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Translation surfaces and their orbit closures:
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Abstract. Translation surfaces can be defined in an elementary way via polygons, and arise nat-
urally in the study of various basic dynamical systems. They can also be defined as differentials
on Riemann surfaces, and have moduli spaces called strata that are related to the moduli space of
Riemann surfaces. There is a GL.2;R/ action on each stratum, and to solve most problems about
a translation surface one must first know the closure of its orbit under this action. Furthermore,
these orbit closures are of fundamental interest in their own right, and are now known to be alge-
braic varieties that parameterize translation surfaces with extraordinary algebro-geometric and flat
properties. The study of orbit closures has greatly accelerated in recent years, with an influx of new
tools and ideas coming from diverse areas of mathematics.

Many areas of mathematics, from algebraic geometry and number theory, to dynamics and
topology, can be brought to bear on this topic, and known examples of orbit closures are interesting
from all these points of view.

This survey is an invitation for mathematicians from different backgrounds to become familiar
with the subject. Little background knowledge, beyond the definition of a Riemann surface and its
cotangent bundle, is assumed, and top priority is given to presenting a view of the subject that is at
once accessible and connected to many areas of mathematics.
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1. Translation surfaces

1.1. Equivalent definitions. This subsection has been written in a fairly technical way,
so that it may serve as a reference for anyone looking for details on foundational issues.
Most readers will want to skip some of the proofs on first reading. Anyone who already
knows what a translation surface is can skip this subsection entirely.

In these notes, all Riemann surfaces will be assumed to be compact and connected.
(A Riemann surface is a manifold of real dimension two with an atlas of charts to C
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whose transition maps are biholomorphic.) Thus the term “Riemann surface” will be
synonymous to “irreducible smooth projective algebraic curve over C.”

Definition 1.1. An Abelian differential ! on a Riemann surface X is a global section of
the cotangent bundle of X .

A translation surface .X; !/ is a nonzero Abelian differential ! on a Riemann sur-
face X .

Thus “nonzero Abelian differential” and “translation surface” are synonymous terms,
but sometimes the notation is slightly different. Sometimes we might omit the word
“translation,” and say “let .X; !/ be a surface” when we should say “let .X; !/ be a
translation surface.”

The complex vector space of Abelian differentials onX will be denotedH 1;0.X/. We
assume the following facts are familiar to the reader.

Theorem 1.2. Let g denote the genus of X . Then dimCH
1;0.X/ D g. If g > 0, each

Abelian differential ! on X has 2g � 2 zeros, counted with multiplicity.
Each nonzero Abelian differential is a 1-form, which is closed but not exact, and hence

H 1;0 is naturally a subspace of the first cohomology group H 1.X;C/ of X .

The following result is key to how most people think about translation surfaces.

Proposition 1.3. Let .X; !/ be a translation surface. At any point where ! is not zero,
there is a local coordinate z for X in which ! D dz. At any point where ! has a zero of
order k, there is a local coordinate z in which ! D zkdz.

Proof. We will work in a local coordinate w, and suppose that ! vanishes to order k at
w D 0. Thus we can write ! D wkg.w/, where g is some holomorphic function with
g.0/ ¤ 0. Note that Z w

0

g.t/tkdt

vanishes to order k C 1 at 0, and thus admits a .k C 1/-st root. Define z by

zkC1 D .k C 1/

Z w

0

g.t/tkdt:

By taking d of each side, we find zkdz D ! as desired.

Let † � X denote the finite set of zeros of !. At each point p0 of X n †, we
may pick a local coordinate z as above. This choice is unique if we require z.p0/ D 0,
and otherwise it is unique up to translations. This is because if f .z/ is any holomorphic
function with df D dz, then f .z/ D z C C for some constant C . This leads to the
following.

Proposition 1.4. X n † admits an atlas of charts to C whose transition maps are trans-
lations.

Proof. The atlas consists of all local coordinates z with the property that ! D dz.
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In particular, this gives X n † the structure of a flat manifold, since translations pre-
serve the standard flat (Euclidean) metric on C. However, there is even more structure:
for example, at every point there is a choice of “north” (the positive imaginary direction).

We will see that the flat metric on X n † does not extend to a flat metric on X . This
should be reassuring, since for us typically X will have genus at least 2, and the Gauss–
Bonnet Theorem implies that such surfaces do not admit (nonsingular) flat metrics.

The points of † are thus considered to be singularities of the flat metric. From now
on the term “singularity” of .X; !/ will be synonymous with “zero of !”. The singularity
is said to be order k if ! vanishes to order k.

We are now left with the task of determining what the flat metric looks like in a
neighbourhood of a singularity p0 of order k. We may use a local coordinate z where
z.p0/ D 0 and ! D .k C 1/zkdz (this is a scalar multiple of the local coordinate
constructed above). The 1-form .k C 1/zkdz is the pull back of the form dz via the
branched covering map z 7! zkC1, since d.zkC1/ D .kC1/zkdz. Near every point near
but not equal to p0, w D zkC1 is a local coordinate in which ! D dw. Thus the flat
metric near these point is the pull back of the flat metric on C under this map z 7! zkC1.

This pull back metric may be thought of very concretely: take .k C 1/ copies of the
upper half plane with the usual flat metric, and .kC1/ copies of the lower half plane, and
glue them along the half infinite rays Œ0;1/ and .�1; 0� in cyclic order, as in Figure 1.

Definition 1.5 (Second definition of translation surface). A translation surface is a closed
topological surface X , together with a finite set of points † and an atlas of charts to C
on X n† whose transition maps are translations, such that at each point p0 of † there is
some k > 0 and a homeomorphism of a neighborhood of p0 to a neighbourhood of the
origin in the 2k C 2 half plane construction that is an isometry away from p0.

The singularity at p0 is said to have cone angle 2�.kC1/, since it can be obtained by
gluing 2kC 2 half planes, each with an angle of � at the origin. The term “cone point” is
another synonym for “singularity.”

Figure 1: Four half planes glued in cyclic order. A neighbourhood of any singularity of
order 1 is isometric to a neighbourhood of 0 in this picture.

Proposition 1.6. The first and second definition of translation surface are equivalent.

We have already shown that the structure in the first definition leads to the structure in
the second definition, so it now suffices to show the converse.

Proof. Given such a flat structure on a surface X as in the second definition, we get an
atlas of charts to C away from the singularities, whose transition functions are translations.
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Since translations are biholomorphisms, this provides X n † with a complex structure,
where † is the set of singularities. Furthermore, we get an Abelian differential on X n†,
by setting ! D dz for any such local coordinate z. At each singularity p0 of order k of
the flat metric, we can find a unique coordinate z such that z.p0/ D 0 and the covering
map zkC1=.k C 1/ is a local isometry (except at the point p0) to a neighbourhood of
0 in C n f0g. In this coordinate z, the calculations above show that ! D zkdz on a
neighbourhood of p0 minus p0 itself (! has not yet been defined at p0).

As soon as we check that the remaining transition maps are biholomorphic, we will
conclude that this atlas of charts (given by the coordinates z as above) on X gives X a
complex structure. Setting ! D zkdz at each singularity, in the local coordinate above,
completes the definition of the Abelian differential !.

The transition maps can be explicitly computed. Suppose z and w are local coordi-
nates, such that ! D zkdz in a neighborhood of a singularity of a singularity p0, and
! D dw in a smaller open subset not containing the singularity. Then there is some
constant C such that

w.z/ D C C

Z z

0

�kd�:

This is evidently a local biholomorphism away from z D 0.

The third definition is the most concrete, and is how translation surfaces are usually
given.

Definition 1.7 (Third definition of translation surface). A translation surface is an equiv-
alence class of polygons in the plane with edge identifications: Each translation surface
is a finite union of polygons in C, together with a choice of pairing of parallel sides of
equal length that are on “opposite sides.” (So for example two horizontal edges of the
same length can be identified only if one is on the top of a polygon, and one is on the bot-
tom. Each edge must be paired with exactly one other edge. These conditions are exactly
what is required so that the result of identifying pairs of edges via translations is a closed
surface.) Two such collections of polygons are considered to define the same translation
surface if one can be cut into pieces along straight lines and these pieces can be translated
and re-glued to form the other collection of polygons. When a polygon is cut in two, the
two new boundary components must be paired, and two polygons can be glued together
along a pair of edges only if these edges are paired.

Proposition 1.8. The third definition of translation surface is equivalent to the second.

We will sketch the proof, but first some definitions are required.

Definition 1.9. A saddle connection on a translation surface is a straight line segment
(i.e., a geodesic for the flat metric) going from a singularity to a singularity, without any
singularities in the interior of the segment. (The two endpoints can be the same singularity
or different.) The complex length (also known as the holonomy) of a saddle connection is
the associated vector in C, which is only defined up to multiplication by˙1.

A triangulation of a translation surface is a collection of saddle connections whose
interiors are disjoint, and such that any component of the complement is a triangle.
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Remark 1.10. We will not discuss general geodesics for the singular flat metric, except to
remark in passing that saddle connections are examples, and a general geodesic is either
an isometrically embedded circle (i.e., the core curve of a cylinder) or a sequence of
saddle connections such that each forms an angle of at least � with the next. In a certain
definite sense, most flat geodesics contain more than one saddle connection.

Figure 2: When opposite edges of a regular octagon are identified, the result is a transla-
tion surface with one cone point of angle 6� . (Generally the identifications are not drawn
when opposite edges are identified–this situation is so common that it is the default.) An
Euler characteristic computation shows that this has genus 2. (2 � 2g D V � E C F ,
where g is the genus, V is the number of vertices, E is the number of edges, and F is
the number of faces. In this example, after identification of the edges there is 1 vertex,
4 edges, and 1 face, so 2 � 2g D 1 � 4C 1 D �2.)

Figure 3: In each of these three polygons, opposite edges are identified to give a genus
one translation surface. The first two are the same surface, since the second polygon can
be cut (along the dotted line) and re-glued to give the first. However, the third translation
surface is not equal to the first two, even though it is flat isometric. There is no flat
isometry between them that sends “north” (the positive imaginary direction) to “north.”

Lemma 1.11. Every translation surface (using the second definition) can be triangulated.

Sketch of proof. In fact, any maximal collection of saddle connections whose interiors are
disjoint must be a triangulation.
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Sketch of proof of Proposition 1.8. In one direction, the lemma says that every surface
as in the second definition can be triangulated. Cutting each saddle connection in the
triangulation gives a collection of polygons (triangles) with edge identifications. Two
edges are identified if they were the same saddle connection before cutting.

In the other direction, given a collection of polygons as in the third definition, the
paired edges may be identified via translations. At each point on the interior of a polygon,
the natural coordinate z of C can be used. (The polygon sits in the complex plane C.)
At any point on the interior of an edge, the two polygons can be glued together, giving
locally a coordinate. The structure at the singularities can be verified in an elementary
way.

Indeed, after identifying pairs of edges, some of the vertices will become singular
points of the flat metric. The main point is that the total angle around these singularities
is an integer multiple of 2� . If the total angle were anything else, there would be no well
defined choice of “north.” See Figure 4.

1.2. Examples. The flat torus .C=ZŒi �; dz/ is a translation surface. This is pictured in
Figure 3.

Definition 1.12. A translation covering f W .X; !/ ! .X 0; !0/ between translation sur-
faces is a branched covering of Riemann surfaces f W X ! X 0 such that f �.!0/ D !.

Figure 4: Here is a model of a cone angle that is not an integer multiple of 2� (here
it is less than 2�), and hence cannot occur on a translation surface. It is obtained by
identifying the two radial segments via rotation. On this picture, there is not a consistent
choice of north: if a northward pointing vector is dragged across the radial segment, it no
longer points north.

