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Generalised pairs in birational geometry
Caucher Birkar

Abstract. In this note we introduce generalised pairs from the perspective of the evolution of the
notion of space in birational algebraic geometry. We describe some applications of generalised pairs
in recent years and then mention a few open problems.

Unless stated otherwise we work over an algebraically closed field k of characteristic zero.
Divisors are considered with rational coefficients; for simplicity we avoid real coefficients.
Although we will make some historical remarks but this text is not meant to tell the history
of birational geometry. This note is an expanded version of a talk given at the conference
“Geometry at large” in Fuerteventura, Spain, in December 2018.

1. Varieties

Geometry is the study of “shapes”, that is, “spaces”. The notion of space varies in different
types of geometries and it also changes historically while the subject evolves over time.
The spaces of interest in classical algebraic geometry are algebraic varieties X defined
in affine or projective spaces by vanishing of polynomial equations over an algebraically
closed field k. It is not easy to classify such spaces even in dimension one due to the huge
number of possibilities. It is then natural to restrict to smaller classes of varieties such as
smooth ones which leads one to birational geometry.

Birational geometry aims to classify algebraic varieties up to birational transforma-
tions. This involves finding special representatives in each birational class and then clas-
sifying such representatives, say by constructing their moduli spaces. To start with, taking
compactification and then normalisation one can assume X to be projective and normal.
However, being normal is not a very special property so it is not easy to work in such
generality. We can resolve the singularities and assume X to be smooth. This enables us
to use many tools available for smooth varieties, e.g. the Riemann—Roch theorem in low
dimension has a particularly simple expression.
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In dimension one each birational class contains a unique smooth projective model so
smoothness is a satisfactory condition to work with. One then can focus on parametrising
curves of fixed genus as did Riemann in the 19th century.

In dimension two one can still stick with the category of smooth varieties. Indeed run-
ning a classical minimal model program on X by successively blowing down —1-curves,
smoothness is preserved. The program ends with either P2 or a P!-bundle over a curve or
a smooth projective variety ¥ with Ky being nef. Here nefness means that the intersection
number Ky - C is non-negative for every curve C C Y. However, we are still led to con-
sider some kind of singularities. Indeed if Ky is big, then some positive multiple of it is
base point free hence defines a birational contraction Y — Z where Z is a projective sur-
face with Du Val singularities. The two-dimensional birational geometry was developed
by the Italian school of algebraic geometry in late 19th century and early 20th century, in
particular, by Castelnuovo and Enriques.

It is clear that the primary spaces to study in dimension one and two are smooth pro-
jective varieties. Many of the deep statements in classical algebraic geometry are stated
for such varieties. However, later when people studied moduli spaces, say of curves of
fixed genus, in greater detail they were led to consider more general spaces such as curves
with nodal singularities which may not be irreducible [18]. Constructing moduli spaces for
surfaces involves considering semi-lc surfaces which are analogues of curves with nodal
curves (cf. [1,42]).

Until the end of the 1960s there were some progress in higher dimensional birational
geometry, e.g. work of Fano, resolution of singularities of 3-folds by Zariski, and resolu-
tion of singularities in arbitrary dimension by Hironaka. It was only in the 1970s that the
subject really took off. For example, Iskovskikh and Manin [35] proved that smooth quar-
tic 3-folds are not rational using earlier work of Fano. On the other hand, Iitaka proposed
a program for birational classification of varieties (even open varieties) according to their
Kodaira dimension (cf. [33,34]) which as we will see led to the development of pairs. And
the techniques developed in Mori’s solution to the Hartshorne conjecture [54] in the late
1970s paved the way for taking some of the first steps toward a minimal model program
in higher dimension [55]. In yet another direction Reid’s study of singularities [58] helped
to identify the right classes of singularities for this program to work. Moreover, Kawa-
mata and Shokurov [37,61] made extensive use of pairs and vanishing theorems [36] to
establish foundational results such as the base point free theorem guaranteeing existence
of relevant contractions generalising contraction of —1-curves on surfaces. With Mori’s
proof of existence of flips [56], (and the more general version by Shokurov [62]), and
Miyaoka and Kawamata’s proof of abundance [38, 51, 52] (and the more general ver-
sion by Keel, Matsuki, McKernan [41]), and further input from Kollar and many others
birational geometry for 3-folds was well-developed by the early 1990s. See [40, 44] for
introductions to the subject.

As it is evident from the above discussion, it did not take long before people under-
stood that the category of smooth varieties is not large enough for birational geometry
in dimensions > 3. One needs to consider singularities albeit of mild kinds. There are
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several types of singularities such as Kawamata log terminal and log canonical which
behave well (these are defined in Section 3). These singularities not only allow proofs to
go through but their study reveals fascinating facts which are often reflections of global
phenomena. Thus, the primary spaces in higher dimensional birational geometry were no
longer smooth ones but those with mild singularities.

