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Cylinders in Fano varieties

Ivan Cheltsov, Jihun Park, Yuri Prokhorov, and Mikhail Zaidenberg

Abstract. This paper is a survey about cylinders in Fano varieties and related problems.

Throughout this paper except for Section 4.3, we always assume that all varieties are
defined over an algebraically closed field k of characteristic 0.

1. Introduction

A cylinder in a projective variety X is a Zariski open subset U � X such that

U Š A1 �Z

for an affine variety Z. If X contains a cylinder, we say that X is cylindrical. Since
cylindrical varieties have negative Kodaira dimension, we will focus our attention on
cylindrical Fano varieties, because they are building blocks of projective varieties with
negative Kodaira dimension.

Example 1.1. For positive integersm;nwithm< n, letX be the Grassmannian Gr.m;n/
ofm-dimensional subspaces of an n-dimensional vector space over k. ThenX is a smooth
projective variety of dimension m.n �m/, and �KX � nH , where H is an ample gener-
ator of the group Pic.X/. SinceX contains an open Schubert cell isomorphic to Am.n�m/,
it is a cylindrical Fano variety.

However, not all Fano varieties are cylindrical, e.g. smooth cubic threefolds and smooth
quartic threefolds do not contain cylinders, because they are irrational [48, 109]. On the
other hand, every smooth rational projective surface contains a cylinder (see, for example,
[120, Proposition 3.13]). In particular, all smooth del Pezzo surfaces (two-dimensional
Fano varieties) are also cylindrical. Therefore, one can expect that all rational Fano vari-
eties are cylindrical. However, the following example shows that this is not the case:

Example 1.2. Let X be a hypersurface of degree 6 in P .1; 1; 2; 3/ that is given by

x23 D x2.x2 C x0x1/.x2 C �x0x1/;
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for some � 2 k n ¹0; 1º, where x0, x1, x2 and x3 are coordinates of weights 1, 1, 2,
and 3, respectively. Then X is a del Pezzo surface that has exactly two Du Val singular
points of type D4, it is rational, has Picard number 1, and does not contain cylinders
by [39, Theorem 1.5], see also Theorem 2.10 of the present survey and its proof.

The surface in Example 1.2 is singular. There are other examples of singular non-
cylindrical rational surfaces (see Examples 1.27, 2.5, and 2.6 below). What about smooth
rational varieties?

Question 1.3. Does every smooth rational Fano variety contain a cylinder?

We do not know the answer to this question even in dimension three despite the fact
that smooth three-dimensional Fano varieties (Fano threefolds) are completely classified
and well studied [113]. Nevertheless, we believe that the answer to Question 1.3 is nega-
tive (see Conjectures 3.9 and 3.13). In fact, we do not know the answer to the following
generalization of Question 1.3:

Question 1.4 ([33]). Is it true that any smooth rational variety is cylindrical?

A cylindrical variety X is birationally equivalent to a product A1 � Z. Thus, if X is
rationally connected, thenZ is also rationally connected. In particular, ifX is a cylindrical
Fano threefold with Kawamata log terminal singularities, then X must be rational [215].
Moreover, we have the following proposition.

Proposition 1.5. Let X be a cylindrical smooth Fano variety with ¡.X/ D 1. Then X is
birational to the product Y �A2 for some rationally connected variety Y .

Proof. Let U be a cylinder in the Fano varietyX . Then U ŠZ �A1 for some affine vari-
etyZ. Let xZ be a projective completion of the varietyZ. Consider the natural completion

xZ �A1 � xZ � P1;

letD D . xZ � P1/ n . xZ �A1/, and let  W xZ � P1 ÜX be the birational map induced by
the open embedding Z �A1 � X . Since ¡.X/ D 1 by assumption, the divisorD must be
 -exceptional, which implies that D is birational to Y �A1 for some variety Y . Then X
is birational to Y � A2. Since X is rationally connected (see [26, 130]), the variety Y is
rationally connected as well.

Corollary 1.6. Let X be a cylindrical smooth Fano fourfold with ¡.X/ D 1. Then X is
rational.

However, we do not know cylindricity of many rational smooth Fano fourfolds of
Picard rank 1. For instance, we do not know whether any smooth rational cubic fourfold
in P5 is cylindrical or not (see Question 3.18 and Remark 3.19). Keeping in mind Corol-
lary 1.6, we ask:

Question 1.7. Is it true that all cylindrical smooth Fano varieties of Picard rank one are
rational?
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In the paper [89], Gromov asked whether every smooth rational variety is uniformly
rational? Recall from [21, 145, 174] that a smooth rational variety is said to be uniformly
rational if its every point has a Zariski open neighborhood isomorphic to an open subset
of the space An (cf. [20]). Similarly, a smooth cylindrical projective variety is said to be
uniformly cylindrical if its every point is contained in a (Zariski open) cylinder (see Sec-
tion 4.1 for the motivation and examples). It is easy to see that all smooth rational surfaces
are uniformly rational and uniformly cylindrical. On the other hand, we do not know
the answer to Gromov’s question for varieties of higher dimensions, and we do not know
the answer to:

Question 1.8. Is it true that any cylindrical smooth projective variety is uniformly cylin-
drical?

In Section 3, we will present several cylindrical smooth Fano threefolds whose Picard
groups are generated by their anticanonical divisors. We do not know such examples in
any other dimension. The counter-examples to [194, Conjecture 5.1] found in [27] made
us believe that such examples should exist in any dimension > 4. Therefore, we pose:

Problem 1.9. Find a cylindrical smooth Fano variety of dimension > 4 whose Picard
group is generated by its anticanonical divisor.

One can also define cylindricity and uniform cylindricity for affine varieties in the same
way we did this for projective varieties. Note that [120, Definition 3.4] asks that the cylin-
der should be principal, that is, its complement should be a principal divisor, which is not
automatic.

Remark 1.10 (cf. Question 1.8). There are cylindrical smooth affine varieties that are not
uniformly cylindrical. Indeed, let V be the Koras–Russell cubic threefold in A4 that is
given by

x1 C x
2
1x2 C x

2
3 C x

3
4 D 0;

where x1, x2, x3 and x4 are coordinates on A4. Then V is a cylindrical smooth affine
variety [132]. Moreover, it follows from [62, Corollary 4.5] that .0; 0; 0; 0/ is fixed by any
element of Aut.V /, which implies that this point is not contained in any cylinder in V .
Indeed, otherwise the origin would be moved by a suitable Ga-action on V , cf. Theo-
rem 1.13 below.

Like in the projective case, every cylindrical affine variety X has negative log Kodaira
dimension. Moreover, a smooth affine surface contains a cylinder if and only if its log
Kodaira dimension is negative [150, Ch. 2, Theorem 2.1.1], cf. [151]. However, this is no
longer true in higher dimensions:

Example 1.11. Let X be a smooth hypersurface in Pn of degree n > 3. Then Pn n X is
a smooth affine n-fold of negative Kodaira dimension that does not contain cylinders [33,
56].
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The problem of existence of cylinders in projective varieties is closely related to unipo-
tent actions on the affine cones over them. To illustrate this link, consider the following
question:

Question 1.12 ([64, Question 2.22]). Let V be the affine cone in A4 over the Fermat cubic
surface, which is given by

x31 C x
3
2 C x

3
3 C x

3
4 D 0;

where x1, x2, x3 and x4 are coordinates on A4. Does V admit an effective Ga-action?

The answer to this question is negative [38], see also [51, Theorem 7.1] for a purely
algebraic proof. The geometric proof of this fact is based on the following result:

Theorem 1.13 ([120, Proposition 3.1.5]). An affine variety V admits an effective Ga-action
if and only if V contains a principal effective divisorD such that V n Supp.D/ is a cylin-
der.

Using this criterion, we can formulate the corresponding criterion for projective vari-
eties, which requires the following refined notion of cylindricity:

Definition 1.14. Let X be a projective normal variety that contains a Zariski open cylin-
der U , and let H be an ample Q-Cartier Q-divisor on X . The cylinder U is said to be
H -polar if

U D X n Supp.D/

for some effective Q-divisor D on the variety X such that D �Q H .

Now, we are in a position to state the following criterion discovered in [121], see
also [46].

Theorem 1.15. Let X be a projective normal variety, let H be an ample Cartier divisor
on it, let

V D Spec
�M
n>0

H 0
�
OX .nH/

��
:

Then V admits an effective Ga-action ” X contains an H -polar cylinder.

Corollary 1.16. Let X be a smooth rational projective surface. Then there is an embed-
ding X ,! Pn such that the affine cone in AnC1 over X admits an effective Ga-action.

Corollary 1.17. Let X be a projective normal variety in Pn whose divisor class group is
of rank 1. Then the affine cone in AnC1 over X admits an effective Ga-action ” X is
cylindrical.

Remark 1.18. Let X , H and V be as in Theorem 1.15. If V is Q-Gorenstein and admits
an effective action of the additive group Ga, then X is a Fano variety and H �Q ��KX
for some � 2Q>0 [120, (3.18)]. This explains our primary interest in the affine cones over
Fano varieties.

The problem of existence of an effective Ga-action on affine varieties is interesting on
its own. If an affine variety V admits a non-trivial Ga-action and dim.V /> 2, then Aut.V /
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is infinite dimensional and non-algebraic [65]. On the other hand, if it does not admit non-
trivial Ga-actions, then Aut.V / contains a unique maximal torus T , and Aut.V / is an
extension of its centralizer by a discrete subgroup in GLr .Z/ (see [10] for details).

Example 1.19. Let V be the Pham–Brieskorn surface in A3, which is given by

x
a1
1 C x

a2
2 C x

a3
3 D 0;

where a1, a2, a3 are integers such that 2 6 a1 6 a2 6 a3, and x1, x2, x3 are coordinates
on A3. By [118, Lemma 4], the affine variety V admits an effective Ga-action ”
a1 D a2 D 2.

Affine varieties that do not admit effective Ga-actions are often called rigid [7, 8, 24,
65,82,118]. Applying [120, Corollary 2.1.4] and [10, Proposition 4.1] to affine cones over
projective varieties, we obtain the following result:

Theorem 1.20. Let V be the affine cone in AnC1 over a projectively normal subvariety
X � Pn. Suppose that V is rigid and Aut.X/ is finite. Then there exists an exact sequence
of groups

1 �! Gm �! Aut.V / �! Aut.X/;

so that Aut.V / is a finite extension of the torus Gm by a finite subgroup in Aut.X/.

In particular, combining this result with the negative answer to Question 1.12, we
obtain:

Corollary 1.21. If V is the affine hypersurface from Question 1.12, then

Aut.V / D Gm � .�
3
3 Ì S4/:

Both Question 1.12 and Example 1.19 are very special cases of the following old
conjecture, which has been confirmed in many cases (see [47] and Remark 3.19).

Conjecture 1.22 ([64, 118]). Let V the Pham–Brieskorn hypersurface in An with n > 3

given by
x
a1
1 C x

a2
2 C � � � C x

an
n D 0;

where a1; : : : ; an are integers such that 2 6 a1 6 � � � 6 an, and x0; x1; : : : ; xn are coor-
dinates on An. Suppose that a2 > 3. Then the affine hypersurface V is rigid.

In fact, using Theorem 1.15, we can restate Question 1.12 as follows:

Question 1.23. Let X be the Fermat cubic surface. Does X contain .�KX /-polar cylin-
der?

As we already mentioned, this question has a negative answer. Moreover, we will see
later that the answer is also negative for any smooth cubic surface (cf. Theorem 2.8). This
brings us to the following problem.

Problem 1.24. Describe Fano varieties that do not contain anticanonical polar cylinders.
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This problem has been solved for del Pezzo surfaces with Du Val singularities in [38,
39, 120]. However, it is still open for smooth Fano threefolds and singular del Pezzo sur-
faces with quotient singularities. For Fano varieties whose divisor class groups is of rank 1,
Problem 1.24 is equivalent to the cylindricity problem (the problem of existence of cylin-
ders).

Remark 1.25. One can consider Problem 1.24 for Fano varieties defined over an arbitrary
possibly algebraically non-closed field. In Section 3.3, we will give a motivation for doing
this.

Let us present one obstruction for the existence of anticanonical polar cylinders in
Fano varieties. Recall from [29, 205] that the ˛-invariant of Tian of the Fano variety X is
the number

˛.X/ D sup
²
� 2 Q

ˇ̌̌ the log pair .X; �D/ is log canonical
for any effective Q-divisorD�Q �KX

³
:

This number plays an important role in K-stability of Fano varieties, since X is K-stable
if

˛.X/ >
dim.X/

dim.X/C 1
:

For K-stability, see the survey article [213] in this volume. On the other hand, we have
the following result.

Theorem 1.26. Let X be a Fano variety that has at most Kawamata log terminal singu-
larities. If ˛.X/ > 1, then X does not contain .�KX /-polar cylinders.

Proof. Suppose X contains a .�KX /-polar cylinder. Then U Š Z � A1 for an affine
variety Z, and

U D X n Supp.D/

for some effective Q-divisorD onX such thatD�Q �KX . Arguing as in the proof Corol-
lary 2.7, we see that the log pair .X;D/ is not log canonical in this case, so that ˛.X/<1.

Let us show how to use this obstruction.

Example 1.27. Let X be a del Pezzo surface with Du Val singularities of degree K2X D 1
such that one of the following two conditions holds:

(1) either X has 2 singular points of type A3 and 2 singular points of type A1;

(2) or the surface X has 4 singular points of type A2.

By [214, Theorem 1.2], the surfaceX exists, and it is uniquely determined by its singular-
ities. Moreover, it follows from [214, Table 4.1] that the pencil j �KX j contains exactly 4
singular fibers. They are singular fibers of types I4 and I2 (in the first case) or of types I2
(in the second case). This gives ˛.X/ D 1 by [34, Theorem 1.25], so that X contains no
anticanonical polar cylinders. Since the group Cl.X/ is of rank 1, the surface X contains
no cylinders at all.
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Remark 1.28. Implicitly, Theorem 1.26 has been already used by many people for quite
some time. For instance, Miyanishi conjectured in [93] that the smooth locus of a del Pezzo
surface with quotient singularities and Picard rank 1 admits a finite unramified covering
that contains a cylinder. It turned out to be wrong. Namely, in [119, Example 21.3.3], Keel
and McKernan have constructed a singular del Pezzo surfaceX with quotient singularities
such that ¡.X/ D 1 and ˛.X/ > 1, but its smooth locus has trivial algebraic fundamental
group. Thus, its smooth locus does not admit non-trivial unramified coverings, andX does
not contain cylinders by Theorem 1.26.

Using Theorem 1.26, we can create many rational Fano varieties without anticanonical
polar cylinders. Indeed, if X and Y are Fano varieties that have Kawamata log terminal
singularities, then it follows from [29, Lemma 2.29] and [133, Proposition 8.11] that

˛
�
X � Y

�
D min

®
˛.X/; ˛.Y /

¯
:

Thus, if S is a general smooth del Pezzo surface with K2S D 1, then ˛.S/ D 1 by [31,
Theorem 1.7], which implies that we also have ˛.X/ D 1 for the 2n-dimensional smooth
Fano variety

X D S � S � � � � � S›
n times

;

so that X does not contain .�KX /-polar cylinders, but X is cylindrical, because S is
cylindrical. We can construct many similar examples using [34, 36, 37, 43, 195].

Example 1.29. Let S be a general smooth del Pezzo surface with K2S D 1, and let Y
be a general smooth hypersurface in P .1nC1; n/ of degree 2n for n > 3. Then ˛.S/ D 1
by [31, Theorem 1.7], and ˛.Y /D 1 by [195, Theorem 2] (see also [37]). LetX D S � Y .
Then dim.X/ D 2C n > 5 and

˛
�
X
�
D min

®
˛.S/; ˛.Y /

¯
D 1;

so that X contains no .�KX /-polar cylinder by Theorem 1.26. But X is cylindrical.

Surprisingly, we do not know a single example of a cylindrical smooth Fano threefold
that contains no anticanonical polar cylinder (cf. Examples 3.14, 3.15, 3.16 and 3.17).

Problem 1.30. Find a cylindrical smooth Fano threefold without anticanonical polar
cylinder.

