlinear coupling. Collective dynamics such as the emergence
of phase-locked states arises from these competing. Recently, the synchronization of
nonlinear oscillators became an active research area in different disciplines such as biology,
nonlinear dynamics, statistical physics, and sociology, etc, due to their possible engineering
applications, for example, in power grid system and UAV (unmanned aerial vehicles).

The purpose of this paper is to review state-of-art results on the collective dynamics
of synchronization models for classical and quantum oscillator systems and discuss the
relations between models. In particular, we address the question on the validity of models
(or justification of the model). Since synchronization models in literature are phenomeno-
logical, and they are not derived from the first principle of physics, the validity of the
model for a given situation has been based on the numerical simulations and heuristic
arguments. Thus, the following question

“Under what conditions on initial data and parameters in the model, can we
expect some desired collective behaviors of the model?”

is quite natural from the modeling viewpoint. We do not try to present all existing results
on the synchronization. Instead, our choices of topics are very subjective depending
on authors’ experience and taste. Even for one synchronization, namely the Kuramoto
model, there is a rather extensive review papers [1] on the mathematical and physical
results of the Kuramoto and its variant models up to 2005. However in last ten years, the
number of literature on synchronization was increased to more than a thousand. Hence,
it will be an almost impossible job to present a summary of all known results. Recently,
Dofler and Bullo wrote an interesting survey article [30] focused on the synchronization
in complex networks of Kuramoto oscillators. What we present on the Kuramoto model
in Section 3 can be regarded as orthogonal results after Dofler and Bullo. Compared
with previous survey articles, our main focus is to present synchronization estimates
for several synchronization models in a unified framework, which complements existing
review papers [1, 12,30,79]. There are many synchronization models in literature and
most of them need mathematical treatment, and at present there are few analytically
tracktable models. In this review paper, we focus on mainly four models, namely the
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Winfree model and the Kuramoto model for classical synchronization, and the Lohe
model and the Schrodinger—Lohe model for quantum synchronization. For these models,
we review sufficient frameworks leading to the collective behaviors. In this paper, we
have not discussed any possible applications of the presented theoretical works to other
research fields such as biology, control engineering, economics, physics, politics, and
sociology, etc., but we expect that mathematical results on the synchronization models
can provide a rigorous foundation for more refined modelings, e.g., consensus algorithms
in engineering and social sciences such as the design of distributed power grids and
networks [31,33,62], distributed controls of robot networks [16], herding phenomenon of
volatilities in financial markets [3,8, 10, 17,73] and clustering and swarming phenomena
in biological and social complex systems [11, 12,38, 54], to name a few.

The rest of the paper is organized as follows. In Section 2, we present five syn-
chronization models and discuss relationships between them. In Section 3, as the first
mathematical model for synchronization, we discuss collective behaviors of the Winfree
model such as partial and complete oscillator deaths, and partial and complete phase-
locking. In Section 4. we present the Kuramoto model which is known to be the most
well-known prototype phase model in the synchronization community and present a suf-
ficient framework leading to the complete synchronization. We also discuss its kinetic
counterpart and present well-posedness issues in measure and BV settings. In Section 5,
we present the Lohe matrix-valued ODE model for a quantum synchronization. In two
complex dimensions, 2 x 2 unitary matrix can be expanded as a linear combination of
Pauli’s matrices. Then, we can reduce the Lohe model into five equations, one for phase
and four for coefficients in Pauli’s expansion, and we study dynamic features of the special
model. After this special case, we present a complete synchronization estimate in any
dimension. In Section 6, we present an infinite-dimensional Lohe model, namely, the
Schrédinger—Lohe model which can be used in the synchronization of the Schrédinger
equation. Finally, Section 7 is devoted to the summary of this paper and discuss possible
future directions.

Before we move on to the next sections, we should tell you the style of presentation in
this survey paper. Due to the limitation of pages and vast literature in the synchronization
models, we have to restrict our focus on issues to be discussed to some topics. Because of
this, presentation might be rather dry and formal, so some parts can be boring to read. In
any case, we try to give an overall view on the current status of the state-of-art results, and
some feeling and intuitions why some results can be true and some brief outline of proofs
for some major theorems. If you find some topics are interesting enough, we recommend
to look at the references therein.

2. Preliminaries

In this section, we discuss three types of agent (oscillator)-based synchronization models
which are designed for each oscillators, namely pulse-coupled one, phase-coupled one
and state-coupled one, and then introduce five specific models in a chronological order.
The phase-coupled models and state-coupled models will be discussed in detail in the
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following four sections. We will also discuss relationships between these models. In
literature [1, 76, 88], several oscillator-based phenomenological models were proposed to
investigate the collective behaviors of an ensemble of coupled oscillators, e.g., flashing of
fireflies [15] and synchronous firing of cardiac pacemaker [75], etc. Phenomenological
synchronization models can be classified into three categories, pulse-coupled, phase-
coupled and state-coupled ones. In the following three subsections, we discuss these three
types of models.

2.1. A pulse-coupled model. For the pulse-coupled models [69, 75], a basic dynamic
entity to be monitored is an action potential of each oscillator, think of coupled pacemaker
cells in your heart. These pacemaker cells themselves are beating rhythmically, thus
they can be understood as oscillators. In fact, our regular heart beating is due to their
synchronous collective behavior. One of such pulse-coupled model is an integrate-and-fire
model. This model consists of two steps (dynamic and firing steps). In the first dynamic
step, each action potential increases in time, until it reaches some threshold value. In
the second firing steps, once it reaches that value, then it suddenly drops to some lower
value and at the same time, it makes other neighboring cell’s action potentials boost to
increase. By repeating this process over time, action potentials of pacemaker cells become
synchronized in finite time.

2.1.1. The Peskin model. As an concrete example of a pulse-coupled model, we present
the Peskin model for coupled pacemaker cells that is similar to integrate-and-fire model
in neuroscience [69,75]. Let x; = x;(t) € [0, 1] be a normalized voltage-like action
potential of the j-th cell and here the threshold value is assumed to be unity. Then, the
Peskin model reads as follows.

Xj==8jx; +S;: integrating step,
If x;(t«) =1, then x; (t++) = 0 and 2.1
X (t«+) = min{l, xg (t+) + e} for k # j: firing step,

where S and §; are positive intrinsic parameters of pacemaker cells satisfying the relation
S; > & so that the action potentials reach to unity in finite time. In the original Peskin’s
model [75], he considered only identical cells, whose intrinsic properties are the same.
In a cardiac pacemaker, the SA node is beating with its intrinsic rate 60—100 bpm, so the
pacemakers are not identical. Moreover, the parameter ¢;; in the firing step may depend
on the connected pair of cells. If we consider some ¢;; to be 0, then the pulse-coupling is
not all-to-all any more. In the case of fireflies, each one can affect only nearest ones, so
the assumption of all-to-all coupling is also not natural. However, for the mathematical
treatment, we are forced to consider an ensemble of identical pacemaker cells with all-to-all
couplings:

8j =94, S_,'ZS, Ejk = &5 > 0, lfj,ka. 2.2)

Peskin [75] showed that system (2.1)—~(2.2) with N = 2 exhibits finite-time synchroniza-
tion for any initial configurations and conjectured that this will be true for any number of
cells and generic initial configurations (see Figure 1 for N = 50). Finally, Mirollo and
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Strogatz showed that Peskin’s conjecture is in fact true for any finite N and any initial
configuration up to Lebesgue measure zero. Their result can be summarized as follows.
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(a) Time-evolution of 1 neuron (b) Time-evolution of 50 neurons

Figure I. N =50, § = 2.5, § =3, £j =0.002, Ar = 0.001, 4th order Runge-Kutta method

Theorem 2.1 ([69]). Let x; be a solution to (2.1)—(2.2). Then except a measure zero set
of initial configurations, a.e. initial configurations lead to the complete synchronization in
finite time, i.e., there exists a positive constant T € (0, 00) such that

lx;(t) —x; ()| =0, t>T,1<i,j<N.

Remark 2.2. (i) Mirollo and Strogatz’s arguments in the proof do not characterize the
measure zero set explicitly. Thus, for a given initial configuration Xy = (x19,...,XN0), it
is not clear at all whether it belongs to this measure zero set or not. Hence, for a practical
purpose, it will be very interesting to provide this measure zero set equipped with explicit
conditions (e.g., see Theorem 4.7 for the Kuramoto model in Section 4).

(ii) As far as authors know, rigorous justification of the synchronization for the non-
identical oscillators is still open.

2.2. Phase-coupled models. For a phase-coupled model, the basic dynamic entity to
be monitored is phase for the state of an oscillator. One way to visualize an ensemble
of oscillators is to regard them as point rotors moving on the unit circle S! € C. More
precisely, let x; = ¢'% be the position of the j-th rotor with an natural frequency 2 j-
When there are no mutual interactions between rotors, each rotor will move along the
circle with their given natural frequency €2; which is assumed to be time-independent
random variable extracted from some given distribution function g = g(2):

0; =Q;, t>0, ie, 0;(1)=0;0)+1tQ;, t>0,1=<j=<N. (2.3)

Hence, the motion of ensemble is completely integrable. However, when oscillators begin
to interact, interaction effects need to be incorporated to the motion of the free flow (2.3).
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Then, how to incorporate such interaction effects will be the topics to be discussed in the
following subsections. To put our discussion on a more general setting, we consider a time-
independent network N' = (V, £,C), where NV, £, and C = (c;;) denote the set of nodes,
edges, and capacity matrix representing the degree of communication capacity between
nodes, respectively. Assume that oscillators are located on the nodes of the network, and
their mutual interactions are made through the connecting edges with a capacity.

Suppose that the state of the j-th oscillator is represented by a complex number
zj(t) =rj (1)e'% ®_ Then, the state of oscillator will be determined by two real valued
quantities, namely amplitude r; and phase 6;. Throughout the paper, we will consider
weakly coupled oscillators, i.e., amplitudes keep to be constant, say r; = 1. Thus,
for weakly coupled oscillators, we only need to consider the variation of phase 6;. As
long as there is no confusion, we will use the terminology phase model instead of phase-
coupled model for simplicity of presentation. Before we move on to the description of
phase models, we first recall the notions of phase-locked and phase-locked state in the
following definitions.

Definition 2.3. Let ©(¢) = (01(¢), ..., 0n(2)) be a state of a phase model.

(1) The state ® is phase-locked if the phase differences are constant in time:

0;(t) —0;(t) = 95-" :constant, 1 <i,j <N.

(2) The state ® approaches a phase-locked state asymptotically if the phase differences
approach to some fixed value as t — oo:

3 lim |6;(t) —0;(t)], 1=<i,j<N.
t—00

In the sequel, we will consider two phase models, the Winfree model and the Kuramoto
model.