On the other hand, one can study the birational geometry of varieties X defined
over arbitrary fields k. In characteristic zero many statements can be reduced to simi-
lar statements after passing to the algebraic closure of k, e.g. running a minimal model
program. But the finer classification is not that simple, for example, there can be many
non-isomorphic smooth projective varieties over k which all become isomorphic after
passing to the algebraic closure. See for example [43] for birational geometry of varieties
of dimension 3 over R. In positive characteristic the story is more complicated because of
non-separable field extensions.

2. Schemes

With Grothendieck’s revolution of algebraic geometry attention shifted from studying
varieties to schemes in the 1960s, to some extent. Birational geometry of arithmetic sur-
faces, that is, regular schemes of dimension two was worked out [47,59]. This is important
for arithmetic geometry. e.g. for constructing proper regular models of curves defined over
number fields and eventually to construct Néron models of elliptic curves [65].

On the other hand, one may attempt to study birational geometry of schemes defined
over a field; we mean allowing non-reduced structures. There does not seem to be much
research in this direction except some cases in dimension one. For example, Mumford’s
canonical curves appear while studying minimal smooth projective surfaces ¥ of Kodaira
dimension one [57]. An effective divisor X on Y suchthat Ky - X =0and X -C =0
for every component C of X, is a curve of canonical type. By adjunction Ky ~ 0 so we
may consider X as a Calabi—Yau scheme of dimension one. Studying such X, especially
when X is connected and the g.c.d. of its coefficients is 1, gives non-trivial information
about Y.

From the 1970s focus was on the birational geometry of good old smooth varieties
but one important point of view of Grothendieck remained which emphasized on working
in the relative setting, that is, studying varieties with a morphism to another variety. This
has had an important influence on the development of birational geometry. For example a
Kawamata log terminal singularity can be considered as a local analogue of a Fano variety.

3. Pairs
In the 1970s Iitaka initiated a program to study the birational classification of open vari-

eties (that is, non-compact varieties) according to their Kodaira dimension [33, 34]. This
involved compactifying the variety by adding a boundary divisor. This approach then
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evolved into the theory of pairs. Pairs are roughly speaking algebraic varieties together
with an extra structure given by a certain type of divisor (see below for precise definition).
They appear naturally even if one is only interested in studying projective varieties. We
give a series of motivating examples before defining pairs rigorously.

Much of the machinery of birational geometry of the last four decades has been devel-
oped for pairs. The main concept of space is then that of a pair.

3.1. Open varieties

Suppose U is a smooth variety. Then the geometry of U is often best understood after tak-
ing a compactification. Suppose X is a smooth projective variety containing U as an open
subset. Such a compactification is not unique except in dimension one. We can choose X
so that B := X \ U is a divisor with simple normal crossing singularities. Now we con-
sider (X, B) as a pair. The geometry of (X, B) reveals so much about the geometry of U.

3.2. Adjunction

Suppose X is a smooth variety and B is a smooth prime divisor on X. Then the well-
known adjunction formula says that Kp = (Kx + B)|p. Generalisations of the adjunction
formula play a central role in birational geometry. Very often one derives non-trivial state-
ments about the geometry of (X, B) from that of B allowing proofs by induction on
dimension. Thus, one is led to study pairs such as (X, B).

3.3. Canonical bundle formula

Suppose X is a smooth projective variety and f: X — Z is a contraction, that is, a pro-
jective morphism with connected fibres. Suppose in addition that Kx ~ f*L for some
Q-divisor L. Then the canonical bundle formula says that we can write

Kx ~ f*(Kz + B+ M),

where the discriminant divisor B is a Q-divisor uniquely determined and the moduli divi-
sor M is a Q-divisor determined up to Q-linear equivalence [2,39]. The classical example
is that of Kodaira’s canonical bundle formula in which X is a surface and f is an elliptic
fibration. The higher dimensional version in a more general context is discussed below.
The canonical bundle formula allows one to investigate the geometry of X from that of
(Z, B + M). In the setting above, it is possible to choose M so that we can consider
(Z, B 4+ M) as a pair [2]. We will see later that for many applications it is actually more
appropriate to consider it as a generalised pair because it is important to keep track of the
coefficients of M.

3.4. Quotient varieties

Suppose that X is a smooth variety and G is a finite group acting on X. Let ¥ be the
quotient of X by G and 7: X — Y be the quotient map. Then using Hurwitz formula
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one can write Ky = n*(Ky + By) for some divisor By whose coefficients are of the
form 1 — % for certain natural numbers . It is then natural to study ¥ and By together
rather than just Y, that is, to consider the pair (Y, By).

