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Locally conformally symplectic and Kähler geometry

Giovanni Bazzoni

Abstract. The goal of this note is to give an introduction to locally conformally symplectic
and Kähler geometry. In particular, the first two sections aim to provide the reader with enough
mathematical background to appreciate these geometric structures. The standard reference for locally
conformally Kähler geometry is the book Locally conformal Kähler geometry by Sorin Dragomir
and Liviu Ornea; many progresses in this area, however, were accomplished after its publication,
hence are not covered there. On the other hand, there is no comprehensive reference for locally
conformally symplectic geometry and many recent advances lie scattered in the literature. While
the tone of this note is rather expository, I propose a (hopefully) exhaustive bibliography, to which
the reader is referred for both the precise statements and the techniques used. Section 3 would like
to demonstrate how these geometries can be used to give precise mathematical formulations to ideas
deeply rooted in classical and modern Physics.
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1. Symplectic and locally conformally symplectic geometry

A symplectic manifold is a smoothmanifoldM 2n with a 2-form! 2 �2.M/which is non-
degenerate, i.e. !np ¤ 0 for every p 2 M , and closed, i.e. d! D 0. The non-degeneracy
condition can be rephrased by saying that ! provides an isomorphism of vector bundles
[WTM ! T �M , X 7! X [ D {X!.

The word symplectic was coined by Hermann Weyl in 1939: he replaced the old
terminology complex group with symplectic group to indicate the Lie group of matrices

G. Bazzoni, Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas,
Universidad Complutense de Madrid, Plaza de Ciencias 3, 28040 Madrid, Spain
E-mail: gbazzoni@ucm.es

mailto:gbazzoni@ucm.es


130 G. Bazzoni

preserving the bilinear skew-symmetric form !0 D
Pn
iD1 dxi ^ dyi on R2n, see [160,

p. 165]. The etymology is from the Greek συμπλεκτικKος, which funnily enough means
complex.

In the process of getting acquainted with symplectic geometry, something that one
experiences quite early is, paraphrasing Mikhaïl Gromov, a curious mixture of “hard” and
“soft”, see [72] as well as [107, p. 81]. This applies both to themathematical aspects and to
the techniques employed in symplectic geometry. An indication of softness in symplectic
geometry is certainly Darboux theorem, asserting that, locally, two symplectic manifolds
can not be distinguished from one another1; see [16, Section 8.43] or [107, Theorem 3.15]
for a modern proof. Thus, symplectic geometry is somehow a global thing. Of the two
conditions ensuring that a 2-form on an even-dimensionalmanifold is symplectic, however,
only one is of global nature, namely closedness. Closedness imposes strong cohomological
restrictions on the existence of a symplectic structure on an even-dimensional compact
manifold2: for instance, all Betti numbers of even degree must be non-zero. The general
problem of determining which compact manifolds admit a symplectic structure is far from
being solved, see [134].

The first true mathematical exposition of what a symplectic manifold is appeared in
a paper of Hwa-Chung Lee in 1941, see [95]. Lee considers the general setting of an
even-dimensional manifold M 2n endowed with a non-degenerate 2-form !. He studies
first the flat case, in which d! D 0, that is, what is nowadays known as symplectic. Then,
he discusses the problem of two 2-forms ! and !0 which are conformal to one another:
on an open set U �M with local coordinates .x1; : : : ; x2n/, write

! D
X
i<j

!ij .x/dxi ^ dxj and !0 D
X
i<j

!0ij .x/dxi ^ dxj I

! and !0 are locally conformal if there exists ' 2 C1.U /, nowhere vanishing, with
!0ij D '!ij . Lee then finds necessary and sufficient conditions for a given ! 2 �2.M/ to
be (locally) conformal to a flat, i.e. closed, one: for n � 3 this happens3 if and only if there
exists a 1-form # such that d! D # ^ !. It is interesting to notice that the mathematical
birthplace of both symplectic and locally conformally symplectic geometry is the very
same paper of Lee.

The development of symplectic geometry after 1941 has been tremendous, kept up
first by the French school (Charles Ehresmann, Paulette Libermann, André Lichnerowicz,
Georges Reeb) in the 1950’s, then by the Russian school, with the central figure of Vladimir
Arnol’d, and by the American school (Dusa McDuff, Victor Guillemin, Alan Weinstein);
a special place is occupied by Gromov4. This is however not the right place to extol the
ubiquity of symplectic geometry in modern Mathematics; I refer the reader to the nice
surveys [17, 64], and [106].

1This is very different from the Riemannian case, where curvature provides a local invariant.
2The same is not true for open manifolds: as proved by Gromov [70, 71], any open manifold with a non-

degenerate 2-form admits a symplectic structure.
3The case n D 1 is trivial: as remarked by Lee, every ! is in this case conformal to a flat one, due to

dimension reasons. The case n D 2 is only slightly different; see the discussion below.
4This list of quoted mathematicians is of course far from being complete.
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The fate of locally conformally symplectic geometry, on the contrary, was very
different. Except for works of Libermann in 1955 [98] and Jean Lefebvre in 1966 [96] and
1969 [97], the subject remained in hibernation until two seminal papers of Izu Vaisman
were published: On locally conformal almost Kähler manifolds, in 1976, see [146], and
Locally conformal symplectic manifolds, in 1984, see [151].

In [146], Vaisman defines a locally conformally symplectic manifold5 as a mani-
fold M 2n, n � 1, endowed with a non-degenerate 2-form ! 2 �2.M/ such that every
point p 2M has an open neighborhood U such that

d
�
e�!

ˇ̌
U

�
D 0 ; (1)

where � 2 C1.U / is a smooth function. If (1) holds for U D M , then .M;!/ is
globally conformally symplectic; if it holds for � a constant function, .M;!/ is clearly
a symplectic manifold. The work of Lee shows that the above definition is equivalent
to the following one: a manifold M 2n, n � 1, endowed with a non-degenerate 2-form
! 2 �2.M/, is locally conformally symplectic manifold if there exists a globally defined
1-form # 2 �1.M/ such that

d! D # ^ ! and d# D 0 : (2)

The 1-form # was baptized the Lee form by Vaisman. If n D 1 one has d! D 0 D # ^!
for any choice of # . For n � 2, # is completely determined by !; moreover, as remarked
by Libermann in [98], the second condition in (2) follows from the first one if n � 3. .!; #/
is called a locally conformally symplectic structure on M . According to this alternative
definition, a locally conformally symplectic manifold is globally conformally symplectic
if # is exact and symplectic if # D 0.

