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Abstract. Let us define for a compact set A � Rn the sequence

A.k/ D
na1 C � � � C ak

k
W a1; : : : ; ak 2 A

o
D
1

k

�
AC � � � C A™

k times

�
:

It was independently proved by Shapley, Folkman and Starr (1969) and by Emerson and Greenleaf
(1969) thatA.k/ approaches the convex hull ofA in the Hausdorff distance induced by the Euclidean
norm as k goes to1. We explore in this survey how exactly A.k/ approaches the convex hull of A,
and more generally, how a Minkowski sum of possibly different compact sets approaches convexity,
as measured by various indices of non-convexity. The non-convexity indices considered include the
Hausdorff distance induced by any norm on Rn, the volume deficit (the difference of volumes), a
non-convexity index introduced by Schneider (1975), and the effective standard deviation or inner
radius. After first clarifying the interrelationships between these various indices of non-convexity,
which were previously either unknown or scattered in the literature, we show that the volume deficit
ofA.k/ does notmonotonically decrease to 0 in dimension 12 or above, thus falsifying a conjecture of
�Supported in part by the Agence Nationale de la Recherche, project GeMeCoD (ANR 2011 BS01 007 01).
��Supported in part by the U.S. National Science Foundation through grants DMS-1409504 (CAREER) and

CCF-1346564.
�Supported in part by the Institute for Mathematics and its Applications with funds provided by the National

Science Foundation.
�Supported in part by the U.S. National Science Foundation Grant DMS-1101636, Simons Foundation and

the Bézout Labex.

M. Fradelizi, LAMA (UMR 8050), UPEMLV, UPEC, CNRS, Université Paris-Est,
Marne-la-Vallée F-77454, France
E-mail: matthieu.fradelizi@u-pem.fr

M. Madiman, Department of Mathematical Sciences, University of Delaware,
501 Ewing Hall, Newark, DE 19716, USA
E-mail: madiman@udel.edu
A. Marsiglietti, Center for the Mathematics of Information, California Institute of Technology,
1200 E California Blvd, MC 305-16, Pasadena, CA 91125, USA
E-mail: amarsigl@caltech.edu

A. Zvavitch, Department of Mathematical Sciences, Kent State University,
Kent, OH 44242, USA
E-mail: zvavitch@math.kent.edu

mailto:matthieu.fradelizi@u-pem.fr
mailto:madiman@udel.edu
mailto:amarsigl@caltech.edu
mailto:zvavitch@math.kent.edu


2 M. Fradelizi, M. Madiman, A. Marsiglietti and A. Zvavitch

Bobkov et al. (2011), even though their conjecture is proved to be true in dimension 1 and for certain
sets A with special structure. On the other hand, Schneider’s index possesses a strong monotonicity
property along the sequence A.k/, and both the Hausdorff distance and effective standard deviation
are eventually monotone (once k exceeds n). Along the way, we obtain new inequalities for the
volume of theMinkowski sum of compact sets (showing that this is fractionally superadditive but not
supermodular in general, but is indeed supermodular when the sets are convex), falsify a conjecture
of Dyn and Farkhi (2004), demonstrate applications of our results to combinatorial discrepancy
theory, and suggest some questions worthy of further investigation.

Mathematics Subject Classification (2010). 60E15 11B13; 94A17 60F15.
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1. Introduction

Minkowski summation is a basic and ubiquitous operation on sets. Indeed, the Minkowski
sum A C B D fa C b W a 2 A; b 2 Bg of sets A and B makes sense as long as A
and B are subsets of an ambient set in which the operation + is defined. In particular,
this notion makes sense in any group, and there are multiple fields of mathematics that
are preoccupied with studying what exactly this operation does. For example, much of
classical additive combinatorics studies the cardinality ofMinkowski sums (called sumsets
in this context) of finite subsets of a group and their interaction with additive structure of
the concerned sets, while the study of the Lebesgue measure of Minkowski sums in Rn
is central to much of convex geometry and geometric functional analysis. In this survey
paper, which also contains a number of original results, our goal is to understand better the
qualitative effect of Minkowski summation inRn—specifically, the “convexifying” effect
that it has. Somewhat surprisingly, while the existence of such an effect has long been
known, several rather basic questions about its nature do not seem to have been addressed,
and we undertake to fill the gap.

The fact that Minkowski summation produces sets that look “more convex” is easy to
visualize by drawing a non-convex set1 in the plane and its self-averages A.k/ defined by

A.k/ D
na1 C � � � C ak

k
W a1; : : : ; ak 2 A

o
D
1

k

�
AC � � � C Aš

k times

�
: (1)

This intuition was first made precise in the late 1960’s independently2 by Starr [79]
(see also [80]), who credited Shapley and Folkman for the main result, and by Emerson
and Greenleaf [33]. Denoting by conv.A/ the convex hull of A, by Bn2 the n-dimensional
Euclidean ball of radius 1, and by d.A/ D inffr > 0 W conv.A/ � ACrBn2 g the Hausdorff
distance between a set A and its convex hull, it follows from the Shapley–Folkman–Starr
theorem that if A1; : : : ; Ak are compact sets in Rn contained inside some ball, then

d.A1 C � � � C Ak/ D O
�p

minfk; ng
�
:

By considering A1 D � � � D Ak D A, one concludes that d.A.k// D O.
p
n=k/. In

other words, when A is a compact subset of Rn for fixed dimension n, A.k/ converges in
Hausdorff distance to conv.A/ as k !1, at rate at least O.1=k/.

Our geometric intuition would suggest that in some sense, as k increases, the set A.k/
is getting progressively more convex, or in other words, that the convergence of A.k/ to

1The simplest nontrivial example is three non-collinear points in the plane, so thatA.k/ is the original setA
of vertices of a triangle together with those convex combinations of the vertices formed by rational coefficients
with denominator k.

2Both the papers of Starr [79] and Emerson and Greenleaf [33] were submitted in 1967 and published in 1969,
but in very different communities (economics and algebra); so it is not surprising that the authors of these papers
were unaware of each other. Perhaps more surprising is that the relationship between these papers does not seem
to have ever been noticed in the almost 5 decades since. The fact that A.k/ converges to the convex hull of A,
at an O.1=k/ rate in the Hausdorff metric when dimension n is fixed, should perhaps properly be called the
Emerson–Folkman–Greenleaf–Shapley–Starr theorem, but in keeping with the old mathematical tradition of not
worrying too much about names of theorems (cf. Arnold’s principle), we will simply use the nomenclature that
has become standard.
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conv.A/ is, in some sense, monotone. The main goal of this paper is to examine this
intuition, and explore whether it can be made rigorous.

One motivation for our goal of exploring monotonicity in the Shapley–Folkman–Starr
theorem is that it was the key tool allowing Starr [79] to prove that in an economy with a
sufficiently large number of traders, there are (under some natural conditions) configura-
tions arbitrarily close to equilibrium even without making any convexity assumptions on
preferences of the traders; thus investigations of monotonicity in this theorem speak to the
question of whether these quasi-equilibrium configurations in fact get “closer” to a true
equilibrium as the number of traders increases. A related result is the core convergence
result of Anderson [3], which states under very general conditions that the discrepancy
between a core allocation and the corresponding competitive equilibrium price vector
in a pure exchange economy becomes arbitrarily small as the number of agents gets
large. These results are central results in mathematical economics, and continue to attract
attention (see, e.g., [70]).

Our original motivation, however, came from a conjecture made by Bobkov, Madiman
and Wang [21]. To state it, let us introduce the volume deficit�.A/ of a compact set A in
Rn: �.A/ WD Voln.conv.A/ n A/ D Voln.conv.A// � Voln.A/, where Voln denotes the
Lebesgue measure in Rn.
Conjecture 1.1 (Bobkov–Madiman–Wang [21]). Let A be a compact set in Rn for some
n 2 N, and let A.k/ be defined as in (1). Then the sequence f�.A.k//gk�1 is non-
increasing in k, or equivalently, fVoln.A.k//gk�1 is non-decreasing.

In fact, the authors of [21] proposed a number of related conjectures, of which Conjec-
ture 1.1 is the weakest. Indeed, they conjectured a monotonicity property in a probabilistic
limit theorem, namely the law of large numbers for random sets due to Z. Artstein and
Vitale [6]; when this conjectured monotonicity property of [21] is restricted to determin-
istic (i.e. non-random) sets, one obtains Conjecture 1.1. They showed in turn that this
conjectured monotonicity property in the law of large numbers for random sets is implied
by the following volume inequality for Minkowski sums. For k � 1 being an integer, we
set Œk� D f1; : : : ; kg.
Conjecture 1.2 (Bobkov–Madiman–Wang [21]). Let n � 1, k � 2 be integers and let
A1; : : : ; Ak be k compact sets in Rn. Then

Voln
� kX
iD1

Ai

�1=n

�
1

k � 1

kX
iD1

Voln
� X
j2Œk�nfig

Aj

�1=n

: (2)

Apart from the fact that Conjecture 1.2 implies Conjecture 1.1 (which can be seen
simply by applying the former to A1 D � � � D Ak D A, where A is a fixed compact set),
Conjecture 1.2 is particularly interesting because of its close connections to an important
inequality in Geometry, namely the Brunn–Minkowski inequality, and a fundamental in-
equality in Information Theory, namely the entropy power inequality. Since the conjectures
in [21] were largely motivated by these connections, we now briefly explain them.

The Brunn–Minkowski inequality (or strictly speaking, the Brunn–Minkowski–
Lyusternik inequality) states that for all compact sets A;B in Rn,

Voln.AC B/1=n
� Voln.A/1=n

C Voln.B/1=n: (3)
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It is, of course, a cornerstone of Convex Geometry, and has beautiful relations to many
areas of Mathematics (see, e.g., [38, 72]). The case k D 2 of Conjecture 1.2 is exactly
the Brunn–Minkowski inequality (3). Whereas Conjecture 1.2 yields the monotonicity
described in Conjecture 1.1, the Brunn–Minkowski inequality only allows one to deduce
that the subsequence fVoln.A.2k//gk2N is non-decreasing (one may also deduce this fact
from the trivial inclusion A � ACA

2
).

The entropy power inequality states that for all independent random vectors X , Y
in Rn,

N.X C Y / � N.X/CN.Y /; (4)

where
N.X/ D

1

2�e
e

2h.X/
n

denotes the entropy power of X . Let us recall that the entropy of a random vec-
tor X with density function fX (with respect to Lebesgue measure dx) is h.X/ D
�
R
fX .x/ logfX .x/ dx if the integral exists and �1 otherwise (see, e.g., [29]). As a

consequence, one may deduce that for independent and identically distributed random
vectors Xi , i � 0, the sequence�

N

�
X1 C � � � CX2k

p
2k

��
k2N

is non-decreasing. S. Artstein, Ball, Barthe, and Naor [4] generalized the entropy power
inequality (4) by proving that for any independent random vectors X1; : : : ; Xk ,

N

� kX
iD1

Xi

�
�

1

k � 1

kX
iD1

N

� X
j2Œk�nfig

Xj

�
: (5)

In particular, if all Xi in the above inequality are identically distributed, then one may
deduce that the sequence �

N

�
X1 C � � � CXk

p
k

��
k�1

is non-decreasing. This fact is usually referred to as “the monotonicity of entropy in
the Central Limit Theorem”, since the sequence of entropies of these normalized sums
converges to that of a Gaussian distribution as shown earlier by Barron [13]. Later,
simpler proofs of the inequality (5) were given by [49,86]; more general inequalities were
developed in [50, 51, 75].

There is a formal resemblance between inequalities (4) and (3) that was noticed in
a pioneering work of Costa and Cover [28] and later explained by Dembo, Cover and
Thomas [30] (see also [82, 87] for other aspects of this connection). In the last decade,
several further developments have been made that link Information Theory to the Brunn–
Minkowski theory, including entropy analogues of the Blaschke–Santaló inequality [48],
the reverse Brunn–Minkowski inequality [19,20], the Rogers–Shephard inequality [22,53]
and the Busemann inequality [10]. Indeed, volume inequalities and entropy inequalities
(and also certain small ball inequalities [56]) can be unified using the framework of Rényi
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entropies; this framework and the relevant literature is surveyed in [55]. On the other hand,
natural analogues in the Brunn–Minkowski theory of Fisher information inequalities hold
sometimes but not always [7, 35, 37]. In particular, it is now well understood that the
functional A 7! Voln.A/1=n in the geometry of compact subsets of Rn, and the functional
fX 7! N.X/ in probability are analogous to each other in many (but not all) ways. Thus,
for example, the monotonicity property desired in Conjecture 1.1 is in a sense analogous
to the monotonicity property in the Central Limit Theorem implied by inequality (5),
and Conjecture 1.2 from [21] generalizes the Brunn–Minkowski inequality (3) exactly as
inequality (5) generalizes the entropy power inequality (4).

The starting point of this work was the observation that although Conjecture 1.2
holds for certain special classes of sets (namely, one dimensional compact sets, convex
sets and their Cartesian product, as shown in Subsection 3.1), both Conjecture 1.1 and
Conjecture 1.2 fail to hold in general even for moderately high dimension (Theorem 3.4
constructs a counterexample in dimension 12). These results, which consider the question
of the monotonicity of�.A.k// are stated and proved in Section 3. We also discuss there
the question of when one has convergence of �.A.k// to 0, and at what rate, drawing on
the work of the [33] (which seems not to be well known in the contemporary literature on
convexity).

Section 4 is devoted to developing some new volume inequalities for Minkowski sums.
In particular, we observe in Theorem 4.1 that if the exponents of 1=n in Conjecture 1.2
are removed, then the modified inequality is true for general compact sets (though un-
fortunately one can no longer directly relate this to a law of large numbers for sets).
Furthermore, in the case of convex sets, Theorem 4.5 proves an even stronger fact, namely
that the volume of the Minkowski sum of convex sets is supermodular. Various other facts
surrounding these observations are also discussed in Section 4.

Even though the conjecture about A.k/ becoming progressively more convex in the
sense of� is false thanks to Theorem 3.4, one can ask the same question when wemeasure
the extent of non-convexity using functionals other than �. In Section 2, we survey the
existing literature on measures of non-convexity of sets, also making some possibly
new observations about these various measures and the relations between them. The
functionals we consider include a non-convexity index c.A/ introduced by Schneider [71],
the notion of inner radius r.A/ introduced by Starr [79] (and studied in an equivalent
form as the effective standard deviation v.A/ by Cassels [25], though the equivalence was
only understood later by Wegmann [89]), and the Hausdorff distance d.A/ to the convex
hull, which we already introduced when describing the Shapley–Folkman–Starr theorem.
We also consider the generalized Hausdorff distance d .K/.A/ corresponding to using a
non-Euclidean normwhose unit ball is the convex bodyK. The rest of the paper is devoted
to the examination of whether A.k/ becomes progressively more convex as k increases,
when measured through these other functionals.

In Section 5, we develop the main positive result of this paper, Theorem 5.3, which
shows that c.A.k// is monotonically (strictly) decreasing in k, unless A.k/ is already
convex. Various other properties of Schneider’s non-convexity index and its behavior for
Minkowski sums are also established here, including the optimalO.1=k/ convergence rate
for c.A.k//. We remark that even the question of convergence of c.A.k// to 0 does not
seem to have been explored in the literature.
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Section 6 considers the behavior of v.A.k// (or equivalently r.A.k//). For this se-
quence, we show that monotonicity holds in dimensions 1 and 2, and in general dimension,
monotonicity holds eventually (in particular, once k exceeds n). The convergence rate of
r.A.k// to 0 was already established in Starr’s original paper [79]; we review the classical
proof of Cassels [25] of this result.

Section 7 considers the question of monotonicity of d.A.k//, as well as its general-
izations d .K/.A.k// when we consider Rn equipped with norms other than the Euclidean
norm (indeed, following [12], we even consider so-called “nonsymmetric norms”). Again
here, we show that monotonicity holds in dimensions 1 and 2, and in general dimension,
monotonicity holds eventually (in particular, once k exceeds n). In fact, more general
inequalities are proved that hold for Minkowski sums of different sets. The convergence
rate of d.A.k// to 0 was already established in Starr’s original paper [79]; we review
both a classical proof, and also provide a new very simple proof of a rate result that is
suboptimal in dimension for the Euclidean norm but sharp in both dimension and num-
ber k of summands given that it holds for arbitrary norms. In 2004, Dyn and Farkhi [32]
conjectured that d2.A C B/ � d2.A/ C d2.B/. We show that this conjecture is false
in Rn, n � 3.

In Section 8, we show that a number of results from combinatorial discrepancy theory
can be seen as consequences of the convexifying effect of Minkowski summation. In
particular, we obtain a new bound on the discrepancy for finite-dimensional Banach
spaces in terms of the Banach–Mazur distance of the space from a Euclidean one.

Finally, in Section 9, we make various additional remarks, including on notions of
non-convexity not considered in this paper.