3.5. Definition of pairs

We now define pairs and their singularities rigorously. A pair (X, B) consists of a normal
quasi-projective variety X and a Q-divisor B > 0 such that Ky + B is Q-Cartier. We
call B a boundary divisor if its coefficients are in [0, 1]. Let ¢: W — X be a log resolution
of (X, B). We can write

Kw + Bw = ¢*(Kx + B),

where By is uniquely determined. Here we choose Ky so that ¢« Ky = Kxy. We say
(X, B) is log canonical (resp. Kawamata log terminal) (resp. €-log canonical) if every
coefficient of By is < 1 (resp. < 1) (resp. < 1 —¢€). If D is a component of By with
coefficient 1, then its image on X is called a log canonical centre.

3.6. Examples

(1) The simplest kind of pairs are the log smooth ones. A log smooth pair is a pair
(X, B), where X is smooth and Supp B has simple normal crossing singularities. Such
pairs are log canonical exactly when the coefficients of B are at most 1. If the coefficients
of B are less than 1, then the pair is Kawamata log terminal.

(2) Let X = P2. When B is a nodal curve, then (X, B) is log canonical. But when B
is a cuspidal curve, then (X, B) is not log canonical.

(3) Let X be the cone over a smooth rational curve. Then, (X, 0) is Kawamata log
terminal. In contrast if Y is the cone over an elliptic curve, then (Y, 0) is log canonical but
not Kawamata log terminal.

(4) Let X be a toric variety and B be the sum of the torus invariant divisors. Then
, B) is log canonical.
X, B) is log ical

(5) Let X be the variety in A* defined by the equation xy — zw = 0. Then (X, 0) is
Kawamata log terminal.

3.7. Using pairs

We illustrate the power of pairs by an example which frequently comes up in inductive
statements. Suppose (X, B) is a projective Kawamata log terminal pair and S is a normal
prime divisor on X. Now suppose L is a Cartier divisor such that

A=L—-(Kx+B+Y9)
is ample. Consider the exact sequence

H°(X,L) - H°(S,L|s) > H'(X,L - S).
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By assumption,
L—-S=Kx+ B+ A.

Since A is ample and (X, B) is Kawamata log terminal, H ! (L — S) =0 by the Kawamata—
Viehweg vanishing theorem (cf. [36]). Therefore, every section of L|gs can be lifted to a
section of L. This is very useful for example in situations where we want to show the
linear system |L| is non-empty or that it is base point free.

3.8. Progress in the last two decades

There has been huge progress in birational geometry of pairs in arbitrary dimension, in
the last two decades which builds upon the machinery developed in the preceding decades.
This is due to work of many people. To name few specific examples, existence of flips [10,
28,64], existence of minimal models for varieties of log general type and finite generation
of log canonical rings [10], ACC for log canonical thresholds and boundedness results
for varieties of log general type [29-31] (ACC on smooth varieties was proved in [17]),
boundedness of complements and Fano varieties [8, 9], existence of moduli spaces for
stable pairs [42], existence of moduli spaces for polarised Calabi—Yau and Fano pairs [4]
have all been established.

3.9. Semi-log canonical pairs

A semi-log canonical pair is roughly a pair in which the underlying space may not be
irreducible or may have components with self-intersections but the intersections should
be nice similar to those on nodal curves. Semi-log canonical pairs are important for con-
structing compact moduli spaces [42] as they appear as limits of usual pairs in families.

4. Generalised pairs

In recent years a new concept of space has evolved, that is, the generalised pairs. A gener-
alised pair is roughly a pair together with a birational model polarised with some divisor
having some positivity property. They were first defined and studied in [14] in their gen-
eral form. However, some special cases were already investigated in [13] and they also
appeared implicitly in the earlier works [7, 12]. Generalised pairs have found applications
in various contexts which we will discuss in the next section. We begin with considering
some motivating examples of such pairs and then give their precise definition afterwards.

4.1. Polarised varieties

Consider a projective variety X and an ample divisor M on it. We say X is polarised by M.
For example, M can be a very ample divisor determining an embedding of X into some
projective space. Influenced by Grothendieck’s theory of Hilbert schemes and Mumford’s
geometric invariant theory, polarised varieties play a central role in modern moduli theory
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as one often needs some kind of positivity in order to achieve “stability” hence be able to
construct moduli spaces. For example, one may consider varieties X polarised by K.

For applications it is important to allow more general polarisations, that is, when M
is not necessarily ample but only nef. Indeed, [13] studies the birational geometry of vari-
eties and pairs polarised by nef divisors which paved the way for the development of
generalised pairs. Here M is only a divisor class and not necessarily effective so we can-
not consider (X, M) as a usual pair.

For moduli of log canonically polarised pairs of general type, see [42], and for moduli
of polarised Calabi—Yau and Fano pairs, see [4].

4.2. Generalised polarised varieties

Suppose X is a projective variety and X --> X’ is a birational map to another projective
variety. Suppose X' is polarised by a nef divisor M’. We can consider X as a generalised
polarised variety, that is, a variety with some polarised birational model. Sometimes it is
important to understand how X and X’ are related. For example, when X’ is a minimal
model of X, then the canonical divisor Ky polarises X’ so we can consider X as a gen-
eralised polarised variety. This can be used to prove results about termination of flips (see
the next section).