Given a locally conformally symplectic manifold .M;!/, the conformal class of ! is

f!0 2 �2.M/ j !0 D ef ! for f 2 C1.M/g :

If# is the Lee form of .M;!/ and!0 D ef !, then the Lee form of .M;!0/ is# 0 D #Cdf ,
hence the cohomology class of # inH 1

dR
.M/ is an invariant of the conformal class.

Formula (1) implies, in particular, that at a local scale a symplectic manifold can
not be distinguished from a locally conformally symplectic manifold. Thus not only all
symplectic manifolds locally look alike, in view of Darboux theorem, but potentially there
may exist manifolds which locally look like symplectic manifolds and however fail to do
so globally! Locally conformally symplectic structures exist on open manifolds, as proved
by Rui Loja Fernandes and Pedro Frejlich using an h-principle; see [53], in particular
the Acknowledgements. It was proved very recently by Yakov Eliashberg and Emmy
Murphy using again h-principle that a closed almost complex manifold .M; J /with a non
zero cohomology class � 2 H 1

dR
.M/ admits a locally conformally symplectic structure;

see [51, Theorem 1.8] for the precise statement. In [6, 27] explicit examples of compact
locally conformally symplectic manifolds which do not admit any symplectic structure are
provided.

5Vaisman uses locally conformal symplectic, while I stick with the terminology locally conformally
symplectic in this note. Some recent papers use conformal symplectic, see [41] and [51].
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For this reason, I prefer to consider locally conformally symplectic manifolds as
something different from symplectic manifolds. Concretely, this means that our locally
conformally symplectic structures will always be assumed to have a Lee form # which is
not exact.

In his 1976 paper Vaisman proves a few results about locally conformally symplectic
manifolds but turns quickly his attention to the metric case, in the wake of Alfred Gray’s
work on almost Hermitian structures. It is in his 1984 article that he extensively studies
the non-metric case. Motivated by the metric case, which I will discuss in Section 2,
Vaisman distinguishes between locally conformally symplectic structures of the first kind
and of the second kind. A locally conformally symplectic structure .!; #/ onM is of the
first kind if there exists a vector field U 2 X.M/ such that

LU! D 0 and #.U / D 1 :

Otherwise, it is of the second kind. One can show that the above conditions characterizeU
uniquely; it is the Lee field of the locally conformally symplectic structure. A sophisticated
way to rephrase this goes as follows: define

X.M;!/ D fX 2 X.M/ j LX! D 0g I (3)

then X.M;!/ � X.M/ is a subalgebra. If X 2 X.M;!/ then LX# D 0, hence #.X/ is
a constant function on M . The Lee homomorphism is `WX.M;!/ ! R, `.X/ D #.X/

and is a morphism of Lie algebras. Thus .!; #/ is of the first kind if and only if the Lee
homomorphism is non zero, hence surjective; of the second kind otherwise. In particular,
the Lee form of a locally conformally symplectic structure of the first kind is nowhere
zero. I should remark here that in the conformal class of a locally conformally symplectic
structure of the first kind there exist always locally conformally symplectic structures of
the second kind. To see this, it is enough to choose a function f such that dfp D �#p
for some p 2 M ; then the Lee form of ef ! has a zero at p. In particular, being of the
first kind is not a conformal notion. Notice that (3) defines an automorphism of a given
element in the conformal class of a locally conformally symplectic structure. If one wants
to deal with the whole conformal class, then the object to be considered is the subalgebra

yX.M;!/ D fX 2 X.M/ j 9fX 2 C1.M/ j LX! D fX!g I

here fX should be nowhere 0. In this case as well one sees that the extended Lee
homomorphism ỳW yX.M;!/ ! R, ỳ.X/ D #.X/ C fX is a morphism of Lie algebras
(see [21]). The Lee homomorphism and its extended version have been investigated
broadly, see for instance [21, 77], and [151].

Another way to tell locally conformally symplectic structures apart is according to the
Morse–Novikov class of the 2-form !. Given a 1-form # on a manifoldM , one can define
a differential operator d# W�k.M/ ! �kC1.M/ by setting d#� D d� � # ^ � . If # is
closed, then d2

#
D 0 and the Morse–Novikov6 cohomology of .��.M/; d#/ is

H k
# .M/ D

kerfd# W�k.M/! �kC1.M/g

d#.�k�1.M//
:

6TheMorse–Novikov cohomology hasmore than two fathers. In the context of locally conformally symplectic
geometry, for instance, it was first considered by Guédira and Lichnerowicz in [74]. It was also considered by
Witten in his celebrated paper [161].
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If M is compact, these cohomology spaces are always finite-dimensional, and
H�
#
.M/ Š H�

dR
.M/ if # is exact. Further, as noticed in [19], the Euler–Poincaré

characteristic of theMorse–Novikov cohomology of a compact, orientablemanifold equals
that of the de Rham cohomology, hence it is topological. In general, however, Morse–
Novikov cohomology behaves very differently from de Rham cohomology: indeed, if #
is not exact and M is connected then H 0

#
.M/ D 0, see [74]; if, in addition, M n is

compact and orientable, then a Poincaré duality holds, that is, H i
#
.M/ Š Hn�i

#
.M/�,

hence Hn
#
.M/ D 0, see [76]. In [149] Vaisman proved that H�

#
.M/ is isomorphic to

the cohomology of M with coefficients in the sheaf of smooth functions f 2 C1.M/

which satisfy d#f D 0. It was proved in [46] that ifM carries a Riemannian metric for
which # is parallel, thenH�

#
.M/ D 0. Aside from these general results, the computation

of Morse–Novikov cohomology is in general very difficult. For a nilmanifold or a
completely solvable solvmanifold7 the computation of the Morse–Novikov cohomology
can be performed algebraically; see [5,8,108], and [110]. For more details on the Morse–
Novikov cohomology, I refer the reader to [24, 46, 52, 76], and [77].