2.2.1. The Winfree model. As aforementioned in the introduction, Arthur Winfree [88]
introduced the first mathematical model for synchronization as his bachelor thesis in the
middle of 1960’s. In his thesis, he proposed a phase model for weakly coupled oscillators.
Let §; = 0;(¢t) and Q; be the phase and natural frequency of the j-th Winfree
oscillator, respectively. In the presence of mutual interactions, the free dynamics (2.3)
should be supplemented by adding suitable frequency perturbations in the R.H.S. of (2.3):
0, =+, i=1..N. (2.4)
Thus an interesting question is how to model such frequency perturbations a)f-er using
some kind of reasonable rules (axioms). For this, Winfree introduced two real-valued
functions employed in the modeling of interactions:

I = I(0) : an influence function and

S = S(0) : an sensitivity (or response) function.
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and two rules for phase interactions:

(A1) The stimulus /. impinging on the j-th oscillator is given as a weighted sum of the
influences contributed by phases of all other oscillators in the ensemble:

N
1.(0) := Z i 1 (6k).

k=1

In this case, two assumptions are implicitly made. First, the influences of an
individual are assumed to be propagated without attenuation, in a time much shorter

than the average period of the oscillators. Second, they are additive in their effect.
per

(A2) The frequency perturbation w ; ofthe j-th oscillator is proportional to the product
of the sensitivity S(6;) and the average stimulus /,(©):

N
o' = KS(0))1c(0) = K Y cx; S(0,)1(0). (2.5)
k=1
Combining (2.4) and (2.5), Winfree proposed the following coupled ODE system:

N
;= +KY cijSO)I0). j=1.....N. (2.6)
k=1

As an explicit example, if we set
1
N

then, we have a special case of the Winfree model:

Ckj = S(0) = —sin@, I(0) =1+ cosb,

N
. K
ejzgj—ﬁzsme,-(wcosek), j=1,...,N. 2.7)

k=1

As an obvious generalization of (2.6), we can also think of a generalized Winfree
model [58]: for j =1,...,N, £>1,

N N

0, =+ K1Y c;S10)L00) + -+ Ke Y e Se0) (k). (2.8)
k=1 k=1

In general, the Winfree model (2.6) does not have any conservation laws (constraints)
except the number of oscillators. Furthermore, it is not a gradient flow except the special
choice of influence and sensitivity functions as in (2.7). Due to the lack of conservation
laws, there are not many tools to investigate the dynamics of the Winfree model. This
is why there are few literature [36,44,45,49,65,70,72,77,78, 87, 88] dealing with the
Winfree model, compared to the enormous amount of literature on the Kuramoto model.
However, the Winfree model exhibits many interesting asymptotic dynamics compared to
the Kuramoto model. We next study the gradient flow structure of the Winfree model with
special choices of S and /.
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Proposition 2.4. Suppose that the network structure N is symmetric:
ckj =cjx foralll <k,j <N,

and the influence and sensitivity functions are analytic, and let ® = (04,...,0x) be
a solution to (2.6). Then, the Winfree model (2.6) is a gradient flow if and only if the
influence and sensitivity functions satisfy

S©) =1'(),
i.e., the Winfree model takes the form of a gradient flow:

N N
. K
e = —V@V(@), where V(@) = —kg_l lek - E . IE_I ck,I(Gk)I(Gl).

2.2.2. The Kuramoto model. Consider one Landau-Stuart (L-S) oscillator
whose state z € C is governed by the following complex-valued ODE:

F=(1—|z]? +iQ)z. (2.9)
Then, the equation (2.9) can be rewritten in terms of r and 0:
F=r(1—r?), 06=Q. (2.10)

Note that it is easy to see that 7 = 0 and r = 1 are unstable and stable equilibrium point
for the first equation in (2.10), respectively, i.e., the unit circle r = 1 is a stable limit-cycle
for (2.9), whereas the phase dynamics is a linear motion in ¢, i.e., 0(t) = 6y + Qt. Let
z; € C be the position of the j-th L-S oscillator, whose dynamics is governed by (2.9).
We now consider a diffusive coupling of N L-S oscillators:

N
g =0z +iQ)z + K Y cxj(zx —zj). j=1....N, (2.11)
k=1
where K is the positive coupling strength and €2 ; is the natural frequency of the j-th L-S
oscillator. Then, it follows from numerical simulations that z; approaches to a limit cycle
|zj| = roo for some range of K. To fix the idea, we assume that

Feo=1 and z; =%,

We now substitute the ansatz z; = % into (2.11) to obtain the Kuramoto model:

N
0 =Q; +1<chj sin(6x — 6,). (2.12)
k=1
Note that the R.H.S. of (2.12) is 27 -periodic, hence system (2.12) can be understood as a
dynamical system on tori, but it can also be viewed as a dynamical system on R¥ by lifting
from tori to RY. Throughout the paper, we treat the Kuramoto model as a dynamical
system in R
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Proposition 2.5 ([47,81]). Suppose that the network structure N is symmetric:
ckj =cjk foralll <k,j <N,

andlet ® = (01, ...,0N) be a solution to (2.12). Then, the following assertions hold:
(1) The total phase satisfies a balanced law:

d N N
ZY =Y (2.13)
k=1 k=1

(2) The system (2.12) is a gradient flow:
® = -VeV(0),

where the analytic potential V() is given by

N K N
V(@) :=— Z Qrbr + IN Z ckl(l — cos(O — 91)).
k=1 k=1

Remark 2.6. The assertions of Proposition 2.5 have several implications.

(i) Ifthe sum of natural frequencies is not zero, then it follows from (2.13) that Z;-Vzl 0 i #0.
Thus, there will be no equilibrium for the Kuramoto flow. Hence we need to consider a
relaxed equilibrium, namely relative equilibrium which means that the relative phases are
time-invariant.

(ii) Since the Kuramoto system is a gradient flow system with analytic potential, the
uniform boundedness of state is equivalent to the existence of limit lim;—.o, ®(¢) (Theo-
rem 2.7), which excludes the possibility of chaotic dynamics. Thus, in order to prove the
existence of the phase-locked state (see Definition 2.3), we only need to show the uniform
boundedness of fluctuations with respect to averaged motion. This is one of the key idea to
the resolution of the complete synchronization problem for the Kuramoto model in [29,40]

Theorem 2.7 ([47]). Let ® = ©(t) be a uniformly bounded global solution to (2.12) with
zero sum of natural frequencies in RN :

sup [|[O(t)[leo <00, where |+ |loo := 1| - [lgoo.
0<t<oo

Then the phase configuration ©(t) and the frequency vector O(t) converge to a phase
locked state and the zero vector, respectively as t — oo, i.e., there exists a phase locked
state ®°° such that

lim |O() —O0%®|eo =0 and lim ||O(1)] e = 0.
t—>00 t—>00

Remark 2.8. In dynamical systems theory, uniform boundedness does not generally imply
convergence. This is essentially due to the gradient flow structure of the Kuramoto flow
with an analytical potential.
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So far, we have discussed two classical oscillator models where the phase of an
oscillator at each node is uniquely determined. However, if we imagine that a quantum
oscillator is located on the node of a network, then the phase of quantum oscillator will
not be determined by a single valued function. We next introduce such a matrix-valued
ODE model and a PDE model which describes the evolution of unitary transformation.

2.3. A state coupled model. In this subsection, we discuss two state coupled models for
quantum synchronization. One is finite-dimensional and the other is infinite-dimensional.
These models were originated from two papers [63,64] by a physicist, Max Lohe. As you
can see them in the sequel, the motivation for these models are not clear at present, but in
some special case, these models can be reduced to the Kuramoto model.

2.3.1. The Lohe model. Suppose that Lohe oscillators with finite-dimensional state
space is distributed over the network A" = (V, £,C), and let U; and U J’-“ be a d X d unitary
matrix representing the state of the Lohe oscillator on the j-th node and its Hermitian
conjugate, respectively, and let H; be a d x d Hermitian matrix whose eigenvalues
correspond to the natural frequencies of the Lohe oscillator at node j. Then, the Lohe
model reads as follows.

N
iU;Uf = Hj = — § i (U;UF =UUS), j=1,....N, (2.14)
k=1

where K is the uniform, nonnegative coupling strength and cy; is real.
Proposition 2.9 ([63,64]). Then, the following assertions hold:

(1) Let {U;} be a solution to (2.14) with initial data {Uj(-)}. Then, U; U is conserved
along the Lohe flow:

UiUy @) =UU°, 1>0,1<i<N.

(2) The Lohe system (2.14) is invariant under right-translation by a unitary matrix in
the sense that if L € U(d) and V; = U; L, then V; satisfies

. N
. iK .
1VJ'V; =Hj —T;ij (Vij*—VkV;‘), j=1,...,N, t >0,
V;(0) = UJL.

Remark 2.10. The first assertion shows that the unitarity of U; is preserved along the
Lohe flow; hence, all components of U; are bounded a priori by the unity, and the matrix
valued ODE in (2.14) can be regarded as a d >-coupled system of first-order ODEs. Thus,
the standard Cauchy-Lipschitz theory for local solutions and the a priori uniform bound
of the components of U yield a unique global solution to (2.14).
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2.3.2. The Schrodinger-Lohe model. In this part, we discuss a quantum synchroniza-
tion for an infinite state space d = co. We first note that the Lohe model can be rewritten
as another equivalent form. By multiplying U; and using U /* U; = 1d, we have

N
. iK
iU, —H;Uj = 72% (Ux — U; UL U;). (2.15)
k=1
Note that L.H.S. is the free Schrodinger equation in a finite-dimensional form and R.H.S.

is a nonlinear Lohe coupling. Based on this simple observation, the straightforward
candidate for the Lohe model in an infinite-dimensional state space will be

1 ik & :
i) + 5 AV = V¥ = '7];% (x//k—%%), (x,1) € RY xR, (2.16)

where K and V; = V;(x, t) are nonnegative coupling strength and a real-valued potential
function acting on the j-th oscillator, respectively, and (-, -) is the standard inner product
in Lz(Ri). The Planck constant 7z and mass m are assumed to be unity so that they do not
appear in system (2.16).

Proposition 2.11. Let ¥ = (Y1, ..., ¥n) be a solution to (2.16) with ||y ; (0)[» < oo.
Then, we have

;@2 = ¥ O)l2, #=0.

Note that, on the manifold ||y [, = 1, system (2.16) can be rewritten as

1 iK &
00y = =3 Ay + Vil + 5 D i (Vi = (W5 9a)v ).

k=1

which has structural similarity to (2.15).

2.4. Relations between aforementioned models. In this subsection, we discuss the
relations between aforementioned four synchronization models. In all relations, we will
see that the Kuramoto model plays a role of a backbone.

2.4.1. From Winfree to Kuramoto. We first recall a trigonometric identity:
1
sin(fx — 0;) = sinfg cosB; —cos O sinf; and cx; = v

to see that

: K K
0, =Q; + N Zcos@,- sin 0 + N Z(— sin0;) cos 0.
k=1 k=1
If we now set
(=2, Ki=K,=K, (5100),1;(0)) = (cosb,sinb),
and (S2(0), I,(0)) = (—sin 8, cos 0),
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then, the Kuramoto model (2.12) becomes a special case of a generalized Winfree
model (2.8). Note that the pair of sensitivity and influence functions are orthogonal
in a standard inner product in R2.

((S1(0), 11(0)) - (S2(0), 1(0)) = 0.

On the other hand, the Kuramoto model can also be derived from the Winfree in a
low-coupling regime. For this, we follow heuristic arguments in [57,74].
Consider the Winfree model with all-to-all interaction:

) kY
6 =9, + N; 1(6,)S(6;), (2.17)

where I and S are smooth periodic functions with the common period 7. We now consider
the situation where the natural frequencies €2; of each oscillator are close to some fixed
frequencies, say unity and the coupling strengths are sufficiently weak:

Qi=1+ew;, K=¢ek, 0<e<l. (2.18)
Then, at the zeroth order in g, we obtain
09() = 1.
Thus, we can expect the solution of the equation (2.17) to be of the perturbative form:
0;(t) =1+ 06;().
We substitute this ansatz and (2.18) into the equation (2.17) to obtain

N
. EK
4 0]() =1+ ) + 5 3010+ BO)SE+6}0)),
k=1

or equivalently,

N
01 () = cw; + %Z[(z+9§(z))5(z+9}(z)). (2.19)
k=1

Because S(0) and /() are bounded and w; are constants, for sufficiently small ¢, the
change of phase for each oscillator would be very small in one period. In other words, the
variation of 9]1- is much slower than that of ;. Then, we have

01(t). 01(t) ~ Oe). t€to.to+T).

Due to the small change of 6;, the terms «9]1 (t) and 9]1. () can be regarded as constants in
the time interval [tg, 7o + T']. More precisely we have

14+ 01(1) = 14 0](t), 0](t) = 0}(to). t€lto.to+ Tl
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Then, we take integral of the equation (2.19) to obtain:

1+ 6} (to)

1 to+T .
T/to (14 6;(t0)) dt

1 to+T .
— 14+611)) d
P gy

[

N
_1 /m” (1 +ewj + o Y (1 +0L0))S(t + el(z))) dr
T Ji TN & k J
N to+T
EK
~ 1+8wj+ﬁkz=:1/zo 1(t + 04 (10))S (¢ + 6] (t0)) dt
ek N /zo+9‘}(to)+T

NT ot

=1+ew; +
10+ (t0)

Thus we have
N /zo+9‘} (to)+T

. EK
0} (to) ~ ew; + ——
’ TUNT = g+l

I(t + 6 (to) — 6 (10)) S(t) dt.
For the special case for the pair (/, S):
I(x) =14cosx, S(x)=—sinux,

R.H.S. of (2.20) can be simplified as follows.