Acknowledgements. Franck Barthe had independently observed that Conjecture 1.2
holds in dimension 1, using the same proof, by 2011. We are indebted to Fedor Nazarov
for valuable discussions, in particular for the help in the construction of the counterex-
amples in Theorem 3.4 and Theorem 7.3. We would like to thank Victor Grinberg
for many enlightening discussions on the connections with discrepancy theory, which
were an enormous help with putting Section 8 together. We also thank Franck Barthe,
Dario Cordero-Erausquin, Uri Grupel, Bo’az Klartag, Joseph Lehec, Paul-Marie Samson,
Sreekar Vadlamani, and Murali Vemuri for interesting discussions. Some of the original
results developed in this work were announced in [36]; we are grateful to Gilles Pisier
for curating that announcement. Finally we are grateful to the anonymous referee for a
careful reading of the paper and constructive comments.

2. Measures of non-convexity

2.1. Preliminaries and Definitions. Throughout this paper, we only deal with compact
sets, since several of the measures of non-convexity we consider can have rather unpleasant
behavior if we do not make this assumption.

The convex hull operation interacts nicely with Minkowski summation.
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Lemma 2.1. Let A;B be nonempty subsets of Rn. Then,

conv.AC B/ D conv.A/C conv.B/:

Proof. Let x 2 conv.A/C conv.B/. Then

x D

kX
iD1

�iai C

lX
jD1

�j bj ;

where ai 2 A, bj 2 B , �i � 0, �j � 0 and
Pk
iD1 �i D 1,

Pl
jD1 �j D 1. Thus,

x D

kX
iD1

lX
jD1

�i�j .ai C bj /:

Hence x 2 conv.AC B/. The other inclusion is clear.

Lemma 2.1 will be used throughout the paper without necessarily referring to it. A
useful consequence of Lemma 2.1 is the following remark.
Remark 2.2. If AC � conv.A/ is convex then

AC � conv.A/ D conv.AC � conv.A// D conv.A/C � conv.A/ D .1C �/ conv.A/:

The Shapley–Folkman lemma, which is closely related to the classical Carathéodory
theorem, is key to our development.
Lemma 2.3 (Shapley–Folkman). Let A1; : : : ; Ak be nonempty subsets of Rn, with k �
nC 1. Let a 2

P
i2Œk� conv.Ai /. Then there exists a set I of cardinality at most n such

that
a 2

X
i2I

conv.Ai /C
X

i2Œk�nI

Ai :

Proof. We present below a proof taken from Proposition 5.7.1 of [18]. Let a 2P
i2Œk� conv.Ai /. Then

a D
X
i2Œk�

ai D
X
i2Œk�

tiX
jD1

�ijaij ;

where �ij � 0,
Pti
jD1 �ij D 1, and aij 2 Ai . Let us consider the following vectors

of RnCk ,

z D .a; 1; : : : ; 1/;

z1j D .a1j ; 1; 0; : : : ; 0/; j 2 Œt1�;

:::

zkj D .akj ; 0; : : : ; 0; 1/; j 2 Œtk �:
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Notice that z D
Pk
iD1

Pti
jD1 �ij zij . Using Carathéodory’s theorem in the positive cone

generated by zij in RnCk , one has

z D

kX
iD1

tiX
jD1

�ij zij ;

for some nonnegative scalars �ij where at most nC k of them are non zero. This implies
that a D

Pk
iD1

Pti
jD1 �ijaij and that

Pti
jD1 �ij D 1, for all i 2 Œk�. Thus for each

i 2 Œk�, there exists ji 2 Œti � such that �iji
> 0. But at most nCk scalars �ij are positive.

Hence there are at most n additional �ij that are positive. One deduces that there are at
least k � n indices i such that �i`i

D 1 for some `i 2 Œti �, and thus �ij D 0 for j ¤ `i .
For these indices, one has ai 2 Ai . The other inclusion is clear.

The Shapley–Folkman lemma may alternatively be written as the statement that, for
k � nC 1,

conv
� X
i2Œk�

Ai

�
D

[
I�Œk�WjI j�n

�X
i2I

conv.Ai /C
X

i2Œk�nI

Ai

�
; (6)

where jI j denotes the cardinality of I . When all the sets involved are identical, and k > n,
this reduces to the identity

k conv.A/ D n conv.A/C .k � n/A.k � n/: (7)

It should be noted that the Shapley–Folkman lemma is in the center of a rich vein
of investigation in convex analysis and its applications. As explained by Z. Artstein [5],
It may be seen as a discrete manifestation of a key lemma about extreme points that is
related to a number of “bang-bang” type results. It also plays an important role in the
theory of vector-valued measures; for example, it can be used as an ingredient in the proof
of Lyapunov’s theorem on the range of vector measures (see [46], [31] and references
therein).

For a compact set A in Rn, denote by

R.A/ D min
x
fr > 0 W A � x C rBn2 g

the radius of the smallest ball containing A. By Jung’s theorem [45], this parameter is
close to the diameter, namely one has

diam.A/
2

� R.A/ � diam.A/
r

n

2.nC 1/
�

diam.A/
p
2

;

where diam.A/ D supx;y2A jx � yj is the Euclidean diameter of A. We also denote by

inr.A/ D max
x
fr � 0 W x C rBn2 � Ag

the inradius ofA, i.e. the radius of a largest Euclidean ball included inA. There are several
ways of measuring non-convexity of a set:
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(1) The Hausdorff distance from the convex hull is perhaps the most obvious measure to
consider:

d.A/ D dH .A; conv.A// D inffr > 0 W conv.A/ � AC rBn2 g:

A variant of this is to consider the Hausdorff distance when the ambient metric space
isRn equipped with a norm different from the Euclidean norm. IfK is the closed unit
ball of this norm (i.e. any symmetric3, compact, convex set with nonempty interior),
we define

d .K/.A/ D inffr > 0 W conv.A/ � AC rKg: (8)

In fact, the quantity (8) makes sense for any compact convex set containing 0 in
its interior — then it is sometimes called the Hausdorff distance with respect to a
“nonsymmetric norm”.

(2) Another natural measure of non-convexity is the “volume deficit”:

�.A/ D Voln.conv.A/ n A/ D Voln.conv.A// � Voln.A/:

Of course, this notion is interesting only when Voln.conv.A// ¤ 0. There are many
variants of this that one could consider, such as logVoln.conv.A// � logVoln.A/, or
relative versions such as �.A/=Voln.conv.A// that are automatically bounded.

(3) The “inner radius” of a compact set was defined by Starr [79] as follows:

r.A/ D sup
x2conv.A/

inffR.T / W T � A; x 2 conv.T /g:

(4) The “effective standard deviation” was defined by Cassels [25]. For a random vectorX
in Rn, let V.X/ be the trace of its covariance matrix. Then the effective standard
deviation of a compact set A of Rn is

v2.A/ D sup
x2conv.A/

inffV.X/ W supp.X/ � A; j supp.X/j <1;EX D xg:

Let us notice the equivalent geometric definition of v:

v2.A/ D sup
x2conv.A/

inf
nX

pi jai � xj
2
W x D

X
piai Ipi > 0I

X
pi D 1; ai 2 A

o
D sup
x2conv.A/

inf
nX

pi jai j
2
� jxj2 W x D

X
piai Ipi > 0I

X
pi D 1; ai 2 A

o
:

(5) In analogy with the effective standard deviation, we define the “effective absolute
deviation” by

w.A/ D sup
x2conv.A/

inf
nX

pi jai � xj W x D
X

piai Ipi > 0I
X

pi D 1; ai 2 A
o

D sup
x2conv.A/

inffEjX � xj W supp.X/ � A; j supp.X/j <1;EX D xg:

3We always use “symmetric” to mean centrally symmetric, i.e. x 2 K if and only if �x 2 K.
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(6) Another non-convexity measure was defined by Cassels [25] as follows:

�.A/ D sup
x2conv.A/

inf
a2Ax

jx � aj;

where Ax D fa 2 A W 9b 2 conv.A/; 9� 2 .0; 1/ such that x D .1 � �/aC �bg.

(7) The “non-convexity index” was defined by Schneider [71] as follows:

c.A/ D inff� � 0 W AC � conv.A/ is convexg:

2.2. Basic properties of non-convexitymeasures. All of these functionals are 0 whenA
is a convex set; this justifies calling them “measures of non-convexity”. In fact, we have
the following stronger statement since we restrict our attention to compact sets.

Lemma 2.4. Let A be a compact set in Rn. Then:
(1) c.A/ D 0 if and only if A is convex.

(2) d.A/ D 0 if and only if A is convex.

(3) r.A/ D 0 if and only if A is convex.

(4) �.A/ D 0 if and only if A is convex.

(5) v.A/ D 0 if and only if A is convex.

(6) w.A/ D 0 if and only if A is convex.

(7) Under the additional assumption that conv.A/ has nonempty interior, �.A/ D 0 if
and only if A is convex.

Proof. Directly from the definition of c.A/we get that c.A/ D 0 ifA is convex (just select
� D 0). Now assume that c.A/ D 0, then fAC 1

m
conv.A/g1mD1 is a sequence of compact

convex sets, converging in Hausdorff metric to A, thus Amust be convex. Notice that this
observation is due to Schneider [71].

The assertion about d.A/ follows immediately from the definition and the limiting
argument similar to the above one.

If A is convex then, clearly r.A/ D 0, indeed we can always take T D .rBn2 C x/\A
¤ ; with r ! 0. Next, if r.A/ D 0, then using Theorem 2.15 below we have d.A/ �
r.A/ D 0 thus d.A/ D 0 and therefore A is convex.

The statements about �.A/, v.A/ and w.A/ can be deduced from the definitions, but
they will also follow immediately from the Theorem 2.15 below.

Assume that A is convex, then conv.A/ D A and �.A/ D 0. Next, assume that
�.A/ D 0. Assume, towards a contradiction, that conv.A/ ¤ A. Then there exists
x 2 conv.A/ and r > 0 such that .x C rBn2 / \ A D ;. Since conv.A/ is convex and has
nonempty interior, there exists a ball y C sBn2 � conv.A/ and one has

�.A/ � Voln.conv.A/ \ .x C rBn2 // � Voln.conv.x; y C sBn2 / \ .x C rB
n
2 // > 0;

which contradicts �.A/ D 0.
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The following lemmata capture some basic properties of all these measures of non-
convexity (note that we need not separately discuss v, w and � henceforth owing to
Theorem 2.15). The first lemma concerns the behavior of these functionals on scaling of
the argument set.
Lemma 2.5. Let A be a compact subset of Rn, x 2 Rn, and � 2 .0;1/.
(1) c.�AC x/ D c.A/. In fact, c is affine-invariant.
(2) d.�AC x/ D �d.A/.
(3) r.�AC x/ D �r.A/.
(4) �.�AC x/ D �n�.A/. In fact, if T .x/ DMx C b, whereM is an invertible linear

transformation and b 2 Rn, then �.T .A// D j det.M/j�.A/.

Proof. To see that c is affine-invariant, we first notice that conv.TA/ D T conv.A/.
Moreover writing T x D Mx C b, where M is an invertible linear transformation and
b 2 Rn, we get that

TAC � conv.TA/ DM.AC � conv.A//C .1C �/b;

which is convex if and only if AC � conv.A/ is convex.
It is easy to see from the definitions that d , r and � are translation-invariant, and that

d and r are 1-homogeneous and � is n-homogeneous with respect to dilation.

The next lemma concerns the monotonicity of non-convexity measures with respect
to the inclusion relation.
Lemma 2.6. Let A;B be compact sets in Rn such that A � B and conv.A/ D conv.B/.
Then:
(1) c.A/ � c.B/.
(2) d.A/ � d.B/.
(3) r.A/ � r.B/.
(4) �.A/ � �.B/.

Proof. For the first part, observe that if � D c.A/,

.1C�/ conv.B/ � BC� conv.B/ D BC� conv.A/ � AC� conv.A/ D .1C�/ conv.B/;

where in the last equation we used that AC � conv.A/ is convex and Remark 2.2. Hence
all relations in the above display must be equalities, and B C � conv.B/ must be convex,
which means c.A/ D � � c.B/.

For the second part, observe that

d.A/ D sup
x2conv.A/

d.x;A/ D sup
x2conv.B/

d.x;A/ � sup
x2conv.B/

d.x; B/ D d.B/:

For the third part, observe that

inffR.T / W T � A; x 2 conv.T /g � inffR.T / W T � B; x 2 conv.T /g:

Hence r.A/ � r.B/.
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For the fourth part, observe that

�.A/ D Voln.conv.B// � Voln.A/ � Voln.conv.B// � Voln.B/ D �.B/:

As a consequence of Lemma 2.6, we deduce that A.k/ is monotone along the subse-
quence of powers of 2, when measured through all these measures of non-convexity.

Finally we discuss topological aspects of these non-convexity functionals, specifically,
whether they have continuity properties with respect to the topology on the class of
compact sets induced by Hausdorff distance.

Lemma 2.7. Suppose Ak
dH
��! A, where all the sets involved are compact subsets of Rn.

Then:

(1) limk!1 d.Ak/ D d.A/, i.e. d is continuous.

(2) lim infk!1�.Ak/ � �.A/, i.e. � is lower semicontinuous.

(3) lim infk!1 c.Ak/ � c.A/, i.e. c is lower semicontinuous.

(4) lim infk!1 r.Ak/ � r.A/, i.e. r is lower semicontinuous.

Proof. Let us first observe that for any compact sets A;B

dH .conv.A/; conv.B// � dH .A;B/; (9)

by applying the convex hull operation to the inclusions B � ACdBn2 andA � BCdBn2 ,

and invoking Lemma 2.1. Thus Ak
dH
��! A implies conv.Ak/

dH
��! conv.A/.

(1) Observe that by the triangle inequality for the Hausdorffmetric, we have the inequality

d.B/ D dH .B; conv.B// � dH .B;A/C dH .A; conv.A//C dH .conv.A/; conv.B//:

Using (9) one deduces that d.B/ � d.A/ � 2dH .B;A/. Changing the role of A and B ,
we get

jd.B/ � d.A/j � 2dH .B;A/:

This proves the continuity of d .

(2) Recall that, with respect to theHausdorff distance, the volume is upper semicontinuous
on the class of compact sets (see, e.g., [73, Theorem 12.3.6]) and continuous on the class
of compact convex sets (see, e.g., [72, Theorem 1.8.20]). Thus

lim sup
k!1

Voln.Ak/ � Voln.A/

and
lim
k!1

Voln.conv.Ak// D Voln.conv.A//;

so that subtracting the former from the latter yields the desired semicontinuity of �.
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(3) Observe that by definition,

Ak C �k conv.Ak/ D .1C �k/ conv.Ak/;

where �k D c.Ak/. Note that from Theorem 2.10 below due to Schneider [71] one has
�k 2 Œ0; n�, thus there exists a convergent subsequence �kn

! �� and

AC �� conv.A/ D .1C ��/ conv.A/;

Thus �� � c.A/, which is the desired semicontinuity of c.

(4) Using Ak
dH
��! A we get that R.Ak/ is bounded and thus r.Ak/ is bounded and

there is a convergent subsequence r.Akm
/ ! l . Our goal is to show that r.A/ � l .

Let x 2 conv.A/. Then there exits xm 2 Akm
such that xm ! x. From the defi-

nition of r.Akm
/ we get that there exists Tm � Akm

such that xm 2 conv.Tm/ and
R.Tm/ � r.Akm

/. We can select a convergent subsequence Tmi
! T , where T is

compact (see [72, Theorem 1.8.4]), then T � A and x 2 conv.T / and R.Tmi
/! R.T /

therefore R.T / � l . Thus r.A/ � l .

We emphasize that the semicontinuity assertions in Lemma 2.7 are not continuity
assertions for a reason and even adding the assumption of nestedness of the sets would not
help.

Example 2.8. Schneider [71] observed that c is not continuous with respect to the
Hausdorff distance, even if restricted to the compact sets with nonempty interior. His
example consists of taking a triangle in the plane, and replacing one of its edges by the two
segments which join the endpoints of the edge to an interior point (see Figure 1). More
precisely, let

ak D
�
1
2
�
1
k
; 1
2
�
1
k

�
; Ak D conv..0; 0/I .1; 0/I ak/ [ conv..0; 0/I .0; 1/I ak/;

and A D conv..0; 0/I .0; 1/I .1; 0// D conv.Ak/:

Then dH .Ak ; A/ ! 0. But one has r.A/ D c.A/ D 0 since A is convex. Moreover
one can notice that c.Ak/ D 1. Indeed on one hand A � ACAk

2
, which implies that

c.Ak/ � 1, on the other hand for every � < 1 the point .1=2; 1=2/ 2 A n AkC�A
1C�

, thus
c.Ak/ D 1. Notice also that r.Ak/ D 1=

p
2. Indeed, Ak � .1=2; 1=2/ C 1=

p
2B22 hence

r.Ak/ � 1=
p
2 and the opposite inequality is not difficult to see since the supremum in the

definition of r is attained at the point .1=2; 1=2/.

