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Abstract. Varieties without deformations are defined over a number field. Several old and new
examples of this phenomenon are discussed such as Belyı̆ curves and Shimura varieties. Rigidity is
related to maximal Higgs fields which come from variations of Hodge structure. Basic properties
for these due to P. Griffiths, W. Schmid, C. Simpson and, on the arithmetic side, to Y. André and
I. Satake all play a role. This note tries to give a largely self-contained exposition of these manifold
ideas and techniques, presenting, where possible, short new proofs for key results.
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1. Introduction

Results stating that certain types of algebraic varieties are definable over a number field
are scattered in the literature. Arguably, those most studied form the class of Shimura
varieties [16,21,40]. Another famous example is Belyı̆’s theorem [7] which characterizes
curves over NQ as those which have a Belyı̆ representation, i.e. a branched cover of the line
branched in exactly three points. In dimension two, the fake projective planes [30,31] and
the Beauville surfaces [6, Exercise X.13 (4)], [5] are known to have models over NQ.

Such examples can be uniformly explained by constructing a suitable spread of the
varieties concerned as demonstrated in Sections 2.3 and 3.

Of a totally different flavor are the applications to special subvarieties of Shimura
varieties in Section 4.5 on the one hand, and to splittings of Higgs bundles as given
in Section 5.3 on the other hand. As has been known since the work of Viehweg and
Zuo [43], the last two are just facets of the same phenomenon: Higgs bundles of a very
special kind, those that they called “maximal” are directly related to special subvarieties
of certain Shimura varieties. I intend to show that rigidity plays a central role in this and
that, exploiting this, simplifies several arguments.

The overall goal of this survey is to show how a few relatively simple ideas plus some
standard techniques from deformation theory and Hodge theory explain a wide range of
phenomena of the above kind. It brings together various known results from very different
subfields of mathematics. This is the reason why I thought to explain some of the basic
notions and techniques from these fields, and also to search for new simpler proofs.

This note has been inspired by discussions with Stefan Müller-Stach. Equally influen-
tual has been [17, Ch. 4] as well as the last chapter of [24]. Thanks to Ben Moonen for
help with Section 5.3. Finally I would like to thank Christopher Deninger for pointing out
the references [16,40].

2. Spreads of varieties and rigidity

2.1. Spreads. The “spread philosophy” roughly states that a complex algebraic variety
can be seen as a family over a base variety determined by specifying some transcendence
basis of the field of definition of the variety. Spreads are by no means unique but all share
the crucial property that, by construction, the total family is always defined over a number
field.
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Although this construction can be phrased in varying generality [17, §4.1], the follow-
ing somewhat restricted version suffices for this note.

Proposition 2.1. LetX be smooth complex quasi projective variety. There exists a smooth
family f W X ! S defined over NQ such that

(1) X; S are smooth quasi-projective;

(2) there is a canonical point o 2 S such that f �1o D X ;

(3) if s 2 S is a NQ-rational point, the fiber Xs D f �1s is defined over NQ.

Proof. Suppose for simplicity that the variety X is projective and is defined by a finite
set of polynomials. The general case then follows from a glueing argument. See e.g. the
proof of [24, Prop. 4.1.4]. The coefficients of the defining polynomials generate a field k
of finite transcendence degree r over Q, say k D k0.˛1; : : : ; ˛r / where f˛1; : : : ; ˛rg is
a transcendence basis for k and where k0 is a number field, say of the form QŒx0�=P
with P some monic irreducible polynomial. Then k is the function field of some complex
algebraic variety S 0. The deformation will be constructed over a Zariski open subset S
of S 0.

The basic idea is to replace the coefficients ˛j of each of the polynomials defining
the variety X , by variables xj . A point s 2 S 0 corresponds to a field k.s/ isomorphic
to k. If one replaces the coefficients in k of a defining set of homogeneous equations
for X by the corresponding coefficients in k.s/ one gets a variety Xs . The Xs glue to a
variety X fibered over V.P /. Indeed, it is given by the same equations as X except that
the coefficients for these equations are not considered as numbers but as Q-polynomials
in the supplementary variables xj tied by the extra equation P.x0; : : : ; xr / D 0.

Substituting xj D ˛j gives a canonical k-valued point o 2 S 0 and by construction
Xo D X . Since k=k0 is separable, this point is a non-singular point. Now replace S 0 by
a suitable Zariski open neighborhood S of o such that the variety S is smooth. Again by
separability, this variety is smooth along Xo. But it might still be singular or reducible.
To remedy this, first take the component of X which contains f �1o. Then replace S by
a smaller neighborhood of o such that not only the total space is smooth, but also all of
the fibers of the fibration are smooth. The resulting family, still denoted f W X ! S ,
is a smooth deformation of X . By construction, the Zariski-open subsets figuring in the
construction are complements of equations over NQ, and so the resulting family is defined
over NQ.

Finally, since NQ is algebraically closed, S contains points s defined over NQ. This
amounts to replacing the variables xj figuring in the coefficients for the equations of X

by suitable algebraic numbers and hence Xs is defined over NQ.

Remark 2.2. There are several variants of this result: one can spread pairs .X;Z/withZ
a closed subvariety of X . Similarly, one can spread a given morphism f W X ! Y

between varieties.

2.2. Deformations and rigidity. Let me first recall some basic definitions and facts.
More details and proofs can be found for example in [38].
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Kodaira–Spencer classes. A complex varietyX is said to be infinitesimally, respectively
locally rigid if any infinitesimal deformation ofX , resp. any local deformationp W X ! S

of X with S sufficiently small, is trivial, i.e. isomorphic to the product deformation. This
can be rephrased by saying that if o 2 S is such that the fiber ofp over it is isomorphic toX ,
say � W Xo D f �1o

'
�! X , then there is a morphism S ! Aut.X/; s 7! gs; go D idX

inducing a product structure on the family X ! S :

X � S
'
�! X; .x; s/ 7! .� B gs.x/; s/:

As is well known, a varietyX is indeed infinitesimally or locally rigid ifH 1.X;‚X / D 0.
If such a variety appears in a deformationp W X ! S ofX ' Xo, o 2 S , finer information
is present by looking at the Kodaira–Spencer class, by definition the extension class of
the exact sequence

0! To.S/˝OX ! ‚X jX ! ‚X ! 0 (1)

of OX -modules.1 In other words, it gives a characteristic map

�p W To.S/! H 1.X;‚X /:

For a given deformation, it measures deviation of triviality of the deformation:

Theorem 2.3 ([20, Thm. 18.3]). Suppose that a family p W X ! S is regular in the sense
that dimH 1.Xs; ‚Xs

/ is constant for s 2 S . Then it is trivial if and only if �p D 0.

