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Tutorial on Tom and Jerry: the two smoothings of
the anticanonical cone over P .1; 2 ; 3/

Gavin Brown, Miles Reid, and Jan Stevens

Abstract. This is a first introduction to unprojection methods, and more specifically to Tom and
Jerry unprojections. These two harmless tricks deserve to be better known, since they answer many
practical questions about constructing codimension 4 Gorenstein subschemes. In particular, we dis-
cuss here the two smoothing components of the anticanonical cone over P .1; 2; 3/.

Constructing Gorenstein rings in codimension 4 remains a difficult problem. Kustin–
Miller [7] provide one approach: take as input a codimension 3 Gorenstein scheme X
containing a divisor D � X that is also Gorenstein (here X is local, affine, or graded
in positive degree). From this they construct a codimension 4 Gorenstein scheme Y .
Papadakis and Reid [10] state and prove the Kustin–Miller unprojection theorem via
adjunction for the Serre–Grothendieck dualising sheaf: the Poincaré residue homomor-
phism Hom.ID; !X / D !X .D/� !D leads to a rational function s on X with pole
onD. Then OY is given by adjoining the element s, to give OY D OX Œs� where s satisfies
only linear relations. See [10] for the full statement.

To apply unprojection, the problem is how to construct the input data D � X . The
cases we consider here have X given by the 4 � 4 Pfaffians of a 5 � 5 skew matrix, andD
a codimension 4 complete intersection contained in X . Tom and Jerry [4] are two explicit
ways of constructing pairs D � X .

Consider a codimension 3 variety X � A defined by the 4 � 4 Pfaffians of a skew
5 � 5 matrix

M D

0BB@
m12 m13 m14 m15

m23 m24 m25
m34 m35

m45

1CCA
and a codimension 4 complete intersection ideal ID � OA. (We omit the zeros on the
diagonal and the mj i D �mij with i < j .) The Tom and Jerry conditions on M are two
methods of ensuring that the Pfaffians of M belong to ID . You should think of them as
related to maximal linear subspaces of Grass.2;5/ in its Plücker embedding. Tomi requires
that the 6 entries mjk with j; k ¤ i are in ID; we view this as 2 conditions on the mjk .
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Jerryjk requires that the 7 entries mij and mik in the j th and kth row and column of M
are in ID; we view this as 3 conditions.

This paper gives a substantial illustration of Tom and Jerry to show their flexibility in
practice, their ancestral relations to P2 � P2 and P1 � P1 � P1 and other formats, and
their application to the construction and especially the deformation theory of varieties.

Section 1 works out the 9 equations of the cone on P .1; 2; 3/. Section 2 treats the
“6� 6 extrasymmetric format”, that describes the Segre embedding of P2 � P2 and some
of its degenerations. One can view this as just algebraic manipulations, or as a typical
case of Tom unprojection. In a similar vein, Section 3 treats the “Double Jerry construc-
tion”, that describes the Segre embedding of P1 � P1 � P1 and some of its degenerations.
In Section 4 we put these two unprojection constructions together as a versal deforma-
tion of the anticanonical cone over P .1; 2; 3/ over a reducible base, with the obstructions
also controlled by the matrix format. We conclude with some general remarks, mnemon-
ics, slogans, and FAQ. We do not pretend any generality, or any theoretical treatment of
Gorenstein codimension 4 (compare [12]).

1. The anticanonical cone over P .1; 2 ; 3/

LetX �A7 be the anticanonical cone over P .1;2;3/hu;v;wi; this is also the quotient by the
group action 1

6
.1; 2; 3/ on A3

hu;v;wi
. We set out its 7 coordinate monomials as the Newton

polygon

u6 u4v u2v2 v3

u3w uvw

w2

D

a b c x

d e

f

(1)

The somewhat idiosyncratic choice of coordinates on A7 relates to the extrasymmetric
format of Section 2.