Example 2.9. To see that there is no continuity for �, consider a sequence of discrete
nested sets converging in d to Œ0; 1�, more precisely: Ak D fm=2kI 0 � m � 2kg.
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(0, 0)

Ak

(1, 0)

(0, 1)

(1
2
− 1

k
, 1
2
− 1

k
)

Figure 1. Discontinuity of c and r with respect to Hausdorff distance (Example 2.8).

2.3. Special properties of Schneider’s index. All these functionals other than c can
be unbounded. The boundedness of c follows for the following nice inequality due to
Schneider [71].
Theorem 2.10 ([71]). For any subset A of Rn,

c.A/ � n:

Proof. Applying the Shapley–Folkman lemma (Lemma 2.3) to A1 D � � � D AnC1 D A,
whereA � Rn is a fixed compact set, one deduces that .nC1/ conv.A/ D ACn conv.A/.
Thus c.A/ � n.

Schneider [71] showed that c.A/ D n if and only if A consists of n C 1 affinely
independent points. Schneider also showed that if A is unbounded or connected, one has
the sharp bound c.A/ � n � 1.

Let us note some alternative representations of Schneider’s non-convexity index. First,
we would like to remind the definition of the Minkowski functional of a compact convex
set K containing zero:

kxkK D infft > 0 W x 2 tKg;

with the usual convention that kxkK D C1 if ft > 0 W x 2 tKg D ;. Note that
K D fx 2 Rn W kxkK � 1g and kxkK is a norm if K is symmetric with non empty
interior.

For any compact set A � Rn, define

A� D
1

1C �
ŒAC � conv.A/�;

and observe that

conv.A�/ D
1

1C �
conv.AC � conv.A// D

1

1C �
Œconv.A/C � conv.A/� D conv.A/:
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Hence, we can express

c.A/ D inff� � 0 W A� is convexg D inff� � 0 W A� D conv.A/g: (10)

Rewriting this yet another way, we see that if c.A/ < t , then for each x 2 conv.A/,
there exists a 2 A and b 2 conv.A/ such that

x D
aC tb

1C t
;

or equivalently, x�a D t .b�x/. In other words, x�a 2 tKx whereKx D conv.A/�x,
which can be written as kx � akKx

� t using the Minkowski functional. Thus

c.A/ D sup
x2conv.A/

inf
a2A
kx � akKx

:

This representation is nice since it allows for comparison with the representation of d.A/
in the same form but with Kx replaced by the Euclidean unit ball.

Remark 2.11. Schneider [71] observed that there aremany closed unbounded setsA � Rn
that satisfy c.A/ D 0, but are not convex. Examples he gave include the set of integers
in R, or a parabola in the plane. This makes it very clear that if we are to use c as a
measure of non-convexity, we should restrict attention to compact sets.

2.4. Unconditional relationships. It is natural to ask how these various measures of
non-convexity are related. First we note that d and d .K/ are equivalent. To prove this we
would like to present an elementary but useful observation:

Lemma 2.12. Let K � Rn be an arbitrary convex body containing 0 in its interior.
Consider a convex body L � Rn such that K � L and t > 0. Then for any compact set
A � Rn,

d .K/.A/ � d .L/.A/

and

d .tK/.A/ D
1

t
d .K/.A/:

Proof. Notice that

AC d .K/.A/L � AC d .K/.A/K � conv.A/:

Hence, d .K/.A/ � d .L/.A/. In addition, one has

AC d .K/.A/K D AC
1

t
d .K/.A/tK:

Hence, d .tK/.A/ D 1
t
d .K/.A/.
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The next lemma follows immediately from Lemma 2.12:

Lemma 2.13. Let K be an arbitrary convex body containing 0 in its interior. For any
compact set A � Rn, one has

rd .K/.A/ � d.A/ � Rd .K/.A/;

where r; R > 0 are such that rBn2 � K � RB
n
2 .

It is also interesting to note a special property of d .conv.A//.A/:

Lemma 2.14. Let A be a compact set in Rn. If 0 2 conv.A/, then

d .conv.A//.A/ � c.A/:

If 0 2 A, then
d .conv.A//.A/ � minf1; c.A/g:

Proof. If 0 2 conv.A/, then conv.A/ � .1C c.A// conv.A/. But,

.1C c.A// conv.A/ D AC c.A/ conv.A/;

where we used the fact that by definition of c.A/, AC c.A/ conv.A/ is convex. Hence,
d .conv.A//.A/ � c.A/.

If 0 2 A, in addition to the above argument, we also have

conv.A/ � AC conv.A/:

Hence, d .conv.A//.A/ � 1.

Note that the inequality in the above lemma cannot be reversed even with the cost of
an additional multiplicative constant. Indeed, take the sets Ak from Example 2.8, then
c.Ak/ D 1 but d .conv.Ak//.Ak/ tends to 0.

Observe that d; r; � and v have some similarity in definition. Let us introduce the
point-wise definitions of above notions: Consider x 2 conv.A/, define
� dA.x/ D inf

a2A
jx � aj.

More generally, if K is a compact convex set in Rn containing the origin,

� d
.K/
A .x/ D inf

a2A
kx � akK :

� rA.x/ D inffR.T / W T � A; x 2 conv.T /g:
� v2A.x/ D inff

P
pi jai j

2 � jxj2 W x D
P
piai Ipi > 0I

P
pi D 1; ai 2 Ag:

� wA.x/ D inff
P
pi jai � xj W x D

P
piai Ipi > 0I

P
pi D 1; ai 2 Ag.

� �A.x/ D infa2Ax
jx � aj; where

Ax D fa 2 A W 9b 2 conv.A/; 9� 2 .0; 1/ such that x D .1 � �/aC �bg:
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Below we present a theorem due to Wegmann [89] which proves that r; � and v are
equal for compact sets and that they are equal also to d under an additional assumption. For
the sake of completeness we will present the proof of Wegmann [89] which is simplified
here for the case of compact sets.
Theorem 2.15 (Wegmann [89]). Let A be a compact set in Rn, then

d.A/ � �.A/ D w.A/ D v.A/ D r.A/:

Moreover if vA.x0/ D v.A/, for some x0 in the relative interior of conv.A/, then d.A/ D
v.A/ D w.A/ D r.A/ D �.A/.

Proof. (1) First observe that d.A/ � �.A/ � w.A/ � v.A/ � r.A/ by easy arguments;
in fact, this relation holds point-wise, i.e. dA.x/ � �A.x/ � wA.x/ � vA.x/ � rA.x/.

Indeed the first inequality follows directly from the definitions, because Ax � A.
To prove the second inequality consider any convex decomposition of x 2 conv.A/,

i.e. x D
P
piai , with pi > 0;

P
pi D 1; ai 2 A. Without loss of generality we may

assume that jx � a1j � jx � ai j for all i � m. ThenX
pi jx � ai j � jx � a1j � �A.x/;

because a1 2 Ax (indeed, x D p1a1 C .1 � p1/
P
i�2

pi

1�p1
ai ).

The third inequality wA.x/ � vA.x/ immediately follows from the Cauchy–Schwarz
inequality.

To prove the fourth inequality let T D fa1; : : : ; amg � A be such that x 2 conv.T /.
Let p1; : : : ; pm > 0 be such that

P
pi D 1 and x D

P
piai . Let c be the center of

the smallest Euclidean ball containing T . Notice that the minimum of
P
pi jx � ai j

2 is
reached for x D

P
piai , thus

v2A.x/ �
X

pi jx � ai j
2
�

X
pi jc � ai j

2
� R2.T /;

and we take infimum over all T to finish the proof of the inequality.

(2) Consider x0 2 conv.A/. To prove the theorem we will first show that rA.x0/ � v.A/.
After this we will show that vA.x0/ � �.A/ and finally we will prove if x0 is in the relative
interior of conv.A/ and maximizes vA.x/, among x 2 conv.A/ then dA.x0/ � v.A/.
(2.1) Let us prove that rA.x0/ � v.A/. Assume first that x0 is an interior point of
conv.A/. Let us define the compact convex setQ � RnC1 by

Q D convf.a; jaj2/I a 2 Ag:

Next we define the function f W conv.A/ ! RC by f .x/ D minfy W .x; y/ 2 Qg, note
that

f .x/ D min
˚
y W .x; y/ D

X
�i .ai ; jai j

2/I�1; : : : ; �m > 0 and a1; : : : ; am 2 A
	

D min
˚X

�i jai j
2
W �1; : : : ; �m > 0 and a1; : : : ; am 2 A;X

�i D 1I x D
X

�iai
	

D v2A.x/C jxj
2:
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Note that .x0; f .x0// is a boundary point ofQ hence there exists a support hyperplaneH
of Q at .x0; f .x0//. Since x0 is an interior point of conv.A/, the hyperplane H cannot
be vertical because a vertical support plane would separate x0 from boundary points of
conv.A/ and thus separate .x0; f .x0// fromboundary points ofQ. Thus there exist b 2 Rn
and ˛ 2 R such that H D f.x; t/ 2 RnC1 W t D 2hb; xi C ˛g. Since .x0; f .x0// 2 H
one has

f .x0/ D 2hb; x0i C ˛ (11)

and
f .x/ � 2hb; xi C ˛; for all x 2 conv.A/:

By definition of f , there exists a1; : : : ; am 2 A and �1; : : : ; �m > 0,
P
�i D 1 such that

x0 D
P
�iai and

f .x0/ D
X

�i jai j
2
D

X
�if .ai /:

From the convexity ofQ we get that .ai ; f .ai // 2 H \Q, for any i ; indeed we note that

f .x0/ D 2hb; x0i C ˛ D
X
i

�i .2hb; ai i C ˛/ �
X
i

�if .ai / D f .x0/:

Thus 2hb; ai iC˛ D f .ai / for all i . Let T D fa1; : : : ; amg andW D conv.T /. Note that
for any x 2 W \ A we have

jxj2 D f .x/ D 2hb; xi C ˛

thus ˛ C jbj2 D jx � bj2 � 0. Define

R2 D ˛ C jbj2: (12)

Notice that for any x 2 conv.A/

v2A.x/ D f .x/ � jxj
2
� 2hb; xi C ˛ � jxj2 D R2 � jb � xj2; (13)

with equality if x 2 W , in particular, 0 � v2A.x/ D R
2�jb�xj2 � R2, for every x 2 W .

Consider the point w 2 W such that

v2A.w/ D max
x2W

v2A.x/ D max
x2W

.R2 � jb � xj2/ D R2 � inf
x2W
jb � xj2:

Then one has jb�wj D infx2W jb�xj, which meansw is the projection of the point b on
the convex setW . This implies that, for every x 2 W , one has hx� b;w� bi � jw� bj2,
thus

jx � wj2 D jx � bj2 � 2hx � b;w � bi C jw � bj2

� jx � bj2 � jw � bj2 � R2 � jw � bj2 D v2A.w/:

We get T � W � w C vA.w/Bn2 and

R.T / � vA.w/ D max
x2W

vA.x/:
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Using that x0 2 W D conv.T / and T � A, we conclude from the definition of rA that

rA.x0/ � R.T / � max
x2W

vA.x/ � v.A/:

If x0 is a boundary point of conv.A/, then using the boundary structure of the polytope
conv.A/ (see [72, Theorem 2.1.2, p. 75 and Remark 3, p. 78]) x0 belongs to the relative
interior of an exposed face F of conv.A/. By the definition of the notion of exposed face
(see [72, p. 75]) we get that if x D

P
�iai for ai 2 A and �i > 0 with

P
�i D 1, then

ai 2 A \ F . Thus

vA.x0/ D vA\F .x0/; rA.x0/ D rA\F .x0/; and �A.x0/ D �A\F .x0/: (14)

If dim.F / D 0 then x0 2 A and thus all proposed inequalities are trivial, otherwise we
can reproduce the above argument for A \ F instead of A.

(2.2) Now we will prove that vA.x0/ � �.A/. Consider b; ˛ and R defined in (11)
and (12). Using that vA.a/ D 0, for every a 2 A and (13), we get jb � aj � R, for
all a 2 A. We will need to consider two cases:
(i) If b 2 conv.A/, then from the above dA.b/ D inf

a2A
jb � aj � R thus

vA.x0/ � R � dA.b/ � �A.b/ � �.A/: (15)

(ii) If b 62 conv.A/, then there exists y 2 @.conv.A// \ Œw; b�, thus jb � yj � jb � wj.
So, from (13) we have

v2A.y/ � R
2
� jb � yj2 � R2 � jb � wj2 D v2A.w/ � v

2
A.x0/;

so it is enough to prove vA.y/ � �.A/, where y 2 @.conv.A//. Let F be the face of
conv.A/ containing y in its relative interior. Thus we can use the approach from (14) and
reproduce the above argument for A \ F instead of A, in the end of which we will again
get two cases (as above), in the first case we get vA.y/ D vA\F .y/ � �.A\ F / � �.A/.
In the second case, there exists z 2 @.conv.A \ F // such that vA\F .z/ � vA\F .y/ and
we again reduce the dimension of the set under consideration. Repeating this argument
we will arrive to the dimension 1 in which the proof can be completed by verifying that
b 2 conv.A/ (indeed, in this caseW D Œa1; a2�, a1; a2 2 A and ja1 � bj D ja2 � bj, thus
b D .a1 C a2/=2 2 conv.A/) and thus vA.x0/ � �.A/.

(2.3) Finally, assume vA.x0/ D v.A/, where x0 is in the relative interior of conv.A/.
We may assume that conv.A/ is n-dimensional (otherwise we would work in the affine
subspace generated by A). Then using (13) we get that v2A.x0/ D R2 � jb � x0j

2 and
v2A.a/ � R

2 � jb � aj2; for all a 2 conv.A/, thus

0 � v2A.x0/ � v
2
A.a/ � jb � aj

2
� jb � x0j

2;

for all a 2 conv.A/. So jb�x0j � jb�aj for all a 2 conv.A/, this means that the minimal
distance between b and a 2 conv.A/ is reached at a D x0. Notice that if b 62 conv.A/
then x0 must belong to @.conv.A//, which contradicts our hypothesis. Thus b 2 conv.A/
and x0 D b, and we can use (15) to conclude that v.A/ D vA.x0/ � dA.x0/ � d.A/.
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Remark2.16. Themethod used in the proof of Theorem2.15 is reminiscent of the classical
approach to Voronoi diagrams and Delaunay triangulation (see, e.g., [62, section 5.7]).
Moreover the point b constructed above is exactly the center of the ball circumscribed to
the simplex of the Delaunay triangulation to which the point x0 belongs.

Next we present a different proof of r.A/ D v.A/ from Theorem 2.15, which es-
sentially uses Remark 2.16 and is more geometric. The proof will be deduced from the
following proposition that better describes the geometric properties of the function vA.
Proposition 2.17. Let A be a compact set in Rn and x 2 conv.A/.
(1) Then there exists an integer 1�m�nC1,maffinely independent pointsa1; : : : ; am2A

and m real numbers p1; : : : ; pm > 0 such that
Pm
iD1 pi D 1, x D

Pm
iD1 piai and

v2A.x/ D

mX
iD1

pi jai j
2
� jxj2:

(2) LetS D fa1; : : : ; amg. Then there exists c 2 affS andRc > 0, such that jai�cj D Rc ,
for all 1 � i � m and

v2A.x/ D R
2
c � jx � cj

2:

Moreover ja � cj � Rc , for all a 2 A \ affS .
(3) For everyy2conv.S/ there existsq1; : : : ; qm�0 such that

Pm
iD1 qiD1, yD

Pm
iD1 qiai

and

v2A.y/ D

mX
iD1

qi jai j
2
� jyj2 D R2c � jy � cj

2:

Proof. (1) Recall that

v2A.x/ D inf
� mX
iD1

�i jai j
2
� jxj2 W m 2 N; x D

mX
iD1

�iai I �i > 0I

mX
iD1

�i D 1; ai 2 A

�
:

Following the standard proof of Carathéodory’s theorem, we will show that for any
decomposition of x in the form x D

P
�iai , with a1; : : : ; am being affinely dependent,

the quantity
P
�i jai j

2 is not minimal. Thus the infimum in the definition of v2A.x/ may
be reduced to affinely independent decompositions of x, thus with m � n C 1 points.
Hence the infimum is taken on a compact set and is reached.

So let x D
P
�iai and assume that the sequence a1; : : : ; am is affinely dependent then

there exists a sequence of real numbers f�igmiD1, not all zeros, such that
P
�iai D 0 andP

�i D 0. We note that (by multiplying, if needed, all �i by �1) we may also assume
that X

�i jai j
2
� 0: (16)

And there is some i such that �i > 0. Consider k 2 f1; : : : ; mg such that

�k

�k
D min

n�i
�i
W �i > 0

o
:
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Next, using that ak D �
P
i¤k

�i

�k
ai we get

x D
X
i¤k

�iai � �k
X
i¤k

�i

�k
ai D

X
i¤k

�
�i � �k

�i

�k

�
ai ;

where .�i � �k �i

�k
/ � 0 for all i and

P
.�i � �k

�i

�k
/ D 1, so we reduce the number of

elements in sequence faig. Thus, the only thing left is to show thatX
i¤k

�
�i � �k

�i

�k

�
jai j

2
�

mX
iD1

�i jai j
2:

Using that �k > 0, the above is equivalent to
P
�i jai j

2 � 0, which is exactly (16).
Therefore, we may assume that infimum in the definition of v2A.x/ is is reached on affinely
independent points and is actually a minimum. Hence, there exists an integer 1 � m �
nC1,m affinely independent points a1; : : : ; am 2 A andm real numbers p1; : : : ; pm > 0
such that

Pm
iD1 pi D 1, x D

Pm
iD1 piai , and v2A.x/ D

Pm
iD1 pi jai j

2 � jxj2.

