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Abstract. A new framework for the optimal control of probability density functions (PDF) of
stochastic processes is reviewed. This framework is based on Fokker–Planck (FP) partial differential
equations that govern the time evolution of the PDF of stochastic systems and on control objectives
that may require to follow a given PDF trajectory or to minimize an expectation functional.
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1. Introduction

The modeling and control of stochastic processes is a very active research field because of
many present and envisioned application in finance, sciences, and technology. We refer
to different stochastic processes as Itō, subdiffusion, jump, and piecewise-deterministic
models as stochastic systems. The research on stochastic systems is sustained by a well es-
tablished mathematical theory [13,49,68,116,122] that provides tools for the investigation
of the time evolution of random quantities in many practical cases. In particular, one of
the main tools for analysing stochastic processes is the fact that the evolution of the prob-
ability density function (PDF) associated to the state of these processes is governed by a
linear time-dependent partial differential equation (PDE), starting from a given initial PDF
configuration; see, e.g., [53,106,108]. Indeed, the structure of this linear PDE depends on
the features of the process as we illustrate in this paper. In particular, we remark that these
so-called Fokker–Planck (FP) equations can be derived from the Chapman-Kolmogorov
equation for the transition probability function of a Markov process. A possible extension
of FP equations to model non-Markovian processes is also possible and results in PDEs
with a special structure. Notice that FP equations have been investigated in many works
and in the literature they are named after many famous scientists including Kolmogorov,
Fokker, Planck, Einstein, and Smoluchowski. We use the termFP equation for convenience
and refer to, e.g., [53] for an historical account of the subject.

However, while the FP equation has been considered for long time to model the time
evolution of stochastic processes, it is only recently that a control framework for these
processes based on the FP equation has been proposed; see [5] for an earlier publication.
Following this publication, the Authors of this review have considerably developed this
topic [5–10,12,30,66,67,96,97,109,110,118] and witnessed a surge of research work in
this field focusing on FP models and related control problems; see, e.g., [24, 26, 29, 57–
59,75, 78, 79, 127].

For this reason, we believe that the review, presented in this paper, of these recent
developments in an emerging field of applied mathematics is timely and appropriate and
may boost further research on this subject.

In the following, we illustrate different stochastic systems and the corresponding FP
equations. We start our discussion considering the Itō stochastic model. It is a continuous-
time stochastic process described by the following multidimensional stochastic differential
equation (SDE) with given initial condition(

dXt D b.Xt ; t / dt C �.Xt ; t / dWt ;

Xt0 D X0;
(1.1)

where the state variableXt 2 � � Rd is subject to deterministic infinitesimal increments
driven by the vector valued drift function b, and to random increments proportional to
a multi-dimensional Wiener process dWt 2 Rm, with stochastically independent com-
ponents. We assume that the dispersion matrix � 2 Rd�m is full rank. Concerning
the existence and uniqueness of solutions Xt to (1.1), for a given realization of Wt ; see,
e.g., [68,116]. As discussed in [61] Remark 2.1, pag. 161, we assume that the space of the
stochastic processes is the one adapted to the filtration generated by the Wiener process.
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The FP equation associated to the process (1.1) is given by

@tf .x; t/ �

dX
i;jD1

@2xixj

�
aij .x; t/ f .x; t/

�
C

dX
iD1

@xi

�
bi .x; t/ f .x; t/

�
D 0; (1.2)

f .x; 0/ D f0.x/; (1.3)

where f denotes the PDF of the process, f0 represents the initial PDF distribution, and
hencef0.x/ � 0with

R
�
f0.x/ dx D 1. The diffusion coefficient is given bya D � �>=2,

with elements

aij D
1

2

mX
kD1

�ik �jk :

Notice that in the FP equation (1.2), the “space” dimension corresponds to the number
of components of the stochastic process. We remark that by dealing with (1.2)–(1.3), we
are restricting the statistical analysis to those processes that own an absolutely continuous
probability measure.

While we focus our discussion on linear FP problems, at this point we mention that
there exists a special class of problems with the structure (1.1) that leads to a nonlinear FP
extension of (1.2)–(1.3). This class of problems is the focus of the mean-field approach
that is discussed in Section 3 below.

The FP problem (1.2)–(1.3) and the following ones, can be defined in bounded or
unbounded domains in Rd . Existence and uniqueness of solutions to these problems
often relay on the concept of uniform parabolicity. For the case � D Rd , we refer to,
e.g., [14,25,61,89] and the references therein. In the case of bounded domains, boundary
conditions for the FP model must be chosen that ought to be meaningful for the underlying
stochastic process, as for example in the case of absorbing and reflecting barriers [113].
Specifically, an absorbing barrier is one where the process leaves the domain � and
the corresponding boundary condition for the FP equation corresponds to homogeneous
Dirichlet boundary conditions. On the other hand, reflecting barriers let the process remain
in� and thus the corresponding FP boundary conditions are modelled by the requirement
that the flux of probability is zero. For this purpose, notice that the FP equation (1.2) can
be written in flux form: @tf D r � F.x; t If /, where the i th component of the flux is
given by

Fi .x; t If / D

dX
jD1

@xj

�
aij .x; t/ f .x; t/

�
� bi .x; t/ f .x; t/:

Therefore zero-flux (reflecting) boundary conditions are given by

F � n D 0; on @� � .0; T /; (1.4)

where n is the unit outward normal to @�.
The stochastic model (1.1) appears in, e.g., the simulation of Brownian motion with

drift, as a Langevin equation, and it represents also a basic model in finance. However,
in some applications in biology and physics, anomalous diffusion processes are observed
that can be modelled by an extension of (1.1). The diffusion process is said to be normal
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when the variance of the process grows linearly in time, i.e. Var.Xt / / t , which is the
case of the Wiener process. If the variance grows in time as Var.Xt / / t˛ , with exponent
˛ ¤ 1, then the diffusion is said to be anomalous. In particular, a subdiffusion process is
described by a state variable Y.t/ 2 Rd driven by the following model [92, 123]�

Yt D XS.t/;

dX� D b.X� ; �/ d� C �.X� ; �/ dW� ;

X�0 D X0:

(1.5)

The inverse-time ˛-stable subordinator S.t/ 2 R is defined as a first-passage time process,
S.t/ D inff�; U.�/ > tg, where U represents a strictly increasing ˛-stable Lévy motion,
˛ 2 .0; 1/. Moreover, the processes W� and S.t/ are assumed to be independent.

By denoting with f .x; t/ the PDF for the process Y.t/, driven by (1.5), the following
fractional FP equation results [92, 94, 95]

@tf .x; t/ � 0D
1�˛
t

� dX
i;jD1

@2xixj

�
aij .x; t/f .x; t/

�
�

dX
iD1

@xi

�
bi .x; t/f .x; t/

��
D 0;

f .x; 0/ D f0.x/:

In this problem, the operator

0D
1�˛
t g.t/ D

1

�.˛/
@t

Z t

0

.t � s/˛�1g.s/ ds;

represents the fractional Riemann–Liouville derivative. Notice that the non-Markovian
process Y.t/ results in a nonlocal differential operator in the (fractional) FP equation.

We see that in the Itō model (1.1) and in the subdiffusion model (1.5), noise is added
to a deterministic evolution equation to model random perturbations. On the other hand,
random perturbations can also be modelled by events that change the deterministic motion
at isolated instants of time as in, e.g., queueing and renewal processes [46].

A large effort has been put in the investigation of the dynamics of jump-diffusion
processes; see, e.g., [13]. In this case, the time evolution of the state process Xt can
be described by a stochastic differential equation that adds to the Itō model a compound
Poisson process Pt 2 Rd as follows

dXt D b.Xt ; t / dt C �.Xt ; t / dWt C dPt ; (1.6)

where Pt has inter-event time �t exponentially distributed as �e���t , and represents the
rate of jumps. In this process, the amplitude of the state jumps is distributed according to
a PDF function g D g.x/.