4.3. Canonical bundle formula and subadjunction

Suppose (X, B) is a projective pair with Kawamata log terminal singularities and f:X— Z
is a contraction. Suppose in addition that Ky + B ~¢ f*L for some Q-divisor L. Then
the canonical bundle formula says that we can write

Kx + B ~q [*(Kz + Bz + Mz),

where the discriminant divisor Bz is a Q-divisor uniquely determined and the moduli
divisor Mz is a Q-divisor determined up to Q-linear equivalence [39]. There is a reso-
lution Z’ — Z and a nef divisor Mz on Z’ whose pushdown to Z is Mz (see [2]). We
can then consider (Z, Bz + M7z) as a generalised pair which happens to be generalised
Kawamata log terminal according to the definitions below.

Now assume (Y, A) is a projective log canonical pair and V' is a minimal log canonical
centre. Here minimality is among log canonical centres with respect to inclusion. Assume
(Y, ®) is Kawamata log terminal for some ®. Assume V' is normal (this actually holds
automatically). Then we can write

(Ky + A)|ly ~9 Kv + C + N,

where C is a divisor with coefficients in [0, 1] and N is a divisor class which is the push-
down of some nef divisor. What happens is that from the setup we can find a Kawamata
log terminal pair (S, I') and a contraction g: S — V such that

Ks +T ~q g"(Ky + A)ly.
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Thus, we can use the previous paragraph to decompose (Ky + A)|y as Ky + C + N.In
particular, (V, C + N) is a generalised pair. This construction is called subadjunction [39]
— in practice though people often try to perturb C + N to get a boundary divisor.

4.4. Definition of generalised pairs

A projective generalised pair consists of

e anormal projective variety X,

e aQ-divisor B > 0on X, and

e abirational contraction ¢: X’ — X and a nef Q-divisor M’ on X',

such that Ky + B + M is Q-Cartier where M := ¢ M’.

Actually we specify X', M’ only up to birational transformations, that is, if we replace
X’ with a resolution and replace M’ with its pullback, then the pair would be the same. In
other words, we view M’ as a so-called b-divisor which is determined by its trace on the
model X’.

We can similarly define generalised pairs in the relative setting, that is, when we are
given a projective morphism X — Z (but X may not be projective) and then we only
assume M’ to be nef over Z.

Now we define generalised singularities for a generalised pair (X, B + M ). Replac-
ing X’ we can assume ¢ is a log resolution of (X, B). We can write

Kx +B +M =¢*(Kx + B+ M)

for some uniquely determined B’. We say (X, B + M) is generalised log canonical (resp.
generalised Kawamata log terminal) (resp. generalised €-log canonical) if each coeffi-
cientof B’ is < 1 (resp. < 1) (resp. < 1 —¢).

4.5. Examples

We present a series of examples of generalised pairs.

(1) The most obvious way to construct a generalised pair is to take a projective pair
(X, B) and a nef Q-divisor M to get (X, B + M). Then (X, B + M) is generalized log
canonical (resp. generalized Kawamata log terminal) iff (X, B) is log canonical (resp.
Kawamata log terminal). In this example M’ = M does not contribute to the singularities
even if its coefficients are large. In contrast, the larger the coefficients of B are, the worse
the singularities of (X, B + M) are.

(2) In general, M’ does contribute to singularities. For example, assume X = P2 and
that ¢ is the blowup of a point x. Let E’ be the exceptional divisor, L a line passing
through x and L’ the birational transform of L.

If B=0and M’ = 2L/, then we can calculate B’ = E’ hence (X, B + M) is gen-
eralized log canonical but not generalized Kawamata log terminal. However, if B = L
and M’ = 2L/, then (X, B + M) is not generalized log canonical because in this case
B ' =L"+4+2E'.
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(3) Suppose that X is a smooth projective variety such that —Ky is nef. Letting
M := —Kx we can consider (X, M) as a generalised Calabi—Yau pair as Ky + M = 0.
This is very useful for tackling problems about X, see Sections 5.8 and 5.10 below.

(4) Let X be a smooth projective variety and D be a divisor with 2°(X, D) # 0. We
can find a resolution of singularities ¢: X’ — X such that the movable part M’ of the lin-
ear system |¢* D] is base point free, hence in particular nef. Writing C’ for the fixed part
of |p*D| we get M' + C’ ~ ¢*D. Let M, C be the pushdowns of M’, C’ respectively.
Then (X, C + M) is a generalised pair with nef part M’ which remembers the movable
and fixed parts of |¢p* D|. Its singularities reflect the singularities of (X, L) where L is a
general member of |D|, e.g. (X, C 4+ M) is generalised log canonical iff (X, L) is log
canonical. Moreover, for any non-negative rational number 7, the singularities of the gen-
eralised pair (X, tC + tM) with nef part t M’ reflect the singularities of the pair (X, ¢L).

