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Abstract. The well-quasi-orders (WQO) play an important role in various fields such as Computer
Science, Logic or Graph Theory. Since the class of WQOs lacks closure under some important
operations, the proof that a certain quasi-order is WQO consists often of proving it enjoys a stronger
and more complicated property, namely that of being a better-quasi-order (BQO).

Several articles — notably [5,9–11,14,22] — contain valuable introductory material to the
theory of BQOs. However, a textbook entitled “Introduction to better-quasi-order theory” is yet
to be written. Here is an attempt to give a motivated and self-contained introduction to the deep
concept defined by Nash-Williams that we would expect to find in such a textbook.
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1. Introduction

Mathematicians have imagined a myriad of objects, most of them infinite, and inevitably
followed by an infinite suite.

What does it mean to understand them? How does a mathematician venture to make
sense of these infinities he has imagined?

Perhaps, one attempt could be to organise them, to arrange them, to order them. At
first, the mathematician can try to achieve this in a relative sense by comparing the objects
according to some idea of complexity; this object should be above that other one, those
two should be side by side, etc. So the graph theorist may consider the minor relation
between graphs, the recursion theorist may study the Turing reducibility between sets of
natural numbers, the descriptive set theorist can observe subsets of the Baire space through
the lens of the Wadge reducibility or equivalence relations through the prism of the Borel
reducibility, or the set theorist can organise ultrafilters according to the Rudin-Keisler
ordering.

This act of organising objects amounts to considering an instance of the very general
mathematical notion of a quasi-order (qo), namely a transitive and reflexive relation.

As a means of classifying a family of objects, the following property of a quasi-order
is usually desired: a quasi-order is said to be well-founded if every non-empty sub-family
of objects admits a minimal element. This means that there are minimal — or simplest
— objects which we can display on a first bookshelf, and then, amongst the remaining
objects there are again simplest objects which we can display on a second bookshelf above
the previous one, and so on and so forth – most probably into the transfinite.

However, as a matter of fact another concept has been “frequently discovered” [9] and
proved even more relevant in diverse contexts: a well-quasi-order (wqo) is a well-founded
quasi-order which contains no infinite antichain. Intuitively a well-quasi-order provides a
satisfactory notion of hierarchy: as awell-founded quasi-order, it comes naturally equipped
with an ordinal rank and there are up to equivalence only finitely many elements of any
given rank. To prolong our metaphor, this means that, in particular, every bookshelf
displays only finitely many objects — up to equivalence.

The theory of wqos consists essentially of developing tools in order to show that
certain quasi-orders suspected to be wqo are indeed so. This theory exhibits a curious and
interesting phenomenon: to prove that a certain quasi-order is wqo, it may very well be
easier to show that it enjoys a much stronger property. This observation may be seen as
a motivation for considering the complicated but ingenious concept of better-quasi-order
(bqo) invented by Crispin St. J. A. Nash-Williams [15]. The concept of bqo is weaker than
that of well-ordered set but it is stronger than that of wqo. In a sense, wqo is defined by
a single “condition”, while uncountably many “conditions” are necessary to characterise
bqo. Still, as Joseph B. Kruskal [9, p.302] observed in 1972: “all ‘naturally occurring’
wqo sets which are known are bqo”1.

1The minor relations on finite graphs, proved to be wqo by Robertson and Seymour [20], is to our knowledge
the only naturally occurring wqo which is not yet known to be bqo.
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Organisation of the article. In Section 2 we give many characterisations of well-quasi-
orders, all of them are folklore except maybe the one stated in Proposition 2.14 which
benefits from both an order-theoretical and a topological flavour.

We make our way towards the definition of better-quasi-orders in Section 3. One of
the difficulties we encountered when we began studying better-quasi-order is due to the
existence of two main different definitions— obviously equivalent to experts— and along
with them two different communities, the graph theorists and the descriptive set theorists,
who only rarely cite each other in their contributions to the theory. The link between the
original approach of Nash-Williams (graph theoretic) with that of Simpson (descriptive
set theoretic) is merely mentioned by Argyros and Todorčević [1] alone. We present basic
observations in order to remedy this situation in Section 3. Building on an idea due to
Forster [5], we introduce the definition of better-quasi-order in a new way, using insight
from one of the great contributions of descriptive set theory to better-quasi-order theory,
namely the use of games and determinacy.

Finally in Section 4 we put the definition of better-quasi-order into perspective. This
last section contains original material which have not been published elsewhere by the
author.

2. Well-quasi-orders

A reflexive and transitive binary relation � on a set Q is called a quasi-order (qo, also
preorder). As it is customary, we henceforth make an abuse of terminology and refer to
the pair .Q;�/ simply as Q when there is no danger of confusion. Moreover when it is
necessary to prevent ambiguity we use a subscript and write �Q for the binary relation of
the quasi-orderQ.

The notion of quasi-order is certainly the most general mathematical concept of or-
dering. Two elements p and q of a quasi-order Q are equivalent, in symbols p � q, if
both p � q and q � p hold. It can very well happen that p is equivalent to q while p
is not equal to q. This kind of situation naturally arises when one considers for example
the quasi-order of embeddability among a certain class of structures. Examples of pairs
of structures which mutually embed into each other while being distinct, or even non
isomorphic, abound in mathematics.

Every quasi-order has an associated strict relation, denoted by <, defined by p < q if
and only if p � q and q — p – equivalently p � q and p 6� q. We say two elements p
and q are incomparable, when both p — q and q — p hold, in symbols p j q.

A map f W P ! Q between quasi-orders is order-preserving (also isotone) if when-
ever p �P p0 holds in P we have f .p/ �Q f .p0/ in Q. An embedding is a map
f W P ! Q such that for every p and p0 in P , p �P p0 if and only if f .p/ �Q f .p0/.
Notice that an embedding is not necessarily injective. An embedding f W P ! Q is
called an equivalence2 provided it is essentially surjective, i.e. for every q 2 Q there exists
p 2 P with q �Q f .p/. We say that two quasi-orders P and Q are equivalent if there

2Viewing quasi-orders as categories in the obvious way, this notion of equivalence coincides with the one
used in category theory.
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exists an equivalence from P to Q— by the axiom of choice this is easily seen to be an
equivalence relation on the class of quasi-orders. Notice that every set X quasi-ordered
by the full relation X � X is equivalent to the one point quasi-order. In contrast, by an
isomorphism f from P to Q we mean a bijective embedding f W P ! Q. Of course, a
set X quasi-ordered with the full relation X �X is never isomorphic to 1 except when X
contains exactly one element.

In the sequel we study quasi-orders up to equivalence, namely only properties of
quasi-orders which are preserved by equivalence are considered.

A quasi-order Q is called a partial order (po, also poset) provided the relation � is
antisymmetric, i.e. p � p implies p D q — equivalent elements are equal. Notice that
an embedding between partial orders is necessarily injective. Moreover if P and Q are
partial orders and f W P ! Q is an equivalence, then f is an isomorphism. We also note
that in a partial order the associated strict order can also be defined by p < q if and only
if p � q and p ¤ q.

Importantly, every quasi-orderQ admits up to isomorphism a unique equivalent partial
order, its equivalent partial order, which can be obtained as the quotient of Q by the
equivalence relation p � q.

Even though most naturally occurring examples and constructions are only quasi-
orders, one can always think of the equivalent partial order. The study of quasi-orders
therefore really amounts to the study of partial orders.

2.1. Good versus bad sequences. We let! D f0; 1; 2; : : :g be the set of natural numbers.
We use the set theoretic definitions 0 D ; and n D f0; : : : ; n� 1g, so that the usual order
on ! coincides with the membership relation. The equality and the usual order on ! give
rise to the following distinguished types of sequences into a quasi-order.
Definitions 2.1. LetQ be a quasi-order.
(1) An infinite antichain is a map f W ! ! Q such that for all m; n 2 !, m ¤ n implies

f .m/ j f .n/.
(2) An infinite descending chain, or an infinite decreasing sequence in Q, is a map

f W ! ! Q such that for all m; n 2 !, m < n implies f .m/ > f .n/.
(3) A perfect sequence, is a map f W ! ! Q such that for all m; n 2 ! the relation

m � n implies f .m/ � f .n/. In other words, f is perfect if it is order-preserving
from .!;�/ to .Q;�/.

(4) A bad sequence is a map f W ! ! Q such that for all m; n 2 !, m < n implies
f .m/ — f .n/.

(5) A good sequence is a map f W ! ! Q such that there exist m; n 2 ! with m < n

and f .m/ � f .n/. Hence a sequence is good exactly when it is not bad.
For any infinite subset X of !, we denote by ŒX�2 the set of pairs fx; yg for distinct

x; y 2 X . When we write fm; ng for a pair of natural numbers, we always assume
it is written in increasing order (m < n). By Ramsey’s theorem3 [19] whenever Œ!�2 is
partitioned intoP0 andP1 there exists an infinite subsetX of! such that either ŒX�2 � P0,
or ŒX�2 � P1.

3Nash-Williams’ generalisation of Ramsey’s theorem is stated and proved as Theorem 3.22.
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Proposition 2.2. For a quasi-orderQ, the following conditions are equivalent.
(W1) Q has no infinite descending chain and no infinite antichain;
(W2) there is no bad sequence inQ;
(W3) every sequence inQ admits a perfect sub-sequence.

Proof. (W1)!(W2): We prove the contrapositive. Suppose that f W ! ! Q is a bad
sequence. Partition Œ!�2 into P0 and P1 with

P0 D
˚
fm; ng 2 Œ!�2

ˇ̌
f .m/ � f .n/

	
:

By Ramsey’s theorem, there exists an infinite subset X of integers with either ŒX�2 � P0,
or ŒX�2 � P1. In the first case f W X ! Q is an infinite antichain and in the second case
f W X ! Q is an infinite descending chain.
(W2)!(W1): Notice that an infinite antichain and an infinite descending chain are two
examples of a bad sequence.
(W2)$(W3): Let f W ! ! Q be any sequence in Q. We partition Œ!�2 in P0 and P1
with

P0 D
˚
fm; ng 2 Œ!�2

ˇ̌
f .m/ — f .n/

	
:

By Ramsey’s theorem, there exists an infinite subset X of integers such that ŒX�2 � P0
or ŒX�2 � P1. The first case yields a bad sub-sequence. The second case gives a perfect
sub-sequence.

Definition 2.3. A quasi-order Q is called a well-quasi-order (wqo) when one of the
equivalent conditions of the previous proposition is fulfilled. A quasi-order with no
infinite descending chain is said to be well-founded.

The notion of wqo is a frequently discovered concept, for an historical account of its
early development we refer the reader to the excellent article by Kruskal [9].

Using Proposition 2.2 and the Ramsey’s theorem for pairs, one easily proves the
following basic closure properties of the class of wqos.
Proposition 2.4.