The evolution of the PDF of (1.6) is modelled by a FP partial-integro differential
equation [66], whose integral part is due to the compound Poisson process Pt , as follows

@tf .x; t/ �

dX
i;jD1

@2xixj

�
aij .x; t/f .x; t/

�
C

dX
iD1

@xi

�
bi .x; t/f .x; t/

�
D �

Z
�

�
f .x � y; t/ � f .x; t/

�
g.y/ dy: (1.7)
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Next, we illustrate a less investigated point process where a dynamical system changes
its deterministic structure at random points in time following a discrete Markov process.
These processes were first discussed in [83, 101], whereas a first mathematical character-
ization of systems that switch randomly within a certain number of deterministic states
at random times is given in [49]. In this reference, the name piecewise-deterministic
processes (PDP) appears for the first time. PDP processes may also include stochastic
hybrid systems and switching systems; see, e.g., [16, 38, 40, 45, 56].

For our discussion, we consider a class of PDP models described by a state function
that is continuous in time and is driven by a discrete state Markov process as follows

PX.t/ D AS.t/.X/; t 2 Œt0;1/; (1.8)

whereS.t/W Œt0;1/! S is theMarkov processwith a discrete set of statesS D f1; : : : ; Sg.
This PDP model is characterized by two random processes: (1) a Poisson process for the
switching times having an exponential PDF of transition events as follows

 s.t/ D �se
��s t ; with

Z 1
0

 s.t/ dt D 1; (1.9)

for each state s 2 S; and (2) at the jump times, the process S.t/ changes its value based
on a stochastic transition probability matrix, fqij g, with the following properties

0 � qij � 1;

MX
iD1

qij D 1; i; j 2 S:

Given s 2 S, we say that the dynamics is in the (deterministic) state s, and it is
driven by the function As W�! Rd , which belongs to the set of functions fA1; : : : ; ASg.
The state function satisfies the initial condition X.t0/ D X0 2 �, being in the initial
state s0 D S.t0/. These models include dichotomic noise, random telegraph processes,
transport processes, and binary noise. Further, applications include reacting-diffusing
systems [93], biological dispersal [2, 120], non-Maxwellian equilibrium [3, 11, 102], and
filtered telegraph signal [105, 125].

Corresponding to the PDP model (1.8), we have the following FP system of first-order
hyperbolic PDEs with coupling depending on the stochastic transition matrix as follows
[8, 19, 44]

@tfs.x; t/C @x
�
As.x/ fs.x; t/

�
D

SX
jD1

Qsj fj .x; t/; s D 1; : : : ; S; (1.10)

whereQsj , depending on �j and qsj , is given by

Qsj D

(
�j qsj ; if j ¤ s;
�s .qss � 1/:

(1.11)

We see that the FP framework provides a unique bridge between SDEs and PDEs, and
many of these PDEs constitute a focus of modern developments in appliedmathematics. In
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fact, notice that FP equations of multi-dimensional stochastic processes give rise to high-
dimensional PDEs, also of fractional type; moreover, notice that jump-diffusion processes
give rise to integro-PDEs, etc. These are all emerging topics in applied mathematics.

It is the aim of this paper to illustrate a new control strategy for stochastic systems
based on the corresponding FP models. As in any other control approach to stochastic
processes, the first step in the formulation of a control mechanism is to include control
functions in, e.g., the drift and/or dispersion coefficients of the stochastic differential
model. Specifically, we focus on the case where the drift coefficient b is a function of a
control u. However, the FP control framework accommodates equally well other control
mechanisms that may enter in any of the coefficients characterizing the stochastic process
and appearing in the corresponding FP models.

The next step in the formulation of any control scheme is to model the objective of the
control. In particular, it may be required to drive the random process to follow a desired
trajectory or attain a required terminal configuration. In the framework of stochastic
optimal control, these tasks are formulated by introducing an objective functional that
depends on the state and control variables. For non-deterministic processes the state
evolutionXt is random, so that a direct insertion of a stochastic process into a deterministic
objective functional results into a random variable. Therefore, to define a deterministic
objective, the average on all possible trajectoriesXt is required [62]. With this procedure,
the following objective is usually considered

J.X; u/ D E

� Z T

0

L
�
t; Xt ; u.�; t /

�
dt C‰ŒXT �

�
; (1.12)

where EŒ�� represents the expectation on the measure of the stochastic process. This
formulation is omnipresent in almost all stochastic optimal control problems considered
in the scientific literature; see, e.g., [62, 103].

We notice that in this approach the control must be aware of all realization of the
state at all times. On the other hand, the stochastic process can be characterized by its
statistical features, described by the PDF distribution. This fact has motivated much
work on different control strategies that consider the ensemble of all possible trajectories.
In [63,82,85,121] PDF-based control schemeswere proposed, where the objective depends
on the PDF of the stochastic state variable. In this way, a deterministic objective results
and no average is needed, and along these lines, past scientific literature has dealt with
alternative objectives as in [82,85], where the objective is defined by the Kullback–Leibler
distance between the state PDF and a desired one. On the other hand, in [63,121] a square
distance between the state PDF and a desired PDF is considered. Although these works
consider deterministic objectives formulated with the PDF, they use stochastic models and
the state PDF is obtained by interpolation techniques.

The last conceptually innovative step of using the FP equation tomodel the evolution of
the PDF associated to a stochastic system appears for the first time in [5–8], where a control
framework that considers stochastic control problems from a statistical point of view, with
the perspective to drive the collective behaviour of the process, is investigated. This
alternative approach reformulates the control problem from stochastic to deterministic,
based on the fact that the state of a stochastic process can be completely characterized
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by the PDF. Notice that solving the FP equation, a time-dependent PDF is obtained that
can describe non-equilibrium statistics. We remark that independently of the references
above, the possibility of formulating control problems with density function models as the
FP equation was mentioned in [31, 32].

From the discussion above, it is clear that the formulation of control objectives in terms
of the PDF and the use of the FP equation provide a consistent framework to formulate a
robust optimal control strategy for stochastic processes. The working paradigm of the FP-
based control of stochastic models is the following. First, one reasonably assumes that the
initial PDF of the state variable is known at the initial time, and the state variableXt evolves
according to a stochastic differential model subject to the action of a multidimensional
controller u. Corresponding to this controlled model, we have a FP equation that includes
the same controls in its coefficients. This FP equation and a PDF-based objective define an
open-loop FP optimal control problem whose solution provides the control sought. In this
way, the problem of controlling a stochastic process is put in the realm of optimal control of
PDE models where many theoretical results and powerful solution tools are available; see,
e.g., [27,90,119] and references therein. In particular in [5–8], a model predictive control
(MPC) approach [71, 72] is pursued to construct fast closed-loop control schemes for the
stochastic systems under consideration. These MPC schemes provide robust controllers
that apply equally well to linear and nonlinear models and allow to accommodate different
control- and state constraints [72, 80]. Recently, a more extensive theoretical analysis for
space-time dependent controls has been presented in [57, 58, 109, 110].

We remark that the direct connection between stochastic models and the related FP
equations clarifies also the meaning and choice of different functional dependencies of
the control function with respect to the space and time variables. In fact, through the
identification Xt D x at time t , we can identify the control entering in the SDE model as
u D u.Xt ; t / with the control function appearing in the FP equation as u D u.x; t/. Thus
formally a space-time dependent control function may correspond to a time-dependent
feedback law, and this fact immediately suggests a connection between the Hamilton–
Jacobi–Bellman (HJB) and the FP control frameworks. In this paper, we discuss this
connection and show that the FP-based strategy provides the same optimal control as the
HJB method for an appropriate choice of the objectives.