Note that there are Fano varieties without cylinders whose ˛-invariant of Tian is
smaller than 1. For instance, ifX is the del Pezzo surface from Example 1.2, then ˛.X/D
1
2

by [34, Theorem 1.25]. On the other hand, this surface does not contain cylinders [39].
Note that it is K-polystable [161]. Surprisingly, all known K-unstable Fano varieties are
also cylindrical.

Example 1.31 ([68–70, 113]). Let X be a smooth Fano variety of dimension n > 2 such
that

�KX � .n � 1/H;
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where H is an ample divisor such that Hn D 5. Then n 2 ¹2; 3; 4; 5; 6º, and X is unique
for each n. The divisor H is very ample, and the linear system jH j gives an embedding
X ,! PnC3 such that the image is a section of the Grassmannian Gr.2;5/� P9 by a linear
subspace of dimension 3 C n. Moreover, if n ¤ 2, then Pic.X/ D ZŒH �. Furthermore,
the following assertions hold.

� The varietyX contains a Zariski open subset isomorphic to An, so that it is cylindrical.
If n¤ 5, this follows from Example 1.1 and Theorems 3.6 and 3.20 (see also [69,186]).
If nD 5, then X contains a plane… such that there exists the following Sarkisov link:

zX

˛

��

ˇ

  
X P5

where ˛ is the blowup of the plane …, and ˇ is the blowup of a smooth cubic scroll
in P5. This easily implies that X contains a Zariski open subset isomorphic to A5.

� If n 2 ¹2; 3; 6º, then X is known to be K-polystable (see, for example, [30, 31, 169,
206, 216]). On the other hand, if n 2 ¹4; 5º, then X is K-unstable by [67].

Keeping in mind Theorem 1.26 and examples of K-stable Fano varieties without anti-
canonical polar cylinders (for example, smooth del Pezzo surfaces of degree 1, 2 and 3),
we pose:

Conjecture 1.32. Let X be a Fano variety that has at most Kawamata log terminal sin-
gularities. If X does not contain .�KX /-polar cylinders, then X is K-polystable.

For a projective variety X , consider the following subset of the cone of ample Q-div-
isors on X :

Ampcyl�X� D ®H 2 Amp.X/ j there is an H -polar cylinder on X
¯
:

Let us call it the cone of cylindrical ample divisors of the variety X . We have seen in
Examples 1.2 that Ampcyl.X/ can be empty even if X is a Fano variety. Thus, we can
enhance Problem 1.24:

Problem 1.33. For a given Fano variety X , describe the cone Ampcyl.X/.

This problem is not yet solved even for smooth del Pezzo surfaces. However, we know
the answer for many of them (see [40]). Namely, if X is a smooth del Pezzo surface such
that K2X > 4, then

Ampcyl.X/ D Amp.X/:

On the other hand, if K2X 6 3, then �KX 62 Ampcyl.X/. This gives an evidence for:

Conjecture 1.34. If X is a Fano variety, then

�KX 2 Ampcyl.X/ ” Ampcyl.X/ D Amp.X/:
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Let us describe the structure of this survey. In Section 2 we review results about polar
cylinders in rational surfaces. In Section 3, we describe results about cylinders in smooth
Fano threefolds, smooth Fano fourfolds, and del Pezzo fibrations. In Section 4, we survey
results on three topics that are closely related to the main topic of this survey: flexibility of
affine varieties with a special accent on the flexibility of affine cones over Fano varieties,
cylinders in the complements to hypersurfaces in weighted projective spaces, and com-
pactifications of Cn. Finally, in Appendix A, we present some results about singularities
of two-dimensional log pairs, which are used in Section 2 to prove the absence of polar
cylinders in some del Pezzo surfaces.

Notations

Throughout this paper, we will use the following notation:

� �n is a cyclic subgroup of order n;

� Ga is a one-dimensional unipotent additive group;

� Gm is a one-dimensional algebraic torus;

� Fn is the Hirzebruch surface;

� Pn is the n-dimensional projective space over k;

� An is the n-dimensional affine space over k;

� P .a1; : : : ; an/ is the weighted projective space;

� for a variety X , we denote by ¡.X/ the rank of its Picard group.

2. Cylinders in del Pezzo surfaces

In this section, we review results about cylinders in del Pezzo surfaces. A del Pezzo surface
means here a two-dimensional Fano variety with at most quotient singularities. Recall that
a smooth del Pezzo surface is either P1 � P1, or a blowup of P2 in at most 8 points such
that

� at most 2 points are contained in a line;

� at most 5 points are contained in a conic;

� there is no singular cubic in P2 that contains 8 points and is singular in one of them.

A Gorenstein del Pezzo surface is a del Pezzo surface whose anticanonical divisor is
Cartier, equivalently a del Pezzo surface with only Du Val singularities. Such surface is
either a quadric, or its minimal resolution of singularities can be obtained by blowing
up P2 in at most 8 points such that at most 3 of them are contained in a line, and at most 6
of them are contained in a conic.

First, let us go over basic facts about cylinders in rational surfaces.
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2.1. Cylinders in rational surfaces

Observe that every smooth rational surface is cylindrical. This immediately follows from
the fact that P2 contains a cylinder and the following:

Lemma 2.1. Let C be an irreducible curve in Fn that is a section of the natural projection
Fn ! P1, and let F1; : : : ; Fr be fibers of this projection, where r > 1. Then

Fn n .C [ F1 [ � � � [ Fr /

is a cylinder.

Proof. Performing appropriate elementary birational transformations, we may assume
that C 2 D 0, so that n D 0. In this case, the required assertion is obvious.

However, as we have seen already in Example 1.2, there are singular rational surfaces
that contain no cylinders. Let us explain how to find many such rational surfaces and
provide an obstruction for the existence of cylinders (see Remark 2.3 below), which will
be used in Section 2.2 to show the absence of anticanonical polar cylinders in smooth
del Pezzo surfaces of degree 1, 2 and 3.

Let S be a rational surface with quotient singularities and suppose that S contains
a cylinder U . Then U is a Zariski open subset in S such that U Š A1 �Z for some affine
curve Z. We then have the following commutative diagram

P1 � P1

xp2

&&

A1 � P1? _oo

p2

��

A1 �Z Š U? _oo

pZ

��

� � // S

 

��

zS
�oo

'

yy

Z
_�

��
P1;

where pZ , p2 and xp2 are the natural projections to the second factors,  is the rational
map induced by pZ , � is a birational morphism resolving the indeterminacy of  and ' is
a morphism. By construction, a general fiber of ' is P1. Let C1; : : : ; Cn be the irreducible
curves in S such that

S n U D

n[
iD1

Ci :

The curves C1; : : : ; Cn generate the divisor class group Cl.S/ of the surface S , because
Cl.U / D 0. In particular, one has

rank Cl.S/ 6 n: (2.2)

Let E1; : : : ; Er all be exceptional curves of the morphism � (if any), and let

� D P1 � P1 nA1 � P1:
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Denote by zC1; : : : ; zCn and z� the proper transforms zS of the curves C1; : : : ; Cn and � ,
respectively. Then z� is a section of the conic bundle ', and z� is one of the curves
zC1; : : : ; zCn andE1; : : : ;Er . Moreover, all other curves among zC1; : : : ; zCn andE1; : : : ;Er
are components of some fibers of '. Thus, we may assume that either z� D zC1 or z� D Er .
Then  is a morphism ” z� D zC1.

Let �1; : : : ; �n be arbitrary rational numbers, and let D D �1C1 C � � � C �nCn. Then

K zS C

nX
iD1

�i zCi C

rX
iD1

�iEi �Q �� .KS CD/

for some real numbers �1; : : : ; �r . Let zF be a general fiber of '. Then K zS � zF D �2 by
the adjunction formula. Put F D �. zF /. If z� D Er , then

�2C �r D

�
K zS C

nX
iD1

�i zCi C

rX
iD1

�iEi

�
� zF D �� .KS CD/ � zF D .KS CD/ � F:

Similarly, if z� D C1, then

�2C �1 D

�
K zS C

nX
iD1

�i zCi C

rX
iD1

�iEi

�
� zF D �� .KS CD/ � zF D .KS CD/ � F:

On the other hand, if KS CD is pseudo-effective, then .KS CD/ � F > 0.

Remark 2.3. We are therefore able to draw the following conclusions:

� if KS CD is pseudo-effective, then .S;D/ is not log canonical;

� if KS C D is pseudo-effective and �i < 2 for each i 2 ¹1; : : : ; nº, then  is not
a morphism.

Corollary 2.4. A rational surface with quotient singularities and pseudo-effective canon-
ical divisor cannot contain any cylinder.

Now we present two examples of rational singular surfaces with nef canonical divisors,
which do not contain cylinders by Corollary 2.4. For more examples, see [103, 142, 143,
163, 164, 166, 167, 211].

Example 2.5 (cf. [162]). Let E be the Fermat cubic curve in P2. Take � 2 Aut.E/ of
order 6 that fixes a point in E. Let S D E � E=h�i, where � acts on E � E diagonally.
Then S is rational. Moreover, it has quotient singularities and 6KS � 0. Then S contains
no cylinder by Corollary 2.4.

Example 2.6 ([129]). Let a0, a1, a2, a3, w0, w1, w2, w3 be positive integers such that

� a0 > 4, a1 > 4, a2 > 4, a3 > 4;

� a0w0 C w1 D a1w1 C w2 D a2w2 C w3 D a3w3 C w0;

� gcd.w0; w2/ D 1, gcd.w1; w3/ D 1.
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From the first condition above we obtain
†
w0 D a1a2a3 � a2a3 C a3 � 1;

w1 D a0a2a3 � a0a3 C a0 � 1;

w2 D a0a1a3 � a0a1 C a1 � 1;

w3 D a0a1a2 � a1a2 C a2 � 1:

Let S be the hypersurface in P .w0; w1; w2; w3/ defined by the following equation:

x
a0
0 x1 C x

a1
1 x2 C x

a2
2 x3 C x

a3
3 x0 D 0;

where x0, x1, x2 and x3 are coordinates of weights w0, w1, w2, w3, respectively. Then

KS D OS
�
a0a1a2a3 � w0 � w1 � w2 � w3 � 1

�
and a0a1a2a3 � w0 � w1 � w2 � w3 � 1 > 0, so that KS is ample. But S is rational
by [129, Theorem 39]. By Corollary 2.4, the surface S cannot contain any cylinder.

We are mostly interested in cylinders in del Pezzo surfaces. Applying our Remark 2.3
to them, we obtain the following special case of Theorem 1.26, which we already applied
in Example 1.27.

Corollary 2.7. Suppose that �KS is ample, and U is a .�KS /-polar cylinder. Then

˛.S/ < 1:

Proof. There exists an effective Q-divisorD0 on the surface S such thatD0 �Q �KS and

D0 D

nX
iD1

aiCi ;

for some positive rational numbers a1; : : : ; an. Let D D D0. Then KS C D �Q 0 is
pseudo-effective, so that .S; D/ is not log canonical by Remark 2.3, which implies that
˛.S/ < 1.

Now, we state main result of this section, which implies negative answer to Ques-
tion 1.12.

Theorem 2.8 ([38, 39, 120, 123]). Let S be a del Pezzo surface that has at most Du Val
singularities. Then S does not contain .�KS /-polar cylinders exactly when:

� K2S D 1 and S allows at most singular points of types A1, A2, A3, D4 if any;

� K2S D 2 and S allows at most singular points of type A1 if any;

� K2S D 3 and S is smooth.

Corollary 2.9. A smooth del Pezzo surface S contains a .�KS /-polar cylinder ”
K2S > 4.
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In the next two subsections, we will explain how to prove Theorem 2.8. Now let us use
this result to find all del Pezzo surfaces with Du Val singularities that contain no cylinder.

Theorem 2.10 ([17, Theorem 1.6]). Let S be a del Pezzo surface that has Du Val singular-
ities. Then S contains no cylinder ” it is one of the surfaces described in Examples 1.2
and 1.27.

Proof. If S is one of the surfaces from Examples 1.2 and 1.27, then �.S/ D 1, so that
it does not contain cylinders by Theorem 2.8. To prove the converse assume that S con-
tains no cylinder. Let us show that S is one of the singular del Pezzo surfaces described
in Examples 1.2 and 1.27. If ¡.S/ D 1, this follows from Theorem 2.8 and [214, Theo-
rem 1.2].

We may assume that ¡.S/ > 2. Let us seek for a contradiction. Since every smooth
rational surface contains a cylinder, we see that S is singular. Then K2S 6 2 by Theo-
rem 2.8.

Let � WS! Y be the contraction of an extremal ray of the Mori cone NE.S/ of the sur-
face S . Then it follows from [157] that one of the following cases hold:

� either � is a conic bundle, Y D P1 and ¡.S/ D 2;

� or � is birational, Y is a del Pezzo surface with Du Val singularities, ¡.Y /D ¡.S/C 1;
the morphism � is a weighted blowup of a smooth point in Y with weights .1; k/
for k > 1, and K2Y D K

2
S C k.

Suppose that � is a conic bundle. Then we have the following commutative diagram:

zS

˛

��

ˇ

  
S

�

��

Fn

��
P1 P1;

where ˛ is a minimal resolution of singularities, ˇ is a birational map, and Fn ! P1 is
a natural projection. On the other hand, it follows from Tsen’s theorem that S contains a
smooth irreducible curve Z that is a section of the conic bundle � . Let C be its proper
transform on Fn. Then

S n
�
Z [ T1 [ � � � [ Tr

�
Š S n

�
C [ F1 [ � � � [ Fr

�
;

where T1; : : : ;Tr are fibers of � that contain singular points of the surface S , andF1; : : : ;Fr
are fibers of the projection Fn ! P1 over the points �.T1/; : : : ; �.Tr /, respectively.
Then S contains a cylinder by Lemma 2.1, which is a contradiction.

We see that � is birational. Let E be the �-exceptional curve. If Y contains a cylin-
der U , then it also contains a cylinder U 0 � U such that �.E/ 62 U 0, so that its preimage
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in S is a cylinder as well. Thus, the surface Y does not contain cylinders. Then Y is
singular and K2Y 6 2 by Theorem 2.8.

We see that K2Y D 2 and � is a blowup of a smooth point in Y . If ¡.Y / > 2, then we
can apply the same arguments to Y to show that it contains a cylinder. Hence, we conclude
that ¡.Y / D 1. On the other hand, all singularities of the surface Y are ordinary double
points by Theorem 2.8. We see that K2Y D 2 and Y has 7 singular points of type A1. But
such a surface does not exist.

Let us conclude this subsection by presenting few results about polar cylinders in
arbitrary rational surfaces. To do this, fix an ample Q-divisor H on the surface S . If S
contains an H -polar cylinder, we say that H is cylindrical. The cylindrical ample Q-div-
isors on S form a cone, which we denoted earlier by Ampcyl.S/. To investigate this cone,
consider the following number:

�H D inf
®
� 2 R>0 j the R-divisor KS C �H is pseudo-effective

¯
:

Remark 2.11. The number �H is known as the Fujita invariant of the divisorH , because
it was implicitly used by Fujita in [71–74]. It plays an essential role in Manin’s conjecture
(see [15, 98]).

Let�H be the smallest extremal face of the Mori cone NE.S/ that contains the divisor
KS C �HH . Put rH D dim.�H /. Observe that rH D 0 if and only if S is a del Pezzo
surface and �HH �Q �KS .

Theorem 2.12 ([45]). Suppose that S is smooth, rH CK2S 6 3, and the self-intersection
of every smooth rational curve in S is at least �1. Then S does not contain H -polar
cylinders.

Note that if S is smooth del Pezzo surface, then the self-intersection of every smooth
rational curve in S is at least �1. Moreover, it follows from [52, Proposition 2.4] that this
condition also holds if S is obtained by blowing up P2 at any number of points in general
position.

Corollary 2.13 ([40]). If S is a smooth del Pezzo surface and rH C K2S 6 3, then H 62
Ampcyl.S/.

On the other hand, we have the following complementary result:

Theorem 2.14 ([40, 146]). Suppose that S is a smooth rational surface. If K2S > 4, then

Ampcyl.S/ D Amp.S/:

If K2S D 3 and �KS is not ample, then Ampcyl.S/ D Amp.S/. If K2S D 3 and �KS is
ample, then

Ampcyl.S/ D Amp.S/ nQ>0Œ�KS �:

If S is a smooth rational surface and K2S 6 2, then Ampcyl.S/ is poorly understood
(see [40]).
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2.2. Absence of polar cylinders

Now, we show that smooth del Pezzo surfaces of degree 6 3 does not contain any anti-
canonical polar cylinders, which is one way implication of Corollary 2.9. For singular
del Pezzo surfaces of degree 6 2 with types of singular points listed in Theorem 2.8,
the same implication can be verified in a similar way (see [39] for the details).