(i) If .Q;�Q/ is wqo and P � Q, then .P;�P / is wqo, where p �P p0 if and only
if p; p0 2 P and p �Q p0.

(ii) If .P;�P / and .Q;�Q/ are wqo, then P �Q quasi-ordered by

.p; q/ �P�Q .p
0; q0/  ! p �P p

0 and q �Q q0

is wqo.
(iii) If .P;�P / is a partial order and .Qp;�Qp

/ is a quasi-order for every p 2 P , the
sum

P
p2P Qp of the Qp along P has underlying set the disjoint union f.p; q/ j

p 2 P and q 2 Qpg and is quasi-ordered by

.p; q/ � .p0; q0/  ! either p D p0 and q �Qp
q0, or p < p0:

If P is wqo and eachQp is wqo, then
P
p2P Qp is wqo.

(iv) If Q is wqo and there exists a map g W P ! Q such that for all p; p0 2 P
g.p/ � g.p0/! p � p0, then P is wqo.

(v) If P is wqo and there is a surjective and monotone map h W P ! Q, thenQ is wqo.
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2.2. Subsets and downsets. Importantly, a wqo can be characterised in terms of its
subsets.

Definitions 2.5. LetQ be a quasi-order.

(1) A subset D of Q is a downset, or an initial segment, if q 2 D and p � q implies
p 2 D. For any S � Q, we write #S for the downset generated by S in Q, i.e. the
set fq 2 Q j 9p 2 S q � pg. We also write #p for #fpg.
We denote by D.Q/ the partial order of downsets ofQ under inclusion.

(2) We give the dual meaning to upset, "S and " q respectively.

(3) An upset U is said to to be finitely generated, or to admit a finite basis, if there exists
a finite F � U such that U D "F . We say that Q has the finite basis property if
every upset ofQ admits a finite basis.

(4) A downsetD 2 D.Q/ is said to be finitely bounded, if there exists a finite set F � Q
with D D Q n "F . We let D fb.Q/ be the set of finitely bounded downsets partially
ordered by inclusion.

(5) We turn the power-set ofQ, denotedP .Q/, into a quasi-order by lettingX � Y if and
only if 8p 2 X 9q 2 Y p � q, this is sometimes called the domination quasi-order.
We let P<@1

.Q/ be the the set of countable subsets ofQ with the quasi-order induced
from P .Q/. Since X � Y if and only if #X � #Y , the equivalent partial order
of P .Q/ is D.Q/ and the quotient map is given by X 7! #X .

The notion of well-quasi-order should be thought of as a generalisation of the notion
of well-ordering beyond linear orders. Recall that a partial order P is a linear order if for
everyp and q inP , eitherp � q or q � p. Awell-ordering is (traditionally, the associated
strict relation < of) a partial order that is both linearly ordered and well-founded.

Observe that a linearly ordered P is well-founded if and only if the initial segments
of P are well-founded under inclusion. Considering for example the partial order .!;D/,
one directly sees that a partial order P can be well-founded while the initial segments
of P (here P .!/) are not well-founded under inclusion. However a quasi-orderQ is wqo
if and only if the initial segments ofQ are well-founded under inclusion.

Proposition 2.6. A quasi-order Q is a wqo if and only if one of the following equivalent
conditions is fulfilled:
(W4) Q has the finite basis property,
(W5) .P .Q/;�/ is well-founded,
(W6) .P<@1

.Q/;�/ is well-founded,
(W7) .D.Q/;�/ is well-founded,
(W8) .D fb.Q/;�/ is well-founded.

Proof. (W2)!(W4): We prove the contrapositive. Suppose S 2 U.Q/ admits no finite
basis. Since ; D ";, S ¤ ;. By dependent choice, we can show the existence of a bad
sequence f W ! ! Q. Choose f .0/ 2 S and suppose that f is defined up to some n > 0.
Since "ff .0/; : : : f .n/g � S we can choose some f .nC 1/ inside S n"ff .0/; : : : f .n/g.
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(W4)!(W5): We prove the contrapositive again. Suppose that .Xn/n2! is an infinite
descending chain in P .Q/. Then for each n 2 ! we choose qn 2 #Xn n #XnC1. Then
fqn j n 2 !g has no finite basis. Indeed for all n 2 ! we have qnC1 … "fqi j i � ng,
otherwise qi � qnC1 2 #XnC1 � #XiC1 for some i � n, a contradiction.
(W5)!(W6): Obvious.
(W6)!(W2): By contraposition, if .qn/n2! is a bad sequence inQ, thenPnDfqk j n�kg
is an infinite descending chain in P<@1

.Q/ since wheneverm < n we have qm 2 Pm and
qm — qk for every k � n.
(W5)!(W7): By contraposition, any infinite descending chain for inclusion in D.Q/ is
also an infinite descending chain in .P .Q/;�/.
(W7)!(W8): Obvious.
(W8)!(W2): By contraposition, if f W ! ! Q is a bad sequence, then n 7! Dn D

Q n "ff .i/ j i � ng is an infinite descending chain in D fb.Q/.

2.3. Regular sequences. A monotone decreasing sequence of ordinals is, by well-
foundedness, eventually constant. The limit of such a sequence exists naturally, and
is simply its minimum.

In general the limit of a sequence .˛i /i2! of ordinals may not exist, however any se-
quence of ordinals admits a limit superior. Indeed, define the sequence ˇi D supj�i ˛j DS
j�i ˛j , then .ˇi /i2! is decreasing and hence admits a limit.
We say that .˛i /i2! is regular if the limit superior and the supremum

S
i2! ˛i of

.˛i /i2! coincide. This is equivalent to saying that for every i 2 ! there exists j > i with
˛i � ˛j . By induction one shows that this is in turn equivalent to saying that for all i 2 !
the set fj 2 ! j i < j and ˛i � ˛j g is infinite.
Notation 2.7. For n 2 ! and X an infinite subset of ! let us denote by X=n the final
segment of X given by fk 2 X j k > ng.

We generalise the definition of regular sequences of ordinals to sequences in quasi-
orders as follows.
Definition 2.8. LetQ be a qo. A regular sequence is a map f W ! ! Q such that for all
n 2 ! the set fk 2 !=n j f .n/ � f .k/g is infinite.

Here is a characterisation of wqo in terms of regular sequences which exhibits another
property of well-orders shared by wqos.
Proposition 2.9. Let Q be a qo. Then Q is wqo if and only if one of the following
equivalent conditions holds:
(W9) Every sequence inQ admits a regular sub-sequence.
(W10) For every sequence f W ! ! Q there exists n 2 ! such that the restriction

f W !=n! Q is regular.

Proof. (W7)!(W10): For f W ! ! Q we let f 0 W ! ! D.Q/ be defined by f 0.n/ D
#ff .k/ j n � k < !g. Then clearly if m < n then f 0.m/ � f 0.n/. The partial
order D.Q/ being well-founded by (W7), there exists n 2 ! such that for every m > n
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we have f 0.n/ D f 0.m/. This n is as desired. Indeed, if k > n then for every l > k we
have f .k/ 2 f 0.k/ D f 0.l/ and so there exists j � l with f .k/ � f .j /.
(W10)!(W9): Obvious.
(W9)!(W2): By contraposition, if f W ! ! Q is a bad sequence, then every sub-
sequence of f is bad. Clearly a bad sequence f W ! ! Q is not regular since for every
n 2 ! the set fk 2 !=n j f .n/ � f .k/g is empty. Hence a bad sequence admits no
regular sub-sequence.

2.4. Sequences of subsets. In this section we give a new characterisation of wqos which
enjoys both a topological and an order-theoretical flavour.

So far, we have considered D.Q/ as partially ordered set for inclusion. But D.Q/

also admits a natural topology which turns it into a compact Hausdorff 0-dimensional
space. ConsiderQ as a discrete topological space, and form the product space 2Q, whose
underlying set is identified with P .Q/. This product space, sometimes called generalised
Cantor space, admits as a basis the clopen sets of the form

N.F;G/ D fX � Q j F � X and X \G D ;g;

for finite subsets F;G ofQ. For q 2 Q, we write hqi instead of N.fqg;;/ for the clopen
set fX � Q j q 2 Xg. Note that hqi{ D N.;; fqg/.

Notice that D.Q/ is an intersection of clopen sets,

D.Q/ D
\
p�q

hqi{ [ hpi;

hence D.Q/ is closed in 2Q and therefore compact.
Now recall that for every sequence .En/n2! of subsets ofQwe have the usual relations\

n2!

En �
[
i2!

\
j�i

Ej �
\
i2!

[
j�i

Ej �
[
n2!

En: (1)

Moreover the convergence of sequences in 2Q can be expressed by means of a
“lim inf D lim sup” property.
Fact 2.10. A sequence .En/n2! converges to E in 2Q if and only if[

i2!

\
j�i

Ej D
\
i2!

[
j�i

Ej D E:

Proof. Suppose that E D
S
i2!

T
j�i Ej D

T
i2!

S
j�i Ej . We show that En ! E.

Let F;G be finite subsets of Q with E 2 N.F;G/. Since E D
S
i2!

T
j�i Ej and F

finite, F � Ej for all sufficiently large j . Since E D
T
i2!

S
j�i Ej and G is finite,

G \ Ej D ; for all sufficiently large j . It follows that Ej 2 N.F;G/ for all sufficiently
large j , whence .En/n converges to E.

Conversely, assume thatEn converges to someE in 2Q. If q belongs toE, i.e.E 2 hqi,
then q 2 Ej for all sufficiently large j and thus q 2

S
i2!

T
j�i Ej . And if q … E,

i.e. E … hqi, then q … Ej for all sufficiently large j and thus q …
T
i2!

S
j�i Ej .

Therefore by Equation 1 it follows that E D
S
i2!

T
j�i Ej D

T
i2!

S
j�i Ej .
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Observe that if .qn/n2! is a perfect sequence in a qo Q, then for every q 2 Q if
q � qm for some m, then q � qn holds for all n � m. Therefore by Equation 1 we have[

m2!

\
n�m

# qn D
[
n2!

# qn;

whence .# qn/n2! converges to #fqn j n 2 !g in 2Q by Fact 2.10. On the contrary no
bad sequence .qn/n2! converges towards #fqn j n 2 !g, since for example q0 does not
belong to

S
i2!

T
j�i # qj . We have obtained the following:

Fact 2.11. LetQ be a qo.
(i) Q is wqo if and only if for every sequence .qn/n2! there exists N 2 Œ!�1 such that

.# qn/n2N converges to #fqn j n 2 N g in D.Q/.
(ii) If Q is wqo and .# qn/n2! converges to some D in D.Q/, then there is some

N 2 Œ!�1 such thatD D #fqn j n 2 N g.
Actually more is true, thanks to the following ingenious observation made by Richard

Rado in the body of a proof in [18].
Lemma 2.12 (Rado’s trick). Let Q be a wqo and let .Dn/n2! be a sequence in D.Q/.
Then there exists an infinite subset N of ! such that[

i2N

\
j2N=i

Dj D
[
n2N

Dn;

and so the sub-sequence .Dj /j2N converges to
S
n2N Dn in D.Q/.