In the following section, we introduce the FP control framework within the Lagrange
formalism and discuss the optimality systems corresponding to specific choices of the
objectives. We illustrate how the solution to the optimality system with forward- and
adjoint FP equations and an optimality condition equation characterize the optimal control
solution. We also comment on appropriate discretization schemes for the FP equation.
These schemes provide stable and accurate approximation, while guaranteeing positivity
and conservation of total probability. In Section 3, we discuss the case ofN coupled SDEs,
with a special structure of the coupling, and discuss the limitN !1. We show that with
this limit a mean-field SDE is obtained whose PDF is governed by a nonlinear FP model,
which we use to discuss the case of nonlinear FP control problems. In Section 4, the
connection between the HJB control framework and the FP control strategy is discussed.
In Section 5, we complete our discussion on the FP optimization strategy reviewing works
on inverse problems (parameter identification, calibration) governed by the FP equation.
Section 6 is devoted to applications. We consider the control of a quantum spin system
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described by a stochastic Lindblad master equation, the control of motion of a pedestrian
in a crowd, and the optimal control of a PDP system arising in biology. A section of
conclusions completes this work.

2. The Fokker–Planck control framework

In this section, we illustrate the Fokker–Planck control framework for different stochastic
processes and discuss the derivation of the optimality systems characterizing the solutions
to the FP optimal control problems. The formulation of the FP optimal control of a
stochastic system requires the following terms: (1) The definition of a (or many) control
function u that represents the driving mechanism of the stochastic system; (2) The FP
equation corresponding to the stochastic system, which includes the control function as
parameter; (3) The objective that models the purpose of the control on the system.

We denote with u the control function belonging to a closed and convex set of admis-
sible controls Uad � U , where we assume that U is a real Hilbert space with inner product
and norm denoted by .�; �/ and j � j, respectively. The PDF of the system as a function of u
is denoted by f .u/ 2 F , where F is a Hilbert space. The PDF f is given by the solution
of the FP problem, which is formally expressed as c.f; u/ D 0, including boundary- and
initial conditions, where cWF � U ! F �, where F � is the dual of F , and we assume
that c is Frechét-differentiable. It is required that the solution of this equation with given
u defines a continuous mapping u ! f .u/. Let us denote its first derivative at u in the
direction ıu by f 0.u; ıu/. It is characterized as the solution to the linearized equality
constraint cf .f; u/ f 0.u; ıu/C cu.f; u/ ıu D 0.

A cost functional is formally given by

J.�; �/WF � U ! R:

We assume that J.f; u/ is Frechét-differentiable, and using the mapping u ! f .u/, we
can define the reduced cost functional OJ .u/ D J.f .u/; u/. In particular, one can consider
objectives of the following form

J.f; u/ D h.f /C � g.u/;

where � � 0 is the weight of the cost of the control, and h and g are required to be bounded
from below and g.u/!1 as juj ! 1.

A general formulation of the FP optimal control problem follows the same guidelines
of any optimal control with PDE models; see, e.g., [27, 90, 119]. We have

min
u2Uad

J.f; u/

s.t. c.f; u/ D 0:

Equivalently, we have: Find u 2 Uad such that OJ .u/ D infv2Uad
OJ .v/.

A local solution u 2 Uad to the optimal control problem can be characterized by the
first order optimality condition as follows

OJ 0.u; v � u/ � 0; for all v 2 Uad:
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Now, to estimate this inequality, one introduces p 2 F as the unique solution to the
following adjoint FP equation

c�f .f; u/ p C h
0.f / D 0;

where the adjoint operator c�
f
WF ! F �, and p is the Lagrange multiplier, also called the

adjoint variable. Using cf .f; u/ f 0.u; ıu/C cu.f; u/ ıu D 0 and ıu D v � u, we have

OJ 0.u; v � u/ D .� g0.u/C c�u.f; u/ p ; v � u/ � 0 for all v 2 Uad: (2.1)

In the case Uad D U , this condition becomes OJ 0.u/ D 0.
Summarizing, the solution to the FP optimal control problem is characterized by the

following optimality system

c.f; u/ D 0;

cf .f; u/
� p C h0.f / D 0;

.� g0.u/C c�u.f; u/ p ; v � u/ � 0; for all v 2 Uad:

(2.2)

We remark that the FP equation is a particular instance of the forward Kolmogorov
equation and the adjoint FP equation resembles the backward Kolmogorov equation. In
the FP optimality system (2.2), we refer to the third equation as the optimality condition,
and r OJ .u/ D � g0.u/C c�u.f; u/ p.u/ represents the reduced gradient.

Another way to derive the optimality system is by introducing the Lagrangian function

L.f; u; p/ D J.f; u/C hc.f; u/; piF �;F :

By formally equating to zero the Frechét derivatives ofLwith respect to the triple .f; u; p/,
we obtain the optimality system; see, e.g., [90, 98, 119]. Inequality constraints are treated
by adding Lagrangian multipliers and corresponding complementarity conditions [119].

We remark that the FP control framework results in FP equations with control in
the coefficients and, in this case, proving existence and uniqueness of the solution of
this optimal control problem is a difficult task. The case of controlled drift of the form
b D �
Cu, withu constant, has been studied in [6]. By following the arguments in [1,119]
and subject to appropriate hypothesis on the structure of the FP control problem, existence
of the optimal solutions is proved in [57, 58, 107, 109, 110, 114]. Further, because the
control mechanism enters non-linearly in FP control problems, it is in general not possible
to prove uniqueness of optimal control solutions; however, see [6] for a special case.
Notice that solutions of optimality systems represent only extremal points and additional
second-order conditions must be satisfied to guarantee that they are the minima sought;
see, e.g., [37, 119] for additional details.

Now, we illustrate the FP control framework for a Itō process. Consider the problem
to determine a control u D u.x; t/ such that starting with an initial distribution f0,
the process evolves towards a desired target probability density fd .x; t/ at time t D T .
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We have

minJ.f; u/ WD
1

2
kf .�; T / � fd .�; T /k

2
L2.�/

C
�

2
kuk2

L2.Q/
; (2.3)

@tf .x; t/ �
1

2

dX
i;jD1

@2xixj

�
aij .x; t/ f .x; t/

�
C

dX
iD1

@xi

�
bi .x; t Iu/ f .x; t/

�
D 0 (2.4)

f .x; 0/ D f0.x/: (2.5)

The first-order necessary optimality conditions that characterize the optimal solution
to (2.3)–(2.5) are given by the following optimality system

@tf �
1

2

dX
i;jD1

@2xixj
.aij f /C

dX
iD1

@xi
.bi .u/ f / D 0 inQ;

f .x; 0/ D f0.x/ in �;

� @tp �
1

2

dX
i;jD1

aij @
2
xixj

p �

dX
iD1

bi .u/ @xi
p D 0 inQ;

p.x; T / D f .x; T / � fd .x; T / in �;

� ul C

dX
iD1

p @xi

�
@bi

@ul
f

�
D 0 inQ; l D 1; : : : ; `;

(2.6)

whereQ D � � .0; T /, † D @� � .0; T /.
Notice that the case of piecewise constant controls discussed in [6], in the framework

of a MPC procedure, corresponds to the following optimality condition

� ul C

Z tkC1

tk

Z
�

dX
iD1

p @xi

�
@bi

@ul
f

�
dx dt D 0;

where .tk ; tkC1/ corresponds to a time interval where the control is constant. The case
u D u.t/ would require to remove the time integration from this formula.

Notice that in (2.3)–(2.5) we have not specified the boundary conditions for the FP
equation. In the case of absorbing boundary conditions, f D 0 on @�, and the same
conditions result for the adjoint variable. On the other hand, flux zero boundary conditions
result in homogeneous Neumann conditions for the adjoint variable.