Let S be a smooth del Pezzo surface of degree K2S D d 6 3, and let D be an effective
Q-divisor on the surface S , i.e., we have

D D

rX
iD1

aiCi ;

where every Ci is an irreducible curve on S , and every ai is a non-negative rational
number. Suppose that D �Q �KS . If d 2 ¹2; 3º, then each ai does not exceed 1 by
Lemmas A.9 and A.10. Similarly, if d D 1, we have

1 D d D K2S D D � .�KS / D

rX
iD1

aiCi � .�KS / > aiCi � .�KS /;

which immediately implies that ai 6 1 for each i .

Theorem 2.15. Let P be a point in S . Suppose that the log pair .S;D/ is not log canon-
ical at P . Then there exists a curve T 2 j �KS j such that

� the curve T is singular at P ;

� the log pair .S; T / is not log canonical at P ;

� Supp.T / � Supp.D/.

Proof. We consider the cases d D 1, d D 2, and d D 3, separately. See the proof of [38,
Theorem 1.12] for an alternative proof in the case d D 3.

Suppose that K2S D 1. Let C be a curve in j �KS j that passes through P . Then C is
irreducible. If C is not contained in the support of D, then it follows from Lemma A.3
that

1 D d > K2S D D � C > multP .D/ > 1:

This shows that C � Supp.D/. If .S; C / is not log canonical at P , then we can put
T D C and we are done. Thus, we may assume that .S; C / is log canonical at P . Then
Remark A.2 implies the existence of an effective Q-divisorD0 such thatD0 �Q �KS , the
curve C is not contained in the support of D0, and .S;D0/ is not log canonical at P . Now
Lemma A.3 implies that

1 D d > K2S D D
0
� C > multP .D0/ > 1;

which is absurd.
Now, we suppose that K2S D 2. In this case there exists a double cover � W S ! P2

branched over a smooth quartic curve C . Moreover, we have

D �Q �KS � �
�.L/;
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where L is a line in P2. By Lemma A.10, we have �.P / 2 C . Now let us choose L to
be the tangent line to C at the point �.P /, and let R be the curve in j � KS j such that
�.R/ D L. Then multP .R/ D 2. If R is irreducible and is not contained in the support
of D, then Lemma A.3 gives

2 D d > K2S D D �R > multP .D/multP .R/ > 2multP .D/ > 2:

Note that eitherR is irreducible orR consists of two .�1/-curves that both pass throughP.
Therefore, if one component of the curveR is not contained in the support of the divisorD,
then we obtain a contradiction in a similar way by intersecting D with this irreducible
component. Thus, we may assume that all irreducible component of the curve R are con-
tained in Supp.D/. Now we can use Remark A.2 as in the case d D 1 to conclude that
.S;R/ is not log canonical at P . Hence, we can let T D R.

Finally, we suppose thatK2S D 3. Then S is a smooth cubic surface in P3, and �KS is
rationally equivalent to its hyperplane section. Let TP be the intersection of the surface S
with the hyperplane that is tangent to S at the point P . Then TP is a reduced cubic curve
that is singular atP . If .S;TP / is not log canonical atP and Supp.TP /� Supp.D/, we can
let T D TP and we are done. Therefore, we may assume that at least one of the following
two conditions hold:

(1) the log pair .S; TP / is log canonical at P ;

(2) Supp.D/ does not contain at least one irreducible components of the curve TP .

To obtain a contradiction, we may assume by Remark A.2 that at least one irreducible
component of the curve TP is not contained in Supp.D/.

If LP is a line that passes through P , then LP � Supp.D/, since otherwise we would
get

1 > D � LP > multP .D/multP .LP / > multP .D/ > 1

by Lemma A.3. Thus, we see that multP .TP / D 2.
Let f W zS ! S be the blowup of the point P , let E be the exceptional curve of

the blowup f , and let zD be the proper transform on zS of the Q-divisor D. Then

multP .D/ > 1

by Lemma A.3. Moreover, if follows from Lemma A.5 that the log pair�
zS; zD C .multP .D/ � 1/E

�
is not log canonical at some point Q 2 E. Moreover, there is a commutative diagram

zS

f

��

g // xS

h
��

S
 // P2;
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where  is a projection from P , the morphism g is a contraction of the proper transforms
of all lines in S that pass through P , and h is a double cover branched over a quartic curve.
This quartic curve has at most two ordinary double points, because multP .TP / ¤ 3.

Let zTP be the proper transform on zS of the curve TP . Then Q 2 E \ zTP by Lem-
ma A.10. Note that TP is one of the following curves: an irreducible cubic curve, a union
of a conic and a line, a union of three lines. Let us consider these cases separately.

Suppose that TP is a union of a conic and a line, so that TP D LP C CP , where LP is
a line, and CP is an irreducible conic. ThenLP � Supp.D/, so that CP is not contained in
Supp.D/. Thus, we writeDD aLP C�, where a 2Q>0, and� is an effective Q-divisor
on S whose support contains none of the curves LP and CP . Put m D multP .�/. Then
multP .D/ D mC a and

2 � 2a D � � CP > m;

which gives mC 2a 6 2. Similarly, we obtain 1C a > m by using

1C a D LP �D D � � LP > m:

Denote by zCP the proper transform of the conic CP on the surface zS , denote by zLP
the proper transform of the lineLP on the surface zS , and denote by z� the proper transform
of the divisor � on the surface zS . Put zm D multQ. z�/. Then the log pair�

zS; a zLP C z�C .mC a � 1/E
�

(2.16)

is not log canonical at P . Now, applying Lemma A.3 to this log pair, we obtain

2aCmC zm > 2:

On the other hand, if Q 2 zCP , then

2 � 2a �m D z� � zCP > zm;

so that Q 62 zCP . Since Q 2 zTP , we see that Q 2 zLP . Then we have

1C a �m D z� � zLP > zm;

so that 2 > 1C a > mC zm > 2 zm, which gives zm 6 1. Thus, we can apply Theorem A.8
to the log pair (2.16) at the point Q. This gives

m D z� �E >
�
z� �E

�
Q
> 2.2 � a �m/

or 1C a �m D z� � zL >
�
z� � zL

�
Q
> 2.1 � a/;

so that we get 3aCm>3 or 2aCm>2, which is impossible since a6 1 andmC 2a6 2.
Therefore, we conclude that the curve TP a union of three lines. Hence, we have

TP D L1 C L2 C L3, where L1, L2, L3 are lines in S such that P D L1 \ L2 and
P 62 L3. Then L1 � Supp.D/ � L2. Therefore, we can write D D a1L1 C a2L2 C�,
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where a1 and a2 are some positive rational numbers, and � is an effective Q-divisor
whose support does not contain L1 and L2. Put m D multP .�/. Then

m 6 � � L1 D .H � a1L1 � a2L2/ � L1 D 1C a1 � a2;

because L1 � L2 D 1 and L21 D �1 on the surface S . Similarly, we see that

m 6 � � L2 D .H � a1L1 � a2L2/ � L2 D 1 � a1 C a2:

This gives m 6 1. Thus, we can apply Theorem A.8 to the log pair .S;D/ at the point P .
Then

1C a1 � a2 D � � L1 >
�
� � L1

�
P
> 2.1 � a2/

or 1 � a1 C a2 D � � L2 >
�
� � L2

�
P
> 2.1 � a1/;

which implies that a1 C a2 > 1. On the other hand, we have

0 6 � � L3 D .H � a1L1 � a2L2/ � L3 D 1 � a1 � a2;

which implies that a1 C a2 6 1. The obtained contradiction completes the solution.

We now claim that a smooth del Pezzo surface of degree d63 cannot contain a .�KS /-
cylinder. If d 6 2, the claim is [123, Proposition 5.1]. Similarly, if d D 3, then the claim
is [38, Theorem 1.7]. Let us show how to derive the claim from Theorem 2.15 and
Remark 2.3.

Suppose that S contains a .�KS /-polar cylinder U . Then

S n U D C1 [ � � � [ Cn

for some irreducible curves C1; : : : ; Cn in S , and there are positive rational numbers
�1; : : : ; �n such that

nX
iD1

�iCi �Q �KS :

Put D D �1C1 C � � � C �nCn. Then .S;D/ is not log canonical at some point P 2 S by
Remark 2.3. Hence, by Theorem 2.15, there exists a curve T 2 j �KS j such that

� the log pair .S; T / is not log canonical at P ; and

� Supp.T / � Supp.D/.

Then D ¤ T , because n > 3 by (2.2), and T does not have more than d 6 3 irreducible
components. Thus, there exists a rational number�> 0 such that .1C�/D ��T is effec-
tive, and its support does not contain at least one irreducible component of the curve T .
Then .S; .1C �/D � �T / is not log canonical at P by Remark 2.3, which contradicts to
Theorem 2.15, since

.1C �/D � �T �Q �KS :
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2.3. Construction of polar cylinders

Now, we show how to construct anticanonical polar cylinders in singular del Pezzo sur-
faces with Du Val singularities. We start with the following lemma.

Lemma 2.17 ([120, Theorem 3.19]). Let S be a smooth del Pezzo surface. Suppose that
K2S > 4. Then the surface S contains a .�KS /-polar cylinder.

Proof. We may assume that S ¤ P1 � P1. Then there exists a birational map � WS ! P2

that blows up k 6 5 distinct points. Let E1; : : : ; Ek be the � -exceptional curves, let C be
an irreducible conic in P2 that contains all points �.E1/; : : : ; �.Ek/, and let L be a line
in P2 that is tangent to the conic C at some point that is different from �.E1/; : : : ; �.Ek/.
Denote by zC and zL the proper transforms on S of the curves C and L, respectively. Then

�KS � �
�.�KP2/ �

kX
iD1

Ei �Q .1C "/ zC C .1 � 2"/zLC "

kX
iD1

Ei

for every positive " < 1
2

. On the other hand, we have

S n . zC [ zL [E1 [ � � � [Ek/ Š P2 n .C [ L/ Š
�
A1 n ¹0º

�
�A1;

so that the surface S contains a .�KS /-polar cylinder.

Now let us present an example of a singular del Pezzo surface of degree 2 that has one
singular point of type A2 and contains an anticanonical polar cylinder.

Example 2.18. Let hW yS ! P2 be a composition of 10 blowups, let E1; : : : ; E10 be
the exceptional curves of the birational morphism h, let L1 and L2 be two distinct lines
in P2, and let yL1 and yL2 be their proper transforms on yS , respectively. Now, let us
choose h such that the intersections of these twelve curves are depicted as follows:

yL1

E2

E3

E1 E4

E5

E6

E7

E8

E9

E10

yL2
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Note that the 10 blowups are arranged in the order indicated by the indices of their excep-
tional curves Ei . To describe the intersection form of the curves yL1, yL2, E1; : : : ; E10,
observe that

yL21 D �1;
yL22 D �5; E21 D �3; E22 D �2; E23 D �2; E24 D � � � D E

2
10 D �1:

Let gW yS ! zS be the contraction of the curves yL1, E2, E3, and let zL2, zE1, zE4; : : : ; zE10
be the proper transforms on zS of the curves yL2, yE1, yE4; : : : ; yE10, respectively. Then zS
is smooth and K2

zS
D 2. Moreover, the divisor �K zS is nef. To show this, fix an arbitrary

positive rational number � < 1
3

, let D yS be the following Q-divisor:

.2 � �/yL1 C .1C �/yL2 C .1 � �/E1 C .2 � 2�/E2 C .2 � 3�/E3 C .1 � 3�/E4

C �
�
E5 CE6 CE7 CE8 CE9 CE10

�
;

and denote by D zS its proper transform on zS . Then D yS is effective, D yS �Q �K yS and
D zS �Q �K zS . Moreover, we have zL22 D zE1 D �2, zE24 D 0 and zE25 D � � � D zE

2
10 D �1,

so that

�K zS �
zL2 D �K zS �

zE1 D 0;�K zS �
zE4 D 2;�K zS �

zE5 D � � � D �K zS �
zE10 D 1:

This shows that �K zS is nef. Moreover, we also see that zL2 and zE1 are the only .�2/-
curves in zS . Let f W zS ! S be the birational contraction of these two .�2/-curves. Then
S is a del Pezzo surface with one singular point of type A2 such that K2S D 2. Let DS D
f ı g

�
D zS /. Then DS �Q �KS and

S n Supp.DS / Š P2 n Supp.DP2/ Š A1 �
�
A1 n ¹0º

�
;

so that S contains .�KS /-polar cylinder.

One can use the construction in Example 2.18 to construct an anticanonical polar
cylinder in every del Pezzo surface of degree 2 that has a single singular point of type A2
(see [39, §4.3]). Similarly, we can prove the existence part of Theorem 2.8. However, there
is an alternative proof, which is more algebraic. Let us describe it following [33].

Let S be a singular del Pezzo surface of degreeK2S 6 3 that has at most Du Val singu-
larities, and let P be its singular point. Suppose, in addition, that the following conditions
hold:

� the singular point P is not of type A1 if K2S D 2;

� the singular point is not of types A1, A2, A3, D4 if K2S D 1.

Now, let us prove that S contains a .�KS /-polar cylinder (cf. Theorem 2.8).
Denote by P the three-dimensional weighted projective space in which S sits as

a hypersurface. Note that P D P3 (respectively, P .1; 1; 1; 2/, P .1; 1; 2; 3/) if K2S D 3

(respectively,K2S D 2,K2S D 1). For the quasi-homogeneous coordinate system for P , we
use Œx W y W z W w�. By a coordinate change, we may assume that P D Œ1 W 0 W 0 W 0�. Then
the equation of S can be described as follows:
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� if K2S D 3, then S is given by

xf2.y; z; w/C f3.y; z; w/ D 0; (2.19)

where f2 and f3 are polynomials of degrees 2 and 3, respectively;

� if K2S D 2, then S is given by

w2 C x
�
ayw C f3.y; z/

�
C f4.y; z/ D 0; (2.20)

where f3 and f4 are polynomials of degrees 3 and 4, respectively, and a 2 k;

� if K2S D 1, then S is given by

w2 C x
�
ay2w C f5.y; z/

�
C f6.y; z/ D 0 (2.21)

or w2 C x
�
zw C f5.y; z/

�
C f6.y; z/ D 0; (2.22)

where f5 and f6 are polynomials of degrees 5 and 6, respectively, and a 2 k.

Let… be the hyperplane in P defined by xD 0, and let � WS Ü… be the map given by�
x W y W z W w

�
D
�
0 W y W z W w

�
:

The hyperplane … is isomorphic to P2, P .1; 1; 2/, P .1; 2; 3/ according to K2S D 3; 2; 1,
respectively. We denote by g.y; z; w/ the coefficient of x in each of equations (2.19),
(2.20), (2.21) and (2.22). Namely, if K2S D 3, then g.y; z; w/ D f2.y; z; w/. Similarly, if
K2S D 2, then

g.y; z; w/ D ayw C f3.y; z/:

Finally, if K2S D 1, then g.y; z; w/ D zw C f5.y; z/ or

g.y; z; w/ D ay2w C f5.y; z/:

LetD be the divisor on S that is cut out by g.y; z;w/ D 0. IfK2S D 3, thenD consists of
the lines that contains P . There are at most six such lines and they are defined in P3 by´

g.y; z; w/ D 0;

f3.y; z; w/ D 0:

Similarly, if K2S D 2, then the divisor D consists of at most six curves passing through
the point P . They are defined in P .1; 1; 1; 2/ by´

g.y; z; w/ D 0;

w2 C f4.y; z/ D 0:

Finally, if K2S D 1, then the divisor D consists of at most five curves passing through
the point P , which are defined in P .1; 1; 2; 3/ by´

g.y; z; w/ D 0;

w2 C f6.y; z/ D 0:
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In each case, the number of curves in D is the same as the number of points determined
by the corresponding system of equations in …. We denote these curves by L1; : : : ; Lr in
each case. The map � contracts each curve Li to a point on ….