One finds the equations defining X without difficulty. The semigroup ideal of internal
monomials of the Newton polygon is generated by the single monomial e D uvw. There
are tag relations between any three consecutive boundary monomials, that involve e if we
turn a corner:

ac � b2; xb � c2; cf � e2; xdf � e3; af � d2; bd � ae:

Note in particular the equations cf D e2 (that is, the tag at x is 0) and xd D f �1e3

or xdf D e3 (the tag at f is �1).
These equations define the toric variety X in the complement of the coordinate hyper-

planes, where e is invertible. The remaining generators of IX come by coloning out e: for
example, cf � e2 and xdf � e3 give�

c.xdf � e3/ � xd.cf � e2/
�
e�2 D xd � ce;
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where e is invertible. The ideal is generated by the 9 binomials:

ac � b2; xb � c2; cf � e2; af � d2; bd � ae

xd � ce; bf � de; dc � be; xa � bc:
(2)

Another way to view the equations is that they describe a singular del Pezzo surface S
of degree 6. The monomials U D u3, V D uv, W D w base H 0.P .1; 2; 3/;O.3//. We
view them as coordinates on P2. Then multiplying (1) by u3 gives the 7 monomials

U 3 U 2V UV 2 V 3

U 2W UVW

UW 2

(3)

that base the linear system of cubics in P2U;V;W with flex line U D 0 at .0 W 0 W 1/. It is
an amusing exercise to recover from this the A1 singularity cf D e2 at Px and the A2
singularity xdf D e3 at Pf .

2. Extrasymmetric format

2.1. Extrasymmetric format

Tom unprojections frequently lead to equations in extrasymmetric format. Consider for
example the 6 � 6 skew matrix

N D

0BBBBB@
z y a b d

x b c e

d e f

�z �y

�x

1CCCCCA D
�
B A

�A �B

�
: (4)

A matrix of this shape is extrasymmetric (the term also covers slightly more general cases,
see [4, 9.1]). It is made up of 3 � 3 blocks, where the top right block A is symmetric, the
top left block B is skew, and the bottom right block �B repeats the information contained
in the top left block, in this case with a nonzero scalar factor �.

The 4 � 4 Pfaffians of N generate the ideal of the Segre embedding

Segre.P2 � P2/ � P8
ha;b;c;d;e;f;x;y;zi:

More precisely, the extrasymmetry means that the 15 upper-triangular entries of N con-
sist of 9 independent entries and 6 repeats. The same is true of the 4 � 4 Pfaffians of N ,
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which give 9 relations and 6 repeats. The resulting 9 equations define a variety in
A9
hx;y;z;a;b;c;d;e;f i

that, for � ¤ 0, is a linear transformation away from the affine cone

over Segre.P2 � P2/. The linear transformation involves taking � D
p
��. If we write

�x2 � cf C e2 D .e � �x/.e C �x/ � cf D e0x0 � cf

and similarly for d 0; e0 and y0; z0, leaving a; c; f fixed, the Pfaffian equations become
linear combinations of the 2 � 2 minors of0@a b0 d 0

z0 c e0

y0 x0 f

1A D ACp��B:
This agrees with the more banal way of defining Segre.P2 � P2/ as

V2
M D 0 for a

generic 3 � 3 matrix M . Any such matrix M may be written M D AC �B with A sym-
metric andB skew, and the ideal of 2� 2minors ofM equals the ideal of 4� 4 Pfaffians of
the extrasymmetric matrixND

�
B A
�A �B

�
. Swapping the signs of the square root �D

p
��

transposes the matrix M and so interchanges the two copies of P2 in P2 � P2.
In more geometrical terms, this format displays P2 �P2 as a nongeneric linear section

of Grass.2; 6/.