The implementation of the FP control strategy requires discretization schemes that are
appropriate for approximating the FP forward and adjoint problems. For this purpose, it
appears essential that these approximation schemes guarantee positivity of the FP solution,
together with stability and accuracy. In particular, in the case of Itō processes that have a
corresponding convection-diffusion Fokker–Planck equation for the PDF, a second-order
space discretization scheme that guarantees all these properties is based on an exponential
fitting technique that was proposed independently by Scharfetter & Gummel [112] and
Chang & Cooper (CC) [39], and analyzed in [6, 33, 34, 66, 96]. This scheme appears
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also appropriate for the discretization of generalized FP equations, i.e. for fractional FP
equations and for FP equations with an integral operator that appears in the case of jump-
diffusion processes [66]. The CC scheme has been further analysed in [109, 110] in
combination with the alternate direction method. We remark that an additional advantage
of the CC scheme is that, consistently to the discretize-before-optimize strategy [27], the
transpose of the FP CC stencil provides an appropriate discretization of the adjoint FP
equation.

In the case of PDP processes, the Fokker–Planck equation is a system of first order hy-
perbolic PDEs, and in this case a first-order time-explicit discretization scheme preserving
the required structural properties of the PDF solution is discussed in [4,8]. Further schemes
for FP PDP problems are discussed in [43,55]. Recently, the approximation of FP optimal-
ity systems on unbounded domains based on Hermite polynomials has been investigated
in [97]. Clearly, the solution of FP optimality systems becomes very challenging when
high-dimensional stochastic processes are considered. For this reason, special techniques
for solving high-dimensional PDEs are under investigation; see, e.g., [51, 73, 128].

The FP optimal control strategy has been applied successfully to many different sys-
tems. Concerning Itō stochastic processes, we refer to [6] for application of the FP control
framework to a stochastic Lotka–Volterra model, to [7] for the FP control of a stochastic
quantum spin model, to [109,110] for the control of crowd motion and to [78,79] for that
of the statistics of the spike emission of a neural membrane. For stochastic Itō systems
that include random jumps, e.g., for finance modelling, and sparsity of the control we
quote [67] and [9] for sub-diffusion models. Concerning other stochastic systems, the FP
control approach has been applied successfully also to PDP models such as [8], to the
optimization of antibiotic subtilin production [118], and to discrete random walks [30].

3. The mean-field approach

In this section, we discuss a special case of multi-dimensional Itō processes that allows to
investigate the limit when the number of dimensions goes to infinity. For this purpose, we
explicitly refer to a system of N identical interacting particles whose motion is subject to
Wiener noises in a Rd space, such that the following system results

dX it D
1

N

NX
jD1

b.X it ; X
j
t / dt C

1

N

NX
jD1

�.X it ; X
j
t / dW

i
t ; (3.1)

X it0 D X
i
0; i D 1; : : : ; N; (3.2)

where X it 2 Rd denotes the position (state) of the i th particle. Notice that the structure
of (3.1) assumes that in the coefficients an average of particle interactions appears and, for
� D const., each particle is subject to an independent Wiener noise.

A special case of b.X it ; X
j
t / has been considered in, e.g., [50] as follows

b.xi ; xj / D �.xi /3 C xi � � .xi � xj /;

where � > 0.
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As already discussed in the Introduction, in correspondence to (3.1)–(3.2), we have
the following dN -dimensional FP equation

@tfN �
1

2

NX
iD1

�i

��
1

N

NX
jD1

�.xi ; xj /

�2
fN

�
C

NX
iD1

ri �

��
1

N

NX
jD1

b.xi ; xj /

�
fN

�
D 0;

(3.3)
where fN D fN .x; t/, x D .x1; : : : ; xN /, xi 2 Rd . We denote with�i , resp.ri , the Rd

Laplacian, resp. the Rd gradient for the variable coordinates of the i th particle.
With (3.3), we formulate a Cauchy problem specifying an initial PDF fN .x; 0/ D

f0N .x/. Since f0N represents the initial PDF distribution, we have f0N .x/ � 0 withR
RdN f0N .x/ dx D 1. However, the numerical solution of this problem is, in general,
practically impossible to compute even for a moderate value of N . On the other hand,
a powerful idea in order to reduce the dimensionality of this problem can be borrowed
from physics, namely a mean-field strategy [50, 84]. This strategy considers the limit of
(3.1)–(3.2) as N !1 such that

1

N

NX
jD1

b.xi ; xj /! E.b.xi ; �//; (3.4)

and similarly for � we have

1

N

NX
jD1

�.xi ; xj /! E.�.xi ; �//:

If these limits hold, then the stochastic differential equations (3.1) appear as decoupled
and equivalent to each other in the sense that any of the X it represents the same process.

The validity of (3.4) has been rigorously discussed in, e.g., [28,50,117]. In particular,
the following empirical measure process

XN .A; t/ WD
1

N

NX
jD1

1A.X
j
t /; (3.5)

where A denotes any Borel set of Rd and 1A.�/ is the indicator function of A, is proved to
converge to a unique deterministic measure �t .A/.

We remark that the above results are valid under the condition of indistinguishability,
which means that the probability law (3.5) is invariant under exchange of particles. This
is possible if the initial conditionsX i0 are independently and identically distributed and all
the drift and dispersion functions are the same and symmetric under exchange of particles;
see, e.g., [117].

Based on these consideration, in the limit N ! 1, one considers the following Itō
process, where X denotes any of the X i . We have

dXt D E�t

�
b.Xt ; �/

�
dt C E�t

�
�.Xt ; �/

�
dWt ; (3.6)

Xt0 D X0: (3.7)
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As in [28] and under suitable conditions on b and � , the measure � becomes absolutely
continuous and we can write �t .dx/ D f .�; t / dx, where f is the time dependent PDF
of (3.6)–(3.7). Corresponding to this process, we have the following mean-field FP model

@tf .x; t/ �
1

2
�

�
f .x; t/

�Z
Rd

�.x; y/f .y; t/ dy

�2�
Cr �

�
f .x; t/

�Z
Rd

b.x; y/f .y; t/ dy

��
D 0;

where �, resp. r, represent the Laplacian, resp. the gradient, in Rd . Notice that the
nonlinear FP equation above can be written in a more compact form as follows

@tf .x; t/ �
1

2
�
h
f .x; t/

�
Eft

�
�.x; �/

��2i
Cr �

h
f .x; t/

�
Eft

�
b.x; �/

��i
D 0: (3.8)

However, the explicit form better shows the non-linearity of the mean-field FP equation
with respect to its PDF solution f .

In [28], it is proved and demonstrated numerically by Monte Carlo simulation that the
empirical PDF obtained with (3.1)–(3.2) converges to the PDF given by (3.8) with a rate
of 1=
p
N . Therefore we can state thatZ

Rd.N�1/

fN .x; x
2; : : : ; xN ; t / dx2 : : : dxN � f .x; t/;

for N sufficiently large and any choice of the .N � 1/ integration variables.
Now, following the focus of our work, we discuss the presence of a control function

in (3.1)–(3.2). In fact, the condition of indistinguishability suggests that one should
consider a unique control function entering in the drift and also only one entering in the
dispersion coefficient. For simplicity, we discuss only the former case; the extension to
the case of control in the dispersion is similar.

Let us augment the drift in (3.1) by a control function u D u.x; t/ as follows:
b D b.u.xi ; t /I xi ; xj /. With this setting, and following the above discussion, we obtain
a controlled mean-field FP equation as follows

@tf .x; t/�
1

2
�
h
f .x; t/Eft

�
�.x; �/

�2i
Cr �

h
f .x; t/Eft

�
b.u.x; t/I x; �/

�i
D 0: (3.9)

Next, we define a class of cost functionals, for the N -particle setting, that appears
appropriate in our mean-field framework. We have

JN .fN ; u/ D

Z T

0

Z
RdN

�
1

N

NX
jD1

`
�
xj ; u.xj ; t /

��
fN .x

1; : : : ; xN ; t / dx1 : : : dxN :

(3.10)
This functional models the purpose of the control and its cost.