The significance of Morse–Novikov cohomology in the context of locally conformally
symplectic geometry stems from (2): if .M;!; #/ is a locally conformally symplectic
manifold then d# D 0 and d#! D d! � # ^ ! D 0, hence the 2-form ! defines a
cohomology class Œ!�# 2 H 2

#
.M/. The locally conformally symplectic structure is exact

if Œ!�# D 0, non exact otherwise. It is easy to see that a locally conformally symplectic
structure of the first kind is exact: by defining � D �{U!, where U is the Lee field, one
has ! D d��# ^�. The converse does not hold: in fact, being exact is an invariant of the
conformal class of a locally conformally symplectic structure, while being of the first kind
is not, as I remarked above. The locally conformally symplectic structures constructed by
Eliashberg andMurphy in [51] are exact. The importance of Morse–Novikov cohomology
in the context of locally conformally symplectic geometry is highlighted, for instance, by
the recent research papers [8, 93], and [126].

Locally conformally symplectic structures of the first kind are strictly related to contact
structures. A (co-orientable) contact structure on an odd-dimensional manifold P 2nC1
(n � 1) consists of a 1-form ˛ such that ˛ ^ .d˛/n ¤ 0 at every point. It follows readily
that the distribution � D Ker˛ is maximally non-integrable. Let .P; ˛/ be a contact
manifold and consider a strict contactomorphism, that is, a diffeomorphism 'WP ! P

satisfying '�˛ D ˛. Then, as observed for instance by Augustin Banyaga in [23], the
mapping torus8 P' admits a locally conformally symplectic structure of the first kind. In
the same paper, Banyaga proves a sort of converse to this result: namely, if a compact
manifoldM is endowed with a locally conformally symplectic structure of the first kind,
then there exist a compact contact manifold .P; ˛/ and a diffeomorphism 'WP ! P

such that M is diffeomorphic to the mapping torus P' . Banyaga’s result, however, does

7A nilmanifold is the quotient of a connected, simply connected nilpotent Lie group by a lattice. More
generally, a solvmanifold is a compact quotient of a connected, simply connected solvable Lie group by a lattice.
A solvmanifold is completely solvable if the adjoint representation on the corresponding Lie algebra has only
real eigenvalues.

8Given a topological spaceX and a homeomorphism 'WX ! X , the mapping torus or suspensionX' is the
quotient space ofX�R by theZ-action generated by 1 �.x; t/ D .'.x/; tC1/. The projection�WX' ! S1,
Œ.x; t/� 7! Œt� is a fiber bundle with fiberX . IfM is a smooth manifold and ' is a diffeomorphism, thenM'
is a smooth manifold andM !M' ! S1 is a smooth fiber bundle.
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not claim that the original locally conformally symplectic structure on M is related to
the mapping torus construction. A similar result, in which the given locally conformally
symplectic structure is preserved, is proved in [28].

Locally conformally symplectic structures of the second kind aremuch less understood.
Concerning, in particular, non exact structures, Banyaga [24] proved that there exist two
families of locally conformally symplectic structures on the 4-dimensional solvmanifold
constructed in [45] and that they are non exact. These are the first acknowledged examples
of this type of locally conformally symplectic structures. In [104, Appendix A] it
was shown that the locally conformally symplectic structures of the Oeljeklaus–Toma
manifolds constructed in [114] are not exact. In [6] the properties of non exact locally
conformally symplectic structures extensively are investigated, producing many new
examples.

It is interesting to notice that contact and locally conformally symplectic structures
come together also in the context of Jacobi structures. According to [74], indeed, a
transitive Jacobi manifold is a contact manifold if the dimension is odd and a locally
conformally symplectic manifold if it is even.

I conclude this section with a collection of results in locally conformally symplectic
geometry.

The problem of reduction in locally conformally symplectic geometry was tackled in
[77,78,104], and [113]. Related to this, the study of group actions on locally conformally
symplectic manifolds was addressed in [78] and, recently, a convexity result for the image
of the momentum mapping of twisted Hamiltonian torus actions was obtained in [32].
Such actions, and their connection with the existence of locally conformally symplectic
structures on the total space of fiber bundles with locally conformally symplectic fiber,
have also been considered in [125]. In [104] the authors use reduction to show that Hopf
manifolds (see Section 2) are universal models for compact, exact locally conformally
symplectic manifolds; this is analogous to Tischler’s result on universal models for
symplectic manifolds, see [141]. In [19] aMoser trick for locally conformally symplectic
forms is proved. The blow-up of a locally conformally symplectic manifold at a point
or along a compact symplectic submanifold, i.e. a submanifold such that the locally
conformally symplectic form restricts to a closed form, was constructed in [42] and [163].
A Lagrangian submanifold of a locally conformally symplectic manifold .M 2n; !; #/ is
a submanifold {LWLn ! M such that {�L! D 0; this notion is of conformal nature. A
result on neighbourhoods of Lagrangian submanifolds in locally conformally symplectic
manifolds was obtained in [127], analogous to the known result of Weinstein in the
symplectic case, [158]. The problem of displacing a Lagrangian submanifold in a locally
conformally symplectic manifold is tackled in the paper [41], which also contains some
interesting observations on the issues that appear when one tries to apply Floer’smachinery
or results such as Gromov compactness to the locally conformally symplectic situation.
Such issues depend, essentially, on the fact that ! is not closed, hence no bound à la
Gromov on the energy of a J -holomorphicmap is possible. The paper [136] suggests some
ideas on how to control the failure of Gromov compactness. The properties of the group
of diffeomorphisms preserving the conformal class of a locally conformally symplectic
structure are studied in [77]; see also [21, 22], and [97]. Finally, for a description of
locally conformally symplectic structures in the language of Lie algebroids as well as
some generalizations I refer the reader to the papers [84] and [85].
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2. Kähler and locally conformally Kähler geometry

A Kähler manifold is a complex manifold with admits a compatible Riemannian metric
such that the complex structure is parallel with respect to the Levi-Civita connection. The
Riemannian metric and the complex structure provide a non-degenerate 2-form which is
also parallel, in particular closed. Thus Kähler geometry lies at the intersection between
complex, Riemannian and symplectic geometry. The combination of three geometries
produces a class of manifolds which possess distinctive properties within each of the three
geometries.

