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Invitation to H -systems in higher dimensions:
known results, new facts, and related open problems
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Abstract. In this paper, we discuss two well-known open problems in the regularity theory for
nonlinear, conformally invariant elliptic systems in dimensions n � 3, with a critical nonlinearity:
H -systems (equations of hypersurfaces of prescribed mean curvature) and n-harmonic maps into
compact Riemannian manifolds.

For n D 2 several solutions of these problems are known but they all break down in higher
dimensions (unless one considers special cases, e.g. hypersurfaces of constant mean curvature or
manifolds with symmetries). We discuss some of the known proofs and hint at the main difficulties.

We also state a few new results (such as positive answers for all solutions of class W n=2;2

for even n, instead of W 1;n) and list some open questions of independent interest — including
specific endpoint variants of the Coifman–Rochberg–Weiss theorem, addressing the boundedness of
commutators of fractional and singular integrals with multiplication by bounded functions of class
W 1;n — that would lead to solutions of these two problems.

Mathematics Subject Classification (2010). 35B65, 35J60, 35J70; 58E20.

Keywords. n-Laplacian, regularity of solutions,H -system.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2 Statement of the problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.1 Regularity of n-harmonic maps into compact Riemannian manifolds . . . 23
2.2 H -systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
�The work of the first author has been partially supported by DFG grant no. SCHI-1257-3-1. A. S. is

Heisenberg Fellow.
��The work of the second author has been partially supported by the NCN grant no. 2012/07/B/ST1/03366.

A. Schikorra, Mathematisches Institut, Albert-Ludwigs-Universität Freiburg,
Eckerstraße 1, 79104 Freiburg im Breisgau, Germany
E-mail: armin.schikorra@math.uni-freiburg.de

P. Strzelecki, Institute of Mathematics, University of Warsaw,
Banacha 2, 02–097 Warszawa, Poland
E-mail: p.strzelecki@mimuw.edu.pl

mailto:armin.schikorra@math.uni-freiburg.de
mailto:p.strzelecki@mimuw.edu.pl


22 A. Schikorra and P. Strzelecki

3 Partial evidence for regularity . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1 Results on n-harmonic maps into symmetric targets . . . . . . . . . . . . 26
3.2 H -systems: results that use additional hypotheses onH or u . . . . . . . 29
3.3 What could a counterexample look like? . . . . . . . . . . . . . . . . . . 31
3.4 New observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4 Approaches based on non-local problems and commutator estimates . . . . . . 34
4.1 Questions concerning commutators . . . . . . . . . . . . . . . . . . . . . 34
4.2 Systems with antisymmetric potentials . . . . . . . . . . . . . . . . . . . 35

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1. Introduction

25 years ago F. Hélein [32] proved that all harmonic maps from planar domains into
compact Riemannian manifolds are smooth. Besides Hélein’s own insight into the method
of using the moving frames to rewrite the right-hand side of the harmonic map equa-
tion and reveal its divergence structure, the main analytical ingredient of this achieve-
ment was the discovery that certain nonlinear expressions — like the Jacobian of a
map u 2 W 1;n.Rn;Rn/, or various “div-curl” quantities — enjoy, due to cancellation
phenomena, slightly better regularity or integrability properties than those that would
follow only from their growth properties.

Hélein’s ideas and the powerful Hardy space methods based on [5,45] have trig-
gered a stream of research. In particular, F. Bethuel [2] proved that all weak solutions
u 2 W 1;2.B2;R3/ of the equation of surfaces in R3 that have prescribed mean curvature,
�u D 2H.u/ux � uy , whereH WR3 ! R is bounded and Lipschitz, are continuous.

Fifteen years later, in an influential paper [50], T. Rivière has derived a general
conservation law for solutions u 2 W 1;2.B2;Rm/ of

�u D � � ru; (1.1)

where � is an L2-matrix with values in so.m/ ˝ R2. An important point of [50] was
that the antisymmetry of� can be used to replace the divergence structure; due to this, all
weak solutions of �u D � � ru are continuous. To an untrained eye, the result looks dry
and technical, but two long-standing open problems were its corollaries: a conjecture by
S. Hildebrandt claiming that critical points of elliptic conformally invariant Lagrangians
in two dimensions are continuous (this was known before only under a boundedness
assumption on the map or a stronger smoothness assumption on the target manifold, due
to P. Choné [4]), and a conjecture by E. Heinz asserting that the solutions to the prescribed
mean curvature equation with only bounded mean curvature are continuous.

Some of the generalizations and extensions of Hélein’s work — we discuss them in
more detail below—were concernedwith applications of the ideas and techniques of [5] in
dimensions n � 3, to conformally invariant problems, in particular to equations involving
the n-Laplace operator. One of them is

� div
�
jrujn�2ru

�
D � � jrujn�2ru; u 2 W 1;n.Bn;Rm/ (1.2)
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with an antisymmetric � of class Ln, cf. [51, eq. III.23] and Problem 2.5 below. Despite
the efforts and interest of numerous authors, three natural n-dimensional counterparts
of the results of [32], [2] and [50], in particular the regularity questions for n-harmonic
maps and for H -systems in dimension n > 2, are still open; only partial results are
known. For n D 2, some of the milestones described above were due to successful
applications of linear harmonic analysis to nonlinear problems; it seems that for n > 2

a deeper understanding of the nonlinearity (and maybe of the underlying geometry) is
simply missing.

It is our aim to describe these problems and some attempts at their solutions. There is
a lot of circumstantial evidence— in the form of partial positive results in simplified cases
or under extra assumptions that do not trivialize the problems — that the answers might
be positive, and the counterexamples, if they exist at all, would have to be rather subtle.