Now, we can exploit the symmetric structure of our evolution problem to obtain the
following limit objective

J.f; u/ D

Z T

0

Z
Rd

`
�
x; u.x; t/

�
f .x; t/ dx dt: (3.11)
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Therefore, within the FP control framework, we can determine the optimal control u by
solving an optimization problem that requires to minimize (3.11) subject to the differential
constraint given by (3.9). In particular, considering the case of a constant � , the adjoint
mean-field FP equation for minimizing (3.11) subject to (3.9) is given by

@tp.x; t/C
�2

2
�p.x; t/Crp.x; t/ �

Z
Rd

b
�
u.x; t/I x; y

�
f .y; t/ dy

C

Z
Rd

�
b
�
u.y; t/Iy; x

�
� rp.y; t/

�
f .y; t/ dy C `

�
x; u.x; t/

�
D 0; (3.12)

and the terminal condition p.x; T / D 0.
With this adjoint variable and without bounds on the control, we obtain the following

optimality condition

f .x; t/

�
rp.x; t/ �

Z
Rd

@ub
�
u.x; t/I x; y

�
f .y; t/ dy C @u`

�
x; u.x; t/

��
D 0: (3.13)

While we elaborate further on this result in the next section, we can already point
out one of the important outcomes of the mean-field approach for determining an optimal
control to the N -particle problem (3.1)–(3.2) with objectives given by EfN

Œ`.X; u/�. In
fact, while this problem is intractable due to its high dimensionality, We could solve the
problem of minimising (3.11) subject to (3.9) and find a control u that is the optimal one
when N !1.

4. The connection between the HJB and FP control frameworks

In this section, we illustrate the connection between the FP control framework [5, 6, 8]
and the Hamilton–Jacobi–Bellman (HJB) control strategy [22, 61, 91, 115]. The present
discussion outlines some of the results in [10] with some additional remarks concerning
a Merton portfolio problem, the issue of chosing boundary conditions in HJB problems,
and the mean-field framework. Our purpose is to show that the HJB control approach
emerges naturally from the FP control framework when considering cost functionals of
expectation type.

Consider the following d -dimensional controlled Itō stochastic process(
dXt D b

�
Xt ; u.Xt ; t /

�
dt C �.Xt / dWt ; t 2 .t0; T �;

Xt0 D x0:
(4.1)

We denote with A the set of Markovian controls that contains all jointly measurable
functions u with u.x; t/ 2 A � Rl . Controls of this kind are called Markov control
policies [61].
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In a closed-loop control setting, the function u uses the current value Xt to affect the
dynamics of the stochastic process by adjusting the drift function. Corresponding to (4.1),
we consider the following functional

Ct0;x0
.u/ D E

� Z T

t0

`
�
Xs; u.Xs; s/

�
ds C g.XT / j Xt0 D x0

�
; (4.2)

which is a conditional expectation to the processXt taking the value x0 at time t0. We refer
to the functions ` and g as the running cost and the terminal cost functions, respectively.

Now, the optimal control u� that minimizes Ct0;x0
.u/ for the process (4.1) is given by

u� D argminu2A Ct0;x0
.u/: (4.3)

Further, we define the following value function

q.x; t/ WD min
u2A

Ct;x.u/ D Ct;x.u
�/: (4.4)

The following theorem states that q is the solution to a HJB equation; see, e.g., [22,61].
Theorem 4.1. Assume thatXt solves (4.1) with a control function u and that the function q
defined by (4.4) is bounded and smooth. Then q satisfies the following HJB equation(

@tq CH.x; t;Dq;D
2q/ D 0;

q.x; T / D g.x/;
(4.5)

with the Hamiltonian function

H.x; t;Dq;D2q/ WD min
v2A

� dX
iD1

bi .x; v/@xi
q.x; t/C

dX
i;jD1

aij .x/@
2
xixj

q.x; t/C`.x; v/

�
:

(4.6)

Notice that, assuming differentiability with respect to the control function in (4.6), the
optimal control u� satisfies at each time t and for each x the following optimality condition

dX
iD1

@ubi
�
x; u�.x; t/

�
@xi
q.x; t/C @u`

�
x; u�.x; t/

�
D 0: (4.7)

As in the FP case, existence and uniqueness of solutions to the HJB equation often
involve the concept of uniform parabolicity; see [14, 47, 61]. If this non-degeneracy
condition holds, results from the theory of PDEs of parabolic type imply existence and
uniqueness of solutions to the HJB problem (4.5) with the properties required in the
Verification Theorem [61].

Now, we discuss the Fokker–Planck optimal control strategy based on the same opti-
mization setting. In fact, we start from the functional (4.2) and notice that the expectation
is performed with respect to the probability measure induced by the process Xt of (4.1).
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Therefore, following our assumption that this process owns an absolutely continuous prob-
ability measure, we can explicitate the expectation in (4.2) in terms of the PDF governed
by the FP problem with initial density distribution f0.x/ D ı.x � x0/ at t D t0. Thus,
the functional (4.2) becomes

J
�
f .u/; u

�
WD

Z T

t0

Z
Rd

`
�
x; u.x; s/

�
f .x; s/ ds dx C

Z
Rd

g.x/f .x; T / dx: (4.8)

Therefore the optimization problem (4.3) can be equivalently stated as a FP optimal control
problem where an optimal control u in the admissible set A is sought that minimizes (4.8).
In doing this, we are identifying the chosen admissible set of Markov control policies with
the admissible set of controls in the FP optimal control formulation.

Next, to characterize the optimal FP solution to this problem, we introduce the follow-
ing Lagrange function

L.f; p; u/ WD

Z T

t0

Z
Rd

`
�
x; u.x; s/

�
f .x; s/ dx ds C

Z
Rd

g.x/f .x; T / dx

C

Z T

t0

Z
Rd

p.x; s/

�
� @sf .x; s/ �

dX
iD1

@xi

�
bi
�
x; u.x; s/

�
f .x; s/

�
C

dX
ijD1

@xixj
.aij .x/f .x; s//

�
dx ds:

(4.9)

Thus, we obtain that the optimal control solution is characterized as the solution to the
following optimality system

�@tf .x; t/ �

dX
iD1

@xi

�
bi .x; u.x; t//f .x; t/

�
C

dX
ijD1

@xixj

�
aij .x/f .x; t/

�
D 0;

f .x; t0/ D f0.x/;

(4.10)

@tp.x; t/C

dX
iD1

bi
�
x; u.x; t/

�
@xi
p.x; t/C

dX
ijD1

aij .x/@xixj
p.x; t/C `

�
x; u.x; t/

�
D 0;

p.x; T / D g.x/;

(4.11)
and

f .x; t/

� dX
iD1

@ubi
�
x; u.x; t/

�
@xi
p.x; t/C @u`

�
x; u.x; t/

��
D 0: (4.12)

Notice that a sufficient condition for (4.12) to hold is that the optimality condition (4.7)
for the minimization of the Hamiltonian in the HJB formulation is satisfied. We also
remark that, assuming uniform parabolicity of the FP operator, the resulting PDF is
almost everywhere non-negative and therefore the HJB condition (4.7) appears to be also
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a necessary condition for optimality. Indeed, the HJB-FP connection can be shown in a
broader sense working with the Pontryagin’s maximum principle framework that, in fact,
can be proven using dynamic programming and the related HJB equation; see, e.g., [18].

The result above demonstrates that we can identify the FP Lagrange multiplier p
with the HJB value function q, since at optimality, the p and q differential problems
coincide. Further, using (4.7) we could replace the optimal control u in terms of p in the
backward FP adjoint equation (4.11) and obtain the HJB equation in a nonlinear form that
is also common in the literature. Therefore the control u does not depend explicitly on
the density f and this fact explains why the feedback control is based only on the value
function.