Observe that this theorem gives back the criterion that X is rigid if and only if
H 1.X;‚X / D 0. Indeed, if this is the case, by the semi-continuity of dimH.Xs; ‚Xs

/

(see e.g. [19, Chapter 7]), any sufficiently small deformation of X is regular and the
theorem applies to show rigidity.

Variants. 1. Infinitesimal deformations of pairs .X;Z/ with Z a closed subscheme of
a smooth variety X . Any such deformation p with base .S; o/ (i.e. with fiber over o
isomorphic to .X;Z/) is classified by its Kodaira–Spencer map

�p W ToS ! H 1.X;‚X .Z//; (2)

where2 ‚X .Z/ is the sheaf of germs of vector fields onX tangent toZ. This deformation
is rigid precisely when �p D 0 as before.

1As usual, for any complex manifold X , ‚X stands for the sheaf of germs of holomorphic vector fields
onX .

2This is Sernesi’s notation; if Z is a normal crossing divisor it is dual to�1
X .logZ/ and other authors use

‚X .� logZ/ in this case.
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2. Deformations of morphisms f W X ! Y . These are given by a commutative
diagram

X
f

// Y

Xo

�'

OO

� _

��

F jXo

// Yo

�0 '

OO

� _

��
X

F
//

p1   

Y

p2~~
S

A deformation of morphism as above is a deformation keeping the source, respectively
target fixed if p1, resp. p2, are a trivial deformations. A morphism f is rigid, if all
infinitesimal deformations of f are trivial in the sense that there are morphisms

S ! Aut.X/ s 7! gs; go D idX
S ! Aut.Y / s 7! g0s; g

0
o D idY :

which trivialize the deformation: for all s 2 S there is a commutative diagram

X

' �Bgs

��

f // Y

'�0Bg0s
��

Xs
F jXs

// Ys

Two special cases will be used in this note:
(a) Deformations of a morphism f W X ! Y between non-singular varieties keeping

source and target fixed. Suchmorphisms are classified by the vector spaceH 0.X; f �‚Y /.
(b) Deformations of closed embeddings f W Z ,! X between smooth varieties with

target fixed. Here the characteristic morphism is

�F W ToS ! H 0.Z;NZjX /;

where NZjX is the normal bundle of Z in the ambient manifold X . Note that automor-
phisms ofX yield non-trivial deformations of f but these are trivial as deformations ofZ
itself. Indeed, there is an exact sequence

0! H 0.Z;‚Z/
i�

��! H 0.Z;‚X jZ/! H 0.Z;NZjX /
ı
�! H 1.Z;‚Z/:

The quotientH 0.‚X jZ/=i
�H 0.‚Z/ is the space of isomorphisms classes of infinitesimal

deformations of f keeping Z and X fixed; the next term in the sequence,H 0.X;NZjX /,
is the space of infinitesimal deformations of f keeping only X fixed and ı maps such
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a deformation to the corresponding deformation of Z, i.e. it is the forgetful map. The
embedding f is rigid in this case precisely if �F D 0. If Z itself is rigid, this would
follow if H 0.Z;‚Z/ ! H 0.Z;‚X jZ/ is surjective. In case Z admits no vector fields
we have H 0.Z;‚Z/, and this then implies H 0.Z;‚X jZ/ D 0. For later use, consider
the following special case, that of a totally geodesic submanifold Z of X :
Observation 2.4 ([10, Sect. 11.5]). Let X be a manifold equipped with a hermitian
metric, and let Z � X be a totally geodesic submanifold for which H 0.Z;‚Z/ D 0.
Then the tangent bundle sequence for Z � X splits. Hence H 0.Z;‚X jZ/ D 0 ”

H 0.Z;NZjX / D 0. It follows that Z is rigidly embedded (keeping the target fixed) if and
only if the embedding is rigid keeping source and target fixed.

In particular, since ı is the zero map in this case, it is irrelevant whether Z itself is
rigid or not.

Kodaira–Spencer classes and spreading. The Kodaira–Spencer class of the spread
family f W X ! S from Prop. 2.1 incorporates arithmetic information, since the dual
of To.S/ is the complex vector space �k=Q ˝Q C. Also, �1

X
jX D �1

X=k
, the sheaf of

Kähler differentials on the k-variety X . The dual of the exact sequence (1) then reads

0! �1X ! �1X=k ! �k=Q ˝C OX ! 0:

The extension class of the dual of the above sequence is the Kodaira–Spencer class for the
spread family f W X ! S at o. It depends on the choice of the field k:

�X=k 2 H
1.HomOX

.�1X ; �k=Q ˝C OX // ' HomC.ToS;H
1.X;‚X //: (3)

Corollary 2.5. The spread family from Prop. 2.1 is regular. It is a trivial deformation if
and only if the Kodaira–Spencer class (3) vanishes.

Proof. To see regularity, first observe that dimH 1.X;‚X / depends on the isomorphism
class ofX as an abstract algebraic variety. Secondly, since allXs , s 2 S with the property
that s corresponds to a transcendental number aremutually isomorphic as abstract algebraic
varieties, dimH 1.Xs; ‚Xs

/ is the same for all such s 2 S . This set corresponds to points
in S not lying on any proper subvariety of S and hence is dense in S . Upper semicontinuity
of dimH 1.Xs; ‚Xs

/ then implies that this dimension is locally constant, i.e. the family is
regular. The result follows from Theorem 2.3.

2.3. Rigidity and fields of definition.
Proposition 2.6. (1) Let X be a smooth complex quasi-projective variety. Assume that

the Kodaira–Spencer class (3) of some spread family of X vanishes (e.g. in case X is
rigid). Then X has a model over a number field, i.e.

X ' X 0 ˝ NQ C; X 0 is defined over NQ;

and where the isomorphism is defined over C. This model is unique ifH 0.‚X / D 0.
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(2) Let .X;Z/ be a pair of varieties, whereX is smooth andZ � X a closed embedding.
Assume that the Kodaira–Spencer class (2) of a spread family for .X;Z/ vanishes
(e.g. in case .X;Z/ is rigid). Then the pair .X;Z/ has a model over a number field,
The model is unique ifH 0.‚X .Z// D 0.

(3) In the relative situation of a morphism f W X ! Y between complex quasi-projective
varieties suppose that f is rigid. Then X; Y and f have a model over NQ.

(4) In the relative situation, suppose that Y is defined over NQ and that f is rigid fixing
the target. Then the same conclusion as in (3) holds.

Proof. (1) Rigidity implies that the fibers of any sufficiently small deformation of X
are isomorphic to X . This holds in particular for the spread f W X ! S from Prop. 2.1.
So, if s 2 S. NQ/, one has an isomorphism Xs ' Xo D X and since Xs is defined over NQ,
X has a model over NQ. If, moreover, H 0.‚X / D 0 there is no non-trivial deformation
of idX and the isomorphism Xs ' Xo is unique (compare with the definition above).