Proof. Towards a contradiction suppose that for all infinite N � ! we have[
i2N

\
j2N=i

Dj �
[
n2N

Dn: (2)

We define an infinite descending chain .Ei /i2! in D.Q/. But to do so we recursively
define a sequence .Nk/k2! of infinite subsets of ! and a sequence .qk/k2! inQ such that
(a) N0 D ! and Nk � NkC1 for all k 2 !.
(b) qk 2

S
j2Nk

Dj and qk …
S
j2NkC1

Dj .
Suppose we have defined N0; : : : ; Nk and q0; : : : qk�1. By Equation 2 we have[

n2Nk

Dn ª
[
i2Nk

\
j2Nk=i

Dj ;

so we can pick n0 2 Nk and qk 2 Dn0
such that qk …

S
i2Nk

T
j2Nk=i

Dj . Then for all i
in Nk let ji 2 Nk=i be minimal such that qk … Dji

. Setting n1 D jn0
and niC1 D jni

,
we obtain an infinite set NkC1 D fn1; n2; : : :g which satisfies

qk 2 Dn0
�

[
j2Nk

Dj and qk …
[

j2NkC1

Dj :
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Now we define Ek D
S
j2Nk

Dj . The sequence .Ek/k2! is an infinite descending
chain in D.Q/, contradicting the fact thatQ is wqo.

For the second statement, observe that if N is an infinite subset of ! satisfying the
statement of the lemma, then by Equation 1 we have[

i2N

\
j2N=i

Dj D
\
i2N

[
j2N=i

Dj D
[
n2N

Dn;

and so by Fact 2.10 we get that .Dj /j2N converges to
S
n2N Dn in D.Q/.

Hence if Q is wqo, then every sequence in D.Q/ admits a sub-sequence which
converges to its union. Of course the converse also holds.

Lemma 2.13. If .Dn/n2! is an infinite descending chain inD.Q/, then there is no infinite
subset N of ! such that

S
n2N Dn D

S
i2N

T
j2N=i Dj .

Proof. Since any sub-sequence of an infinite descending chain is again an infinite de-
scending chain, it is enough to show that if .Dn/n2! is an infinite descending chain
in D.Q/ then

S
n2! Dn ª

S
i2!

T
j2!=i Dj . Pick any q 2 D0 n D1. Then since

Dj � D1 for all j � 1 andD1 is a downset, we get q … Dj for all j � 1. It follows that
q …

S
i2!

T
j2!=i Dj .

This leads to our last characterisation of wqo:

Proposition 2.14. LetQ be a qo. ThenQ is wqo if and only if
(W11) Every sequence .Dn/n2! in D.Q/ admits a sub-sequence .Dn/n2N which con-

verges to
S
n2N Dn.

3. Better-quasi-orders

3.1. Towards better. As we have seen in Proposition 2.6 a quasi-order is wqo if and
only if P .Q/ is well-founded if and only if D.Q/ is well founded. The first example of a
wqo whose powerset contains an infinite antichain was identified by Richard Rado. This
wqo is the starting point of the journey towards the stronger notion of better-quasi-order.

Example 3.1 ([18]). Rado’s partial order R is the set Œ!�2, of pairs of natural numbers,
partially ordered by (cf. Figure 1):

fm; ng � fm0; n0g  !

(
m D m0 and n � n0, or
n < m0:

The po R is wqo. To see this, consider any map f W ! ! Œ!�2 and let f .n/ D
ff0.n/; f1.n/g for all n 2 !. Now if f0 is unbounded, then there exists n > 0 with
f1.0/ < f0.n/ and so f .0/ � f .n/ in R by the second clause. If f0 is bounded, let
us assume by going to a sub-sequence if necessary, that f1 W ! ! ! is perfect. Then
there exist m and n with m < n and f0.m/ D f0.n/ and we have f1.m/ � f1.n/,
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so f .m/ � f .n/ in R by the first clause. In both cases we find that f is good, so R is
wqo.

However the map n 7! Dn D #ffn; lg j n < lg is a bad sequence (in fact an
infinite antichain) inside D.R/. Indeed whenever m < n we have fm; ng 2 Dm while
fm; ng … Dn, and soDm ª Dn.

:::
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�

�

�

�

�

:::
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�

�

:::
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:::

�

�

�

�

:::

�

�

�

:::

�

�

:::

�

.0; 1/

.0; 2/ .1; 2/

.0; 3/ .1; 3/ .2; 3/

D3

:::

Figure 1. Rado’s poset R.

One natural question is now: What witnesses in a given quasi-order Q the fact that
P .Q/ is not wqo? It cannot always be a bad sequence, that is what the existence of Rado’s
partial order tells us. But then what is it?

To see this suppose that .Pn/n2! is a bad sequence in P .Q/. Fix some m 2 !. Then
whenever m < n we have Pm ª #Pn and we can choose a witness q 2 Pm n #Pn. But
of course in general there is no single q 2 Pm that witnesses Pm ª #Pn for all n > m.
So we are forced to pick a sequence fm W !=m! Q, n 7! qnm of witnesses:

qnm 2 Pm and qnm … #Pn; n 2 !=m:

Bringing together all the sequences f0; f1; : : :, we obtain a sequence of sequences, natu-
rally indexed by the set Œ!�2 of pairs of natural numbers,

f W Œ!�2 �! Q

fm; ng 7�! fm.n/ D q
n
m:

By our choices this sequence of sequences satisfies the following condition:

8m; n; l 2 ! m < n < l ! qnm — q
l
n:
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Indeed, suppose towards a contradiction that for m < n < l we have qnm � qln. Since
qln 2 Pn we would have qnm 2 #Pn, but we chose qnm such that qnm … #Pn.

Let us say that a sequence of sequences f W Œ!�2 ! Q is bad if for everym; n; l 2 !,
m < n < l implies f .fm; ng/ — f .fn; lg/. We have come to the following.

Proposition 3.2. LetQ be a qo. Then P .Q/ is wqo if and only if there is no bad sequence
of sequences intoQ.

Proof. As we have seen in the preceding discussion, if P .Q/ is not wqo then from a bad
sequence in P .Q/ we can make choices in order to define a bad sequences of sequences
inQ.

Conversely, if f W Œ!�2 ! Q is a bad sequence of sequences, then for each m 2 !
we can consider the set Pm D ff .fm; ng/ j n 2 !=mg consisting in the image of the mth
sequence. Then the sequence m 7! Pm in P .Q/ is a bad sequence. Indeed every time
m < n we have f .fm; ng/ 2 Pm while f .fm; ng/ … #Pn, since otherwise there would
exist l > n with f .fm; ng/ � f .fn; lg/, a contradiction with the fact that f is a bad
sequence of sequences.

One should notice that from the previous proof we actually get that P .Q/ is wqo if
and only if P<@1

.Q/ is wqo. Notice also that in the case of Rado’s partial orderR the fact
that P .R/ is not wqo is witnessed by the bad sequence f W Œ!�2 ! R; fm; ng 7! fm; ng
which is simply the identity on the underlying sets, since every time m < n < l then
fm; ng — fn; lg inR. In fact, Rado’s partial order is in a sense universal as established by
Richard Laver [11]:

Theorem 3.3. IfQ is wqo but P .Q/ is not wqo, then R embeds intoQ.

Proof. Let f W Œ!�2 ! Q be a bad sequence of sequences. Partitioning the triples
fi; j; kg, i < j < k, into two sets depending on whether or not f .fi; j g/ � f .fi; kg/, we
get by Ramsey’s theorem an infinite setN � ! whose triples are all contained into one of
the classes. If for every fi; j; kg � N we have f .fi; j g/ — f .fi; kg/ then for any i 2 N
the sequence f .fi; j g/j2N=i is a bad sequence inQ. SinceQ is wqo, the other possibility
must hold.

Then partition the quadruples fi; j; k; lg in N into two sets according to whether
or not f .fi; j g/ � f .fk; lg/. Again there exists an infinite subset M of N whose
quadruples are all contained into one of the classes. If all quadruples fi; j; k; lg in M
satisfy f .fi; j g/ — f .fk; lg/, then for any sequence .fik ; jkg/k2! of pairs in M with
jk < ikC1 the sequence f .fik ; jkg/k2! is bad inQ. SinceQ is wqo, it must be the other
possibility that holds.

Let X D M n fminM g, then ff .fi; j g/ j fi; j g 2 ŒX�2g is isomorphic to R. By the
properties of M , we have fi; j g � fk; lg in R implies f .fi; j g/ � f .fk; lg/. We show
that f .fi; j g/ � f .fk; lg/ implies fi; j g � fk; lg in R. Suppose fi; j g — fk; lg in R,
namely k � j and either i ¤ k, or l < j . If l < j and f .fi; j g/ � f .fk; lg/ then for any
n 2 X=j we have f .fk; lg/ � f .fj; ng/ and thus f .fi; j g/ � f .fj; ng/ a contradiction
since f is bad. Suppose now that k � j and i ¤ k. If i < k and f .fi; j g/ � f .fk; lg/,
then f .fi; kg/ � f .fi; j g/ � f .fk; lg/, a contradiction. Finally if k < i and f .fi; j g/ �
f .fk; lg/ then for m D minM we have f .fm; kg/ � f .fi; j g/ � f .fk; lg/, again a
contradiction.
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Fromaheuristic viewpoint, abetter-quasi-order is awell quasi-orderQ such thatP .Q/
is wqo, P .P .Q// is wqo, P .P .P .Q/// is wqo, so on and so forth, into the transfinite.
This idea will be made precise in Section 3.4, but we can already see that it cannot serve as
a convenient definition4. As the above discussion suggests, a better-quasi-order is going
to be a qoQ, with no bad sequence, with no bad sequence of sequences, no bad sequence
of sequences of sequences, so on and so forth, into the transfinite. To do so we need
a convenient notion of “index set” for a sequence of sequences of . . . of sequences, in
short a super-sequence. We now turn to the study of this fundamental notion defined by
Nash-Williams.

3.2. Super-sequences. Let us first introduce some useful notation. Given an infinite
subset X of ! and a natural number k, we denote by ŒX�k the set of subsets of X of
cardinality k, and by ŒX�<1 the set

S
k2! ŒX�

k of finite subsets of X . When we write an
element s 2 ŒX�k as fn0; : : : ; nk�1g we always assume it is written in increasing order
n0 < n1 < � � � < nk�1 for the usual order on !. The cardinality of s 2 Œ!�<1 is denoted
by jsj. We write ŒX�1 for the set of infinite subsets of X .