More generally suppose W C | D] is a linear system. Again pick a resolution X’ — X
so that the movable part M’ of the linear system ¢*W is base point free, hence in par-
ticular nef. Writing C’ for the fixed part of ¢*W we get M’ + C’' ~ ¢*D. Let M, C be
the pushdowns of M’, C’ respectively. Then (X, C + M) is a generalised pair with nef
part M’ which remembers the movable and fixed parts of W. Similarly, for a non-negative
rational number #, (X,1C + tM) is a generalised pair with nef part t M whose behaviour
reflects that of (X, L) where L is a general member of W. Generalised pairs of this kind
have appeared in the context of birational rigidity and non-rationality of Fano varieties
and the Sarkisov program going back to work of Iskovskikh—Manin which in turn is based
on ideas going back as far as Fano and Noether (see [15] for a survey on these topics,
especially Section 0.2).

For simplicity we assumed X to be smooth but similar constructions apply for example
if X has kit singularities and D is Q-Cartier.

(5) Let X be a smooth projective variety such that Ky ~g 0 (that is, X is a Calabi—
Yau variety). Let M be a nef divisor on X. A difficult conjecture predicts that M is
numerically equivalent to a semi-ample divisor. Viewing (X, M) as a generalised pair,
the question is whether Kx + M is numerically semi-ample. See the last section for more
general statements.

(6) Let X be a normal Q-factorial variety and let V = )_ b;V; be a formal linear
combination of closed subvarieties where V; # X and b; are non-negative rational num-
bers. One can consider (X, V') as some kind of pair generalising the traditional notion of a
pair [19] (when all the V; are prime divisors, then (X, V) is a pair in the usual sense). Take
a log resolution ¢: X’ — X such that the scheme-theoretic inverse images V; := ¢~V
are all Cartier divisors. Here we are assuming that the exceptional locus of ¢ union the
support of all the V' is a divisor with simple normal crossing singularities (hence the name
log resolution). Write Ky + E’ = ¢* Kx and then define the log discrepancy of a prime
divisor D’ on X’ with respect to (X, V) tobe 1 —up/(E'+ Y b;V/). Wesay (X, V) is log
canonical (resp. Kawamata log terminal) if all the log discrepancies are > 0 (resp. > 0).
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The singularities of (X, V) can be interpreted in terms of generalised pairs. Indeed,
for each i, the morphism X’ — X factors through the blowup ¥; — X of X along V;. The
scheme-theoretic inverse image of V; on Y; is a Cartier divisor which is anti-ample over X,
and Vi’ is the pullback of this anti-ample divisor. Thus, —Vl/ is nef over X, for each i.
Now let M’ := — " b; V/ which is nef over X, and let B’ := E’ + ) b;V/. Consider
the generalised pair (X, B + M) with nef part M’ relatively over X where B = ¢ B’
and M = ¢, M’. Then we have

KX/+BI+M/=KX/+E/=¢*KX2¢*(Kx+B+M)

as B + M = 0. Thus, the log discrepancies of (X, V') are the same as the generalised log
discrepancies of (X, B + M).

Note that even though B + M = 0 but (X, B + M) as a generalised pair is not the
same as the usual pair (X, 0). Also note that even if X is projective, the generalised pair
(X, B + M) only makes sense relatively over X since M’ obviously may not be nef
globally. This suggests that (X, B + M) is useful for studying local properties of (X, V).

4.6. Geometry of generalised pairs

In the next section we present some of the applications of generalised pairs in recent
years. We want to emphasize that in addition to such applications studying the geometry
of generalised pairs is interesting on its own. Many questions for varieties and usual pairs
can be asked in the context of generalised pairs which leads to some deep problems. For
example, can we always run a minimal model program for a generalised pair and get
a minimal model or a Mori fibre space in the end? See the last section for some more
problems.

Various geometric aspects of generalised pairs have been studied in recent years, for
example, see [13,14,26,53] for the minimal model program and termination, [ 14] for bira-
tional boundedness of linear systems and ACC for generalised Ic thresholds, [8,16,22,23]
for boundedness of complements, [20] for boundedness of generalised pairs of general
type, [21] for the canonical bundle formula, [5] for boundedness of Fano type gener-
alised log Calabi—Yau fibrations, [4] for birational boundedness of linear systems and
boundedness of polarised varieties, [11] for boundedness of rationally connected gener-
alised log Calabi—Yau 3-folds, [45,46] for abundance, [49] for the Sarkisov program, [48]
for accumulation points of generalised Ic thresholds, [25] for invariance of plurigenera
and boundedness, [3, 24] for connectedness properties of non-klt loci of generalised log
Calabi—Yau pairs, etc.