The equations (2.19), (2.20), (2.21) and (2.22) immediately imply that � is a birational
map. Moreover, it induces an isomorphism

z� WS n
�
L1 [ � � � [ Lr

�
Š Im

�
z�
�
� …:

Let C be the curve on … defined by g.y; z; w/ D 0. Then C can be reducible or non-
reduced.

Lemma 2.23. Suppose thatK2SD3. Then there is a hyperplane sectionH of the surface S
such that the complement S n .H [ L1 [ � � � [ Lr / is a .�KS /-polar cylinder.

Proof. Observe that Im.z�/ D … n C . Let 'W xS ! S be the blowup of the point P . Then
there exists a commutative diagram

xS

'

��

 

��
S

� // …;

where  is the birational morphism that contracts the proper transforms of the lines
L1; : : : ; Lr . Let E be the exceptional curve of the blowup '. Then  .E/ D C , and C

contains each point �.Li /.
If P is an ordinary double point of the cubic surface S , then the curve C is a smooth

conic. Similarly, if P is a singular point of type An for n > 2, then C splits as a union of
two distinct lines. Finally, if P is either of type Dn or of type E6, then C is a double line.

If C is smooth, let ` be a general line in … that is tangent to C . If C is singular, let `
be a general line in … that passes through a singular point of the conic C . By a suitable
coordinate change, we may assume that ` is defined by x D y D 0. Let H be the curve
in S cut out by y D 0. Then

S n
�
H [ L1 [ � � � [ Lr

�
Š … n

�
C [ `

�
Š

(�
A1 n ¹0; 1º

�
�A1 if C is a union of two distinct lines,�

A1 n ¹0º
�
�A1 otherwise.

Therefore, S n .H [ L1 [ � � � [ Lr / is a cylinder. But H CD � �3KS and

L1 [ � � � [ Lr D Supp.D/:

Thus, the complement S n .H [ L1 [ � � � [ Lr / is a .�KS /-polar cylinder.

To deal with the cases K2S D 1 and K2S D 2, let `y be the curve in P that is given
by x D y D 0, and let Hy be the curve in the surface S that is cut out by y D 0.
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Lemma 2.24. If K2S D 2 or if K2S D 1 and the surface S is defined by equation (2.21),
then the complement S n

�
Hy [ L1 [ � � � [ Lr

�
is a .�KS /-polar cylinder.

Proof. Observe that the morphism z� gives an isomorphism

S n
�
Hy [ L1 [ � � � [ Lr

�
Š … n

�
C [ `y

�
:

But � maps S nHy onto… n `y Š A2. Thus, ifK2S D 2, then S n
�
Hy [ L1 [ � � � [ Lr

�
is isomorphic to the complement in A2 of the curve defined by

aw C f3.1; z/ D 0:

Similarly, if K2S D 1 and S is defined by (2.21), then S n
�
Hy [ L1 [ � � � [ Lr

�
is iso-

morphic to the complement in A2 of the curve defined by

aw C f5.1; z/ D 0:

Therefore, in both cases, the complement S n
�
Hy [ L1 [ � � � [ Lr

�
is a cylinder. Now,

arguing as in the proof of Lemma 2.23, we see that S n
�
Hy [ L1 [ � � � [ Lr

�
is a .�KS /-

polar cylinder.

Finally, to deal with the remaining case, let `z be the curve in P that is given by
x D z D 0, and let Hz be the hyperplane section of S that is cut by z D 0.

Lemma 2.25. Suppose thatK2SD1 and the del Pezzo surface S is given by equation (2.22).
Then the complement S n

�
Hz [ L1 [ � � � [ Lr

�
is a .�KS /-polar cylinder.

Proof. Observe that the morphism z� gives an isomorphism

S n
�
Hz [ L1 [ � � � [ Lr

�
Š … n

�
C [ `z

�
:

But � maps S n Hz onto … n `z . Then … n .C [ `z/ is the complement of the curve
defined by

w C f5.y; 1/ D 0

in … n `z Š A2=�2, where the �2-action is given by .y; w/ 7! .�y;�w/.
Since f5.y; 1/ is an odd polynomial in y, the isomorphism A2 ! A2 defined by�

y;w
�
7!
�
y;w C f5.y; 1/

�
is �2-equivariant and gives an isomorphism between the complement … n .C [ `z/ and
the complement in A2=�2 of the image of the curve defined by w D 0, which is isomor-
phic to A1 n ¹0º �A1.

We see that S n
�
Hz [ L1 [ � � � [ Lr

�
is a cylinder. Now, arguing as in the proof of

Lemma 2.23, we conclude that S n
�
Hz [ L1 [ � � � [ Lr

�
is a .�KS /-polar cylinder.
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3. Cylinders in higher-dimensional varieties

In this section, we describe known results about cylinders in smooth Fano threefolds and
fourfolds, and varieties fibred into del Pezzo surfaces. Let us say few words about Fano
varieties [107, 113, 159].

Let V be a smooth Fano variety of dimension n > 3. The number .�KV /n is known
as the degree of the Fano variety V . Put

�.V / D max
®
t 2 N j �KV � tH for H 2 Pic.V /

¯
:

Then �.V / is known as the (Fano) index of the variety V . It is well known that 1 6 �.V / 6
nC 1. Moreover, one has

�.V / D nC 1 ” V Š Pn:

Similarly, we have �.V / D n if and only if V is a quadric (see [113, 125]).

Remark 3.1 ([68–70, 113]). Suppose that �.V / D n � 1. Then

�KV � .n � 1/H

for some ample divisorH 2 Pic.V /. In this case, the variety V is usually called a del Pezzo
variety. If ¡.V / D 1, then there are just the following possibilities:

� Hn D 1 and V D V6 is a weighted hypersurface in P .1n; 2; 3/ of degree 6;

� Hn D 2 and V D V4 is a weighted hypersurface in P .1nC1; 2/ of degree 4;

� Hn D 3 and V D V3 is a cubic hypersurface in PnC1;

� Hn D 4 and V D V2�2 is a complete intersection of two quadrics in PnC2;

� Hn D 5, n 2 ¹3; 4; 5; 6º and V is described in Example 1.31.

If dim.V / D 3 and ¡.V / D 1, then the values of the Hodge number h1;2.V / are given in
the following table:

H 3 1 2 3 4 5

h1;2.V / 21 10 5 2 0

Let us prove cylindricity of any higher-dimensional smooth intersection of two quadrics.

Lemma 3.2 ([120]). Let V be a smooth complete intersection of two quadric hypersur-
faces in PnC2. Then V is cylindrical.

Proof. Let ` be a line in V , let D be an irreducible divisor in X swept out by lines
meeting `, let � W zV ! V be the blowup of the line `, let E be its exceptional divisor,
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and let zD be the proper transform on zV of the divisor D. There exists the following
commutative diagram:

zV

�

��

'

  
V

 // Pn;

where ' is a birational morphism that contracts zD, and  is the projection from `. Thus,
we have

V nD Š Pn n '.E/:

But '.E/ is a quadric that contains a one-parameter family of linear subspaces of dimen-
sion n � 2. Hence, this quadric is singular, so that Pn n '.E/ contains a cylinder.

Smooth Fano varieties of dimension n > 3 and index n� 2 are known as Fano–Mukai
varieties. If V is a Fano–Mukai variety andH 2 Pic.V / such that �KV � .n� 2/H , then
the number

g.V / D
1

2
Hn
C 1

is integral and is called the genus of the Fano–Mukai variety V . The possible values of
the genus are given in the following table:

g.V / 2 6 g.V / 6 5 6 7 8 9 10 12

dim.V / any 6 6 6 10 6 8 6 6 6 5 3

Moreover, the following result has been recently proved in [138].

Theorem 3.3. Let V be a smooth Fano–Mukai variety such that ¡.V / D 1 and g.V / 2
¹7; 8; 9; 10º. Suppose that dim.V / > 5. Then V is cylindrical.

In Subsection 3.1, we will outline several known results about cylindrical smooth Fano
threefolds. Then, in Subsection 3.2, we will present constructions of cylinders in some
smooth Fano fourfolds. In particular, we will explain how to prove the following result:

Theorem 3.4. For every g 2 ¹7; 8; 9; 10º, there is a cylindrical Fano–Mukai fourfold of
genus g.

Finally, in Subsection 3.3, we will present results about cylinders in Mori fibrations.

3.1. Cylindrical Fano threefolds

Let X be a smooth Fano variety that has dimension three. Then X belongs to one of 105
families, which have been explicitly described in [105–107, 110, 153–156]. Their auto-
morphism groups have been studied in [139,140,160,179,189]. In particular, we have the
following theorem.
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Theorem 3.5. Let X be a smooth Fano threefold such that ¡.X/ D 1 and Aut.X/ is
infinite. Then X and Aut.X/ can be described as follows:

(1) X D P3 and Aut.X/ Š PGL4.k/;

(2) X is a smooth quadric in P4 and Aut.X/ Š PSO5.k/;

(3) X is the quintic del Pezzo threefold described in Example 1.31 and Aut.X/ Š
PGL2.k/;

(4) X is one of the following Fano threefolds in P13 of degree 22 and genus 12:

(a) the Mukai–Umemura threefold Xmu
22 with Aut.Xmu

22 / Š PGL2.k/;

(b) the unique special threefold X a
22 with Aut.X a

22/ Š Ga Ì �4;

(c) a threefold Xm
22 in one-parameter family with Aut.Xm

22/ Š Gm Ì �2.

Before we describe some cylindrical smooth Fano threefolds, observe that we have
the following implications:

X contains .�KX /-polar cylinder H) X is cylindrical H) X is rational.

Moreover, the rationality problem for smooth Fano threefolds is almost completely solved
(see [113]). In particular, for general member of every family, we know whether it is
rational or irrational. It is expected that the same answer holds for every smooth member
in each family.

If �.X/ > 3, then either X Š P3 or X is a smooth quadric in P4, so that X is cylin-
drical.

If �.X/D 2, then�KX � 2H forH 2 Pic.X/, and we have the following possibilities:

� H 3 D 1 and X D V1 is a sextic hypersurface in P .1; 1; 1; 2; 3/;

� H 3 D 2 and X D V2 is quartic hypersurface in P .1; 1; 1; 1; 2/;

� H 3 D 3 and X D V3 is a cubic hypersurface in P4;

� H 3 D 4 and X D V4 is an intersection of two quadrics in P5;

� H 3 D 5 and X D V5 is the quintic del Pezzo threefold described in Example 1.31;

� H 3 D 6 and X is a divisor in P2 � P2 of degree .1; 1/;

� H 3 D 6 and X D P1 � P1 � P1;

� H 3 D 7 and X D V7 is a blowup of P3 at a point.

In this case, if H 3 6 3, then X is irrational (see [6, 42, 48, 87, 88, 210]), so that it is not
cylindrical. On the other hand, ifH 3 > 4, thenX contains a .�KX /-polar cylinder. Indeed,
if H 3 D 4, this follows from Lemma 3.2. If H 3 > 6, this is obvious. Finally, if H 3 D 5,
this follows from the following theorem.

Theorem 3.6. Let V5 be the quintic del Pezzo threefold in P6 that is described in Exam-
ple 1.31. Then V5 contains a hyperplane section H such that V5 nH Š A3.
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Proof. Let us give two constructions of the required hyperplane section. First, let L be
a line in X . Let ˛W zV5 ! V5 be the blowup of the line L. Then we have the following
commutative diagram:

zV5

˛

��

ˇ

��
V5 Q;

where Q is a smooth quadric in P4, and ˇ is the blowup of a twisted cubic curve C con-
tained inQ. LetHC be the unique hyperplane section ofQ that contains C , and letHL be
the unique hyperplane section of V5 that is singular along L. ThenHL is the proper trans-
form of the ˇ-exceptional surface, and HC is the proper transform of the ˛-exceptional
surface. Note that HL is swept out by the lines that intersects the line L. Moreover, it
follows from [113, 140] that

NL=V5 Š

´
OL ˚ OL L is a line of type .0; 0/;

OL.1/˚ OL.�1/ L is a line of type .1;�1/:

The lines in V5 are parametrized by P2, and the lines of the type .1;�1/ are parametrized
by a smooth conic in this plane (see [80,107,140]). Furthermore, the surfaceHC is smooth
if and only if L is a line of type .1;�1/. Thus, if we choose L to be a line of type .1;�1/
and put H D HL, then V5 nH Š Q nHC Š A3, as required.

To present the second construction, let P be a point in V5. Recall that Aut.V5/ Š
PGL2.k/. Moreover, it follows from [44,80,107,140,160] that Aut.V5/ has exactly three
orbits on V5:

(1) a closed one-dimensional orbit C , which is a twisted rational sextic curve in P6;

(2) a two-dimensional orbit V� whose closure is a surface � � �KV which is singular
along C ;

(3) an open orbit V5 n � .

Furthermore, let kP be the number of lines in V5 passing through P . Then

kP D

‚
1 if P 2 C ;

2 if � n C ;

3 if V5 n � :

Observe also that � is swept out by the lines of type .1;�1/.
Let � W yV5 ! V5 be the blowup of the point P . Then it follows from [81] that there

exists the following Sarkisov link:

yV5

�

��

� // xV5
'

  
V5

 // P2;
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where � is a composition of flops of the proper transforms of lines in V5 that pass
through P , the morphism ' is a P1-bundle, and  is given by the linear system of hyper-
plane sections that are singular at the point P . Now we suppose that P 2 C .

Let E be the � -exceptional surface, and let xE be its proper transform on the three-
fold xV5. Then xE is a del Pezzo surface of degree 6 with at most Du Val singularities,
and its singular locus consists of one singular point of type A2. Moreover, the P1-bundle
'W xV5 ! P2 induces a birational map xE ! P2 that contracts a single curve � � xE to a
point in P2.

Let L be a line in P2 that passes through the point '.�/, let xH be its preimage in xV5
via ', let yH be its proper transform on yV5, and let H D �. yH/. Then

V5 nH Š xV5 n
�
xE [ xH

�
;

and H is a hyperplane section of the threefold V5 that is singular at P . Furthermore,
one can show that the surface H is smooth away from P , and H has Du Val singularity
of type A4 at this point. Then the P1-bundle ' induces a morphism xV5 n

�
xE [ xH

�
!

P2 n L that is an A1-bundle over A2. This implies that V5 nH Š xV5 n . xE [ xH/ Š A3,
as required.

Now, we assume that �.X/ D 1. This leaves us 95 families of smooth Fano threefolds
[113,153]. If ¡.X/D 1, �.X/D 1 and g.X/ 6 6, then we have the following possibilities:

(1) g.X/ D 2 and X is a sextic hypersurface in P .14; 3/;

(2) g.X/ D 3 and X is an intersection of a quadric and a quartic in P .15; 2/;

(3) g.X/ D 4 and X is a complete intersection of a quadric and a cubic in P5;

(4) g.X/ D 5 and X is a complete intersection of three quadrics in P6;

(5) g.X/ D 6 and X is a section of the cone in P8 over the smooth quintic del Pezzo
fourfold described in Example 1.31 by a quadric and a hyperplane.

All of these deformation families are irreducible. General members of the family (2) are
smooth quartic hypersurfaces in P4, and special members are double covers of the quadric
threefold branched over octic surfaces. Similarly, general members of the family (5) are
sections of the smooth quintic del Pezzo fourfold in P7 by quadrics, and special members
are double covers of the smooth quintic del Pezzo threefold branched over anticanonical
surfaces.

In the first two cases, the Fano threefold X is known to be irrational even if we
allow mild isolated singularities [35, 104, 108, 109, 141, 148, 190, 203]. In the case (4),
the threefold X is also irrational [16]. General threefolds of the families (3) and (5)
are irrational [16, 100, 112, 114, 191], and every smooth member is also expected to be
irrational. Therefore, in all these cases, the threefold X is either non-cylindrical or it is
expected to be irrational and, thus, non-cylindrical.

Remark 3.7. Let V5 be the smooth quintic del Pezzo threefold, see Example 1.31, and let
� WX ! V5 be a double cover branched over a surface S 2 j �KV5 j. If S has an isolated
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ordinary double point, then X is rationally connected [215], it is Q-factorial [50], and it
follows from [183] that there exists the following Sarkisov link:

zX

˛

��

ˇ

  
X P2;

where ˛ is the blow up of the singular point of X , and ˇ is a standard conic bundle,
whose discriminant curve has degree 6. Hence, in this case, the threefold X is irrational
by [202, Theorem 10.2]. Now, using [128, Theorem IV.1.8.3], we conclude that X is also
irrational if S is a very general surface in the linear system j �KV5 j.