Translation coverings are, in particular, local isometries away from the ramification
points. (By definition, the ramification points are the preimages of the branch points.)
They must also preserve directions: for example, “north” must map to “north.” The
ramification points must all be singularities. An unramified point is a singularity if and
only if its image under the translation covering is. Branch points may or may not be
singularities.

The fact that translation coverings are local isometries away from ramification points
is especially clear if one notes that the flat length of a tangent vector v to the translation
surface is j!.v/j.
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Definition 1.13. A translation covering of .C=ZŒi �; dz/ branched over a single point is
called a square-tiled surface.

Figure 5: An example of a square-tiled surface. Opposite edges are identified. This
translation surface is a degree 4 cover of .C=ZŒi �; dz/ branched over 1 point. It is genus 2,
and has two singularities, each of cone angle 4� .

Indeed, .C=ZŒi �; dz/ is a square with opposite sides identified, and the branch point
can be assumed to be the corners of the square. The square-tiled surface will be tiled by d
lifted copies of this square, where d is the degree.

The slit torus construction. In this construction, one starts with two genus one trans-
lation surfaces, and picks a parallel embedded straight line segment on each of them, of
the same length. The two segments are cut open, and the resulting tori with boundary are
glued together.

Figure 6: An example of the slit tori construction. Opposite edges are identified, giving
two tori. In each, a slit is made, so that each torus has boundary consisting of two line
segments, labelled A and B here. These are glued together to give a translation surface of
genus two with two singularities of cone angle 4� , one at each end of the slit.

Unfolding rational billiards. Perhaps the original motivation for translation surfaces
came from the study of rational billiards. This will be explained in Section 4. For now,
begin with a polygon P in C, all of whose angles are rational multiples of � . This restric-
tion is equivalent to saying that the subgroup H of O.2/ generated by the derivatives of
reflections in the sides of the polygon is a finite group. (It is a dihedral group.)
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For each h 2 H , we consider hP . We translate these if necessary so that the collection
fhP W h 2 H g is a finite collection of disjoint polygons. We identify the edges in pairs:
if h0P is the reflection of hP in an edge of hP , this edge and the corresponding edge of
h0P are identified.

Figure 7: The unit square unfolds to four squares, glued together to give the flat torus
.C=2ZŒi �; dz/. Here each square has been decorated by the letter F, to illustrate which
squares are reflections of other squares.

Figure 8: Unfolding the right angled triangle with smallest angle �=8 gives the regular
octagon with opposite sides identified.

Proposition 1.14. Suppose gcd.p; q; r/ D 1 and p C q C r D n. The triangle with
angles p

n
�; q

n
�; r

n
� unfolds to the Abelian differential ydx

x.x�1/
on the normalization of the

algebraic curve
yn D xp.x � 1/q :

This curve is a cyclic cover of CP 1 via the map .y; x/ 7! x.
This proposition is not hard to prove. One proof uses Schwarz–Christoffel mappings,

a topic in classical complex analysis. See for example [8].

1.3. Moduli spaces. Consider the problem of deforming the regular octagon. We may
specify four of the edges as vectors in C, and thus guess (correctly!) that the moduli space
is locally C4.

An Abelian differential in genus two can have either a double zero, or two zeros of
order one. The octagon has a double zero, and deformations as above will always have a
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double zero. Figures 5 and 6 illustrate genus two translation surfaces with two zeros of
order one.

The collection of all Abelian differentials of genus g is of course a vector bundle over
the moduli space of Riemann surfaces. However, this space is stratified according to the
number and multiplicity of the zeros of the Abelian differentials.

Figure 9: An octagon with opposite edges parallel may be specified by four complex
numbers v1; v2; v3; v4 2 C. (Not all choices give a valid octagon without self crossings,
but there is an open set of valid choices.)

Let g > 1 and let � denote a partition of 2g � 2, i.e. a nonincreasing list of positive
integers whose sum is 2g � 2. So if g D 2, the partitions are .2/ and .1; 1/, and if g D 3
the partitions are .4/; .3; 1/; .2; 2/; .2; 1; 1/; .1; 1; 1; 1/.

Define the stratum H.�/ as the collection of genus g translations surfaces .X; !/,
where the multiplicity of the zeros of ! are given by �. So H.2/ denotes the collection of
genus two translation surfaces with a double zero, and H.1; 1/ denotes the collection of
all genus two translation surfaces with two zeros of order one.

Proposition 1.15. Each stratum H.�/ is a complex orbifold of dimension n D 2g C

s � 1, where s D j�j denotes the number of distinct zeros of Abelian differentials in the
stratum. Away from orbifold points (or on an appropriate cover without orbifold points)
each stratum has an atlas of charts to Cn with transition functions in GL.n;Z/.

Thus each stratum looks locally like Cn, and has a natural affine structure.

Sketch of formal proof. Let S be fixed topological surface of genus g, with a set † of s
distinct marked points. Let us begin with the space QH.�/ of translations surfaces .X; !/
equipped with an equivalence class of homeomorphisms f W S ! X that send the marked
points to the zeros of !. The equivalence relation is isotopy rel marked points.

We will see that the map from QH.�/ to H.�/ that forgets f is an infinite degree
branched covering.

Fix a basis for the relative homology group H1.S;†;Z/. If † D fp1; : : : ; png, this
is typically done by picking a (symplectic) basis

1; : : : ; 2g

for absolute homology H1.S;Z/, and then picking a curve 2gCi from pi to pn for each
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i D 1; : : : ; n � 1. The map

QH.�/! Cn; .X; !; Œf �/ 7!

�Z
f�i

!

�2gCs�1
iD1

is locally one-to-one and is onto an open subset of Cn. The easiest way to see this is via
flat geometry: These integrals determine the integrals of every relative homology class,
and in particular the complex lengths of the edges in any polygon decomposition for
.X; !/. The edges in this polygon decomposition of course determine .X; !/.

The mapping class group of S (with s distinct unlabeled marked points) acts on QH.�/
by precomposition of the marking. The induced action on these Cn coordinates is via
GL.n;Z/ (change of basis for relative homology). The quotient is H.�/.

In this survey we will ignore orbifold issues, and just pretend strata are complex man-
ifolds rather than complex orbifolds. Given a translation surface .X; !/, and a basis i of
the relative homology group H1.X;†;Z/, we will refer to�Z

i

!

�2gCs�1
iD1

2 Cn

as period coordinates near .X; !/. Implicit in this is that the basis can be canonically
transported to nearby surfaces in H.�/, thus giving a map from a neighbourhood of .X; !/
to a neighbourhood in Cn. However, when X has automorphisms preserving !, this is
not the case canonically. This is precisely the issue we are ignoring when we pretend that
H.�/ is a manifold instead of an orbifold.

It is precisely the period coordinates that provide strata an atlas of charts to Cn with
transition functions in GL.n;Z/. The transition functions are change of basis matrices
for relative homology H1.X;†;Z/.

Compactness criterion. Strata are never compact. Even the subset of unit area transla-
tion surface is never compact. (Here and throughout these notes we refer to the analytic
topology, which is the weakest topology for which period coordinates are continuous.)

Masur’s compactness criterion gives that a closed subset of the set of unit area surfaces
in a stratum is compact if and only if there is some positive lower bound for the length of
all saddle connections on all translation surfaces in the subset.

Let us also remark that the map .X; !/ 7! X is not proper, even when restricting to
unit area surfaces. For example, it is possible to have a sequence of translation surfaces
.Xn; !n/ of area 1 in H.1; 1/ converge to .X; !/ 2 H.2/ (so two zeros coalesce) in the
bundle of Abelian differentials over the moduli space of Riemann surfaces. However,
such a sequence .Xn; !n/ will diverge in H.1; 1/: there will be shorter and shorter saddle
connections joining the two zeros.

Every Abelian differential in genus two. We now give flat geometry pictures of all
Abelian differentials in genus 2. The discussion includes only sketches of proofs.
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Proposition 1.16. Every translation surface in H.2/ can be obtained by gluing a cylinder
into a slit torus, as in Figure 10. Every translation surface in H.1; 1/ is obtained from the
slit torus construction, as in Figure 11.

Lemma 1.17. For any translation surface in genus 2, not every saddle connection is fixed
by the hyperelliptic involution �.

Proof. Triangulate the surface. If every saddle connection in this triangulation was fixed
by the hyperelliptic involution, then each triangle would be mapped to itself. However,
no triangle has rotation by � symmetry, so this is impossible.

Sketch of proof of proposition. Fix a translation surface in H.2/, and a saddle connection
c not fixed by �. Since �� acts on homology by �1, c and �.c/ are homologous curves.
Cutting c and �.c/ decomposes the surface into two subsurfaces with boundary, one of
genus one and one of genus zero. The genus zero component is a cylinder and the genus
one part must be a slit torus.

Figure 10: Every translation surface in H.2/ admits a deposition into a cylinder and a slit
torus, and hence can be drawn as in this picture. Opposite sides are identified.

Figure 11: Every translation surface in H.1; 1/ comes from the slit torus construction,
and thus can be drawn as in this picture.

Similarly for a translation surface in H.1; 1/, consider a triangulation. This must
contain at least one triangle with one vertex at one of the singularities, and the other
two vertices at the other singularity (i.e., for at least one of the triangles, not all corners
are at the same singularity). At most one of the edges of this triangle is fixed by the
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hyperelliptic involution, so the triangle must have at least one edge c that is not fixed by
the hyperelliptic involution and goes between the two zeros.

Cutting along c and �.c/ decomposes the surface into two tori. In other words, every
translation surface in H.1; 1/ may be obtained from the slit torus construction.

Philosophical conclusions. Polygon decompositions and flat geometry provide a funda-
mentally different way to think about Abelian differentials on complex algebraic curves.
In this perspective an Abelian differential is extremely easy to write down (as a collec-
tion of polygons), and it is easy to visualize deformations of this Abelian differential (the
edges of the polygons change). However, some things become more difficult in this per-
spective. For example, given a plane algebraic curve it is often an easy exercise to write
down a basis of Abelian differentials. However, given a translation surface given in terms
of polygons, this is typically impossible to do. And it is typically a transcendentally diffi-
cult problem to write down the equations for the algebraic curve given by some polygon
decomposition.

The study of translation surfaces and algebraic curves is enriched by the transcenden-
tal connections between the two perspectives.

2. Affine invariant submanifolds

2.1. Definitions and first examples. Fix a stratum, and a translation surface .X; !/ in
the stratum. As always, let † � X be the zeros of !.

There is a linear injection H 1;0.X/ ! H1.X;†;C/� D H 1.X;†;C/. Given ! 2
H 1;0.X/, the linear functional it determines in H1.X;†;C/� is simply integration of
! over relative homology classes. Given a basis 1; : : : ; n of H1.X;†;Z/, we get an
isomorphism

H 1.X;†;C/! Cn; � 7! .�.i //
n
iD1 :

The period coordinates of the previous section are just the composition of the map sending
.X; !/ to ! considered as a relative cohomology class, followed by this isomorphism to
Cn. About half the time it is helpful to forget this coordinatization, and just consider
period coordinates as a map to H 1.X;†;C/ sending .X; !/ to the relative cohomology
class of !.

In the next definition we fix a stratum H D H.�/, where � is a partition of 2g� 2 and
g is the genus.