5. Some applications of generalised pairs

In this section we discuss some applications of generalised pairs in recent years.
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5.1. Effective Iitaka fibrations and pluricanonical systems of generalised pairs

Let W be a smooth projective variety of Kodaira dimension (W) > 0. The Kodaira

dimension « (W) is the largest number ¥ among {—oc0,0, 1,...,dim X} such that
hO(X,mK
lim sup u > 0.
meN m¥

Then by a well-known construction of Ilitaka, there is a birational morphism V — W
from a smooth projective variety V', and a contraction IV’ — X onto a projective variety X
such that a (very) general fibre F of V' — X is smooth with Kodaira dimension zero, and
dim X is equal to the Kodaira dimension x(W). The map W --> X is referred to as an
litaka fibration of W, which is unique up to birational equivalence. For any sufficiently
divisible natural number m, the pluricanonical system |m Ky | defines an Iitaka fibration.
The following hard conjecture predicts that we can choose m uniformly depending only
on the dimension.

Conjecture 5.2 (Effective litaka fibration, cf. [27]). Let W be a smooth projective variety
of dimension d and Kodaira dimension k(W) > 0. Then there is a natural number mg
depending only on d such that the pluricanonical system |m Ky | defines an litaka fibra-
tion for any natural number m divisible by mg.

In [14] the conjecture is reduced to bounding certain invariants of the very general
fibres of the litaka fibration. The point is that, perhaps after replacing W, X birationally,
bounding such invariants implies that the Iitaka fibration induces a canonical bundle type
formula giving Q-divisors B > 0 and M on X where the coefficients of B are in a DCC set
and M is nef with bounded Cartier index. Thus, it would be enough to prove the following
theorem regarding generalised pairs. Here by DCC set we mean the set does not contain
any infinite strictly decreasing sequence of numbers.

Theorem 5.3. Let A be a DCC set of non-negative real numbers, and d,r be natural
numbers. Then there is a natural number m(A, d, r) depending only on A, d,r such
that if

(1) (X, B) is a projective log canonical pair of dimension d,

(ii) the coefficients of B are in A,

(iii) rM is a nef Cartier divisor, and

(iv) Kx + B + M is big,
then the linear system |m(Kx + B + M)| defines a birational map if m € N is divisible
bym(A,d,r).

For usual pairs, that is when M = 0, the theorem was previously known [30, The-
orem 1.3]. However, the general case proved in [14] uses very subtle properties of the
theory of generalised pairs.
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5.4. Boundedness of complements and of Fano varieties

Let (X, B) be a projective pair where B is aboundary. Let T = |B] and A = B—T. An
n-complement of Ky + B is of the form Kx + B™ such that

e (X, B™")islog canonical,

e n(Kx +BT)~0,and

e nBY>nT + |(n+1A].

From the definition one sees that
—nKyx —nT — |(n+ DA| ~nBY —nT — [(n + DA >0,
so existence of an n-complement for Ky + B implies that the linear system
| —nKxy —nT — |(n + DA] |

is non-empty. In particular, this means that we should be looking at varieties X with Ky
“non-positive”, e.g. Fano varieties. Complements were defined by Shokurov [62] in the
context of construction of flips. The following was conjectured by him [63] and proved
in [8].

Theorem 5.5. Let d be a natural number and R C [0, 1] be a finite set of rational num-
bers. Then there exists a natural number n depending only on d and R satisfying the
Sfollowing. Assume (X, B) is a projective pair such that

e (X, B) is log canonical of dimension d,

o the coefficients of B are in D(N),

o X is of Fano type, and

e —(Kx + B) is nef.

Then there is an n-complement Kx + BT of Kx + B such that BT > B. Moreover, the
complement is also an mn-complement for any m € N.

Here X being of Fano type means that (X, C) is klt and —(Kx + C) is ample for
some boundary C. And () stands for the set

{1—L|r€§)‘t,m€N}.
m

A special case of the theorem is when Kx + B ~q 0 along a fibration f: X — 7. This
is where generalised pairs come into the picture. Applying the canonical bundle formula
we can write

Kx + B ~q f*(Kr + Br + Mr),

where By is the discriminant divisor and M7 is the moduli divisor. It turns out that the
coefficients of By are in ®(&) for some fixed finite set © of rational numbers, and
that pMr is integral for some bounded number p € N. Now we want to find a com-
plement for K7 + Bt + M7 and pull it back to X. As mentioned elsewhere in the text
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(T, BT + M) is not a pair but it is a generalised pair. Thus, we actually need to construct
complements in the more general setting of generalised pairs which can be defined similar
to the case of usual pairs. Once we have a bounded complement for K7 + Bt + Mt we
pull it back to get a bounded complement for Ky + B.

Also see [60] for an extensive study of complements where generalised pairs are used.

The theory of complements is applied in [9] to prove the following statement which
was known as the BAB conjecture. Thus, generalised pairs play an important (indirect)
role in the proof of this theorem.

Theorem 5.6. Let d be a natural number and € be a positive real number. Then the
projective varieties X such that

e (X, B) is €-log canonical of dimension d for some boundary B, and
e —(Kx + B) is nef and big,
form a bounded family.

This theorem in turn has been applied to various problems in recent years.