The investigation of the HJB-FP connection may result very fruitful in order to extend
the HJB approach to accommodate different costs (see Section 6) of the controls and
different control constraints. Moreover, we remark that the HJB-FP connection can
be instrumental for the development of efficient numerical schemes for solving HJB
problems [111]. On the other hand, it provides a framework that helps establishing
appropriate boundary conditions for HJB models.

To also illustrate this latter fact, we exploit the HJB-FP connection to obtain an
alternative formulation of the optimal Merton portfolio problem [61]. The evolution
process corresponding to the Merton Portfolio problem is modelled by the following
stochastic differential equation

dXt D
��
.1 � u1/r C u1�

�
Xt � u2

�
dt C �u1Xt dWt ;

X0 D x0;
(4.13)

together with the following maximization problem: Find u1; u2 such that

max
u1;u2

J.Xt ; u1; u2/ WD E

� Z T

0

e�ˇt l.u2/ dt

�
;

where Xt � 0 represents the wealth of the portfolio. The objective can also be written as
follows

J.f; u1; u2/ WD

Z 1
0

Z T

0

e�ˇt l.u2/f .x; t/ dx dt: (4.14)

Here, r < � is the interest rate in the riskless market, � is the expected return, � > 0 is the
volatility of the stock market, ˇ > 0 is the discount rate. Further, u1 D u1.x; t/ 2 Œ0; 1/,
is the fraction of wealth in the risky asset and u2 D u2.x; t/ � 0 is the consumption rate.
The function l.z/ is the utility function that satisfies the following conditions: l.0/ D 0,
l 0.0C/ D1, l 0.z/ > 0; l 00.z/ < 0.

The stochastic problem (4.13) corresponds to the following FP equation

@tf .x; t/ �
1

2
@2x
�
�2u21x

2f .x; t/
�
C @x

��
..� � r/u1 C r/x � u2

�
f .x; t/

�
D 0; (4.15)

f .x; 0/ D ı.x � x0/: (4.16)

This problem is defined for all x > 0 and the FP equation becomes degenerate at the
boundary x D 0.
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In the FP control framework, we define the following optimization problem

max
u1;u2

J.f; u1; u2/; subject to (4.15)–(4.16): (4.17)

To this FP optimal control problem corresponds an optimality system with (4.15) and
the following adjoint FP problem

�@tq.x; t/ D
1

2
�2u1.x; t/

2x2@2xq.x; t/C
�
..� � r/u1.x; t/C r/x � u2.x; t/

�
@xq

C e�ˇt l
�
u2.x; t/

�
;

q.x; T / D 0:
(4.18)

Further, the following optimality conditions corresponding to u1 and u2 are obtained

�
�
�2x2u1.x; t/@

2
xq.x; t/C .� � r/x@xq.x; t/

�
f .x; t/ D 0;�

@xq.x; t/ � e
�ˇt l 0

�
u2.x; t/

��
f .x; t/ D 0:

As we have seen, in the present setting with a cost functional of expectation type, at opti-
mality the adjoint variable q, which solves (4.18), corresponds to the value function (4.4).
However, the Merton model has a boundary in x D 0 where, because of the degeneracy
in the FP model, the value of the PDF (or its derivative) cannot be assigned. This fact
and the derivation of the adjoint problem lead to the boundary condition q.0; t/ D 0.
Furthermore, requiring u2.0; t/ D 0 appears possible and compatible with the above
boundary conditions. No requirements on u1.x; t/ result and also the case where u1
models borrowing and shorting of stocks can be tackled. Notice that these conditions are
similar to those of (4.17) in Chapter X of [61].

We argue that the FP-HJB connection has general validity as far as linear FP equations
and expectation cost functionals are considered. We refer to [10] for an example involving a
dichotomic PDP process. The FP-HJB connection has been already exploited in [109,110]
to develop a feedback control-constrained approach for crowdmotion and in [118] tomodel
and control the micro-biological process of antibiotic subtilin production.

On the other hand, in the case of nonlinear FP models, it seems difficult to formulate
a dynamic principle and thus establish a general FP-HJB connection. However, we
can discuss this issue further considering the mean-field framework discussed in the
previous section and consider the mean-field FP control problem governed by (3.9) with
the objective functional given by (4.8). Also in this case, assuming that � is a constant
function, the optimality condition is given by (3.12) and (3.13), and assuming that the
PDF is almost everywhere positive, we obtain

rp.x; t/ �

Z
Rd

@ub
�
u.x; t/I x; y

�
f .y; t/ dy C @u`

�
x; u.x; t/

�
D 0:

Now, to simplify our discussion, consider the case

b
�
u.x; t/I x; y

�
D u.x; t/C Qb.x; y/ and `

�
x; u.x; t/

�
D
�

2
u.x; t/2 C Q̀.x/;
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then @ub D 1 and @u` D �u, and the following optimality condition results

rp.x; t/C � u.x; t/ D 0: (4.19)

As discussed above, we can replace the optimal control given by this equation
(u D �rp=�) into the adjoint mean-field FP equation (3.12) and obtain the following

@tp.x; t/C
�2

2
�p.x; t/ �

1

2�
jrp.x; t/j2 Crp.x; t/ �

Z
Rd

Qb.x; y/f .y; t/ dy

�
1

�

Z
Rd

jrp.y; t/j2 f .y; t/ dy

C

Z
Rd

�
Qb.y; x/ � rp.y; t/

�
f .y; t/ dy C Q̀.x/ D 0;

(4.20)

with the terminal condition p.x; T / D g.x/.
We see that, in the case when b does not model a two particle interaction but a drift

of the form b.u.x; t/I x/ D u.x; t/C Qb.x/, then the last integral term in (4.20) becomes
a function of time only and, since only the gradient of the adjoint function p enters in the
optimality condition, we may add a function of time to p such that (4.20) reduces to the
case of the HJB equation of the previous section. Further notice that in the general mean-
field setting, with b D b.uI x; y/, the equation (4.20) cannot be considered a true HJB
equation because it depends on the forward PDF solution that enters in the integral term.
This fact appears to be a common feature of all mean-field control works, including mean-
field games [21, 88], where versions of (4.20) are usually considered that still include f
in the coefficients.

Another important and better known connection between the value function q.x; t/
obtained solving the Hamilton–Jacobi equation, and the Pontryagin’s maximum principle
is discussed in [42]. In this reference, it is proved that the adjoint function is equal to
the negative of the derivative of the value function with respect to the initial state x. In
fact, this correspondence is not in contradiction with the HJB-FP connection established
in the framework of control of stochastic models: we obtain the same correspondence
if we formulate our FP control problem in terms of the distribution function F.x; t/ DR x
�1

f .x0; t / dx0 rather than for the PDF. Thus in the Lagrange function L.F;Q; u/,
we find that the multiplier Q.x; t/ equals the minus derivative of the value function,
i.e. �@xq.x; t/.