If ¡.X/ D 1, �.X/ D 1 and g.X/ > 7, then g.X/ 2 ¹7; 8; 9; 10; 12º. Moreover, if
g.X/ D 8, then the threefold X is birational to a smooth cubic hypersurface in P4 (see,
for example, [108, 113, 204]), so that it is irrational [48]. On the other hand, we know
that X is rational if

g.X/ 2
®
7; 9; 10; 12

¯
:

In these cases, the divisor �KX is very ample, and j � KX j gives an embedding X ,!

P g.X/C1. Moreover, all the known constructions of cylinders in X use the double pro-
jection from a line in X (see [110]). Recall from [113, 122, 178] that X can contain two
types of lines depending on their normal bundles. Namely, for a line ` � X , we have
the following two possibilities:

N`=X Š

´
O` ˚ O`.�1/ ` is of type .0;�1/;

O`.1/˚ O`.�2/ ` is of type .1;�2/:

If X is a sufficiently general member of one of these three families of smooth Fano
threefolds, then X does not contain lines of type .1;�2/. Moreover, one can show that
the threefolds containing lines of type .1;�2/ form a codimension one subset in the cor-
responding moduli spaces. On the other hand, we have the following result:

Theorem 3.8 ([122, Theorem 0.1]). Suppose that ¡.X/ D 1, �.X/ D 1, and g.X/ D 9

or g.X/ D 10. If X contains a line of type .1;�2/, then X is cylindrical.

Proof. Let ` be a line in the Fano threefoldX , and let � W zX!X be the blowup of the line `.
Then it follows from [107, 110, 113, 180] that there is the Sarkisov link:

zX

�

��

� // yX
'

��
X Y;

where Y is a smooth Fano threefold described below, the morphism ' is the blowup of
a smooth rational curve � , and � is a composition of flops of the proper transforms of
the lines that meet `. Moreover, we have the following options:
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� if g.X/ D 9, then Y D P3, and � is a curve of degree 7 and genus 3;

� if g.X/ D 10, then Y is a smooth quadric in P4, and � is a curve of degree 7 and
genus 2.

Let E be the � -exceptional surface, let yE be its proper transform on yX , and let S D
'. yE/. Then S is a (maybe singular or non-normal) del Pezzo surface of degree g.X/ � 3
that contains � . Similarly, let S be the proper transform of the '-exceptional surface on
the Fano threefold X . Then S is a hyperplane section of X such that mult`.S/D 3. Using
this, we conclude that

X n S Š Y n S:

Moreover, if ` is a line of type .1;�2/, then the surface S is not normal. This implies that
the complement Y n S contains a cylinder, so that X is cylindrical.

In fact, we believe that the following is true:

Conjecture 3.9. Let X be a very general smooth Fano threefold such that ¡.X/ D 1,
�.X/ D 1, and g.X/ D 9 or g.X/ D 10. Then X is not cylindrical.

Using a similar Sarkisov link as in the proof of Theorem 3.8, we obtain the following:

Theorem 3.10 ([120]). Suppose that ¡.X/ D 1, �.X/ D 1 and g.X/ D 12. Then X is
cylindrical.

Proof. Let ` be a line in X . Then there exists a unique surface S 2 j � KX j such that
mult`.S/D 3. Moreover, it follows from [107,110,113,180] that there exists the following
Sarkisov link:

zX

�

��

� // yX
'

  
X V5;

(3.11)

where � is the blowup of the line `, the variety V5 is a smooth quintic del Pezzo threefold
in P6, the morphism ' is the blowup of a rational quintic curve � , and � is a composition
of flops.

Let E be the � -exceptional surface, let yE be its proper transform on yX , and let S D
'. yE/. Then S is a hyperplane section of the threefold V5 that contains the curve � , and S
is the proper transform of the '-exceptional surface. Moreover, we have

X n S Š V5 n S:

Let us show that V5 n S contains a cylinder. In fact, this follows from the proof of Theo-
rem 3.6. We will use the notation and assumptions introduced in this proof.

Let L be a line in V5 that is contained in S (it does exists). If S ¤ HL, let S be
the proper transform onQ of the surface S. Otherwise, we let SDHC . Then the surface S
is a hyperplane section of the quadric Q. Thus, we see that

V5 n
�
S [HL

�
Š Q n

�
S [HC

�
:
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Now taking the linear projection Q Ü P3 from a sufficiently general point in S \HC ,
one can easily show that the complement Q n .S [HC / contains a cylinder, so that X is
cylindrical.

Remark 3.12 ([180]). In the notation and assumptions of the proof of Theorem 3.10, let `
be a line of type .�1; 2/. Then S is a non-normal surface whose singular locus is a line
in V5. Letting L to be this line gives S D HL, so that

X n S Š V5 n S Š Q nHC :

Thus, if we also have NL=V5 Š OL.1/˚ OL.�1/, then HC is singular (see the proof of
Theorem 3.6), so that X n S Š A3. We can always find such ` and L if Aut.X/ is infinite
(see Theorem 3.5).

We do not know examples of cylindrical smooth Fano threefolds of Picard rank 1 and
genus 7. In fact, we believe that any such threefold is not cylindrical.

Conjecture 3.13. Let X be a smooth Fano threefold such that ¡.X/ D 1, �.X/ D 1, and
g.X/ D 7. Then X is not cylindrical.

Before we close this section, let us mention that most of smooth Fano threefolds
with ¡.X/ > 2 are rational [112,113,184], and many of them are known to be cylindrical.
However, we do not know the existence of anticanonical polar cylinders in majority of
cylindrical smooth Fano threefolds. Let us list few examples.

Example 3.14. Let Y be a smooth Fano threefold such that Y is a del Pezzo threefold
or Y D P3. TakeH 2 Pic.Y / on Y such that �KY � 2H . Choose a smooth curve C � Y
that is a complete intersection of two surfaces from jH j. Suppose that X is a blowup of
the threefold Y along C. ThenX is a smooth Fano threefold. Moreover, ifH 3 > 4, thenX
is cylindrical.

Example 3.15. Suppose thatX is a blowup of P3 along a smooth curve that is a complete
intersection of two cubic surfaces. Then X is a cylindrical smooth Fano threefold.

Example 3.16. Suppose that X is a blowup of P3 along a smooth curve of degree 6 and
genus 3, which is an intersection of cubic hypersurfaces. Then X is a cylindrical smooth
Fano threefold.

Example 3.17. Let Q be a smooth quadric threefold in P4, and let H be its hyperplane
section. Suppose that X is a blowup of Q along a smooth curve that is a complete inter-
section of two surfaces from j2H j. Then X is a cylindrical smooth Fano threefold.

Each smooth Fano threefold described in Examples 3.14, 3.15, 3.16 and 3.17 is cylin-
drical, but we do not know whether any of these threefolds contains anticanonical polar
cylinders or not.
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3.2. Cylindrical Fano fourfolds

Now, let X be a smooth Fano fourfold such that ¡.X/ D 1. By Corollary 1.6 we have
the following implications:

X is cylindrical H) X is rational:

If �.X/ D 5 or �.X/ D 4, then X D P4 or X is a smooth quadric fourfold, so that X
is cylindrical. Similarly, if �.X/ D 3, then it follows from Remark 3.1 that X is one of
the following fourfolds:

(1) a smooth sextic hypersurface in P .1; 1; 1; 1; 2; 3/;

(2) a smooth quartic hypersurface in P .1; 1; 1; 1; 1; 2/;

(3) a smooth cubic fourfold in P5;

(4) a smooth complete intersection of two quadrics in P6;

(5) the quintic del Pezzo fourfold described in Example 1.31.

In the first two cases, we expect that X is always irrational. In fact, we know that a very
general quartic hypersurface in P .1; 1; 1; 1; 1; 2/ is irrational [97], so that it is definitely
not cylindrical. Similarly, general cubic fourfold in P5 is expected to be irrational. But
there are rational smooth cubic fourfolds (see [95, 96, 196, 207]), so that it is very natural
to ask the following question:

Question 3.18. Are there smooth rational cylindrical cubic fourfolds?

Remark 3.19. Every smooth cubic fourfold in P5 containing two skew planes is rational
(see [96]). In particular, the Fermat cubic fourfold is rational. If it is cylindrical, then
the affine cone over it admits an effective action of the group Ga by Theorem 1.15, which
contradicts Conjecture 1.22.

By Lemma 3.2, we know that a smooth complete intersection of two quadrics in P6 is
cylindrical. Let us prove that the quintic del Pezzo fourfold described in Example 1.31 is
cylindrical as well. To do this, let us present a detailed description of this fourfold given
in [182].

Let V5 be the quintic del Pezzo fourfold in P7. By [175, Theorem 6.6], we have the fol-
lowing exact sequence of groups:

1 �! .Ga/
4 Ì Gm �! Aut.V5/ �! PGL2.C/ �! 1;

so that the group Aut.V5/ is not reductive. In particular, the fourfold V5 is not K-poly-
stable [2]. The planes on V5 belong to one of the following two classes:

(i) a unique plane „ which is a Schubert variety of type ¢2;2;

(ii) a one-parameter family of planes …t that are Schubert varieties of type ¢3;1.

We say that „ is the plane of type ¢2;2, and …t are planes of type ¢3;1. They are distin-
guished by the types of the normal bundles: c2.N„=X /D 2 and c2.N…t=X /D 1. Moreover,
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there is a hyperplane section H of the fourfold V5 that contains all planes in V5. Further-
more, one has Sing.H / D „, the threefold H is the union of all the ¢3;1-planes in V5,
and „ contains a special conic C such that

� the intersection …t \„ is a tangent line to the conic C ;

� two distinct ¢3;1-planes …t1 and …t2 meet in a point in „ n C .

The automorphism group Aut.V5/ has the following orbits in V5:

(1) the open orbit X nH ;

(2) the three-dimensional orbit H n„;

(3) the two-dimensional orbit „ n C ;

(4) the one-dimensional closed orbit C .

The Hilbert scheme of lines on the del Pezzo fourfold V5 is smooth, irreducible, and four-
dimensional. Moreover, if ` is a line in V5, then ` belongs to one of the following five
classes:

(a) ` 6� H , ` \„ D ¿, and l \H is a point;

(b) ` � H , l \„ is a point, and ` \ C D ¿;

(c) ` � H , and l \„ D l \ C is a point;

(d) ` � „, and the intersection ` \ C consists of two points;

(e) ` � „ and ` is tangent to C .

The group Aut.V5/ acts transitively on the lines in each of these classes. For a line `� V5,
the lines meeting ` sweep out a hyperplane section H` of the fourfold V5 that is singular
along the line `. Vice versa, if H is a hyperplane section of the quintic del Pezzo four-
fold V5 that has non-isolated singularities, then H D H` for some line ` � V5.

Theorem 3.20 ([182]). Let ` be a line in V5 that is not a line of type (b). Then V5nH`ŠA4.

Proof. If ` is a line of type (d) or (e), then H` D H . On the other hand, there exists
the following Aut.V5/-equivariant Sarkisov link:

zV5

�

��

'

  
V5

 // P4;

where � is the blowup of the plane „, ' is the blowup of a twisted cubic curve C , and  
is the linear projection from „. Then the '-exceptional divisor is the proper transform of
the threefold H . Moreover, if E is the � -exceptional divisor, then '.E/ is the hyperplane
in P4 that contains C . Thus, if ` is a line of type (d) or (e), then

V5 nH` D V5 nH Š P4 n '.E/ Š A5:
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Let � W yV5 be the blowup of the line `. Then there exists the following Sarkisov link:

yV5

�

��

�

��
V5

� // Q;

(3.21)

where Q is an irreducible quadric in P5, the map � is the projection from `, and � is a
birational morphism that contracts the proper transform of the hyperplane section H` to a
surface of degree 3. Let yH` be the proper transform on yV5 of the threefoldH`, and let F be
the �-exceptional divisor. Then V5 nH` Š Q n �.F /, and �.F / is a singular hyperplane
section of the quadric Q.

If ` is a line of type (a), then all fibers of � are one-dimensional, so that Q is smooth
(see [3]). Thus, in this case, we have V5 nH` Š Q n �.F / Š A4.

To complete the proof, we may assume that ` is of type (c). Then ` is contained in
a plane in V5, so that � has a two-dimensional fiber. Hence, in this case, the quadricQ can
be singular (cf. [4]). Analyzing the situation more carefully, we see that

V5 nH` Š Q n �.F / Š A4:

Corollary 3.22. The quintic del Pezzo fourfold is cylindrical.

In the remaining part of this subsection, we present known constructions of cylinders
in some smooth Fano–Mukai fourfolds. Basically, our main goal is to explain how to prove
Theorem 3.4. Thus, we suppose that X is a smooth Fano–Mukai fourfold, ¡.X/ D 1 and
g.X/ 2 ¹7; 8; 9; 10º.

Let H be an ample Cartier divisor on X such that

�KX � 2H:

Then H 4 D 2 g.X/ � 2 2 ¹12; 14; 16; 18º. Moreover, the divisor H is very ample, and
the linear system jH j gives an embedding X ,! P g.X/C2. Let us deal with four cases
separately.

If g.X/ D 10, then X D X18 is a hyperplane section of the homogeneous fivefold
G2=P � P13, where G2 is the simple algebraic group of exceptional type G2, and P is
its parabolic subgroup that corresponds to a short root (see [158, 159]). The family X of
all such fourfolds is one-dimensional. Moreover, if X D X18 is a general member of X,
then Aut.X/ Š G2

m Ì �2. Besides, there are three distinguished fourfolds in this family:

(0) X r
18 such that Aut.X r

18/ Š G2
m Ì �6;

(1) X s
18 such that Aut.X s

18/ Š GL2.C/ Ì �2;

(2) X a
18 such that Aut.X a

18/ Š .Ga �Gm/ Ì �2.

See [188] for details, where the following result has been proved:
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Theorem 3.23 ([188]). Let X be a smooth Fano–Mukai fourfold in P12 of genus 10 with
¡.X/ D 1. Then there exists an Aut0.X/-invariant hyperplane section H of X such that
the complement X nH is Aut0.X/-equivariantly isomorphic to A4.

This theorem implies, in particular, that any smooth Fano–Mukai fourfolds of genus 10
is cylindrical. See also Example 4.16 for another application of Theorem 3.23.

If g.X/D 8, thenX DX14 is a section of the Grassmannian Gr.2;6/�P14 by a linear
subspace of dimension 10 (see [158, 159]). Some of these fourfolds are cylindrical.

Example 3.24 ([186]). Suppose that g.X/ D 8 and X contains a plane … which is a
Schubert variety of type ¢4;2, andX does not contain planes meeting… along a line. Such
fourfolds do exist and form a subspace of codimension one in the moduli space of all
Fano–Mukai fourfolds of genus 8. Then it follows from [181] that there exists the follow-
ing Sarkisov link:

zX

�

��

'

  
X V5;

where V5 is the del Pezzo quintic fourfold in P7 (see Theorem 3.20), � is the blowup of
the plane …, and ' is the blowup of a smooth rational surface S of degree 7 such that
K2S D 3. Then

X nHX Š V5 nHV5 ;

whereHV5 is the proper transform on V5 of the � -exceptional divisor, andHX is the proper
transform onX of the '-exceptional divisor. On the other hand, the divisorHV5 is a hyper-
plane section of the fourfold V5 that contains S , and HX is a hyperplane section of X
containing…. Thus, the set V5 nHV5 contains a cylinder by [186, Theorem 4.1], so thatX
is cylindrical.

If g.X/D7, thenXDX12 is a section of the orthogonal Grassmannian OGr.4; 9/�P15

by a linear subspace of dimension 9 (see [158,159]). In this case, we also have cylindrical
fourfolds.