As complex manifolds, Kähler manifolds can, to a certain extent, be studied with
methods of complex algebraic geometry; indeed, the main source of examples of compact
Kähler manifolds is provided by projective varieties, i.e. zero loci of homogeneous
polynomials in CPN . Informally, the extent to which the class of compact Kähler is
larger than the class of projective varieties is the content of the Kodaira problem:

Can every compact Kähler manifold be deformed to a projective manifold?
The answer to this question is, perhaps surprisingly, no. This was proved by Claire Voisin
in [155] and [156]; see also the survey [80]. A certain class of compact Kähler manifolds,
namely Hodge manifolds, can be holomorphically embedded into a complex projective
space: this is the content of Kodaira’s embedding theorem, see [154, Theorem 7.11]. In
this case the Kähler class is the pullback of the Fubini–Study class but the embedding is,
in general, not isometric.

From the perspective of Riemannian geometry, the reduced holonomy of a compact
Kähler manifold is contained in the unitary group U.n/, where n is half the dimension
of the manifold. Manifolds with special holonomy turn out to have many applications in
Physics, see for instance [83].

From the point of view of symplectic geometry, compact Kähler manifolds satisfy the
Hard Lefschetz property, see [79], while symplectic manifolds need not, see [26]. The
Lefschetz property implies the well-known fact that the Betti numbers of odd degree are
even on a compact Kähler manifold (this follows also directly from Hodge theory). In a
very actual research area such as homological mirror symmetry, the fact that a symplectic
structure is part of a Kähler structure on a compact manifold sheds a great deal of light in
the study of such duality; see by way of example [138]. I should also mention here that it
was originally believed, and to some extent even erroneously proved, see [75], that every
compact symplectic manifold admitted a Kähler metric. It was only in 1976 that Thurston
provided the first example of a compact symplectic manifold with first Betti number equal
to 3, hence no Kähler metric, see [140]. Since then, the quest for compact symplectic
manifolds with no Kähler metrics has inspired beautiful Mathematics; see for instance the
papers [55, 63, 99, 105] and the book [142].

Finally, concerning the topology of compact Kähler manifolds, I should point out that
they are formal in the sense of Sullivan, see [47], and that their fundamental groups are
constrained, see [4].

For many purposes it can be convenient to relax the strong integrability properties
characterizing the three geometries that come together in a Kähler structure9. The right

9I am intentionally vague here. I refer the reader to [2] for a more convincing explanation of this claim.
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framework to do this is that of almost Hermitian structures. An almost Hermitian structure
on a manifold consists of a triple .g; J; !/, where g is a Riemannian metric, J is an almost
complex structure and ! is a 2-form, called the Kähler form, such that J is an isometry
for g. Actually two of the three structures determine the third one through the equation

!.X; Y / D g.X; J Y / :

In their celebrated 1980 paper The sixteen classes of almost Hermitian manifolds and
their linear invariants [69], Gray and Luis Hervella classified almost Hermitian structures
in terms of the covariante derivative, with respect to the Levi-Civita connection, of the
Kähler form. Kähler structures are recovered as those almost Hermitian structures whose
Kähler form is parallel with respect to the Levi-Civita connection. This opens the doors to
a whole series of almost Hermitian structures in which some of the integrability properties
are not satisfied. Starting with this paper, the study of these structures was undertaken in
a systematic way. Notice that some of them had already appeared in the literature. For
instance, nearly Kähler structures were considered by Fukami and Ishihara in 1955 ([57],
on the six sphere) and then studied extensively by Gray in [66, 67], and [68]. Locally
conformally almost Kähler structures were discussed in Vaisman’s 1976 paper [146]. To
an almost Hermitian structure .g; J; !/ on M 2n with n � 2 one can associate the Lee
form # 2 �1.M/, defined as

# D �
1

n � 1
J.d�!/ : (4)

An almost Hermitian structure .g; J; !/ is locally conformally almost Kähler if d! D
# ^ ! and d# D 0. If J is integrable, than the locally conformally almost Kähler is
locally conformally Kähler. Thus a locally conformally Kähler structure is a Hermitian
structure such that d! D # ^ ! and d# D 0, with # the Lee form.

The cases n D 2 and n � 3 are slightly different, as already anticipated in Section 1.
In fact, if n D 2 there always exists a 1-form # such that d! D # ^ !, since the map
�1.M/ ! �3.M/, ˛ 7! ˛ ^ ! is an isomorphism; # , however, need not being closed;
moreover, one easily checks that d! D # ^ ! is equivalent to (4) for n D 2. If n � 3,
on the other hand, the equation d! D # ^ !, with # defined by (4), need not hold on a
generic Hermitian manifold; if it holds, however, # is automatically closed, because the
map �2.M/ ! �4.M/, ˇ 7! ˇ ^ ! is injective for n � 3. This discrepancy between
the cases n D 2 and n � 3 also reflects on the fact that, in complex dimension 2, there
exist only two “pure” classes in the Gray–Hervella classification. We shall also see that
locally conformallyKähler in complex dimension 2 are strictly related to various geometric
structures on 4-dimensional real manifolds.

Similarly towhat happened forKählermanifolds, locally conformallyKählermanifolds
can be considered simultaneously as complex, Riemannian and locally conformally
symplectic manifolds. As I mention above, a Kähler manifoldM 2n can be characterized
as a Riemannian manifold whose holonomy lies in U.n/. One could think of a conformal
version ofmanifolds with special holonomy. For instance, locally conformally hyperkähler
manifolds are studied in [50, Chapter 11]. References for locally conformally G2 and
Spin.7/ structures are [30, 43, 54], and [82].
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As it happens in the locally conformally symplectic case, a locally conformally Kähler
manifold is actually Kähler, in case # D 0, or globally conformal to a Kähler manifold,
if # is exact. In general, one can only argue that this conformal property holds locally. I
prefer to consider locally conformally Kähler manifolds as a class which is distinct from
that of Kähler manifolds; sometimes one uses the terminology strictly locally conformally
Kähler to indicate locally conformally Kähler metrics which are not globally conformally
Kähler. The reference for locally conformally Kähler geometry is the monograph [50] by
Dragomir and Ornea; see also [115] and [121].

Of particular importance within locally conformally Kähler manifolds are Vaisman
manifolds10; these are characterized by the property that the Lee form is parallel with
respect to the Levi-Civita connection. I will implicitly assume that k#k ¤ 0 on a compact
Vaisman manifold, hence # is nowhere zero and a Vaisman metric is nevery globally
conformally Kähler on a compact manifold. Similarly to the Kähler case, the topology of
a compact Vaisman manifold is constrained: of course, its Euler characteristic vanishes;
moreover, its first Betti number is odd and there is a Hodge-type decomposition of the de
Rham cohomology, see [87, 144], and [150].