2.2. Specialise to v6.P .1; 2 ; 3//

Now we consider � as a variable and specialise the matrix (4) by setting � D 0, z D 0

and y D c; the Pfaffian equations specialise to (2). That is, the anticanonical cone X
over P .1; 2; 3/ is the particular section � D 0, z D 0 and y D c of a degeneration of the
cone over P2 � P2. Wiggling the section gives one of the smoothing components of the
deformations of X .

2.3. The same viewed as a Tom unprojection

As we said, the extrasymmetric matrix N in (4) has 6 repeated entries. The entries that
are not repeated are the three diagonal entries a; c; f of the top right 3 � 3 block A. They
correspond to the three coordinate points of P2 � P2 such as Pa D .1 W 0 W 0I 1 W 0 W 0/,
etc. Here again � is a nonzero scalar, and Pa is unmoved by the linear coordinate changes
or choices of

p
�� above.

Now project from Pa, and view the original equations as the result of undoing this
projection. A practical point of view on unprojection is that it groups the 9 equations
according to how they involve a. Because of the format of (4), a only appears linearly in
4 equations

ac D b2 C �z2; ae D bd C �yz;

af D d2 C �y2; ax D yb � zd;
(5)
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and the remaining 5 equations not involving a are the Pfaffians of

Ny4 D

0BB@
z y b d

x c e

e f

�x

1CCA (6)

(delete row and column 4 from N of (4)). What makes Ny4 a Tom1 matrix is that the
6 entries not in row and column 1 are in the codimension 4 complete intersection
ideal .x; c; e;f /. The coincidencesm25 Dm34 D e andm45 D �x D �m23 that bring this
about are remnants of the extrasymmetry of N . From this point of view a is an unprojec-
tion variable: the equations (5) describe a map from the ideal .x; c; e; f / to the coordinate
ring of the affine cone over Segre.P2 � P2/ that is not a multiple of the natural inclusion
(cf. §4.1 below). If we did not already have them, the main theorem of [10] would allow
us to recover the variable a up to a unit and the equations (5) from Ny4 and .x; c; e; f /;
see [10, Remark 1.3].

Geometrically, the Pfaffians of (6) define the projection of P2 � P2 from Pa. It is a 4-
fold section of Grass.2;5/ containing the 3-plane P3

hb;d;z;yi
defined by the ideal .x;c;e;f /.

2.4. Finding the Tom format from v6.P .1; 2 ; 3//

We can start from the other end, dividing the 9 equations (2) of v6.P .1; 2; 3// into 4 that
are linear in a and 5 not involving a. One gets af D d2, ae D bd , ac D b2 and ax D bc
together with the five Pfaffians of 0BB@

0 c b d

x c e

e f

0

1CCA : (7)

If we hope to describe the set of all 9 equations as Pfaffians of a special 6� 6 skew matrix,
we must put a where it multiplies x; c; e; f and not b; d , so put it at the end of the first
row as m16; row and column operations can take it to m14 as in the matrix (4).

3. Double Jerry format

3.1. Double Jerry

A neat starting point [4, 9.2] is to view Double Jerry as a theorem saying that a codi-
mension 2 complete intersection m1 D m2 D 0 that contains two different codimension 3
complete intersections .x1; x2; x3/ and .y1; y2; y3/ is defined by two bilinear forms

m1.x1; x2; x3I y1; y2; y3/ and m2.x1; x2; x3I y1; y2; y3/:

We can then introduce two parallel sets of unprojection equations

s � .x1; x2; x3/ D � � � and t � .y1; y2; y3/ D � � � ;
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each taking us to codimension 3, together with a long equation st D � � �. Each unpro-
jection separately is given by Cramer’s rule, leading to a 5 � 5 Pfaffian Jerry matrix,
but the long equation is an intriguing and in general surprisingly complicated function
of m1; m2; xi ; yi . A particular case is worked out in Brown and Georgiadis [3].