5.7. Termination of flips and existence of minimal models

In [7] existence of minimal models is linked with existence of weak forms of Zariski
decompositions. A given divisor D on a projective variety has a weak Zariski decomposi-
tion if its pullback to some resolution of X can be written as P + N where P is nef and N
is effective. When (X, B) is a pair, we would be interested in weak Zariski decompositions
of Ky + B. On the other hand, termination of flips is linked with log canonical thresholds
in [6]. Extending these to the case of generalised pairs, termination of flips for generalised
pairs with weak Zariski decompositions is derived from termination in lower dimension
for generalised pairs, in [26,32]; it is also shown that existence of weak Zariski decompo-
sitions for pseudo-effective generalised pairs is equivalent to existence of minimal models
for such pairs. In particular, termination of flips is established for pseudo-effective pairs
of dimension four which at the moment does not follow from any other technique (this
was first established in [53] for usual pairs).

5.8. Boundedness of certain rationally connected varieties

McKernan and Prokhorov [50] conjectured a more general form of BAB.

Conjecture 5.9. Let d be a natural number and € be a positive real number. Consider
projective varieties X such that

e (X, B) is e-log canonical of dimension d for some boundary B,

e —(Kx + B) is nef, and

e X is rationally connected.

Then the set of such X forms a bounded family.
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The rational connectedness assumption cannot be removed: indeed it is well known
that K3 surfaces do not form a bounded family; they satisfy the assumptions of the theorem
withd =2 and € = 1 and B = 0 except that they are not rationally connected.

The conjecture fits nicely into the framework of generalised pairs and related con-
jectures. Indeed letting M := —(Kx + B) we get a generalised e-log canonical pair
(X, B + M) with Kx + B + M = 0, hence a generalised Calabi—Yau pair. The advantage
of this point of view is that running a minimal model program preserves the Calabi—
Yau condition, hence one can get information by passing to Mori fibre spaces when
B + M # 0 (which is always the case on some birational model). Using this and the
machinery developed in [5], a slightly weaker form of the conjecture is verified in dimen-
sion three in [11] where one replaces boundedness with boundedness up to isomorphism
in codimension one.

5.10. Connected components of non-klt loci

Generalised pairs are used in [3, 24] to verify a conjecture of Hacon and Han on the
connected components of non-klt loci of certain pairs. More precisely, it is proved that
given a pair (X, B) and a projective morphism X — Z with connected fibres such that
—(Kx + B) is nef over Z, the non-klt locus of (X, B) has at most two connected com-
ponents near each fibre of X — Z. Similar to the previous subsection, letting M :=
—(Kx + B) and considering (X, B + M) as a generalised pair which is generalised log
Calabi—Yau over Z, is the key to proving the above statement.

For similar reasons, it is expected that generalised pairs play a prominent role in tack-
ling other problems about the class of pairs (X, B) with —(Ky + B) nef over some base.

5.11. Varieties fibred over abelian varieties

In [12], generalised pairs, more precisely, polarised pairs, are used to investigate pairs that
are relatively of general type over a variety of maximal Albanese dimension. Suppose that
(X, B) is a projective Kawamata log terminal pair and f: X — Z is a surjective morphism
where Z is a normal projective variety with maximal Albanese dimension, e.g. an abelian
variety. It is shown that if Kx + B is big over Z, then (X, B) has a good log minimal
model. Moreover, if F is a general fibre of f, then

k(Kx + B) > k(Kp + Bp) + k(Z) = dim F + k(Z).

where K + BF = (Kx + B)|F.

6. Problems

In this section we discuss some open problems regarding generalised pairs.
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6.1. Existence of contractions and flips

Let (X, B+ M) be a projective generalised log canonical pair. Assume that R is a
Kx + B + M -negative extremal ray. When (X, B + M) is generalised Kawamata log
terminal, existence of the contraction associated to R follows easily from the similar result
for usual pairs. This is because we can easily find an ample Q-divisor A and a Kawamata
log terminal pair (X, A) such that

Kx+A~QKX+B+M+A

and such that R is (Kx + A)-negative. In particular, if R defines a flipping contraction,
then its flip exists [10].

Now assume (X, B + M) is not generalised Kawamata log terminal. If (X, C) is
Kawamata log terminal for some C, then we can take an average and use the previous
paragraph. More precisely, taking ¢ > 0 to be a small rational number,

X, tC+A—-1)B+(1—-t)M)
is generalised Kawamata log terminal and
Kx +tC+(0-t))B+(1—-t))M

intersects R negatively. Thus, in this case the contraction of R exists and in the flipping
case its flip exists. If there is no C as above, e.g. when X itself has some non-Kawamata
log terminal singularities, then the situation is more complicated and for now existence
of contractions and flips in full generality is not proved yet. This is important for running
minimal model program for generalised pairs.