Example 3.25 ([186]). Suppose that g.X/D 7 and X contains a plane…. Such fourfolds
do exist. Suppose that X is a sufficiently general Fano–Mukai fourfold of genus 7 that
contains the plane …. Then by [181] there exists the Sarkisov link

zX

�

��

'

  
X V4;

where V4 is a smooth complete intersection of two quadrics in P6, � is the blowup of
the plane …, and ' is the blowup of a smooth del Pezzo surface S such that K2S D 5.
Arguing as in Example 3.24, we conclude that X is cylindrical.
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If g.X/D9, thenXDX16 is a section of the Lagrangian Grassmannian LGr.3; 6/�P13

by a linear subspace of dimension 11 (see [158, 159]). There are cylindrical fourfolds in
this family.

Example 3.26 ([187]). Suppose that g.X/ D 9. Then X16 contains an irreducible two-
dimensional quadric surface S . Suppose, for simplicity, that X16 is a general Fano–Mukai
fourfold of genus 9 that contains S . Then there exists the following Sarkisov link:

zX

�

��

'

  
X V5;

where V5 is the del Pezzo quintic fourfold, � is the blowup of the surface S , and ' is
the blowup along a smooth del Pezzo surface of degree 6. Arguing as in Example 3.24, we
see that X is cylindrical.

The interested reader can consult also the recent preprint [94] for further examples of
cylindrical Fano fourfolds.

3.3. Cylinders in Mori fibrations

This subsection is inspired by the following question.

Question 3.27. Given a family of cylindrical varieties, when its total space is cylindrical?

For example, irrational three-dimensional conic bundles are not cylindrical, though
their general fibers are. In general, this question is very subtle and has birational nature,
so that it is natural to consider it for Mori fibred spaces first.

Let V be a projective variety with terminal Q-factorial singularities, let � WV ! B be
a dominant projective non-birational morphism such that �KV is �-ample, ��OV DOB
and ¡.V /D ¡.B/C 1. Let X� be the fiber of the morphism � over the (scheme-theoretic)
generic point � of the base B . Then X� is a Fano variety that has at most terminal singu-
larities, which is defined over K D k.B/, i.e. the field of rational functions on B . Over
the (algebraically non-closed) field K, the divisor class group of the Fano variety X� is of
rank 1, because we assume that ¡.V / D ¡.B/C 1.

Definition 3.28 ([59]). If the variety V contains a (Zariski open) cylinder U D A1 � Z,
we say that the cylinder U is vertical (with respect to �) if there is a morphism hWZ! B

such that the restriction �jU WU ! B is a composition h ı prZ , where prZ WU ! Z is
the natural projection. In this case, we have commutative diagram:

A1 �Z D U

pZ

��

� � // V

�

��
Z

h // B:

(3.29)

A cylinder in V which is not vertical is called twisted.
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If V contains a vertical cylinder U D A1 � Z, then the Fano variety X� contains a
cylinder

U� D A1 �Z�;

where U� and Z� are generic (scheme) fibers of the morphisms h ı prZ and h in (3.29),
respectively. Vice versa, if the Fano varietyX� contains a cylinder defined over the field K,
then V does contain a vertical cylinder by [59, Lemma 3]. This gives a motivation to study
cylinders in Fano varieties defined over arbitrary fields (cf. [18,99,137,138]) The first step
in this direction is

Theorem 3.30 ([59]). Let S be a geometrically irreducible smooth del Pezzo surface
defined over a field F of characteristic 0. Suppose that ¡.S/ D 1. Then the following
conditions are equivalent:

(i) the surface S contains a cylinder defined over F ;

(ii) the surface S is rational over F ;

(iii) K2S > 5 and S has an F -point.

Proof. It is commonly known that the conditions (ii) and (iii) are equivalent (see, for
example, [111]). Moreover, the implication (iii))(i) can be shown using well-known
Sarkisov links that start at S , which are described in [111]. For details, see the proof
of [59, Proposition 12]. Thus, we just have to show that (i) implies (iii). This can also be
shown using Sarkisov links, but we present another proof.

Suppose that S contains a cylinder U which is defined over F . Then U Š A1 �Z for
some affine curve Z defined over F . Let xZ be the completion of the curve Z. Then xZ is a
geometrically irreducible curve. Moreover, we have the following commutative diagram

P1 � xZ

xp2

%%

A1 � xZ? _oo

p2

��

A1 �Z Š U? _oo

pZ

��

� � // S

 

��

zS
�oo

'

yy

Z
_�

��
xZ;

where pZ , p2 and xp2 are the natural projections to the second factors,  is the rational
map induced by pZ , � is a birational morphism resolving the indeterminacy of  and '
is a morphism. By construction, a general fiber of ' is isomorphic to P1.

Let � be the section of xp2 that is the complement of A1 � xZ in P1 � xZ, and let z�
be the proper transform on zS of the curve � . Then z� Š � Š xZ, the curve z� is a section
of ', and the curve z� is �-exceptional, because ¡.S/ D 1. Let P D �.z�/. Then P is
an F -point.

Now, we can proceed in two (slightly different) ways. First, as in the proof of [59,
Theorem 1], we can let M to be the linear system on S that gives the map  . Then,



I. Cheltsov, J. Park, Y. Prokhorov, and M. Zaidenberg 76

arguing as in Section 2.2, we conclude that .S; �M/ is not log canonical at P for a some
� 2 Q>0 such that �M �Q �KS . Such number exists, since ¡.S/ D 1. Let M1 and M2

be two general curves in M. Then

K2S
�2
DM1 �M2 >

�
M1 �M2

�
P
>

4

�2

by [49, Theorem 3.1]. This gives K2S > 5, so that (i) implies (iii).
Alternatively, we can use Corollary 2.9. Let C1; : : : ; Cn be the irreducible curves in S

that lie in the complement S n U . Then we put D D �.C1 C � � � C Cn/ for � 2 Q>0 such
that D �Q �KS . Therefore, we conclude that S contains a .�KS /-polar cylinder, so that
K2S > 4 by Corollary 2.9. Thus, we may assume that K2S D 4. Then our point P is not
contained in any .�1/-curve in S ˝F xF , where xF is an algebraic closure of the field F .
Indeed, otherwise the Gal.xF=F/-orbit of this curve would consist of at least four .�1/-
curves that all pass through the point P , which is impossible. Let �W yS ! S be the blowup
of the point P , and let E be the exceptional curve of the blowup � . Then zS is a smooth
del Pezzo surface of degree K2

zS
D 3 and

zD C
�
multP .D/ � 1

�
E �Q �K yS ;

where multP .D/ > 1 by Remark 2.3 and Lemma A.3. Then zS contains a .�K zS /-polar
cylinder, which is impossible by Corollary 2.9. This again shows that (i) implies (iii).

Corollary 3.31 ([59, Theorem 1]). Suppose that X� is a del Pezzo surface. Then V con-
tains a vertical cylinder ” K2X� > 5 and � has a rational section.

Note that if k is uncountable and the general fiber of � contains a cylinder, then it
follows from [61,116] that the total space of the family V �B B 0 ! B contains a vertical
cylinder for an appropriate finite base changeB 0!B . This basically means thatX�˝KK0

contains a cylinder defined over K0 for an appropriate finite extension of fields K � K0.

Remark 3.32. If X� is a del Pezzo surface and K2X� 6 4, then V can contain twisted
cylinders. In fact, there are three-dimensional examples constructed in [58, 59] such that
K2X� 6 3, B D P1, and V contains a Zariski open subset isomorphic to A3. See also [57,
90, 198, 199].

Now let us mention one relevant result about forms of the quintic del Pezzo threefold
defined over a non-algebraically closed field (cf. [137, Theorem 3.3]).

Theorem 3.33 ([60]). Let X be a smooth Fano threefold defined over a field F of char-
acteristic 0. Suppose that X ˝F xF Š V5, where V5 is the quintic del Pezzo threefold
described in Example 1.31, where xF is the algebraic closure of the field F . Then the fol-
lowing assertions hold:

� X contains a Zariski open subset U Š A2 �Z for some affine curve Z;

� X contains a Zariski open subset isomorphic to A3 if and only if X contains a smooth
rational curve ` defined over F such that �KV5 � `D 2 and N`=X Š O`.�1/˚O`.1/.
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Let us conclude this section with the following generalization of Theorem 3.3.

Theorem 3.34 ([138]). Let X be a smooth Fano threefold defined over a field F of char-
acteristic 0. Suppose that X ˝F xF Š X2g�2, where X2g�2 is a Fano–Mukai variety of
genus g with ¡.X2g�2/ D 1, where xF be the algebraic closure of F . Suppose that the fol-
lowing conditions hold:

(1) dim.X/ > 5;

(2) g 2 ¹7; 8; 9; 10º;

(3) X has an F -point.

Then X is cylindrical over F .

4. Beyond cylindricity

4.1. Flexible affine varieties

Let X be an affine variety. Given a Ga-action on X , it induces a representation of the
group Ga on the structure k-algebra O.X/ of the form

.t; f / 7�! exp.t@/.f /

for t 2 Ga and f 2 O.X/, where the infinitesimal generator @ of the Ga-subgroup is
a locally nilpotent derivation of O.X/, which means that every element f 2 O.X/ is
annihilated by @.m/ for some sufficiently large m that depends on the element f . Con-
versely, any locally nilpotent derivation of the k-algebra O.X/ generates a Ga-action onX
(see [65]).

Recall that the derivations of O.X/ correspond to the regular vector fields on X . We
say that a vector field on X is locally nilpotent if the corresponding derivation is.

If an open variety X admits a Ga-action, then the log-Kodaira dimension of X is
negative. However, the converse does not hold, in general. Indeed, there are smooth affine
surfaces of negative log-Kodaira dimension which admit no effective Ga-action [91]. Let
us stay on this in more detail.

As we mentioned already, any smooth affine surfaceX of negative log-Kodaira dimen-
sion contains a cylinder [150, Ch. 2, Theorem 2.1.1]. Moreover, X is affine-ruled, that is,
there is a morphism X ! C onto a smooth curve C with general fiber A1. The base
curve C could be affine or projective. However, a smooth affine surface X admits an
effective Ga-action if and only if it admits an A1-ruling X ! C over an affine curve C ,
or, which is equivalent, a principal cylinder, see Theorem 1.13. In [91] there are examples
of smooth rational affine surfaces A1-ruled over P1 and with no A1-ruling over an affine
curve. Hence, such a surface admits no effective Ga-action.

To construct such a surface X we start with the quadric P1 � P1 endowed with the
first projection to P1. We blow up three distinct points on the section S D P1 � ¹1º and
infinitesimally near points in such a way that each of the 3 resulting reducible fibers has a
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unique .�1/-component of multiplicity 2 and the union of the section S and the remaining
components of the reducible fibers forms a connected divisor D. The complement of D
in the resulting projective surface is a smooth affine surface X . It comes equipped with
an A1-fibration X ! P1. Each fiber of this fibration is irreducible, and three of them are
multiple of multiplicity 2. According to [92, Theorem 4.1], such a surface X does not
carry any A1-fibration over an affine curve. Hence, X admits no Ga-action.

Definition 4.1. A point P 2 X is said to be flexible if locally nilpotent vector fields on X
span the tangent space TPX . The variety X is said to be flexible if every smooth point
of X is flexible. We also say that X is generically flexible if every point in a non-empty
Zariski open subset of X is flexible.

Let SAut.X/ be the subgroup of Aut.X/ generated by all the Ga-subgroups. The flex-
ibility of X is ultimately related to the transitivity of the action of the group SAut.X/.
Indeed, we have the following criteria of flexibility.

Theorem 4.2 ([9]). Suppose that dim.X/>2. Then the following conditions are equivalent:

(1) the variety X is flexible;

(2) the group SAut.X/ acts transitively on the smooth locus of X ;

(3) the group SAut.X/ acts highly transitively on the smooth locus of X .

One says that a group acts highly transitively1 on an infinite set if it actsm-transitively
for any natural number m.

Remark 4.3. A dimension count shows that an algebraic group cannot act highly tran-
sitively on an affine variety. Moreover, it cannot act even 3-transitively on an affine vari-
ety [22, 124].

Let us present examples of flexible affine varieties; see e.g. [11, 13, 14] for further
examples.

Example 4.4. Let X D An, where n > 2. Then the subgroup of translations in SAut.An/
acts transitively on the variety X , so that X is flexible by Theorem 4.2 (cf. [117]).

Example 4.5. Let X be the nth Calogero–Moser space defined as follows:®
.A;B/ 2 Matn.k/ �Matn.k/ j rk

�
ŒA; B�C In

�
D 1

¯
� PGLn.k/;

where PGLn.k/ acts via g:.A; B/ D .gAg�1; gBg�1/. Then X is a smooth rational irre-
ducible affine algebraic variety of dimension 2n [177, 212], and it follows from [19, 135]
that Aut.X/ acts highly transitively on X for every n > 1. Moreover, the variety X is
flexible by [5, Proposition 2.9].

1Or infinitely transitively in another terminology.
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There are several constructions producing new flexible varieties from given ones (see
[9, 14, 63, 117]). For instance, the product of flexible varieties is flexible. Some further
examples of flexible varieties are as follows.

Example 4.6. Suppose that X is an affine G-variety of dimension > 2, where G is a con-
nected linear algebraic group that acts on X with an open orbit. Then X is flexible in
the following cases:

� X is a normal toric variety with no torus factor [14, Theorem 0.2.2];

� XDG=H is a homogeneous space andG has no non-trivial character [9, Theorem 5.4];

� X is smooth and G is semisimple [9, Theorem 5.6];

� X is smooth with only constant invertible functions and G is reductive [84, Theo-
rem 2];

� X is normal and G D SL2.k/ [9, Theorem 5.7];

� X is normal horospherical and G is semisimple [201, Theorem 2];

� X is normal horospherical with no non-constant invertible regular function [84, The-
orem 3].

See also [54, 55, 83, 85, 115, 136].
If we replace the smooth locus of X in Theorem 4.2 by the open orbit of the group

SAut.X/, we obtain a criterion for the generic flexibility [9]. If X contains An as a prin-
cipal Zariski open set, then X is generically flexible. Generically flexible varieties are
unirational, but they are not always stably rational (see [144, Proposition 4.9] and [176,
Example 1.22]).

Example 4.7. Suppose that X is a normal affine surface such that X can be completed
by a simple normal crossing chain of rational curves. Then X is often called a Gizatullin
surface. IfX 6ŠA1 � .A1 n ¹0º/, then it is generically flexible [86], but it is not necessarily
flexible [134].

Affine cones over cylindrical Fano varieties often provide examples of flexible affine
varieties.

Example 4.8. Let V DG=P , whereG is a semisimple algebraic group, andP is its parabolic
subgroup. Then V is a smooth Fano variety. Let V ,! Pn be any projectively normal
embedding, and let yV be the affine cone in AnC1 over V . If dim.V / > 2, then yV is flexi-
ble by [14, Theorem 1.1].

To explain why this is the case, let us present two explicit criteria of flexibility of
affine cones. To do this, fix a smooth projective variety V . Let H be a very ample divi-
sor on the variety X . Then the linear system jH j gives an embedding V ,! Pn. Let yV
be the affine cone in AnC1 over V . We are interested in the case when V is a smooth
cylindrical Fano variety.



I. Cheltsov, J. Park, Y. Prokhorov, and M. Zaidenberg 80

If the variety V is uniformly cylindrical, then each point of V is contained in a cylinder,
so that the variety V admits a covering

V D
[
i2I

Ui ; (4.9)

where each Ui is a Zariski open subset in V such that Ui Š A1 � Zi for some affine
varietyZi . In this case, a subset Y � V is said to be invariant with respect to a cylinder Ui
if

Y \ Ui D �
�1
i

�
�i .Y \ Ui /

�
;

where �i WUi ! Zi is the natural projection.

Definition 4.10. If V is uniformly cylindrical, then we say that the covering (4.9) is
transversal if no proper subset Y � X is invariant with respect to every cylinder Ui in
the covering (4.9).

Now, we are ready to state the first flexibility criterion for affine cones.

Theorem 4.11 ([171]). Suppose that V is uniformly cylindrical and has a covering (4.9)
such that

(i) the covering (4.9) is transversal;

(ii) each cylinder in the covering (4.9) is H -polar.

Then the affine cone yV is flexible.

The second useful criterion is given by the following

Theorem 4.12 ([149]). The affine cone yV is flexible if the variety V is uniformly cylindri-
cal and admits a covering

V D
[
j2J

Wj ;

where each Wj is a flexible affine Zariski open subset in V such that Wj D V n SuppDj
for some effective Q-divisor Dj on the variety V that satisfies Dj �Q H .