(2) The argument is as for (1), using an obvious variant of Prop. 2.1 for pairs. See
Remark 2.2.

Note that (3) and (4) can be reduced to embeddings, since f is rigid if and only the
embedding of graph of f in X � Y is a rigid morphism, and the graph is defined over NQ
precisely when f is. For embeddings i W X ,! Y , to find a variety over which to spread,
start with equations for Y and let k1 be the field extension of Q obtained by adjoining
the coefficients. The embedding is then specified by supplementary equations whose
coefficients are adjoined to k1. The resulting field k D NQ.S/ is the function field of the
base variety S . Observe that if the variety Y is defined over a number field, k1 is also a
number field and then S parametrizes a deformation of X in the fixed variety Y . Rigidity
in both cases ensures that the embedding has a model over a number field.

Examples 2.7. (1) Fake projective planes are compact complex surfaces of general
type with pg D q D 0 and with K2 D 9. They are known to be quotients of the complex
unit 2-ball by an arithmetic subgroup, and are also known to be rigid. See [30,31].

(2) Let S be a Beauville surface [6, Exercise X.13.(4)] and [5]. These are certain
minimal surfaces of general type with K2D 8, pg D qD 0. Such a surface is rigid [11]
and so, by Proposition 2.6, it has a model over NQ. Its complex conjugate cousin, also a
Beauville surface, is rigid as well.

(3) By [5], there are a two more types of surfaces similar to Beauville’s examples in
that they are all quotients of a product of two curves of genera> 1 by a freely acting finite
group G and having moduli spaces of dimension 0. Here G is one of two non-abelian
groups of order 256. The first gives an example whose moduli space consists of three
0-dimensional components, the second group leads to a unique example.

The next result gives an application in the relative setting. It leads up to Belyı̌ curves:
Proposition 2.8. SupposeX; Y are smooth projective of the same dimension, p W X ! Y

is a surjective finite morphism with smooth branch locus B � Y . Assume that Y is rigid
and that B is rigidly embedded in Y . Then X has a model over a number field.

Proof. One constructs a spread of themorphismp W X ! Y as in the proof of Prop. 2.6(3).
Call it zp W X ! Y �S . We do not now that p is rigid. But the induced deformation of p,
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the family X ! Y �S ! S , is differentiably locally trivial over S and so the topological
structure of the fibers ps W Xs ! Y � fsg of the map zp does not vary. Away from the
branch locus Bs , the map ps is a finite étale cover and so the complex structure on

X0s WD p
�1
s .Y � Bs/ � Xs

is locally determined by the complex structure on Y � Bs , which by rigidity of the
embedding of B in Y is independent of s. The differentiable structure of Xs is fixed and
so it only has to be checked that the complex structure on it is completely determined by
the complex structure on the Zariski open subset X0s .

To show this, note that holomorphic functions on Y are bounded near the branch
locus and so, by Riemann’s extension theorem, their lifts to X0s can be extended uniquely
to Xs . So indeed, up to isomorphism, the complex structure on Xs does not depend on s.
As before, pick any s 2 S defined over NQ (which exists since S is by construction defined
over NQ). Then, not only Ys is defined over NQ, but also Xs is, and hence, by rigidity, so is
the variety Xo D X .

Remark. In [24, pp. 468–473] a variant of the above proof is given which is apparently
due to Carlos Simpson.
Examples 2.9. (1) Recall that a Belyı̆ curve [7] is a complex projective curve admitting
a cover to P1 ramified only in the three points 0; 1;1. Three distincts points in P1 define a
rigid divisor since three distinct points can always be mapped to three given distinct points
by a projective transformation of P1. Belyı̆ showed (loc. cit.) that a complex projective
curve can be defined over NQ if and only if it is isomorphic to a Belyı̆ curve. The above
proposition shows that the fact that Belyı̆ curves are defined over a number field is an
example of a quite general phenomenon. The converse statement however requires an
explicit construction which is very particular to curves. See [24, Sect. 9.2] for a proof in
the style of this paper.

(2) For higher dimensional examples, including branched covers of P2 branched in 4
or less lines, see [25].

3. Further examples of models over number fields

3.1. Locally symmetric spaces. Let D D G.R/=K be a hermitian symmetric domain,
� a torsion free arithmetic subgroup of G.R/ and let X D �nD be the corresponding
locally symmetric space. Such X give examples of Shimura varieties for which it is
known that they can be defined over a number field. See e.g. [21] for background.
Shimura varieties will be investigated more in detail below in Section 4.3.

Here I want to present another approach, due to Faltings which is more in the spirit of
this note.
Proposition 3.1 ([16]). The pair .X; @X/ has a unique model over NQ.

Proof. I give a sketch of Faltings’ proof.3 The specific Kodaira–Spencer class �.X;@X/
coming from the derivations ofC=Qgiven by (3) lands in the vector spaceH 1.X;‚X .@X//

3For more details and a generalization of the results of [9] to the non-compact situation see [28].
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measuring infinitesimal deformations of the pair .X; @X/. Using harmonic theory, Falt-
ings shows that each of these can be represented by a unique vector valued harmonic form
H�.X;@X/ onD of type .0; 1/. Moreover, the assigment .X; @X/ 7! H�.X;@X/ is functorial
and equivariant with respect to group actions.

Using this property for the various Hecke correspondences, one shows that such a
harmonic form is �-invariant for all possible arithmetic subgroups � � G. This form lifts
toD as a G.Q/-invariant harmonic 1-form with values in the tangent bundle. By density
it is then G.R/-invariant on D. But such a form must vanish. One sees this as follows.
By [18, Ch. VIII, §7] the complex structure on the tangent space ToD at a any point o
of the hermitian symmetric domain D is induced from the action of the center Z ' U1
of the isotropy group of o on D: z 2 Z induces multiplication with z. Hence, if ˛ is a
global .0; 1/-form onD with values in the tangent bundle, at the point o the action is given
by z�.˛/ D . Nz�1 � z/ � ˛. So Z-invariance, implies ˛.o/ D 0. Since o is arbitrary, ˛ D 0.

Next, one observes that the spread family for the pair .X; @X/ is regular in the Kodaira–
Spencer sense. The proof is similar to the proof ofCor. 2.5. Hence onemay apply (a relative
variant of) Theorem 2.3: .X; @X/ is rigid, and hence this pair has model over NQ.

Uniqueness then follows from H 0.X;‚X .@X// D 0 (no vectorfields can be tangent
along the boundary divisor). Faltings reduces the proof of this to the assertion that
there exists no G.R/-invariant holomorphic vector fields on D. For the last assertion in
loc. cit. no proof is given, but the argument is similar to what we did before: The element
z 2 Z D fcenter of the isotropy group of G.R/ at og acts as multiplication with z on
tangent vectors at o and so, invariance implies that any global tangent vector field on D
invariant under the action of G.R/ vanishes at o and hence everywhere.