&K t+2m
TN Z/ (cos(z + 6, (t) — 0} (1)) + 1) sint dt
k=1"1
e N prten . 1

=~ 0,.()—0;:())sint d
21\/77];/; cos (t + 6, (t) — 0; (1)) sint dt
EK N t+2m 91 91 R .
2Nn];/t sin (6 (1) — 6} (1)) sin® T dt
e

T 4N~ Sin(@;(r)—Q}([)),

k=1

where we used the 2 -periodicity of S and 7.

We now combine (2.20) and (2.21) to obtain

N

. &K .

0j(1) ~ ew; + e § sin(6 (1) — 60} (1)),
k=1

1(t + 6 (to) — 6 (10)) S(t) dt.

(2.20)

2.21)
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which is the Kuramoto model. This means that when we consider short time period
(e.g., one period), the Kuramoto model can be viewed as an approximation of Winfree
model in small natural frequency and coupling strength regime. However, our main focus
is the large-time dynamics of synchronization model in a large coupling strength regime.
Thus, the large-time dynamics of the Winfree and Kuramoto are completely different,
which are consistent with the above observations.

2.4.2. From Lohe to Kuramoto. For the one-dimensional case d = 1, the Lohe
model (5.1) reduces to the Kuramoto model (2.12) as follows. Note that d = 1, 1 x 1
unitary matrix and 1 x 1 hermitian matrix correspond to a complex number with unit
modulus and real number, respectively. Thus, we can set

Uj:=e %, H;:=Q;. (2.22)
Then, by direct calculation, we have
iU;Ur = 0;, U;UF = UpUf = &% 0 — o700 = 2isin(6) - 6;).
Thus, system (5.1) becomes the Kuramoto model:

N
éj = Qj —i—KZij Sin(@k—ej), t>0.
k=1

2.4.3. From Schrodinger-Lohe to Kuramoto. In this part, we discuss the relationship
between the Schrodinger—Lohe model and the Kuramoto model. Consider a spatially ho-

mogeneous S—L model (2.16) with constant potential V; = —£2; and all-to-all couplings:
iK < (v V)
0,9, = —Q,y; + (wk— z 1//-). (2.23)
o o 2N; (v

We set the following ansatz for vy, (t) = ¢'% ® and substitute this ansatz into (2.23) to
obtain

. N
—0;v; = —Q;v; + % > (Wk — (¥, Wk)Wj)«

Then, we take an inner product of the above relation with ¥;. We use the relation
(i, Yx) = cos(8; — Ox) +isin(0; — ) and compare the resulting relation to obtain the
Kuramoto model:

. kY
0; =Q; +Nk2_:1sin(9k—9j).

In the following four sections, we study large-time behaviors of aforementioned four
synchronization models.
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3. The Winfree model

In this section, we present a large-time dynamics of the Winfree model with all-to-all
coupling ¢x; = %:

N
QjZQj—i-NkE_lS(Qj)I(@k), j=1...,N. 3.1

As discussed in Section 2.1, system (3.1) does not admit any conservation laws except
the number of oscillators, so this lack of conservation laws makes analysis for large-time
dynamics difficult, however, it makes the model describe more diverse asymptotic patterns.
For the description of the large-time dynamics of (3.1), we first introduce several jargons
to be used in the sequel. To analyze the large-time patterns, we use a scalar quantity
“rotation number” which plays a key role in the classifications of large-time patterns.

o(t
Definition 3.1. Let § = 6(¢) € R be a phase of an oscillator. If the limit tlim ¥ exists,
—00

then we call this limit as a rotation number of the oscillator and denote it by p.

Remark 3.2. Note that for the free flow (2.3),

Then, several asymptotic states can be characterized by rotation numbers.

Definition 3.3 ([44,45,49]). Let ® := (64, ..., Ox) be a state of the ensemble of Winfree
oscillators whose dynamics are governed by (3.1).

(1) The configuration ® tends to “complete oscillator death (COD)” if the rotation
numbers of all oscillators are zero, i.e.,

[{i :pi =0} =N,

where | A] is the size of set A.

(2) The configuration ® tends to “partial oscillator death (POD)” if the rotation num-
bers of at least two oscillators are zero, i.e.,

2<|{i:pi =0} <N.

Note that for POD, not all rotation numbers are zero; if all oscillator rotation
numbers are zero, COD is achieved.

(3) The configuration ® tends to “complete phase-locked state (CPLS)” if the rotation
numbers of all oscillators are equal and nonzero, i.e., there exists a nonzero number p
such that

I{i : pi = p}| =N.
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(4) The configuration ® tends to “partially phase-locked state (PPLS)” if there exist
at least two oscillators whose rotation numbers are the same, i.e., there exists a
nonzero constant p such that

2<|{i : pi =p}l<N.

Note that for PPLS, not all rotation numbers are the same; if all oscillator rotation
numbers are equal to p, CPLS is achieved.

Remark 3.4. Let S be a phase-locked sub-ensemble of oscillators {f1,...,60x}, say
S =1{6y,...,0,} forn < N. Suppose that one of the oscillators in S, say 61, has a
01 (2)

# 0. Then, the phase-locking

relation in Definition 3.3 implies that the rest of the oscillators in S has a rotation number
and equal to p;:

well-defined nonzero rotation number 3 p; := lim
—>00

= pP1, 2<i<n.

A natural question will characterize sufficient frameworks leading to the above four
asymptotic states. In the following two subsections, we present sufficient frameworks
leading to three asymptotic states, COD, POD and PPLS.

3.1. Emergence of COD and POD. In this subsection, we present a sufficient framework
leading to the COD and POD. Let S and / be the sensitivity and influence functions
satisfying the following structural conditions:

(B1) The sensitivity function S is a 2m-periodic, analytic, and odd function, and the
influence function / is a 2;r-periodic, analytic, and even function:

S0 +27) = S(0), S(—0) =—8(0), 0¢eR,
100 +27) = 1), 1(—0) = I(0). (3.2)

(B2) The sensitivity and influence functions satisfy some geometric conditions: there
exist positive constants 6, and 6*, satisfying

0 <6, <0 <2m,

such that,
S <0on[0,0*] and S’ <0, S”>00n]0,6],
I>0,1'"<00n[0,0%], and I” <O0on][0,0], (3.3)
(SI) <0o0n (0,6s), (SI) > 0on (6«,60%),
where S’ denotes the 6-derivative of S (see Figure 2 for schematic graph of S
and 7).
Remark 3.5. The above structural conditions for S and / are motivated in the analysis of
Theorem 3.8 and an explicit example [7,70,77,78]:
(S(0),1(0)) = (—sin6, 1 + cos ). (3.4

In this case,
T
g, ==, 0" =m.
3
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05

05}

(a) S(@) = —sinf (b) I(8) =1+ cosb
Figure 2. Diagrams for S(0) and 1(6)

In order to state our result on the emergence of COD, we introduce some notation as
follows. For a given « € (0, 8*), consider the following equation on the interval [0, 0,]:

(SI)(x) = (SD)(@), x €[0,6,]. 3.5)

Note that the conditions (3.2) and (3.3) yield the following geometric shape of the
coupling function S/ (see Figure 3):

(SI)(0) =0, 6, = argmin(S1)(0),
0<6<6* (3.6)
(SI)(6) <0on 0 € (0,6%), (SI)(©6*) <0.

Thus, the equation (3.5) has a unique solution «® guaranteed by the relation (3.6).
Moreover, for @ € (0, Ox], @ = a.

(a) Position of a°° for @ € (0, 0x) (b) Position of ¢ for a € (6., 0%)

Figure 3. Determination of o®
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Theorem 3.6 ([49]). Suppose that the following conditions hold.

(1) The coupling strength is sufficiently large such that

QOO

o € (0,7’[), K > Ke(O[OO) =: —W.

(2) Initial data ®° satisfy
0° € R(«),

where the set R(a) is given as follows.

R(@):={O® =(6,....0§) eRY |6 € (~a,x), j =1,....N}.

Then, ©(t) converges to a unique equilibrium state ®°, i.e., the rotation numbers of all
oscillators are zero:

pj =0, 1<j<N.
Remark 3.7. In [45], the following locally coupled Winfree model

N
0, =Q;+KY ciySONI0). t>0. j=1..N
k=1

has been studied, and it is shown that the partial oscillator death state emerges for

K > max 1521 !
Tasisn LY g k) 1ST(@™®)]

for some class of initial configurations. In particular, whenn = N, the complete oscillator
death occurs.

3.2. Emergence of PPLS. In the subsection, we are interested in the emergence of PPLS
for (3.1) with the special pair (3.4):

N
K
9_,=Qj—ﬁsin9_,-2(1+cos9j), >0, 1<i<N. (3.7)
k=1

For given initial configuration ®°, even if PPLS state emerges asymptotically, it will be
very difficult to estimate the size of PPLS a priori. Hence, we instead choose inverse
direction, namely, we first choose an sub-ensemble with size n < N and look for sufficient
conditions which drive this specific sub-ensemble to an PPLS state asymptotically.
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3.2.1. Identical oscillators. In this part, we consider identical oscillators, i.e.,
Q;=Q>0, 1<j<N.

In the sequel, we discuss a sufficient framework to guarantee the phase-locking of sub-
ensemble S = {0;,...,6,} (see Figure 4). For this, we set relative sizes for the sub-
ensemble and coupling strength as follows.

n+1 n+2 n+3 ---
S

123 ---n
P1 P2 P3 * Pn

Figure 4. Schematic diagram for S and G extracted from [45]

We are now ready to state our framework for the emergence of partial locking.
(F41) Sub-ensemble S is a majority group in total configuration:

<y =1L

4
0.56 ~
44+

(F42) The relative size p of coupling strength compared to the common positive natural
frequency €2 is moderately small:

1 = 1 oo
O<pu<|y §+§ -3 = u.

(F43) Initial phases for sub-ensemble S is confined: for ¢ € (0, ¢oo),

" 7
0 — 00| <2 - [v(2+20£2) +4]|.
151113?11);;1"‘ I =< aexp[ =2 y + 2 2 +
Wheream:=1+%—%(l+2u).

Note that the upper bound for p appearing in 0 < p < %[)/(1 + ) - 1] implies

K < %, and when the ensemble S is the same as the total ensemble G, the above
framework implies

b
Ooo = — — 2/, lim lim
o0 4 ® u—p>® et 1 — 20

[y(—2+2a:t%)+4]=%.

We are now ready to state our first result.
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Theorem 3.8 ([45]). Suppose that the framework (F41)—(F43) hold, and let ® be a
global solution to (3.7). Then, there exist positive constants A and C such that

max |6k(t) — 6;(1)] < Ce™, 1 >0.
1<k, <n

Remark 3.9. Our result says that once p; exists for some i € {1, ...,n}, then all rotation
numbers for oscillators in S are equal:

pL=""=pn.

3.2.2. Nonidentical oscillators. In this part, we consider a sub-ensemble S consisting
of nonidentical oscillators with slightly different natural frequencies. When we turn off
coupling K = 0in (3.7), it is easy to see that for 2z # Q;,

ok =Qk, pj =Qj.

Thus, nonidentical oscillators cannot be locked in the absence of couplings, in contrast
when the coupling is too strong as in [49], the rotation numbers of oscillators will be zero,
i.e., complete oscillator death appears. Hence, to get a partial locking of nonidentical
oscillators, we must have a reasonable range of coupling strength. Before, we state the
emergence of partial locking, we choose a maximal frequency fluctuation A2’ with respect
to a base natural frequency €2 to satisfy

AY 67K (1 _sna |
g <ok 5E lon (g gy ) -1 £min e (1B,

where A is given by the following relation:

A= 11‘;ﬂ<2—2a+%>— 1_'“2#[)/(—2+20{—%)+4].

Note that A% = 0 satisfies the above relations. Therefore, by the continuity of the rela-
tions, there exists a positive constant A2’ satisfying the above relations.