This paper is, for the most part, a survey. However, later on, we do insert a few new
results which provide part of the evidence alluded to above. These new observations
include
� regularity of bounded solutions to H -systems with the mean curvature H being just

bounded and Hölder continuous;
� in even dimensions, regularity of all W n=2;2-solutions to H -systems with H bounded

and Lipschitz;
� a splitting result for H -systems, allowing to write the right side as a sum of the

determinant terms and a term �ij � jruj
n�2ruj with an antisymmetric matrix � in

the Lorentz space L.n;n=2/ ¨ Ln;
� a higher integrability result for a toy non-local version of (1.2).

However, our main wish is to attract the attention of the reader (a) to those specific
regularity problems involving the n-Laplace operator, (b) to some related problems of
analysis that in our opinion are interesting in their own right.

2. Statement of the problems

2.1. Regularity of n-harmonic maps into compact Riemannian manifolds. Let N be
a compact closed Riemannian manifold, isometrically embedded in Rm, with � WRm �
Bı.N / ! N being the standard nearest point projection of a tubular neighbourhood
of N onto N . Let � � Rn be open and bounded, and let p 2 .1; n�. Consider mappings
u W �! N such that the p-Dirichlet energy of u, given by the functional

EpŒu� WD
1

p

Z
�

jrujp dx D
1

p

Z
�

 X
i;j

�
@ui

@xj

�2!p=2
dx ; (2.1)

is finite. Here, u D .u1; : : : ; um/ W � ! Rm is a mapping with all coordinates
uj 2 W 1;p.�/, satisfying the extra constraint u.x/ 2 N for a.e. x 2 �. The class
of all such maps is traditionally denoted by W 1;p.�;N /.
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Definition 2.1. A map u 2 W 1;p.�;N / is (weakly) p-harmonic if and only if u is a
critical point of Ep with respect to variations in the range, i.e.

d

dt

ˇ̌̌̌
tD0

Ep

h
� ı .uC t'/

i
D 0 for each ' 2 W 1;p

0 .�;Rm/ \ L1.�;Rm/. (2.2)

For p D 2 one simply says that u is a harmonic map into N .
A computation (see e.g. M. Fuchs [21] or Hélein [33]) shows that (2.2) yields the

Euler–Lagrange system

� div
�
jrujp�2ru

�
? Tu N in the sense of D 0.�;Rn/, (2.3)

or, equivalently,
� div

�
jrujp�2ru

�
D jrujp�2Au

�
ru;ru

�
; (2.4)

where A denotes the second fundamental form of the embedding N � Rd .
For an excellent review of numerous issues concerning (partial) regularity of harmonic

and p-harmonic maps, we refer to R. Hardt’s survey [29] (the case of p 6D 2 is reviewed
briefly in [29, Sec. 8]; we give more references below).

In the case p < n, one cannot expect any regularity for weakly p-harmonic maps
without an extra assumption. Already for p D 2 and n > 2, Rivière [49] showed
the existence of everywhere discontinuous harmonic maps into the round sphere. If one
considersminimizing p-harmonic maps one has sharp partial regularity results: such maps
are regular outside a closed singular set which hasHausdorff dimension atmost n�bpc�1,
see C.B. Morrey [42] and R. Schoen and K. Uhlenbeck [59] for p D 2, and for p � 2
R. Hardt and F.H. Lin [30], Fuchs [18,19] and S. Luckhaus [40]. L. Simon [61] proved
that the singular set of a minimizing harmonic map is Hn�3-rectifiable when the target is
real analytic; recently, A. Naber and D. Valtorta in [46] have introduced a more flexible
approach which recovers Simon’s rectifiability result, extends it to general smooth targets
and shows that the singular set has Hn�3-finite measure1. For stationary p-harmonic
maps into symmetric targets, the singular set satisfies Hn�p.singu/ D 0, see Fuchs [20],
Takeuchi [68], Toro and Wang [71], the second author’s [62,63], and the recent work by
Naber, Valtorta and G. Veronelli [47]. For generalizations we also refer to [27,65,74].

Despite several results that we describe in the next section, the following problem is
still open.

Problem 2.2 (p D n). Are all weakly n-harmonic maps u 2 W 1;n.Bn;N / continuous?

2.2. H -systems. The H -systems are closely related to n-harmonic maps, and from the
viewpoint of regularity theory they present the same analytical difficulties in a slightly
simpler framework. They come up as the Euler–Lagrange systems for the n-Dirichlet
energy plus a volume term; one of the sources of motivation is that conformal solutions
of anH -system parametrize hypersurfaces of prescribed mean curvature.

1For p D 2, Naber and Valtorta [46] prove new results on the rectifiability of the strata of the singular set of
a stationary harmonic map.
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Let u D .u1; : : : ; unC1/WBn ! RnC1 be of class W 1;n. Set

Ju D
@u

@x1
� � � � �

@u

@xn
I

for x 2 Bn this is a vector in RnC1 with coordinates given by the n � n minors of the
Jacobi matrix ofDu.
Definition 2.3. For a bounded functionH WRnC1 ! R, anH -system is

� div
�
jrujn�2ru

�
D H.u/ Ju; u 2 W 1;n.Bn;RnC1/: (2.5)

For constantH , solutions of (2.5) are also known as n-harmonic maps with prescribed
volume. Namely, for a map u D .u1; : : : ; unC1/WBn ! RnC1 of class W 1;n one can
define the volume of the cone over u.Bn/ with vertex at 0 2 RnC1 as

V.u/ D
1

nC 1

Z
Bn
u � Judx :

For the minimization problem

min
u

Z
Bn
jrujn dx

under a prescribed Dirichlet boundary condition for u on @Bn and prescribed volume
V.u/ D const, (2.5) is the Euler–Lagrange system and the constant H is just the Euler–
Lagrange multiplier. For variable H , a variational approach to the existence of solutions
of (2.5) is set forth by F. Duzaar and J. Grotowski in [12].
Problem 2.4. Let n > 2. Suppose thatH WRnC1 ! R is bounded and Lipschitz. Are all
weak solutions u 2 W 1;n.Bn;RnC1/ of (2.5) continuous?