3.2. Holomorphic maps into locally symmetric spaces. As before, let X D �nG=K

be a locally symmetric space of hermitian type. To D D G=K and a parabolic subgroup
P � G one associates a boundary component D.P / which is also a bounded symmetric
domain. Introduce

rank ofD D `.D/ D min
P

dimD.P /:

The numbers `.D/ forD irreducible are collected in Table 1 which is copied from [41].

Domain dimD `.D/

Ip;q D SU.p; q/=S.U.p/ � U.q// pq .p � 1/.q � 1/

IIg D SO�.2g/=U.g/ 1
2
g.g � 1/ 1

2
.g � 2/.g � 3/

IIIg D Sp.g/=U.g/ 1
2
g.g C 1/ 1

2
g.g � 1/

IVn D SOo.2; n/=SO.2/ � SO.n/ n 1

V D E6=SO.10/ � SO.2/ 16 1

VI D E7=E6 � SO.2/ 27 8

Table 1. Hermitian symmetric domains
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The rigidity result I use here is due to Sunada:

Proposition 3.2 ([41]). With the above notation, let M be projective, f W M ,! X D

�nD with X compact, is rigid keeping source and target fixed, whenever dimM �

`.D/C 1.

FromProp. 2.4, Prop. 2.6(3), together with the fact thatX is defined over NQwhenever�
is arithmetic, we deduce:

Corollary 3.3. If moreover, � � G is a neat congruence subgroup, andM is embedded
inD as a totally geodesic submanifold, thenM has a model over a number field.

Examples 3.4. (1) Since the unit ball Bn in Cn can be represented as the domain I1;n
and since `.I1;n/ D 0, all (positive dimensional) geodesically embedded subvarieties of a
compact arithmetic quotient of the unit ball have models over a number field.

(2) A domain of type IVn with n � 18 is classifies lattice polarized K3 surfaces,4
and since `.IVn/ D 1, using the local Torelli theorem for K3 surfaces, we deduce that if
we have a family of K3 surfaces over a compact base B of dimension � 2 whose period
map is injective and gives a geodesic embdedding, the base manifold B has a model over
a number field.

4. Applications to variations of Hodge structure

4.1. Hodge theory revisited. As a preliminary to the topic of Shimura varieties, it is
useful to view a Hodge structure as a representation space for a certain algebraic torus, as
observed by Deligne. See e.g. [14, Chap. I], [10, Chap. 15].

To explain this briefly, giving a Hodge structure on a real vector space V is the same
as giving a morphism

h W S! GL.V /; S D ResC=R Gm;

where I recall that the Weil restriction ResC=R Gm is just the group C� considered as
a real group. In other words, a real Hodge structure is just a rational (or “algebraic”)
representation of the torus group S. One sees this by observing that on the complexified
vector spaceVC D V˝RC the action ofS diagonalizes and theHodge subspaceV p;q � VC
by definition is the subspace where h.z/ acts as multiplication with zp Nzq .

If the Hodge structure has pure weight k this shows up as follows: via the natural
inclusion w W R� ! S, the action of t 2 R� is multiplication by tk . This motivates
introducing

wh D h B w W Gm ! GL.V /; the weight morphism:

If, moreover, V has a rational structure, say V D VQ ˝ R, this weight morphism is
obviously defined over Q. When this is the case, one defines the Mumford–Tate group
of h as the smallest closed subgroupM D M.h/ of GL.VQ/ such that h factors through
the real algebraic groupMR.

4See [15] and [4, Chapter VIII] for background.
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Hodge structures coming from geometry carry a polarization, where I recall that a
polarization consists of a Q-valued bilinear form b on VQ satisfying the two Riemann
relations:

(1) bC.x; y/ D 0 if x is in V p;q and y is in V r;s for .r; s/ ¤ .k � p; k � q/, where k is
the weight of the Hodge structure;

(2) ip�qb.x; x/ > 0 if x is a nonzero vector in V p;q .

A Hodge structure is polarizable if such a b exists and thenM is known to be reductive.
See [14, Prop. I.3.6], [10, Prop. 15.2.6]. Using this language, one singles out a CM-Hodge
structure as one whose Mumford–Tate group is abelian and hence, by reductivity, an
algebraic torus.

Let me next discuss the notion of a variation of Hodge structure. It consists of a local
system V on a smooth quasi-projective variety S of finite dimensional Q-vector spaces,
such that all fibers admit a polarizable Hodge structure. More precisely, V should come
from a representation of the fundamental group of S in a finite dimensional vector space V
equipped with a non-degenerate bilinear form b such that

(1) the locally free sheaf V D V ˝OS carries a descending filtration F � by holomorphic
subbundles;

(2) the natural flat connection r on V lowers degrees of this filtration by at most 1
(Griffiths’ transversality);

(3) b and F � induce a polarized Hodge structure in each stalk.

Given such a variation of Hodge structure, the Hodge structure over x 2 S corresponds
to hx W S! GL.V / and its Mumford–Tate group may vary, However, outside a countable
union of proper subvarieties,M DM.hx/ is the same, the generic Mumford–Tate group,
and a point with this Mumford–Tate group is called Hodge generic.

The group
G D Aut.V; b/

is a Q-algebraic group. The representation of �1.S; x/ in V defining the local system V
preserves the polarization b and the image � of �1.S; x/ in G.R/ is discrete. It is called
the monodromy group of the variation.

Definition 4.1. The connected component of the Q-Zariski closure of the monodromy
group in G is called the algebraic monodromy group.

The groupG.R/ acts transitively on a so called period domainD, which classifies the
Hodge structures on V with a fixed set of Hodge numbers polarized by b. The obvious map
p W S ! �nD is holomorphic; it is called the period map. The Griffiths’ transversality
condition is in general a further constraint. It is vacuous for weight one variations and
also for those coming from K3-surfaces, or more generally, those of K3-type:

Definition 4.2. A variation of K3-type is a variation of weight 2 Hodge structure with
h2;0 D 1.
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4.2. Application to variations of weight 1 and 2. For a weight two variation with Hodge
numbers h2;0Dp, h1;1Dq, the period domain has shapeDDSO.2p; q/=U.p/ � SO.q/,
the K3-case corresponding to p D 1; q D 19. For weight two domains one further
introduces the rank `.D/ of D which generalizes the concept for hermitian symmetric
spaces from Table 1:

`.D/ D

„
1 if p D 1;
q � 1 if p D 2;

.p � 1/t C � if p � 3, t D b1
2
.q � 1/c, � D

(
0 if q odd;
1 if q even:

One has the following rigidity result:
Theorem 4.3 ([27, Theorem 3.1]). LetD be a period domain for polarized weight 1 or 2
Hodge structures. An immersive period map f W S ! �nD with S quasi-projective is
rigid keeping source and target fixed as soon as dimS � `.D/C 1.