Definition 2.1. An affine invariant submanifold is the image of a proper immersion f
of an open connected manifold M to a stratum H, such that each point p of M has a
neighbourhood U such that in a neighbourhood of f .p/, f .U / is determined by linear
equations in period coordinates with coefficients in R and constant term 0.

The difference between immersion and embedding is a minor technical detail, so for
notational simplicity we will typically consider an affine invariant submanifold M to
be a subset of a stratum. The definition says that locally in period coordinates M is a
linear subspace of Cn. The requirement that the linear equations have coefficients in R
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is equivalent to requiring that the linear subspace of Cn is the complexification of a real
subspace of Rn (or, in coordinate free terms, of H 1.X;†;R/).

The word “affine” does not refer to affine varieties; it refers to the linear structure on
Cn. (Perhaps “linear” would be a better term than “affine”, but this is the terminology in
use.)

Figure 12: Period coordinates .v1; v2; v3; v4; v5/ 2 C5 have been indicated on two sur-
faces in H.1; 1/ (upper and lower left) that are degree four translation covers of tori (upper
and lower right). The linear equations indicated locally cut out the locus of surfaces in
H.1; 1/ that are degree four translation covers of tori branched over 1 point.

In these notes, when we refer to the dimension of complex manifolds or vector spaces,
we will mean their complex dimension.

Note that affine invariant submanifolds must have dimension at least 2. This is be-
cause if .X; !/ is a point on an affine invariant submanifold, then the linear subspace
must contain the real and imaginary parts of the period coordinates, and these cannot
be collinear. That they cannot be collinear follows from the fact that Re.!/ and Im.!/
cannot be collinear real cohomology classes, becauseZ

X

Re.!/ Im.!/

gives the area of the translation surface. (Locally! D dz D dxCidy, so Re.!/ Im.!/ D
dxdy.)

Example 2.2. Let M be a connected component of the space of degree d translation
covers of a genus one translation surface, which is allowed to vary, branched over k
distinct points. Then M is an affine invariant submanifold of whichever stratum it lies in.
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Indeed, M is a .k C 1/-dimensional immersed manifold: the moduli space of genus
one translation surfaces is 2-dimensional, and after one branched point is fixed at 0, the
other k � 1 are allowed to vary on the torus. So it suffices to see that locally in period
coordinates, M is contained in an .k C 1/-dimensional linear subspace.

Let .X; !/ 2M, and say f W .X; !/! .X 0; !0/ is the translation covering, branched
over k points. Let † � X be the set of zeros of !, and †0 � X 0 be the set of branch
points of f , so f .†/ D †0.

Let  2 ker.f�/ � H1.X;†;Z/, and note thatZ


! D

Z


f �.!0/

D

Z
f�

!0 D 0:

Thus since ker.f�/ has dimension dimCH1.X;†;C/� dimCH1.X
0; †0;C/, we see that

locally M lies in an dimCH1.X
0; †0;C/ D .kC1/-dimensional linear subspace in period

coordinates, as desired.
To rephrase the discussion in coordinate free terms, the relative cohomology class of

! lies in f �.H 1.X 0; †0;C//.
Example 2.3. Fix a stratum H and numbers k and d , and let M be a connected compo-
nent of the space of all degree d translation covers of surfaces in H branched over k � 0
distinct points. Then similarly M is an affine invariant submanifold.

Similarly, if M is an affine invariant submanifold, and M0 is a connected component
of the space of all degree d translation covers of surfaces in M branched over k � 0

distinct points, then M0 is also an affine invariant submanifold.

Example 2.4. Fix a stratum H and a number k, and let Q be a connected component of
the locus of .X; !/ 2 H where X admits an involution � with ��.!/ D �! and k fixed
points. Then Q is an affine invariant submanifold of H (although it may be empty). It is
locally defined by the equations Z

��

! C

Z


! D 0;

for  2 H1.X;†;Z/.
A special case of this example is when � is the hyperelliptic involution. In some strata,

there is a whole connected component of hyperelliptic surfaces; in some, there are none;
and in some, the hyperelliptic surfaces form a proper affine invariant submanifold.

2.2. Real multiplication in genus 2. We will begin with an elementary construction of
some affine invariant submanifolds in genus 2. After we have constructed them, we will
show that they parameterize Riemann surfaces X whose Jacobian admits real multiplica-
tion with ! as an eigenform.

These affine invariant submanifolds were independently discovered by McMullen and
Calta [27, 6] from very different perspectives. Our presentation is variant of McMullen’s,
and we suggest that the interested reader also consult [27].
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For the next proposition, recall that H 1;0.X/ can be considered as a subspace of
H 1.X;C/, and that there is a natural symplectic pairing h�; �i on H 1.X;Z/. An endo-
morphism M of H 1.X;Z/ is called self-adjoint (with respect to this symplectic form)
if hMv;wi D hv;Mwi for all v;w 2 H 1.X;Z/. Note that different eigenspaces for a
self-adjoint endomorphism must be symplectically orthogonal, since if Mv D �v and
Mw D �w, then

�hv;wi D hMv;wi D hv;Mwi D �hv;wi:

Proposition 2.5. Fix an integer D > 0 not a square. Consider the locus of .X; !/
in H.1; 1/ or H.2/ for which there is a self-adjoint endomorphism M W H 1.X;Z/ !
H 1.X;Z/ whose extension to H 1.X;C/ satisfies

M! D
p
D!:

In H.1; 1/ this locus is a finite union of 3-dimensional affine invariant submanifolds, and
in H.2/ it is a finite union of 2-dimensional affine invariant submanifolds.

In the proof, it is important to remember that because
R
X

Re.!/ Im.!/ > 0, the re-
striction of the symplectic form to the subspace span.Re.!/; Im.!// is symplectic.

Proof. First we will check that this locus is closed. (Recall that our default topology is the
analytic topology, which we are referring to here.) Suppose that .Xn; !n/ is a sequence
of surfaces in this locus, converging to .X; !/. We will first show that necessarily .X; !/
is in the locus, and hence the locus is closed.

Let Mn denote the endomorphism for .Xn; !n/. This endomorphism Mn has twop
D-eigenvectors, Re.!n/ and Im.!n/. SinceMn is an integer matrix, its�

p
D-eigensp-

ace is the Galois conjugate of its
p
D-eigenspace, and hence must also be 2-dimensional.

Since Mn is self-adjoint, the
p
D and �

p
D-eigenspaces are symplectically orthogonal.

In particular, the �
p
D-eigenspace is the symplectic perp of the

p
D-eigenspace.

Note that !n converges to ! as cohomology classes. (The topology on strata is the
topology on period coordinates, and period coordinates exactly determine the relative
cohomology class of !.) Hence Mn converges to an endomorphism M of H 1.X;Z/,
which acts by

p
D on span.Re.!/; Im.!// and by �

p
D on the symplectic perp. Thus

.X; !/ is in the locus also, and we have shown the locus is closed.
We must now show linearity. For this, it is important to note that above, since

End.H 1.X;Z// is a discrete set, we see that Mn is in fact eventually constant. So any
.X 0; !0/ in the locus close to .X; !/ has the same endomorphism.

Suppose .X; !/ is in the locus, with endomorphism M . Consider the set of .X 0; !0/
sufficiently close to .X; !/ for which M!0 D

p
D!0. Since this equation is linear, we

see that locally the locus is linear.
In other words, !0 must lie in the 2-dimensional

p
D-eigenspace inH 1.X;C/. In the

4-dimensional H.2/ the set of such !0 is 2-dimensional, however in the 5-dimensional
H.1; 1/, this set is 3-dimensional. (Period coordinates for H.2/ may be considered as
a map to H 1.X;C/, and for H.1; 1/ they may be considered as a map to H 1.X;†;C/.
There is a natural map from H 1.X;†;C/ to H 1.X;C/, and we are requiring that the
image of ! lies in a codimension 2 subspace there.)
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We can be more explicit about the linear equations that define the locus in period
coordinates. Indeed, suppose that 1; 2 2 H1.X;Z/ are such that 1; 2;M �1;M �2
are a basis, where M � denotes the dual linear endomorphism of H1.X;Z/. Then the
linear equations are Z

M�i

! D
p
D

Z
i

!; for i D 1; 2:

Examples. Let us now show the these loci are nonempty in H.2/, by giving explicit
examples. A similar argument could show that these loci are nonempty in H.1; 1/. (But
in H.1; 1/ there is a softer argument as well, which we will not present.)

Proposition 2.6. The surfaces indicated in Figure 13 are in the loci described in Propo-
sition 2.5. (But the D in the proposition might not be the same as the D in the figure.)

Figure 13: Opposite sides are identified, and all edges are vertical or horizontal. The
numbers indicate signed real length in the direction indicated, and the parameters x; z are
rational.

Lemma 2.7. For the translation surface .X; !/ in Figure 13,

span.Re.!/; Im.!//

is symplectically orthogonal to the Galois conjugate subspace of H 1.X; !/.

Proof. Since the periods of ! are in QŒ
p
D; i�, we can define a cohomology class !0 in

H 1.X;QŒ
p
D; i�/ that is Galois conjugate to !. Note that !0 is not expected to be repre-

sented by a holomorphic 1-form. It can be described more concretely via the isomorphism

H 1.X;QŒ
p
D; i�/ D Hom.H1.X;Z/;QŒ

p
D; i�/:
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Figure 14: A basis of homology is indicated.

From this point of view, !0 is the composition of ! with the field endomorphism of
QŒ
p
D; i� that fixes i and sends

p
D to �

p
D.

In Figure 15, note that ˛1; ˇ1; ˛2; ˇ2 � ˇ1 is a symplectic basis of homology. So, if
�; 2 H 1.X;R/ D Hom.H1.X;R/;R/, we can compute their symplectic pairing as

h�; i D �.˛1/ .ˇ1/ � �.ˇ1/ .˛1/

C �.˛2/ .ˇ2 � ˇ1/ � �.ˇ2 � ˇ1/ .˛2/:

Suppose that we set Aj D 1
i

R
˛j
! and Bj D

R
ˇj
!. We are assuming that B1 D �1 and

A2 D 1. Then we may compute

hIm.!/;Re.!0/i D A1B 01 C A2.B
0
2 � B

0
1/

D �.A1 � B
0
2 � 1/:

If A1 D x C z
p
D and B2 D y C w

p
D, this quantity is zero if and only if x � y D 1

and w D �z.
Both hRe.!/;Re.!0/i and hIm.!/; Im.!0/i are easily seen to be automatically zero,

and hRe.!/; Im.!0/i is the Galois conjugate of �hIm.!/;Re.!0/i. Hence these condi-
tions x � y D 1 and w D �z are equivalent to the orthogonally of span.Re.!/; Im.!//
and span.Re.!0/; Im.!0//.

Proof of Proposition. We define M0 to be the endomorphism of H 1.X;R/ that acts byp
D on span.Re.!/; Im.!// and by�

p
D on the Galois conjugate subspace span.Re.!0/;

Im.!0//. This matrix is rational, and it is self-adjoint if and only if span.Re.!/; Im.!//
and span.Re.!0/; Im.!0// are symplectically orthogonal.

Since M0 is a rational matrix, for some m > 0 we get that M D m2M0 is integral.
Thus .X; !/ is in the locus constructed in the Proposition 2.5, but the D value in the
proposition is m2D here.

Connection to real multiplication. Recall that the complex vector space H 1;0.X/ is
canonically isomorphic as a real vector space toH 1.X;R/, via the map ! 7! Re.!/. The
natural symplectic form on H 1.X;R/ pulls back to the pairing

h!1; !2i D
1

2
Re
�Z

!1!2

�
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onH 1;0.X/. This symplectic form onH 1;0.X/ is compatible with the complex structure
on H 1;0.X/, in that hi!1; i!2i D h!1; !2i and �h!; i!i > 0 for all ! ¤ 0.