We are now ready to state our second framework on the emergence of partial locking.

(Fp1) Sub-ensemble S is a majority group:

4
0.56 ~ <y <l
2 Y

(FB2) Therelative size u g of coupling strength compared to the common positive natural
frequency €2 is moderately small:

. 1 = 11
0 < pu <minsy §+§ 280
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(FB3) Initial phases @2 for sub-ensemble is confined:
€ (0, , max |80 — 00| < a.
o € (0, ac0) 15k,lX5n| k /=

where oo :=l+%—%(1+2/¢).

(FB4) The natural frequencies 2; are small perturbations of the common frequency €2:

Q>0 @e[-aF.Q+a%] i=1..n

Finally, we state our second theorem on the existence of partial synchronization.

Theorem 3.10 ([45]). Suppose that the framework (Fp1)—(Fp4) hold, and let ® be a
global solution to (3.7). Then, the diameter of the sub-ensemble S is uniformly bounded.:

sup  max |0x(t) —6;(¢)| < 3.
k,<n

0<t<oo 1=k,[=<
3.2.3. Existence of periodic locked orbit. In this part, we briefly summarize the re-
sult from [72]. Suppose that the natural frequencies €2; are randomly chosen from the
interval [:

Qel:=0—-y,14+y) foryel0,1), i=1,...,N.

Let K. be the locking bifurcation critical parameter for y = 0 and N = 1 determined by

4
Ki=sup{K>0:1—K(1+cosf)sind >0,V0 e R} = ——.
X pt ( ) } 33

Define an open set U by

U:={(.K)€(0,1)x(0,K,): 0 <y < K(D(K))*}.

where D(K) := L.(1 — £)? with a constant L, = zzexp(— ‘“%Kl’g*) — 1K),
For (y,K) € U and N > 1, define an open set C}fYK by

1 N
clNy = {@ — (61,...,0n) €RY max 6, — 0] < ry,K(NkZ::lek)},

where the dispersion curve I'y ¢ : R — (0, 1) is a 2z-periodic function satisfying

max I') x(s) < D(K).
s€[0,27]

The main results from [72] are the existence of a positively invariant set and complete
phase-locked states for each (y, K) € U.
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Theorem 3.11 ([72]). Let (y, K) € U be an arbitrary point. Then, the following assertions
hold.

(1) The set C;VK is positively invariant under the Winfree flow ®*.

(2) There exists an initial configuration @y € C;VK and a constant rotation vector
Jy.k = (P1y.K, .- PN,y,K) Satisfying

®1(Og) =)kt +YN(@) fori=1,...,N, t >0,

where \IJlN :RTY > Ris pi—”K-periodic, C*° and uniformly bounded with respect
to N. '

4. The Kuramoto model

In this section, we summarize results on the emergent properties of the Kuramoto model
such as the existence of phase-locked states introduced in Definition 2.3, well-posedness
of the kinetic Kuramoto model, namely the Kuramoto—Sakaguchi equation. Compared to
the Winfree model, the Kuramoto model has a balance of total phase. This excludes the
existence of complete oscillator death studied in the previous section. Due to the balance
law (i) in Proposition 2.4, from now on, without loss of generality we may assume that the
total sum of natural frequency is zero. Otherwise, we can choose a rotating frame with

N
1
speed 2, 1= N Z Qy, and we also assume that connection topology is all-to-all:
k=1
al 1
Y u=0. o=~ (4.1)
N
k=1
Then, under this condition (4.1), the Kuramoto model (2.12) becomes
. kY
0, =%+ 5 ; sin(6x — 6;). (4.2)

Since the R.H.S. of (4.2) is 27 -periodic, system (4.2) is a dynamical system on tori, but
tori can be embedded to RY . Hence in the sequel, we regards (4.2) as a dynamical system
on RV,

4.1. Order parameters. In this subsection, we introduce real order parameters measur-
ing the degree of synchronizability. Recall that for the Winfree model, rotation number p
plays a key role in the analyzing the asymptotic dynamics of the Winfree model. For a
phase configuration ® = ©(¢) governed by (4.2), the Kuramoto order parameters R and ¢
are defined by the following relation:

N
Re' := N E e'f, 4.3)

k=1
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and will play a key role in the synchronization estimates. Once the R.H.S. of (4.3) is not
zero, then R is well defined and ¢ is also well defined modulo 27. In the visualization
of oscillators as point rotors, the R.H.S. of (4.3) corresponds to the centroid of N -rotor
positions on the unit circle (a convex combination of N -points in a unit disc), hence the
centroid should be inside the unit disk. Thus, the modulus R is always bounded by 1, and
is invariant under uniform rotation. The state R = 1 corresponds to the state in which all
phases are the same, i.e., phase synchronization:

R=1 <= 0; =a (mod2x), i=1,...,N, forsomecu €R,

and R = 0 corresponds to the splay-state which is uniformly distributed on the unit circle.
We next rewrite the Kuramoto model (4.2) in terms of mean-field quantity R and ¢.
For this, we divide (4.3) by % to obtain:

N
. 1 .
Rei@=0/) — 21Ok —9]')’
N2
k=1
and compare the imaginary part of the above relation to find

N
Rsin(¢p —6;) = % > sin(0k — 6)). (4.4)
k=1

By comparing the second relation in (4.4) and the coupling terms in (2.12), it is easy to
see that the Kuramoto system (2.12) can be rewritten in a mean-field form:

0; =Q,; — KRsin(8;, —p), t>0. (4.5)
The equation (4.5) looks like decoupled, but the mean-field R and ¢ are functions of other
Ox’s. Hence, it is not a decoupled one.

4.2. Existence of phase-locked states. In this subsection, we briefly provide an existence
of phase-locked states by using time-asymptotic approach. The existence of phase-locked
states is closely related to the so called “complete synchronization problem”:

Find conditions on the coupling strength K and a natural frequency vec-
tor (21,...,Qy) to guarantee the complete synchronization, i.e., for any
solution to (4.2) issued from a generic initial configuration ©°,
lim max [6k(t)—6;(t)| = 0.
Jim | max | 16() = 6;()
Of course, in the course of verification of the complete synchronization problem, we
will explicitly characterize the genericity of initial configurations (see Theorem 4.7).

Note that under the zero sum condition (4.1), the phase-locked state ®*>° = (67°, ..., 9;,")
corresponds to the equilibrium of (4.2):

N
KZ . .
0= Qj +Nk_181n(0£°—9;->o), J = 1,...,N. (46)
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Note that the relations in (4.6) yield the following two simple observations:

e Once O® = (6f°,...,0g) is a phase-locked state, then its translation ®>° +
a(l,...,1)is also a phase-locked state.

* Since the totality of nonlinear term satisfies

K N
‘N Z sin(0g° — 67°)| < K,
k=1

If K < |2 for some j, then system (4.6) do not have any solution. Thus, in order
to guarantee the existence of phase-locked state, the coupling strength K should be
large.

The system of transcendental equations (4.6) is known to be solvable for N = 2, and
it is not known whether it is explicitly solvable or not for N > 3, which is related to the
integrability of the Kuramoto model (see [84,85]). We do not try to solve the system (4.6),
but instead, we will construct the phase-locked states using time-asymptotic approach.
More precisely, we will show that phase-locked states emerge from any generic initial
configurations along the Kuramoto flow (4.2). We now recall the concept of complete
synchronization as follows.

Definition 4.1. Let ® = (6;,...,0y) be a solution to (4.2). Then, the Kuramoto
model (4.2) has a complete synchronization asymptotically if the relative frequencies tend
to zeroast — o9, i.e.,
lim |0 (1) — 6;(t)| =0, 1<k,j<N.
t—00
As a warming-up for the complete synchronization, we consider a simple example.
Example 4.2. Consider a two-oscillator system:
. K
01 = +351n(92—91), t >0,
. K
92 = Qz + E sin(91 — 92)
We now consider the differences 8 and :
92292—91, 92292—91.
The difference 6 satisfies the Adler equation:
6 =Q—Ksin0, t>0.

Then, it is easy to show that for K > |2|, complete synchronization occurs for any initial
configuration:

lim {/61(1) = 62(1) oo = 0.
t—>00
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We first recall previous mathematical works on the Kuramoto model. Ermentrout [34]
found a critical coupling at which all oscillators become phase-locked, independent of
their number, and the linear and nonlinear stabilities of this phase-locked state have been
studied in several papers [2,25,27,32,40, 53,67, 68, 81] using tools such as Lyapunov
functionals, spectral graph theory, and control theory. In particular, the works in [25,

32,53] use the phase diameter D(®) := mI%XN |0; — Ok| as a Lyapunov functional,
1<j,k=<

and study its temporal evolution via Gronwall’s inequality for initial configurations whose
phase diameter is at most w + & with ¢ « 1. More precisely, the first author and
his collaborators [39] extended the previous work of Choi et al [25] to allow initial
configurations whose diameter is slightly larger than & for sufficiently large coupling
strength. In fact, they showed that sufficiently large coupling can push initial configurations
into configurations confined in the half circle so that they can use the result in [25]. For this,
they used the dynamics of order parameters r and ¢ (see [39] for details). We now recall
a most recent result on complete synchronization from [25,39]. By a slight modification
of the arguments in [25,39], we obtain the following estimate on the emergence of phase-
locked states.

Theorem 4.3 ([25,39]). Suppose that the coupling strength K satisfies

K> D(Q):= 1<1}_12§N | — 2],

and let ©® = O(t) be a solution to (4.2) such that there exists a positive time T € (0, 00)
such that

D(Q
0<DOB(T) <m— arcsin( 5{ )).
Then, there exist positive constants Co(T) and A such that
D(O(1)) < Coexp(—A(t —T)), ast — oo.

Remark 4.4. (i) For identical oscillators D(€2) = 0, complete synchronization has been
shown in [29] for an arbitrary initial configuration with D(®°) < 2m. Of course, the
synchronization estimate given in [29] does not yield the detailed relaxation process toward
a phase-locked state as it is.

(ii) The result in [25] corresponds to the case T = 0, i.e., D(®°) < 7, and the result
in [39] deals with the case D(®%) < 7w + ¢, ¢ < 1 and K > D(RQ).

(iii) We refer to a survey paper [30] on mathematical results for the complete synchro-
nization with D(0°%) < 7.

For some years, the complete synchronization problem has been restricted to initial
configurations with D(®?) < 7. We next briefly discuss how this restrictions on initial
configuration has been removed by generic conditions in the following discussions based
on the material from [40].

Proposition 4.5 ([40]). Let © be a solutionto (4.2) withQ; = 0, V j and initial data ®9;

R*>0, 69#6), 1<jk<N.
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Then, there exists at most one jo such that
Jm [0, () —p @) =7, lim |0 (1) =) =0, Kk # jo.
o0 t—>00

We now return to the existence of phase-locked states. As mentioned before, the exis-
tence of phase-locked states is closely related to the “complete synchronization problem”.
In the following, we will briefly present a recent resolution of the complete synchronization
problem in [40]. The proof is based on the following four ingredients.

First ingredient (scaling). We divide (4.2) by K and we set

g, =

Thus, we have

K>»1, Q;:fixed < K=1, |Q;<1

Second ingredient (gradient flow). The Kuramoto model (4.2) is a gradient flow with
analytical potential (Proposition 2.5) so, the complete synchronization holds if and only
if the fluctuations

. 1 Y
0 :=0; —6., 6 :ZNI;Q"

are uniformly bounded (Theorem 2.7)

Third ingredient (asymptotic dynamics of identical oscillators). Consider the Kuramoto
model for identical oscillators:

) kY
0= ]; sin(6x — 6,). (4.7)

For a solution ® issued from initial data ©° satisfying
R*>0, 69#6, 1<jk<N,

asymptotically, there are two possible scenarios, complete phase synchronization and
bi-polar state (Proposition 4.5).