For any X 2 Œ!�1 and any s 2 Œ!�<1, we let X=s D fk 2 X j max s < kg and we
write X=n for X=fng, as we have already done.

3.2.1. Index sets for super-sequences. Intuitively super-sequences are sequences of
sequences . . . of sequences. In order to deal properly with this idea we need a convenient
notion of index sets. Those will be families of finite sets of natural numbers called fronts.
They were defined by Nash-Williams [15]. As the presence of an ellipsis in the expression
“sequences of sequences of . . . of sequences” suggests, the notion of front admits an
inductive definition. To formulate such a definition it is useful to identify the degenerate
case of a super-sequence, the level zero of the notion of sequence of . . . of sequences,
namely a function f W 1! E which singles out a point of a setE. The index set for these
degenerate sequences is the family f;g called the trivial front. New fronts are then built
up from old ones using the following operation.

Definition 3.4. If X 2 Œ!�1 and F.n/ � ŒX=n�<1 for every n 2 X , we let

seq
n2X

F.n/ D
˚
fng [ s j n 2 X and s 2 F.n/

	
:

Definition 3.5 (Front, inductive definition). We define a front on X simultaneously for
every X 2 Œ!�1 by induction using the two following clauses:

(1) for all X 2 Œ!�1, the family f;g is a front on X ,

(2) if X 2 Œ!�1 and if F.n/ is a front on X=n for all n 2 X , then

F D seq
n2X

F.n/

is a front on X .

4The reader who remains unconvinced can try to prove that the partial order .3;D/ satisfies this property.
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Remark 3.6. In the literature, fronts are sometimes called blocks or thin blocks. Here we
follow the terminology of Todorčević [24].
Examples 3.7. We have already seen example of fronts. Indeed for every X 2 Œ!�1 and
every n 2 ! the family ŒX�n is a front on X , where ŒX�0 D f;g is the trivial front. For a
new example, consider for every n 2 ! the front Œ!=n�n and build

S D seq
n2!

Œ!=n�n D
˚
s 2 Œ!�<1 j 1Cmin s D jsj

	
:

The front S is traditionally called the Schreier barrier.

trivial front

� � �

front Œ!�1

� � �

front Œ!�2

� � �

Schreier barrier S

� � �

Figure 2. Pictures of fronts.

We defined fronts to make the following:
Definition 3.8. A super-sequence in a set E is a map f W F ! E from a front into E.

Notice that if F is a non trivial front on X , we can recover the unique sequence F.n/,
n 2 X , of fronts from which it is constructed.
Definition 3.9. For any family F � Œ!�<1 and n 2 ! we define the ray of F at n to be
the family

Fn D
˚
s 2 Œ!=n�<1 j fng [ s 2 F

	
:
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Then every non trivial front F on X is built up from its rays Fn, n 2 X , in the sense
that:

F D seq
n2X

Fn:

Notice that, according to our definition, the trivial front f;g is a front on X for every
X 2 Œ!�1. Except for this degenerate example, if a family F � ŒX�<1 is a front on X ,
then necessarily X is equal to

S
F , the set-theoretic union of the family F . For this

reason we will sometimes say that F is a front, without reference to any infinite subset X
of !. Moreover when F is not trivial, we refer to the unique X for which F is a front
on X , namely

S
F , as the base of F .

Importantly, the notion of a front also admits an explicit definition to which we now
turn. It makes essential use of the following binary relation.
Definition 3.10. For subsets u; v of !, we write u v v when u is an initial segment of v,
i.e. when u D v or when there exists n 2 v such that u D fk 2 v j k < ng. As usual, we
write u @ v for u v v and u ¤ v.
Definition 3.11 (Front, explicit definition). A familyF � Œ!�<1 is a front onX 2 Œ!�1 if
(1) either F D f;g, or

S
F D X ,

(2) for all s; t 2 F s v t implies s D t ,
(3) (Density) for all X 0 2 ŒX�1 there is an s 2 F such that s @ X 0.

Merely for the purpose of showing that our two definitions coincide, and only until this
is achieved, let us refer to a front according to the explicit definition as a fronte. Notice
that the family f;g is a fronte, the trivial fronte. Notice also that if F is a non trivial fronte
then necessarily ; … F .

Our first step towards proving the equivalence of our two definitions of fronts is the
following easy observation.
Lemma 3.12. Let F be a non trivial front e on X 2 Œ!�1. Then for every n 2 X , the
ray Fn is a fronte on X=n. Moreover F D seqn2X Fn.

Proof. Let n 2 X . For every Y 2 ŒX=n�1 there exists s 2 F with s @ fng [ Y . Since F
is non trivial, s ¤ ; and so n 2 s. Therefore s0 D s n fng 2 Fn with s0 @ Y , and Fn
satisfies (3). Now if Fn is not trivial and k 2 X=n, there is s 2 Fn with s @ fkg [ X=k
and necessarily k 2 s �

S
Fn. Hence

S
Fn D X=n, so condition (1) is met. To see (2),

let s; t 2 Fn with s v t . Then for s0 D fng [ s and t 0 D fng [ t we have s0; t 0 2 F and
s0 v t 0, so s0 D t 0 and s D t , as desired. The last statement is obvious.

Our next step consists in assigning a rank to every fronte. To do so, we first recall
some classical notions about sequences and trees.
Notation 3.13. For a non empty set A, we write An for the set of sequences s W n ! A.
Let A<! be the set

S
n2! A

n of finite sequences in A. We write A! for the set of infinite
sequences x W ! ! A in A. Let u 2 A<! , x 2 A<! [ A! .
(1) jxj 2 ! C 1 denotes the length of x.
(2) For n � jxj, x�n is the initial segment, or prefix, of x of length n.
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(3) We write u v x if there exists n � jxj with u D x�n. We write u @ x if u v x and
u ¤ x.

(4) We write u a x for the concatenation operation.
Identifying any finite subset of ! with its increasing enumeration with respect to

the usual order on !, we view any fronte as a subset of !<! . Notice that under this
identification, our previous definition of v for subsets of ! coincides with the one for
sequences.
Definitions 3.14. (1) A tree T on a set A is a subset of A<! that is closed under prefixes,

i.e. u v v and v 2 T implies u 2 T .
(2) A tree T on A is called well-founded if T has no infinite branch, i.e. if there is no

infinite sequence x 2 A! such that x�n 2 T holds for all n 2 !. In other words, a
tree T is well-founded if .T;w/ is a well-founded partial order.

(3) When T is a non-empty well-founded tree we can define a strictly decreasing func-
tion �T from T to the ordinals by transfinite recursion on the well-founded relationA:

�T .t/ D sup
˚
�T .s/C 1 j t @ s 2 T

	
for all t 2 T .

It is easily shown to be equivalent to

�T .t/ D sup
˚
�T .t

a .a//C 1 j a 2 A and t a .a/ 2 T
	

for all t 2 T .

The rank of the non-empty well-founded tree T is the ordinal �T .;/.
For any fronte F , we let T .F / be the smallest tree on ! containing F , i.e.

T .F / D
˚
s 2 !<! j 9t 2 F s v t

	
:

The following is a direct consequence of the explicit definition of a front.
Lemma 3.15. For every fronte F , the tree T .F / is well-founded.

Proof. If x is an infinite branch of T .F /, then x enumerates an infinite subset X of
S
F

such that for every u @ X there exists t 2 F with u v t . Since F is a fronte there exists
a (unique) s 2 F with s @ X . Let n D minX=s and for u D s [ fng consider some
t 2 F with u v t . But then F 3 s @ u v t 2 F contradicting the explicit definition of a
front.

Definition 3.16. Let F be a fronte. The rank of F , denoted by rkF , is the rank of the
tree T .F /.
Example 3.17. Notice that the family f;g is the only fronte of null rank, and for all positive
integer n, the front Œ!�n has rank n. Moreover the Schreier barrier S has rank !.

We now observe that the rank of F is closely related to the rank of its rays Fn, n 2 X .
Let F be a non trivial fronte on X 2 Œ!�1 and recall that by Lemma 3.12, the ray Fn
is a fronte on X=n for every n 2 X . Now notice that the tree T .Fn/ of the fronte Fn is
naturally isomorphic to the subset˚

s 2 T .F / j fng v s
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of T .F /. The rank of the fronte F is therefore related to the ranks of its rays through the
following formula:

rkF D sup
˚
rk.Fn/C 1 j n 2 X

	
:

In particular, rkFn < rkF for all n 2 X .
This simple remark allows one to prove results on frontes by induction on the rank by

applying the induction hypothesis to the rays, as it was first done by Pudlák and Rödl [17].
It also allows us to prove that the two definitions of a front that we gave actually coincide.

Lemma 3.18. The explicit definition and the inductive definition of a front coincide.

Proof. Inductive! Explicit: The family f;g is the trivial fronte. Now let X 2 Œ!�1 and
suppose that Fn is a fronte on X=n for all n 2 X . We need to see that F D seqn2X Fn is
a fronte on X . Clearly

S
F D X . If s; t 2 F and s v t , then for some n 2 X we have

min s D min t D n. So for s0 D s n fng and t 0 D t n fng we have s0; t 0 2 Fn and s0 v t 0,
hence s0 D t 0 holds and so does s D t . Finally, if Y 2 ŒX�1 with n D minY , then there
exists s0 2 Fn with s0 @ Y n fng and so s D fng [ s0 2 F and s @ Y . So F is a fronte, as
desired.

Explicit! Inductive: We show that every fronte F satisfies the inductive definition of a
front by induction on the rank of F . If rkF D 0, then F D f;g is a front according to the
inductive definition. Now suppose F is a front according to the explicit definition with
rkF > 0. In particular

S
F D X for some X 2 Œ!�1 . By Lemma 3.12, Fn is a front

on X=n for every n 2 X . Now for every n 2 X , as rkFn < rkF we get that Fn is a
front on X=n according to the inductive definition, by the induction hypothesis. Finally
as F D seqn2X Fn, we get that F is a front according to the inductive definition.

Finally notice that the rank of a front naturally arise from the inductive definition.
Let F0 be the set containing only the trivial front. Then for any countable ordinal ˛, let
F 2 F˛ if F 2

S
ˇ<˛ Fˇ or F D seqn2X Fn where X 2 Œ!�1 and each Fn is a front

on X=n which belongs to some Fˇn
for some ˇn < ˛. Then clearly the set of all fronts is

equal
S
˛<!1

F˛ . Now it should be clear that for every front F the smallest ˛ < !1 for
which F 2 F˛ is rkF , the rank of F .

3.2.2. Sub-front and sub-super-sequences. When using super-sequences one is often
interested in extracting sub-super-sequences which enjoy further properties.

Definition 3.19. A sub-super-sequence of a super-sequence f W F ! E is a restriction
f �G W G ! E to some front G included in F .