Using Prop. 2.4, as a corollary, we get:
Corollary 4.4. Let D be a period domain for polarized weight 1 or 2 Hodge structure.
LetS be quasi-projective andf W S ! �nD an immersive periodmapof rank� `.D/C1.
Suppose moreover, that S is geodesically embedded, then S has a model over NQ.

4.3. Shimura varieties. One needs aHodge theoretic interpretation of Shimura varieties,
i.e. varieties of the form X D �nD for which D D G.R/=K is a Hermitian symmetric
domain of non-compact type and G is a connected Q-algebraic group. For details of the
discussion that follows see e.g. [10, Chap. 16,17], [21].

A point x 2 D turns out to correspond to a unique hx W S ! GR and so a given
representation of G in V defines a real Hodge structure. If the representation comes
from a Q-representation � W G ! GL.VQ/ one might not get a rational Hodge structure.
However, we do get a direct sum of such structures (possibly of different weights) if the
weight morphism � B hx B w W R� ! GL.V / is defined over Q. Such representations
exist: take the adjoint representation, with H D LieG and � D ad W G ! GL.V/; its
weight is zero and hence the weight morphism is automatically defined over Q.

The group G.R/ acts by conjugation on hx . Let h.g/x denote the conjugate of hx by
g 2 G.R/. Then one has the basic equality

hgx D h
.g/
x

and hence, sinceG.R/ acts transitively onD, one may viewD as an entire conjugacy class
of maps h W S! GR. Each point in D can be identified with such a map since h D h.g/
precisely if g belongs to the isotropy group of the corresponding Hodge structure. For
clarity, let me write Œh� for the point in D corresponding to h 2 Mor.S; G.R//. Not any
G.R/-conjugacy class of a morphism S! GR underlies a Hermitian symmetric domain.
For this to be true, such a morphism has to verify certain axioms, as given in [13]. If this
is the case, the corresponding pair .G;D/ is called a Shimura datum and D is called a
Shimura domain. By the previous remarks about the adjoint representation, all Hermitian
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symmetric domains arise as such, withG the group of holomorphic automorphisms ofD,
which is indeed known to be Q-algebraic and of adjoint type.

It makes sense to define the Mumford–Tate group of a point Œh� 2 D as the smallest
closed subgroupM.h/ of G such that h factors through the real algebraic groupM.h/R.
Then �.M.h// is the Mumford–Tate group of the Hodge structure � B h. The orbit of
h 2 D under its Mumford–Tate group M.h/ is a holomorphic submanifold of D which
turns out to be a Shimura domain for M.h/. It is called the submanifold of Hodge type
passing through Œh�. Its image in X is called a special subvariety.

As recalled above, for a point Œh� 2 D outside a countable union of proper closed
subvarieties in D, the Mumford–Tate group is precisely G. Call such a point Hodge-
generic. For such points, D is the submanifold of Hodge type through Œh�. At the
other end of the spectrum one has the CM-points in D, by definition those points Œh� for
which M.h/ is abelian (i.e. an algebraic torus). In this case it is its own submanifold of
Hodge type. Concerning these points, one has:

Lemma 4.5 ([10, Corr. 17.1.5]). A Shimura subdomain contains a dense set of CM-points.

4.4. Monodromy and rigidity. The geometry of the variation is reflected in the algebraic
monodromy, which as I recall, is the connected componentMmon of theQ-Zariski closure
in GL.V / of the monodromy group of the variation. Any reductive group such asM has
a canonical almost direct product decomposition

M DM der
� .center ofM/;

whereM der is the derived subgroup ofM , its maximal semi-simple subgroup. There are
two important results concerning the relation of the two groups:

Theorem 4.6. (1) [3, Thm] The algebraic monodromy group is a normal subgroup of the
generic Mumford–Tate group. In fact, one hasMmon GM der.

(2) [3, Prop. 2] If there are CM-points in the variation, this is an equality: Mmon DM der.

Let me now consider a more general situation of a holomorphic map p W S ! �nD

to a Shimura variety, i.e.D D G.R/=K is a bounded Hermitian symmetric domain. This
defines a polarizable variation of Hodge structures on S where Griffiths’ transversality is
automatic. Here � is the monodromy group of the variation. The group that determines
the deformations of p is the centralizer of the algebraic monodromy group inside the
group G:

G0 WD ZG.M
mon/:

Indeed, one has:

Proposition 4.7. Under the assumption that X D �nD is a Shimura variety, the “period
map” p W S ! �nD is rigid if and only if G0.R/ is compact.

Proof. The Lie algebra g ofG.R/ consists of the endomorphisms of V that are skew with
respect to b. The Cartan involution induces a direct sum decomposition g D k˚pwhere k
is the Lie algebra of the maximal compact subgroup K.R/ � G.R/. The Lie algebra has
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a natural structure of a weight zero Hodge structure inherited from the one on End.V /.
Indeed

gC D g�1;1 ˚ g0;0 ˚ g1;�1; g0;0 D kC:

The Lie algebra g0 � g of G0.R/ consists of those endomorphisms in g that commute
with the action of the monodromy group. This subalgebra inherits a weight zero Hodge
structure and by [26, Theorem 3.4], the tangent space to infinitesimal deformations of p is
isomorphic to .g0C/�1;1 and in this case, as a real space it is isomorphic to p \ g0. Hence
p \ g0 D 0 if and only if g0 D k \ g0 if and only if G0.R/ is compact.

Observe next thatG0 is also a reductive group ofHermitian type:D2 WDG0.R/=K\G0.R/
is a bounded subdomain of D and if zS is a universal cover of S with lifting zp W zS ! D,
there is an induced holomorphic map zP W zS � D2 ! D extending zp. This maps
parametrizes the deformations of zp keeping S and D fixed. If zP embeds zS as a subdo-
mainD1 � D, i.e. if zp is a geodesic embedding, then one has a product situation

zP W D1 �D2 ,! D:

In other words, the deformations of the embedding �1nD1 ,! �nD between two Shimura
varieties are parametrized by a Shimura variety of the form �2nD2. By Prop. 2.4 one then
concludes:
Corollary 4.8 ([1, §2]). Let G be a Q-algebraic group of Hermitian type, G1 a reductive
subgroup of G, and let D D G.R/=K, D1 D G1.R/=K \ G1.R/ the corresponding
domains. Put G2 D ZGG1, D2 D G2.R/=G2.R/ \ K. Let � be a neat arithmetic
subgroup of G.Q/ such that �i D � \ Gi .Q/, i D 1; 2 is also neat. The embedding
�1nD1 ,! �nD between the corresponding Shimura varieties is rigid with fixed target
precisely whenG0.R/ is compact. In particular, the embedding�1nD1��2nD2 ,! �nD

is rigid.
Let me next consider the algebraic monodromy groupMmon � G from an arithmetic

perspective. According to e.g. [36, p. 64] for any Q-simple algebraic group G there is a
totally real number field F and an absolutely simple F -group zG (i.e. one that stays simple
after any field-extension) such that