3.2. Our particular case

Rather than rework the general material of [4, 9.2], consider only the case of the Newton
polygon (1). As before, a only appears linearly in 4 equations, so can be eliminated
or “projected out”, expressing the variety as an unprojection. The 5 equations not involv-
ing a are again the Pfaffians of (7). However, we now view it as a Jerry23 matrix: in fact,
the 7 entries ¹0; x; c; eº [ ¹c; x; e; f º of its 2nd and 3rd rows and columns consist of the
regular sequence x; c; e; f with repeats:

0

x c e row 2
�

0BB@
0 c b d

x c e

e f

0

1CCA row 3
�

c

x

e f:

What makes it a double Jerry is that the pivotm23 D x is one of the variables on the nose,
rather than a linear combination.

The matrix 0BB@
�f c C �f b d

x c e

e f

�g

1CCA ; (8)

is a deformation respecting the Jerry23 requirements just described. Here � and � scalars,
and g is a new indeterminate of degree 1, not constrained by the Jerry format to be in the
ideal .x; c; e; f /, that arises naturally as an additional degree of freedom. Putting back a
as unprojection variable defines a family of del Pezzo 3-folds

W�;� � P7
ha;b;c;d;e;f;g;xi:

We recover v6.P .1; 2; 3// on setting � D � D 0 and taking the hyperplane section g D 0.

3.3. Interpretation as double Jerry

Two of the Pfaffians of (8) do not involve x:

be � cd C �fg and bf C cg � de C �fg: (9)

The codimension 2 complete intersection U�;� defined by these contains as divisors two
different codimension 3 complete intersection V.b; d; g/ and V.c; e; f /. Unprojecting
these lead to x and a respectively: schematically we have

P8
project out a
Ü P7

project out x
Ü P6

� codim 4 � codim 3 � codim 2

W�;� Ü V�;� Ü U�;�
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and unprojection allows us to work backwards from U�;� and its two distinguished com-
plete intersection divisors to construct W�;� .

In more detail, first write (9) as�
b d g

�0@ e f

�c �e

�f c C �f

1A D 0:
By Cramer’s rule, .b; d; g/ is proportional to the minors of the 3 � 2 matrix. This predicts
the remaining 3 minors of (8):

xb D c2 � �ef C �cf;

xd D ce C �ef � �f 2;

xg D �cf C e2:

(10)

For c; e; f , working in the same way, (9) gives�
�d b �g

g �d b C �g

�0@ ce
f

1A D 0:
Adjoining a as the unprojection variable gives the other half of the double Jerry:

ac D b2 C �bg C �dg;

ae D bd C �dg C �g2;

af D �bg C d2;

and

0BB@
�a b �d �g

�d g b C �g

f �c

e

1CCA :
We get the long equation for ax by cancelling b; c; d; e; f or g from a linear combination
of the other equations. There are many such derivations: for example, start from xg D

e2 � fc, multiply by a and rewrite the right-hand side until it is divisible by g. The
result is

ax D .b C �g/.c C �f / � �.df � eg/:

The symmetry between the two unprojections is underlined by the fact that the 9 equa-
tions are simply interchanged1 by the involution

� ! ��; a ! x; b  ! c; d  ! e; f  ! g:

1They are also invariant under .d; e;�/$ .�d;�e;��/. In these calculations there may be several correct
choices of signs (and many incorrect ones). Getting the signs right can be a major headache, with no perfect
solutions.
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3.4. S3 symmetry

For general �; �, the 3-fold W�;� is projectively equivalent to P1 � P1 � P1. Carrying
this out requires an S3 Galois field extension.

The little exercise in A2 symmetry is fun and not quite obvious: the three equations
involving x in (8) are (10). From them we deduce that in the deformation given by (8), the
tag equation xdf D e3 of (1) deforms to

x.df C eg/ D e3 C �ef 2 � �f 3 D ˆ.e; f /:

The projective equivalence of W�;� and P1 � P1 � P1 holds when the discriminant
of ˆ does not vanish, and involves the roots of ˆ. It thus takes place over its splitting
field. The Galois group action permutes the 3 copies of P1. This reflects the Weyl group
W.A2/ D S3 symmetry behind the deformation theory of the A2 singularity.