Fourth ingredient (variation between identical and non-identical oscillators). The Ku-
ramoto models (4.2) and (4.7) for identical and nonidentical oscillators can be made as
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close as possible in finite-time interval, as long as the natural frequencies are small enough.
Let ®7 and ®N be solutions to

. K&
0] = 2_sin(6{ =),
k=1

K N N
ANT : NI NI
01 :Qj—i—NZsm(@k -0, Y @ =0
k=1 k=1

subject to the same initial data:
070 =0M(0) =69 1<j=<N.
Then, we have

][
[CAORICHOIE= %(e“" —1, 1>0. 4.8)

Here, || 2||co is defined as the £°°-norm of €2;:

Q = Q.
2o = max, (2]

Fifth ingredient (formation of a strong black-hole). Note that we are viewing the Ku-
ramoto model (4.2) as a dynamical system on R¥ | i.e., each phase 6, will be treated as a
real number.

Consider a real line and imagine an infinite chain C(¢) of open intervals

= ¢ ¢
cty:={J (v@@)+2kx). y@0) = (¢0)-3.60) +3).

k=—00

where ¢ (¢) is the mean-field phase defined in Section 4.1. Suppose that more than half of
oscillators in a given total ensemble lie on some small interval y(¢) at time #y. Then, we
can classify oscillators as confined oscillators (which lie on the interval y(¢)) and drifting
oscillators (which does not lie on y(¢)) at time . Then, we will choose a large coupling
strength K so that confining oscillators still lie on the time-varying interval y(¢(¢)) and
drifting oscillators drift to immediate neighboring intervals y(¢(¢)) — 2w, y(¢(¢)) or
y(¢(t)) + 27 and then confine there afterwards. This leads to the uniform boundedness
of phase fluctuations. This can be formalized in the following proposition.

Proposition 4.6 ([40]). Suppose that the initial configuration ® satisfies
ej()e[_ﬂ,ﬂ), ISJSNy
and let ng, £, and K satisfy
N

N —
n0€Z+ﬂ(—,N], K€(0,2C0571 —no)’
2 no

D(Q) 4.9)
max 0jo = bkol <€, K> ——— 2(N—no) i €
1<j,k<ng W sinf — ==5=5= sin 7




Collective synchronization of classical and quantum oscillators 237

Let © be a global solution to system (4.2) with zero sum of natural frequencies. Then, we
have )
sup D(O()) <4m + ¢, tlim 19()|loo = O.
—>00

0<t<oo

Finally, we have the existence of phase-locked states for generic initial configurations
in a large coupling strength regime.
Theorem 4.7 ([40]). Suppose that the initial configuration ®( and natural frequencies 2;

satisfy the zero sum condition and

R*>0, 60#6), 1<j#k<N,  max 2] < oo.

Then there exists a large coupling strength Koo > 0 such that if K > Ko there exists a
phase-locked state ®>° such that the solution with initial data ®y satisfies

lim ||©() — 0| = 0,
t—>00

where the norm || - || o is the standard £°-norm in RN .

Proof. We briefly sketch the proof. The details can be found in the original paper [40].
Consider an initial data ®° and coupling strength K:

R°>0, 69#6), 1<jk<N, Qoo <L <00, K =1.

The proof consists of four steps.

Step A. We use the first and third ingredients to solve the Kuramoto model with K = 1,
Q; = 0 and see that that from a given initial configuration ®:

3T, € (0.00) suchthat 6] (). ... 6, (T) € y@(T2).  |y(@(T)| < 7.

where |y (¢ (T%))| denote length of the open interval y (¢ (T%)).

Step B. We use the fourth ingredient and the estimate (4.8) for | @V — @7 ||, to see that
there exists Lo < 1 such thatif [2;| < Lo < 1, then

NI S C_
Qj Ty ey, lyl<mj=1,....,N—1,

where y is some open interval.

Step C. We restart the Kuramoto flow with initial configuration ®(7) as a new initial
data and apply Proposition 4.6, and get the uniform boundedness for our flow ®(¢).

Step D. The gradient flow structure (second ingredient) of the Kuramoto model implies
the convergence toward the phase-locked state. O

Remark 4.8. (i) The complete synchronization problem has also been treated in diverse
settings, e.g., inertia effect [26], frustration [42,43, 61], and hierarchical leadership [46].

(i) A lower bound for the coupling strength stated in theorem is not optimal. In relation
to the optimal coupling strength for the complete synchronization, we refer to [82, 83] for
all-to-all and bipartite graphs.
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4.3. Finiteness of phase-locked states. In previous subsection, we discussed the exis-
tence of phase-locked states as asymptotic states from generic initial configurations along
the Kuramoto flow. However, the asymptotic approach does not give much information
on the structure of phase-locked states. Once existence is guaranteed, then next question
to address will be

“How many phase-locked states are there?”

For an ensemble of identical Kuramoto oscillators with N > 4, it is easy to construct an
infinite number of phase-locked states whose totality is a measure zero in configuration
space. In the following example, we construct a continuum of phase-locked states with
zero order parameter.

Example 4.9 ([50]). For u € [0,27] and N > 4, we define a state ®*: k =1,..., N,

2k _

N_—T[Z—l_u” k—l,...,N—Z,
6, =10, k=N -1,

T, k = N.

Then, it is easy to see that O satisfies (4.6). Moreover, for u; # u, € [0,27x], we
have
MH1 — U2, k=1,...,N—2,

0#1 _ 0#2 —
k k 0, k=N-1N

Thus, distinct p’s clearly yield non-equivalent phase locked states, and these states all
have a Kuramoto order parameter of 0.

1 N-2 "
i=AL i0 i
R——N‘kzlei\/2+e + e =0.

Thus, alternative form (4.5) of the Kuramoto model implies

0=, j=1,..N
Thus, ®* is a phase-locked state.

For a given natural frequency vector (21,...,Q2y) and parameters K and N, we
denote by P = P({Q2;}, K, N) a set of all phase-locked states(solutions) for system (4.2)
up to phase-shift.

Proposition 4.10 ([50]). For identical Kuramoto oscillators with K > 0, every phase-
locked state with a positive order parameter is a permutation of

©,...,0,m,...,m),

where the number of 0’s is greater than N/2, and the w’s do not necessarily exist,
i.e., phase-locked state with R > 0 is a bi-polar state or completely synchronization state.
Thus, we have

N1, N odd,

oN-1 _ %(NA/IZ), N even,

Pl =

where | A| is the cardinality of the set A.
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We next list the results on the sufficient and necessary condition for the nonemptiness
of the set P and its finiteness even for non-identical oscillators without the proofs.

Theorem 4.11 ([41,83]). Let {Q;} and K be a set of natural frequencies and coupling
strength satisfying

> =0, K >0, K> := max |
X 1<i<N

Then, the following assertions hold.

(1) The set P is not empty if and only if there exists f € [%, 1] and ¥ =

K
(01,...,0n8) € {—1, 1}V such that
N
1 Qi\2
B=—> 0 ]1-(=%). (4.10)
N~ (Kﬂ)

(2) Suppose that a pair (B, X) satisfy the relation (4.10). Then the corresponding
phase-locked state © is the unique solution (up to global rotation), satisfying

KBsin(¢p(®)—0;) =—-Q;, j=1,...,N,
ojcos(¢p(®) —0;) = 0.

In this case, = R(®) (order parameter corrresponding to phase ©). Therefore,
this property establishes a one to one relation between a pair (B, X) and a element

of P.
3 1If
1200 _ 1 Q, \2
K SN; l_(||sz|f(x,) ’
then, P is not empty.
(4) If K > 1, then, we have
2V <Pl <2V, @.11)

Remark 4.12. The first three statements and lower bound estimate in (4.11) has been
obtained in [83], and the upper bound estimate in (4.11) has been obtained recently
in [41].

In the next subsection, we finally discuss the structure of phase-locked states which
can be confined a half circle geometrically. However, we do not have any information on
the structure of general phase-locked states.
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4.4. Structure of phase-locked states. In this subsection, we discuss the structure of
phase-locked states with diameter less than 7. As aforementioned, the existence of phase-
locked states will be guaranteed by the time-asymptotic approach. So far, we do not know
detailed structure of general phase-locked state. However, for phase-locked states confined
in a half circle, we can see below how the phase-locked states look like. The phases in a
phase-locked state are arranged into the order of natural frequencies in counter-clock wise.
Moreover, phase-locked states confined in a half circle are unique up to rotation (see [25]
for details).

Theorem 4.13 ([25]). Let ® = O(t) be a global smooth solution to the system (2.12)
satisfying
Inan’k |Q_/ — Qk|

sin D(®9)

ma}cx|szj—szk|>0, 0<D®% <7, K>K,=
Js

(1) If Qi < 2, then there exists a positive time ti*]‘- such that
0;(t) <0,(t) fort> ti’;.

That is the oscillators with large natural frequencies will be advanced to the front
starting from any initial configurations in counter-clock wise, and the ordering of 6
will be well-defined since 0 < D(®) < m. Actually, we can precisely count the
number of collision times.

(2) Suppose (i, j) satisfies
0i(to) > 0;(to) and Q; > Q; forsomety € Ry
Then i and j-oscillators will not meet aftert = ty, i.e.,

0;(t) > Q,-(t), t>1y.

We next show the lower and upper bounds for the transversal phase differences during
the relaxation process toward the phase-locked state. For this, we explicitly provide the
lower and upper bounds for the transversal phase differences 6;; := 6, — 0;, i # j. We
set Qij = Q; — Qj.

We next introduce the dual angle D> of initial phase diameter D(©°) by

o0 z : [o SR 0
D 6(0,2), sin D> = sin D(®").

For an initial diameter D(©°) € [0, Z], the dual angle D> coincides with D(®?). We
also set

N -2
—— (1 — cos D),
N

N -2 1
U(N, D(6%):=1— (1 - )
D(0°
N cos 202

L(N,D®):=1-
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Theorem 4.14 ([25]). Let ® = O(t) be a global smooth solution to the system (4.2)
satisfying

ma}cx|52j — Q| >0, 0<D@®% <n and K > K,.

Js

Then, we have
Q.
. —1 ij .
sin (ﬁ) < tl—1>Igo 0;; (1) < D*.
Moreover, if
ﬁ <1 and sin™! (&) <D=,
KL
then we obtain
sin™! (4) < lim 6;;(t) < sin~! (J)
KU t—>00 KL
In the following subsection, as a last topic for the Kuramoto model, we discuss the
well-posedness issues for the Kuramoto—Sakaguchi equation which can be obtained from
the Kuramoto model as N — oo.

4.5. The Kuramoto—-Sakaguchi equation. In this subsection, we consider the kinetic
Kuramoto model which can be obtained as a mean-field limit from the Kuramoto model (4.2)
and discuss the well-posedness of weak solutions. Let f = f(6, 2, ¢) be a one-oscillator
probability density function at phase 6, natural frequency €2, at time ¢. Using the stan-
dard BBGKY Hiearchy arguments [55], it is easy to see that f satisfies the Kuramoto—
Sakaguchi (K-S) equation [1,59]:

W f+0[f1f) =0, (0,9 eTxR, T:=R/2xZ, >0,

4.12)
o[f10.9.1) = Q — KL[f]. L[f]:= /T Sin(6 — 6.)p(6s. 1) dbs.

subject to suitable initial data:

726,Q) = %6 +27,Q) >0, /f"(e,sz) do = g(Q), / 2dQde =1,
T

TxR
(4.13)
where K and g = g(2) are the nonnegative coupling strength and the distribution function
for natural frequencies, respectively, and

p(0,1) = Af(@,ﬂ,t) dQ

is the local phase density.

Proposition 4.15 ([6]). Let f be a C'-solution to (4.12)~(4.13). Then we have

/f(@,Q,t)dng(Q), / £0,9,1)dQd0 =1, > 0.
T

TxR
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The existence of strong solutions for the Kuramoto—Sakaguchi—Fokker—Planck equa-
tion has been studied in [60] and recently Landau damping phenomenon to the K-S equa-
tion (4.12) and its noisy version has been extensively studied in literature [13,20,35,51,52].
More precisely, Kuramoto conjecture that below the critical coupling strength the inco-
herent solution is expected to be nonlinearly stable, in contrast above the critical coupling
strength, it is expected to be nonlinearly unstable. The verification of this nonlinear phe-
nomena rigorously has been done in aforementioned literature. We refer to Introduction
of Chiba’s paper [20] for interested readers.