(2) One has x D
Pm
iD1 piai , with pi > 0 and

Pm
iD1 pi D 1 thus x is in the relative

interior of conv.S/. Since a1; : : : ; am are affinely independent, convS is am-dimensional
simplex and there exists c 2 affS and Rc > 0, such that S � c C RcS

n�1. Then
jai � cj D Rc , for all 1 � i � m. Thus jai j2 D R2c C 2hc; ai i � jcj2, for all 1 � i � m.
Hence

v2A.x/ D

mX
iD1

pi jai j
2
� jxj2 D

mX
iD1

pi
�
R2c � jcj

2
C 2hc; ai i

�
� jxj2

D R2c � jcj
2
C 2hc; xi � jxj2 D R2c � jc � xj

2:

Assume now that there is a 2 A\ affS such that ja � cj < Rc . Notice that we can select
k 2 f1; : : : ; mg such that x 2 convfa; faigi¤kg. Indeed, consider a0 D aC enC1 2 RnC1
and note that the orthogonal projection of convfS; a0g on affS is equal to convfS; ag and
thus

convfSg � convfS; ag D
m[
kD1

convfa; faigi¤kg:

Thus, there exists �1; : : : ; �m � 0, with
Pm
iD1 �i D 1 such that x D

Pm
iD1 �i zai , where

zai D ai for i ¤ k and zak D a. Moreover, since x is in the relative interior of conv.S/
one has �k > 0. Then

mX
iD1

�i jzai j
2
� jxj2 D

mX
iD1

�i jzai � c C cj
2
� jxj2

D

mX
iD1

�i jzai � cj
2
C 2hx � c; ci C jcj2 � jxj2

D

mX
iD1

�i jzai � cj
2
� jx � cj2 < R2c � jx � cj

2
D v2A.x/;

which contradicts the minimality of the sequence a1; : : : ; am.
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(3) Let y 2 convfSg, then there exists qi � 0;
P
qi D 1 such that y D

Pm
iD1 qiai .

Consider another sequence fbig � A, with y D
P
�ibi , and �i > 0;

P
�i D 1. Using

the fact that x; y 2 affS we get, as in 2. that x D �ky C
P
i¤k �iai , for some

�i � 0;
P
�i D 1. Note that �k ¤ 0, because x is in the relative interior of convS .

Thus
x D �k

X
�ibi C

X
i¤k

�iai :

The minimality of the sequence S with respect to v2A.x/ implies that for any other convex
combination x D

P
zpi zai , fzaig � A, we get

P
zpi jzai � cj

2 � Rc : ThusX
�k�i jbi � cj

2
C

X
i¤k

�i jai � cj
2
� R2c :

Using that jai � cj D Rc and the fact that
P
i¤k

�i D 1 � �k we get

X
�i jbi � cj

2
� R2c ;

which is exactly what we need to finish the proof. Indeed, againX
�i jbi j

2
� jyj2 D

X
�i jbi � cj

2
� jc � yj2 � R2c � jc � yj

2
D

X
qi jai j

2
� jyj2;

and thus v2A.y/ D
P
qi jai j

2 � jyj2 D R2c � jy � cj
2 and S is a minimizing sequence

for v2A.y/.

Now we are ready to use the above proposition to show that v.A/ � r.A/. For every
x 2 conv.A/ let S D fa1; : : : ; amg be the simplex obtained from Proposition 2.17 and
let c and Rc denote the center and the radius of the circumscribed ball of S . Then

sup
y2conv.S/

v2A.y/ D R
2
c � inf

y2conv.S/
jy � cj2 D R2c � jc � wj

2;

where w D PconvS .c/ denotes the projection of c onto the convex set convS , i.e. the
nearest point to c from conv.S/. For every i , one has hai � w; c � wi � 0 thus
hai � c; c � wi � �jc � wj

2, hence

jai �wj
2
D jai �cCc�wj

2
D jai �cj

2
C2hai �c; c�wiCjc�wj

2
� R2c �jc�wj

2:

Thus S is contained in the ball of radius � D
p
R2c � jc � wj

2 D supy2conv.S/ vA.y/ �
v.A/. Hence rA.x/ � � � v.A/ which finishes the proof of r.A/ � v.A/.

The above relationships (summarized in Table 1) are the only unconditional relation-
ships that exist between these notions in general dimension. To see this, we list below
some examples that show why no other relationships can hold in general.
Example 2.18. By Lemma 2.5, we can scale a non convex set to get examples where c is
fixed but d; r and � converge to 0, for example, take Ak D f0I 1=kg; or to get examples
where c goes to 0 but d; r are fixed and � diverges, for example take Ak D f0; 1; : : : ; kg.
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) d r c �

d D N (Ex. 2.8, 2.19) N (Ex. 2.8, 2.18) N (Ex. 2.9)
r Y (Th. 2.15) D N (Ex. 2.18, 2.30) N (Ex. 2.9)
c N (Ex. 2.18, 2.21) N (Ex. 2.18) D N (Ex. 2.9, 2.18)
� N (Ex. 2.20, 2.21) N (Ex. 2.8, 2.19) N (Ex. 2.18, 2.30) D

Table 1. When does convergence to 0 for one measure of non-convexity unconditionally imply the
same for another?

Example 2.19. An example where �.Ak/! 0, d.Ak/! 0 but r.Ak/ is bounded away
from 0 is given by a right triangle from which a piece is shaved off leaving a protruding
edge, see Figure 2.

(0, 0)

Ak

(1, 0)

(0, 1)

(0, 1 + 1
k
)

Figure 2. �.Ak/! 0 but r.Ak/ >
p
2=2 (Example 2.19).

Example 2.20. An example where �.Ak/ ! 0 but both c.Ak/ and d.Ak/ are bounded
away from 0 is given by taking a 3-point set with 2 of the points getting arbitrarily closer
but staying away from the third, see Figure 3.

(0, 0)

Ak

(1, 0)

(0, 1
k
)

Figure 3. �.Ak/! 0 but c.Ak/ � 1 and d.Ak/ � 1=2 (Example 2.20).
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Example 2.21. An example where �.Ak/! 0 and c.Ak/! 0 but d.Ak/ > 1=2 can be
found in Figure 4.

-1

(k, 1
k
)

Figure 4. Vol2.Ak/ � 1, �.Ak/! 0 and c.Ak/! 0 but d.Ak/ > 1=2 (Example 2.21).

2.5. Conditional relationships. There are some more relationships between different
notions of non-convexity that emerge if we impose some natural conditions on the sequence
of sets (such as ruling out escape to infinity, or vanishing to almost nothing).

A first observation of this type is that Hausdorff distance to convexity is dominated by
Schneider’s index of non-convexity if A is contained in a ball of known radius.
Lemma 2.22. For any compact set A � Rn,

d.A/ � R.A/c.A/: (17)

Proof. By translation invariance, we may assume that A � R.A/Bn2 . Then 0 2 conv.A/,
and it follows that

conv.A/ � conv.A/C c.A/ conv.A/ D AC c.A/ conv.A/ � AC c.A/R.A/Bn2 :

Hence d.A/ � R.A/c.A/.

This bound is useful only if c.A/ is smaller than 1, because we already know that
d.A/ � r.A/ � R.A/.

In dimension 1, all of the non-convexity measures are tightly connected.
Lemma 2.23. Let A be a compact set in R. Then

r.A/ D d.A/ D R.A/c.A/ �
�.A/

2
: (18)

Proof. We already know that d.A/ � r.A/. Let us prove that r.A/ � d.A/. From the
definition of r.A/ and d.A/, we have

r.A/ D sup
x2conv.A/

inf
nˇ � ˛

2
I ˛; ˇ 2 A; ˛ � x � ˇ

o
; d.A/ D sup

y2conv.A/
inf
˛2A
jy � ˛j:

Thus we only need to show that for every x 2 conv.A/, there exists y 2 conv.A/ such that

inf
nˇ � ˛

2
I ˛; ˇ 2 A; ˛ � x � ˇ

o
� inf
˛2A
jy � ˛j:

By compactness there exists ˛; ˇ 2 A, with ˛ � x � ˇ achieving the infimum in the left
hand side. Then we only need to choose y D ˛Cˇ

2
in the right hand side to conclude that

r.A/ � d.A/. In addition, we get .˛; ˇ/ � conv.A/ n A thus 2r.A/ D ˇ � ˛ � �.A/.
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Now we prove that d.A/ D R.A/c.A/. From Lemma 2.22, we have

d.A/ � R.A/c.A/:

Let us prove that
R.A/c.A/ � d.A/:

By an affine transform, we may reduce to the case where conv.A/ D Œ�1; 1�, thus �1 D
min.A/ 2 A and 1 D max.A/ 2 A. Notice that R.A/ D 1 and denote d WD d.A/. By the
definition of d.A/, one has Œ�1; 1� D conv.A/ � AC Œ�d; d �. Thus using that �1 2 A
and 1 2 A, we get

AC d.A/ conv.A/ D AC Œ�d; d � � .�1C Œ�d; d �/ [ Œ�1; 1� [ .1C Œ�d; d �/
D Œ�1 � d; 1C d�;

we conclude that AC d.A/ conv.A/ � .1C d.A// conv.A/ and thus

R.A/c.A/ D c.A/ � d.A/:

Notice that the inequality on � of Lemma 2.23 cannot be reversed as shown by
Example 2.9. The next lemma provides a connection between r and c in Rn.
Lemma 2.24. For any compact set A � Rn,

r.A/ � 2
c.A/

1C c.A/
R.A/: (19)

Proof. Consider x� the point in conv.A/ that realizes the maximum in the defini-
tion of �.A/ (it exists since conv.A/ is closed). Then, for every a 2 Ax� , one has
�.A/ � jx� � aj. By definition,

c.A/ D inf
n
� � 0 W conv.A/ D

AC � conv.A/
1C �

o
:

Hence,
x� D

1

1C c.A/
aC

c.A/

1C c.A/
b;

for some a 2 A and b 2 conv.A/. Since 1
1Cc.A/

C
c.A/
1Cc.A/

D 1, one deduces that a 2 Ax� .
Thus,

�.A/ � jx� � aj:

But,
x� � a D

1

1C c.A/
aC

c.A/

1C c.A/
b � a D

c.A/

1C c.A/
.b � a/:

It follows that

�.A/ � jx� � aj D
c.A/

1C c.A/
jb � aj �

c.A/

1C c.A/
diam.A/ � 2

c.A/

1C c.A/
R.A/:

As shown byWegmann (cf. Theorem 2.15), ifA is closed then �.A/ D r.A/. We conclude
that

r.A/ � 2
c.A/

1C c.A/
R.A/:
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Our next result says that the only reason for which we can find examples where the
volume deficit goes to 0, but the Hausdorff distance from convexity does not, is because
we allow the sets either to shrink to something of zero volume, or run off to infinity.

Theorem 2.25. Let A be a compact set in Rn with nonempty interior. Then

d.A/ �
� n

Voln�1.Bn�12 /

�1=n� 2R.A/

inr.conv.A//

�.n�1/=n

�.A/
1=n: (20)

Proof. From the definition of d.A/ there exists x 2 conv.A/ such that

Voln..x C d.A/Bn2 / \ A/ D 0:

Thus,
�.A/ � Voln.conv.A/ \ .x C d.A/Bn2 //:

Let us denote r D inr.conv.A//. From the definition of inr.conv.A//, there exists
y 2 conv.A/ such that y C rBn2 � conv.A/. Hence,

�.A/ � Voln.conv.x; y C rBn2 / \ .x C d.A/B
n
2 // �

1

n
Voln�1.Bn�12 /

� rd.A/
2R.A/

�n�1
:

Let fzg D Œx; y� \ .x C d.A/Sn�1/ be the intersection point of the sphere centered at x
and the segment Œx; y� and let h be the radius of the .n � 1/-dimensional sphere

Sh D @.conv.x; y C rBn2 // \ .x C d.A/S
n�1//:

Then h D d.A/r
jx�yj

and

conv.x; y C rBn2 / \ .x C d.A/B
n
2 / � conv.x; Sh; z/:

Thus,

�.A/ � Voln.conv.x; Sh; z// D
d.A/

n
Voln�1.Bn�12 /hn�1

�
d.A/n

n
Voln�1.Bn�12 /

� r

jx � yj

�n�1
:

Observe that the first term on the right side in inequality (20) is just a dimension-
dependent constant, while the second term depends only on the ratio of the radius of the
smallest Euclidean ball containing A to that of the largest Euclidean ball inside it.

The next lemma enables to compare the inradius, the outer radius and the volume
of convex sets. Such estimates were studied in [24, 69] where, in some cases, optimal
inequalities were proved in dimension 2 and 3.

Lemma 2.26. Let K be a convex body in Rn. Then

Voln.K/ � .nC 1/Voln�1.Bn�12 / inr.K/.2R.K//n�1:
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Proof. From the definition of inr.K/, there exists y 2 K such that y C inr.K/Bn2 � K.
Without loss of generality, we may assume that y D 0 and that inr.K/ D 1, which means
that Bn2 is the Euclidean ball of maximal radius inside K. This implies that 0 must be in
the convex hull of the contact points of Sn�1 and @.K/, because if it is not, then there
exists an hyperplane separating 0 from these contact points and one may construct a larger
Euclidean ball inside K. Hence from Caratheodory, there exists 1 � k � n and k C 1
contact points a1; : : : ; akC1 so that 0 2 conv.a1; : : : ; akC1/ and

K � S D fx W hx; ai i � 1;8i 2 f1; : : : ; k C 1gg:

Since 0 2 conv.a1; : : : ; akC1/, there exists �1; : : : ; �kC1 � 0 such that
PkC1
iD1 �iai D 0.

Thus for every x 2 Rn,
PkC1
iD1 �i hx; ai i D 0 hence there exists i such that hx; ai i � 0.

Hence

S �

kC1[
iD1

Œ0; ai � � fx W hx; ai i D 0g:

Moreover K � diam.K/Bn2 thus

K � S \ diam.K/Bn2 �
kC1[
iD1

Œ0; ai � � fx 2 diam.K/Bn2 W hx; ai i D 0g:

Passing to volumes and using that ai 2 Sn�1, we get

Voln.K/ � .k C 1/Voln�1.Bn�12 /.diam.K//n�1

� .nC 1/Voln�1.Bn�12 /.2R.K//n�1:

An immediate corollary of the above theorem and lemma is the following.
Corollary 2.27. Let A be a compact set in Rn. Then

d.A/ � cn
R.A/n�1

Voln.conv.A//.n�1/=n
�.A/

1=n;

where cn is an absolute constant depending on n only. Thus for any sequence of compact
sets .Ak/ in Rn such that supk R.Ak/ < 1 and infk Voln.Ak/ > 0, the convergence
�.Ak/! 0 implies that d.Ak/! 0.

) d r c �

d D N (Ex. 2.8, 2.29) N (Ex. 2.8, 2.29) N (Ex. 2.28)
r Y D N (Ex. 2.30) N (Ex. 2.28)
c Y (Lem. 2.22) Y (Lem. 2.24) D N (Ex. 2.28)
� Y (Cor. 2.27) N (Ex. 2.8, 2.29) N (Ex. 2.8, 2.29) D

Table 2. When does convergence to 0 for one measure of non-convexity imply the same for another
when we assume the sequence lives in a big ball and has positive limiting volume?
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From the preceding discussion, it is clear that d.Ak/! 0 is a much weaker statement
than either c.Ak/! 0 or r.Ak/! 0.
Example 2.28. Consider a unit square with a set of points in the neighboring unit square,
where the set of points becomes more dense as k ! 1 (see Figure 5). This example
shows that the convergence in the Hausdorff sense is weaker than convergence in the
volume deficit sense even when the volume of the sequence of sets is bounded away
from 0.

A2 Ak

Figure 5. d.Ak/! 0 and Vol2.Ak/ > c but �.Ak/ > c (Example 2.28).

The following example shows that convergence in � does not imply convergence in r
nor c:
Example 2.29. Consider the set Ak D f.1 � 1=k; 0/g [ .Œ1; 2� � Œ�1; 1�/ in the plane.

Note that the Example 2.29 also shows that convergence in d does not imply conver-
gence in r nor c. The following example shows that convergence in r does not imply
convergence in c:
Example 2.30. Consider the set Ak D B22 [f.1C 1=k; 1=k/I .1C 1=k;�1=k/g in the plane,
the union of the Euclidean ball and two points close to it and close to each other (see
Figure 6). Then we have c.Ak/ D 1 by applying the same argument as in Example 2.8 to
the point .1C 1=k; 0/. But for r.Ak/, we see that because of the roundness of the ball, one
has r.Ak/ D

p
kC1
p
2k
! 0, when k grows.