An interesting example of a locally conformally Kähler manifold in complex
dimension 2 is the Hopf surface. This is a compact complex surface whose universal
cover is C2 n f0g. As shown in [60], each primary11 Hopf surface admits a locally
conformally Kähler metric and some Hopf surfaces (those of class 1) admit Vaisman
metrics (see also [128]). Since every primary Hopf surface is diffeomorphic to S3 � S1,
no Hopf surface admits Kähler metrics.

Notice that by a result of Franco Tricerri [143], a complex manifold has a locally
conformally Kähler metric if and only if its blow-up at one point does (see also [124]
and [157]). Thus, to study locally conformally Kähler metrics on compact complex
surfaces it is sufficient to restrict to minimal surfaces. This means that one has the full
power of the Kodaira-Enriques classification at hand. In [148, Theorem 2.1], Vaisman
proved that a locally conformallyKählermanifold .M; J; g/ is globally conformallyKähler
if and only if .M; J / admits some Kähler metric. It is well known that a compact complex
surface admits a Kähler metric if and only if its first Betti number is even. A posteriori,
this motivates the following question of Vaisman [152, Remark 1]:

Does every compact complex surface with odd first Betti number admit a
locally conformally Kähler metric?

Locally conformally Kähler, albeit non Vaisman, metrics on some Inoue surfaces have
been constructed by Tricerri in [143]. Afterwards, in [31], Florin Belgun carried out a
systematical analysis of locally conformally Kähler metrics on compact complex surfaces.
His analysis showed that locally conformally Kähler structures are quite different from
Kähler structures12. For instance, a small deformation of the complex structure of a
Kähler manifold remains Kähler (see [154, Theorem 9.23]). Belgun proved that this is

10Vaisman manifolds were first called generalized Hopf manifolds by Vaisman, see [150].
11AHopf surface is called primary if its fundamental group is isomorphic to Z. Every Hopf surface is finitely

covered by a primary one.
12In the short note [18], Aubin erroneously claimed that a compact locally conformally Kähler manifold is

actually Kähler.
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not the case for complex structures neither on locally conformally Kähler nor on Vaisman
manifolds. Indeed, he described a certain Inoue surface which carries locally conformally
Kähler metrics but admits deformations which do not carry any such metrics. The smooth
manifold underlying these complex manifolds has first Betti number equal to 1, thus
Belgun’s example also answers Vaisman’s question in the negative. See [56] for a report
on Vaisman’s question.

Apart from Hopf and Inoue surfaces, it was shown by Marco Brunella that Kato
surfaces admit locally conformally Kähler metrics (see [37] and [38]). A Kato surface
is a surface of class VII0 with b2 > 0 and which contains a global spherical shell13, see
[111,112], and [123]. The global spherical shell conjecture predicts that every class VII0
surface with b2 > 0 is a Kato surface. If the global spherical shell conjecture holds true,
the remaining non-Kähler compact complex surfaces admit locally conformally Kähler
metrics (see [49] and [139] for recent advances on this conjecture).

Building on the Kodaira-Enriques classification, the quest for suitable Hermitian
metrics on compact complex non-Kähler surfaces has been a very active area of research.
Perhaps the first instance of the intersection of this problem with the existence of locally
conformallyKählermetrics occurs in a paper byCharlesBoyer, see [35]. The author proved
that if a compact complex surfaceM with b1.M/ odd admits a Hermitian metric which is
conformally anti-self-dual (that is, the self-dual part of the Weyl tensor vanishes), then the
Hermitian metric is locally conformally Kähler; as remarked by Massimiliano Pontecorvo
in [130, Proposition 1.5], b1.M/ D 1 in this case. In [131], Pontecorvo recovers Boyer’s
result using twistor methods. In [94], Claude LeBrun addresses the question of which
compact complex surfaces admit a Hermitian metric which is Einstein. He proves that
if the starting metric is not Kähler, it must be globally conformally Kähler, and that the
compact complex surface is obtained from CP 2 by blowing up 1, 2 or 3 points in general
position. A bi-Hermitian structure on a compact complex manifold .M; J / (see [132]
and [135]) consists of a pair .JC D J; J�/ of complex structures onM , inducing the same
orientation, both orthogonal with respect to a common Riemannian metric g. It is usual
to assume that there exists x 2 M with J�.x/ ¤ ˙JC.x/. The study of bi-Hermitian
structures on compact complex surfaces with odd first Betti number, and of their relations
with locally conformally Kähler structures, was undertaken in [11,12] and [15]; see [133]
for an overview. Bi-Hermitian structures are also intimately related to generalized Kähler
structures, see [73, Theorem 1.16].

A strict locally conformally Kähler manifold is never simply connected. A locally
conformally Kähler manifold can be equivalently defined as a manifold admitting a Kähler
covering whose deck group acts by conformal transformations (see [150]). As proved
by Misha Verbitsky in [153], the Kähler metric on the universal covering of a Vaisman
manifold admits a global Kähler potential. Since this property is stable under small
deformations, a Vaisman structure deforms to a locally conformally Kähler one, not
necessarily a Vaisman one. Motivated by this observations, Ornea and Verbitsky defined a
class of locally conformally Kähler manifolds, which strictly contains Vaisman manifolds,
namely locally conformally Kähler manifolds with (proper) potential, see [119] and [122].

13A global spherical shell S in a compact complex surfaceM is a real submanifold diffeomorphic to S3,
such thatM n S is connected and S has a neighbourhood which is biholomorphic to an annulus in C2.
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Nice results for such manifolds are available. For instance, it was proved in [119] that they
admit an embedding into a Hopf manifold, provided the complex dimension is at least 3
(see also [118]). Hopf manifolds are generalizations of Hopf surfaces to arbitrary complex
dimensions: they are defined as quotients of Cn n f0g by a discrete subgroup of linear
holomorphisms. A primary Hopf manifold is the quotient of Cn n f0g by the action of the
abelian group generated by complex numbers �1; : : : ; �n, with 0 < j�1j � � � � � j�nj < 1,
where the action sends zi to �izi , for i D 1; : : : ; n (see [86]). Compact Vaisman
manifolds can be embedded into primaryHopfmanifolds. In this sense, Vaismanmanifolds
and, more generally, locally conformally Kähler manifolds with proper potential are the
analogue ofHodgemanifolds inKähler geometry. In locally conformallyKähler geometry,
the statement corresponding the the Kodaira problem in Kähler geometry would be the
following:

Can every compact locally conformally Kähler manifold be deformed to a
Vaisman manifold?