Using these criteria and the proof of Lemma 2.17, one can prove the following result:

Theorem 4.13 ([168, 171]). Suppose that V is a smooth del Pezzo surface such that
K2V > 4. Then the affine cone yV is flexible for every very ample divisor H on the sur-
face V .

Unfortunately, we cannot apply Theorems 4.11 and 4.12 to the affine cone in A4 over
a smooth cubic surface in P3, simply because its anticanonical divisor is not cylindrical
by Corollary 2.9. On the other hand, in this case, we know from Theorem 2.14 that every
ample Q-divisor that is not a multiple of the anticanonical divisor is cylindrical. Using
this and the construction of cylinders given in the proof of Theorem 2.14, Perepechko
very recently proved the following result:
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Theorem 4.14 ([170]). If V is a smooth cubic surface, then the affine cone yV is generi-
cally flexible for every very ample divisor H on the surface V such that H 62 Z>0Œ�KV �.

Now, let us consider the flexibility of affine cones over some cylindrical smooth Fano
threefolds. Many of them are flexible by Theorem 4.12, because the underlying Fano
threefolds admit covering like in Theorem 4.12 with each Zariski open subset Wj iso-
morphic to A3. A possibly non-complete list of such smooth Fano threefolds is given
in [12, Proposition 4]. This gives the following corollary:

Corollary 4.15. Suppose V is a smooth Fano threefold admitting an effective PSL2.k/-
action. If ¡.V / D 1, then the affine cone yV is flexible.

Proof. If ¡.V /D 1, then it follows from Theorem 3.5 that one of the following four cases
occurs:

(i) V D P3;

(ii) V is the smooth quadric threefold in P4;

(iii) V is the smooth quintic del Pezzo threefold V5 � P6 described in Example 1.31;

(iv) V is the Mukai–Umemura threefold X D Xmu
22 � P13.

We may assume that we are in the case (iii) or (iv), because the required assertion is clear
in the remaining cases. Then it follows from the proofs of Theorems 3.6 and 3.10 that V
contains a one-parameter family of hyperplane sections H` such that each H` is singular
along a line ` and

V nH` Š A3:

The group PSL2.k/ acts transitively on this family. So, to apply Theorem 4.12, we need
to check that the intersection of all these hyperplane sections is empty. Suppose that this
is not the case. Then this intersection is PSL2.k/-invariant, so that it contains a closed
PSL2.k/-orbit of minimal dimension. But the variety V does not contain PSL2.k/-fixed
points, and the only one-dimensional closed PSL2.k/-orbit in V is not contained in any
hyperplane section singular along a line.

For more examples of smooth Fano threefolds with flexible affine cones, see [149,
Theorem 4.5]. Now, let us present examples of smooth Fano fourfolds with flexible affine
cones.

Example 4.16 ([188]). It follows from Theorems 3.20 and 3.23 that the following smooth
cylindrical Fano fourfolds admit coverings by affine charts isomorphic to A4:

(1) the quintic del Pezzo fourfold V5 described in Example 1.31 (see Theorem 3.20);

(2) the Fano–Mukai fourfold X s
18 of genus 10 with Aut.X s

18/ Š GL2.C/ Ì �2;

(3) the Fano–Mukai fourfolds X18 of genus 10 with Aut0.X18/ŠG2
m (there is a one-

parameter family of these, up to isomorphism).

Hence, all of them have flexible affine cones.
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By Theorem 3.23, every smooth Fano–Mukai fourfold in P12 of genus 10 contains
a Zariski open subset isomorphic to A4. Moreover, the following result has been recently
proved in [185].

Theorem 4.17. The affine cones over any smooth Fano–Mukai fourfold of genus 10 are
flexible.

For more higher-dimensional examples of flexible affine cones, see [149].

4.2. Cylinders in complements to hypersurfaces

This section is motivated by the following folklore conjecture, which first appeared in
2005 [66].

Conjecture 4.18. Let S be a smooth cubic surface in P3. Then any automorphism of
the affine variety P3 n S is induced by an automorphism of P3, i.e., we have

Aut
�
P3 n S

�
D Aut

�
P3; S

�
:

If S is smooth surface in P3 of degree > 4, then it is easy to see that

Aut.P3 n S/ D Aut.P3; S/:

Vice versa, if S is either a smooth quadric surface or a plane in P3, then

Aut.P3 n S/ ¤ Aut.P3; S/:

Moreover, it is not hard to see that Conjecture 4.18 fails for some singular cubic surfaces.

Example 4.19. Let S be one of the three cubic surfaces with Du Val singularities in P3

that admits an effective Ga-action (see [41, 147, 197]). Then Aut.P3; S/ contains a sub-
group isomorphic to Ga, so that Aut.P3 n S/ also contains a subgroup isomorphic to Ga.
Then Aut.P3 nS/must be infinite dimensional (see [65]), so that Aut.P nS/¤Aut.P ;S/,
because Aut.P ; S/ is algebraic.

Based on the results in [33, 38, 39], we may generalize the problem to del Pezzo
surfaces that are hypersurfaces in weighted projective spaces. To be precise, let S be
a del Pezzo surface that has at most Du Val singularities such that K2S 6 3. Then we have
one of the following three cases:

(1) K2S D 1, and S is a hypersurface of degree 6 in P .1; 1; 2; 3/;

(2) K2S D 2, and S is a hypersurface of degree 4 in P .1; 1; 1; 2/;

(3) K2S D 3, and S is a hypersurface of degree 3 in P3.

Denote by P the weighted projective space in these three cases: P .1; 1; 2; 3/, P .1; 1; 1; 2/
or P3. Then, very surprisingly, we have the following result:

Theorem 4.20 ([33, 165]). The following three conditions are equivalent:

� the surface S contains a .�KS /-polar cylinder;
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� the complement P n S is cylindrical;

� the group Aut.P n S/ contains a unipotent subgroup.

Combining this result with Theorem 2.8, we obtain the following corollary.

Corollary 4.21 ([165, Corollary 1.6]). The group Aut.P n S/ contains no unipotent sub-
group exactly when S is one of the surfaces listed in Theorem 2.8.

Corollary 4.22 ([33, Corollary 4.10]). Suppose that the surface S contains a .�KS /-
polar cylinder. Then Aut.P n S/ ¤ Aut.P ; S/.

Proof. By Theorem 4.20, the group Aut.P n S/ contains a unipotent subgroup, so that it
is infinite dimensional, which implies that Aut.P n S/ ¤ Aut.P ; S/, because Aut.P ; S/
is algebraic.

This corollary together with Theorem 2.8 show that Conjecture 4.18 fails for all sin-
gular cubic surfaces that have Du Val singularities. On the other hand, we have:

Theorem 4.23 ([33, Theorem 4.1]). Suppose that S is smooth. If K2S D 1, then

Aut .P n S/ D Aut .P ; S/ :

If K2S D 2 or K2S D 3, then Aut.P n S/ does not contain non-trivial connected algebraic
groups.

The proof of this result depends on irrationality of some del Pezzo threefolds (see
[48, 87, 88, 210]). Taking into account Theorem 4.23, Corollary 2.9 and Corollary 4.22,
we propose the following:

Conjecture 4.24. The surface S contains no .�KS /-polar cylinder ” Aut .P n S/D
Aut .P ; S/.

If S is a smooth cubic surface, then it does not contain any .�KS /-polar cylinder by
Theorem 2.8. In this case, Conjecture 4.24 claims that Aut .P n S/ D Aut .P ; S/, which
is Conjecture 4.18.

In [165], Theorem 4.20 has been generalized as follows. Let X be a normal projective
variety, and letD be an ample Cartier divisor onX . Suppose that the following conditions
are satisfied:

(1) the section ring of .X;D/ is a hypersurface, i.e., one has

1M
mD0

H0.X;OX .mD// Š kŒx0; x1; : : : ; xn�=.F /;

where kŒx0; : : : ; xn� is a polynomial ring in variables x0; : : : ; xn with weights

a0 D wt.x0/ 6 a1 D wt.x1/ 6 � � � 6 an D wt.xn/;
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andF is a quasi-homogeneous polynomial of degree d , so thatX is a hypersurface
in the weighted projective space

P .a0; a1; : : : ; an/ D Proj
�
kŒx0; x1; : : : ; xn�

�
I

(2) the Veronese map vd WP .a0; a1; : : : ; an/ Ü PN given by jOP.a0;a1;:::;an/.d/j is
an embedding.

Recall from [120, Proposition 3.5] that the complement P .a0; a1; : : : ; an/ n X admits
a non-trivial Ga-action if and only if it is cylindrical. On the other hand, we have the fol-
lowing result:

Theorem 4.25 ([165, Theorem 3.1]). Suppose that P .a0; a1; : : : ; an/ n X has a non-
trivial Ga-action. Then X contains a D-polar cylinder.

Based on the results on non-ruledness of smooth hypersurfaces of low degrees in
the projective spaces such as [28, 48, 53, 109, 127, 192, 193, 200] one can extend Con-
jecture 4.18 as follows:

Conjecture 4.26. Let X be a smooth hypersurface in Pn of degree d > 3. Then

Aut
�
Pn nX

�
D Aut

�
Pn; X

�
:

The conjecture holds when d > n since the hypersurface X has non-negative Kodaira
dimension. It remains true if d D n > 4 and .n; d/ D .4; 3/ due to the results by [28, 48,
53, 109, 192, 193].

4.3. Compactifications of Cn

In this subsection, we assume that varieties are defined over C. In this case, the problem
of existence of (Zariski open) cylinders in smooth Fano varieties is closely related to
the following famous problem posed by Hirzebruch 65 years ago in [102].

Problem 4.27. Find all complex analytic compactifications of Cn with second Betti num-
ber 1.

This problems asks to describe all compact complex manifolds X with b2.X/ D 1

that contain an open subset U which is biholomorphic to Cn and whose complement
ADX nU is a closed complex analytic subspace. Thus, we call a compactification of Cn

a pair .X;A/ consisting of

� a compact complex manifold X with b2.X/ D 1;

� and a closed complex analytic subset A � X such that X n A Š
bihol

Cn.

A compactification .X;A/ of Cn is said to be algebraic ifX is a smooth projective variety,
and the biholomorphism X n A Š

bihol
Cn is an algebraic isomorphism. Thus, we see that

.X;A/ is an algebraic compactification of Cn
H) X is a cylindrical Fano variety:
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Proposition 4.28 ([25,208]). Let .X;A/ be a compactification of Cn. Then the following
hold:

(1) A is purely 1-codimensional and irreducible;

(2) H i .X;Z/ Š H i .A;Z/, Hi .X;Z/ Š Hi .A;Z/ for every i 6 2n � 2;

(3) H 1.X;Z/ D 0 and H1.X;Z/ D 0;

(4) the class of A generates the groups H 2.X;Z/ Š Z and H 2.A;Z/ Š Z;

(5) if X is Moishezon, then H 1.X;OX / D 0 and H 2.X;OX / D 0, so that Pic.X/ Š
H 2.X;Z/.

The following deep result is due to Kodaira [126, Theorem 3]:

Theorem 4.29. If .X;A/ is a compactification of Cn, then

h0
�
X;¨˝mX

�
D 0

for every m > 0, where ¨X is the sheaf of holomorphic n-forms on X .

Thus, if .X; A/ is a compactification of Cn and X is projective, then X is a smooth
Fano variety, and A is an ample divisor on X that generates Pic.X/.

Example 4.30. Let .X;A/ be one of the following polarized smooth Fano varieties:

(1) X D Pn and A is a hyperplane;

(2) X is a smooth quadric in PnC1 and A is its singular hyperplane section;

(3) X D Gr.m; k/ and A is its Schubert subvariety of codimension 1, where n D
m.k �m/;

(4) X D G=P and A is its open cell isomorphic to Cn (such a cell does exist by [23,
128]), where G is a semisimple connected complex linear algebraic group, and P
is its maximal parabolic subgroup.

Then .X;A/ is a compactification of Cn.

In two-dimensional case, Problem 4.27 has an easy solution: if .X; A/ is a com-
pactification of C2, then X D P2 and A is a line in X . In the three-dimensional case,
Problem 4.27 has been solved in the series of papers [75–79, 81, 172, 173, 180]. In partic-
ular, we have the following result:

Theorem 4.31. Let .X; A/ be a compactification of C3. Suppose that X is a projective
threefold. Then this compactification is algebraic and .X;A/ can be described as follows:

(1) X D P3 and A is a plane;

(2) X is a smooth quadric in P4 and A is its singular hyperplane section;

(3) X is the quintic del Pezzo threefold in P5 described in Example 1.31 and A is its
singular hyperplane section that can be described as follows:
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(a) a surface whose singular locus is a line L with normal bundle

NL=X D OL.1/˚ OL.�1/I

(b) a normal del Pezzo surface that has a unique singular point of type A4;

(4) X is a smooth Fano threefold of index 1 and genus 12 in P13 and A is its certain
hyperplane section whose singular locus is a line ` with normal bundle

N`=X D O`.1/˚ O`.�2/:

Proof. We know that X is a smooth Fano threefold, and the surface A generates Pic.X/,
so that

�KX � �.X/A;

where �.X/ is the Fano index of the threefold X . If �.X/ D 4, then X D P3 and A is a
plane. Similarly, if �.X/ D 3, then X is a smooth quadric threefold in P4, and A is its
hyperplane section. In this case, the surface A must be singular, since H 2.A;Z/ D Z by
Proposition 4.28.

If �.X/ D 1, then the surface A must be a non-normal K3 surface, and the proof uses
a delicate analysis of its singularities. As a result, one can show that X is a Fano threefold
of genus 12 in P13, and A is its hyperplane section that is singular along a line of type
.1;�2/. One construction of such compactification is described in Remark 3.12. We will
not dwell into further details in this case.

Suppose that �.X/ D 2. Let us show that X is the quintic del Pezzo threefold in P5,
and A is its singular hyperplane section described above. Note that in this case .X; A/ is
indeed a compactification of C3, which follows from the proof of Theorem 3.6.

By Proposition 4.28, we have H 2.A;Z/ D Z and

4C 2h1;2.X/ D �top.X/ D �top.A/C 1: (4.32)

First, we suppose that the surface A is normal. Then �KA is ample by the adjunc-
tion formula, so that A is a del Pezzo surface with isolated Gorenstein singularities. If
its singularities are worse than Du Val, then A must be a (generalized) cone over an ellip-
tic curve [101], so that �top.A/ D 1. The latter contradicts (4.32). Thus, we see that A is
a del Pezzo surface with Du Val singularities. Then ¡.A/ D 1, because H 2.A; Z/ D Z.
Then �top.A/ D 3, so that we have h1;2.X/ D 0 by (4.32). Now, using Remark 3.1,
we conclude that X is the quintic del Pezzo threefold in P5 as required. Moreover, we
have K2A D 5, so that A is a quintic del Pezzo surface that has Du Val singularities. Since
¡.A/ D 1, it follows from [75, 152] that A has a unique singular point of type A4.

Now, we suppose that A is non-normal, so that it has a singular locus of positive
dimension. It is easy to show that any hyperplane section of a smooth complete intersec-
tion has only isolated singularities, and the same result holds for hyperplane sections of
weighed smooth hypersurfaces. Therefore, using Remark 3.1, we conclude again thatX is
the quintic del Pezzo threefold in P5, andA is its hyperplane section. Using the adjunction
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formula, we see that a general hyperplane section of the surface A is an irreducible sin-
gular curve of arithmetic genus 1, so that it has one singular point. Thus, the non-normal
locus of the surface A is some line L. Hence, it follows from the proof of Theorem 3.6
that Sing.A/ D L and

X n A Š Q nH;

where Q is a smooth quadric threefold in P4, and H is its hyperplane section. Since
X n A Š C3, we conclude that the surface H is singular. As we already mentioned in
the proof of Theorem 3.6, this implies that NL=X D OL.1/˚ OL.�1/ as required.

Corollary 4.33. Let .X; A/ be a compactification of C3. Suppose that X is a projective
threefold. Then H k.X;Z/ Š H k.P3;Z/ for all k.

It would be interesting to find an alternative proof of Theorem 4.31 that does not
heavily rely on the classification of smooth Fano threefolds.