Ak (1 + 1
k
, 1
k
)

(1 + 1
k
,− 1

k
)

Figure 6. c.Ak/ D 1 but r.Ak/! 0, when k grows (Example 2.30).
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3. The behavior of volume deficit

In this section we study the volume deficit. Recall its definition: for A compact in Rn,

�.A/ D Voln.conv.A/ n A/ D Voln.conv.A// � Voln.A/:

3.1. Monotonicity of volume deficit in dimension one and for Cartesian products. In
this section, we observe that Conjecture 1.2 holds in dimension one and also for products
of one-dimensional compact sets. In fact, more generally, we prove that Conjecture 1.2
passes to Cartesian products.
Theorem 3.1. Conjecture 1.2 holds in dimension one. In other words, if k � 2 is an
integer and A1; : : : ; Ak are compact sets in R, then

Vol1
� kX
iD1

Ai

�
�

1

k � 1

kX
iD1

Vol1
� X
j2Œk�nfig

Aj

�
: (21)

Proof. We adapt a proof of Gyarmati, Matolcsi and Ruzsa [42, Theorem 1.4] who estab-
lished the same kind of inequality for finite subsets of the integers and cardinality instead
of volume. The proof is based on set inclusions. Let k � 1. Set S D A1 C � � � C Ak and
for i 2 Œk�, let ai D minAi , bi D maxAi ,

Si D
X

j2Œk�nfig

Aj ; si D
X
j<i

aj C
X
j>i

bj ;

S�i D fx 2 Si I x � sig and SCi D fx 2 Si I x > sig:

For all i 2 Œk � 1�, one has

S � .ai C S
�
i / [ .biC1 C S

C

iC1/:

Since
ai C si D

X
j�i

aj C
X
j>i

bj D biC1 C siC1;

the above union is a disjoint union. Thus, for i 2 Œk � 1�,

Vol1.S/ � Vol1.ai C S�i /C Vol1.biC1 C SCiC1/ D Vol1.S�i /C Vol1.SCiC1/:

Notice that S�1 D S1 and SCk D Sk n fskg, thus adding the above k � 1 inequalities we
obtain

.k � 1/Vol1.S/ �
k�1X
iD1

�
Vol1.S�i /C Vol1.SCiC1/

�
D Vol1.S�1 /C Vol1.SCk /C

k�1X
iD2

Vol1.Si /

D

kX
iD1

Vol1.Si /:

We have thus established Conjecture 1.2 in dimension 1.
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Remark 3.2. As mentioned in the proof, Gyarmati, Matolcsi and Ruzsa [42] earlier
obtained a discrete version of Theorem 3.1 for cardinalities of sums of subsets of the
integers. There are also interesting upper bounds on cardinalities of sumsets in the
discrete setting that have similar combinatorial structure, see, e.g., [8,42,54] and references
therein. Furthermore, as discussed in the introduction for the continuous domain, there
are also discrete entropy analogues of these cardinality inequalities, explored in depth
in [8, 43, 52, 54, 58, 59, 68, 83, 88] and references therein. We do not discuss discrete
analogues further in this paper.

Now we prove that Conjecture 1.2 passes to Cartesian products.
Theorem 3.3. Let k;m � 2 and n1; : : : ; nm � 1 be integers. Let n D n1 C � � � C nm.
For 1 � i � k and 1 � l � m, let Ali be some compact sets in Rnl . Assume that for any
1 � l � m the k compact sets Al1; : : : ; A

l
k
� Rnl satisfy Conjecture 1.2. For 1 � i � k,

let Ai D A1i � � � � � A
m
i � Rn D Rn1 � � � � � Rnm . Then Conjecture 1.2 holds for

A1; : : : ; Ak .

Proof. Let S D
Pk
iD1Ai and let Si D

P
j¤i Aj then let us prove that

.k � 1/Voln.S/1=n
�

kX
iD1

Voln.Si /1=n:

For all 1 � i � k, one has

Si D
X
j¤i

Aj D
X
j¤i

mY
lD1

Alj D

mY
lD1

�X
j¤i

Alj

�
:

For 1 � i � k, denote

�i D

�
Volnl

�X
j¤i

Alj

�1=nl
�
1�l�m

2 Rm;

and for x D .xl /1�l�m 2 Rm, denote

kxk0 D

mY
lD1

jxl j
nl=n:

Then, using Minkowski’s inequality for k � k0 (see, for example, [44, Theorem 10]), we
deduce that

kX
iD1

Voln.Si /1=n
D

kX
iD1

mY
lD1

Volnl

�X
j¤i

Alj

�1=n

D

kX
iD1

k�ik0 �

 kX
iD1

�i


0

D

mY
lD1

� kX
iD1

� li

�nl=n

:
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Using that for any 1 � l � m the k compact setsAl1; : : : ; Alk � Rnl satisfy Conjecture 1.2,
we obtain

kX
iD1

� li D

kX
iD1

Volnl

�X
j¤i

Alj

�1=nl

� .k � 1/Volnl

� kX
iD1

Ali

�1=nl

:

Thus,

kX
iD1

Voln.Si /1=n
�

mY
lD1

�
.k � 1/Volnl

� kX
iD1

Ali

�1=nl
�nl=n

D .k � 1/Voln.S/1=n:

From Theorems 3.1 and 3.3, and the fact that Conjecture 1.2 holds for convex sets, we
deduce that Conjecture 1.2 holds for Cartesian products of one-dimensional compact sets
and convex sets.

3.2. A counterexample in dimension � 12. In contrast to the positive results for com-
pact product sets, both the conjectures of Bobkov, Madiman and Wang [21] fail in general
for even moderately high dimension.

Theorem 3.4. For every k � 2, there exists nk 2 N such that for every n � nk there is a
compact set A � Rn such that Voln.A.k C 1// < Voln.A.k//. Moreover, one may take

nk D min
�
n 2 kZ W n >

log.k/
log

�
1C 1=k

�
�

log.2/
k

�
:

In particular, one has n2 D 12, whence Conjectures 1.1 and Conjecture 1.2 are false
in Rn for n � 12.

Proof. Let k � 2 be fixed and let nk be defined as in the statement of Theorem 3.4 so that

nk >
log.k/

log
�
1C 1=k

�
�

log.2/
k

and nk D kd , for a certain d 2 N. Let F1; : : : ; Fk be k linear subspaces of Rnk of
dimensiond orthogonal to each other such thatRnk D F1˚� � �˚Fk . SetA D I1[� � �[Ik ,
where for every i 2 Œk�, Ii is a convex body in Fi . Notice that for every l � 1,

AC � � � C Aš
l times

D

[
mi2f0;:::;lg;Pk

iD1miDl

.m1I1 C � � � CmkIk/;

where we used the convexity of each Ii to write the Minkowski sum of mi copies of Ii
as miIi . Thus

knk Volnk
.A.k// D Volnk

.I1 C � � � C Ik/ D Volnk
.I1 � � � � � Ik/;
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and

.k C 1/nk Volnk
.A.k C 1//

D Volnk
..2I1 C I2 C � � � C Ik/ [ � � � [ .I1 C � � � C Ik�1 C 2Ik//

D Volnk
..2I1 � I2 � � � � � Ik/ [ � � � [ .I1 � � � � � Ik�1 � 2Ik//

� Volnk
.2I1 � I2 � � � � � Ik/C � � � C Volnk

.I1 � � � � � Ik�1 � 2Ik/

D k2d Volnk
.I1 � � � � � Ik/

D knkC12d Volnk
.A.k//:

The hypothesis on nk enables us to conclude that Volnk
.A.kC 1// < Volnk

.A.k//. Now
for n � nk , we define zA D A� Œ0; 1�n�nk . For every l , one has zA.l/ D A.l/� Œ0; 1�n�nk ,
thus Voln. zA.l// D Volnk

.A.l//. Therefore, Voln. zA.k C 1// < Voln. zA.k//, which
establishes that zA gives a counterexample in Rn.

The sequence �
log.k/

log
�
1C 1=k

�
�

log.2/
k

�
k�2

is increasing and
log.2/

log
�
1C 1=2

�
�

log.2/
2

� 11:77:

Hence, Conjecture 1.1 is false for n � 12.

Remark 3.5. (1) It is instructive to visualize the counterexample for k D 2, which is
done in Figure 7 by representing each of the two orthogonal copies of R6 by a line.

R6

R6

A

R6

R6

A(2)

R6

R6

A(3)

Figure 7. A counterexample in R12.

(2) It was shown by Bobkov, Madiman and Wang [21] that Conjecture 1.2 is true for
convex sets. The constructed counterexample is a union of convex sets and is symmetric
and star-shaped.
(3) Notice that in the above example one has Voln.A.k � 1// D 0. By adding to A a ball
with sufficiently small radius, one obtains a counterexample satisfying

Voln.A.k// > Voln.A.k � 1// > 0 and Voln.A.k// > Voln.A.k C 1//:
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(4) The counterexample also implies that Conjecture 1.1 in [21], which suggests a frac-
tional version of Young’s inequality for convolution with sharp constant, is false. It is
still possible that it may be true for a restricted class of functions (like the log-concave
functions).
(5) Conjectures 1.2 and 1.1 are still open in dimension n 2 f2; : : : ; 11g.

3.3. Convergence rates for �. The asymptotic behavior of �.A.k// has been exten-
sively studied by Emerson andGreenleaf [33]. In analyzing�.A.k//, the following lemma
about convergence of A.k/ to 0 in Hausdorff distance is useful.
Lemma 3.6. If A is a compact set in Rn,

conv.A/ � A.k/C
n diam.A/

k
Bn2 : (22)

Proof. Using invariance of (22) under the shifts of A, we may assume that 0 2 conv.A/,

conv.A/ D conv.A.k// � .1C c.A.k/// conv.A/ D A.k/C c.A.k// conv.A/:

Using c.A.k// � c.A/
k

(see Theorem 5.5 in Section 5), as well as c.A/ � n (see Theo-
rem 2.10), we deduce that

conv.A/ � A.k/C
n

k
conv.A/:

To conclude, we note that since 0 2 conv.A/, one has jxj � diam.A/ for every x 2
conv.A/. Hence, conv.A/ � diam.A/Bn2 . Finally, we obtain

conv.A/ � A.k/C
n diam.A/

k
Bn2 :

Note that Lemma 3.6 is similar but weaker than the Shapley–Folkman–Starr theorem
discussed in the introduction, and which we will prove in Section 7.4. Lemma 3.6 was
contained in [33], but with an extra factor of 2.

One clearly needs assumption beyond compactness to have asymptotic vanishing
of �.A.k//. Indeed, a simple counterexample would be a finite set A of points, for
which �.A.k// always remains at Voln.conv.A// and fails to converge to 0. Once such
an assumption is made, however, one has the following result.
Theorem 3.7 ([33]). Let A be a compact set in Rn with nonempty interior. Then

�.A.k// �
C

k
Voln.conv.A//;

for some constant C possibly depending on n.

Proof. By translation-invariance, we may assume that ıBn2 � A for some ı > 0. Then
ıBn2 � A.k0/, and by taking k0 �

n diam.A/
ı

, we have

n diam.A/
k0

Bn2 � A.k0/:
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Hence using (22) we get

conv.A/ � A.k/C
k0

k
A.k0/ D

k C k0

k
A.k C k0/;

so that by taking the volume we have

Voln.conv.A// �
�
1C

k0

k

�n
Voln.A.k C k0//;

and

�.A.k C k0// �

��
1C

k0

k

�n
� 1

�
Voln.A.k C k0// D O

�
1

k

�
Voln.conv.A//:

4. Volume inequalities for Minkowski sums

4.1. A refined superadditivity of the volume for compact sets. In this section, we
observe that if the exponents of 1=n in Conjecture 1.2 are removed, then the modified
inequality is true (though unfortunately one can no longer directly relate this to a law of
large numbers for sets).
Theorem 4.1. Let n � 1, k � 2 be integers and let A1; : : : ; Ak be k compact sets in Rn.
Then

Voln
� kX
iD1

Ai

�
�

1

k � 1

kX
iD1

Voln
� X
j2Œk�nfig

Aj

�
: (23)

Proof. We use arguments similar to the proof of Theorem 3.1. Indeed, let us define the
sets S and Si in the same way as in the proof of Theorem 3.1. Let � 2 Sn�1 be any fixed
unit vector and let us define ai D minfhx; �iI x 2 Aig, bi D maxfhx; �iI x 2 Aig,

si D
X
j<i

aj C
X
j>i

bj ;

S�i D fx 2 Si I hx; �i � sig and SCi D fx 2 Si I hx; �i > sig:

Then, the same inclusions hold true and thus we obtain

.k � 1/Voln.S/ �
k�1X
iD1

�
Voln.S�i /C Voln.SCiC1/

�
D Voln.S�1 /C Voln.SCk /C

k�1X
iD2

Voln.Si /

D

kX
iD1

Voln.Si /:
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Applying Theorem 4.1 to A1 D � � � D Ak D A yields the following positive result.
Corollary 4.2. Let A be a compact set in Rn and A.k/ be defined as in (1). Then

Voln.A.k// �
�k � 1

k

�n�1
Voln.A.k � 1//: (24)

In the following proposition, we improve Corollary 4.2 under additional assumptions
on the set A � Rn, for n � 2.
Proposition 4.3. Let A be a compact subset of Rn and A.k/ be defined as in (1).
If there exists a hyperplane H such that Voln�1.PH .A// D Voln�1.PH .conv.A///,
where PH .A/ denotes the orthogonal projection of A ontoH , then

Voln.A.k// �
k � 1

k
Voln.A.k � 1//:

Proof. By assumption, Voln�1.PH .A// D Voln�1.PH .conv.A///. Thus, for every
k � 1,

Voln�1.PH .A.k/// D Voln�1.PH .conv.A///:
Indeed, one has A � A.k/ � conv.A/. Thus, PH .A/ � PH .A.k// � PH .conv.A//.
Hence,

Voln�1.PH .A// � Voln�1.PH .A.k/// � Voln�1.PH .conv.A/// D Voln�1.PH .A//:

It follows by the Bonnesen inequality (concave Brunn–Minkowski inequality, see [23,67])
that for every k � 2,

Voln.A.k// D Voln
�k � 1

k
A.k � 1/C

1

k
A
�

�
k � 1

k
Voln.A.k � 1//C

1

k
Voln.A/ �

k � 1

k
Voln.A.k � 1//:

Remark 4.4. (1) By considering the set A D f0; 1g and ı1=2 the Dirac measure at 1=2,
one has

ı1=2.A.2// D 1 > 0 D ı1=2.A.3//:

Hence Conjecture 1.1 does not hold in general for log-concave measures in dimension 1.
(2) If A is countable, then for every k � 1, Voln.A.k// D 0, thus the sequence
fVoln.A.k//gk�1 is constant and equal to 0.
(3) If there exists k0 � 1 such that A.k0/ D conv.A/, then for every k � k0, A.k/ D
conv.A/. Indeed,

.k0 C 1/A.k0 C 1/ D k0A.k0/C A

D k0 conv.A/C A
� conv.A/C k0A.k0/ D .k0 C 1/ conv.A/:

It follows that A.k0 C 1/ D conv.A/. We conclude by induction. Thus, in this case, the
sequence fVoln.A.k//gk�1 is stationary to Voln.conv.A//, for k � k0.
(4) It is natural to ask if the refined superadditivity of volume can be strengthened to
fractional superadditivity as defined in Definition 4.11 below. While this appears to be a
difficult question in general, it was shown recently in [14] that fractional superadditivity
is true in the case of compact subsets of R.
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4.2. Supermodularity of volume for convex sets. If we restrict to convex sets, an even
stronger inequality is true from which we can deduce Theorem 4.1 for convex sets.
Theorem 4.5. Let n 2 N. For compact convex subsets B1, B2, B3 of Rn, one has

Voln.B1 C B2 C B3/C Voln.B1/ � Voln.B1 C B2/C Voln.B1 C B3/: (25)

We first observe that Theorem 4.5 is actually equivalent to a formal strengthening of it,
namely Theorem 4.7 below. Let us first recall the notion of a supermodular set function.
Definition 4.6. A set function f W 2Œk� ! R is supermodular if

f .s [ t /C f .s \ t / � f .s/C f .t/ (26)

for all subsets s; t of Œk�.
Theorem 4.7. Let B1; : : : ; Bk be compact convex subsets of Rn, and define

v.s/ D Voln
�X
i2s

Bi

�
(27)

for each s � Œk�. Then vW 2Œk� ! Œ0;1/ is a supermodular set function.
Theorem 4.7 implies Theorem 4.5, namely

Voln.B1 C B2 C B3/C Voln.B1/ � Voln.B1 C B2/C Voln.B1 C B3/ (28)

for compact convex subsets B1; B2; B3 of Rn, since the latter is a special case of Theo-
rem 4.7 when k D 3. To see the reverse, apply the inequality (28) to