Write s; t; u for the roots of ˆ, so that s C t C u D 0,

� D st C ut C su D �.s2 C st C t2/; � D ust D �st.s C t /;

and ˆ.e; f / D .e � sf /.e � tf /.e � uf /:

Now set y0; y1; y2 and z0; z1; z2 to be the following linear combinations of .b; d; g/
and .c; e; f /:

y0 D c C s e C tu f;

y1 D c C t e C su f;

y2 D c C u e C st f;

and

z0 D b � s d C tu g;

z1 D b � t d C su g;

z2 D b � ud C st g:

After a calculation, we find

xzi D yjyk ;

ayi D zj zk for ¹i; j; kº D ¹0; 1; 2º;

xa D yizi :

These are the standard equations of P1 � P1 � P1 as the 2 � 2 minors of the 3-cube.

4. Unprojection and deformations

4.1. Unprojection

The general theory of unprojection was initiated by Kustin and Miller [7] and developed
in the present form by Papadakis and Reid, see [9–11].

Let X be a Gorenstein scheme (local, affine or projective) containing a Gorenstein
codimension 1 subscheme D � X . Consider the adjunction sequence

0! !X ! Hom.ID; !X /! !D ! 0:
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By [10, Lemma 1.1], the OX -module Hom.ID; !X / is generated by two elements; we
can take one of these as an injective map sW ID ,! !X Š OX that projects to a basis
element of !D Š OD . The unprojection Y of D in X is the spectrum of the OX -algebra
OX ŒS�=.Sfi � s.fi //, where the fi generate the ideal ID � OX . The scheme Y is again
Gorenstein.

As X is Gorenstein,

Hom.ID; !X / Š Hom.ID;OX /:

We calculate generators of Hom.ID;OX / in concrete cases by computer algebra, cf. [2].
This construction also applies in a relative situation, over a base space T . The most gen-
eral T is the base of a versal deformation of the inclusion map i WD ,! X .

4.2. Combining the two deformation families

In our case, the first order infinitesimal deformations of i WD ,! X are described as the
Pfaffian perturbations of the equations contained in the ideal .x; c; e; f /. The trivial defor-
mations are given by vector fields Der.� logD/ preservingD. For deformations of weight
�1, this means that we make the matrix as general as possible, with no coordinate trans-
formations of x, c, e and f allowed. The result is0BB@

z c C y b d

x c e

e f

�g

1CCA :
The minus sign conforms with the deformation (8).

For deformations of weight � 0 a short computation2 in SINGULAR [6] shows that
the above deformations generate the module of deformations: we can replace y and z
with polynomials in f , and g with a polynomial in x having deformation variables as
coefficients. Since our singularity is nonisolated some care is needed with the meaning
of infinite dimensional versal deformation. We restrict ourselves here to deformations of
nonpositive weight, that globalise to deformations of the projective cone. Then the first
order infinitesimal deformations are given by0BB@

z C �f c C y C �f b d

x c e

e f

�g C �x

1CCA : (11)

For higher order deformations, the equations are the Pfaffians of the matrix (11), as the
deformation is in particular a deformation of X . The obstruction is that they must lie in

2available from httpW//www.math.chalmers.se/~stevens/singular.html

http://www.math.chalmers.se/~stevens/singular.html
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the ideal .x; c; e; f /. Hence setting these variables to zero in (11) we find gy D gz D 0
as the equations of the base space.