The following important operation allows us to understand the sub-fronts of a given
front, i.e. sub-families of a front which are themselves fronts. For a family F � P .!/

and some X 2 Œ!�1, we define the sub-family

F jX WD
˚
s 2 F j s � X

	
:

Proposition 3.20. Let F be a front on X . Then a family F 0 � F is a front if and only if
there exists Y 2 ŒX�1 such that F jY D F 0.
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Proof. The claim is obvious if F is trivial so suppose F is non-trivial.
! Let F 0 � F be a front on Y . Since F 0 is not trivial either, Y D

S
F 0 �

S
F D X .

Now if s 2 F 0 then clearly s 2 F jY . Conversely if s 2 F jY then there exists a unique
t 2 F 0 with t @ s [ Y=s and so either s v t or t v s. Since F is a front and s; t 2 F ,
necessarily s D t and so s 2 F 0. Therefore F 0 D F jY .
 If Y 2 ŒX�1 then the family F jY is a front on Y . Clearly F jY satisfies (2). If
Z 2 ŒY �1 then since Y � X , then Z 2 ŒX�1 and so there exists s 2 F with s @ Z. But
then s � Z � Y , so in fact s 2 F jY and therefore F jY satisfies (3). For (1), notice thatS
F jY � Y by definition and that if n 2 Y , then as we have already seen there exists

s 2 F jY with s @ fng [ Y=n, so n 2 s and n 2
S
F jY .

Observe that the operation of restriction commutes with the taking of rays.
Fact 3.21. Let F � P .!/ and X 2 Œ!�1. For every n 2 X we have

FnjX D .F jX/n:

Notice also the following simple important fact. If F 0 is a sub-front of a front F , then
the tree T .F 0/ is included in the tree T .F / and so rkF 0 � rkF .

The importance of fronts essentially stems from the following fundamental theorem
by Nash-Williams: Any time we partition a front into finitely many pieces, at least one of
the pieces must contain a front.
Theorem 3.22 (Nash-Williams). Let F be a front. For any subset S of F there exists a
front F 0 � F such that either F 0 � S or F 0 \ S D ;.

We now prove this theorem to give a simple example of a proof by induction on the
rank of a front, a technique which is extremely fruitful.

Proof. The claim is obvious for the trivial front whose only subsets are the empty set and
the whole trivial front. So suppose that the claim holds for every front of rank smaller
than ˛. Let F be a front on X with rkF D ˛ and S � F . For every n 2 X let Sn be the
subset of the ray Fn given by Sn D fs 2 Fn j fng [ s 2 Sg.

Set X�1 D X and n0 D minX�1. Since rkFn0
< ˛ there exists by induction

hypothesis some X0 2 ŒX�1=n0�1 such that

either Fn0
jX0 � Sn0

; or Fn0
jX0 \ Sn0

D ;:

Set n1 D minX0. Now applying the induction hypothesis to Fn1
j.X0=n1/ and Sn1

we get
an X1 2 ŒX0=n1�1 such that either Fn1

jX1 � Sn1
, or Fn1

jX1 \ Sn1
D ;. Continuing

in this fashion, we obtain a sequence Xk together with nk D minXk�1 such that for all k
we have Xk 2 ŒXk�1=nk �1 and

either Fnk
jXk � Snk

; or Fnk
jXk \ Snk

D ;:

Now there exists Y 2 Œ!�1 such that either Fnk
jXk � Snk

for all k 2 Y , or Fnk
jXk \

Snk
D ; for all k 2 Y . Let X D fnk j k 2 Y g. Then F jX is as desired. Indeed for all

s 2 F jX we have min s D nk for some k 2 Y and s n fnkg 2 Fnk
jXk . Hence by the

choice of Y , either s n fmin sg 2 Smin s for all s 2 F jX , or s n fmin sg … Smin s for all
s 2 F jX . Therefore either F jX � S or F jX \ S D ;.
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Nash-Williams’ Theorem3.22 is easily seen to be equivalent to the following statement.
Theorem 3.23. Let E be a finite set. Then every super-sequence f W F ! E admits a
constant sub-super-sequence.

The above result obviously does not hold in general for an infinite set E (consider
for example any injective super-sequence). However Pudlák and Rödl [17] proved an
interesting theorem in this context. In a different direction, the author proved with Carroy
in [2] the following result where fronts are viewed as metric subspaces of the Cantor
space 2! by identifying subsets of ! with their characteristic functions; every super-
sequence f W F ! E in some compact metric space E admits a sub-super-sequence
which is uniformly continuous.

3.3. Multi-sequences. Another approach to super-sequences initiated by Simpson [22]
has proved very useful in the theory of better-quasi-orders. We now describe this approach
and relate it to super-sequences.

Let E be any set, and f W F ! E be a super-sequence with F a front on X . By the
explicit definition of front for every Y 2 ŒX�1 there exists a unique s 2 F with s @ Y .
We can therefore define a map f " W ŒX�1 ! E defined by f ".Y / D f .s/ where s is the
unique member of F with s @ Y .
Definition 3.24. A multi-sequence into some set E is a map h W ŒX�1 ! E for some
X 2 Œ!�1. A sub-multi-sequence of h W ŒX�1 ! E is a restriction of h to ŒY �1 for some
Y 2 ŒX�1.

For every X 2 Œ!�1 we endow ŒX�1 with the topology induced by the Cantor
space, viewing subsets as their characteristic functions. As a topological space ŒX�1 is
homeomorphic to the Baire space !! . This homeomorphism is conveniently realised via
the embedding of ŒX�1 into!! which maps each Y 2 ŒX�1 to its injective and increasing
enumeration eY W ! ! Y . We henceforth identify the space ŒX�1 with the closed subset
of !! of injective and increasing sequences in X . From this point of view we have a
countable basis of clopen sets for ŒX�1 consisting in sets of the form

Ms D
˚
Y 2 ŒX�1 j s @ Y

	
; for s 2 ŒX�<1.

Definition 3.25. A multi-sequence h W ŒX�1 ! E is locally constant if for all Y 2 ŒX�1
there exists s 2 ŒX�<1 such that Y 2Ms and h is constant onMs , i.e. for every Y 2 ŒX�1
there exists s @ Y such that for every Z 2 ŒX�1, s @ Z implies h.Z/ D h.Y /.

Clearly for every super-sequence f W F ! E where F is a front on X the map
f " W ŒX�1 ! E is locally constant.

Conversely for any locally constant multi-sequence h W ŒX�1 ! E, let

Sh D
˚
s 2 ŒX�<1 j h is constant onMs

	
:

Lemma 3.26. The set F h of v-minimal elements of Sh is a front on X .

Proof. By v-minimality if s; t 2 F h and s v t , then s D t . For every Y 2 ŒX�1,
since h is locally constant there exists s @ Y such that h is constant onMs . Hence there
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exists t 2 F h with t v s, and so t @ Y too. To see that either F h is trivial or
S
F h D X ,

notice that h is constant if and only if F h is the trivial front if and only if ; 2 Fh. So
if F h is not trivial, then for every n 2 X there exists s 2 F h with s @ fng [ X=n and
since s ¤ ;, we get n 2 s and n 2

S
F h.

We can therefore associate to every locally constant multi-sequence h W ŒX�1 ! E a
super-sequence h# W F h ! E by letting, in the obvious way, h#.s/ be equal to the unique
value taken by h onMs for every s 2 F h.

Remark 3.27. Clearly every front arises as an F h for some locally constant multi-
sequence h. Indeed for any front F and any injective super-sequence f from F , we have
F D F f

" . Therefore we can think of the definition of a front as a characterisation of those
families of finite subsets of ! arising as an F h for some locally constant multi-sequence h.

The basic properties of the correspondence h 7! h# and f 7! f " are easily stated
with the help of the following partial order among super-sequences in a given set.

Definition 3.28. Let both F and G be fronts on the same set X 2 Œ!�1 and f W F ! E

and g W G ! E be any maps. We write f v g when

(1) for every s 2 F there exists t 2 G with s v t , and

(2) for every s 2 F and every t 2 G, s v t implies f .s/ D g.t/.

To simplify notation we write Lf W LF ! E instead of .f "/# W F f " ! E.

Fact 3.29. Let X 2 Œ!�1 and E be a set.

(i) for every front F onX and every map f W F ! E, the map Lf W LF ! E is such that
Lf v f .

(ii) for every fronts F and G on X and maps f W F ! E and g W G ! E, f v g

implies f " D g".

(iii) for every locally constant map h W ŒX�1 ! E, we have .h#/" D h.

It follows that for every locally constant multi-sequence h W ŒX�1 ! E the super-
sequence h# W F h ! E is the minimal element for v among the set of super-sequences
g W G ! E with g" D h. Moreover for every super-sequence f W F ! E the super-
sequence Lf W LF ! E is the v-minimal among the super-sequences g with g v f . In
particular LLf D Lf for every super-sequence f .

The super-sequences which are v-minimal sometimes play a role and we now give
them a name.

Definition 3.30. Let E be a set and F a front on X . A super-sequence f W F ! E is
said to be spare if f is minimal for v, or equivalently Lf D f , i.e. if LF D F .

Example 3.31. If F is a non trivial front and c W F ! E is constant equal to e 2 E
then c is not spare and of course Lc W f;g ! E, ; 7! e.
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The following is a simple characterisation of spare super-sequences.
Lemma 3.32. Let f W F ! E be a super-sequence in some set E. Then the following
are equivalent.
(i) f is spare,
(ii) Whenever t 2 F and s @ t , then there exists t 0 2 F with s @ t 0 and f .t/ ¤ f .t 0/.

Proof. Suppose that s @ t 2 F and f .t/ D f .t 0/ for every t 0 2 F with s v t 0. It follows
that f " is constant onMs but so t … LF and therefore f is not spare.

Conversely if f is not spare, then there exists some t 2 F which is not v-minimal
in F f " . This means that there is s 2 LF with s @ t and f " is constant onMs , so for every
t 0 2 F with s v t 0 we have f .t/ D f .t 0/.

3.4. Iterated powerset, determinacy of finite games.
It also transpires that if, by a certain fairly natural extension of our definition
of [P n.Q/], we define [P ˛.Q/] for every ordinal ˛, then Q is bqo iff
[P ˛.Q/] is wqo for every ordinal ˛. To justify these statements would not
be relevant here, but it was from this point of view that the author was first
led to study bqo sets.

Crispin St. John Alvah Nash-Williams [15, p. 700]

Following in Nash-Williams’ steps, we introduce the notion of better-quasi-orders as
the quasi-orders whose iterated powersets are wqo. We do this in the light of further devel-
opments of the theory, taking advantage of Simpson’s point of view on super-sequences,
using the determinacy of finite games and a powerful game-theoretic technique invented
by Tony Martin.