B1 D
X
i2s\t

Ai ; B2 D
X
i2snt

Ai ; B3 D
X
i2tns

Ai :

Our proof of Theorem 4.5 combines a property of determinants that seems to have been
first explicitly observed by Ghassemi and Madiman [51] with a use of optimal transport
inspired by Alesker, Dar and Milman [1]. Let us prepare the ground by stating these
results.
Lemma 4.8 ([51]). Let K1; K2 and K3 be n � n positive-semidefinite matrices. Then

det.K1 CK2 CK3/C det.K1/ � det.K1 CK2/C det.K1 CK3/:

We state the deep result of [1] directly for k sets instead of for two sets as in [1] (the
proof is essentially the same, with obvious modifications).
Theorem 4.9 (Alesker–Dar–Milman [1]). LetA1; : : : ; Ak � Rn be open, convex sets with
jAi j D 1 for each i 2 Œk�. Then there exist C 1-diffeomorphisms  i WA1 ! Ai preserving
Lebesgue measure, such thatX

i2Œk�

�iAi D

� X
i2Œk�

�i i .x/ W x 2 A1

�
;

for any �1; : : : ; �k > 0.
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Proof of Theorem 4.5. By adding a small multiple of the Euclidean ballBn2 and then using
the continuity of " 7! Voln.Bi C "Bn2 / as " ! 0, we may assume that each of the Bi
satisfy Voln.Bi / > 0. Then choose �i such that Bi D �iAi with jAi j D 1, so that

Voln.B1 C B2 C B3/ D Voln
�X
i2Œ3�

�iAi

�
D

Z
1P

i2Œ3� �iAi
.x/ dx

D

Z
1f
P

i2Œ3� �i i .y/Wy2A1g
.x/ dx;

using Theorem 4.9. Applying a change of coordinates using the diffeomorphism x DP
i2Œ3� �i i .y/,

V WD Voln.B1 C B2 C B3/ D
Z
1A1

.y/ det
�X
i2Œ3�

�iD i

�
.y/ dy

�

Z
A1

detŒ.�1D 1 C �2D 2/.y/�C detŒ.�1D 1 C �3D 3/.y/�

� detŒ�1D 1.y/� dy

D

Z
1A1

.y/d Œ.�1 1 C �2 2/.y/�C

Z
1A1

.y/d Œ.�1 1 C �3 3/.y/�

�

Z
1A1

.y/d Œ�1 1.y/� dy

D

Z
1f�1 1.y/C�2 2.y/Wy2A1g

.z/ dz C

Z
1f�1 1.y/C�3 3.y/Wy2A1g

.z0/ dz0

�

Z
1f�1 1.y/Wy2A1g

.z00/ dz00;

where the inequality follows from Lemma 4.8, and the last equality is obtained by making
multiple appropriate coordinate changes. Using Theorem 4.9 again,

Voln.B1 C B2 C B3/ �
Z
1�1A1C�2A2

.z/ dz C

Z
1�1A1C�3A3

.z/ dz

�

Z
1�1A1

.z/ dz

D Voln.B1 C B2/C Voln.B1 C B3/ � Voln.B1/:

For the purposes of discussion below, it is useful to collect some well known facts
from the theory of supermodular set functions. Observe that if v is supermodular and
v.;/ D 0, then considering disjoint s and t in (26) implies that v is superadditive. In fact,
a more general structural result is true. To describe it, we need some terminology.
Definition 4.10. Given a collection C of subsets of Œk�, a function ˛WC ! RC, is called
a fractional partition, if for each i 2 Œk�, we have

P
s2C Wi2s ˛s D 1.

The reason for the terminology is that this notion extends the familiar notions of a
partition of sets (whose indicator function can be defined precisely as in Definition 4.10
but with range restriction to f0; 1g) by allowing fractional values. An important example
of a fractional partition of Œk� is the collection Cm D

�
Œk�
m

�
of all subsets of sizem, together

with the coefficients ˛s D
�
k�1
m�1

��1
.
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Definition 4.11. A function f W 2Œk� ! R is fractionally superadditive if for any fractional
partition .C ; ˇ/,

f .Œk�/ �
X
s2C

ˇsf .s/:

The following theorem has a long history and is implicit in results from cooperative
game theory in the 1960’s but to our knowledge, it was first explicitly stated by Moulin
Ollagnier and Pinchon [65].
Theorem 4.12 ([65]). If f W 2Œk� ! R is supermodular and f .;/ D 0, then f is fraction-
ally superadditive.

A survey of the history of Theorem 4.12, along with various strengthenings of it and
their proofs, and discussion of several applications, can be found in [57]. If fAi ; i 2 Œk�g
are compact convex sets and u.s/ D Voln.

P
i2s Ai / as defined in (27), then u.;/ D 0

and Theorem 4.7 says that u is supermodular, whence Theorem 4.12 immediately implies
that u is fractionally superadditive.
Corollary 4.13. Let B1; : : : ; Bk be compact convex subsets of Rn and let ˇ be any
fractional partition using a collection C of subsets of Œk�. Then

Voln
� X
i2Œk�

Bi

�
�

X
s2C

ˇs Voln
�X
i2s

Bi

�
:

Corollary 4.13 implies that for each m < k,

Voln
� X
i2Œk�

Bi

�
�

 
k � 1

m � 1

!�1 X
jsjDm

Voln
�X
i2s

Bi

�
: (29)

Let us discuss whether these inequalities contain anything novel. On the one hand, if we
consider the case m D 1 of inequality (29), the resulting inequality is not new and in fact
implied by the Brunn–Minkowski inequality:

Voln
� X
i2Œk�

Bi

�
�

� X
i2Œk�

Voln.Bi /1=n

�n
�

X
i2Œk�

Voln.Bi /:

On the other hand, applying the inequality (29) tom D k�1 yields precisely Theorem 4.1
for convex sets Bi , i.e.,

Voln
� X
i2Œk�

Bi

�
�

1

k � 1

X
i2Œk�

Voln
�X
j¤i

Bj

�
: (30)

Let us compare this with what is obtainable from the refined Brunn–Minkowski inequality
for convex sets proved in [21], which says that

Voln
� X
i2Œk�

Bi

�
�

�
1

k � 1

�n� X
i2Œk�

Voln
�X
j¤i

Bj

�1=n�n
: (31)
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Denote the right hand sides of (30) and (31) by R(30) and R(31). Also set

ci D Voln
�X
j¤i

Bj

�1=n

;

and write c D .c1; : : : ; ck/ 2 Œ0;1/k , so that

R
1=n
(30) D .k � 1/

�1=n
kckn and R

1=n
(31) D .k � 1/

�1
kck1:

Here, for m � 1, kckm D .
Pk
iD1 c

m
i /

1=m. In other words,�
R(30)

R(31)

�1=n

D .k � 1/1�
1=n kckn

kck1
:

Let us consider n D 2 for illustration. Then we have�
R(30)

R(31)

�1=2

D
p
k � 1

kck2

kck1
;

which ranges between
p
1 � 1=k and

p
k � 1, since kck2=kck1 2 Œk�1=2; 1�. In particular,

neither bound is uniformly better; so the inequality (29) and Corollary 4.13 do indeed have
some potentially useful content.

Motivated by the results of this section, it is natural to ask if the volume of Minkowski
sums is supermodular even without the convexity assumption on the sets involved, as this
would strengthen Theorem 4.1. In fact, this is not the case.

Proposition 4.14. There exist compact sets A;B;C � R such that

Vol1.AC B C C/C Vol1.A/ < Vol1.AC B/C Vol1.AC C/:

Proof. Consider A D f0; 1g and B D C D Œ0; 1�. Then,

Vol1.AC B C C/C Vol1.A/ D 3 < 4 D Vol1.AC B/C Vol1.AC C/:

On the other hand, the desired inequality is true in dimension 1 if the set A is convex.
More generally, in dimension 1, one has the following result.

Proposition 4.15. If A;B;C � R are compact, then

Vol1.AC B C C/C Vol1.conv.A// � Vol1.AC B/C Vol1.AC C/:

Proof. Assume, as one typically does in the proof of the one-dimensional Brunn–
Minkowski inequality, that maxB D 0 D minC . (We can do this without loss of
generality since translation does not affect volumes.) This implies that B [ C � B C C ,
whence

.AC B/ [ .AC C/ D AC .B [ C/ � AC B C C:
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Hence

Vol1.AC B C C/ � Vol1..AC B/ [ .AC C//
D Vol1.AC B/C Vol1.AC C/ � Vol1..AC B/ \ .AC C//:

We will show that .A C B/ \ .A C C/ � conv.A/, which together with the preceding
inequality yields the desired conclusion

Vol1.AC B C C/ � Vol1.AC B/C Vol1.AC C/ � Vol1.conv.A//:

To see that .A C B/ \ .A C C/ � conv.A/, consider x 2 .A C B/ \ .A C C/.
One may write x D a1 C b D a2 C c, with a1; a2 2 A, b 2 B and c 2 C . Since
maxB D 0 D minC one has b � 0 � c and one deduces that a2 � x � a1 and thus
x 2 conv.A/. This completes the proof.

Remark 4.16. (1) One may wonder if Proposition 4.15 extends to higher dimension.
More particularly, we do not know if the supermodularity inequality

Voln.AC B C C/C Voln.A/ � Voln.AC B/C Voln.AC C/

holds true in the case where A is convex and B and C are any compact sets.
(2) It is also natural to ask in view of the results of this section whether the fractional
superadditivity (2) of Vol1=nn for convex sets proved in [21] follows from a more general
supermodularity property, i.e. whether

Vol1=nn .AC B C C/C Vol1=nn .A/ � Vol1=nn .AC B/C Vol1=nn .AC C/ (32)

for convex sets A;B;C � Rn. It follows from results of [51] that such a result does not
hold (their counterexample to the determinant version of (32) corresponds in our context
to choosing ellipsoids in R2). Another simple explicit counterexample is the following:
Let A D Œ0; 2� � Œ0; 1=2�, B D Œ0; 1=2� � Œ0; 2�, and C D "B22 , with " > 0. Then,

Vol2.A/1=2
D 1; Vol2.AC B C C/1=2

D

p
25=4C 10"C �"2;

Vol2.AC B/1=2
D 5=2; Vol2.AC C/1=2

D

p
1C 5"C �"2:

Hence,

Vol2.AC B C C/1=2
C Vol2.A/1=2

D 1C 5=2C 2"C o."/;

Vol2.AC B/1=2
C Vol2.AC C/1=2

D 1C 5=2C .5=2/"C o."/:

For " small enough, this yields a counterexample to (32).
(3) It is shown in [51] that the entropy analogue of Theorem 4.5 does not hold, i.e. there
exist independent real-valued random variables X; Y;Z with log-concave distributions
such that

e2h.XCYCZ/ C e2h.Z/ < e2h.XCZ/ C e2h.YCZ/:
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5. The behavior of Schneider’s non-convexity index

In this section we study Schneider’s non-convexity index. Recall its definition: for A
compact in Rn,

c.A/ D inff� � 0 W AC � conv.A/ is convexg:

5.1. The refinedmonotonicity of Schneider’s non-convexity index. In this section, our
main result is that Schneider’s non-convexity index c satisfies a strong kind ofmonotonicity
in any dimension.

We state the main theorem of this section, and will subsequently deduce corollaries
asserting monotonicity in the Shapley–Folkman–Starr theorem from it.
Theorem 5.1. Let n � 1 and let A;B;C be subsets of Rn. Then

c.AC B C C/ � maxfc.AC B/; c.B C C/g:

Proof. Let us denote � D maxfc.AC B/; c.B C C/g. Then

AC B C C C � conv.AC B C C/
D AC B C � conv.AC B/C C C � conv.C /
D .1C �/ conv.AC B/C C C � conv.C /
� .1C �/ conv.A/C B C � conv.B/C C C � conv.C /
D .1C �/ conv.A/C .1C �/ conv.B C C/
D .1C �/ conv.AC B C C/:

Since the opposite inclusion is clear, we deduce that AC B C C C � conv.AC B C C/
is convex, which means that c.AC B C C/ � � D maxfc.AC B/; c.B C C/g.

Notice that the same kind of proof also shows that if AC B and B C C are convex
then AC B C C is also convex. Moreover, Theorem 5.1 has an equivalent formulation
for k � 2 subsets of Rn, say A1; : : : ; Ak : if s; t � Œk� with s [ t D Œk�, then

c

� X
i2Œk�

Ai

�
� max

�
c

�X
i2s

Ai

�
; c

�X
i2t

Ai

��
: (33)

To see this, apply Theorem 5.1 to

B D
X
i2s\t

Ai ; A D
X
i2snt

Ai ; C D
X
i2tns

Ai :

From the inequality (33), the following corollary, expressed in a more symmetric
fashion, immediately follows.
Corollary 5.2. Let n � 1 and k � 2 be integers and let A1; : : : ; Ak be k sets in Rn. Then

c

� X
l2Œk�

Al

�
� max
i2Œk�

c

� X
l2Œk�nfig

Al

�
:
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The k D 2 case of Corollary 5.2 follows directly from the definition of c and was
observed by Schneider in [71]. Applying Corollary 5.2 for A1 D � � � D Ak D A, where A
is a fixed subset ofRn, and using the scaling invariance of c, one deduces that the sequence
c.A.k// is non-increasing. In fact, for identical sets, we prove something even stronger in
the following theorem.
Theorem 5.3. Let A be a subset of Rn and k � 2 be an integer. Then

c.A.k// �
k � 1

k
c.A.k � 1//:

Proof. Denote � D c .A.k � 1//. Since conv.A.k � 1// D conv.A/, from the definition
of c, one knows that A.k � 1/C � conv.A/ D conv.A/C � conv.A/ D .1C �/ conv.A/.
Using that A.k/ D A

k
C

k�1
k
A.k � 1/, one has

A.k/C
k � 1

k
� conv.A/ D

A

k
C
k � 1

k
A.k � 1/C

k � 1

k
� conv.A/

D
A

k
C
k � 1

k
conv.A/C

k � 1

k
� conv.A/

�
conv.A/
k

C
k � 1

k
A.k � 1/C

k � 1

k
� conv.A/

D
conv.A/
k

C
k � 1

k
.1C �/ conv.A/

D

�
1C

k � 1

k
�

�
conv.A/:

Since the other inclusion is trivial, we deduce that A.k/C k�1
k
� conv.A/ is convex which

proves that

c.A.k// �
k � 1

k
� D

k � 1

k
c.A.k � 1//:

Remark 5.4. (1) We do not know if c is fractionally subadditive; for example, we do not
know if 2 c.A C B C C/ � c.A C B/ C c.A C C/ C c.B C C/. We know it with a
better constant if A D B D C , as a consequence of Theorem 5.3. We also know it if we
take a large enough number of sets; this is a consequence of the Shapley–Folkman lemma
(Lemma 2.3).
(2) The Schneider index c (as well as any other measure of non-convexity) cannot be
submodular. This is because, if we considerA D f0; 1g,B D C D Œ0; 1�, then c.ACB/ D
c.AC C/ D c.AC B C C/ D 0 but c.A/ > 0, hence

c.AC B C C/C c.A/ > c.AC B/C c.AC C/:

5.2. Convergence rates for Schneider’s non-convexity index. We were unable to find
any examination in the literature of rates, or indeed, even of sufficient conditions for
convergence as measured by c.

Let us discuss convergence in the Shapley–Folkman–Starr theorem using the Schneider
non-convexity index. In dimension 1, we can get an O.1=k/ bound on c.A.k// by using
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the close relation (18) between c and d in this case. In general dimension, the same bound
also holds: by applying Theorem 5.3 inductively, we get the following theorem.

Theorem 5.5. Let A be a compact set in Rn. Then

c.A.k// �
c.A/

k
:

In particular, c.A.k//! 0 as k !1.

Let us observe that theO.1=k/ rate of convergence cannot be improved, either for d or
for c. To see this simply consider the case where A D f0; 1g � R. Then A.k/ consists of
the kC1 equispaced points j=k, where j 2 f0; 1; : : : ; kg, and c.A.k// D 2d.A.k// D 1=k

for every k 2 N.