For n D 2 the answer is positive, see Bethuel [2]. We discuss known partial evidence
for n > 2, including a few new observations, in the next section. In dimension n D 2,
Problems 2.2 and 2.4 are closely related: the same tools of mathematical analysis (Hardy
space and BMO duality, or its variants) can be used to prove regularity of solutions.
Basically, Hélein’s Coulomb moving frame allows one to rewrite the equation of harmonic
maps in a form analogous to (2.5), and the case of symmetric target manifolds corresponds
to H being constant. For n > 2, Wang [75], in his paper on weak limits of n-harmonic
maps, gives a construction of an appropriate moving frame, see also [41]. Thus, we are
tempted to think that a solution to Problem 2.4 would open the way to Problem 2.2.

Rivière in his survey article [51, eq. III.23] poses the following problem on regularity
of degenerate systems with an antisymmetric potential. A positive answer to his question
would imply a positive answer to Problem 2.4 withH just of classL1, and to Problem 2.2
for all C 2-manifolds.
Problem 2.5. Let u 2 W 1;n.Bn;Rm/ satisfy a system of the form

� div
�
jrujn�2ru

�
D � � jrujn�2ru: (2.6)

Assume that� 2 Ln.Rm�m˝Rn/ is antisymmetric, i.e. �˛ij D ��
˛
ji for all 1 � i; j � m,

˛ D 1; : : : ; n. Is it true that u is continuous?
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3. Partial evidence for regularity

3.1. Results on n-harmonicmaps into symmetric targets. Shortly after the appearance
of Hélein [32], Bethuel [2] and Evans [15], several authors have noted that the following
result holds true.
Theorem 3.1. Assume that N � Rd is a round sphere Sd�1, or, more generally, a
compact homogeneous space with a left-invariant metric. Then, all n-harmonic maps
u 2 W 1;n.Bn;N / are locally of class C ˇ for some ˇ > 0.

To the best of our knowledge, for N being a round sphere, the theorem was indepen-
dently stated and proved by M. Fuchs [20], L. Mou and P. Yang [44], H. Takeuchi [68],
and the second named author in [62]. The more general version for compact homogeneous
spaces is due to T. Toro and C.Y. Wang [71].

There are, basically, three proofs of that result. Two rely on the duality of BMO and
the Hardy space, combined with the observation that for symmetric targets N the right-
hand side of (2.4) belongs to the (local) Hardy space. One of these two proofs is modelled
on Evans’ indirect blow-up argument, the other one employs a simple hole-filling trick.
The third one [57] interprets the equation as a nonlocal system in the spirit of fractional
harmonic maps, cf. [7–9,54].

Let us describe the argument in rather general terms, with emphasis on how the
right–hand side is estimated.

3.1.1. A possible approach to regularity. Let u 2 W 1;n be a solution to the system

div
�
jrujn�2ru

�
D f .u;ru/;

with jf .u;ru/j - jrujn. Here we write A - B ifA � C B for a multiplicative constant
C > 0 which may change from line to line. Let Œ��X be a critical semi-norm. Critical
means: for any � > 0 an estimate of the form

sup
Br

r�� Œu�X;Br <1 ; (3.1)

where the supremum is taken over balls Br with radius r , implies that u is Hölder
continuous.

Typical choices of such critical seminorms include

Œu�X;Br WD

�
krukLn.Br /;

sup
B%.z/�Br

�
%p�n

Z
B%.z/

jrujp
�1=p

for some p < n;

krukL.n;1/.Br /;

Œu�BMO;Br :

(For definitions of the Lorentz spaces L.p;q/ and the space BMO of functions having
bounded mean oscillation we refer to L. Grafakos’ monographs [23,24]).
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In all instances that we are aware of, one works with a semi-norm that satisfies

Œu�BMO;Br - Œu�X;Br - krukLn.Br / : (3.2)

The goal is usually to obtain a decay estimate of the form

Œu�X;Br �
�
Q� C Ckruk




Ln.B2r /

�
Œu�X;B2r ; (3.3)

with some fixed constants Q� 2 .0; 1/, C and 
 > 0, independent of the specific ball Br . It
is good to think that Q� is responsible simply for localization and cutting off the solution,
whereas C and 
 are related to the structure of the right-hand side, f .u;ru/. Here, the
right choice of the semi-norm becomes extremely important; we shall come to that point
later on.

On all balls B2r with r small enough, due to the absolute continuity of the integral,
we can estimate (3.3) further to obtain

Œu�X;Br � �Œu�X;B2r ; for some � 2 . Q�; 1/:

Once such estimate is ensured, we can employ an iteration scheme on smaller and smaller
balls, see [22, Chapter III], to obtain

Œu�X;Br - r� Œu�X;Rn :

According to (3.1), this then implies Hölder continuity.
So how to obtain an estimate of type (3.3)? There are two ingredients needed: First2,

for an estimate of the left-hand side we need to find a seminorm Œ��Y so that

Œu�n�1X - sup
Œ'�Y�1

Z
jrujn�2ru � r': (3.4)

And then we need to obtain the right-hand side estimate of the formZ
jf 'j - Œu�sX Œ'�Y ; where s > n � 1 : (3.5)

(Typically, one strives for s D n, reflecting the degree of homogeneity of the right hand
side in u; values of s � n � 1 do not yield any significant gain).

One of the sources of the difficulties is that the canonical choiceX D Y D W 1;n.Rn/
contains unbounded functions. This is why one is often forced to look for “non-standard”
function spacesX and Y in the scheme described above. For the same reason, the structure
of f matters a lot.