G D ResF=Q zG:

Here ResF=Q is the Weil-restriction whereby an F -group is viewed in a functorial way as
a Q-group. For a real embedding � W F ,! R let zG� be the corresponding conjugate
of zG. It is called a factor of G. Then

GR D
Y
�2S

zG�R ; S the set of embeddings F ,! R:

Hence, assuming for simplicity that the algebraic monodromy group is simple overQ, one
may write:

Mmon
D ResF=Q zMmon

H) G0 D ResF=QZ zG zM
mon:
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In particular, for every factor . zMmon/� there is a corresponding factor zG0� . This can be
used in the weight one case as follows:

Corollary 4.9. Let there be a weight one variation over a quasi-projective variety with
Q-simple algebraic monodromy group. Assume thatMmon has no compact factor. Then
the variation (and the period map) is rigid.

Proof. In the weight one case, by [35, Prop. IV.4.3], Mmon.R/ and G0.R/ are in a sense
“dual”: every non-compact factor . zMmon/� corresponds to a compact factor zG0� . The
assumption implies that all factors of G0 must be compact and so the deformation is
rigid.

This result implies a quite curious result that states that non-trivial monodromy at the
boundary implies rigidity:

Proposition 4.10 ([32, Th. 8.6]). A weight one variation over a quasi-projective variety S
with a non-trivial unipotent element in the monodromy is rigid.

The monodromy at the boundary is quasi-unipotent (“Monodromy Theorem”, [10,
Theorem 13.7.3]), and so this holds indeed if S is not compact and there is at least one
non-finite local monodromy operator at infinity. From previous results (cf. Corollary 3.3),
if moreover S is geodesically embedded, it has a model over NQ.

Proof. First I need a result about ranks of simple groups. Recall that a reductivek-algebraic
group G has k-rank zero if it has no k-split tori. By [8, §6.4] this is the case if and only
ifG has no non-trivial characters over k and no unipotent elements g 2 G.k/, g 6D 1. For
k D R, the R-rank is zero precisely when GR is compact. Now I can state the auxiliary
result:

Lemma 4.11. IfG is aQ-simple group such thatGR has at least one compact factor, then
the Q-rank of G is zero. In particular, G contains no unipotent elements g 6D 1.

Proof of the lemma. As before, write G D ResF=Q zG, where zG is absolutely simple and
defined over a (totally real) number field F . A character � for G induces a character ��
for zG� and any unipotent g 2 G gives a unipotent element g� in zG� . Suppose zG�R is
compact. Then �� D 1 and g� D 1 and also � D 1, g D 1. This finishes the proof of the
lemma.

To finish the proof of the Proposition, note that Lemma implies that the algebraic
monodromy group has no compact factors and hence, by Cor. 4.9 the deformation is
rigid.

A similar result can be shown for variations of K3-type (cf. Definition 4.2):

Proposition 4.12 ([33, Cor. 5.6.3]). Suppose we have a variation of K3-type over a quasi-
projective variety S with a non-trivial unipotent element in the monodromy. Assume that
the variation is not isotrivial. Suppose moreover, that the rank of the stalk of the variation
is different from 4. Then the period map p W S ! �nD is rigid, and if, moreover, p is a
geodesic embedding, then S has a model over NQ.
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Proof. Here Lemma 4.11 is used in a different manner: for a non-isotrivial isotypical
variation which is non-rigid, Mmon.R/ has one conjugate isomorphic to SL.2;R/ with
representation space R2 ˝ R2 and the remaining conjugates are ' SU.2/ with represen-
tation space C2. It follows from the Lemma that the only possibility to accommodate a
non-trivial unipotent element T is when no compact conjugates are present and then the
local system has rank 4.

4.5. Special subvarieties of Shimura varieties. Recall (§4.3) that a special subvariety
of a Shimura variety X D �nG=K, or a subvariety of Hodge type, comes from the orbit
of a point in D D G=K under its own Mumford–Tate group. In this subsection we study
them in more detail.

A morphism of Shimura varieties

X1 D �1n G1.R/=K1™
D1

! X2 D �2n G2.R/=K2™
D2

is by definition induced by an equivariant morphism of Shimura domains. Such a mor-
phism is given by a morphism ' W G1 ! G2 ofQ-algebraic groups. It then induces a holo-
morphic maps of Shimura domains f W D1 ! D2 by stipulating that f .Œh1� D Œ.' B h1/�
for one hence all points Œh1� 2 D1. The Mumford–Tate group of Œh1�maps under ' to the
Mumford–Tate group of f .Œh1�/. It follows that the subvariety f .D1/ is special in D2:
if Œh1� is Hodge generic, then f .Œh1/ has Mumford–Tate group '.G1/ and f .D1/ is the
orbit of this group acting on f .Œh1�/. If f is an embedding, one may assume that ' is
also an embedding. It is not hard to see that f is a totally geodesic embedding. See
e.g. [10, Chap. 11.5].

Other geodesic embeddings i W D1 ,! D2 are conjugates f .g0/, g0 2 G2.R/ of f .
Such an embedding may or may not arise from a morphism of Shimura domains. By
Lemma 4.5, if this would be the case, D D i.D1/ would have CM-points. I claim that
this is the crucial property which ensures that i is a morphism of Shimura domains, or,
equivalently, thatD is of Hodge type insideD2:

Lemma 4.13. Let D1;D2 two Shimura domains and let be i D f .g
0/ W D1 ,! D2 as

above. Then i is a morphism of Shimura domains if and only if i.D1/ contains a CM-point
ofD2.

Proof. Consider the restriction of the variation of Hodge structure onD2 toD. It descends
to give one on its image in X2. The monodromy of the last variation is �.g

0/
1 . LetMmon

be the algebraic monodromy group, which, in this situation is the connected component
of the Zariski closure of �.g

0/
1 in G2. Suppose that it is as large as possible, that is — by

the first part of André’s Theorem 4.6 —Mmon DM der, the largest semi-simple subgroup
of the generic Mumford–Tate group of the variation of Hodge structure on D. Then D
would be of Hodge type, sinceMmon acts transitively on D. So one needs to see that the
existence of a CM-point implies maximality of the monodromy in the above sense. But
this is precisely the content of the second assertion of Theorem 4.6.
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This Lemma can be used to give a simple proof of Abdulali’s criterion [1, Thm. 3.4]:
Proposition 4.14. Let i W X1 ,! X2 be a totally geodesic embedding of Shimura varieties.
If the embedding is rigid, i.X1/ is a special subvariety.