4.5.1. Well-posedness of K-S equation. We next recall several concepts of measure-
valued solutions and weak solutions to (4.12) following the presentation in [6, 19,48, 59].
Let M(T x IR) be the set of nonnegative Radon measures on T x R = [0, 27] x R, which
can be understood as nonnegative bounded linear functionals on Cy (T x R). For a Radon
measure v € M(T x R), we use a standard duality relation:

(v, h) = /OM/Rh(e, Q)(dh,d), he Co(T xR).

The definitions of a measure valued solution and weak solution to the equation (4.12) are
given as follows.

Definition 4.16 ([6,19,21,59]). (1) For T € (0,00), let u € L*([0, T); M(T x R))
be a measure valued solution to (4.12) with an initial Radon measure (o € M(TxR)
if and only if p satisfies the following conditions:

* u is weakly continuous:
{us, h) is continuous as a function of £, V h € Co(T x R).

* u satisfies the integral equation: V h € CO1 (TxRx[0,7)),

t
(o) = o 00) = [ a0+ wdoh) s
0
where v = w(6, 2, us) is defined by
(1)(0, Q?/“LS) = Q - K(MS’ Sin(e - ))

(2) ForT € (0,00),let f € L*°(T xR x[0,T)) be a L°°-weak solution to (4.12) with
initial data fy € L°°(T x R) if and only if f satisfies the following conditions:

e Themapt — f(-,-,t) € Ll (T xR) is weakly continuous as a function of ¢.

loc

 f isadistributional solution to (4.12): for any testfunction¢p € C°(T x R x R),

/00 /[ (f0rp + w[f]f0e)(0,2,1) d2dOdt
0 TXR

:/ 7000, 2)p(0,2,0) dQd6.
TxR
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Remark 4.17. (i) Let f = f(0,2,¢) be a classical solution to the K-S equation (4.12).
Then p; := f(0,Q2,1)d 2d6 is a measure valued solution.

(ii) Note that the empirical measure

N
1
Wy = v Z 8@;(0).0;), (0i(t), 2;) solution of (4.2)

i=1
is a measure valued solution.

(iii) The existence of measure-valued solution for the K-S equation has been studied
in [19,21,59] using the empirical measure and particle-in-cell method [71]. See [18] for
the corresponding issues for other kinetic models.

4.5.2. Existence of BV weak solutions. In this part, we briefly summarize the well-
posedness results for bounded variation (BV) weak solutions in [6] motivated from the
relevant works [7,28] in hyperbolic conservation laws with nonlocal flux. Note that the
equation (4.12) can be written into a quasilinear form:

I f +wlfldef + fIa(w[f]) =0,

that is
9 f + (2 — KL[p])dg f/ = Kf dgLIp]

or equivalently, it can be rewritten as a characteristic system:
6 =Q—KLlpl. f=KfdsLlpl. (4.14)

We next discuss the global existence of BV weak solutions to (4.12) equation only for
identical oscillators. A corresponding theory for nonidentical oscillators is not complete
yet (see [5]). Without loss of generality, we assume g(€2) = § where § is the Dirac delta
located at 2 = 0. As a consequence

f(0.92.1) = p(6.1) ®5(Q)

and
ol[f1f = (@ —KL[p]) p ® §(2) = —KL[p]p ® 5(52).

Therefore (4.12) reduces to an equation for p(6, ):
dep — Kdg(L[plp) = 0. (4.15)
The initial datum py is assumed to be in the set X defined by

X=1p:T—>R, peBV(T), p(6)>0, /p(@)d@zl}. (4.16)
T

We next recall the concept of an entropy weak solution to the continuity equation (4.15)
with non-local flux as follows.
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Definition 4.18 ([5,6]). Let T > 0. A function p : T x [0, T] + [0, 0c0) is an entropy
weak solution to (4.15) with initial data py € L°°(T) if the following hold.
(1) The map [0,7T] 2 t + p(-, 1) € L°°(T) is continuous, with p(:,0) = po.
(2) p(0,1) satisfies, for all € R
d |lp—af — Kdg [£(0.1) |[p —a|] —sgn (p — ) Kar(dg€) = 0
in the sense of distributions, with

£(6.1) = Llp(-. 1)](0).

We next explain how to construct approximate solutions to (4.15) consisting of func-
tions which are piecewise constant in phase, but not constant in time. The jump disconti-
nuities are located on a finite number of curves.

Suppose that the 2w—periodic initial datum pg is piecewise constant with a finite
number of jump discontinuities. More precisely, for N € N, let p1 < 6p2 < --+ < bon
be the locations of the discontinuities in the interval [0, 27r). By periodicity, one has that

po(Bo1—) = po(bon +).

Recalling (4.14), we consider a system of characteristic equations:

6; = —KL[p](6;). i=1.....N,

. o L[pl(6i+1) — L[p](6:) (4.17)
pi = Kpi ,
0i+1 - 91'
subject to initial data
(poi B0i) = (po(Boi+),00i), i=1,....N, (4.18)

where we set Oy +1 = 61 + 27, 8g = Oy — 2.

Note that the system (4.17) and (4.18) can be written as an autonomous system in
terms of the variables U = (61,...,0N,p01,--.,PN), @S U = F(U), with F Lipschitz
continuous. Thus, the local existence and uniqueness follow from the standard Cauchy—
Lipschitz theory, and one can show that the approximate solutions (p;(¢), 6;(¢)) satisfy
the following estimates: for some positive /o,

(i) pi(0)eKIo" < pi(r) < p; (0) eKTor
(ii) TVp(-,1) < Kot . TVp(-,0) + 2[eKlor —1] .
The global existence of BV solutions is established in the following theorem.
Theorem 4.19 ([6]). Let T > 0 and consider the Cauchy problem (4.15) for0 <t < T
with initial data in X, defined in (4.16).

(i) For pg € X, there exists an entropic weak solution p = p(0,t) of (4.15) in the
sense of Definition 4.18. Moreover p(-,t) € X foreveryt € [0, T).
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(ii) Let p1(-,t) and pa (-, t) be entropy weak solutions of (4.15), corresponding to initial
data po,1 and po € X, respectively. Assume moreover that

TV (p1( 1)), TV (p2(~1)) < Co forall 1 € [0,T).
Then one has

o1 2) = p2 (. )l L1y < €€ llpos — po2llLiery. € :=K(1+ @+ 1)Co).

5. The Lohe model

In this section, we study emergent properties of the Lohe model introduced in Section 2.3.
So far, most analytical studies on the synchronization were focused on classical oscilla-
tors [1]. Even for quantum mechanical phenomena appearing in the Josephson junction
array for superconductors, classical models such as Kuramoto type models have been
widely used in literature instead of quantum models [56]. Synchronization of quantum
mechanical systems is an emerging research area that has been studied mostly numeri-
cally and experimentally for possible applications in the control and stability of quantum
devices and quantum computation [63,64]. In the sequel, our main interest lies on the
matrix-valued ODE model introduced by Max Lohe as a non-abelian generalization of the
Kuramoto model.

LetU; = U;(t) be an d x d unitary matrix encoding the quantum information of j-th
quantum oscillator. The Lohe model reads as follows.

. N

iU,Ur :Hj+%Z(UkU}*—U,~U,j), 1<j<A. .1
k=1

We have already seen that for d = 1, system (5.1) reduces to the Kuramoto model. This

is why (5.1) is called a non-abelian generalization of the Kuramoto model. For d = 2, the

unitary matrix U; can be written as a linear combination of Pauli matrices oy, k=1,2,3

and the identity matrix /, up to a phase factor 6;:

o xt i X2 4ix! 03+ Q;, ol—-iw?

U 0 i J J ,g H J Y J J
= e E ;= .
J —x24ix! A _ix3 ) J T4 jw? —o3 ;

xi+ix;  xi—ixg w; +iw; w; +

Then, the dynamics of U; is completely determined by the state (6;,x;) € R x R*
governed by the coupled ODE system:

N
: K
0, =%+ 5 > sin(6k — 0,)(xj. xx). >0,

k=1 (5.2)

N

) K

X; =Ajx; + N Zcos(@k —0;)(xx — (xj, xx)xj),
k=1
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where A; and 2; are 4 x 4 skew-symmetric real matrix and real number, respectivley:

3 2 1
wj @ wj
4 wj3 0 —-o! —a)f 9 e
Poi= S
j 2 1 3> j )
oy o; 0 -
1 2 3
w; w7 w7 0

and (-, ) denotes the standard inner product in R*.

5.1. Two complex dimensions. In this subsection, we study the emergent dynamics of
system (5.2) which summarize the results of [23]. We first note that system (5.2) admits a
conservation law.

Proposition 5.1. Let X = (x1,...,xy) be any solution to system (5.2) with initial data
||x? | = 1forall j. Then, the modulus of x; is invariant along the flow (5.2).

I Ol = X2, £ = 0.

where || - || is £2-norm in R*.
Before we move on further, we recall two definitions of synchronizations for (5.2).
Definition 5.2. Let (®, X') be a solution to system (5.2).

(1) The position ensemble X (¢) approaches position synchronization asymptotically if

lim max (Jlxg (t) = x; (O + |6k (1) — 6;(1)]) = 0.

>0 1<k,j<N

(2) The whole ensemble (®, X') exhibits practical synchronization asymptotically if

lim limsup max (|6 (t) — 6;(1)] + [|lxe (1) — x; (@) = 0.

K—>00 t—»o0o 1<k,j<N

Remark 5.3. Note that asymptotic complete position synchronization implies practical
synchronization.

A main machinery to analyze emergent dynamic is a Lyapunov functional approach.
For this, we set Lyapunov functionals for system (5.2) as follows.

D(®):= max |6 —06;], D(X):= max |xx—x;|,
(©) 15j’kle e — 0] (X) | max Xk — xjl
D(Q):= max |Qr —Q;|, D(A) .= max |Ar—A;|,
() 15]_’kle k— 2] (4) | Jmax A — Ajl

where the matrix norm ||A| is £2-norm by embedding 4 x 4 matrix into R'®. Then,
by rather tedious and lengthy calculations, we can derive a coupled system of first-order
differential inequalities for D(®) and D (X)) under some a priori condition.



Collective synchronization of classical and quantum oscillators 247

Proposition 5.4 ([23]). Let T be any positive number in (0, 00, and let (®, X) be any
solution to (5.2) satisfying

D(@(t))<%, ;) =1, te[0.T), j=1....N.

Then, we have

PO < b - gma) +2KD(X)D(®), 1 >0,
dDd(tX) <4D(4) - gD(X) +2K(D(X))”.

5.1.1. Identical oscillators. In this part, we consider system (5.2) for identical oscillators.

N
. K .
0 =Q+ N > sin(0k — 0,)(xj. xi). 1> 0.
k=1
K N
X; = Ax; + N Zcos(@k —0;) (g — (xj, xx)x;),
k=1

(5.3)

As adirect application of Proposition 5.4, we obtain the complete position synchronization
to (5.2) for identical oscillators.

Theorem 5.5 ([23]). Let (®, X) be the solution to (5.2) satisfying the following conditions:
D(Q2) =0, D(A) =0, K >0,
™ V3 .
D(®0)<—, D(X0)<—, ||)Cj()||= 1, ] =1,...,N.
6 2
Then, we have
D(O(1)) = D(®g)e K, D(X(1)) = D(Xp)e ¥, 1 =0,
where Cy is a positive constant defined by

Co = ? — D(fO)

Proof. We briefly sketch the proof here, but details can be found in [23]. Note that D(®)
and D(X) satisfy

dD(®) _ V3K
dt  — b4
dD(X) _ V3K
dt ~— x

D(®) +2KD(X)D(®), t >0,
(5.4)

D(X) 4+ 2K(D(X))>.
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By using a continuous induction argument and (5.4), we show that D(®) and D(X) are
non-increasing in ¢:

D(O(1)) = D(09) < %, D(X(1)) = D(Xp) < g 1 €10, 00). (5.5)

Then, we again use (5.5) in (5.4) to obtain Gronwall’s inequalities:

dD(® 3 DX
©) __g[B_2@)]pe) s,
dt 2
D
dDX) _ _K[ﬁ B D(Xo):|D(X).
dt b4 2
This yields the desired estimates. O

For identical oscillators, we can show that scattering type results hold. For this,
consider a free flow associated with (5.3):

6;=Q, i =Ax;, t>0,j=1,..., N (5.6)
We next define solution operators Ug and Uy4 corresponding to free flow (5.6):
Ua(t)8j0 :=0jo +1Q, Ua()xjo=e4x;0, 1<j <N.
Then, it is easy to see that the solution operator Uy is {2-isometry.
[Ua@)xjoll = lIxjoll. £ =0.