2A word of caution: one has to be careful with the boundary data, localize the solution properly etc., but
these technical difficulties are minor or at best moderate; here and in the sequel, we have decided to sweep them
under the rug in order to show only the essence of the arguments.
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3.1.2. Example: How this approach works in the sphere case. To give an idea how this
works in practice, let us regard the case of the second author’s proof of Theorem 3.1, [62]:

The n-harmonic map system is

� div
�
jrujn�2ru

�
D ujrujn: (3.6)

Now,
ui jrujn D

�
ui jrujn�2ruj � uj jrujn�2rui

�
� ruj :

This is due to the fact that ujruj D 1
2
rjuj2 D 0 since u belongs to the sphere —

we remind the reader that we use Einstein’s summation convention. This formulation is
useful, since (3.6) implies

div
�
ui jrujn�2ruj � uj jrujn�2rui

�
D 0 I

that is, the initial system can be equivalently written as

� div
�
jrujn�2ru

�
D � � ru; (3.7)

where div� D 0. Then, by the div-curl lemma [5], the term� � ru belongs to the Hardy
space H1 and the duality of Hardy space and BMO implies thatZ

' .� � ru/ - Œ'�BMO k�kLn0 krukLn - kruknLn kr'kLn :

So taking Œ'�X D Œ'�Y WD kr'kLn , we obtain a right-hand side estimate as in (3.5), with
s D n. The corresponding left-hand side estimate as in (3.4) is easy:

krukn�1Ln � sup
kr'kLn�1

Z
jrujn�2ru � r':

All this yields (3.3) with 
 D 1, and allows to conclude that u 2 C ˇ for some ˇ > 0.

3.1.3. Why this is problematic in the general case. The main problem in the general
case is that the right-hand side potential � in (3.7) may not be divergence free. For
the H -system (2.5) it is divergence free up to the multiplication by H.u/, a term which
belongs to L1 \ W 1;n. As it is done in [50] for Rivière’s general system (1.1) for
n D 2, one might try to adapt Uhlenbeck’s gauge transform for the case n > 2 and (2.6),
see [41,50,53,72,75]. This could essentially reduce (2.6) to a system with a potential
Q� 2 Ln

0 which is divergence free up to amultiplicative termwhich belongs toL1\W 1;n.
However, while this is sufficient for n D 2 and (1.1), for n > 2 and (2.6) this leads

to problems. Consider as an example an attempt using the Lorentz spaces Lp;q for the
H -system. A slight extension of the div-curl estimate [5], see for example [39], coupled
with Hardy-BMO-inequality gives thatZ

H.u/ Ju' - krukL.n;q1/ : : : krukL.n;qn/ kr.H.u/'/kL.n;qnC1/ ; (3.8)
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where qi 2 Œ1;1� and
PnC1
iD1

1
qi
D 1. The first observation is that the test-function '

should belong to L1 to make the right-hand side bounded. By Sobolev embedding we
should then choose in (3.4) Y D L.n;1/, and thus X D L.n;1/. Hence, in order to at least
formally match (3.4) and (3.5) to an estimate of the form (3.3), we need the L.n;1/-norm
of ru to appear at least .n� 1/ times in (3.8). That is we should take q1; : : : ; qn�1 D1.
But since rH.u/ 2 Ln D L.n;n/, qnC1 can be at most n. Thus qn has to be at least n0.
And unless n D n0 D 2, we have L.n;n0/ ¨ Ln, so that the natural assumption u 2 W 1;n

does not suffice to close the argument.
That is, this kind of numerology magically fits and leads to the desired result when

n D 2, i.e. when working with harmonic maps, but for n > 2 the exponents simply do not
add up. This happens for all the choices of X and Y that we are aware of.

Let us also remark that even the additional assumption ru 2 L.n;n0/, would not solve
this dilemma. Estimate (3.4) is, to our best knowledge, unknown for X D L.n;1/ and
Y D L.n;1/. A reformulation of this additional problem is the following.
Problem 3.2. Let R D .R1; : : : ;Rn/ be the vectorial Riesz transform. Is it true or false
that

kf k
p�1

L.p;1/
� C




 nX
˛D1

R˛

�
jRf jp�2R˛f

�



L.p
0;1/

‹

Note that this problem can be easily solved for p D 2: for some constant c 2 R we
have

Pn
˛D1 R˛R˛ D c Id and we can argue simply by L2;1-L2;1 duality. If instead

of L.p;1/ and L.p0;1/ one considers Lp and Lp0 , respectively, then it follows from the
same simple duality argument. Also, if one replaces L.p;1/ and L.p0;1/ by L.r;q/ and
L.

r
p�1 ;

q
p�1 /, respectively, then the analogous estimate holds whenever jp � r j is small

but non-zero. This uses Iwaniec’ stability theorem [34] which follows from a nonlinear
commutator estimate (see his monograph [35], and for an adaptation of the idea to another
context [58]).

Such a commutator estimate can be interpolated, but since it is nonlinear the inter-
polation can only take place between the space where the operator is Lipschitz (which
happens exactly for Lp) and where the commutator is bounded. Thus one cannot obtain
any interpolation estimates for the L.p;q/-Lorentz spaces: they cannot be represented as
interpolation spaces between Lp and some Lr (the best one can try is to work with the
grand Lp-space, cf. [25]).

A remark in passing: all the attempts at a proof in the general case try to save the main
idea of a hole–filling trick. Is any other approach possible?

3.2. H -systems: results that use additional hypotheses on H or u. For n D 2,
H W R3 ! R, and u 2 W 1;2.R2;R3/ theH -system is

�u D 2H.u/ ux � uy : (3.9)

H. Wente [76] proved what later should become to be known as Wente’s inequality,
see [3,69]: Whenever H is constant, any solution to (3.9) is continuous. This was
probably the first time that compensation effects for these kind of systems were observed.
F. Tomi [70] proved that bounded solutions u to (3.9) are C 1;˛ when H is Lipschitz.
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E. Heinz [31] considered unbounded solutions u for H being Lipschitz and satisfying an
extra decay-at-infinity condition.

Later on, M. Grüter [26] proved regularity for all solutions to (3.9) under the condition
that u is conformal andH is bounded. Dropping the conformal parametrization, following
the work on harmonic maps by Hèlein [32], Bethuel [2] was able to prove regularity for
possibly unbounded solutions wheneverH is bounded and Lipschitz.

Finally, Rivière [50] proved that anyW 1;2-solution u to (3.9) is Lipschitz wheneverH
is just bounded, which proved a conjecture by Heinz. For further properties and an over-
view we refer to [14].