First let us define precisely the iterated powerset of a qo together with its lifted quasi-
order. To facilitate the following discussion we focus on the non-empty sets over some
quasi-orderQ. Let P �.A/ denote the set of non-empty subsets of a set A, i.e. P �.A/ D

P .A/ n f;g. We define by transfinite recursion

V �0 .Q/ D Q

V �˛C1.Q/ D P �.V �˛ .Q//

V �� .Q/ D
[
˛<�

V �˛ .Q/; for � limit:

We treat the element ofQ as urelements or atoms, namely they have no elements but they
are different from the empty set. Let

V �.Q/ D
[
˛

V �˛ .Q/:

Let us define the support of X 2 V �.Q/, denoted by suppQ.X/, by induction on the
membership relation as follows: if q 2 Q, then suppQ.q/ D fqg, otherwise let

suppQ.X/ D
[
fsuppQ.x/ j x 2 Xg:

Notice that for every subset X ofQ we have suppQ.X/ D X .
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Following an idea of Forster [5] we define the quasi-order on V �.Q/ via the existence
of a winning strategy in a natural game. We refer the reader to Kechris [7, (20.)] for the
basic definitions pertaining to two-player games with perfect information.

Definition 3.33. For every X; Y 2 V �.Q/ we define a two-player game with perfect
information GV �.X; Y / by induction on the membership relation. The game GV �.X; Y /
goes as follows. Player I starts by choosing some X 0 such that:
� if X … Q, then X 0 2 X ,
� otherwise, X 0 D X .

Then Player II replies by choosing some Y 0 such that:
� if Y … Q, then Y 0 2 Y ,
� otherwise Y 0 D Y .

If both X 0 and Y 0 belong to Q, then Player II wins if X 0 � Y 0 in Q and Player I wins if
X 0 — Y 0 . Otherwise the game continues as in GV �.X 0; Y 0/.

We then define the lifted quasi-order on V �.Q/ by letting for X; Y 2 V �.Q/

X � Y  ! Player II has a winning strategy in GV �.X; Y /.

Remark 3.34. The above definition can be rephrased by induction on the membership
relation as follows:

(1) if X; Y 2 Q, then X � Y if and only if X � Y inQ,

(2) if X 2 Q and Y … Q, then

X � Y  ! there exists Y 0 2 Y with X � Y 0;

(3) if X … Q and Y 2 Q, then

X � Y  ! for every X 0 2 X we have X 0 � Y ;

(4) if X … Q and Y … Q, then

X � Y  ! for every X 0 2 X there exists Y 0 2 Y with X 0 � Y 0:

Our definition coincides with the one given by Shelah [21, Claim 1.7, p. 188]. But
Milner [14] and Laver [10] both omit Condition (3).

The axiom of foundation ensures that in any play of a gameGV �.X; Y / a round where
both players have chosen elements of Q is eventually reached, resulting in the victory
of one of the two players. In particular, each game GV �.X; Y / is determined as already
proved by Von Neumann and Morgenstern [25] (see [7, (20.1)]). The crucial advantage
of the game-theoretic formulation of the quasi-order on V �.Q/ resides in the fact that
the negative condition X — Y is equivalent to the existential statement “Player I has a
winning strategy”.
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Now supposeQ is a quasi-order such that V �.Q/ is not wqo and let .Xn/n2! be a bad
sequence in V �.Q/. Whenever m < n we have Xm — Xn and we can choose a winning
strategy �m;n for Player I in GV �.Xm; Xn/. We define a locally constant multi-sequence
g W Œ!�1 ! Q as follows. LetN D fn0; n1; n2; : : :g be an infinite subset of! enumerated
in increasing order. We define g.N / as the last move of Player I in a particular play of
GV �.Xn0

; Xn1
/ in a way best understood by contemplating Figure 3.

I II I II I II I II I II

Y 00 Y 01 Y 01 Y 02 Y 02 Y 03 Y 03 Y 04 Y 04

Y 10 Y 11 Y 11 Y 12 Y 12 Y 13 Y 13

Y 21 Y 22 Y 22

g.N / g.�N/

8̂̂̂̂ˆ̂̂̂<̂ˆ̂̂̂̂̂̂:GV� .Xn0
;Xn1

/ 8̂̂̂̂ˆ̂̂̂̂<̂ˆ̂̂̂̂̂̂:̂GV� .Xn1
;Xn2

/ 8̂̂̂̂ˆ̂̂<̂ˆ̂̂̂̂̂:GV� .Xn2
;Xn3

/ 8̂̂̂̂ˆ̂̂<̂ˆ̂̂̂̂̂:GV� .Xn3
;Xn4

/ 8̂̂̂̂ˆ̂̂<̂ˆ̂̂̂̂̂:GV� .Xn4
;Xn5

/

ˇ̌̌̌ˇ̌̌̌ˇ̌

ˇ̌̌̌ˇ̌̌̌ˇ̌

�n0;n1
�n1;n2 �n2;n3

�n3;n4
�n4;n5

—

—

—

D

Figure 3. Constructing a multi-sequence by stringing strategies together.

Let Y 00 be the the first move of Player I inGV �.Xn0
; Xn1

/ as prescribed by its winning
strategy �n0;n1

. Then let Player II copy the first move Y 01 of Player I given by the strategy
�n1;n2

in GV �.Xn1
; Xn2

/. Then Player I answers Y 10 according to the strategy �n0;n1
.

Now if Y 01 is not in Q, then we need to continue our play of GV �.Xn1
; Xn2

/ a little
further to determine the second move of Player II inGV �.Xn0

; Xn1
/. Let the first move of

Player II in GV �.Xn1
; Xn2

/ be the first move of Player I in GV �.Xn2
; Xn3

/ as prescribed
by his winning strategy �n2;n3

. Then this determines the second move Y 11 of Player I
in GV �.Xn1

; Xn2
/ according to �n1;n2

. We then let the second move of Player II in
GV �.Xn0

; Xn1
/ to be this Y 11 . This yields some answer Y 10 of Player I according to �n0;n1

.
We continue so on and so forth until the play ofGV �.Xn0

; Xn1
/ reaches an end with some

.Y
kN

0 ; Y
kN

1 / 2 Q �Q and we let g.N / D Y
kN

0 . Since the play of GV �.Xn0
; Xn1

/ is
finite, g.N / depends only on a finite initial segment of N and we have therefore defined
a locally constant multi-sequence g W Œ!�1 ! Q.

Now since Player I has followed the winning strategy �n0;n1
we have Y kN

0 — Y
kN

1 .
In case the play of the game GV �.Xn1

; Xn2
/ has not yet reached an end at step kN we

go on in the same fashion. Assume it ends with some pair .Y l1 ; Y
l
2 / in Q. By the rules

of the game GV � , since Y kN

1 2 Q we necessarily have Y l1 D Y
kN

1 . But Y l1 is just
g.fn1; n2; n3; : : :g/, hence for every N 2 Œ!�1 we have

g.N / — g
�
N n fminN g

�
:
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For every N 2 Œ!�1 we call the shift of N , denoted by �N , the set N n fminN g. We
are led to the following:

Definition 3.35. LetQ be a qo and h W ŒX�1 ! Q a multi-sequence.

(1) We say that h is bad if h.N / — h.�N/ for every N 2 ŒX�1,

(2) We say that h is good if there exists N 2 ŒX�1 with h.N / � h.�N/,

At last, we present the deep definition due to Nash-Williams here in a modern refor-
mulation.

Definition 3.36. A quasi-order Q is a better-quasi-order (bqo) if there is no bad locally
constant multi-sequence inQ.

Of course the definition of better-quasi-order can be formulated in terms of super-
sequences as Nash-Williams originally did. The only missing ingredient is a counterpart
of the shift map N 7! �N on finite subsets of natural numbers.

Definition 3.37. For s; t 2 Œ!�<1 we say that t is a shift of s and write s C t if there
exists X 2 Œ!�1 such that

s @ X and t @ �X:

Definitions 3.38. LetQ be a qo and f W F ! Q be a super-sequence.

(1) We say that f is bad if whenever s C t in F , we have f .s/ — f .t/.

(2) We say that f is good if there exists s; t 2 F with s C t and f .s/ � f .t/.

Lemma 3.39. LetQ be a quasi-order.

(i) If h W Œ!�1 ! Q is locally constant and bad, then h# W F h ! Q is a bad super-
sequence.

(ii) If f W F ! Q is a bad super-sequence from a front on X , then f " W ŒX�1 ! Q is a
bad locally constant multi-sequence.

Proof. (i) Suppose h W ŒX�1 ! Q is locally constant and bad. Let us show that
h# W F h ! Q is bad. If s; t 2 F h with s C t , i.e. there exists Y 2 ŒX�1 such that s @ Y
and t @ �Y . Then h#.s/ D h.Y / and h#.t/ D h.�Y / and since h is assumed to be bad,
we have h#.s/ — h#.t/.

(ii) Suppose f W F ! Q is bad from a front on X and let Y 2 ŒX�1. There are unique
s; t 2 F such that s @ Y and t @ �Y , and clearly f ".Y / D f .s/, f ".�Y / D f .t/,
and s C t . Therefore f ".Y / — f ".�Y / holds.

Proposition 3.40. For a quasi-orderQ the following are equivalent.

(i) Q is a better-quasi-order,

(ii) there is no bad super-sequence inQ,

(iii) there is no bad spare super-sequence inQ.
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The idea of stringing strategies together that we used to arrive at the definition of bqo
is directly inspired from a famous technique used by Engelen, Miller, and Steel [4,
Theorem 3.2] together with Louveau and Saint Raymond [12, Theorem 3]. This method
was first applied by Martin in the proof of the well-foundedness of the Wadge hierarchy
(see [7, (21.15), p. 158]). Forster [5] introduces better-quasi-orders in a very similar way,
but a super-sequence instead of amulti-sequence is constructed, making the similarity with
the method used by Engelen, Miller, and Steel [4] and Louveau and Saint Raymond [12]
less obvious. One of the advantages of multi-sequences resides in the fact that they enable
us to work with super-sequences without explicitly referring to their domains. This is
particularly useful in the above construction, since a bad sequence in V �.Q/ can yield a
multi-sequence whose underlying front is of arbitrarily large rank. Indeed Marcone [13]
showed that super-sequences from fronts of arbitrarily large rank are required in the
definition of bqo.

Notice that the notion of bqo naturally lies between those of well-orders and wqo.

Proposition 3.41. LetQ be a qo. Then

Q is a well-order ! Q is bqo ! Q is wqo.

Proof. Suppose Q is a well order and let h W Œ!�1 ! Q be any multi-sequence in Q.
Fix X 2 Œ!�1 and let X0 D X and XnC1 D �Xn. SinceQ is a well-order, there exists n
such that h.Xn/ � h.XnC1/, otherwise h.Xn/ would be a descending chain inQ. So h is
good and thereforeQ is bqo.

Now observe that for m; n 2 f!g we have fmg C fng if and only if m < n. So ifQ is
bqo, then in particular every sequence f W Œ!�1 ! Q is good, and soQ is wqo.