We integrate (5.3) to obtain

J
0;(0) = 00 +12+ 1Y /0 Sin(Bx (5) — 6(5)) (¥ (5), ¢ (s)) ds,
k=1

K< !
S DY /0 e~ cos(6k (5) — 0, s)
X [xx(5) = (x(5), Xk (5))x (5)] ds.

We now define asymptotic states 91-+ and xj+:
K& e
9}" =00+ N Z/o sin(Ox (s) — 0 (5)){(x; (5), xx (5)) ds,
k=1

K&, oo
=+ /0 e cos (B (s) — 6 (s)xk (5) = (x; (5). Xk (5))x; (s)] ds.
k=1
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Then, the following scattering type results hold.

Proposition 5.6 (23]). Let (®, X) be the solution to (5.2) satisfying the following condi-
tions:

D(R2) =0, D(A) =0, K >0,
™ V3 .
D(®) < —, D(X) <=, |xjoll=1,j=1,...,N.
6 2
Then, there exists a positive constant C1 which depends on initial data such that
||Ug(t)9j'.|r —0;()] < CieKCot ||U,4(t)x;.r —x; 0| = e_%, ast — Q.

5.1.2. Nonidentical oscillators. Since the key differential inequalities for D(®) and D(X)
in Proposition 5.4 gives non-decaying upper bound, we cannot obtain the strong synchro-
nization (position synchronization) as in Theorem 5.5 as it is. However, thanks to differen-
tial inequalities in Proposition (5.4), it is still possible to obtain a relaxed synchronization,
namely practical synchronization in the sense of Definition 5.2. Without a proof, we state
the main results as follows.

Proposition 5.7. Let (©, X)) be a solution to (5.2) satisfying the following set-up:

@) |lxjol =1>0, j =1,...,N, D(Q)<%, D(4) < 35,

(i) D(©g) <&, D(Xp) < L.

12°
Then, we have practical synchronization:

lim limsup D(O(¢)) = 0, lim limsup D(X(t)) = 0.
K—oo >0 K—o0o t—o00

Remark 5.8. In the course of the proof, we can derive upper bounds for D(®) and D (X):

DO() < e K D(@©y) + %(;)(1 _e %Ky
87 D(A)

DX(1) < e~ 3K D(Xy) + (1— e %2K1),

V3K

5.2. General dimensions. In this subsection, we consider a general case with d > 1.
Of course, for d = 1,2, we have already studied synchronization estimates in Section 4
and Section 5.1. Thus, our main focus in this subsection is for high-dimensional case
with d > 3. However, the machinery used in the synchronization estimates covers all
dimensions.

5.2.1. Phase-locked states. For synchronization estimate, we first define what we mean
by “phase-locked states” in an ensemble of matrices. Note that our oscillator in this
situation is a matrix. Thus, suitable concept of phase-locked states should contain a
special case d = 1 in the identification done in (2.22). We next introduce a concept of
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phase-locked states for the Lohe model. Recall that for the Kuramoto model in (4.2),
the phase-locked state ® = (0y,...,0y) is defined by the invariance property of phase
differences in time (see Definition 2.3):

|0;(t) — 0;(t)] =constant, ¢>0,1=<i,j<N.
We now consider the product U; U ;‘ and observe that ford = 1,
UiUF = e =67,
Then, time-invariance of §; — 6; is equal to the time-invariance of U; U ;‘. This simple
observation leads to the suitable concept of phase-locked state for the matrix model.

Definition 5.9 ([50]). Let {U;(¢)} be a solution to (5.1).
(1) {Ui(1)} is a phase-locked state if and only if U;(t)U,; (t)* is constant for all 7, j,
andt > 0.
(2) The Lohe flow {U;(¢)} achieves asymptotic phase-locking if and only if the limit of
U,-U;‘ ast — oo exists for all 7, j.

Remark 5.10. From Proposition 2.9, the right multiplication of a phase-locked state by a
unitary matrix is also a phase-locked state; likewise, a right multiplication of a Lohe flow
achieving asymptotic phase-locking also achieves asymptotic phase-locking.

We now return to characterize phase-locked states defined in Definition 5.9. For the
Kuramoto model, phase-locked state corresponds to the ensemble of phase oscillators
moving with the average natural frequency Q. := % ZII<V=1 Qy so that trajectory of each
oscillators follows the same linear motion on the unit circle:

0;() =0;0)+ 1.

This one-dimensional concept of phase-locked state can be generalized to the matrix model
as in the following proposition.

Proposition 5.11 ([63,64]). The phase-locked states {U;} of (5.1) are of the form
Uj =Upre™,

where U ]‘-X’ € U(d) and A is the constant d x d Hermitian matrix satisfying
ik ¥
* ) . *
UPAURS™ = Hj — = 3 (UPUE™ = UZPUR™).
k=1

5.2.2. Ensemble diameters. In this part, we will introduce a suitable Lyapunov func-
tional and a Gronwall type inequality for it. For this, we will use a trace norm (or Frobenius
norm) for a square matrix, which is nothing but £2 in R’ Let M = (mijj)bead xd
complex matrix. Then, the trace norm of M is defined as follows:

1

M| = [tr(MM*)P:[ 3 |mi,~|2} ,

I<i,j=<d
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and we now introduce the ensemble diameter as a Lyapunov functional. For a finite

collection of square matrices {U (t)}ﬁ-v=l and {H; }jvzl, set

D)=, max WU Ul D(H) = max | H: — Hjll. (5.7

< by
Lemma 5.12 ([50]). Let {U;} be a solution to (5.1). Then the ensemble diameter D(U)
in (5.7) satisfies Gronwall’s differential inequality:

%D(U) + KD(U)| < D(H) + §D(U)3 a.e. t € (0,00). (5.8)

Identical oscilallators. We assume that the Hermitian matrices H; satisfy
Hi=H., VYj=1,...,N, ie, D(H)=0.
In this case, the matrix U; satisfy

N
iU;U} = H, (UjU —UUS), j=1.....N. (5.9)

2N o

By Gronwall’s inequality in Lemma 5.12, we have an exponential synchronization of the
Lohe model.

Theorem 5.13 ([50]). Suppose that the Hermitian matrices H = {H; }9’:1 and initial
data U° = {Uj‘.)}j-v=1 satisfy

K>0 D(H)=0, DU° <2

Then for any solution {U;} to (5.9), D(U) approaches zero exponentially fast:

2D(U0%)? - - 2D(U°)?
\/(D(U°)2 2k —puoy = PUO) = \,/D(UO)2 + (22— D(U%)2)e2Ki

Non-identical oscilallators. We next discuss a positively invariant set for the Lohe flow
in (5.1). The Gronwall inequality in (5.8) of Lemma 5.12 motivates a cubic polynomial f":

1
fx)i=x—2x° x>0,
2

so that the upper bound in (5.8) becomes
d
ED(U) <D(H)—-Kf(DU)), ae.t>D0.

It is easy to verify that f satisfies the following:

(i) f has only two roots, 0 and /2, in the interval [0, 00).
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(i) f>0forxe[0,+2], f'=0forxe [0, \/g] f'<0forx e [ %ﬁ]
(iii) argmax f(x) = \/g, max f(x) = %\/g
x>0 x>0

Henceforth, K, will denote a given sufficient positive coupling strength so that %’3) <

% \/g . With this K,, the equation

D(H)
K.

fx) = . xel0.V2],

has a solution in [O, \/g], which we denote by «1, and a solution in [ % «/5] which
we denote by ar. We set

S(;):={U : DU) <o}, i=12.

Proposition 5.14 (Existence of a positively invariant set [S0]). Suppose that the coupling
strength K and initial data U° satisfy

3 /3
K> K, > 5\/;D(H), DU°) < as.

Then the following assertions hold:

(a) As long as the diameter D(U(t)) remains in the interval [y, 3], it is strictly
decreasing:

%D(U(l)) <c, ae.t >0 forwhich D(U(t)) € o1, 2],

where ¢ < 0 is a negative constant determined by D(H), K, and K,.
(b) The set S(a3) is a positively invariant set for the flow in (5.1):
Ul) e S(aa), t>0.
(c) There exists a positive time t, > 0 such that

U(t) € S(a1), t=>t,.

5.2.3. Stability with respect to initial data. In this part, we discuss a stability estimate
with respect to initial data. Consider two Lohe flows {U; } and {U; } of (5.1) with common
natural frequencies H; = H; and different initial data {U jo} and {UJ(.)}, respectively. We

introduce a metric d(-, -) measuring the distance between U; U ; and U; U ;‘:

dU@),U(@t)) := | Jmax 10 (OUF (1) = Ui ()T ()] (5.10)

J =
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To motivate the meaning of the functional d(U, U ), we consider a familiar case when
d = 1. In this case, (5.10) implies that for 6;; := 6; — 6;,

dU@®),U@1) = max |1 —e @0
1<i,j<N

Thus, it is easy to verify that
d(U@t),U(t)) =0 <= O and O are congruent up to constant shift.

Hence, d(U(1), U(t)) measures the degree of maximal mismatch in configurations U
and U. It is easy to verify that d(-, -) can be controlled by the sum of ensemble diameters:

dU@).U(1)) < max 1U:UF () — 1| + max 11 =TT @)
= D(U()) + DU (1)).

We now present the orbital stability of the Lohe flow in (5.1).

Theorem 5.15 (Stability estimates [50]). Suppose that the coupling strength K and initial
data U° and U° satisfy

54 -
K>K,> ﬁD(H) ~ 3.1765D(H), U° U° e S(ay).

Then for the two Lohe flows {U;} and {U;}, the following assertions hold:

. .. . . . 1
(1) The relative positions synchronize exponentially fast: a1 < 3, and

d(U°, U%)e KA+3aDt < q(U(r), U (1)) < d(U®, U®)e K030 1 >

(2) The normalized velocities U,- Ui* and lL],- lj;" synchronize:

H 0,0 — U;UF | < Kd(U®, 0°)e~K1=-3a0)r,

(3) There exists a unitary matrix Lo € U(d) independent of i such that
lim U;(1)*Ui(t) = Leo and lim |U;i(t) — U;(t)Loo|| =0, i=1,...,N.
t—>00 t—>00
The convergence is exponential with rate bounded above by —K (1 — 3ay).

5.2.4. Emergence of phase-locked states. In this part, we present the existence of
phase-locked states defined in Definition 5.9 without the proof.

Theorem 5.16 ([50]). Suppose that the coupling strength K and initial data U° satisfy

54
K > ﬁD(H), DU < a,.
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Then for the Lohe flow {U}, the following assertions hold:
(1) {U;} achieves asymptotic phase-locking:

Jim U

converges exponentially fast, with rate bounded above by —K (1 — 3a1).

(2) There exists a phase-locked state {V;} and a unitary matrix L € U(d) such that

DWV)<a; and lim |Uj —V;L| =0.
—>00

The convergence rate is exponentially fast, with rate bounded above by — K (1—3a1).

(3) Phase locked states in m are unique up to right-multiplication. That is, if {V;}
and {W;} are two phase-locked states in S(az), then there exists a unitary matrix
L € U(d) such that
W;=V;L, j=1,...,N.

So far, we have discussed a synchronization of a quantum system with a finite state
space. Next, we will discuss the modeling and analysis for a synchronization with an
infinite state space.

6. The Schrodinger-Lohe model

In this section, we study the basic structure of the S—L. model and its emergent properties.
Next we recall the S—L system discussed in Section 2.3.2:

N

1 iK ., _
0y = =AY + Vi + ;—N > (wk - %w,) j=1,....,N. (6.1)

k=1

We first recall the definitions of several concepts on synchronizations for the S—L model.
Definition 6.1 ([22,24]). Let ¥ = (Y1, ..., ¥ ) be a solution to the S-L model (6.1).