Forn>2, much less is known forW 1;n-solutionsu to then-dimensionalH -system (2.5).
Mou and Yang [43] showed continuity of conformal solutions u when H is bounded.
For H Lipschitz and decaying at infinity3, Wang [73] proved that solutions of (2.5) are
continuous. For H D const all solutions of class W 1;n are regular; this is proved by the
same argument as Theorem 3.1, see e.g. Mou and Yang [44].

When H is Lipschitz and u not necessarily conformally parametrized, the following
is known.

Theorem 3.3 (Continuity under additional assumptions on u). Let

u D .u1; u2; : : : ; unC1/ 2 W 1;n.�;RnC1/

be a weak solution of theH -system (2.5), whereH WRnC1 ! R is bounded and Lipschitz.
If moreover one of the following conditions holds

(1) u 2 L1,

(2) u 2 W n�1;n0 ,

(3) or ru 2 Ln logn�1�"L for a certain " > 0,

then u is continuous.

The first statement, regularity of bounded weak solutions for n > 2, is due to Duzaar–
Fuchs [11]. We sketch a proof of a slightly generalized version below, see Proposition 3.5.
The second statement is due to S. Kolasiński, [37] who combined Hodge decomposition,
the Iwaniec stability theorem [34], and sharp Gagliardo–Nirenberg estimates due to the
second author [66]. We describe a slight improvement on Kolasiński’s argument below
in Proposition 3.6. The third statement in Theorem 3.3 is due to the first named au-
thor [55]. Instead of using the Gagliardo–Nirenberg-estimate, exponential Orlicz-spaces
and Trudinger’s inequality are used.

Observe that for n D 2, the second condition reduces to the usual assumptions. All of
the conditions above do not trivialize the problem: one can easily construct systems with
the same growth properties that have solutions with singularities of the type log log 1=jxj.

If, as in the first statement above, all coordinate functions are bounded, one can
essentially test the equation with u itself (we use this for the proof of Proposition 3.5
below). This is not possible any more if u is unbounded: since the right-hand side is

3Basically, one chooses the decay speed so thatH.u/u is of classW 1;n � BMO; this allows to cope with
the fact that BMO itself is not an algebra.
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merely integrable, all test functions have to be in W 1;n \ L1. This is also related to the
fact that W 1;n is not an algebra, but W 1;n \ L1 is.

A remark in passing: due to the Jacobian term on the right-hand side of (2.5) one
might hope that it suffices to assume that only some coordinate functions are bounded,
integrating by parts on the right-hand side. However the following is still open:
Problem 3.4. Let u D .u1; u2; : : : ; unC1/ 2 W 1;n.�;RnC1/ be a weak solution of the
H -system (2.5), where H WRnC1 ! R is bounded and Lipschitz. Assume that k of the
coordinate functions ui are bounded, where k 2 f1; 2; : : : ; ng. Is u continuous?

3.3. What could a counterexample look like? Duzaar and Fuchs [10] have proved
that isolated singular points of n-harmonic maps are removable. Therefore, a possible
counterexample to regularitywould have to be singular on a perfect set; it is hard to imagine
how a construction of such an example might look like when no nesting of isolated singular
points is possible.

On the other hand, C. Wang [75], see also [41], and the second named author with
A. Zatorska-Goldstein [67] have proved that for (2.4) and (2.5)—and for the corresponding
approximate problems with a small perturbation in .W 1;n/� added to the right hand side
— the spaces of weak solutions are closed in the weak topology of W 1;n. We do not
know whether these results could be used to construct counterexamples from sequences
of singular solutions to perturbed versions of (2.4) and (2.5).

3.4. New observations. If u is a bounded solution to theH -system, actually any Hölder
continuous H suffices to obtain continuity (which is a slight improvement from Theo-
rem 3.3 where Lipschitz-continuity is required).
Proposition 3.5. Assume that u 2 W 1;n.Bn;RnC1/ is a bounded weak solution of (2.5),
where H WRnC1 ! R is a bounded function of class C ˛ for some ˛ 2 .0; 1/. Then,
u 2 C

ˇ
loc for some ˇ > 0.

Sketch of the proof. The proof is based on the fact that all BMOp-norms are equivalent
for 1 < p <1. Thus for any ˛ 2 .0; 1�,

ŒH.u/�BMO - ŒH �C˛ Œu�
˛
BMO :

Since moreover

Œfg�BMO - kf kL1 Œg�BMO C kgkL1 Œf �BMO ;

we can estimate

ŒH.u/'�BMO - k'k1ŒH �C0;˛ Œu�˛BMO C kHkL1 Œ'�BMO :

With the equation (2.5) we then have the estimateZ
jrujn�2rur' - kruknn

�
k'k1ŒH �C0;˛ Œu�

˛
BMO C kHkL1 Œ'�BMO

�
:

Since u is bounded, we we can proceed as explained above for the equation (3.6). Just
pick ' to be a cut-off version of u to obtain (3.3).
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Proposition 3.6. If n D 4 and u 2 W 2;2.B4;R5/ is a weak solution of (2.5), with H
Lipschitz and bounded, then, u 2 C ˇloc for some ˇ > 0.

Again, let us explain the argument briefly; an interested reader will easily fill in
all the missing technical details. The three essential tools are: the Hodge decomposition
(including a stability theorem due to Iwaniec); the Coifman–Rochberg–Weiss commutator
theorem [6], and the Gagliardo–Nirenberg inequalities in a sharp form, involving BMO
norms instead of L1 [66].