6. The behavior of the effective standard deviation v

In this section we study the effective standard deviation v. Recall its definition: for A
compact in Rn,

v2.A/ D sup
x2conv.A/

inf
nX

pi jai � xj
2
W x D

X
piai Ipi > 0I

X
pi D 1; ai 2 A

o
:

6.1. Subadditivity of v2. Cassels [25] showed that v2 is subadditive.

Theorem 6.1 ([25]). Let A;B be compact sets in Rn. Then,

v2.AC B/ � v2.A/C v2.B/:

Proof. Recall that v.A/ D supx2conv.A/ vA.x/, where

v2A.x/ D inf
�X
i2I

�i jai � xj
2
W .�i ; ai /i2I 2 ‚A.x/

�
;

and ‚A.x/ D f.�i ; ai /i2I W I finite; x D
P
�iai I�i > 0I

P
�i D 1; ai 2 Ag: Thus,

v.AC B/ D sup
x2conv.ACB/

vACB.x/ D sup
x12conv.A/

sup
x22conv.B/

vACB.x1 C x2/:

And one has

v2ACB.x1 C x2/ D inf
�X
i2I

�i jci � x1 � x2j
2
W .�i ; ci /i2I 2 ‚ACB.x1 C x2/

�
:

For .�i ; ai /i2I 2 ‚A.x1/ and .�j ; bj /j2J 2 ‚B.x2/ one has

.�i�j ; ai C bj /.i;j /2I�J 2 ‚ACB.x1 C x2/;
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andX
.i;j /2I�J

�i�j jai C bj � x1 � x2j
2

D

X
i2I

�i jai � x1j
2
C

X
j2J

�j jbj � x2j
2
C 2

X
.i;j /2I�J

�i�j hai � x1; bj � x2i

D

X
i2I

�i jai � x1j
2
C

X
j2J

�j jbj � x2j
2
C 2h

X
i2I

�iai � x1;
X
j2J

�j bj � x2i

D

X
i2I

�i jai � x1j
2
C

X
j2J

�j jbj � x2j
2:

(34)

Thus

v2ACB.x1 C x2/

� inf
.�i ;ai /i2I2‚A.x1/

inf
.�j ;bj /j2J2‚B .x2/

X
i2I

�i jai � x1j
2
C

X
j2J

�j jbj � x2j
2

D v2A.x1/C v
2
B.x2/:

Taking the supremum in x1 2 conv.A/ and x2 2 conv.B/, we conclude.

Observe that we may interpret the proof probabilistically. Indeed, a key point in the
proof is the identity (34), which is just the fact that the variance of a sum of indepen-
dent random variables is the sum of the individual variances (written out explicitly for
readability).

6.2. Strong fractional subadditivity for large k. In this section, we prove that the
effective standard deviation v satisfies a strong fractional subadditivity when considering
sufficient large numbers of sets.
Theorem 6.2. Let A1; : : : ; Ak be compact sets in Rn, with k � nC 1. Then,

v

� X
i2Œk�

Ai

�
� max
I�Œk�WjI j�n

min
i2Œk�nI

v

� X
j2Œk�nfig

Aj

�
:

Proof. Let x 2 conv.
P
i2Œk�Ai /, where k � n C 1. By using the Shapley–Folkman

lemma (Lemma 2.3), there exists a set I of at most n indexes such that

x 2
X
i2I

conv.Ai /C
X

i2Œk�nI

Ai :

Let i0 2 Œk� n I . In particular, we have

x 2 conv
� X
i2Œk�nfi0g

Ai

�
C Ai0 :
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Hence, by definition of the convex hull,

x D
X
m

pmam C ai0 D z C ai0 ;

where z D
P
m pmam,

P
m pm D 1, am 2

P
i2Œk�nfi0g

Ai , and ai0 2 Ai0 . Thus, by
denoting Afi0g D

P
i2Œk�nfi0g

Ai , we have

v2Afi0g
.z/

D inf
�X
m

pmjam � zj
2
W z D

X
m

pmamI
X
m

pm D 1I am 2 Afi0g

�
D inf

�X
m

pmjam C ai0 � .z C ai0/j
2
W z D

X
m

pmamI
X
m

pm D 1I am 2 Afi0g

�
� inf

�X
m

pmja
�
m � .z C ai0/j

2
W z C ai0 D

X
m

pma
�
mI

X
m

pm D 1I a
�
m 2

X
i2Œk�

Ai

�
D v2P

i2Œk�Ai
.x/:

Taking supremum over all z 2 conv.
P
i2Œk�nfi0g

Ai /, we deduce that

vP
i2Œk�Ai

.x/ � v

� X
i2Œk�nfi0g

Ai

�
:

Since this is true for every i0 2 Œk� n I , we deduce that

vP
i2Œk�Ai

.x/ � min
i2Œk�nI

v

� X
j2Œk�nfig

Aj

�
:

Taking the supremum over all set I � Œk� of cardinality at most n yields

vP
i2Œk�Ai

.x/ � max
I�Œk�WjI j�n

min
i2Œk�nI

v

� X
j2Œk�nfig

Aj

�
:

We conclude by taking the supremum over all x 2 conv.
P
i2Œk�Ai /.

An immediate consequence of Theorem 6.2 is that if k � nC 1, then

v

� X
i2Œk�

Ai

�
� max
i2Œk�

v

� X
j2Œk�nfig

Aj

�
:

By iterating this fact as many times as possible (i.e. as long as the number of sets is at least
nC 1), we obtain the following corollary.
Corollary 6.3. Let A1; : : : ; Ak be compact sets in Rn, with k � nC 1. Then,

v

� X
i2Œk�

Ai

�
� max
I�Œk�WjI jDn

v

�X
j2I

Aj

�
:
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In the case where A1 D � � � D Ak D A, we can repeat the above argument with
k � c.A/C 1 to prove that in this case,

v.A.k// �
k � 1

k
v.A.k � 1//;

where c.A/ is the Schneider non-convexity index ofA. Since c.A/ � n, and c.A/ � n�1
when A is connected, we deduce the following monotonicity property for the effective
standard deviation.
Corollary 6.4. (1) In dimension 1 and 2, the sequence v.A.k// is non-increasing for

every compact set A.
(2) In dimension 3, the sequence v.A.k// is non-increasing for every compact and con-

nected set A.
Remark 6.5. It follows from the above study that if a compact set A � Rn satisfies
c.A/ � 2, then the sequence v.A.k// is non-increasing. One can see that if a compact set
A � Rn contains the boundary of its convex hull, then c.A/ � 1; for such set A � Rn,
the sequence v.A.k// is non-increasing.

6.3. Convergence rates for v. It is classical that one has convergence in v at good rates.
Theorem 6.6 ([25]). Let A1; : : : ; Ak be compact sets in Rn. Then

v.A1 C � � � C Ak/ �
p
minfk; ng max

i2Œk�
v.Ai /:

Proof. Firstly, by using subadditivity of v2 (Theorem 6.1), one has

v2.A1 C � � � C Ak/ � kmax
i2Œk�

v2.Ai /:

Hence, v.A1 C � � � C Ak/ �
p
kmaxi2Œk� v.Ai /.

If k � nC 1, we can improve this bound using Corollary 6.3, which gives us

v2
� X
i2Œk�

Ai

�
� max
I�Œk�WjI jDn

v2
�X
j2I

Aj

�
� max
I�Œk�WjI jDn

X
j2I

v2.Aj /

� nmax
i2I

v2.Ai / � nmax
i2Œk�

v2.Ai /;

again using subadditivity of v2 for the second inequality.

By considering A1 D � � � D Ak D A, one obtains the following convergence rate.
Corollary 6.7. Let A be a compact set in Rn. Then,

v.A.k// � min
�
1
p
k
;

p
n

k

�
v.A/:
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7. The behavior of the Hausdorff distance from the convex hull

In this section we study the Hausdorff distance from the convex hull. Recall its definition:
for K being a compact convex set containing 0 in its interior and A compact in Rn,

d .K/.A/ D inffr > 0 W conv.A/ � AC rKg:

7.1. Some basic properties of the Hausdorff distance. The Hausdorff distance is sub-
additive.
Theorem 7.1. Let A;B be compact sets in Rn, and K be an arbitrary convex body
containing 0 in its interior. Then

d .K/.AC B/ � d .K/.A/C d .K/.B/:

Proof. The convexity of K implies that

AC B C .d .K/.A/C d .K/.B//K D AC d .K/.A/K C B C d .K/.B/K;

but since AC d .K/.A/K � conv.A/ and B C d .K/.B/K � conv.B/ by definition, we
have

AC B C .d .K/.A/C d .K/.B//K � conv.A/C conv.B/ D conv.AC B/:

We can provide a slight further strengthening of Theorem 7.1 when dealing with
Minkowski sums of more than 2 sets, by following an argument similar to that used for
Schneider’s non-convexity index.
Theorem 7.2. Let A;B;C be compact sets in Rn, and K be an arbitrary convex body
containing 0 in its interior. Then

d .K/.AC B C C/ � d .K/.AC B/C d .K/.B C C/:

Proof. Notice that

AC B C C C
�
d .K/.AC B/C d .K/.B C C/

�
K

D AC B C d .K/.AC B/K C C C d .K/.B C C/K

� conv.AC B/C C C d .K/.B C C/K

� conv.A/C B C C C d .K/.B C C/K
� conv.A/C conv.B C C/
D conv.AC B C C/:

In particular, Theorem 7.2 implies that

d .K/
� X
l2Œk�

Al

�
� 2max

i2Œk�
d .K/

� X
l2Œk�nfig

Al

�
;
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and, when the sets are the same,

d .K/.A.k// � 2
k � 1

k
d .K/.A.k � 1//: (35)

While not proving monotonicity of d .K/.A.k//, the inequality (35) does provide a bound
on extent of non-monotonicity in the sequence in general dimension.

7.2. The Dyn–Farkhi conjecture. Dyn and Farkhi [32] conjectured that

d2.AC B/ � d2.A/C d2.B/: (36)

The next theorem shows that the above conjecture is false in Rn for n � 3.
Theorem 7.3. Let q � 0. The inequality

dq.AC B/ � dq.A/C dq.B/;

holds for all compact sets A;B � R3 if and only if q � 1.

Proof. We have already seen that the inequality holds for q D 1 and thus the in-
equality holds when 0 � q � 1. Let q � 0 be such that the inequality holds for
all compact sets A and B . Let A D A1 [ A2, where A1 and A2 are intervals such
that A1 D Œ.0; 0; 0/; .1; 0;�f /� and A2 D Œ.0; 0; 0/; .1; 0; f /�, and f > 0 is a large
number to be selected. Let B D B1 [ B2, where B1 and B2 are intervals such that
B1 D Œ.0; 0; 0/; .1;�f; 0/� and A2 D Œ.0; 0; 0/; .1; f; 0/�. Note that .1; 0; 0/ belongs to
both conv.A/ and conv.B/. It is easy to see, using two dimensional considerations that

d.B/ D d.A/ D dA.1; 0; 0/ D
fp
1C f 2

� 1:

Next we notice that
AC B D

[
i;j2f1;2g

.Ai C Bj /:

Thus, the points in AC B can be parametrized by

t .1;˙f; 0/C s.1; 0˙ f /;

where t; s 2 Œ0; 1�. We note that .2; 0; 0/ 2 conv.AC B/ and

d.AC B/ � dACB.2; 0; 0/ D min
t;s2Œ0;1�

p
.2 � .t C s//2 C f 2.s2 C t2/ D

2fp
f 2 C 2

:

Note that if f !1, this tends to 2. So assuming that the inequality

dq.AC B/ � dq.A/C dq.B/;

holds implies that 2q � 2 thus q � 1.
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Remark 7.4. (1) Note that the above example is also valid if we consider `p ,p � 1metric
instead of the `2 metric. Indeed d .B3

p/.A/ D d .B
3
p/.B/ � 1 and we may compute `p

distance from .2; 0; 0/ to AC B as

min
t;s2Œ0;1�

..2 � .t C s//p C f p.sp C tp//
1=p
:

If f !1, then to minimize the above, we must, again, select s; t to be close to zero, and
thus the distance is at least 2. This shows that if the inequality

.d .B
3
p//q.AC B/ � .d .B

3
p//q.A/C .d .B

3
p//q.B/

holds for all A;B � R3, then q � 1.
(2) As shown by Wegmann [89], if the set A is such that the supremum in the definition
of v.A/ is achieved at a point in the relative interior of conv.A/, then d.A/ D v.A/. Thus
Theorem 6.1 implies the following statement: If A;B are compact sets in Rn such that
the supremum in the definition of v.A/ is achieved at a point in the relative interior of
conv.A/, and likewise for B , then

d2.AC B/ � d2.A/C d2.B/:

(3) We emphasize that the conjecture is still open in the case A D B . In this case, the
Dyn–Farkhi conjecture is equivalent to

d

�
AC A

2

�
�
d.A/
p
2
:

If cn is the best constant such thatd.ACA2 / � cnd.A/ for all compact setsA in dimensionn,
then one has

cn �

r
n � 1

2n

for n � 2. This can be seen from the example where A D fa1; : : : ; anC1g is a set of nC 1
vertices of a regular simplex in Rn, n � 2. For this example, it is not difficult to see that
d.A/ D jg � a1j, where g D .a1 C � � � C anC1/=.nC 1/ is the center of mass of A and
d.ACA

2
/ D jg � a1Ca2

2
j. Then, one easily concludes that

d
�
ACA
2

�
d.A/

D
jg �

a1Ca2

2
j

jg � a1j
D

r
n � 1

2n
:

Thus we get supn cn � 1=
p
2, while the Dyn–Farkhi conjecture amounts to supn cn � 1=

p
2.

(4) Notice that there is another interpretation of d.A/ as the largest empty circle of A,
i.e. the radius of the circle of largest radius, centered at a point in conv.A/ and containing
no point of A in its interior (see [74], where the relevance of this notion for planning new
store locations and toxic waste dump locations is explained). Indeed this radius is equal to

sup
˚
RI 9x 2 conv.A/I jx � aj � R;8a 2 A

	
D sup

˚
RI sup

x2conv.A/
inf
a2A
jx � aj � R

	
D d.A/:
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7.3. Strong fractional subadditivity for large k. In this section, similarly as for the
effective standard deviation v, we prove that the Hausdorff distance from the convex
hull d .K/ satisfies a strong fractional subadditivity when considering sufficient large
numbers of sets.
Theorem 7.5. Let K be an arbitrary convex body containing 0 in its interior. Let
A1; : : : ; Ak be compact sets in Rn, with k � nC 1. Then,

d .K/
� X
i2Œk�

Ai

�
� max
I�Œk�WjI j�n

min
i2Œk�nI

d .K/
� X
j2Œk�nfig

Aj

�
:

Proof. Let x 2 conv.
P
i2Œk�Ai /. By using the Shapley–Folkman lemma (Lemma 2.3),

there exists a set I � Œk� of cardinality at most n such that

x 2
X
i2I

conv.Ai /C
X

i2Œk�nI

Ai :

Let i0 2 Œk� n I . In particular, we have

x 2
X

i2Œk�nfi0g

conv.Ai /C Ai0 :

Thus,
x D

X
i2Œk�nfi0g

xi C xi0 D z C xi0 ;

for some xi 2 conv.Ai /, i 2 Œk� n fi0g, and some xi0 2 Ai0 , where z D
P
i2Œk�nfi0g

xi .
Hence,

d
.K/P

i2Œk�nfi0g
Ai
.z/ D inf

a2
P

i2Œk�nfi0g
Ai

kz � akK

D inf
a2
P

i2Œk�nfi0g
Ai

kz C xi0 � .aC xi0/kK

� inf
a�2

P
i2Œk�Ai

kz C xi0 � a
�
kK

D d
.K/P

i2Œk�Ai
.x/:

Taking supremum over all z 2 conv.
P
i2Œk�nfi0g

Ai /, we deduce that

d
.K/P

i2Œk�Ai
.x/ � d .K/

� X
i2Œk�nfi0g

Ai

�
:

Since this is true for every i0 2 Œk� n I , we deduce that

d
.K/P

i2Œk�Ai
.x/ � min

i2Œk�nI
d .K/

� X
j2Œk�nfig

Aj

�
:
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Taking the supremum over all set I � Œk� of cardinality at most n yields

d
.K/P

i2Œk�Ai
.x/ � max

I�Œk�WjI j�n
min
i2Œk�nI

d .K/
� X
j2Œk�nfig

Aj

�
:

We conclude by taking the supremum over all x 2 conv.
P
i2Œk�Ai /.

In the case where A1 D � � � D Ak D A, we can use the above argument to prove that
for k � c.A/C 1,

d .K/.A.k// �
k � 1

k
d .K/.A.k � 1//;

where c.A/ is the Schneider non-convexity index ofA. Since c.A/ � n, and c.A/ � n�1
when A is connected, we deduce the following monotonicity property for the Hausdorff
distance to the convex hull.
Corollary 7.6. Let K be an arbitrary convex body containing 0 in its interior. Then,
(1) In dimension 1 and 2, the sequence d .K/.A.k// is non-increasing for every compact

set A.
(2) In dimension 3, the sequence d .K/.A.k// is non-increasing for every compact and

connected set A.
Remark 7.7. It follows from the above study that if a compact set A � Rn satisfies
c.A/ � 2, then the sequence d .K/.A.k// is non-increasing. One can see that if a compact
set A � Rn contains the boundary of its convex hull, then c.A/ � 1; for such set A � Rn,
the sequence d .K/.A.k// is non-increasing.

It is useful to also record a simplified version of Theorem 7.5.
Corollary 7.8. Let K be an arbitrary convex body containing 0 in its interior. Let
A1; : : : ; Ak be compact sets in Rn, with k � nC 1. Then,

d .K/
� X
i2Œk�

Ai

�
� max
I�Œk�WjI jDn

d .K/
�X
i2I

Ai

�
� nmax

i2Œk�
d .K/.Ai /:

Proof. By Theorem 7.5, provided k > n, we have in particular

d .K/
� X
i2Œk�

Ai

�
� max
i2Œk�

d .K/
�X
j¤i

Aj

�
:

Iterating the same argument as long as possible, we have that

d .K/
� X
i2Œk�

Ai

�
� max
I�Œk�WjI jDn

d .K/
�X
j2I

Aj

�
;

which is the first desired inequality. Applying the subadditivity property of d .K/ (namely,
Theorem 7.1), we immediately have the second desired inequality.