This is certainly not true, in general; indeed, anyVaismanmanifold has vanishing Euler
characteristic; its blow-up at one point does have a locally conformally Kähler metric, but
the Euler characteristic is positive, hence it can not carry any Vaisman metric14. However,
every compact locally conformally Kähler manifold with potential can be deformed to a
Vaisman one, as shown in [120, Theorem 2.1].

Recall that a compact locally conformally Kähler manifold is globally conformally
Kähler if and only if the underlying complex manifold admits a Kähler metric. Related to
the above question, I mention the following two conjectures (see [147] and [148]):
– A compact locally conformally Kähler manifold satisfying the topological conditions
of a Kähler manifold admits some global Kähler metric.

– A compact locally but not globally conformally Kähler manifold has an odd-degree
Betti number which is odd.

As I remarked above, the first Betti number of a compact Vaisman manifold is odd, hence
the second conjecture holds for locally conformally Kähler manifolds with potential. A
compact complex surface which admits a locally conformally Kähler but noKähler metrics
has odd first Betti number. In [114] Karl Oeljeklaus and Matei Toma disproved the second
conjecture by constructing a compact complex 3-fold admitting locally conformally Kähler
metricswith all odd-degreeBetti numbers even. The so-calledOeljeklaus–Tomamanifolds
are generalizations to arbitrary complex dimensions of Inoue surfaces. They can also be
described as solvmanifolds, see [88]; their de Rham and Morse–Novikov cohomologies
have been computed in [81]. Oeljeklaus–Toma manifolds also give a further negative
answer to the Kodaira problem in the locally conformally Kähler context.

The above mentioned result of LeBrun [94] implies that on a compact complex surface
there exist no strictly locally conformally Kähler metrics which are Einstein. In complex
dimension greater than 2, Andrzej Derdziński and Gideon Maschler [48] proved that in,
the compact case, the only Kähler metrics which are conformal (but not homothetic) to an
Einstein metric are those constructed by Lionel Bérard-Bergery in [33]. In [101], Farid
Madani, Andrei Moroianu and Mihaela Pilca consider locally conformally Kähler metrics

14I would like to thank Liviu Ornea for pointing this fact out to me.



140 G. Bazzoni

which are Einstein, showing that they are globally conformally Kähler with positive scalar
curvature and that the only examples are those of LeBrun (n D 2) or Bérard-Bergery
(n � 3). The authors also study the holonomy of proper15 locally conformally Kähler
metrics. They show that if the holonomy is not generic, then either the metric is Vaisman
or globally conformally Kähler; in the latter case, the reduced holonomy is U.n/ or
SO.2n � 1/, being n the complex dimension of the manifold, and some classification
results are given.

Although the complex structure is not parallel with respect to the Levi-Civita
connection, it can be useful to have an auxiliary metric connection which does fulfill
this property. To any Hermitian structure .g; J / on a manifold M one can associate a
unique connection, called Chern connection rC , which satisfies rCg D 0 D rCJ and
whose torsion T is of type .2; 0/, that is,

T .JX; Y / D JT .X; Y / 8X; Y 2 X.M/ :

The Chern connection coincides with the Levi-Civita connection if the Hermitian structure
is Kähler. In [58] Gauduchon associated a 1-form z# to the Chern connection, the torsion
1-form, as follows:

z#.X/ D trace.Y 7! T .X; Y // :

One can show that z# D .n � 1/# , hence the Lee form and the torsion 1-form are strictly
related. Thus the Lee form of a locally conformally Kähler structure measures, in a certain
sense, its lack of integrability, where integrability is the Kähler case.

A Weyl structure on a conformal manifold .M; c/ is a torsion-free linear connec-
tion rW , the Weyl connection, which preserves the conformal class c. This means that
there exists a 1-form # such that rW g D g˝ # for every g 2 c. A conformal Hermitian
manifold is a conformal manifold .M; c/ with a complex structure J which is Hermitian
for some, hence all, g 2 c. If rW J D 0, then .M; c; J / is a Kähler–Weyl manifold. As
pointed out by Kokarev in [89], locally conformally Kähler manifolds are examples of
Kähler–Weyl manifolds; the Weyl connection is related to the Levi-Civita connection r
by the formula

r
W
X Y D rXY �

1

2
#.X/Y �

1

2
#.Y /X C

1

2
g.X; Y /U ;

whereU D #] is the Lee field. This point of view on locally conformally Kähler geometry
was adopted in [89] and [90], with applications to the topology of compact Vaisman16
manifolds, in particular their fundamental group.

Since the Lee form of a Vaisman structure is parallel, the results of [46] imply that the
underlying locally conformally symplectic structure is exact. But more is true: if .g; J /
is Vaisman then, up to a homothety, one can assume that k#k D 1 and one can show
that the underlying locally conformally symplectic structure is of the first kind, see [19]
and [50]; more precisely, one has LU! D 0 and ! D d� � � ^ # for � D �{U! (see
also [115, Section 9]).

15A locally conformally Kähler structure is proper if the Lee form does not vanish identically.
16Kokarev defined in [89] pluricanonical locally conformallyKählermetrics (actuallyKähler–Weyl structures)

as those for which .r#/1;1 D 0. In [120] it was erroneously claimed that a locally conformally Kähler metric
is pluricanonical if and only if it admits a potential. The mistake was clarified in [109] and [122], where it was
proved that a compact pluricanonical locally conformally Kähler manifold is in fact Vaisman.
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In Section 1 we discussed the relation between locally conformally symplectic
structures of the first kind and contact structures. A similar relation exists betweenVaisman
and Sasakian structures. A Sasakian structure is a normal contact metric structure, see [34]
and [36]. Indeed, the mapping torus of a Sasakian manifold and a Sasakian automorphism,
that is, a diffeomorphism which respects the whole Sasakian structure, carries a natural
Vaisman structure. In [117] the authors claimed that, in the compact case, the converse
also holds; as explained in [122], however, the proof is flawed. Nevertheless, the result
holds up to diffeomorphism: a compact Vaismanmanifold is diffeomorphic to themapping
torus of a Sasakian manifold and a Sasakian automorphism. Morally, this discrepancy
between the two directions in similar to what happens in the non-metric case. Based
on this approach, a global splitting result for compact Vaisman manifolds was obtained
in [29]. As in the non-metric case, let me notice the absence of structure results for
compact locally conformally Kähler manifolds which are not Vaisman.