Proof. Since Shimura varieties are defined over a number field (cf. [21]), one may apply
Prop. 2.6(4). So, if the embedding is rigid, the image is defined over a number field. To
show that the image is a special subvariety, by the previous Lemma, it suffices to find a
CM-point in the image. But, if x 2 X1 is a CM-point, then i.x/ is also a CM-point since
the Mumford–Tate group of the Hodge structure corresponding to x is an algebraic torus
and hence, so is the one associated to i.x/ since i is defined over NQ.

Here are some examples of this phenomenon for weight one Hodge structures:
Examples 4.15. (1) The group G1 D SL.2/ can be embedded in Sp.g/ as follows. Set
Vk D .R2k ; Jk/, Jk D

�
0 1k

�1k 0

�
. The direct sum ˚kV1 is isomorphic to the symplectic

space Vk . Whence a faithful representation �k of SL.2/:�
a b

c d

�
�k

��!

�
a1k b1k
c1k d1k

�
:

For any k D 1; : : : ; g the direct sum representation �k˚ (rank .g � k/ trivial represen-
tation) induces a holomorphic embedding h ,! hg . It gives the non-compact embedded
Shimura curves starting from the Shimura datum .SL.2/; h/. There is no locally con-
stant factor if and only if k D g and then the embedding is rigid. This follows from
Corollary 4.9. These non-compact rigid curves are often called rigid curves of Satake
type.

(2) There are also examples where G1 has compact factors. Here I use again the
Satake “duality” mentioned before, but in its precise form as explained in [32, §7]. It
applies to G1 and G01 WD ZSp.g/G1 and gives:

.G1/R ' SL.2/ � SU.2/ � � � � � SU.2/�
m � 1

H) .G01/R ' SO.2/ � SU.1/ � � � � � SU.1/�
m � 1

:

The latter group is compact and hence the deformation is rigid. There are indeed examples
of such embeddings, the Mumford type curves. See [2, §6.2].

5. Applications to Higgs bundles

5.1. Basic notions. A Higgs bundle5 over a complex manifold B is a pair .V ; �/ of a
holomorphic bundle together with an End.V/-valued 1-form � such that � B � D 0. The

5For more details on Higgs bundles see e.g. [10, Chapter 13].
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form � can also be viewed as aHiggs field, a homomorphism � W V ! V˝�1B . A graded
Higgs bundle is a Higgs bundle such that V D ˚rV

r , with V r locally free and such that
� jV r W V r ! V r�1 ˝�1B .

The standard example comes from polarized complex variations of Hodge structures
on B . Recall [39, §4] that such a system consist of
� a local system of C-vector spaces V equipped with a flat non-degenerate bilinear form.

In other words, if � is the fundamental group of B based at o 2 S , V comes from a
representation � W � ! GL.V; b/, V the fiber of V at o;

� a direct sum decomposition V ˝ C1B D ˚rV r
1 into locally free C1B -modules such

that

– the hermitian form h.x; y/ D .�1/rb.x; Ny/ on V r
1 is positive definite and the above

decomposition is h-orthogonal;
– the natural flat connection r on V˝ C1B obeys

V r r
�! A

1;0
B .V r�1/

1™
#

˚ A1
B.V

r
1/˜

#

˚ A
0;1
B .V rC1

1 /™
#

� C d C ��;

where �� is the h-adjoint of � .

These demands imply that F p D ˚r�pV r
1 is a holomorphic subbundle of V˝ OB and

that Griffiths’ transversality holds. This filtration is the Hodge filtration. It also follows
that the holomorphic bundle

V D ˚pF p=F pC1; C1B .F
p=F pC1/ D Vp

1

with the underlying local system V admits the structure of a graded Higgs bundle with �
the Higgs field. Flatness (i.e.rBr D 0) implies the Higgs condition � B� D 0. Moreover,
the Chern connection, that is, the unique holomorphic connection on this Higgs bundle
which is metric with respect to the hermitian metric h turns out to be N@C � . So on any
subbundle on which � D �� D 0, the flat connection r induces the Chern connection and
so the metric h coincides with the flat metric. Moreover, such a subbundle comes from a
local subsystem of V since it is preserved by r. Also, it is unitary since it admits the flat
unitary metric h. This holds in particular for the largest subbundle for which � D �� D 0:

U D U˝OB W the maximal unitary Higgs subbundle:

There is an h-orthogonal splitting

V D U˚W; W D U?: (4)

5.2. Logarithmic variant. If B is quasi-projective, one usually considers Higgs bundle
with logarithmic growth near the boundary. To explain this, assume for simplicity that
dimB D 1 and that B gets compactified to a a smooth projective curve SB . Then the
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boundary † D SB � B consists of finitely many points. A graded logarithmic Higgs
bundle V D ˚pVp on B , with Vp locally free, by definition admits a Higgs field with
components

� W Vp
! Vp�1

˝�1SB.log†/:

For a variation of Hodge structure on B with unipotent monodromy at the punctures,
one lets V be the associated graded of the Deligne extended Hodge filtration. Then the
Gauss–Manin connection induces a Higgs field as above.

Even more is true. Choose a coordinate patch .�; t/ around a puncture and let T be
the (unipotent) local monodromy operator around the puncture. For v a local holomorphic
section of V on the disc, write

rv D R
dt

t
; R 2 End.V j�/:

Then
N WD R.0/ D log.T / 2 End.V /

and the Higgs field at the puncture is given by

�.0/ W V0 ! V0 ˝
dt

t
; vp 7! .Grp N/vp ˝

dt

t
: (5)

Suppose k is the first index in the grading for which Vk 6D 0 and k C w C 1 the last.
Then the number w is called the width.

In this general setting, one says that for a Higgs bundle of width w, the Higgs field is
generically maximal if for all p 2 Œk; kCwC 1� one has Vp 6D 0 and if, moreover, � jVp

generically an is an isomorphism for p D k; : : : ; p C w.

5.3. Rigid maximal Higgs subsystems. The following rigidity result [43, Lemma 3.1],
stated without proof, can be formulated in a slightly different way which fits better within
the general framework set up so far:
Proposition 5.1. Let B be a smooth quasi-projective variety, V be a local system on B
of finite dimensional Q-vector spaces and let WC a subsystem of V˝ C. Suppose WC is
rigid as a subsystem of V˝C. ThenWC is defined over NQ in the sense thatWC DW˝C,
where W is a local system of F -vector spaces for some number field F .