While Corollary 7.8 does not seem to have been explicitly written down before, it
seems to have been first discovered by V. Grinberg (personal communication).
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7.4. Convergence rates for d . Let us first note that having proved convergence rates for
v.A.k//, we automatically inherit convergence rates for d .K/.A.k// as a consequence of
Lemma 2.13, Theorem 2.15 and Corollary 6.7.
Corollary 7.9. Let K be an arbitrary convex body containing 0 in its interior. For any
compact set A � Rn,

d .K/.A.k// �
1

r
min

�
1
p
k
;

p
n

k

�
v.A/;

where r > 0 is such that rBn2 � K.
For Euclidean norm (i.e. K D Bn2 ), this goes back to [25, 79].
Although we have a strong convergence result for d .K/.A.k// as a consequence of that

for v.A.k//, we give below another estimate of d .K/.A.k// in terms of d .K/.A/, instead
of v.A/.
Theorem 7.10. For any compact set A � Rn,

d .K/.A.k// � min
�
1;
dc.A/e

k

�
d .K/.A/:

Proof. As a consequence of Theorem 7.1, we always have d .K/.A.k// � d .K/.A/. Now
consider k � c.A/C 1, and notice that

kA.k/C dc.A/ed .K/.A/K � .k � dc.A/e/A.k � dc.A/e/C dc.A/e conv.A/
D conv.kA.k//:

Hence,
d .K/.kA.k// � dc.A/ed .K/.A/;

or equivalently,

d .K/.A.k// �
dc.A/ed .K/.A/

k
:

Using the fact that c.A/ � n for every compact set A � Rn, we deduce that

d .K/.A.k// � min
n
1;
n

k

o
d .K/.A/:

8. Connections to discrepancy theory

The ideas in this section have close connections to the area known sometimes as “dis-
crepancy theory”, which has arisen independently in the theory of Banach spaces, com-
binatorics, and computer science. It should be emphasized that there are two distinct
but related areas that go by the name of discrepancy theory. The first, discussed in this
section and sometimes called “combinatorial discrepancy theory” for clarity, was likely
originally motivated by questions related to absolute versus unconditional versus condi-
tional convergence for series in Banach spaces. The second, sometimes called “geometric
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discrepancy theory” for clarity, is related to how well a finite set of points can approximate
a uniform distribution on (say) a cube inRn. Our discussion here concerns the former; the
interested reader may consult [85] for more on the latter. When looked at deeper, however,
combinatorial discrepancy theory is also related to the ability to discretely approximate
“continuous” objects. For example, a famous result of Spencer [77] says that given any
collection fS1; : : : ; Sng of subsets of Œn�, it is possible to color the elements of Œn� with
two colors (say, red and blue) such thatˇ̌̌

jSi \Rj �
jSi j

2

ˇ̌̌
� 3
p
n;

for each i 2 Œn�, where R � Œn� is the set of red elements. As explained for example by
Srivastava [78],

“In other words, it is possible to partition Œn� into two subsets so that this partition
is very close to balanced on each one of the test sets Si . Note that a “continuous”
partition which splits each element exactly in half will be exactly balanced on each Si ;
the content of Spencer’s theorem is that we can get very close to this ideal situation
with an actual, discrete partition which respects the wholeness of each element.”

Indeed, Srivastava also explains how the recent celebrated results of Marcus, Spielman
and Srivastava [60,61] that resulted in the solution of the Kadison–Singer conjecture may
be seen from a discrepancy point of view.

For any n-dimensional Banach space E with norm k � kE , define the functional

V.k;E/ D max
x1;:::;xk WkxikD18i2Œk�

min
."1;:::;"k/2f�1;1g

k

 X
i2Œk�

"ixi


E

:

In other words, V.k;E/ answers the question: for any choice of k unit vectors in E,
how small are we guaranteed to be able to make the signed sum of the unit vectors
by appropriately choosing signs? The question of what can be said about the numbers
V.k;E/ was first asked4 by A. Dvoretzky in 1963. Let us note that the same definition
also makes sense when k � k is a nonsymmetric norm (i.e. satisfies kaxk D akxk for
a > 0, positive-definiteness and the triangle inequality), and we will discuss it in this
more general setting.

It is a central result of discrepancy theory [12, 41] that when E has dimension n, it
always holds5 that V.k;E/ � n. To make the connection to our results, we observe that
this fact actually follows from Corollary 7.8.
Theorem 8.1. SupposeA1; : : : ; Ak � K, whereK is a convex body inRn containing 0 in
its interior (i.e. the unit ball of a non-symmetric norm k � kK), and suppose 0 2 conv.Ai /
and dim.Ai / D 1 for each i 2 Œk�. Then there exist vectors ai 2 Ai .i 2 Œk�/ such that X

i2Œk�

ai


K

� n:

4See [47, p. 496] where this question is stated as one in a collection of then-unsolved problems.
5The fact that V.k;E/ � n appears to be folklore and the first explicit mention of it we could find is in [41].
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In particular, if K is symmetric, then by choosing Ai D fxi ;�xig, with kxikK D 1, one
immediately has V.k;EK/ � n for EK D .Rn; k � kK/.

Proof. We simply observe that since 0 2 conv.
P
i2Œk�Ai /, there exists a point a0 2P

i2Œk�Ai such that

ka0kK � sup
x2conv

� P
i2Œk�

Ai

� inf
a2
P

i2Œk�Ai

ka � xkK D d
.K/

� X
i2Œk�

Ai

�
� nmax

i2Œk�
d .K/.Ai /;

where the last inequality follows from Corollary 7.8. Moreover, using that for each i 2 Œk�,
Ai � K and K is convex, we get conv.Ai / � K. Thus by Lemmata 2.12 and 2.14,
d .K/.Ai / � d

.conv.Ai //.Ai / � c.Ai / � 1, where the last inequality uses Theorem 2.10
and the assumption that dim.Ai / D 1.

Remark 8.2. Bárány and Grinberg [12] proved Theorem 8.1 without the condition
dim.Ai / D 1. They also proved it for symmetric bodies K under the weaker condi-
tion that 0 2 conv.

P
i2Œk�Ai /; we will recover this fact for symmetric bodies, without

restriction on the dimension, as a consequence of Theorem 8.6 below.
Remark 8.3. As pointed out in [12], Theorem 8.1 is sharp. By taking E D `n1
and xi to be the i th standard basis vector ei of Rn, we see that for any choice of signs,P

i2Œn� "ixi
 D n, which implies that V.n; `n1/ D n.

Remark 8.4. It is natural to think that the sequenceV.k;E/may bemonotonewith respect
to k. Unfortunately, this is not true. Swanepoel [81] showed that V.k;E/ � 1 for every
odd k and every 2-dimensional Banach space E. Consequently, we have V.1; `21/ D 1

and V.3; `21/ � 1, whereas we know from Remark 8.3 that V.2; `21/ D 2.
Not surprisingly, for special norms, better bounds can be obtained. In particular

(see, e.g., [2, Theorem 2.4.1] or [15, Lemma 2.2]), V.k; `n2/ �
p
n. We will present

a proof of this and more general facts in Theorem 8.6. But first let us discuss a quite
useful observation about the quantity V.k;E/: it is an isometric invariant, i.e. invariant
under nonsingular linear transformations of the unit ball. A way to measure the extent
of isometry is using the Banach–Mazur distance dBM : Let E, E 0 be two n-dimensional
normed spaces. The Banach–Mazur distance between them is defined as

dBM .E;E
0/ D inf

˚
kT k � kT �1kIT WE ! E 0 isomorphism

	
:

Thus dBM .E;E 0/ � 1 and dBM .E;E 0/ D 1 if and only if E and E 0 are isometric. We
also remind that the above notion have a geometrical interpretation. Indeed if we denote
by B.X/ a unit ball of Banach space X , then dBM .E;E 0/ is a minimal positive number
such that there exists a linear transformation T with:

B.E/ � T .B.E 0// � dBM .E;E
0/B.E/:

Lemma 8.5. If dBM .E;E 0/ D 1, then

V.k;E/ D V.k;E 0/:
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Proof. Consider an invertible linear transformation T such that T .B.E// D B.E 0/ and
thus kykE D kTykE 0 , then

V.k;E/ D max
x1;:::;xk WkxikED18i2Œk�

min
."1;:::;"k/2f�1;1g

k

 X
i2Œk�

"ixi


E

D max
x1;:::;xk WkTxikE0D18i2Œk�

min
."1;:::;"k/2f�1;1g

k

T� X
i2Œk�

"ixi

�
E 0

D max
y1;:::;yk WkyikE0D18i2Œk�

min
."1;:::;"k/2f�1;1g

k

 X
i2Œk�

"iyi


E 0
:

Now we would like to use the ideas of the proof of Theorem 8.1 together with
Lemma 8.5 to prove the following statement that will help us to provide sharper bounds
for V.k;E/ for intermediate norms.
Theorem 8.6. Suppose A1; : : : ; Ak � K, where K is a symmetric convex body in Rn
(i.e. the unit ball of a norm k � kK), and suppose 0 2 conv.

P
i2Œk�Ai /. Then there exist

vectors ai 2 Ai (i 2 Œk�) such that X
i2Œk�

ai


K

�
p
n dBM .E; `

n
2/;

where E D .Rn; k � kK/. In particular, by choosing Ai D fxi ;�xig, with kxikK D 1,
one immediately has

V.k;E/ �
p
n dBM .E; `

n
2/:

Proof. Let d D dBM .E; `
n
2/, then we may assume, using Lemma 8.5, that Bn2 � K �

dBn2 . Next, as in the proof of Theorem 8.1 we observe that since 0 2 conv.
P
i2Œk�Ai /,

there exists a point a 2
P
i2Œk�Ai such that

kakK � d
.K/

� X
i2Œk�

Ai

�
� max
I�Œk�WjI jDn

d .K/
�X
j2I

Aj

�
;

where the last inequality follows from Corollary 7.8. Next, we apply Lemma 2.12 together
with Bn2 � K to get

max
I�Œk�WjI jDn

d .K/
�X
j2I

Aj

�
� max
I�Œk�WjI jDn

d

�X
j2I

Aj

�
:

Now we can apply Theorems 2.15 and 6.1 to get

max
I�Œk�WjI jDn

d

�X
j2I

Aj

�
� max
I�Œk�WjI jDn

v

�X
j2I

Aj

�
� max
I�Œk�WjI jDn

sX
j2I

v2.Aj / � d
p
n;

where the last inequality follows from the fact that v.Ai / D r.Ai / is bounded by d since
Ai � K � dB

n
2 .
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Wenote that it follows from theF. John theorem (see, e.g., [64, p. 10]) thatdBM .E; `n2/�p
n for any n-dimensional Banach space E. Thus we have the following corollary, which

recovers a result of [12].
Corollary 8.7. Suppose A1; : : : ; Ak � K, where K is a convex symmetric body in Rn,
and suppose 0 2 conv.

P
i2Œk�Ai /. Then there exist vectors ai 2 Ai (i 2 Œk�) such that X

i2Œk�

ai


K

� n:

In particular, by choosing Ai D fxi ;�xig, with kxikK D 1, one immediately has

V.k;E/ � n;

where E D .Rn; k � kK/.
It is well known that dBM .`np; `n2/ D nj

1=p�1=2j for p � 1 (see, e.g., [64, p. 20]). Thus,
Theorem 8.6 gives:
Corollary 8.8. For any p � 1 and any n 2 N,

V.k; `np/ � n
1=2Cj1=p�1=2j:

In particular, we recover the classical fact that V.k; `n2/ �
p
n, which can be found,

e.g., in [2, Theorem 2.4.1]. V. Grinberg (personal communication) informed us of the
following elegant and sharp bound generalizing this fact that he obtained in unpublished
work: if Ai are subsets of Rn andD D maxi diam.Ai /, then

d

� X
i2Œk�

Ai

�
�
D

2

p
n: (37)

The special case of this when each Ai has cardinality 2 is due to Beck [15]. Let us note
that the inequality (37) improves upon the bound of

p
nmaxi v.Ai / that is obtained in the

Shapley–Folkman theorem by combining Theorems 2.15 and 6.6.
Finally let us note that the fact that the quantities V.k;E/ are O.n/ for general norms

and O.
p
n/ for Euclidean norm is consistent with the observations in Section 7.4 that the

rate of convergence of d .K/.A.k// for a compact set A � Rn isO.n=k/ for general norms
and O.

p
n=k/ for Euclidean norm (i.e. K D Bn2 ).

We do not comment further on the relationship of our study with discrepancy theory,
which contains many interesting results and questions when one uses different norms
to pick the original unit vectors, and to measure the length of the signed sum (see,
e.g., [16, 39, 66]). The interested reader may consult the books [26, 27, 63] for more in
this direction, including discussion of algorithmic issues and applications to theoretical
computer science. There are also connections to the Steinitz lemma [11], which was
originally discovered in the course of extending the Riemann series theorem (on the
real line being the set of possible limits by rearrangements of a conditionally convergent
sequence of real numbers) to sequences of vectors (where it is called the Lévy–Steinitz
theorem, and now understood in quite general settings, see, e.g., [76]).
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9. Discussion

Finally we mention some notions of non-convexity that we do not take up in this paper:
(1) Inverse reach: The notion of reach was defined by Federer [34], and plays a role in
geometric measure theory. For a set A in Rn, the reach of A is defined as

reach.A/ D supfr > 0 W 8y 2 AC rBn2 ; there exists a unique x 2 A nearest toyg:

A key property of reach is that reach.A/ D 1 if and only if A is convex; consequently
one may think of

�.A/ D reach.A/�1

as a measure of non-convexity. Thäle [84] presents a comprehensive survey of the study
of sets with positive reach (however, one should take into account the cautionary note in
the review of this article on MathSciNet).
(2) Beer’s index of convexity: First defined and studied by Beer [17], this quantity is
defined for a compact set A in Rn as the probability that 2 points drawn uniformly from A
at random “see” each other (i.e. the probability that the line segment connecting them is
in A). Clearly this probability is 1 for convex sets, and 0 for finite sets consisting of more
than 1 point. Since our study has been framed in terms of measures of non-convexity, it
is more natural to consider

b.A/ D 1 � PfŒX; Y � � Ag;

where X; Y are i.i.d. from the uniform measure on A, and Œx; y� denotes the line segment
connecting x and y.
(3) Convexity ratio: The convexity ratio of a set A in Rn is defined as the ratio of the
volume of a largest convex subset of A to the volume of A; it is clearly 1 for convex sets
and can be arbitrarily close to 0 otherwise. For dimension 2, this has been studied, for
example, by Goodman [40]. Balko et al. [9] discuss this notion in general dimension,
and also give some inequalities relating the convexity ratio and Beer’s index of convexity.
Once again, to get a measure of non-convexity, it is more natural to consider

�.A/ D 1 �
Voln.L.A//
Voln.A/

;

where L.A/ denotes a largest convex subset of A.
These notions of non-convexity are certainly very interesting, but they behave quite

differently from the notions we have explored thus far. For example, if b.A/ D 0 or
�.A/ D 0, the compact set A may not be convex, but differ from a convex set by a set of
measure zero. For example, ifA is the union of a unit Euclidean ball and a point separated
from it, then

b.A/ D �.A/ D 0; (38)

even though A is compact but non-convex. Even restricting to compact connected sets
does not help– just connect the disc with a point by a segment, and we retain (38) thoughA
remains non-convex.
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It is possible that further restricting to connected open sets is the right thing to do here–
this may yield a characterization of convex sets using b and �, but it still is not enough
to ensure stability of such a characterization. For example, b.A/ small would not imply
that A is close to its convex hull even for this restricted class of sets, because we can take
the previous example of a point connected to a disc by a segment and just slightly fatten
the segment.

Generalizing this example leads to a curious phenomenon. Consider A D Bn2 [

fx1; : : : ; xN g, where x1; : : : ; xN are points in Rn well separated from each other and the
origin. Then b.A/ D �.A/ D 0, but we can send b.ACA

2
/ and �.ACA

2
/ arbitrarily close

to 1 by making N go to infinity (since isolated points are never seen for A but become
very important for the sumset). This is remarkably bad behavior indeed, since it indicates
an extreme violation of the monotone decreasing property of b.A.k// or �.A.k// that one
might wish to explore, already in dimension 2.

Based on the above discussion, it is clear that the measures �; b; � of non-convexity
are more sensitive to the topology of the set than the functionals we considered in most of
this paper. Thus it is natural that the behavior of these additional measures for Minkowski
sums should be studied with a different global assumption than in this paper (which has
focused on what can be said for compact sets). We hope to investigate this question in
future work.
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