Fix a small parameter " > 0. Assuming w.l.o.g. that u is compactly supported in B2r ,
we construct the test function ' via the Hodge decomposition,

jruj�"ru D r' C V;

where the divergence-free term V is small due to the Stability Theorem [34],

kV kL.n�"/=.1�"/ - "krukLn�" : (3.10)

The main point is that .n � "/=.1 � "/ > n, and thus by Sobolev imbedding

osc' - r .n�1/"=.n�"/
�Z

B2r

jrujn�"
� 1�"
n�"

: (3.11)

After a routine argument (let us assume here for the sake of simplicity that also ' is
compactly supported), the left-hand side of the equation, due to the stability estimate (3.10),
gives Z

jrujn�2rur' �

Z
Br

jrujn�" � �

Z
B2r

jrujn�" (3.12)

with � D �.n; "/ 2 .0; 1/.
To estimate the right-hand side, we use the Hodge decomposition again, this time

in Ln. It is convenient here to use the language of differential forms. We write the
H -system as (4.2) and work separately with each of the equations of the system. W.l.o.g.
let i D nC 1; write

H.u/ du1 D d˛ C ıˇ :

Let T denote the linear operator which maps a 1-form to the exact component of its Hodge
decomposition; i.e. T

�
H.u/du1

�
D d˛. Then, the coexact term

ıˇ D H.u/T .du1/ � T
�
H.u/du1

�
D ŒH; T �.du1/;

where ŒH; T � is the commutator ofT and themultiplication byH.u/. SinceH is Lipschitz,
by the Coifman–Rochberg–Weiss commutator theorem [6]

kıˇkLn - Œu�BMOkrukLn :

Now, we split the right-hand side asZ
'H.u/ du1^ � � � ^du4 D

Z
' d˛^du2^du3^du4C

Z
' ıˇ^du2^du3^du4 :
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The first term, after one integration by parts — taking d from one of the uj to ' — and
an application of the duality of the Hardy space and BMO , is controlled by a constant
multiple of

Œu�BMOkr'kL.4�"/=.1�"/kruk
3
L4�"

- Œu�BMO;B2r

Z
B2r

jruj4�" :

The assumptions n D 4 and u 2 W 2;2 are crucial in the estimate of the second term, the
one containing ıˇ. We haveˇ̌̌̌Z

' ıˇ ^ du2 ^ du3 ^ du4
ˇ̌̌̌
� k'kL1kıˇkL4kruk

3
L4

- r3"=.4�"/
�Z

B2r

jruj4�"
� 1�"
4�"

Œu�BMO;B2r

Z
B2r

jruj4 C L.O.T.

- r3"=.4�"/
�Z

B2r

jruj4�"
� 1�"
4�"

Œu�3BMO;B2r

Z
B2r

jD2uj2 C L.O.T.

In the last step, we used the sharp Gagliardo–Nirenberg inequality [66]; L.O.T. stands for
unimportant lower order terms. Now, by the Poincaré inequality, we have

Œu�BMO;B2r - M.p; 2r/ WD sup
B.z;%/�B2r

�
1

%n�p

Z
B.z;%/

jrujp
�1=p

:

Thus, for p D n � " D 4 � " the estimate of the second term can be written asˇ̌̌̌Z
' ıˇ ^ du2 ^ du3 ^ du4

ˇ̌̌̌
- r"

Z
jD2uj2 � M.4 � "; 2r/4�" : (3.13)

Combining this with the estimate of the first term of the right side, we finally obtainˇ̌̌̌Z
'H.u/ du1^� � �^du4

ˇ̌̌̌
- r"

�
Œu�BMO;B2rC

Z
B2r

jD2uj2
�
M.4�"; 2r/4�" : (3.14)

Going back to (3.12), dividing both sides by r", and using the monotonicity ofM.p; 2r/
as a function of the ball, one is now able to use a standard iterative argument and prove
that

1

r"

Z
Br

jruj4�" - r� for a fixed � > 0 and all radii r < r0.

By the Sobolev inequality for Morrey spaces, see [1], u must be Hölder continuous.
Remark 3.7. One can check that the above argument, generalized to even dimensions
n D 2k bigger then 4, yields the following:

If n D 2k is even and u 2 W n=2;2.Bn;RnC1/ is a weak solution of (2.5), with H
Lipschitz and bounded, then, u 2 C ˇloc for some ˇ > 0.
Remark 3.8. It is easy to see that the argument used to prove Proposition 3.6 breaks down
if we assume thatH is only C 0;˛ instead of Lipschitz: ifH 2 C 0;˛ , then the exponent of
M.4 � "; 2r/ in (3.13) is in fact 2C .1 � "/C ˛, so that for ˛ < 1 the estimates of both
sides simply do not match.
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4. Approaches based on non-local problems
and commutator estimates

4.1. Questions concerning commutators. One of the methods that allow to bypass
the duality of Hardy space and BMO in the proofs of regularity of solutions to similar
problems involves, roughly speaking, representing the test function as a Riesz potential of
its gradient. The operator

If .x/ D

Z
Rn
K.x � y/f .y/ dy

where K.x/ D cnx=jxj
n is the gradient of the fundamental solution of the Laplacian, is

bounded on the Hardy space, I WH1.Rn/! Ln=.n�1/.Rn/, see [16,60]. Variants of that
approach have been successfully applied in [27] or [64].

However, when dealing e.g. with (2.5) and using a compactly supported test function
' D I.r'/, one immediately arrives at expressions of the formˇ̌̌̌Z

'H.u/ du1 ^ � � � dun
ˇ̌̌̌
D

ˇ̌̌̌Z
r' � I

�
H.u/ du1 ^ � � � dun

�ˇ̌̌̌
�

ˇ̌̌̌Z
H.u/r' � I

�
du1 ^ � � � dun

�ˇ̌̌̌
C

ˇ̌̌̌Z
r' � ŒH.u/; I �

�
du1 ^ � � � dun

�ˇ̌̌̌
The key term here is the commutator Œb; I � of I and the multiplication by b D H.u/. It
is known that such commutators are not bounded on the Hardy space, cf. [28], but are
bounded on certain subspaces of H1.Rn/, cf. Perez [48] and Ky [38]. Differentiation
of Œb; I �f gives the termrb �If plus a commutator Œb; S�f , where S is a singular integral
operator. Thus, the following general problem — which might be of independent interest
to harmonic analysts — is linked with the regularity questions that we consider here.
Problem 4.1. FixH bounded and Lipschitz on RnC1, and u 2 W 1;n.Rn;RnC1/, so that
b D H.u/ 2 W 1;n.Rn/ \ L1.Rn/.
(a) What is the largest subspace V � H1.Rn/ such that Œb; I �WV ! Ln=.n�1/.Rn/?