Analogous to the symplectic versus Kähler case, Ornea and Verbitsky formulated
in [121] the following problem:

Construct a compact locally conformally symplectic manifolds which admits
no locally conformally Kähler metrics.

A first answer to this question was provided by Bande and Kotschick in [20]. Different
answers are contained in [27] and [28].

Related to this problem is a conjecture of Ugarte which aims to give a complete
characterization of locally conformally Kähler structures on nilmanifolds. In [145, p. 200],
he conjectured the following:

A compact nilmanifold of dimension 2n � 4 admitting a locally conformally
Kähler structure is the product ofN withS1, whereN is a quotient ofH.1; n/.

HereH.1; n/ is the generalized Heisenberg group,

H.1; n/ D

‚0BBBBBBBBB@

1 y1 y2 : : : yn z

0 1 0 : : : 0 x1
::: 0

: : :
: : :

::: x2
:::

:::
: : :

: : : 0
:::

:::
:::

: : : 1 xn
0 0 : : : : : : 0 1

1CCCCCCCCCA
j xi ; yi ; z 2 R; i D 1; : : : ; n

ƒ

:

The conjecture holds in full generality in dimension 4 ([27]). In higher dimension it holds
if one assumes that the complex structure of the locally conformally Kähler structure is
invariant17 (see [137]) or if the locally conformally Kähler structure is Vaisman (see [25]).

We mention here the fact that compact Vaisman manifolds satisfy a Hard Lefschetz
property (see [39]); this result builds on the Hard Lefschetz property for compact Sasakian
manifolds proved in [40]. Again, the lack of structure theorems for general locally
conformally Kähler manifolds reflects on the absence of a Hard Lefschetz property in the
most general setting.

17This means that it comes from a left-invariant complex structure on the corresponding Lie group.
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Compact Vaisman manifolds are, in general, non-formal. In 2001, Kotschick
introduced the notion of geometric formality: a closed manifold is geometrically formal if
it admits a Riemannian metric such that the product of two harmonic forms is harmonic
(see [91]). Geometric formality implies formality in the sense of Sullivan, but the converse
is not true, see for instance [92]. In [116], Ornea and Pilca showed that geometrically
formal compact Vaisman manifolds obey to strong topological restrictions. It is not yet
clear the extent to which a compact Vaisman manifold is non formal.

I end this section by quoting some other results about locally conformally Kähler
manifolds.

Homogeneous locally conformally Kähler structures are in fact Vaisman, see [3]
and [59]. Locally conformally Kähler structures on four-dimensional solvable Lie algebras
have been classified in [7]. The papers [61] and [62] consider the problem of reduction
in locally conformally Kähler geometry. In [62] the authors introduce the notions of
presentation and rank of a locally conformally Kähler manifold. The rank of a locally
conformally Kähler structure and his relation with other properties such as the existence
of a potential have been further investigated in [129]. Toric locally conformally Kähler
manifolds, and in particular Vaisman, are considered in [102]. In [10], the authors study
isometric embeddings of locally conformally Kähler manifolds in some Hopf manifold,
with special emphasis on the case of surfaces. An interesting contact point between locally
conformally symplectic and Kähler geometry appears in the papers [13] and [14]. The
authors consider locally conformally symplectic structures .!; #/ on compact complex
surfaces .M; J / such that ! tames J , i.e. the .1; 1/-part of ! is positive definite. The
Morse–Novikov cohomology of locally conformally Kähler surfaces has been investigated
in [126]. Results on the deformations of Lee classes of locally conformally Kähler
structures have been obtained in [65]. In [144], the author also addressed the question
of which subset of H 1

dR
.M/, beingM a compact Vaisman manifold, is occupied by Lee

classes of Vaisman metrics. In the more general context of Hermitian structures, metrics
which are locally conformal to notable ones, for instance to balanced ones, have been
studied in [9].

3. Classical mechanics

Now those Quantities which I consider as gradually and indefinitely increasing, I shall hereafter call
Fluents, or Flowing Quantities, [ . . . ] And the Velocities by which every Fluent is increased by its
generating Motion, (which I may call Fluxions, or simply Velocities or Celerities,) [ . . . ]
The Relation of the Flowing Quantities to one another being given, to determine the Relation of
their Fluxions.
A relation being proposed, including the Fluxions of Quantities, to find the Relations of those
Quantities to one another.

— Sir Isaac Newton, De methodis serierum et fluxionum, 1671.18

18I am grateful to Prof. Antonio Giorgilli for having written amazing lecture notes for the Mathematical
Physics courses he taught at University of Milano-Bicocca. As an undergrad I was lucky enough to attend a few
of them, a very fruitful experience. His lecture notes contained, among other things, this reference to Newton’s
original work; see http://www.mat.unimi.it/users/antonio/meccanica/meccanica.html.

http://www.mat.unimi.it/users/antonio/meccanica/meccanica.html
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The three sentences of Isaac Newton define the objects of interest and summarize the
goals of the study of dynamical systems. It was Newton who gave a mathematically
precise definition of the three laws that govern classical mechanics, that is, the study of
the movement of a body as a response to being exposed to a force. He developed a
theory, called in his honor Newtonian mechanics, to state and solve the problems posed
by classical mechanics, notably arising from planetary motions. In this formalism, the
equations of motion of a physical system with n degrees of freedom are given as solutions
of n differential equations involving velocities and their derivatives (that is, differential
equations of order 2).