We compute Hom.ID;OX / using SINGULAR [6] to determine the unprojection, obtain-
ing the equations

ac � b.b C �g/ � �.z C �f /2 � �dg C ��c.c C y C �f /;

ae � .b C �g/d � �.c C y/.z C �f / � �g2 C ��xd C ��xg;

af � d2 C bg � �.c C y/2 � ��.c C y/f;

ax � .b C �g C ��x/.c C y C �f /C d.z C �f / � �eg:

We find two components, with total spaces that are isomorphic up to a smooth factor
with the Tom and Jerry formats of Sections 2 and 3.3. We replace y by y C c in the
Tom equations, to obtain the cone as section � D 0, z D 0 and y D 0. The coordinate
transformations needed are a 7! a � ��.c C y/, y 7! y � �f and z 7! z � �f for the
Tom component and a 7! a C ��e, g 7! g C �x for Jerry. Note that these coordinate
transformations mix the deformation and the space variables.

4.3. The versal deformation of the cone over v6.P .1; 2 ; 3//

Altmann [1, Table 5.1] records the result of our computation of the infinite dimensional
versal deformation. What we have actually computed is the part in nonpositive weight,
giving the (embedded) versal deformation of the projective cone. After a simple coordinate
transformation and translation to our present coordinates, the formulas there give exactly
the same ideal as computed above in terms of unprojection.

4.4. The cone over an elliptic curve of degree 6

An elliptic curve of degree 6 is a hyperplane section of a smooth dP6 but also of our
v6.P .1; 2; 3//. We describe the versal deformation of the cone over the curve with unpro-
jection methods. We relate this to Tom and Jerry, and come back to discuss it further at
the end.

The versal deformation of the cone over an elliptic normal curve of degree 6 is describ-
ed without equations by Mérindol [8]. The base space is the product of the cone over the
Segre embedding of P1 � P2 with the germ of an appropriate modular curve.

Deformations of negative weight can be described by Pinkham’s construction of
“sweeping out the cone”. More precisely, the total space over a line in the base space
is the cone over the anticanonical model of an almost del Pezzo surface of degree 6, with
the given elliptic curve E as hyperplane section. Such a surface is obtained by blow-
ing up three points on the curve, embedded in the plane by a linear system of degree 3.
Mérindol’s construction starts with a family of such surfaces over an Abelian variety A,
which is the hypersurface in Pic3 �E3 given by 3H � .P1 C P2 C P3/ D 6O . The Weyl
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group W D A1 � A2 acts on this: A2 permutes the three points, and A1 acts by

.H IP1; P2; P3/

7! .2H � P1 � P2 � P3IH � P2 � P3IH � P1 � P3;H � P1 � P2/:

Thus, the base space of the versal deformation in negative weight is the cone overA=W Š
P1 � P2.

We find the elliptic curve as hyperplane section of the singular del Pezzo surface
v6.P .1; 2; 3//. In affine coordinates of P2 related to (3) we take the curve

w2 D v3 C v2 C v;

realising the cone as the hyperplane section

f � x � c � b D 0:

Thus, the variable a does not appear in the equation.
For the deformations of negative weight, we perturb the matrix (7) (with bDf �x�c)

with independent variables, subject to the resulting equations lying in the ideal .x; c; e;f /.
This means that the entries multiplied by m1;5 D d are not perturbed, and moreover, no
perturbation of x, c, e, or f is absorbed by coordinate transformations. We take0BB@

z c C y b C u d

x c e C q

e f C p

s

1CCA : (12)

The Pfaffians of this matrix with x, c, e and f (and therefore also b) equated to zero give
the equations of the base space: the minors of�

z y u

q p s

�
:

As for the space of deformations of weight zero, a computation with SINGULAR shows
that it has dimension two. One deformation is given by the modulus  , but there is another,
corresponding to the choice of point from which to project the curve.