What is the answer if we replace Ln=.n�1/.Rn/ by W 1;1.Rn/? Does this V contain
the n � n minors ofDu?

(b) What is the largest subspace V � H1.Rn/ such that all commutators Œb;R˛� of the
multiplication by b with the Riesz transforms R˛ , ˛ D 1; : : : ; n, map V ! L1.Rn/?
Does V contain all the n � n minors ofDu?

(c) Does du1 ^ : : : ^ dun have an atomic decomposition into b-atoms, i.e. standard
atoms that are, in addition, orthogonal to b? (Cf. [48] for definitions.)

(d) Do the answers to the above questions change if u is not just an element ofW 1;n, but
also a solution to anH -system?
The characterizations in Perez [48] and Ky [38] do not seem to be directly applicable

here: formally, there are abstract definitions of V ’s on which the commutators of fractional
or singular integrals are bounded but there is no clear, practical way of telling whether a
given Jacobian belongs to such a space or not.
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Again, a positive answer to questions (a)–(c) would pave the way to Problems 2.4
and 2.2.

4.2. Systems with antisymmetric potentials. For n D 2 Rivière [50] observed that
Euler–Lagrange systems of conformally invariant variational functionals and in particular
the H -system can be brought into the form of (1.1). This allowed him to conclude
regularity for solutions ifH is bounded.

This reformulation is also possible for n ¤ 2 for harmonic maps and the H -systems,
see [51, eq. III.23], where (1.1) becomes (2.6). But even for toy cases (see below) it does
not seem clear how solutions would regularize when � belongs merely to Ln.

For the H -system with Lipschitz H , one can split the right-hand side of the equation
into a part which has a purely determinant structure and a part with an antisymmetric
potential which is in the smaller Lorentz space L.n;n=2/ ¨ Ln.
Proposition 4.2. Letu 2 W 1;n.Rn;RnC1/ be a solution to theH -System (2.5) for someH
satisfying kHk1 C krHk1 <1. Then we can write

div
�
jrujn�2rui

�
D AC B;

for A and B as follows:
� A is a sum of Jacobians of the form

detn�n
�
r!i1 ;rui2 ; : : : ;ruin

�
;

for some ! 2 W 1;n
loc .R

n;RnC1/.
� B can be written as

B D �ij � jruj
n�2
ruj ;

with an � 2 L.n;
n
2 /

loc .Rn; so.nC 1/˝Rn/.

Proof. Again, it will be beneficial to use the language of differential `-forms
V` RnC1.

Let yi be the coordinates on RnC1. An orthonormal basis for
V` RnC1 is then˚

dyi1 ^ � � � ^ dyi` W 1 � i1 < � � � < i` � nC 1
	
: (4.1)

The Hodge-star operator ? W
V` RnC1 !

VnC1�` RnC1 maps `-forms ! into nC 1� `-
forms ?! so that

! ^ ?! D j!j2:

Here j!j is the norm on
V` RnC1 induced by the orthonormal basis in (4.1).

If we denote u�! the pullback of the differential form ! via u, theH -system (2.5) can
be written as

div
�
jrujn�2rui

�
D H.u/ u�.?dyi /: (4.2)

Since
?dyi D ?

�
dyi ^ dyj ^ dyk

�
^ dyj ^ dyk ;
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we can write (2.5) as
div

�
jrujn�2rui

�
D �ik ^ du

k ;

for
�ik WD

1

2n
u� ?

�
dyi ^ dyj ^ dyk

�
^ u�.Hdyj /:

� is clearly antisymmetric, �ik D ��ki . By Hodge decomposition on Rn,

u�.Hdyj / D d!j C ıˇj ;

where !j 2 W 1;n
loc .R

n/ and ˇj 2 W 1;n
loc .R

n;
V2 Rn/ satisfy the equations

�!j D div
�
H.u/ru

�
;

and �ˇj D dH.u/ ^ duj : (4.3)

Elliptic estimates then give

k!j kW 1;n - kHk1krukLn :

Equation (4.3) has a Jacobian structure on the right-hand side and H.u/ 2 W 1;n. That is
why the estimates for ˇ is a little bit better,

krˇk
L
.n; n

2
/ - kruk2Ln :

We set

�ik WD jruj
2�n 1

2n

nX
jD1

u� ?
�
dyi ^ dyj ^ dyk

�
^ ıˇj ;

which is still antisymmetric in i ,k. Moreover, by the estimate above, � 2 L.n;n2 /.
On the other hand, �

u� ? .dyi ^ dyj ^ dyk/
�
^ d!j ^ duk

is the n-form

.�1/iCjCkdu1 ^ � � � dui�1 ^ duiC1 ^ � � � duj�1

^ dujC1 � � � duk�1 ^ dukC1 ^ � � � dunC1 ^ d!j ^ duk

which has a Jacobian structure. More precisely,�
u� ? .dyi ^ dyj ^ dyk/

�
^ d!j ^ duk D .�1/iCjCkJv dvol;

where v W Rn ! Rn is given by

v D
�
u1; : : : ; ui�1; uiC1; : : : ; uj�1; ujC1; : : : ; uk�1; ukC1; : : : ; unC1; !j ; uk

�T
:
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Let us now consider the termsA andB from Proposition 4.2 separately. If we consider
solutions to

div
�
jrujn�2rui

�
D A;

where A has the determinant structure as in Proposition 4.2, then continuity follows
immediately via Hardy-BMO duality.