3.5. Equivalence. Pushing further the idea that led us to the definition of bqo, we can
build from any bad multi-sequence in V �.Q/ a bad multi-sequence in Q. Therefore
proving that ifQ is bqo, then V �.Q/ is actually bqo.

Proposition 3.42. LetQ be a qo. For every bad locally constanth W Œ!�1 ! V �.Q/ there
exists a bad locally constant g W Œ!�1 ! Q such that moreover g.X/ 2 suppQ.h.X// for
every X 2 Œ!�1.

Proof. Let h W Œ!�1 ! V �.Q/ be locally constant and bad, and let us write h.X/ D hX
for X 2 Œ!�1. Notice that the image of h is countable and choose for every X 2 Œ!�1 a
winning strategy �X for Player I in GV �.hX ; h�X /. We let X0 D X and XnC1 D �Xn.

Consider the diagram in Figure 4 obtained by letting Player I follow the winning
strategy �n D �Xn

in GV �.hXn
; hXnC1

/ and II responding in GV �.hXn
; hXnC1

/ by
copying I’s moves in GV �.hXnC1

; hXnC2
/. This uniquely determines for each n a finite

play .Y in ; Y inC1/i�ln of the game GV �.hXn
; hXnC1

/ ending with some Y lnn — Y lnnC1 inQ.
Clearly the play .Y in ; Y inC1/i�ln depends only on the value taken by h on the Xj with
j 2 fn; : : : ; nClnC2g. By the rules of the gameGV � for every nwe have Y lnnC1 D Y

lnC1

nC1 .
We let Y X0 D Y

l0
0 and Y XnC1 D Y

ln
nC1 D Y

lnC1

nC1 . We define g W Œ!�1 ! Q by letting
g.X/ D Y X0 . Since Y X0 depends only on hX0

; : : : ; hXl0C2
and h is locally constant, it
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follows that g is locally constant. Moreover, by construction g.�X/ D Y �
X

0 D Y X1 and
so g.X/ — g.�X/.

I II I II I II I II I II I II

Y 0
0 Y 0

1 Y 0
1 Y 0

2 Y 0
2 Y 0

3 Y 0
3 Y 0

4 Y 0
4 Y 0

5 Y 0
5

Y 1
0 Y 1

1 Y 1
1 Y 1

2 Y 1
2 Y 1

3 Y 1
3 Y 1

4 Y 1
4

Y 2
0 Y 2

1 Y 2
1 Y 2

2 Y 2
2 Y 2

3 Y 2
3

Y 3
1 Y 3

2 Y 3
2

8̂̂̂̂<̂ˆ̂̂:GV� .hX0
; hX1

/ 8̂̂̂̂<̂ˆ̂̂:GV� .hX1
; hX2

/ 8̂̂̂̂<̂ˆ̂̂:GV� .hX2
; hX3

/ 8̂̂̂̂<̂ˆ̂̂:GV� .hX3
; hX4

/ 8̂̂̂̂<̂ˆ̂̂:GV� .hX4
; hX5

/ 8̂̂̂<̂ˆ̂:GV� .hX5
; hX6

/

ˇ̌̌̌ˇ̌̌̌ˇ

ˇ̌̌̌ˇ̌̌̌ˇ

�0

�0

�0

�1

�1

�1

�1

�2

�2

�2

�2

�3

�3

�3

�4

�4

�5

—

—

D

Figure 4. Stringing strategies together.

Corollary 3.43. IfQ is bqo, then V �.Q/ is bqo.
We now briefly show that there is a strong converse to Corollary 3.43.
Let f W F ! Q be a super-sequence from a front on ! in a qo Q. Remember from

Lemma 3.15, that the tree T .F / D fs 2 Œ!�<1 j 9t 2 F s v tg is well-founded. We
define by recursion on the well-founded relation A on T .F / a map Qf W T .F /! V �.Q/

by

Qf .s/ D f .s/ if s 2 F ;
Qf .s/ D

˚
Qf .s [ fng/ j n 2 !=s and s [ fng 2 T .F /

	
otherwise:

As long as F is not trivial we have Œ!�1 � T .F / and restricting Qf to Œ!�1 we obtain the
sequence Qf �Œ!�1 W Œ!�1 ! V �.Q/. Notice also that Qf .s/ 2 Q if and only if s 2 F .

Lemma 3.44. If f W F ! Q is bad, then ef �Œ!�1 is a bad sequence in V �.Q/.

Proof. By way of contradiction suppose that for some m0; n0 2 ! with m0 < n0
we have Qf .m0/ � Qf .n0/ in V �.Q/ and let � be a winning strategy for Player II
in GV �

�
Qf .m0/; Qf .n0/

�
. Let s0 D .m0/, t0 D .n0/ and u0 D .m0; n0/. We con-

sider the following play of GV �
�
Qf .m0/; Qf .n0/

�
. Observe that if s0 D .m0/ … F ,

then u0 D .m0; n0/ 2 T .F /. We make Player I start with Qf .s1/ where s1 D s0
if s0 2 F and s1 D u0 otherwise. Then II answers according to � by Qf .t1/ for some
t1 2 T .F /. If t0 D .n0/ 2 F , then necessarily t1 D t0 and we let u1 D u0

a .k/ with
k D 1 C maxu0. Otherwise t0 @ t1 and t1 D .n0; n1/ for some n1 > n0, we then let
u1 D u0 [ t1 D u0

a .n1/. Notice that in any case s1 C t1 since for X D u1 [ !=u1
we have s1 @ X and t1 @ �X . Then we make I respond with Qf .s2/ where s2 D s1 if
s1 2 F , s2 D u1 if s1 … F . We continue in this fashion, an example of which is depicted
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in Figure 5. After finitely many rounds I has reached some f .s/ for s 2 F , and II has
reached some f .t/ with t 2 F . By construction s C t , but since � is winning for II, we
have f .s/ � f .t/, a contradiction.

I II m0 n0

Qf .m0; n0/ Qf .n0; n1/ n0 n1

Qf .m0; n0; n1/ Qf .n0; n1; n2/ n1 n2

Qf .m0; n0; n1; n2/ Qf .n0; n1; n2; n3/ n2 n3

Qf .m0; n0; n1; n2/ Qf .n0; n1; n2; n3; n4/ n4

f .s/ f .t/ s t

8̂̂̂̂ˆ̂̂̂̂̂̂ˆ̂̂̂̂̂̂ˆ̂̂̂<̂ˆ̂̂̂̂̂̂ˆ̂̂̂̂̂̂ˆ̂̂̂̂̂̂: GV �. Qf .m0/; Qf .n0// 8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

s D

9>>>>>>>>>>>=>>>>>>>>>>>;
D t

�

�

�

�

�

� C

Figure 5. Copying and shift.

Notice that by definition Qf W T .F / ! V �.Q/ only reaches hereditarily countable
non-empty sets overQ, namely elements ofQ and countable non-empty sets of hereditarily
countable non-empty sets over Q. Let H�!1

.Q/ denote the set of hereditarily countable
non-empty sets overQ equipped with the qo induced from V �.Q/. We have obtained the
following well known equivalence.
Theorem 3.45. A quasi-orderQ is bqo if and only ifH�!1

.Q/ is wqo.

Proof. IfQ is bqo then V �.Q/ is bqo by Corollary 3.43 and so in particular H�!1
.Q/ is

wqo. For the converse implication, assume that Q is not bqo. Then there is some bad
super-sequence in Q and Lemma 3.44 yields a bad sequence in H�!1

.Q/, so H�!1
.Q/ is

not wqo.

Notice that by definition any countable non-empty subset ofH�!1
.Q/belongs toH�!1

.Q/.
Moreover, by Proposition 2.6 (W6) a quasi-order is wqo if and only if the qo P<@1

.Q/ of
its countable subsets is well-founded, soH�!1

.Q/ is wqo if and only if it is well-founded.
Theorem 3.46. A quasi-orderQ is bqo if and only ifH�!1

.Q/ is well-founded.

4. Around the definition of better-quasi-order

In the previous section, we were led to the definition of bqos by reflecting a bad sequence
in V �.Q/ into some bad multi-sequence in Q. In this section, we discuss the definition
we obtained and try to understand what its essential features are. Along this line we show
that the presence of the shift is somewhat accidental.
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4.1. The perfect versus bad dichotomy. For every X 2 Œ!�1, let us denote invariably
by S W ŒX�1 ! ŒX�1 the shift map defined by S.N / D �N for every N 2 ŒX�1.

For our discussion, we wish to treat both the pairs .ŒX�1;S/, for X 2 Œ!�1, and the
quasi-orders .Q;�/ as objects in the same category.

With this in mind, let us call a topological digraph a pair .A;R/ consisting of a
topological space A together with a binary relation R on A. If .A;R/ and .B; S/ are
topological digraphs, a continuous homomorphism from .A;R/ to .B; S/ is a continuous
map ' W A ! B such that for every a; a0 2 A, a R a0 implies '.a/ S '.a0/. As
an important particular case, if f W A ! A is any function we write .A; f / for the
topological digraph whose binary relation is the graph of the function f . If f W A! A

and g W B ! B are functions, a map ' W A ! B is a continuous homomorphism from
.A; f / to .B; g/ exactly in case ' is continuous and ' ıf D gı'. For a binary relationR
on A let us denote by R{ the binary relation .A � A/ nR.

Observe that for a discrete space A, a multi-sequence h W ŒX�1 ! A is continuous
exactly when it is locally constant.
Proposition 4.1. Let f W Œ!�1 ! Œ!�1 be a continuous map such that f .X/ � X for
every X 2 Œ!�1 and R be a binary relation on a discrete space A. For every continuous
' W Œ!�1 ! A there exists Z 2 Œ!�1 such that
either ' W .ŒZ�1; f /! .A;R/ is a continuous homomorphism,

or ' W .ŒZ�1; f /! .A;R{/ is a continuous homomorphism.

Proof. Let ' W Œ!�1 ! .A;R/ be locally constant and define c W Œ!�1 ! 2 by c.X/ D 1
if and only if '.X/ R '.f .X//. Clearly c is locally constant so let c# W F c ! 2 be
the associated super-sequence. By Nash-Williams’ Theorem 3.22 there exists an infinite
subset Z of ! such that c#�F c jZ W F

c jZ ! 2 is constant. Therefore for the restriction
 D '�ŒZ�1 W ŒZ�1 ! A it follows that either W .ŒZ�1; f /! .A;R{/ is a continuous
homomorphism, or  W .ŒZ�1; f /! .A;R/ is a continuous homomorphism.