Proof. Let � be the fundamental group of B.C/ based at o 2 B.C/ and let V be the
fiber at o of VC, considered as a �-representation space. The group � acts on the
GrassmannianG.r; V / of r-dimensional subspacesW � V , where r D rankWC. A fixed
point ŒW � of this action corresponds to a complex subsystem of V˝ C. More precisely,
the corresponding �-invariant subspace is the fiber UŒW � at ŒW � of the tautological bundle
U ! G.r; V /. The spread of the point ŒW � is a subvariety Y � G.r; V / contained
in the locus of fixed points of the �-action, because this action is defined over Q. The
tautological subbundle over Y gives a deformation of WC � VC, and so rigidity implies
that Y. NQ/ D ŒW �, an isolated point. Hence the local system WC, which corresponds
to UŒW �, is defined over NQ.
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As a direct application, one has:
Proposition 5.2 ([43, Lemma 3.3]). Let B D SB �† as above. Suppose that V underlies
a polarizable Q-variation of Hodge structure and let .V ; �/ the corresponding graded
logarithmic Higgsbundle over B with unipotent monodromy around points of †. Let
VC D U ˚ W the splitting (4). Suppose that the logarithmic Higgs subbundle W

corresponding to W is a generically maximal Higgs subbundle. Then the splitting is
defined over NQ.

Proof. To show how this result is implied by Proposition 5.1, it is enough to show
that W is rigidly embedded in V. Again, with V a typical fiber of V, small deformations
of W are parametrized by the tangent space to the fixed locus under the �-action on
the Grassmannian G.r; V / at a �-invariant point ŒW �. A tangent vector is therefore
represented by a homomorphism of local systems

q WW! V=W D U

which is compatible with the structure as a complex system of Hodge bundles: a small
deformation ofW within V inherits this structure from the one on V and the map q is the
embedding of the deformed V followed by projection to U. But the Higgs field for the left
hand is generically an isomorphism while on the right hand it is zero. This is impossible
unless q D 0. In other words, W has no deformations and Proposition 5.1 applies.

Remark. A variant of this can be found in [43]: assume that W is a direct sum of
complex systems of Hodge bundles of different widths, all with generically maximal
Higgs field. Then almost the same argument shows that also this splitting is defined
over NQ. There is one subtlety here: one has to compare projections between complex
systems of different widths and then one needs semi-simplicity for variations of Hodge
structures. This property is a highly non-trivial consequence of another rigidity property
due to Schmid [37]. See [29, §5] for details.

To close this discussion, I want to recall a beautiful argument from [43] which shows
that the above splitting is in fact defined overQ as soon as there is a puncture about which
the local monodromy is infinite:
Proposition 5.3. The situation is as in Prop. 5.2. In particular, all local monodromy
operators at the boundary are unipotent. Assume that at least one local monodromy
operator has infinite order. Then the splitting V D U ˚W from (4) is defined over Q
and U extends as a local system to SB . The monodromy of this last system is finite.

Proof. The property that a Higgs field is an isomorphism on B extends to SB . If all graded
fields �p are isomorphisms, at a puncture (5) implies that the Grp N are isomorphisms
and hence that N is an isomorphism. This holds for W , while the fact that the Higgs field
for U remains zero at a puncture implies that the local monodromy for U is the identity
and thus that this local system extends to SB .

Suppose that we have a splitting as above, valid over a Galois extension F=Q. The
property thatN is an isomorphism or zero is preserved by the action of the Galois group G .
It follows that for � 2 G the natural inclusion followed by projection

U� ! V! V=U DW
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sends the fiber U�s at a puncture s 2 † to zero. In other words Us D U�s for all � 2 G and
so this fiber is defined overQ. SinceU extends to SB , and since the entiremonodromy action
is defined over Q, the local system U which is built from the monodromy representation
on some fiber Us is then defined over Q. The polarization is defined over Q as well and
hence W D U? is defined over Q. The finiteness of the monodromy follows since the
system is defined over Q and the polarization h on it is a positive definite Q-valued form
preserved by the monodromy.

Example 5.4 (An interesting Shimura curve in the Torelli locus). The above result def-
initely fails when B D SB: the global monodromy of U may be infinite. The simplest
example from [22, Example 5.1] is a Shimura curve and can be described as follows.
Consider the family of projective curves with affine equation

y5 D x.x � 1/.x � t /:

This gives a family Ct over P1 of genus 4 curves. The fibers are smooth for t 6D 0; 1;1.
Note however that local monodromy operators are quasi-unipotent in this case, but this
does not really matter since this could be taken care of by a finite branched cover of P1.
For simplicity this will not be done since the above analysis still works after some minor
modification.

Let �5 be primitive root of unity. Then the cyclic group Z=5Z generated by .x; y/ 7!
.�5y; x/ preserves Ct and the Hodge structure H 1.Ct / of weight one admit an action
of Z=5Z. Let F D Q.�5/. The Galois group G of F=Q is generated by the element �
which sends �5 to �25 . It permutes the eigenspaces of Z=5Z acting on Vt D H 1.Ct ;C/ as
in the following table.

Eigenvalue h1;0 h0;1

�5 0 2

�.�5/ D �
2
5 2 0

�2.�5/ D �
4
5 1 1

�3.�5/ D �
3
5 1 1

Table 2. Eigenspaces for Z=5Z on Vt

Next, consider the splitting of the correspondingHiggs bundle. TheHiggs bundle splits
also in eigenspace subbundles; the Higgs field is zero for the subbundles corresponding
to the first two rows and an isomorphism for those corresponding to the last two. So the
Higgs bundle is maximal and one has

U D V�5
˚ V�2

5
; V D V�4

5
˚ V�3

5
:

IfMmon is the algebraic monodromy group of this family, one has a corresponding splitting

Mmon.R/ D SU.2/ � SU.1; 1/:



98 C. Peters

The actual monodromy group � in this case is dense in both factors and hence cannot
be finite for the local system U. Proposition 5.3 then implies that the local monodromy
around the punctures cannot be of infinite order. Indeed, one can show that the local
monodromy operators are all of order 5 in this case. Hence the period map extends over
the punctures and the period map embeds the base curve as a compact curve in the period
domain. This is consistent with the fact that fibers over the punctures are of so called
compact type: their generalized Jacobians are products of principally polarized Abelian
varieties whose dimensions sum up to 4.

Note also that this is an elementary example giving a negative answer to the following
question of Fujita [42]:

“for a family f W X ! B of complex algebraic manifolds over a curve B , is
the sheaf f�!X=B is semi-ample?”

In the above example the latter sheaf is just the graded part H1;0 D U1;0 ˚ V1;0 of
the Higgs bundle and while the second bundle is ample, the first is flat and would be
semi-ample if and only if its global monodromy would be finite, but this group is dense
inMmon.R/. The reader is invited to compare this example with the much more elaborate
examples given in [12].
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