Solutions of the equation

div
�
jrujn�2rui

�
D B;

where B has the structure as in Proposition 4.2, are still not understood, even if the
the antisymmetric potential � satisfies a sharper Lorentz-space estimate. If n D 2,
the antisymmetric potential belongs to L.2; 1/ and the equation regularizes without any
use of the antisymmetry by standard potential estimates. If n > 2, it is unclear how the
antisymmetry improves our chances. We thus propose a simplified version of Problem 2.5.
Problem 4.3. Let u 2 W 1;n.B;Rm/ be a solution to (2.6) where � is an L.n;p/-matrix
with values in so.m/˝Rn. For which p 2 Œ1; n� is u necessarily continuous?

If p D 1, i.e. � 2 L.n; 1/, Lipschitz continuity of solutions follows — even without
antisymmetry of �. This is due to Duzaar and Mingione [13]. We know of no argument
which shows any improvement of regularity for solutions to (2.6) with antisymmetric
potential� 2 L.n;p/ for p > 1. Recall that this is not only a problem of finding a suitable
estimate for the right-hand side of (2.6), but, in view of Problem 3.2, also a problem of
finding a suitable estimate for the left-hand side of (2.6).

One way to gain more insight in this situation is to derive somewhat simplified sub-
problems of regularity for solutions to

div
�
jrujn�2rui

�
D � � jrujn�2rui :

Let R˛ be the ˛th Riesz transform. For any vector field F D .F1; : : : ; Fn/we have a zero
order Hodge decomposition

F˛ D R˛RˇFˇ CRˇ

�
RˇF˛ �R˛Fˇ

�
:

Applying this to jrujn�2@˛u, we can decompose

jrujn�2@˛u D R˛w C e˛;

where
w WD Rˇ

�
jrujn�2@ˇu

�
:

Since u 2 W 1;n and the Riesz transforms Rˇ are bounded on Lp , 1 < p < 1, the
natural assumption here is w 2 Ln0 . The above equation then changes into

.��/
1
2wi D �˛ijR˛Œw

i �C�˛ij e˛:

Ignoring the error e˛-part, this equation is of the form

.��/
1
2wi D �Œwi �
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where� is acting as a linear operator (and not just as a pointwise multiplication). In [56]
it was shown that these potentials regularize the equation in R2 (a generalization of the
arguments developed for pointwise multiplication operators [7], see also [52]). This
argument can be extended to obtain the following.
Theorem 4.4. Let w 2 Ln0.Rn/ be a solution to

.��/
1
2wi D �˛ijR˛Œw

i �:

If we assume � to be antisymmetric and � 2 L.n;2/, then w 2 Lp for some p > n0.

The proof is very technical (because the equation is non-local). It follows closely the
arguments in [56], and we are not going to give it here. We rather give an argument for a
related situation.
Theorem 4.5. Let u 2 W 1;n0.Bn;Rm/ be a solution to

��ui D �˛ijru: (4.4)

If � is antisymmetric and � 2 L.n;2/, then ru 2 Lploc.Bn/ for some p > n0.

Proof. Since this is a local result, we may assume that k�kL.n;2/ � " for a small enough
" > 0. Then, with Rivière’s extension [50] of Uhlenbeck’s [72], see also [53], we obtain
a gauge P 2 W 1;n.Bn; SO.m// and krP kL.n;2/ � k�kL.n;2/ so that

div
�
P TrP C P T�P

�
D 0:

Plugging this into (4.4) we have

� div
�
P Tru

�
D
�
P TrP C P T�P

�
P Tru: (4.5)

We test the right-hand side with ' 2 C1c .Bn/ and use a slightly improved div-curl-
estimate, cf. (3.8):Z

F � rg h - kF kL.p;q1/ krhkL.p0;q2/ krgkL.n;q3/ ;

which holds whenever p 2 .1;1/, 1
q1
C

1
q2
C

1
q3
D 1, 1 � q1; q2; q3 � 1 and

div.F / D 0. Then,Z �
P TrPCP T�P

�
r.P T '/ u

- krukL.n0;1/ kP
T
rP C P T�P kL.n;2/ kr.'P /kL.n;2/

- krukL.n0;1/ k�kL.n;2/
�
k'kL1 C kr'kL.n;2/

�
:

Using the Sobolev inequality

k'kL1 - kr'kL.n;1/ ;
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and (4.4), we obtain, for any ' 2 C1c .Bn/,ˇ̌̌̌Z
P Tru � r'

ˇ̌̌̌
- " krukL.n0;1/ kr'kL.n;1/ :

Thus, using Hodge decomposition and a suitable localization, we obtain that for some
� < 1 on every small ball Br it holds

krukLn0;1.Br / � �krukLn
0;1.B2r /

:

An iteration argument now gives

sup
B2r�B

r��krukLn0;1.Br / - krukLn0 .B/:

Having this estimate, one repeats the above argument with .��/ "2 ' instead of ', and
obtains that

sup
B2r�B

r��k.��/
"
2ruk

L
n

n�1C"
;1
.Br /

<1

Then Adams’ estimates on Riesz potentials in Morrey spaces [1] give the claim.

Let us remark that for n D 2 a much more beautiful argument works for Theo-
rem 4.5. Under a smallness-assumption on k�kL2 , one can not only find P as in (4.5),
but Rivière [50] was able to find A 2 W 1;2 \ L1.B2; GL.m// so that

div
�
rAC A�

�
D 0:

Then u actually satisfies a conservation law,

� div
�
Aru � .rAC A�/u

�
D 0;

and regularity follows from a simple duality argument. The construction of A however
crucially depends on Wente’s inequality [3,69,76]: if

�f D G � rh in R2;

and div.G/ D 0, then
kf kL1 � C kGkL2 krhkL2 :

It is unknown how to construct such a map A in Rn for n > 2: the counterpart of Wente’s
inequality for n > 2 is missing.

Indeed, there are well known counterexamples that show�nu D g 2 H1 6) u 2 C 0,
see Firoozye [17], and also Iwaniec and Onninen’s counterexample for right-hand side in
an Orlicz space [36].
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