We will let H 1;0.X/� denote the dual of the complex vector space H 1;0.X/. As a
real vector space, H 1;0.X/� is canonically isomorphic to H1.X;R/, via the usual inte-
gration pairing between homology classes and Abelian differentials. The spaceH 1;0.X/�

inherits a dual compatible symplectic pairing, which we will also denote h�; �i.

Definition 2.8. The Jacobian Jac.X/ of a Riemann surface X is the complex torus
H 1;0.X/�=H1.X;Z/, together with the data of the symplectic pairing h�; �i on its tan-
gent space to the zero. (This tangent space is H 1;0.X/�.) An endomorphism of Jac.X/
is an endomorphism of the complex torus. An endomorphism is called self-adjoint if the
induced endomorphism on the tangent space to the identity is self-adjoint with respect to
the symplectic form.

Thus, endomorphisms of Jac.X/ can be thought of either as complex linear endomor-
phisms of H 1;0.X/� that preserve H1.X;Z/, or as linear endomorphisms of H1.X;Z/
whose real linear extension to H 1;0.X/� happens to be complex linear. From our point
of view, the second perspective is more enlightening, and the requirement of complex
linearity is the deepest part of the definition. This is because the complex structure on
H 1;0.X/� is determined by how H 1;0.X/ sits in H 1.X;C/, i.e., the Hodge decomposi-
tion. The Hodge decomposition varies as the complex structure on X varies, in a some-
what mysterious way. The complex linearity restriction is the only part of the data of an
endomorphism of Jac.X/ that depends on the complex structure on X (the rest could be
defined for a topological surface instead of a Riemann surface).

Recall that a totally real field is a finite field extension of Q, all of whose field em-
beddings into C have image in R. Every real quadratic field is totally real, but there are
cubic real fields that are not totally real, for example QŒ2 1

3 �. An order in a number field
is just a finite index subring of the ring of integers. The key example to keep in mind is
that ZŒ

p
D� is an order in QŒ

p
D�.

Definition 2.9. The Jacobian Jac.X/ of a Riemann surface of genus g is said to have real
multiplication by a totally real number field k of degree g if there is some order O � k
that acts on Jac.X/ by self-adjoint endomorphisms. An Abelian differential ! 2 H 1;0.X/

is said to be an eigenform for this action if it is an eigenvector for the induced action of O
on the cotangent space of Jac.X/ at 0. (This cotangent space is H 1;0.X/.)

Genus two is special for real multiplication because of the following.

Lemma 2.10. Fix a compatible symplectic structure on C2, and let M W C2 ! C2 be a
self-adjoint real linear endomorphism. If M preserves a complex line L 2 C2, then M is
complex linear.

Proof. First note, that the only self-adjoint real linear endomorphisms of R2 are scalars
times identity. (This can be verified in coordinates, for a 2 by 2 matrix and the standard
symplectic form on R2.)

Since the symplectic form is compatible, L? is a complex line. M leaves invariant
the two complex lines L and L?, and acts as a scalar on each, so it must be complex
linear.
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It follows from this that

Theorem 2.11 (McMullen). The loci in H.2/ and H.1; 1/ defined in Proposition 2.5 in
fact parameterize .X; !/ where Jac.X/ admits real multiplication by QŒ

p
D� with ! as

an eigenform.

Proof. From the definition of the eigenform loci we get a self-adjoint action of ZŒ
p
D�

on H 1.X;Z/, where
p
D acts by M . This gives a dual action on H1.X;R/, which

preserves H1.X;Z/. It suffices to show that this action is complex linear. This follows
from the lemma, and the observation that the complex line consisting of the annihilator of
span.Re.!/; Im.!// is preserved by the action.

Remark 2.12. For fixed D, the locus of .X; !/ where Jac.X/ admits real multiplication
by QŒ

p
D� with ! as an eigenform in fact has infinitely many connected components.

This is related to the fact that there are infinitely many orders in QŒ
p
D�. If one fixes

the maximal order that acts on Jac.X/ the situation is greatly ameliorated, for example
the locus in H.1; 1/ is connected and is closely related to a Hilbert modular surface. Mc-
Mullen’s original treatment [27] keeps track of the maximal order, because it is necessary
to study connected components and give the relation to Hilbert modular surfaces. See
also [20].

Remark 2.13. In McMullen’s original work [27], the study of real multiplication arose
naturally from flat geometry and low dimensional topology in the following way. As
we will discuss later in these notes, every .X; !/ in a two complex dimensional affine
invariant submanifold must possess many affine symmetries. McMullen showed that in
genus 2, certain affine symmetries naturally give rise to real multiplication on Jac.X/, and
that ! is an eigenform.

Remark 2.14. It is important to note the proof of Proposition 2.5 doesn’t work in higher
genus. This is because theMn are not guaranteed to converge (they might diverge). (Here
we fix a generator for an order in a totally real number field, and Mn is the action of this
generator.)

Given that the Mn are automatically complex linear in genus 2, it is natural to impose
this condition in higher genus, and try to see if loci of eigenforms as defined in Definition
2.9 give affine invariant submanifolds. With the complex linearity, it turns out the Mn

must converge, which at least lets you show the locus is closed.
However, even with complex linearity the end result isn’t true, because even if M is

complex linear at .X; !/, there is no reason for this to be true at .X 0; !0/. So in higher
genera eigenforms are locally contained in nice linear spaces, but the real multiplication
can vanish as you move from an eigenform .X; !/ to a nearby translation surface .X 0; !0/
whose periods satisfy the same linear equations.

2.3. Torsion, real multiplication, and algebraicity. There is however a still a very
strong connection between endomorphisms of Jacobians and affine invariant submani-
folds in higher genus, as discovered by Möller in the case that the affine invariant sub-
manifold has complex dimension 2.
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Definition 2.15. Given .X; !/, let V � H 1.X;Q/ be the smallest subspace such that
V ˝ C contains !, and such that V ˝ C D V 1;0 ˚ V 0;1, where

V 1;0 D .V ˝ C/ \H 1;0 and V 0;1 D V 1;0:

Set V �Z D f� 2 V
� W �.V \H 1.X;Z// � Zg. Define

Jac.X; !/ D .V 1;0/�=V �Z ;

together with the data of the symplectic form on V �. (This object Jac.X; !/ does not have
a standard name, and this notation is not standard.)

V inherits a symplectic form by restriction from H 1.X;Q/. The restriction is auto-
matically symplectic (i.e., nondegenerate) because of the condition V ˝C D V 1;0˚V 0;1.
The symplectic form on V � is the dual symplectic form.

Jac.X; !/ is a factor of Jac.X/ up to isogeny, and it is the “smallest factor contain-
ing !”.

Definition 2.16. Let p; q be two points of .X; !/. We say that p�q is torsion in Jac.X; !/
if, for any relative homology class p;q of a curve from p to q, there is a  2 H1.X;Q/
such that for all !0 2 V 1;0 (including the most important one !0 D !),Z

p;q

!0 D

Z


!0:

If Jac.X; !/ D Jac.X/, this is equivalent to p � q being torsion in the group Jac.X/.
For every affine invariant submanifold M of complex dimension two, there is a natural
algebraic extension of Q called the trace field, which will be defined in the final sec-
tion. The definition of real multiplication on Jac.X; !/ is exactly analogous to that for
Jac.X/, except the degree of the field is required to be equal to the complex dimension of
Jac.X; !/, which is sometimes less than g, and the order is required to act on Jac.X; !/
(instead of Jac.X/).

Theorem 2.17 (Möller [35, 34]). For every affine invariant submanifold M of complex
dimension two, and every .X; !/ 2M, Jac.X; !/ has real multiplication by an order in
the trace field with ! as an eigenform, and furthermore if p and q are zeros of !, then
p � q is torsion in Jac.X; !/.

This result is actually two deep theorems, and their importance for the field is very
great. One might expect that, given that an affine invariant submanifold is defined in terms
of .X; !/, the other holomorphic 1-forms on X would not be special, but this result says
that they are (since the definition of torsion involves all or many!0, and real multiplication
produces other eigenforms for the Galois conjugate eigenvalues).

The converse of Möller’s result is true, and is much easier than the result itself.

Proposition 2.18 (Wright). Let M be a 2-dimensional submanifold of a stratum (not
assumed to be linear), and suppose that for every .X; !/ 2M, Jac.X; !/ has real multi-
plication by the trace field with ! as an eigenform, and furthermore if p and q are zeros
of !, then p � q is torsion in Jac.X; !/. Then M is an affine invariant submanifold.
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Proof. We must show that M is locally linear. For notational simplicity, we will assume
Jac.X; !/ D Jac.X/.

There are only countably many totally real number fields of degree g, and only count-
ably many actions of each onH 1.X;Q/. Since the locus of eigenforms for each is closed,
we may assume that the totally real number field is constant, and the action onH 1.X;Q/
is locally constant. (Again, this is a simple connectivity argument: The connected space
M is covered by disjoint closed sets, so there can only be one.)

Similarly, we can assume that for each pair of zeros p; q of !, the rational homology
class  in Definition 2.16 is locally constant.

We will show that the span of Re.!/ and Im.!/ does not change in H 1.X;†;C/.
This span gives the linear subspace that locally defines M.

The real multiplication condition gives that the image of this span is locally constant in
absolute homology (it is an eigenspace), and the torsion condition gives that each relative
period

R
p;q

! is equal to an absolute period
R

!, and hence the relative periods are

determined by absolute periods.
That concludes the proof, but in closing we will write down the linear equations ex-

plicitly at .X; !/ 2M, in the case where Jac.X; !/ D Jac.X/. Say the number field is k
and has Q-basis r1; : : : ; rg . Pick two absolute homology classes 1; 2 so that

�.ri /j ; i D 1; : : : ; g; j D 1; 2;

are a basis for H1.X;Q/. Say the zeros of ! are p1; : : : ; ps , and let ˛i be a relative cycle
from pi to ps , for i D 1; : : : ; s � 1. For each i , let ˛0i 2 H1.X;Q/ be given from ˛i by
Definition 2.16. Then the equations areZ

�.ri /j

! D ri

Z
j

!; i D 1; : : : ; g; j D 1; 2;

and Z
˛i

! D

Z
˛0

i

!; i D 1; : : : ; s � 1:

Recently, Simion Filip has generalized Möller’s result to affine invariant submanifolds
of any dimension. As in the previous proposition, this gives enough algebro-geometric
conditions to characterize affine invariant submanifolds, and so Filip is able to conclude
the following [14, 13].

Theorem 2.19 (Filip). All affine invariant submanifolds are quasi-projective varieties.

Filip’s proof crucially uses dynamics, and no other proof is known.

3. The action of GLC.2;R/

This section will begin to set the stage for the following driving theme in the study of
translation surfaces.
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The behavior of certain dynamical systems is fundamentally linked to the structure of
affine invariant submanifolds.

The dynamical systems involved are the action of GLC.2;R/ on each stratum, which
is the topic of this section, and the straight line flow on each individual translation surface,
which is the topic of the next section. It is very important to note that the connections go in
both directions: Dynamical information often powers structural results on affine invariant
submanifolds, and in the opposite direction results about the structure of linear manifolds
are crucial in the study of the dynamical problems.

3.1. Definitions and basic properties. In this section, it is most helpful to think of a
translation surface using the third definition (polygons). Let GLC.2;R/ be the group of
two by two matrices with positive determinant.