6.2. Generalised minimal model program

Suppose that (X, B + M) is a projective generalised log canonical pair. Assuming that
existence of contractions and flips are established for such pairs, we can run the mini-
mal model program on Kx 4+ B 4+ M which, if terminates, produces a generalised Mori
fibre space or a generalised minimal model. Termination of the program does not seem to
follow from termination for usual pairs (although we can inductively treat the case when
Kx + B + M is pseudo-effective, as in [26]). For polarised varieties it was proved in [13]
that termination of some choice of minimal model program can be guaranteed if termina-
tion holds for usual pairs which is only known up to dimension three. In low dimension
the picture is clearer. Generalised termination holds trivially in dimension two. It is also
known in dimension three [53] and in dimension four in the pseudo-effective case [26].

6.3. Generalised abundance

Although generalised pairs behave like usual pairs in many ways but there are some crucial
differences. Assume (X, B + M) is a projective generalised Kawamata log terminal pair
with Kx + B + M nef. In the case of usual pairs, that is, when M = 0, the abundance
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conjecture says that Ky + B is semi-ample which means that m(Ky + B) is base point
free for some natural number m. In general when M ## 0, we cannot expect Ky + B + M
to be semi-ample as was already pointed out in [13]. Indeed this already fails in dimension
one when X is an elliptic curve, B = 0, and M is a numerically trivial but non-torsion
divisor. In dimension one at least numerical abundance holds, thatis, Ky + B+ M = D
for some semi-ample divisor D. In dimension two even numerical abundance fails. The
obstructions to numerical abundance seem to arise only when Ky + B is not pseudo-
effective (in which case X is uniruled so rational curves play a role); it is conjectured that
if Kx + B is pseudo-effective and if M is nef, then numerical abundance holds [45, 46]
(these papers prove some results in this direction).

6.4. Boundedness of generalised pairs with fixed volume

Fix natural numbers d, p, a DCC set ® C [0, 1] of rational numbers, and a positive rational
number v. Consider projective generalised log canonical pairs (X, B + M) of dimen-
sion d such that the coefficients of B are in ®, the divisor pM’ is Cartier where M’ is the
nef part of the pair (X, B + M), and Kx + B + M is ample with volume (Kx + B + M )¢
= v. Then it is expected that such X form a bounded family. That is, one expects to find
a natural number / depending only on d, p, ®, v such that /(Ky + B + M) is very ample
hence defining an embedding of X into some fixed projective space P” such the image
of X under this embedding has bounded degree in P”. This statement is verified in dimen-
sion two in [20]. The case of usual pairs, that is, when M’ = 0, was proved in [31] in any
dimension.

This problem appears while studying projective pairs (¥, A) with semi-ample Ky + A
when we take Y — X to be the contraction defined by Ky + A and let (X, B + M) be
given by the canonical bundle formula. Conjecturally, running the minimal model program
on a log canonical pair ends with such a pair (Y, A) or a Mori fibre space. Thus, it is
important to understand these pairs.

6.5. Classification of generalised pairs

One may ask to classify generalised pairs in given dimension. The extra information in
generalised pairs as opposed to usual pairs makes the classification theory richer and more
complex. For example let’s look at the case of dimension one. Let (X, B + M) be a pro-
jective generalised log canonical pair of dimension one. To classify such generalised pairs
we need to fix some invariants. We can fix the degree of Ky + B + M and also assume
that [ B, [M are both integral divisors for some fixed natural number /. In particular, the
number of components of B is bounded. In fact, (X, B) varies in some bounded family
of pairs. On the other hand, / M is a nef Cartier divisor whose degree takes only finitely
many possibilities but (X, Supp(B + M)) need not belong to a bounded family. Indeed
even when X = P! and B = 0, Supp M can have any number of components. One idea is
to consider (X, B + M) up to some kind of equivalence, e.g. up to isomorphism of (X, B)
and up to linear equivalence of / M. For example if we fix X to be an elliptic curve and
assume B = 0 and M = 0 and then consider / M up to linear equivalence, then the classes
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of such (X, M) are parametrised by the elements of Pic®(X) (by sending (X, M) to [ M).
If we do not fix X, then we need a larger space to parametrise the classes of (X, M). It is
not hard to imagine that going to higher dimension the classification problem gets quite
complicated.

Another idea is to consider only the case M > 0. Indeed even in higher dimension this
works in some interesting situations. For example, fix a natural number d and positive
rational numbers ¢, v, and then consider projective semi-log canonical Calabi—Yau pairs
(X, B) of dimension d and ample Weil divisors M > 0 such that %B is a Weil divisor,
the volume vol(M) = v, and (X, B + tM) is log canonical for some ¢ > 0 (here ¢ is not
fixed). Then it is shown in [4, Theorem 1.10] that there is a projective coarse moduli space
for such (X, B), M with the fixed data d, ¢, v. Note that M being ample, (X, B + M) is
a generalised pair.

Acknowledgments. Thanks to Yifei Chen for many helpful comments and thanks to the
referees for helpful comments.
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