To illustrate this fact, consider the following one-dimensional Fokker–Planck problem
for the distribution function

@tF.x; t/ D @x
�
a.x/@xF.x; t/

�
� b.x; u/@xF.x; t/; (4.21)

F.�1; t / D 0; F.C1; t / D 1; (4.22)

F.x; 0/ D F0.x/ D

Z x

�1

f0.x
0/ dx0: (4.23)
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We introduce the Lagrange multiplierQ.x; t/ and the Lagrange function

L.F;Q; u/ D

Z
R

Z T

0

`.x; u/Fx.x; t/ dx ds C

Z
R
g.x/Fx.x; T / dx

C

Z
R

Z T

0

Q.x; s/
�
� Ft � bFx C @x.aFx/

�
dx ds: (4.24)

The resulting adjoint equation is given by

@tQ.x; t/C @x
�
b.x; u/Q.x; t/

�
C @x

�
a.x/@xQ.x; t/

�
� @x`.x; t/ D 0 (4.25)

Q.x; T / D �@xg.x/: (4.26)

Further, we obtain the following optimality condition

@xF.x; t/
�
@u`.x; u/ �Q.x; t/@ub.x; u/

�
D 0: (4.27)

A direct comparison with (4.12) reveals that Q.x; t/ � �@xp.x; t/ and thus Q.x; t/ D
�@xq.x; t/ where q.x; t/ is given in (4.4). Finally, the correspondence with the HJB
equation (4.5) can be established as follows

�@tQCmin
v2A

�
� @x

�
b.x; v/Q.x; t/

�
� @x

�
a.x/@xQ.x; t/

�
C @x`.x; v/

�
D 0

Q.x; T / D �@xg.x/:
(4.28)

5. The FP framework and inverse problems

In this section, we discuss the use of the FP control framework for parameter- and functions
identification in stochastic models. In fact, following the widely used PDE optimization
formulation of PDE inverse problems, one can immediately recognize that in the FP
framework, the cost functionals may include measures of discrepancy between simulated
PDFs and measured ones, and between measured and simulated stochastic states and their
statistical properties. Moreover, these objectives can have additional regularization terms
of the functions to be identified.

The FP approach to parameter identification in stochastic models appears to be a much
less investigated topic, with only a few contributions in the last decade. A pioneering work
in this field can be found in [17]. In this work, the estimation of space-time function coef-
ficients in the FP equation is considered with application to structured population models.
The first attempts to use the FP equation and its adjoint to calibrate financial models are
presented in [54, 81]. In [81], a FP parameter identification problem with parametrized
drift and volatility and a least-square functional of exchange rates is considered. In [54],
the identification of local volatility in the Black–Scholes/Dupire equation from market
prices of European Vanilla options is considered. Further developments in this field in the
context of financial mathematics are discussed in [64].

Another work on parameter identification of drift coefficients in stochastic models
using the FP equation is presented in [52]. This work considers the identification of a
state-dependent drift with the objective to maximize the likelihood of given observations.
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Finally, the main focus of the work [12] is the problem of parameter calibration of
Lévy processes. In this reference, the Lévy measure is approximated in the linear space
of splines and the calibration parameters are the coefficients of the linear combination of
compound Poisson processes. The optimal values of these parameters are obtained by
solving the problem of minimizing a functional representing a Kullback–Leibler distance
of sample measurements.

6. Applications

In this section, we report results of numerical experiments to illustrate the ability of the
FP control framework to provide robust control functions that drive stochastic systems
to achieve given objectives. Specifically, we discuss some challenging control problems
related to Itō stochastic models and deal with the control of a biological PDP problem.

One of the fundamental problems in quantum mechanics is the modelling of the inter-
action of a quantum system with an external measurement device. For this purpose, the
Liouville–von Neumann master equation, governing the evolution of the statistical ensem-
ble of a quantum state, is augmented with a “dissipator” term and results in a Lindblad
master equation [8, 15]. Furthermore, in order to model the action of a measurement
operation on the Lindblad dynamics, two types of stochastic Schrödinger equations have
been investigated that correspond to measurements in continuous time (diffusion process)
and to measurements at different instants of time (jump process) [48, 69].

Based on the results in [7], we illustrate the FP control of a two-level spin system in the
diffusive case [124]. In this case, the stochastic master equation governing the orientation
of the spin components in spherical coordinates is given by(

d'.t/ D B'.'; �; u; v/ dt C �11.'; �/ dW1 C �12.'; �/ dW2

d�.t/ D B� .'; �; u; v/ dt C �21.'; �/ dW1 C �22.'; �/ dW2;
(6.1)

where

B'.'; �; u; v/ D ! C a cot.�/
�
u sin.'/C v cos.'/

�
B� .'; �; u; v/ D �a

�
u cos.'/ � v sin.'/

�
C g

1C cos.�/
sin.�/

�
1 �

�
1C cos.�/

�
cos.�/=4

�
�11.'; �/ D �

r
g

2

1C cos.�/
sin.�/

sin.'/; �12.'; �/ D

r
g

2

1C cos.�/
sin.�/

cos.'/;

�21.'; �/ D

r
g

2

�
1C cos.�/

�
cos.'/; �22.'; �/ D

r
g

2

�
1C cos.�/

�
sin.'/;

and u and v denote magnetic control fields.
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Corresponding to the stochastic Bloch equation (6.1), the following FP equation on
the Bloch sphere is obtained

@tf D �@'
�
B'.'; �; u; v/ f

�
� @�

�
B� .'; u; v/ f

�
C
g

4
@2'

�
1C cos.�/
1 � cos.�/

f

�
C
g

4
@2�
��
1C cos.�/

�2
f
�
; (6.2)

where ' 2 Œ0; 2��, � 2 .0; �/, and the solution f .'; �; t/ � 0 is required to be non-
negative and its integral on the domain be conserved and normalized to one.

We consider the optimal control problem governed by the FP equation (6.2) with initial
PDF given by a narrow normalized bi-dimensional Gaussian placed at the equator at
.�; �/ D .�=2; �/ with variances equal to � D �=20. The aim is to reach a final desired
Gaussian PDF target at the south pole with variances � D �=8 in a time horizon of T D 4.
In the MPC procedure N D 10 time windows are considered.

Now, to demonstrate the ability of the FP framework to control the stochasticmodel (6.1),
we insert the resulting sequence of FP optimal control functions in the stochastic model
and perform Monte Carlo simulations. The stochastic trajectories are computed using
the Euler–Maruyama scheme [76] and in each realization the same controls are used; see
Figure 1 for a plot of two controlled stochastic trajectories on the Bloch sphere. We obtain
that all trajectories on the Bloch sphere, although very different, converge towards the
south pole with the desired distribution.

Figure 1. Two controlled stochastic trajectories starting at the equator and reaching the south pole
of the Bloch sphere.

Next, based on results given in [110], we discuss an application of the FP control
framework to crowd motion. Efforts to investigate crowd movement, both empirically
and theoretically, are motivated by many applications as, e.g., emergency evacuation
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procedures and efficient planning and designing of structures like bridges, stairways; see,
e.g., [20, 35, 65].

Let us consider the motion of a pedestrian in a crowd [110], whose position at time t
is denoted with X.t/, and its velocity field, depending on position, is given by u.x; t/.
By assuming that the individual is subject to random collisions, the following stochastic
model appears appropriate

dXt D u
�
Xt ; t

�
dt C � dWt ;

X0 D X0:
(6.3)

In correspondence to this SDE model, we have the following FP problem

@tf .x; t/ �
�2

2

nX
iD1

@2xixi
f .x; t/C

nX
iD1

@xi

�
ui .x; t/f .x; t/

�
D 0;

f .x; 0/ D f0.x/:

(6.4)

Now, assume that the domain is bounded and convexwith reflecting barriers for the process
(a closed room). This setting results in flux zero boundary conditions, i.e. .�2

2
rf �uf / �

On D 0, where On is the unit outward normal to @�.
The control framework consists in determining the control velocity u such that the

process follows as close as possible a desired trajectory Nx.t/ in .0; T / and reaches a desired
terminal position xT at final time. This objective can be formulated as the minimization
of the following tracking functional

J.f; u/ D ˛

Z T

0

Z
�

V
�
x � Nx.t/

�
f .x; t/ dx dt C ˇ

Z
�

V.x � xT / f .x; T / dx

C
�

2

Z T

0

Z
�

B
�
u.x; t/

�
dx dt ˛; ˇ; � > 0; (6.5)

where V denotes a convex function (potential) of its arguments, and for B.u/ we consider
the following two choices of the cost of the control

B
�
u.x; t/

�
D ju.x; t/j2 C jru.x; t/j2 (6.6)