There is an action of GLC.2;R/ on each stratum H induced from the linear action
of GLC.2;R/ on R2. If g 2 GLC.2;R/, and .X; !/ is a translation surface given as a
collection of polygons, then g.X; !/ is the translation surface given by the collection of
polygons obtained by acting linearly by g on the polygons defining .X; !/.

Figure 15

Naively, one might thing that g.X; !/ is always very different from .X; !/ when g is
a large matrix, because g distorts any polygon a large amount. But because of the cut and
paste equivalence, this is not the case. For example,

Proposition 3.1. The stabilizer of .C=ZŒi �; dz/ isGLC.2;Z/ D SL.2;Z/. The stabilizer
of any square-tiled surface is a finite index subgroup of GLC.2;Z/.

Proof. Note that g.C=ZŒi �; dz/ D .C=g.ZŒi �/; dz/. This gives that the stabilizer of
.C=ZŒi �; dz/ is exactly the matrices g 2 GLC.2;R/ preserving ZŒi � � C. Hence the
stabilizer of .C=ZŒi �; dz/ is SL.2;Z/.

In general, the stabilizer preserves the periods of a surface. For a square-tiled sur-
face, the periods are ZŒi �, so for any square-tiled surface the stabilizer is a subgroup of
SL.2;Z/.

Now, suppose .X; !/ is a square-tiled surface. For any g 2 SL.2;Z/, g.X; !/ is a
square-tiled surface with the same number of squares. Hence, the stabilizer of .X; !/ is
finite index in SL.2;Z/.

More basic properties are

Proposition 3.2. The SL.2;R/-orbit of every translation surface is unbounded. The
stabilizer of every translation surface is discrete but never cocompact in SL.2;R/.
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Proof. If g 2 GLC.2;R/ is close enough to the identity, then g.X; !/ and .X; !/ are in
the same coordinate chart. The coordinates of g.X; !/ are obtained from those of .X; !/
by acting linearly on C D R2. This shows that for g sufficiently small enough and not the
identity, g.X; !/ ¤ .X; !/, because they have different coordinates. Hence the stabilizer
is discrete.

Figure 16: On the left octagon (with opposite sides identified), both the shaded part and
its complement are horizontal cylinders. On the right octagon, the shaded rectangle is
not a cylinder according to our definition, because its boundary is not a union of saddle
connections. The effect of requiring the boundary to consist of saddle connections is
equivalent to requiring the cylinders to be “maximal”, unlike this example on the right,
whose height could be increased. The regular octagon is horizontally periodic, since it is
the union of two horizontal cylinders (and their boundaries).

Set

r� D

�
cos.�/ � sin.�/
sin.�/ cos.�/

�
and gt D

�
et 0

0 e�t

�
:

For every .X; !/, there is some � such that r� .X; !/ has a vertical saddle connection.
(Pick any saddle connection, and rotate so that it becomes vertical.) On gtr� .X; !/ this
saddle connection is e�t times as long, so as t !1, we see that gtr� .X; !/ has shorter
and shorter saddle connections and hence diverges to infinity in the stratum.

Let � be the stabilizer of .X; !/, and suppose .X; !/ lies in the stratum H. Consider
the natural orbit map

SL.2;R/=� ! H; Œg� 7! g.X; !/:

By definition, � is cocompact if SL.2;R/=� is compact. If SL.2;R/=� were compact,
then its image under this map would be compact also. However, the image is just the
SL.2;R/-orbit of .X; !/, which must be unbounded and hence cannot be compact.

Definition 3.3. A cylinder on a translation surface is an isometrically embedded copy of
a Euclidean cylinder .R=cZ/ � .0; h/ whose boundary is a union of saddle connections.
The number c is the circumference, and the number h is the height of the cylinder. The
ratio h=c is the modulus of the cylinder. The direction of the cylinder is the direction of its
boundary saddle connections (so directions are formally elements of RP 1). A translation
surface .X; !/ is called periodic in some direction if .X; !/ is the union of the cylinders
in that direction together with their boundaries.
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Proposition 3.4. A translation surface contains a matrix of the form�
1 t

0 1

�
in its stabilizer if and only if the surface is horizontally periodic, and all reciprocals of
moduli of horizontal cylinders are integer multiples of t .

Figure 17: Each individual cylinder is stabilized by a parabolic matrix. In this picture,
opposite edges are identified, except for the horizontal edges, which are the upper and
lower boundary of the cylinder. The cylinder on the right can be cut along the dotted line
and re-glued to give the cylinder on the left.

Proof. Assume the surface is horizontally periodic, and all reciprocals of moduli of hor-
izontal cylinders are integer multiples of t . As is illustrated in Figure 17, each horizontal
cylinder of modulus m is stabilized by the matrix�

1 m�1

0 1

�
:

The result follows.
For the converse, see [39].

Note that the previous proposition applies to any direction (not just horizontal) by first
rotating the surface. It is stated for the horizontal direction only for notational simplicity.

3.2. Closed orbits and orbit closures.
Proposition 3.5. Affine invariant submanifolds are GLC.2;R/ invariant.

Proof. It suffices to show that for each .X; !/ in the affine invariant submanifold M there
is a small neighbourhood U of the identity in GLC.2;R/ such that for all g 2 U we have
g.X; !/ 2M. This gives that the set of g for which g.X; !/ 2M is open inGLC.2;R/.
Since M is closed and the action is continuous, this set is also closed. Since GLC.2;R/
is connected, any nonempty subset that is both open and closed must be everything.

If g is small enough, both g.X; !/ and .X; !/ are in the same coordinate chart. The
coordinates of g.X; !/ are obtained by letting g act linearly on the real and imaginary
parts of each coordinate of .X; !/, using the isomorphism C Š R2.

For example, gt scales the real part of the coordinates by et and the imaginary part of
the coordinates by e�t . And ut adds t times the imaginary part of the coordinates to the
real coordinates.
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Since M is defined by linear equations with real coefficients and constant term 0,
both the real and imaginary parts of the coordinates also satisfy the linear equations, as
well as any complex linear combination of them.

That a converse is true is a recently established very deep fact, due to Eskin–Mirzakhani–
Mohammadi [9, 10]. The proof is vastly beyond the scope of these notes. When we say
“closed” below, we continue to refer to the analytic topology on a stratum.

Theorem 3.6 (Eskin–Mirzakhani–Mohammadi). Any closed GLC.2;R/ invariant set is
a finite union of affine invariant submanifolds. In particular, every orbit closure is an
affine invariant submanifold.

This theorem is false if GLC.2;R/ is replaced with the diagonal subgroup: there
are closed sets invariant under the diagonal subgroup that are locally homeomorphic to
a Cantor set cross R. Determining to what extent the theorem holds for the unipotent
subgroup �

1 t

0 1

�
is a major open problem.

The context for these theorems comes from homogenous space dynamics, where Rat-
ner’s Theorems give that orbit closures of a unipotent flow on a homogenous space must
be sub-homogenous spaces.

Because of the work of Eskin–Mirzakhani–Mohammadi (and a converse that will we
discuss below), the term “affine invariant submanifold” is synonymous with “GLC.2;R/-
orbit closure”, usually abbreviated “orbit closure”. Sometimes we will consider orbit
closures for actions of subgroups of GLC.2;R/, but in these cases we will make this
clear by specifying the subgroup. The default is GLC.2;R/ (or, for some other people,
SL.2;R/).

Closed orbits. Let us now turn to the case of 2-dimensional affine invariant submani-
folds M. In this case GLC.2;R/ acts transitively on M. (Indeed, the real dimension of
GLC.2;R/ is equal to that of M, and it is easily checked that the GLC.2;R/-orbit of
any point is open in M. The different GLC.2;R/-orbits in M are open disjoint sets, so
since M is connected there must only be one. Hence M is the GLC.2;R/-orbit of any
translation surface in M.)

Thus “closed GLC.2;R/-orbit” is synonymous with “2-dimensional affine invariant
submanifold.”

Remark 3.7. We have already given a number of examples of 2-dimensional affine in-
variant submanifolds, namely the eigenform loci in H.2/, and spaces of branched covers
of genus 1 translation surfaces branched over exactly 1 point.

The following result has more than one proof [49, 45], but all known proofs follow
the same basic outline and use dynamics in a nontrivial way.

Theorem 3.8 (Smillie). Suppose that .X; !/ 2 H has closed orbit and stabilizer � . Then
the orbit map

GLC.2;R/=� ! H; Œg� 7! g.X; !/

is a homeomorphism, and � is a lattice in SL.2;R/.
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The first conclusion is entirely expected and is standard (but technical to prove), and
the second is deep and fundamentally important.

Remark 3.9. All square tiled surfaces are part of 2-dimensional affine invariant subman-
ifolds and hence have closed orbit. The stabilizer of a square-tiled surface is a finite index
subgroup of SL.2;Z/.

The eigenforms illustrated in Figure 13 must, by Smillie’s theorem, have lattice sta-
bilizer. However, it is very hard to write down this stabilizer, even in specific examples.
The orbifold type of the stabilizer was computed in [29, 3, 41], and an algorithm for
computing the stabilizer was given in [40].

Finally, we note that if M is a 2-dimensional orbit closure, then the projection to the
moduli space of Riemann surfaces (via .X; !/ 7! X ) is 1-dimensional. One complex
dimension is lost, since .X; !/ and .X; r!/ map to the same point, for any r 2 C. A
corollary of Smillie’s theorem (and also Filip’s theorem, obtained much later) is that this
projection of M is in fact an algebraic curve.

Proposition 3.10. The projection of closed orbit to the moduli space of Riemann surfaces
is an algebraic curve, which is isometrically immersed with respect to the Teichmüller
metric.

Isometrically immersed curves in the moduli space of Riemann surfaces are called
Teichmüller curves. Up to a “double covering” issue relating quadratic differentials to
Abelian differentials, all Teichmüller curves are projections of closed orbits.

Royden has shown that the Kobayashi metric on the moduli space of Riemann sur-
faces is equal to the Teichmüller metric. Using this, McMullen has shown that Teich-
müller curves are rigid [33]. The study of Teichmüller curves is a fascinating area at the
intersection of dynamics and algebraic geometry.

See [55] for a list of known Teichmüller curves, and see [31, 36, 5, 42] for some
finiteness results.

Stable and unstable manifolds for gt . We will now give a flavor of the dynamics of the
gt action. We will not return to this explicitly in these notes, but the ideas we present now
underlie most of the proofs that have been omitted from these notes.

Say the period coordinates of .X; !/ are vj D xj C iyj for j D 1; : : : ; n. We can
then think of .X; !/ in coordinates as a 2 by n matrix whose first row gives the real parts
of period coordinates, and whose second row gives the imaginary parts.�

x1 x2 � � � xn
y1 y2 � � � yn

�
The advantage of writing the coordinates this way is that any g 2 GLC.2;R/ close to the
identity (so g.X; !/ stays in the same chart) acts by left multiplication. In particular, for
small t we have that gt .X; !/ is the matrix product�

et 0

0 e�t

��
x1 x2 � � � xn
y1 y2 � � � yn

�
:
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However, for large t , we expect gt .X; !/ will have left the coordinate chart. When it
enters a different coordinate chart, a change of basis matrix can be used to compute the
new coordinates from the old. This matrix is a n by n invertible integer matrix, which we
will call At .X; !/. (This is an imprecise definition of At .X; !/, which of course depends
on choices of coordinates, etc.)