The matrix (12) is neither a Tom nor a Jerry matrix. But it can written in these forms
after a small resolution of the base space. We do this here for the Tom format. The cone
over P1 � P2 is resolved by P1 � A3. We introduce an inhomogeneous coordinate �
on P1 and set q D �z, s D �y and s D �u. Then we can make the matrix into a Tom1 by
row and column operations. After the coordinate transformation

.c; d; e; f; x; u; y; z/ 7! .c � �x; d � �z C �2z; e;

f C �c C �x � 2�2x; x; uC b; y � c C �x; z/;
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(so that b D f � x � c C �c � 2�2x), the matrix takes the form0BB@
z y u d

x c e

e f

.�C �2 C �3/x

1CCA :

5. General remarks and FAQ

5.1. Which is Tom, and which is Jerry?

We offer three answers as useful mnemonics. We do not assume any prior familiarity with
the Hanna–Barbera characters.

(i) Tom is fatter. The ancestral Tom is the projective 4-fold P2 � P2, whereas for
Jerry it is the 3-fold P1 � P1 � P1.

(ii) The Tomi condition (that the 6 entries mjk with j; k ¤ i are in ID) means in
simple cases two coincidences on the mjk . On the other hand, the Jerryjk condi-
tion (that the 7 elements in the j th and kth rows and columns are in ID) means
3 conditions.

(iii) Weight-for-weight, Jerry is more singular. In fact, any pointP 2 P1 �P1 �P1 �
P7 lies on 3 lines, and the linear projection from P contracts these to nodes. In
contrast, if we take the 3-fold hyperplane section V of P2 � P2 to get the flag
variety of P2, the linear projection of V from P only has two nodes.

Trying to fit a Jerry unprojection into a 6 � 6 skew matrix format is invariably a waste
of time.

5.2. What’s it all about?

A hypersurface or complete intersection is determined by the coefficients of its defining
equations, so its deformations are unobstructed. The subtlety of the deformation theory
in these cases is nothing to do with obstructions, but how to pass to the quotient by the
appropriate equivalence relation, which involves dividing by the groupoid of local diffeo-
morphisms.

The Buchsbaum–Eisenbud theorem [5] puts codimension 3 Gorenstein ideals in the
same framework: the variety is given by a skew .2k C 1/ � .2k C 1/ matrix (most com-
monly 5� 5), that encodes both the defining equations and the syzygies, so that the entries
of the matrix can be freely deformed. In other words, the skew matrix is a given mould,
into which one can simply pour functions on the ambient space in a liquid manner.

In contrast, one usually expects codimension 4 constructions to be obstructed. A typ-
ical case is the cone over dP6, whose deformation theory has the 2 components we have
mentioned many times.

The point of Tom and Jerry is that, in most commonly occurring cases, our vari-
ety admits a Gorenstein projection to codimension 3, with the projected variety given
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by the Pfaffians of a 5 � 5 skew matrix; that is, the projected variety is a regular pull-
back from Grass.2; 5/ in its Plücker embedding, marked with an unprojection divisor
that corresponds to a linear subspace of Grass.2; 5/. Every geometer must have done
the easy exercise of seeing that any linear subspace of Grass.2; 4/ (the Klein quadric)
either consists of lines of P3 passing through a point P , or dually, of lines contained in a
plane P2 � P3. The Tom and Jerry formats discussed here answer the same question for
Grass.2; 5/; see [4, 2.1].

5.3. Do they do everything?

Unfortunately, no. Tom and Jerry provide two smooth components of the deformation the-
ory, and for deformation problems entirely contained within one component or the other,
they can be relied on to do everything. However, we know other cases in codimension 4
that appear not to have any useable structure of Kustin–Miller unprojection.

A general structure theorem for Gorenstein codimension 4 ideals is described in [12].
It should account for the singular total spaces of versal deformations, but it does not lead
to tractable calculations. The discussion of the cone over an elliptic curve of degree 6
in §4.4 above illustrates this point. Once we know the answer, we may verify its place in
the general structure theorem, but that structure theorem does not predict the answer or
help to find it. Deformations of the hyperplane sections, that is, the cone over 6 points
in P4, are more complicated still.
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