B
�
u.x; t/

�
D
�
ju.x; t/j2 C jru.x; t/j2

�
f .x; t/: (6.7)

These choices are considered in [110] in order to compare a standard setting ofH 1.Q/

cost of the control with its expectation counterpart that corresponds to a setting where the
HJB-FP connection holds. In fact, notice that in the second case (6.7), the adjoint equation
reads as follows

�@tp.x; t/�
�2

2

nX
iD1

@2xixi
p�

nX
iD1

ui@xi
p D �˛V.x�xt /�

�

2

�
ju.x; t/j2Cjru.x; t/j2

�
;

with p.x; T / D �ˇV.x � xT /. Further, because the objective is linear in f , the
functional (6.5) becomes an expectation cost functional. Now, we have that, in the
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unconstrained-control case, the optimality condition is given by

f
�
�uk � ��uk �

@p

@xk

�
D 0; k D 1; : : : ; n:

Equating to zero the term in parenthesis (an elliptic equation augmentedwith homogeneous
Dirichlet boundary conditions [110]), we obtain a sufficient condition for optimality. In
this case, the control u is determined by this optimality condition and the adjoint equation
and thus the resulting control can be regarded as a closed-loop control for our stochastic
model. Notice that due to the presence of the gradient of the control jru.x; t/j2 in the cost
function, there is no the exact correspondence to the HJB equation discussed in Section 4,
rather it represents a suitable extension.

We solve the optimal control problem (6.4), (6.5), (6.6) with the values of ˛ D 1,
ˇ D 1, and � D 0:01 in (6.5). We take � D .�L;L/ � .�L;L/ with L D 6.
Let x D .x1; x2/. The diffusion parameter is � D 1. The initial PDF f0.x/ is given as
follows

f0.x/ D yCe
�2f.x1�A1/

2C.x2�A2/
2g;

where .A1; A2/ D Nx.0/ is the starting point of the trajectory Nx and yC is a normalization
constant such that

R
�
f0.x/ dx D 1. We choose the control bounds ua D �5 and ub D 5.

The total number of spatial grid points isNx D 60 and the number of temporal grid points
is Nt D 60. The desired trajectory is given by Nx.t/ D .1:5t; 0/ and the potential V is
given by

V.x; t/ D

(
100; .x1 � 3/

2 C x22 � 0:2
2;

.x1 � 1:5t/
2 C x22 ; otherwise;

(6.8)

where we also model the presence of an obstacle by a cylinder centered at (3,0) and
radius 0.2 (a concave function). The time interval is chosen as Œ0; T � D Œ0; 2�. In
correspondence to this setting, the solution of the optimization problem gives the evolution
of the controlled PDF as depicted in Figure 2 (left), and the control u. The latter is used for
Monte Carlo simulations of the stochastic process for which a few trajectories are shown
in Figure 2 (right).

We see that the control u drives the crowd along the desired path while avoiding
the obstacle until the terminal point is reached. Notice that similar results are presented
in [110] for the case of control costs given by (6.7).

We complete this section by illustrating the case of FP control of a PDP model of
production of antibiotics (subtilin) that is synthetized by the Bacillus subtilis [41, 77].
This case refers to the results of [118]. A subtilin PDP model with the structure (1.8) is
specified as follows

A1.x; u1/ D

0@ �zk1 x1 C k2 � x3 C u1
�.�1; �Dmax/.x1/ k3 � �1x2

��3x3

1A ; (6.9)

A2.x; u2/ D

0@ �zk1 x1 C k2 � x3 C u2
�.�1; �Dmax/.x1/ k3 � �1x2

k5 � �3x3

1A ; (6.10)
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Figure 2. Evolution of the PDF related to the controlled random process along a trajectory with an
obstacle represented by a high potential.

where x1 denotes the amount of nutrients, x2 denotes the concentration of SigH (a sigma
factor that regulates gene expressions), and x3 denotes the concentration of SpaS (antibi-
otics, subtilin structural peptide). The controls u1; u2 model an increase or decrease of
concentration of the nutrients. The switching law for this 2-states process is given by (1.9)
with �s D 5.

The Fokker–Planck system of our subtilin PDP model is given by (1.10) with (6.9)
and (6.10), and the stochastic matrix depends on x2 (see [118] for details). The functions
f1.x; t/ and f2.x; t/ are the two marginal PDFs related to the two dynamical states.

Now, assume that the purpose of the control is to maximize the production of subtilin.
This objective can be formulated as the minimization of the following cost functional

J.f; u/ D
1

2

2X
sD1

Z T

0

Z
�

jus.x; t/j
2 fs.x; t/ dx dt

�

2X
sD1

Z
�

˛

2�
p
2�

e
�
.x3 � d3/

2

2�2 fs.x; T / dx: (6.11)

The first term in this functional can be interpreted as the mean nutrition effort represented
by the control u D .u1; u2/ and the second term models an attractive potential to a desired
value d3 for the final value of SpaS.

The FPoptimal control formulation requires tominimize (6.11) subject to the constraint
given by the PDP FP system (1.10) with (6.9)–(6.10). We obtain the following adjoint FP
system
1

2
jus.x; t/j

2
C @tps.x; t/C

3X
iD1

Ais.x; us/@xi
ps.x; t/ D �

2X
lD1

Qsl .x/pl .x; t/; (6.12)

ps.x; T / D gs.x/; (6.13)
us.x; t/C @x1

ps.x; t/ D 0; s D 1; 2: (6.14)
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Notice that also in this case we have factored out the PDFs multiplying the optimality
condition. Thus, we obtain that the adjoint FP problem does not depend on the PDFs
and is defined backwards in time. By including the optimality condition in the adjoint FP
equation, we obtain

@tps.x; t/C

3X
iD1

Ais.x/@xi
ps.x; t/C

1

2

�
@x1
ps.x; t/

�2
D �

2X
lD1

Qsl .x/ pl .x; t/

ps.x; T / D gs.x/; s D 1; 2:

From the resulting adjoint variables, we compute the controls using (6.14).
In the numerical experiments, we consider a time horizon T D 10 and � D .1 ; 7/ �

.0 ; 4/ � .�0:5 ; 5:5/, with settings �s D 5, s D 1; 2, �Dmax D 4:0, d3 D 3, ˛ D 10,
� D 0:3. The optimal controls u1 and u2 are determined solving the FP optimal control
problem and thereafter are inserted in the PDP model to perform Monte Carlo validation.
Figure 3 shows the first 20 runs of the Monte Carlo simulation and the resulting relative
frequencies at terminal time T D 10. We see that the control is able to steer the subtilin
to increase antibiotic production towards the desired value.
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Figure 3. Left: 20 trajectories of Monte Carlo simulation of the controlled system states. Right:
relative frequency of 100 runs. The control of the nutrients acts to increase the value of the
production towards the desired value of production of SpaS.

7. Conclusions

An overview of recent developments in the field of control of stochastic systems based
on the corresponding probability density functions (PDFs) and the related Fokker–Planck
(FP) equations was presented. Many different classes of stochastic systems and the
corresponding FP models were considered.

In this control framework, starting from the controlled stochastic model, a controlled
FP equation is derived and objectives of the control are formulated that may require to
follow a given PDF trajectory or to minimize an expectation functional. The resulting
controls were validated with the stochastic models by Monte Carlo simulations.

While this work was devoted to stochastic models that result in linear FP equations,
the case ofN interacting systems and its mean-field limitN !1 was discussed to show
that in this case a nonlinear FP equation arises.
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A part of this review was devoted to the discussion of the fact that, when using
expectation functionals, the FP strategy results in controls that are equivalent to the ones
obtained with the dynamic programming principle. Furthermore, a brief review of recent
contributions on inverse problems governed by the FP equation was given. This work was
completed showing results of the FP control framework applied to challenging control
problems with stochastic models.
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