We get that the coordinates of gt .X; !/ are�
et 0

0 e�t

��
x1 x2 � � � xn
y1 y2 � � � yn

�
At .X; !/:

The matrix At .X; !/ is called the Kontsevich–Zorich cocycle. It is a cocycle in the dy-
namical systems sense, which simply means

AtCs.X; !/ D At .gs.X; !//As.X; !/:

The Kontsevich–Zorich cocycle is the complicated part of the dynamics of gt . However,
its effect is usually beat out by the effect of the .et /’s on the left. In particular,

Theorem 3.11 (Masur, Veech, Forni [24, 47, 16]). Fix an affine invariant submanifold
M. For almost every .X; !/ 2M, and every .X 0; !0/ in the same coordinate chart with
the same real parts of period coordinates, the distance between gt .X; !/ and gt .X 0; !0/
goes to zero as t !1.

Without the interference of the Kontsevich–Zorich cocycle, this would simply be the
obvious fact that�

et 0

0 e�t

��
0 0 � � � 0

y1 � y
0
1 y2 � y

0
2 � � � yn � y

0
n

�
! 0:

The theorem says that even with the Kontsevich–Zorich cocycle added in on the left this
still holds.

Overall, gt expands the real parts of period coordinates exponentially, and contracts
the imaginary parts exponentially. But the reader should be warned that there are technical
complications arising from the fact that strata are not compact.

Flows or transformations that expand and contract complimentary directions expo-
nentially are called hyperbolic. Using the hyperbolic dynamics of gt , one can show that
every affine invariant submanifold is a gt -orbit closure. In particular,

Theorem 3.12. Every affine invariant submanifold is a GLC.2;R/-orbit closure.

4. The straight line flow

For much of this section, a good reference is the survey [39].

4.1. Definition and basic properties. Fix a unit length vector v 2 C. The straight line
flow on a translation surface .X; !/ sends each point to the point obtained by starting at
that point and moving in the direction v at unit speed for time t . This gives for each t 2 R
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a map �vt W .X; !/ nBt ! .X; !/, where Bt is the set of “bad points” whose straight line
flow hits a singularity in time at most t . Bt consists of a finite union of line segments.

Let B D [tBt . Although this set might be dense, it has measure zero and hence
it should be considered to be of negligible size. The straight line flow is defined on
.X; !/ n B for all time t .

One of the reasons straight line flow is important is because billiard trajectories in
rational polygons “unfold” to orbits of straight line flow. This was the original motivation
for unfolding rational polygons to translation surfaces; instead of bouncing off the edges
of the polygon, the trajectory can continue straight into a reflected copy of the polygon.

Figure 18: The colored line segments consist of (some of the) points whose orbit under
straight line flow in direction v hits the singularity in finite time.

The most basic question about straight line flow is: can the surface be cut into pieces
invariant under the straight line flow? The easiest thing to do is to cut out all saddle
connections in direction v. Possibly this disconnects the surface, possibly not.

Definition 4.1. A straight line flow is called minimal if every orbit that is defined for all
time is dense.

Let v have irrational slope, and let .X; !/ D .C=ZŒi �; dz/. The straight line flow in
direction v on .X; !/ is minimal. The proof of this will follow from a more general result
below, but the reader is invited to try to convince them self now that this flow is minimal.

Figure 19: A billiard trajectory in the square (left) “unfolds” to a straight line flow trajec-
tory in the associated translation surface (right).
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Figure 20: Opposite sides are identified, and segmentA on the left is identified to segment
A on the right, etc., to give a translation surface in H.2/ that we think of as a cylinder
glued onto a slit torus. Then removing the saddle connections A and B disconnects the
surface, giving a slit torus (left) and a cylinder (right). If the segment A has irrational
slope and the torus is 1 by 1, then the flow in direction A will be minimal in the slit torus,
and periodic on the cylinder.

Proposition 4.2 (Katok–Zemljakov [59]). After removing all saddle connections in a
given direction on a translation surface .X; !/, each connected component is either a
cylinder or has minimal straight line flow in the given direction.

This is a striking dichotomy: on each component, either every single orbit is periodic
(the cylinder case), or every single orbit is dense.

Proposition 4.3. On every .X; !/, the straight line flow is minimal in all but countably
many directions.

Proof. There are only countably many saddle connections. In any direction that does not
have saddle connections, the previous result says the straight line flow must be minimal.

4.2. Ergodicity. A measure preserving flow on a space Y with a probability measure m
is a homomorphism � from R to the group of invertible measure preserving transforma-
tions from Y to itself. (These transformations are typically only considered to be defined
on set of full measure.)

Definition 4.4. A measure preserving flow on a space Y with probability measure m is
said to be ergodic if Y cannot be written as the disjoint union of two subsets that are
invariant under the flow and each of positive measure.

The flow is uniquely ergodic if m is the unique invariant measure for the flow. (It
follows that m is ergodic.)

Thus ergodicity is a basic indecomposability condition saying that the dynamics can-
not be split into two smaller pieces (each of which could be studied separately). It is some-
what surprising that it implies the following strong restriction on the dynamics, whose
proof is nontrivial but can be found in any book on ergodic theory.

Theorem 4.5 (Birkhoff Ergodic Theorem). Let � be a measure preserving ergodic flow
on a space Y with probability measure m, and let f 2 L1.Y;m/. Then, for m-almost
every y 2 Y ,

lim
T!1

1

T

Z T

0

f .�t .y//dt D

Z
Y

fdm:
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You should think of the case where f D �A is the characteristic function of a set A.
Then the theorem says that long orbit segments f�t .y/ W t 2 Œ0; T �g spend about m.A/
of their time in A. Thus the Birkhoff Ergodic Theorem says that almost every orbit is
equidistributed, in that

lim
T!1

1

T
Leb.ft W t 2 Œ0; T �; �t .y/ 2 Ag/! m.A/;

where Leb denotes Lebesgue measure on R and A � Y is any measurable set. (Techni-
cally, to be true as stated, some additional restriction must be place on A, for example, A
is open. Otherwise any given orbit can be removed from any measurable set A, giving a
set A0 often of the same measure of A, but which the given orbit does not intersect at all.)

Renormalization of straight line flow. Say that the gt -orbit

fgt .X; !/; t � 0g

is recurrent if there is some compact set K of the stratum, such that gt .X; !/ 2 K for
arbitrarily large t . This exactly says that gt .X; !/ does not diverge to infinity.

Given an orbit segment of vertical straight line flow on .X; !/ of length L, it yields
an orbit segment of vertical straight line flow on gt .X; !/ of length e�tL. In this way
long orbit segments of vertical straight line flow become small under gt , and we say that
gt renormalizes the vertical straight line flow. This idea of replacing a long orbit segment
of a dynamical segment for a shorter orbit segment of a different but related dynamical
system is called renormalization, and is fundamental in dynamics. For the straight line
flow, it was used to prove the following.

Theorem 4.6 (Masur’s criterion [25]). Suppose that gt .X; !/ is recurrent. Then the
vertical straight line flow on .X; !/ is uniquely ergodic.

The converse is not true, however the result is extremely powerful.

Theorem 4.7 (Kerkhoff–Masur–Smillie [21]). For every .X; !/ and almost every � 2
Œ0; 2�/, gt .r� .X; !// is recurrent (as � is fixed and t !1). Thus, for every .X; !/, the
straight line flow is uniquely ergodic in almost every direction.

This implies the same result for billiard flows in rational polygons.

Remark 4.8. There exist .X; !/ such that the vertical flow is minimal but not uniquely
ergodic. This is a bit strange; every orbit is dense, but most orbits are not equidistributed,
and hence somehow favor (spend more time than expected in) some parts of .X; !/.

4.3. Complete periodicity. The dynamics are much more restricted for .X; !/ that lie
in a 2-dimensional affine invariant submanifold. Such .X; !/ are called lattice surfaces,
since their stabilizer is a lattice in SL.2;R/.

Theorem 4.9 (Veech dichotomy [48]). For any lattice surface, in the direction of any
saddle connection the surface is periodic. In all other directions the straight line flow is
uniquely ergodic.
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This is the same dichotomy that holds for .C=ZŒi �; dz/, where the flow is periodic in
the rational directions, and uniquely ergodic in the irrational directions.

The proof of the following lemma is easy, but it will be omitted, because it requires
familiarity with the geodesic flow on a finite volume complete hyperbolic surface (every
geodesic is either recurrent, or it eventually goes straight out a cusp, and the action of gt
on SL.2;R/=� is geodesic flow on the unit tangent bundle to a hyperbolic surface).

Lemma 4.10. For lattice surface .X; !/, either gt .X; !/ is recurrent, or .X; !/ is stabi-
lized by some matrix �

1 0

s 1

�
with s ¤ 0.

Proof of Veech dichotomy. It suffices to prove the statement for the vertical direction (since
the surface can be rotated to make any direction vertical).

By the lemma, either gt .X; !/ is recurrent, or .X; !/ is stabilized by the matrix above.
In the first case, Masur’s criterion gives that the flow is uniquely ergodic (and it is easy to
see there can be no vertical saddle connections, or else gt .X; !/ would diverge). In the
second case, Proposition 3.4 gives that the surface is the union of vertical cylinders (and
so there are vertical saddle connections, on the boundary of the cylinders).

We will also give a more modern proof of just the first statement, together with a
generalization. For this we will need

Theorem 4.11 (Minsky–Weiss, Smillie–Weiss [43, 45]). The ut -orbit closure of any
.X; !/ contains a horizontally periodic surface.

Recall ut D
�
1 t

0 1

�
.

Lemma 4.12. For any horizontal cylinder or saddle connection on .X; !/, and each t ,
there is a corresponding horizontal cylinder or saddle connection on ut .X; !/.

Furthermore, there is a corresponding horizontal cylinder or union of horizontal sad-
dle connections on each translation surface .X 0; !0/ in the ut -orbit closure of .X; !/.

Proof. The first statement follows because the matrix ut fixes the horizontal direction.
Now consider .X 0; !0/ D limn!1 utn.X; !/. For each horizontal cylinder on .X; !/,
there is a corresponding horizontal cylinder on each utn.X; !/, and hence there is also a
horizontal cylinder in the limit.

The same argument applies equally well to horizontal saddle connections, except that
possibly in the limit a zero could “land” on the interior of the saddle connection, subdi-
viding it into several horizontal saddle connections.

Proposition 4.13 (One part of the Veech dichotomy). Suppose .X; !/ is a lattice surface,
and has a horizontal saddle connection. Then .X; !/ is horizontally periodic.
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Proof. Let .X 0; !0/ be horizontally periodic and in the ut .X; !/-orbit closure of .X; !/.
Let T be large, so uT .X; !/ is very close to .X 0; !0/. The horizontal saddle connection is
present on .X 0; !0/ as a union of horizontal saddle connections (it will turn out to be only
one). There must be some matrix g 2 SL.2;R/ close to the identity so guT .X; !/ D
.X 0; !0/, because they are both in the same orbit. Also, g must preserve the horizontal
direction, since it must preserve the horizontal saddle connections. However, that means
g is a unipotent upper triangular matrix g D uS , so uTCS .X; !/ is horizontally periodic,
so .X; !/ is horizontally periodic.

Definition 4.14. A rel deformation of translation surface is a path .Xt ; !t /; t 2 Œa; b�, in
a stratum, such that for any absolute homology class  ,

R

!t is constant.

Thus along rel deformations absolute periods are constant, but relative periods (i.e.,
the complex distance between zeros of !) can change.

Figure 21: The translation surface on the right and the one on the left are rel deformations
of each other. More generally, changing the length of the slit in the slit torus construc-
tion gives a rel deformation. It is possible to write down a basis for absolute homology
consisting of cycles disjoint from the slit, which shows that the integral of any absolute
homology class does not change as the complex length of the slit is changed.