(1) The S-L model (6.1) exhibits complete wave function synchronization asymptoti-
cally if the following estimate holds:

Jim lvi@) =¥ =dij, 1=<i,j <N,
where d;; is a nonnegative constant and || - | is the L?(R¢) or L?(T%) norm.

(2) The S-L model (6.1) exhibits practical wave function synchronization asymptoti-
cally if the following estimate holds:

lim limsup max |[¥;(t) —v;(@)|| = 0.
1<i,j<N

K—o00 (00
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Remark 6.2. If we assume the normalized oscillators ||y;(0)|| = 1,1 < j < N, it
follows from the relation

=l =2 [ iy w

that we have

| — (dij)zl

Jim [0 =y =dy <= lim Re(yi (). 9 (0) = 1 = =2

Hence, the quantity Re(v; (¢), ¥, (t)) does play a key role in the synchronization estimate
(see Section 6.3).

Lemma 6.3. Let ¥ = (Y1,...,¥nN) be a global solution to the (6.1) satisfying the
condition:

ly; O =1, 1=<j=N.

Then, we have for any i, j,
d 2
Tl = v

2K N
= = 2 [ = vl + 1y = il = 1) v = w12 = 11 = i v

k=1

+ 2/d Im[y; ;](V; — Vi)dx. (6.2)
R
Remark 6.4. For identical potentials V; = V;, the differences v; — ¥; satisfy

2K

d
-l < g [ = vl + 1y = vl = 1) - 1w = w5 1P). 63)

In the following three subsections, we will study the emergent properties of (6.1) for
identical one-body potentials V; = V for all j and nonidentical potentials V; # Vj for
some j and k, respectively, and discuss a finite-dimensional reduction of (6.1) in the study
of synchronization estimates.

6.1. Identical potentials. We next discuss synchronous behavior of (6.1) for the identical
potentials:

Then the S—L. model becomes

N

1 iK vy
0,y = —EAl/fj +Vy; + ;—N Z (Wk (Y ¥)

). j=1....N. (64
= (%‘»%‘)%) ’ ©
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Given a set of N wave functions ¥ = {1, ..., ¥n}, we set the diameter D(V):

D)= max =il h=( [ viax)

As in a finite-dimensional case discussed in Section 5.1.1, solutions to the S—L sys-
tem (6.4) for identical potentials can be decomposed as a composition of the free solution
operator and Lohe solution operator. More precisely, we consider two equations:

The free Schrodinger equation:
9y = %Al//—in, xeR? >0, (6.5)

and
The space-homogeneous Lohe system:

N

dv; _ K ( Wk vy) )
dt _2Nk2=; Vi (ijWj)WJ , >0 (6.6)

Let S(¢) and L(¢) be linear and nonlinear solution operators corresponding to (6.5)
and (6.6), respectively. Then, it is easy to see that the solution operators S and L are
L?(R%)-isometry:

ISOVI =1yl ILOVI =yl «=0.

In the following proposition, we see that the solution operator to (6.4) can be decomposed
of two solutions operator S and L.

Proposition 6.5 ([24]). Let ¥ = (Yy,...,¥n) be a solution to system (6.4) with L?
initial data W°. Then, the solution v ; can be decomposed as the successive composition
of S and L operators to initial datum  jo, i.e.,

Yi(x. 1) =S o L)yI(x). xeR? 1>0.
Remark 6.6. Note that the operator S(z) is linear. Decomposition of solution operator
implies
1y (0) = ;O = IS0 (1) = S(=0)¥; (O]l = IL@OY = LOY?.

Thus, quantum synchronization of the S—L. model reduces to the synchronization of the
Lohe system (6.6).

We now state the synchronization estimate of (6.1) for identical potentials.

Theorem 6.7 ([24]). Suppose that the coupling strength and initial data satisfy
1
K>0. [yjl=1.1<j <N D)<

Then, for any solution V = (Y, ..., ¥n) to (6.4), the diameter D(V) satisfies

D(V°)
PO = poy v (- ap@oyer =0
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Proof. Tt follows from (6.3) that D (W) satisfies
. K 5
D(W) < —( — D(W) + 2D (W) )
2
This yields

D(¥%)
D(‘Ij(t)) = D(leO) + (1 — 2D(‘PO))eKt.

We next study the nonidentical potentials for the S—L model.

6.2. Nonidentical potentials. We now consider the dynamics of N S-L oscillators with
normalized L? norm:

N

YW= v vs). vl =1 xeR >0

k=1

i 1 i
iy, = —EAlﬂj-l-leﬁj-i-m

6.7)
Note that the estimate (6.2) can give only one-side differential inequality for D(¥). To
consider the nonidentical potentials, define D(V) = max |V; — Vil co.
i,

Consider the cubic equation:

2D(V) _

f(x) :=2x3—x% + X

0, xel0,00), K>54D(V). (6.8)

2DV
Then, the equation (6.8) has a positive local maximum )

and a negative local

. 1 2D(V) 1 . .
minimum —— + at x = 0 and —, respectively (see Figure 5).
27 K 3
f(x)
=23 _ x2 4 220V
D) fx) =2x° —x* + =¢
K
! x
0 1
3
1 2D(V) |
3t Tx

Figure 5. Schematic plot of f(x)
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Moreover, (6.8) has two positive real roots o < o5:
1 1
O<ay<=-<o0y < —, lim o =0, 11m oy = —
3 2 K—o0 K—o0
Theorem 6.8 ([22]). Suppose that the following assumptions hold.
(1) The coupling strength is sufficiently large in the sense that

K > 54D(V).

(2) The initial data W° satisfies the smallness assumption:
l[W2l=1, j=1,....,N, D¥°) <a,.
Then, it achieves practical synchronization:

hm limsup D(¥(t)) = 0.

K—o0o (o0

6.3. A finite-dimensional reduction. In this subsection, we derive a finite-dimensional
dynamical system associated with the synchronization problem for (6.1) for congruent
one-body potentials of the form

Vi(x)=V(x)+Q;, QR xeR? 1<;j<N. (6.9)

We basically summarize the results from [37]. Under the condition (6.9) and normalization
condition ||y || = 1, ¥; satisfies

N
0,0 = —5 805 + (V) + Q00 + 50 Z (ve = wivadv;). ©10)

It follows from Remark 6.4 that the quantity Re{v; (¢), ¥, (¢)) does play a key role in the
synchronization estimate. For this, we set

hij(t) := /Rd VivjdxeC, 1<i,j<N.

Then, it is easy to see that we have, for 1 <i, j < N,

hy = by b=l =1 Wyl =] [ i < vl = 1.

Proposition 6.9 ([37]). Let y; be a solution to (6.10). Then h;;j satisfies the coupled
system of ODEs:

dhij
dzj —iQyhi; + — [Z hix + th,}(l hij).

IQljhl]+ |:2+Zh1k+2hk]j|(1— lj) 1<i,j<N,t>0,
k#i k#j
(6.11)

where Q;; := Q; — Q;, and we used the fact that h;; = 1.
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We now set the real and imaginary parts of h;;:
Rij :=Reh;j, ILjj:=Imh;;, hiyj =Ry +il;;, 1=<i,j <N,
and we set the synchronization matrices to be
R:=(Rij) e MN(R), ZI:=(I;;) € My(R).

Thus, it follows from Definition 6.1 that it is enough to show the convergence of the
matrices R and Z as t — oo. System (6.11) can be rewritten in terms of (R;;, /;;):

dR;; K N
d—t” = Sl + N[(2 +2Ri; + ) (Rix + Rkj))(l — Rij)
ki,
N
+ 1;j (21ij + Z ik + 1kj)>],
e (6.12)
dl;; K il
= — Ry + | (20 + Y Uik + 1) (1= Ry))
k#i,j
N
—1;j (2 + 2R + Z (Rix + Rkj)>:|~

k#i,j
Note that for the zero-coupling case K = 0, system (6.12) becomes
dh;j

This equation yields a closed orbit solution:
hij(t) = hY et

We next consider a situation where the coupling strength K is sufficiently large compared
with €;; that our situation is close to the situation in Section 4:

Rij o 1, I,'j ~ 0.
In this regime, system (6.12) can be approximated by a linearized system:

dR

d_l‘” ZQijiij +2K(1—Rij), t >0,
Ji (6.13)
—L = —Q;iR;; —2K1I;;.
dt 7 iy j
System (6.13) has a unique equilibrium
<, - 4K? 2KQ;;
(Riej’lii'):( 2 T 52 Y )’
Qij+4K2 Qij+4K2
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and we have
R 4K?
_ —2Kt .
Rij(t) =e <C1 Sanijt—‘l‘CZCOSQijt) +W
- Q.. e 2Kt . 0 K
Iij(t) = —UZ—K(CI San,’j[ + C5 cos Qijt) — m,

where C; and C, are constants. Although we do not have a rigorous analysis of the
dynamic qualitative behavior of (6.12), we can see that, as K increases, (6.12) might
exhibit a bifurcation phenomenon at some critical coupling strength. This bifurcation
phenomenon can be seen from the explicit example of a two-oscillator system.

For a two-oscillator system, & := h1, and w := Q1, satisfy

dh . 2y _ LAY o
E_—la)h—i-K(l—h)——K[(h‘i'lﬁ) +m_1]’ £>0, (6.14)
h(0) = h°.

Depending on the relative sizes of K and w, we consider the following three cases:

w w w
K>—  K=— K < —.

2 2’ 2
Case A: K > % In this case, equation (6.14) has two equilibria, hoo,— and feo, +:
1 w\2 w 1 w\2 w
oo =~ (D) 2wt = L i (L) 2
0, 2 k) Tlax MG et T3 k) "'k

By direct calculation, the solution of (6.14) is given by the following explicit formula:

Boot (h® = hoo—) + hoo—(h® — hoo 4)e™ V4K 0%

h(t) =
hO — hoo— — (h0 — hoo,+)€_‘/4K2_w2t

Thus, it is easy to see that for any initial data h® # ho —, we have
h(t) = hoo+ ast — oo.

Numerical simulation in Figure 6(a) shows that there are heteroclinic orbits connecting
from hoo,— t0 fioo, +-

Case B: K = 5. In this case, the unique equilibrium is
hoo 1= —i,
and the solution to (6.14) is given by the following formula.

h® —i(h® +i)Kt

MO =TT ok
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Thus, we have

h(t) > hoo as t — £oo.

261

Numerical simulation in Figure 6(b) shows that there are homoclinic orbits connecting
from hgo t0 fo.
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Figure 6. Phase portraits for three different cases
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% In this case, the equilibria of system (6.14) are as follows.
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Because |fioo,—| > 1, only oo + is admissible. By direct calculation, the solution of (6.14)
is given as follows.

h(t) =

K

~ Jo?-ak?

(

ioh®
K

) sin (—"/“’22_7)

(6.15)
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h cos( > )
w2—4K?

t
Cos < 3

)+ s (200 + 1) sin (WHE2)
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Note that (6.15) implies that / is a periodic orbit with period T Thus, we can
see that a two-oscillator system has a bifurcation at K = 3. Numerical simulation in

Figure 6(c) shows that there are centers circling /oo, +.

7. Conclusion

In this survey paper, we have discussed asymptotic behaviors of several synchronization
models; the Peskin model, the Winfree model, the Kuramoto model, the Lohe model and
the Schrodinger-Lohe model from a unified framework. For each proposed model, we
presented sufficient conditions leading to the collective behaviors of the synchronization
models in terms of initial data and system parameters(the coupling strength, natural
frequencies). There are many theoretical issues needed to be explored, e.g., existence
of a critical coupling strength, structure of phase-locked states and stability of emergent
asymptotic states, etc. The results presented in Section 5 and Section 6 are far from
completeness. We have discussed only analogous issues as the classical models. However,
we can expect more richer dynamic features for the quantum models, compared to the
classical ones. We leave the investigation on the genuine features of the quantum models
as interesting problems for a future direction.
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