Remark 4.2. The previous proposition generalises as follows. Let A be any topological
space, R � A � A be a Borel binary relation and f W Œ!�1 ! Œ!�1 a Borel map such
that f .X/ � X for every X 2 Œ!�1. For every Borel map ' W Œ!�1 ! A there exists
Z 2 Œ!�1 such that
either ' W .ŒZ�1; f /! .A;R/ is a Borel homomorphism,

or ' W .ŒZ�1; f /! .A;R{/ is a Borel homomorphism.
Indeed, the set ˚

X 2 Œ!�1 j '.X/ R '.f .X//
	
D
�
' � .' ı f /

��1
.R/

is Borel in Œ!�1 and thus, by the Galvin–Prikry theorem [6], there exists a Z 2 Œ!�1 as
required.
Definition 4.3. Let R be a binary relation on a discrete space A.
(1) A multi-sequence h W ŒX�1 ! A is perfect if h W .ŒX�1;S/! .A;R/ is a homomor-

phism, i.e. if h.N / R h.�N/ for every N 2 ŒX�1,
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(2) A super-sequence f W F ! A is perfect if for every s; t 2 F , s C t implies
f .s/ R f .t/.
In particular letting f D S in Proposition 4.1, we obtain the following well-known

equivalence.
Corollary 4.4. For a quasi-orderQ the following are equivalent.
(i) Q is bqo,
(ii) every locally constant multi-sequence in Q admits a sub-multi-sequence which is

perfect.
(iii) every super-sequence inQ admits a perfect sub-super-sequence.

Proof. Let us show that (i) implies (iii). Suppose that f W F ! Q is a super-sequence
in a bqo Q where F is a front on X . Let f " W ŒX�1 ! Q be the corresponding
multi-sequence as defined in Section 3. By applying Proposition 4.1 when f D S we find
Z 2 ŒX�1 such that the restriction of f " to ŒZ�1 is perfect. It follows that the restriction
of f to F jZ is perfect too.

Proposition 4.1 also suggests the following generalisation of the notion of bqo to
arbitrary relations:
Definition 4.5. A binary relation R on a discrete space A is a better-relation on A if there
is no continuous homomorphism ' W .Œ!�1;S/! .A;R{/.

This definition first appeared in a paper by Shelah [21] and plays an important role in
a work by Marcone [13]. Notice that a better-relation is necessarily reflexive and that a
better-quasi-order is simply a transitive better-relation.
Remark 4.6. One could also consider non discrete analogues of the notion of better-
quasi-orders and better-relations. Louveau and Saint Raymond [12] define a topological
better-quasi-order as a pair .A;�/, where A is a topological space and � is a quasi-order
on A, such that there is no Borel homomorphism ' W .Œ!�1;S/ ! .A;�{/. We believe
that topological analogs of bqo and better-relations deserve further investigations.

4.2. Generalised shifts. The topological digraph .Œ!�1;S/ is central to the defini-
tion of bqo. Indeed a qo Q is bqo if and only if there is no continuous morphism
h W .Œ!�1;S/! .Q;�{/. In general, one can ask for the following:
Problem4.7. Characterise the topological digraphswhich can be substituted for .Œ!�1;S/
in the definition of bqo.

Let us write .A;R/ �ch .B; S/ if there exists a continuous homomorphism from
.A;R/ to .B; S/ and .A;R/ �ch .B; S/ if both .A;R/ �ch .B; S/ and .B; S/ �ch .A;R/

hold.
Notice that a binary relation S on a discrete space B is a better-relation if and only

if .Œ!�1;S/ 6�ch .B; S
{/. Therefore any topological digraph .A;R/ with .A;R/ �ch

.Œ!�1;S/ can be used in the definition of better-relation in place of .Œ!�1;S/. We do not
know whether the converse holds, namely if .A;R/ is a topological digraph which can be
substituted to .Œ!�1;S/ in the definition of bqo, does it follow that .A;R/ �ch .Œ!�

1;S/?
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We now show that at least the shift map S can be replaced by certain “generalised
shifts”. To this end, we first observe that the topological space Œ!�1 admits a natural
structure of monoid. Following Solecki [23] and Prömel and Voigt [16], we use the
language of increasing injections rather than that of sets. We denote by E the monoid of
embeddings of .!;</ into itself under composition,

E D
˚
f W ! ! ! j f is injective and increasing

	
:

For every X 2 Œ!�1, we let fX 2 E denote the unique increasing and injective enumer-
ation of X . Conversely we associate to each f 2 E the infinite subset of ! given by the
range ff .n/ j n 2 !g of f . Therefore the set of substructures of .!;</which are isomor-
phic to the whole structure .!;</, namely Œ!�1, is in one-to-one correspondence with the
monoid of embeddings of .!;</ into itself. Moreover observe that for all X; Y 2 Œ!�1
we have

X � Y  ! 9g 2 E fX D fY ı g;

so the inclusion relation on Œ!�1 is naturally expressed in terms of the monoid operation.
Also, the set ŒX�1 corresponds naturally to the following right ideal:

fX ıE D
˚
fX ı g j g 2 E

	
:

As for Œ!�1, E is equipped with the topology induced by the Baire space !! of all
functions from ! to !. In particular, the composition ı W E �E ! E, .f; g/ 7! f ı g is
continuous for this topology.

Observe now that, in the terminology of increasing injections, the shiftmapS W E ! E

is simply the composition on the right with the successor function s 2 E, s.n/ D nC 1.
Indeed for every X

f
�X D fX ı s:

This suggests to consider arbitrary injective increasing function g, g ¤ id! , in place
of the successor function. For any g 2 E, we write Rg W E ! E, f 7! f ı g for the
composition on the right by g. In particular, Rs D S is the usual shift and in our new
terminology we have .Œ!�1;S/ D .E;Rs/.

The main result of this section is that these generalised shifts Rg are all equivalent as
far as the theory of better-relations is concerned.
Theorem 4.8. For every increasing injective function g 2 E, with g ¤ id! , we have
.E;Rg/ �ch .Œ!�

1;S/.
Theorem 4.8 follows from Lemmas 4.14 and 4.15 below, but let us first state explicitly

some of the direct consequences.
Remark 4.9. Every topological digraph .A;R/ has an associated topological graph
.A;Rs/ whose symmetric and irreflexive relation Rs is given by

a Rs b  ! a ¤ b and .a R b or b R a/:

The Borel chromatic number of topological graphs was first studied by Kechris, Solecki,
and Todorčević [8]. Notably the associated graph of .Œ!�1;S/ has chromatic number 2
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and Borel chromatic number @0 (see also the paper by Di Prisco and Todorčević [3]). It
directly follows from Theorem 4.8 that for every g 2 E, with g ¤ id! , the associated
graph of .E;Rg/ also has chromatic number 2 and Borel chromatic number @0.
Definition 4.10. Let g 2 E, R a binary relation on a discrete space A. We say .A;R/ is
a g-better-relation if one of the following equivalent conditions hold:
(1) for every continuous ' W E ! A there exists f 2 E such that the restriction

'f W .f ıE;Rg/! .A;R/ is a continuous morphism,

(2) there is no continuous morphism ' W .E;Rg/! .A;R{/.
In case� is a quasi-order on a discrete spaceQ, we say thatQ is g-bqo instead of .Q;�/
is a g-better-relation.

Of course this notion trivialises for g D id! , since an id!-better-relation is simply a
reflexive relation. Moreover better relation corresponds to s-better-relation.
Theorem 4.11. Let g 2 E n fid!g,R a binary relation on a discrete spaceA. ThenR is a
g-better-relation if and only if R is a better-relation. In particular, a quasi-order .Q;�/
is g-bqo if and only if .Q;�/ is bqo.
Corollary 4.12. A qo Q is bqo if and only if for every locally constant ' W E ! Q and
every g 2 E there exists f 2 E such that

'.f / � '.f ı g/:

As a corollary we have the following strengthening of Corollary 4.4 which is obtained
by repeated applications of Proposition 4.1.
Proposition 4.13. Let Q be bqo and ' W E ! Q be locally constant. For every finite
subset G of E there exists h 2 E such that the restriction ' W h ı E ! Q is perfect with
respect to every member of G , i.e. for every f 2 E and every g 2 G

'.h ı f / � '.h ı f ı g/:

Getting a result of this kind was one of our motivations for proving Theorem 4.8.
Finally here are the two lemmas which yield the proof of Theorem 4.8.

Lemma 4.14. Let g 2 Enfid!g. Then .E;Rg/ �ch .E;Rs/, i.e. there exists a continuous
map � W E ! E such that for every f 2 E

�.f ı g/ D �.f / ı s:

Proof. Since g ¤ id! , there exists kg D minfk 2 ! j k < g.k/g. Define G W ! ! !

by G.n/ D gn.kg/, where g0 D id! and gnC1 D g ı gn. Clearly G 2 E. We let
�.f / D f ıG for every f 2 E. The map � W E ! E is continuous and for every f 2 E
and every n we have

�.f ı g/.n/ D f ı g ı gn.kg/ D f ıG.nC 1/ D .�.f / ı s/.n/:

Lemma 4.15. Let g 2 Enfid!g. Then .E;Rs/ �ch .E;Rg/, i.e. there exists a continuous
map � W E ! E such that for every f 2 E

�.f ı s/ D �.f / ı g:
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Proof. Let kg D minfk j k < g.k/g. As in the proof of the previous Lemma we define
G 2 E by G.n/ D gn.kg/. For every f 2 E and every l 2 !, we let

�.f /.l/ D

(
l if l < G.0/,
gf .n/�n.l/ if G.n/ � l < G.nC 1/, for n 2 !.

Let us check that �.f / is indeed an increasing injection from ! to ! for every f 2 E.
Since �.f / is increasing and injective on each piece of its definition, it is enough to make
the two following observations. Firstly, if l < G.0/, then

�.f /.l/ D l < G.0/ � G ı f .0/ D gf .0/.G.0// D �.f /.G.0//:

Secondly, if G.n/ � l < G.nC 1/ then

�.f /.l/ D gf .n/�n.l/ < gf .n/�n.G.nC 1//

D gf .n/C1.kg/ � g
f .nC1/.kg/ D G.f .nC 1//;

but we have

G.f .nC 1// D gf .nC1/�.nC1/.G.nC 1// D �.f /.G.nC 1//:

One can easily check that � W E ! E is continuous. Now on the one hand

�.f ı s/.l/ D

(
l if l < G.0/,
gf .nC1/�n.l/ if G.n/ � l < G.nC 1/, for n 2 !;

and on the other hand

�.f /.g.l// D

(
g.l/ if g.l/ < G.0/,
gf .n/�n.g.l// if G.n/ � g.l/ < G.nC 1/.

By definition of G, we have g.l/ < G.0/ if and only if l D g.l/. Moreover if G.n/ �
l < G.nC 1/ then we have G.nC 1/ � g.l/ < G.nC 2/ and so

�.f ı s/.l/ D gf .nC1/�n.l/ D gf .nC1/�.nC1/.g.l// D �.f /.g.l//;

which proves the lemma.
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