Example 4.15. If .X 0; !0/ is a translation cover of .X; !/, then moving the branch points
gives a rel deformation of .X 0; !0/, consisting entirely of surfaces that cover .X; !/.
(Compare to the computations in Example 2.2.)
Lemma 4.16. Suppose that .X; !/ and .X 0; !0/ are nearby surfaces in some stratum,
and as subspaces of absolute cohomology H 1.X;C/ we have

spanR.Re.!/; Im.!// D spanR.Re.!0/; Im.!0//:

Then there is some g 2 GLC.2;R/ close to the identity such that g.X 0; !0/ is a rel
deformation of .X; !/.

Proof. By assumption, there are constants a; b; c; d 2 R such that, in absolute cohomol-
ogy,

Re.!0/ D aRe.!/C b Im.!/ and Im.!0/ D c Re.!/C d Im.!/:

Thus if

g D

�
a b

c d

�
;

then g.X; !/ and .X 0; !0/ have the same absolute periods, and hence are rel deformations
of each other. In particular, the linear path in local periods joining g.X; !/ and .X 0; !0/
is a rel deformation.
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Figure 22: Opposite edges are identified (the bottom edges each consist of two saddle
connections), giving two surfaces in H.1; 1/. The translation surface on the right and
the surface on the left are rel deformations of each other. The surface on the right was
obtained from the one on the left by subtracting 1 from the height of the bottom cylinder,
and adding 1 to the height of the two top cylinders.

Definition 4.17. An affine invariant submanifold M is rank 1 if, for every .X; !/ 2M,
there is an open neighbourhood U containing .X; !/, such that for every .X 0; !0/ 2 U
there is a g 2 GLC.2;R/ close to the identity such that there is a rel deformation in U
from .X 0; !0/ to g.X; !/.

A definition of rank will be given in the next section, so this can be considered a pro-
visional definition of rank 1. It can be rephrased as saying that the GLC.2;R/ directions
and the directions of rel deformations in M span the tangent space to M at every point.
By the previous lemma, it can also be rephrased as saying that span.Re.!/; Im.!// is
locally constant on M.

Proposition 4.18. Let M be a 2-dimensional affine invariant submanifold. Then M
is rank 1. Furthermore, let M0 be a connected component of the space of degree d
translation covers of surfaces in M branched over k points. Then M0 is rank 1 also.

Proof. A 2-dimensional affine invariant submanifold M is a singleGLC.2;R/-orbit, and
so is in particular rank 1 (the rel deformations aren’t even required).

If .X 0; !/ 2M0 is a cover of .X; !/ 2M, then a neighborhood in M0 of .X 0; !0/ is
obtained by changing .X; !/ by a small matrix in GLC.2;R/, and changing the location
of the branch points.

Proposition 4.19. The eigenform loci in genus two constructed in Section 2 are rank 1.

Proof. These are defined by saying that the real and imaginary parts of ! should span a
fixed 2-dimensional subspace of absolute homology (the

p
D-eigenspace of M ).

Proposition 4.20 (Wright). If .X; !/ 2M and M is rank 1, then .X; !/ is periodic in
any direction that has a cylinder.

That is, the proposition says that every time you find a cylinder on .X; !/, then .X; !/
is the union of that cylinder and cylinders parallel to it. Before being established in general
in [52] (using a different argument than the one we give here), the proposition was known
in several special cases [48, 6, 23].



Translation surfaces and their orbit closures 97

Proof. Let .X 0; !0/ be horizontally periodic and in the ut -orbit closure of .X; !/.
Let T be large, so uT .X; !/ is very close to .X 0; !0/. The horizontal cylinder is

present on .X 0; !0/. There must be some matrix g 2 SL.2;R/ close to the identity so
guT .X; !/ is a rel deformation of .X 0; !0/. Small rel deformations preserve cylinders,
since the integral over their circumference curve  must remain constant along the rel
deformation. Hence g must preserve the horizontal direction, since it must preserve the
horizontal cylinder which is present on both uT .X; !/ and guT .X; !/.

Thus, every horizontal cylinder on .X 0; !0/ is also horizontal on uT .X; !/. If these
cylinders do not cover uT .X; !/, then it is possible to derive a contradiction, because then
there would be more horizontal cylinders on .X 0; !0/. (Because every horizontal cylinder
on uT .X; !/must also be present on every translation surface in the ut -orbit closure, and
if they do not cover uT .X; !/ then the corresponding cylinders on .X 0; !0/ do not cover
.X 0; !0/, and hence there must be more cylinders on .X 0; !0/ than on .X; !/.)

Remark 4.21. In fact this proof shows that if .X; !/ has a loop  of saddle connections
in a fixed direction such that

R

! ¤ 0, then .X; !/ is periodic in that direction.

We conclude by remarking that there is also a close connection between rank 1 orbit
closures and real multiplication. The proof requires dynamics.

Theorem 4.22 (Filip). If .X; !/ 2M and M is rank 1, then Jac.X; !/ has real multi-
plication.

The conclusion is that rank 1 orbit closures are very close cousins to 2-dimensional
orbit closures, which are a special case.

5. Revisiting genus two with new tools

5.1. Field of definition, VHS.

Definition 5.1. The (affine) field of definition k.M/ of an affine invariant submanifold
M is the smallest subfield of R such that M can be defined in local period coordinates by
linear equations with coefficients in this field [53]. Warning: This is not the same thing as
the field of definition of M viewed as a variety (where polynomial equations are allowed,
and the coordinates are different).

For example, M arising from branched covers over tori, (or over all surfaces in some
other stratum) are defined over Q. The eigenform loci are defined over QŒ

p
D�.

Let H 1 denote the flat bundle over M whose fiber over .X; !/ 2 M is H 1.X;C/,
and let H 1

rel
denote the flat bundle whose fiber over .X; !/ is H 1.X;†;C/, where † is

the set of singularities of .X; !/. Let

p W H 1
rel ! H 1

denote the natural map from relative to absolute cohomology. Viewing

H 1.X;†;C/ D H1.X;†;C/� and H 1.X;C/ D H1.X;C/�;
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the map p is just restriction of a linear functional on H1.X;†;C/ to H1.X;C/ �
H1.X;†;C/. The subspace ker.p/ exactly corresponds to derivatives of rel deforma-
tions.

The flat connection onH 1 orH 1
rel

is often called the Gauss-Manin connection. From
our point of view, it is an extremely simple thing. The cohomology groups H 1.X;C/
and H 1.X;†;C/ are both purely topological objects, and do not depend on the complex
structure on X or the Abelian differential !. (When the Abelian differential changes,
the set † might move a bit by an isotopy.) Thus, varying the complex structure on X
does not change these cohomology groups. In this way, if .X 0; !0/ is nearby .X; !/, then
H 1.X;C/ is identified with H 1.X 0; !0/ (because it is the same exact object!), and simi-
larly for relative cohomology. This identification of nearby fibers is exactly the structure
of a flat connection.

Recall that period coordinates can be considered as the map sending .X; !/ to the
relative cohomology class of ! in H 1.X;†;C/. By definition, M is defined in these
periods by a linear subspace, which we think of as simultaneously giving M in period
coordinates, as well as being the tangent space to M at .X; !/. (The tangent space to a
vector space, at any point, is just the vector space itself.) Thus we can consider the tangent
bundle T .M/ of M as a flat subbundle of H 1

rel
. It is flat because the subspace defining

M in period coordinates does not change as .X; !/ moves around in M.
A flat subbundle E ofH 1 orH 1

rel
is just a subbundle that is locally constant over M.

Associated to such a subbundle is its monodromy representation, which is a representation
of �1.M/ on the fiber of E at the chosen base point of M. It is obtained by dragging
cohomology classes around loops in �1.M/.

A flat subbundle is called simple if it has no nontrivial flat subbundle, or equivalently
if the monodromy representation has no nontrivial invariant subspaces. A flat subbundle
is called semisimple if it is the direct sum of simple subbundles. Two subbundles are
called Galois conjugate if their fibers are Galois conjugate; in particular, this means their
monodromy representations are Galois conjugate.

Definition 5.2. The field of definition of a flat subbundle E � H 1 is the smallest sub-
field of C such that locally the linear subspace E of H 1.X;C/ can be defined by linear
equations (with respect to an integer basis of H1.X;Z/) with coefficients in this field.
The trace field of a flat bundle over M is defined as the field generated by traces of the
corresponding representation of �1.M/.

Theorem 5.3 (Wright [53]). Let M be an affine invariant submanifold. The field of
definition of p.T .M// and trace field of p.T .M// are both equal to k.M/.

Set VId D p.T .M//. There is a semisimple flat bundle W, and for each field embed-
ding � W k.M/! C there is a flat simple bundle V� that is Galois conjugate to VId, such
that

H 1
D

 M
�

V�

!
˚W:

The bundle W does not contain any subbundles isomorphic to any V�. Both W and
˚V� are defined over Q. All direct summands are symplectic and symplectically orthog-
onal.
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In particular,

dimC p.T .M// � degQ k.M/ � 2g:

Corollary 5.4 (Wright). In particular, the field of definition is a number field, and so
any translation surface whose coordinates are linearly independent over Q cannot be
contained in a nontrivial affine invariant submanifold, and hence must have GLC.2;R/-
orbit closure as large as possible. This provides an explicit full measure set of surfaces
whose orbit closure is as large as possible.

The direct sum decomposition of H 1 in Theorem 5.3 was previously established in
the case of Teichmüller curves by Martin Möller [35], and is one of the main tools used
in the study of closed SL.2;R/–orbits.

Theorem 5.5 (Möller [35], Filip [14]). The splitting above is a splitting of Variation of
Hodge Structures. That is, each direct summand is equal to the direct sum of its intersec-
tion with H 1;0 and its intersection with H 0;1.

Again the proofs use dynamics. For an elementary introduction of Variation of Hodge
Structures in the context of orbit closures, see [54].

When the splitting of H 1 is nontrivial (H 1 ¤ p.T .M//), then M parameterizes
translation surfaces whose Jacobians admit nontrivial endomorphisms.

Given that affine invariant submanifolds are varieties, parts (but not all) of the two the-
orems above follow from a theorem of Deligne on semi-simplicity of VHS [7]. However,
in fact both the above theorems were established first, and used by Filip in his proof that
affine invariant submanifolds are varieties. The first theorem used work of Avila–Eskin–
Möller [1], and the following.

Theorem 5.6 (Eskin–Mirzakhani–Rafi [11]). In every affine invariant submanifolds, there
are lots of closed (i.e., periodic) gt -orbits.

This is useful because of a classical result in Teichmüller theory that says the mon-
odromy matrix over such an orbit has simple largest and smallest eigenvalues, with eigen-
vectors Re.!/ and Im.!/. Among other things, this helps to show that there is not a
second copy of p.T .M// in the decomposition of H 1, since otherwise these eigenvalues
would have multiplicity at least two.

The work of Avila–Eskin–Möller used in the proof also shows

Theorem 5.7 (Avila–Eskin–Möller). p.T .M// is symplectic.

Definition 5.8. The rank of an affine invariant submanifold M is 1
2

dimC p.T .M//.