Analytical techniques in the study of the problems of classical mechanics, especially
celestial mechanics, were brought in by Joseph-Luis Lagrange at the beginning of the
19th century, founding what is nowadays known as Lagrangian formalism; an important
role in this formalism is played by the principle of minimal action. In particular, as
recalled byWeinstein in [159], in his 1808 bookMémoire sur la théorie des variations des
éléments des planètes, Lagrange uses explicitly a certain skew-symmetric 6 � 6 matrix.
The appearence of geometric techniques in classical mechanics is due to William Rowan
Hamilton, who rewrote Newton’s equations as a set of 2n differential equations of order 1.
In terms of position coordinates .q1; : : : ; qn/ and corresponding momenta .p1; : : : ; pn/,
the motion is governed by a function H D H.q1; : : : ; qn; p

1; : : : ; pn/, the Hamiltonian
of the system, through the equations

˚
Pqi D

@H

@pi
;

Ppi D � @H
@qi
:

(5)

Nowadays19 it is known that, in the simplest case, the phase space of a Hamiltonian system
is the cotangent bundle T �Q of a manifold Q which parametrizes the positions q of the
physical system; the corresponding momenta p live on the fibers of the cotangent bundle
over a point q 2 Q and the Hamiltonian of the system is H 2 C1.T �Q/. T �Q is in a
natural way a symplectic manifold; the symplectic form on T �Q is very easy to describe:
if � WT �Q ! Q is the canonical projection, define the Liouville or tautological 1-form
�can 2 �

1.T �Q/ by �.q;p/.v/ D p.d�.q;p/.v// for a tangent vector v at T.q;p/T �Q.
Then !can D �d�can is a symplectic form on T �Q; in local coordinates, one has
!can D

Pn
iD1 dqi ^ dp

i . In the Hamiltonian formalism, the equations of motions (5)
are given as integral curves of the Hamiltonian vector field XH ; if H WT �Q ! R is the
Hamiltonian function of the system, then XH is uniquely determined by the condition
dH D !can.XH ; �/.

From the point of view of Hamiltonian formalism, the fact that non-degeneracy is
a local condition implies that the definition of the Hamiltonian vector field is local.
Following the illuminating introduction of Vaisman’s paper [146], I propose to show that
locally conformally symplectic manifolds provide an adequate and more general context
for Hamiltonian mechanics. One can make the Ansatz that the dynamics on the phase

19One could name here many other scientists who contributed to elaborate thorough foundations for classical
mechanics— I prefer to direct the reader to the muchmore complete references [1,16,44,64] for further historical
and mathematical background.
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space consists of the orbits of a globally defined vector field X . Consider an open set
U˛ � T �Q with local coordinates .q˛1 ; : : : ; q˛n ; p1˛; : : : ; pn˛/. Then one obtains a local
functionH˛WU˛ ! R such that the orbits ofX are defined by a local version of Hamilton’s
equations, ˚

Pq˛i D
@H˛
@pi˛

Ppi˛ D �
@H˛
@q˛
i

(6)

Of course, X is the Hamiltonian vector field of the local Hamiltonian function H˛ with
respect to the local symplectic form !˛can D

Pn
iD1 dq

˛
i ^ dp

i
˛ . Suppose fU˛g˛ is an open

covering of T �Q. One then usually requires f!˛cang and fH˛g to piece together to a global
symplectic form !can and a global Hamiltonian H . However, following our Ansatz, in
order to globalize this local assertion one only needs to prescribe the fact that the transition
functions

q
ˇ
i D q

ˇ
i .q

˛
j ; p

k
˛/ and piˇ D p

i
ˇ .q

˛
j ; p

k
˛/ (7)

on U˛ \ Uˇ preserve (6). Of course, if (7) are canonical transformations of the phase
space, then !˛can D !

ˇ
can and one is back to the symplectic context. However, allowing a

homothetical change of coordinates, i.e. taking Hˇ D �ˇ˛H˛ for a constant �ˇ˛ ¤ 0,
then !˛can D �ˇ˛!

ˇ
can. Thus our phase space consists of T �Q with an open covering fU˛g

and a symplectic form !˛can on each U˛ such that, on U˛ \ Uˇ ¤ ;,

!˛can D �ˇ˛!
ˇ
can : (8)

Equation (8) implies that the collection f�˛ˇ g satisfies the cocycle condition�ˇD�ˇ˛�˛ ,
hence one obtains a real line bundle L ! T �Q with transition functions f�˛ˇ g. The
globalHamiltonian is not anymore a smooth function on T �Q but rather a smooth section
of L. The cocycle condition can be rephrased by saying that

�ˇ˛ D
e�˛

e�ˇ

for functions �˛WU˛ ! R (resp. �ˇ WUˇ ! R). Now equation (8) shows that the
collection of local 2-forms fe�˛!˛cang piece together to a global, non-degenerate 2-form !

on T �Q. Clearly, the 1-forms fd�˛g piece together to a 1-form # and d! D # ^!. Thus,
# is the Lee form of the locally conformally symplectic structure .!; #/ and .T �Q;!; #/
is a locally conformally symplectic manifold.

As pointed out in [77], given any manifold Q with a closed 1-form x# , the cotangent
bundle T �Q admits a canonical exact locally conformally symplectic structure

.!; #/ D .d#.��can/; #/ ;

where � WT �Q! Q is the canonical projection and # D ��x# .
I conclude this jaunt into classical mechanics by mentioning a couple of more papers

where ideas of conformally symplectic geometry find applications to physical problems.
Let .M;!/ be a symplectic manifold, let H 2 C1.M/ be a Hamiltonian function

andXH be the corresponding Hamiltonian vector field. If f 2 C1.M/ is a function, then
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the vector field efXH is conformally Hamiltonian with Hamiltonian H and conformal
factor ef . It clearly satisfies ef dH D !.efXH ; �/. Moreover, efXH is the Hamiltonian
vector field ofH for the 2-form!0 D e�f !, which is not closed anymore, but conformally
closed with Lee form �df .

In [100] Maciejewski, Przybylska and Tsiganov consider conformally Hamiltonian
vector fields in the theory of bi-Hamiltonian systems, in order to produce examples of
completely integrable systems.

In [103] Marle used conformally Hamiltonian vector fields to study, in a new
perspective, a certain diffeomorphism between the phase space of the Kepler problem
and an open subset of the cotangent bundle of S3 (resp. of a 2-sheeted hyperboloid,
according to the energy of the motion).

In [162], Wojtkowski and Liverani apply the formalism of conformally symplectic
geometry in order to model concrete physical situations such as the Gaussian isokinetic
dynamics, also with collisions, and the Nosé–Hoover dynamics. More precisely, the
authors show that such systems fall under the formalism of conformal Hamiltonian
dynamics and explain how to easily deduce results about the symmetry of the Lyapunov
spectrum.
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