When p.T .M// is 2-dimensional, that means that it must be spanned by the real and
imaginary parts of the absolute cohomology classes given by!. In particular, span.Re.!/;
Im.!// is locally constant, since p.T .M// is always a flat subbundle. By Lemma 4.16,
this means that a neighbourhood of any .X; !/ in M can be generated using GLC.2;R/
and rel deformations, so rank 1 according to this definition agrees with our previous defi-
nition of rank 1.
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5.2. Cylinder deformations. We begin with the observation that, for each cylinder on
a translation surface .X; !/, there is a corresponding cylinder on sufficiently nearby sur-
faces .X 0; !0/. This corresponding cylinder may not have the same direction, height,
circumference, or modulus, however these all change continuously with .X 0; !0/. The
“sufficiently nearby” assumption is required since, along a path a surfaces starting at
.X; !/, the height of the cylinder might reach 0, at which point the cylinder ceases to
be a cylinder.

Figure 23: Consider the shaded horizontal cylinder on the regular octagon surface in H.2/
(left). On any sufficiently small deformation of this surface, the cylinder persists (right).

Definition 5.9. Two cylinders C1 and C2 on .X; !/ 2 M are said to be M-parallel if
they are parallel, and remain parallel on all deformations of .X; !/ in M. (A deformation
is just a nearby surface, connected to .X; !/ via a path in M.) The deformations are
assumed to be small, so that C1 and C2 persist.

Example 5.10. If M is 2-dimensional, it consists of a single GLC.2;R/-orbit. Parallel
cylinders remain parallel under the action ofGLC.2;R/, so two cylinders on a translation
surface in M are M-parallel if and only if they are parallel.

Example 5.11. On the opposite extreme, if M is a connected component of a stratum,
two cylinders are M parallel if and only if they are parallel and their circumference
curves are homologous. Indeed, suppose the core curves are 1 and 2. Then sinceR
1
!0 D

R
2
!0 on all deformations .X 0; !0/ 2 M, the cylinders will always be in the

same direction, which is exactly the direction in C given by this integral.

Lemma 5.12. Two cylinders C1 and C2 on .X; !/ 2 M are M-parallel if and only if
there is a constant c 2 R such that on all deformations .X 0; !0/ 2M,Z

1

!0 D c

Z
2

!0;

where i is the circumference curve of Ci .

In other words, two cylinders on .X; !/ 2M are M-parallel if and only if one of the
linear equations defining M in local period coordinates makes it so.

Proof. Both .X 0; !0/ 7!
R
1
!0 and .X 0; !0/ 7!

R
2
!0 are linear functionals on a neigh-

bourhood of .X; !/ in M, viewed in period coordinates as locally being an open set in a
complex vector space. The cylinders C1; C2 are M parallel if and only if these two linear
functions are always real multiples of each other.

The only way for two linear functionals on a complex vector space always have real
ratio is for one functional to be a fixed real constant c times the other.
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Figure 24: The two shaded cylinders are homologous on this translation surface. There is
no way to deform the surface to make these two cylinders not be parallel.

The relation of being M-parallel is an equivalence relation, and when we speak of an
equivalence class of a cylinder, we mean the set of all cylinders M-parallel to it.

Define the matrices

ut D

�
1 t

0 1

�
; as D

�
1 0

0 es

�
; r� D

�
cos � � sin �
sin � cos �

�
:

Let C be a collection of parallel cylinders on a translation surface .X; !/. Suppose they
are all of angle � 2 Œ0; �/. Define aCs .u

C
t .X; !/// to be the translation surface obtained

by applying r�� to .X; !/, then applying the matrix asut to the images of the cylinders
in C, and then applying r� .

The result of aCs is to stretch the height of all cylinders in the collection C by a factor
of es . The result of uCt is to shear all the cylinders in C.

There is more than one way of thinking about these cylinder deformations. You can
think of cutting out the cylinders in C, and then stretching and shearing them, and then
gluing them back in. Or, you can think of a polygon decomposition for .X; !/, with one
parallelogram for each cylinder in C, and you can think of applying the matrix asut just
to the parallelograms giving cylinders in C and doing nothing to the remaining polygons.

Theorem 5.13 (The Cylinder Deformation Theorem [52]). Suppose that C is an equiva-
lence class of M-parallel cylinders on .X; !/ 2M. Then for all s; t 2 R, the translation
surface aCs .u

C
t .X; !// 2M.

We call aCs the cylinder stretch, and uCt the cylinder shear.
The proof involves the dynamics of ut , but is motivated by the then conjecture (now

theorem) that affine invariant submanifolds are varieties. As s ! 1, the translation sur-
face aCs .C.X; !// converges to the boundary at infinity of M. The Cylinder Deformation
Theorem is closely related to the boundary structure of M.

More generally, the boundary of an affine invariant submanifold is related to config-
urations of parallel cylinders and saddle connections, since these can always be made
vertical using r� and then shrunk using gt .
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Figure 25: A horizontal cylinder (left–vertical sides are identified, but the top and bottom
horizontal edges are the boundary of the cylinder.) The result of stretching and shearing
this cylinder (right). Note the boundary of the cylinder stays exactly the same.

Figure 26: On the left is a translation surface .X; !/. Let C be the two shaded parallel
cylinders on .X; !/. On the right is aClog.2/.X; !/.

5.3. Orbit closures in genus 2. In this subsection, we will give a qualitative description
of orbit closures in genus 2. However, we will not give a classification, in that we will
not discuss how many connected components the loci we discuss have, and we will not
discuss how to tell if two translation surfaces have the same orbit closure. An almost
complete classification in genus two was given by McMullen, the only remaining open
problem being to classify orbits of square-tiled surfaces in H.1; 1/. (Such a classification
should give a finite list of invariants, such that if two square-tiled surfaces have the same
invariants, then they are in the same orbit.) Thus all results in this section can be deduced
as particular consequences of finer results of McMullen.

See [29, 31, 28, 3, 41, 32, 20] for much finer information on orbit closures in genus 2.
Note that McMullen’s work [32] was done well before the work of Eskin–Mirzakhani–
Mohammadi, and hence uses different techniques than what we present here.

Lemma 5.14. In H.2/ every GLC.2;R/-orbit is dense or closed. Every closed orbit is
either the orbit of a square-tiled surface, or one of the eigenform loci in H.2/ constructed
in Section 2.

Even the orbits of square-tiled surfaces can be fit into the framework of eigenforms by
considering “real multiplication by Q˚Q”, but we do not pursue that perspective here.

Proof. Every orbit closure is an affine invariant submanifold. In strata with only one zero,
p W H 1.X;†;C/! H 1.X;C/ is an isomorphism, and hence T .M/ D p.T .M/ is sym-
plectic. Hence because M � H.2/, we see that M is 2-dimensional or 4-dimensional.
H.2/ is 4-dimensional and connected, so any 4-dimensional affine invariant submanifold
is all of H.2/.
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Thus we may assume that M is 2-dimensional, i.e., a closed orbit. If M is defined
over Q, it contains surface .X; !/ whose periods�Z



! W  2 H1.X;Z/
�
�
1

n
ZŒi �

for some n. This implies .X; !/ is square-tiled surface (a cover of C=. 1
n
ZŒi �/).

If M is defined over QŒ
p
D�, then it follows from Theorem 5.3 that

span.Re.!/; Im.!//

is defined over QŒ
p
D� and is symplectically orthogonal to the Galois conjugate subspace.

Hence by Section 2, .X; !/ is an eigenform for real multiplication by an order in QŒ
p
D�.

Similarly we obtain
Lemma 5.15. In H.1; 1/, every 3 dimensional rank 1 orbit closure consists either of torus
covers, or of eigenforms for real multiplication by QŒ

p
D�.

The only other dimension a rank 1 orbit closure could have in H.1; 1/ is 2, and there
are indeed closed orbits in H.1; 1/. McMullen has shown that all but one contains a
square-tiled surface [31]. This one exceptional closed orbit is a two dimensional subman-
ifold of the locus of eigenforms for real multiplication for QŒ

p
5�.

To complete the qualitative classification of orbit closures in H.1; 1/, it remains only
to show the following.
Proposition 5.16. Any affine invariant submanifold of H.1; 1/ that is not rank 1 must be
all of H.1; 1/.

Proof. Since p.T .M// is symplectic, and rank is 1
2

dimp.T .M//, we see that p.T .M//

D H 1. (In genus 2, H 1 is 4-dimensional.) We wish to show that in fact M is 5-
dimensional, in which case it must be all of H.1; 1/.

Lemma 5.17. Such M must contain a horizontally periodic surface with 3 horizontal
cylinders. Two of the cylinders each have a single saddle connection in their boundary,
and both of these are glued to a third larger cylinder above and below, as in Figure 27.

Given the lemma, the proposition is not so hard to prove. Indeed, it is easily verified
that none of the three cylinders are M parallel to each other: By Lemma 5.12, two cylin-
ders are M parallel if and only if the integrals of their circumference curves are always
proportional. However, since p.T .M// D H 1.X;C/, no restriction is placed on the ab-
solute periods of a translation surface in M, and we can change the circumferences in
an arbitrary way. (As we do so, the relative period might be determined by the absolute
ones–but this is precisely what we will show cannot happen, since M will end up being
H.1; 1/.)

Since none of the three cylinders are M parallel to each other, we can increase the
height of top two, and decrease the height of the bottom one, so as to produce a rel defor-
mation in M, as in Figure 22. Since p.T .M// D H 1.X;M/, and T .M/ contains a vec-
tor in the 1-dimensional ker.p/ (the rel deformation), we see that T .M/ D H 1.X;†;C/.
Hence M is 5-dimensional, and M D H.1; 1/.
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The proof of Lemma 5.17 is easy but will be omitted. (One can find a horizontally
periodic surface in every horocycle flow orbit closure, and work from there to get one
with three horizontal cylinders. See Figure 28, and compare to arguments in [44, 2].)

Figure 27: On the left is a translation surface in H.1; 1/. On the right is an illustration
of a deformation of this surface where the three horizontal cylinders cease to be parallel.
(This exact deformation is not guaranteed to be in M, however one like it is.)

Figure 28: The proof of Lemma 5.17 is omitted, but this figure gives the idea. On
the left is a translation surface with two horizontal cylinders. Shearing the two shaded
non-horizontal cylinders appropriately “opposite” amounts gives the surface on the right,
which now has three horizontal cylinders as desired.

5.4. Census of known orbit closures. Here we give a list of the currently known orbit
closures not arising from the elementary constructions discussed in Section 2.1. We give
only primitive orbit closures, i.e., those not arising from covering constructions.

Closed orbits. McMullen and Calta independently discovered infinitely many closed
orbits in H.2/ [6, 27]. McMullen generalized his approach using real multiplication to
find infinitely many primitive closed orbits in genus 3 and 4, in the Prym loci in the strata
where ! has only one zero [30].

There is a bi-infinite sequence of Teichmüller curves T .n;m/ called the Veech–Ward–
Bouw–Möller curves. For n D 2 they were discovered by Veech [48]; for n D 3 by Ward
[51]; and in the general case by Bouw and Möller [4]. They have also been studied by the
author and Hooper [55, 17].

There are also two “sporadic” closed orbits known, one due to Vorobets in H.6/, and
another due to Kenyon–Smillie in H.1; 3/ [18, 22]. These sporadic examples correspond
to billiards in the .�=5; �=3; 7�=15/ and .2�=9; �=3; 4�=9/ triangles respectively.
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Rank 1 affine invariant manifolds. McMullen and Calta discovered infinitely many
rank 1 affine invariant submanifolds in H.1; 1/ [6, 27]. McMullen generalized his con-
struction to give infinitely many additional examples in the Prym loci in genus 3, 4, and 5
[30].

A new orbit closure. In joint work in progress with Mirzakhani, the author has found
the first known example of a higher rank orbit closure whose affine field of definition is
not Q:
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