Remark 4.34. Let X be a smooth Fano threefold such that ¡.X/ D 1, �.X/ D 1 and
g.X/ D 12. If X is a compactification of C4, then X contains a line ` such that N`=X D
O`.1/˚O`.�2/. However, this condition does not always guarantee that X is a compact-
ification of C4 (see [180]).

Remark 4.35. The list in Theorem 4.31 is similar to the list in Theorem 3.5.

In higher dimensions, we know very few results on Problem 4.27. Let us present one of
them, which follows from Theorem 3.20 and its proof. We use here the notation introduced
in Section 3.2.

Theorem 4.36 ([182]). Let .X; A/ be a compactification of C4, where X is a smooth
Fano fourfold. Suppose that �.X/ D 3. Then X is the quintic del Pezzo fourfold in P7 and

(1) either A D H`, where ` is a line in X that is not a line of type (b);

(2) or A is a singular hyperplane section of the del Pezzo fourfold X such that its
singular locus consists of a single ordinary double point that is not contained in
the divisor H .

Each of these compactifications is algebraic and unique up to isomorphism.

Proof. We prove the existence part only. In the first case, the existence follows from The-
orem 3.20. To deal with the second case, let us use the notation introduced in the proof of
Theorem 3.20. Consider the Sarkisov link (3.21) with ` being a line of type (a). We already
know that Q is smooth, and so we may assume that it is given in P4 by

x2x3 C x1x4 C x0x5 D 0:
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Similarly, we may assume that �.F / is cut out by x0 D 0. Moreover, the surface �. yH`/ is
a smooth cubic scroll in this case. Hence, we may assume that it is cut out on Q by

‚
x0 D 0;

x2x4 C x1x5 D 0;

x24 � x3x5 D 0:

Let D be the hyperplane section of the quadric Q that is cut out by x3 D 0, and let yD
be its proper transform on yV5. Then D is singular. We claim that yV5 n . yD [ yH`/ Š A4.
Indeed, let U D Q nD. Then U Š A4 with coordinates

y0 D
x0

x3
; y1 D

x1

x3
; y4 D

x4

x3
; y5 D

x5

x4
;

so that yV5 n yD is given by
y0z0 D .y5 � y

2
4/z1

in A4�P1, where z0 and z1 are coordinates on P1. Then yV5n. yD[ yH`/ is given in A4�A1

by
y0z D y5 � y

2
4 ;

where z D z0
z1

. This implies that yV5 n . yD [ yH`/ Š A4. Now, observe that �. yD/ is a
hyperplane section of V5 whose singular locus consists of a single ordinary double point
not contained in H .

In dimension 4, we know very few compactifications .X;A/ of C4. They can be listed
as follows:

� X D P4 and A is a hyperplane;

� X is a smooth quadric and A is its singular hyperplane section;

� X is the del Pezzo quintic fourfold and A is described in Theorem 4.36;

� X is a smooth Fano–Mukai fourfold of genus 10 and A is described in Theorem 3.23.

In particular, in every known example of a compactification .X; A/ of C4 with X 6Š P4,
one has

H k
�
X;Z

�
Š H k

�
Q;Z

�
for all k, whereQ is a smooth quadric in P5. We wonder whether this is just a coincidence.

Question 4.37. Does there exist a smooth Fano fourfold of index 1 that is a compactifica-
tion of C4?

Before we conclude this survey, let us set the following question:

Question 4.38. Is it true that any compactification of Cn is rational?

Note that the answer to this question is not obvious, since the isomorphismX nAŠCn

in the definition of a compactification of Cn is a biholomorphism, which is not necessarily
algebraic.
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A. Singularities of pairs

Let S be a surface with at most quotient singularities, let D be an effective non-zero
Q-divisor on S , let P be a point of S , and let

D D

rX
iD1

aiCi ;

where C1; : : : ; Cr are distinct irreducible curves on S , and each ai is a non-negative
rational number. We call .S;D/ a log pair.

Let � W zS ! S be a birational morphism such that zS is smooth. For each Ci , denote
by zCi its proper transform on the surface zS . Let F1; : : : ;Fn be �-exceptional curves. Then

K zS C

rX
iD1

ai zCi C

nX
jD1

bjFj �Q �� .KS CD/

for some rational numbers b1; : : : ; bn. Suppose that zC1 C � � � C zC2 C F1 C � � � C Fn is a
divisor with simple normal crossings. Then we say that � W zS ! S is a log resolution of
the log pair .S;D/.

Definition A.1. The log pair .S;D/ is said to be log canonical at the point P if the fol-
lowing two conditions are satisfied:

� ai 6 1 for every Ci such that P 2 Ci ;

� bj 6 1 for every Fj such that �.Fj / D P .

The log pair .S;D/ is called log canonical if it is log canonical at every point of S .

This definition does not depend on the choice of the log resolution � W zS ! S .

Remark A.2. Let R be an effective Q-divisor on S such that R �Q D. For a rational
number �, let

D� D .1C �/D � �R:

Then D� �Q D. Suppose that R ¤ D. Then there exists the greatest rational number
�0 > 0 such that the divisorD�0 is effective. By construction, the support of the divisorD�0
does not contain at least one curve contained in the support of the divisor R. Moreover,
if .S;D/ is not log canonical at P , but .S; R/ is log canonical at P , then .S;D�0/ is not
log canonical at P .

Now, we suppose that the surface S is smooth at P .

Lemma A.3. Suppose that .S;D/ is not log canonical at P . Then multP .D/ > 1.

Proof. Left to the reader.

Let f W xS ! S be a blowup of the point P , and let E be the f -exceptional curve.
Denote by xD the proper transform of the Q-divisor D on the surface xS via f . Then
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the log pair �
xS; xD C

�
multP .D/ � 1

�
E
�

(A.4)

is called the log pull back of the log pair .S;D/ on the surface xS .

Lemma A.5. Suppose that the log pair .S;D/ is not log canonical at P . Then

(i) the Q-divisor xD C .multP .D/ � 1/E is effective;

(ii) the log pair (A.4) is not log canonical at some point Q 2 E.

Proof. The required assertion follows from Definition A.1 and Lemma A.3.

The following handy statement is a very special case of a much more general result,
which is known as Inversion of Adjunction (see, for example, [131, Theorem 6.29]).

Lemma A.6 ([131, Exercise 6.31]). Suppose that C1 is smooth at P , the log pair .S;D/
is not log canonical at P , and a1 6 1. Let � D a2C2 C � � � C arCr . Then .C1 ��/P > 1.

Proof. Let m D multP .�/. If m > 1, then we are done, since�
C1 ��

�
P

> m:

Therefore, we may assume that m 6 1. This implies that the log pair .S;D/ is log canon-
ical in a punctured neighborhood of the point P 2 S . Since the log pair .S; D/ is not
log canonical at P , there exists a birational morphism hW yS ! S that is a composition
of s > 1 blowups of points dominating P such that es > 1, where es is a rational number
determined by

K yS C a1
yC1 C y�C

sX
iD1

eiEi �Q h�
�
KS CD

�
;

where each ei is a rational number, each Ei is an h-exceptional divisor, y� is a proper
transform on the surface yS of the divisor �, and yC1 is a proper transform on yS of the
curve C1.

Let x� and xC1 be the proper transforms on xS of the divisor� and the curve C1, respec-
tively. Then . xS; a1 xC1 C .a1 Cm � 1/E C x�/ is not log canonical at some point Q 2 E
by Lemma A.5.

Let us prove the inequality .C1 ��/P > 1 by induction on s. If s D 1, then

a1 Cm � 1 > 1;

which implies thatm > 2� a1 > 1, so that .C1 ��/P >m > 1 as required. Thus, we may
assume that s > 2 and a1 Cm � 1 6 2. Since�

C1 ��
�
P

> mC
�
xC1 � x�

�
Q
;

it is enough to show that m C . xC1 � x�/Q > 1. We may also assume that m 6 1, since
.C1 ��/P > m.
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If Q 62 xC1, then
�
xS; .a1 Cm � 1/E C x�

�
is not log canonical at the point Q, which

gives
m D x� �E >

�
x� �E

�
Q
> 1

by induction. The latter implies that Q D xC1 \E, since m 6 1. Then

a1 Cm � 1C
�
xC1 � x�

�
Q
D
��
.a1 Cm � 1/E C x�

�
� xC1

�
Q
> 1

by induction. This gives . xC � x�/Q > 2 � a1 �m. Then

mC
�
xC1 � x�

�
Q
> 2 � a1 > 1

as required.

Corollary A.7. In the notation and assumptions of Lemma A.5, suppose that

multP .D/ 6 2:

Then there exists a unique point Q 2 E such that (A.4) is not log canonical at Q.

Proof. If (A.4) is not log canonical at two distinct points P1 and P2, then

2 > multP .D/ D xD �E >
�
xD �E

�
P1
C
�
xD �E

�
P2
> 2

by Lemma A.6. Now use Lemma A.5.

The following result plays an essential role in the proof of Theorem 2.15 given in Sec-
tion 2.2. In fact, this theorem has been discovered [32] in an attempt to give a simple proof
of Theorem 2.15, since its original proof in [38] is very technical. For other applications
of Theorem 2.15, see [1, 209].

Theorem A.8 ([32]). Suppose that .C1 � C2/P D 1, and the log pair .S; D/ is not log
canonical atP . Let�D a3C3C � � � C arCr andmDmultP .�/. Suppose also thatm6 1.
Then �

C1 ��
�
P
> 2.1 � a2/

or
�
C2 ��

�
P
> 2.1 � a1/:

Proof. We may assume that a1 6 1 and a2 6 1. There is a morphism hW yS ! S that is
a composition of s > 1 blowups of points dominating P such that es > 1 for es 2 Q that
is determined by

K yS C a1
yC1 C a2 yC2 C y�C

rX
iD1

eiEi D h
�
�
KS C a1C1 C a2C2 C�

�
;

where each ei is a rational number, each Ei is an h-exceptional divisor, yC1 and yC2, are
proper transforms on yS of the curves C1 and C2, respectively, and y� is a proper transform
of the divisor �.
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Let x�, xC1, xC2 be the proper transforms on xS of the divisors�,C1 andC2, respectively.
Then �

xS; a1 xC1 C a2 xC2 C
�
a1 C a2 Cm � 1

�
E C x�

�
is not log canonical at some point Q 2 E by Lemma A.5.

If s D 1, then a1 C a2 Cm� 1 > 1. If m > 2� a1 � a2, then m > 2.1� a1/ or m >

2.1 � a2/, because otherwise we would have

2m 6 4 � 2.a1 C a2/;

which contradicts to m > 2 � a1 � a2. Then�
� � C1

�
P
> 2.1 � a2/

or
�
� � C2

�
P
> 2.1 � a1/

if s D 1.
Let us prove the required assertion by induction on s. The case s D 1 is already done,

so that we may assume that s > 2 and a1C a2Cm6 2. IfQ¤E \ xC1 andQ¤E \ xC2,
then

m D x� �E > 1

by Lemma A.6, which is impossible by assumption. Thus, either Q D E \ xC1 or Q D
E \ xC2. Without loss of generality, we may assume that Q D E \ xC1.

By induction, we can apply the lemma to
�
xS; a1 xC1 C .a1 C a2 Cm � 1/ E C x�

�
at

the point Q. This implies that either�
x� � xC1

�
Q
> 2

�
1 � .a1 C a2 Cm � 1/

�
D 4 � 2a1 � 2a2 � 2m

or
�
x� �E

�
Q
> 2.1 � a1/. In the latter case, we have�

� � C2
�
P

> m D x� �E >
�
x� �E

�
Q
> 2.1 � a1/;

which is exactly what we want. Therefore, we may assume that

.x� � xC1/Q > 4 � 2a1 � 2a2 � 2m:

If .� �C2/P >2.1� a1/, then we are done. Hence, we may assume .� �C2/P 6 2.1� a1/.
Then

m 6
�
� � C2

�
P

6 2.1 � a1/:

This gives�
� � C1

�
P

> mC
�
x� � xC1

�
Q
> mC 4 � 2a1 � 2a2 � 2m > 2.1 � a2/;

because m 6 2.1 � a1/.

Almost all results we have considered so far in this subsection are local (except for
Remark A.2). Let us conclude this subsection by two global statements. The first of them
is due to Puhklikov:
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Lemma A.9 ([131, Lemma 5.36]). Suppose that S is a smooth surface in P3, and D is
Q-linearly equivalent to its hyperplane section. Then each ai does not exceed 1.

Proof. Let X be a cone over the curve Ci whose vertex is a general enough point in P3.
Then

X \ S D Ci C yCi ;

where yCi is an irreducible curve of degree .deg.S/ � 1/deg.Ci /. Moreover, yCi is not
contained in the support of the divisor D, and the intersection Ci \ yCi consists of exactly
deg. yCi / points. Then

deg
�
yCi
�
D D � yCi > aiCi � yCi > aideg

�
yCi
�
;

which implies that ai 6 1.

The second global result we want to mention is the following lemma about del Pezzo
surfaces of degree 2 that have at most two ordinary double points.

Lemma A.10. Suppose that there is a double cover � W S ! P2 branched over an irre-
ducible quartic curve B that has at most two ordinary double points, and

D �Q �KS :

Then each ai does not exceed 1. Moreover, if .S; D/ is not log canonical at P , then
�.P / 2 B .

Proof. Write D D a1C1 C�, where � D a2C2 C � � � C arCr . Suppose that a1 > 1. Let
us seek for a contradiction. Since

2 D �KS �D D �KS � .a1C1 C�/

D �a1KS � C1 �KS �� > �a1KS � C1 > �KS � C1;

we have �KS � C1 D 1. Then �.C1/ is a line. Hence, the surface S contains an irre-
ducible curveZ1 such that C1CZ1 � �KS and �.C1/D �.Z1/. Note that the curves C1
andZ1 are interchanged by the biregular involution of the surface S induced by the double
cover � . Then

2 D .�KS /
2
D
�
C1 CZ1

�2
D 2C 21 C 2C1 �Z1;

which implies that C1 � Z1 D 1 � C 21 . Since C1 and Z1 are smooth rational curves, we
have

C 21 D Z
2
1 D �1C

k

2
;

where k is the number of singular points of S that lie on C1. Now we write

D D a1C1 C b1Z1 C‚;
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where b1 is a non-negative rational number, and‚ is an effective Q-divisor whose support
does not contains the curves C1 and Z1. Then

1 D C1 �
�
a1C1 C b1Z1 C‚

�
> a1C

2
1 C b1C1 �Z1 D a1C

2
1 C b1

�
1 � C 21

�
;

and hence 1 > a1C
2
1 C b1.1 � C

2
1 /. Similarly, from Z1 �D D 1, we obtain

1 > b1C
2
1 C a1

�
1 � C 21

�
:

The obtained two inequalities imply that a1 6 1 and b1 6 1, because C 21 D �1C
k
2

and
k 6 2. Since a1 > 1 by our assumption, this is a contradiction.

We see that a1 6 1. Similarly, we see that ai 6 1 for every i .
Now we suppose that the log pair .S;D/ is not log canonical at P . Let us show that

�.P / 2B . Suppose that �.P / 62B . Then S is smooth at P . Let us seek for a contradiction.
Let H be a general curve in j �KS j that passes through the point P . Then

2 D H �D > multP .H/multP .D/ > multP .D/;

so that multP .D/ 6 2. But the pair (A.4) is not log canonical at some point Q 2 E by
Lemma A.5. Applying Lemma A.3 to (A.4), we get multP .D/CmultQ. xD/ > 2.

Since �.P / 62 B , there exists a unique (possibly reducible) curve R 2 j � KS j such
that its proper transform on xS passes through the point Q. Note that R is smooth at P .
This enables us to assume that the support of D does not contain at least one irreducible
component ofR by Remark A.2. Denote by xR the proper transform ofR on the surface xR.
If the curve R is irreducible, then

2 �multP .D/ D 2 �multP .C /multP .D/

D xR � xD > multQ. xR/multQ. xD/ D multQ. xD/;

which is impossible, since multP .D/CmultQ. xD/>2. Thus, the curveRmust be reducible.
Write RD R1CR2, where R1 and R2 are irreducible smooth curves. Without loss of

generality we may assume that the curve R1 is not contained in Supp.D/. Then P 2 R2,
because otherwise we would have

1 D D �R1 > multP .D/ > 1;

since multP .D/ > 1 by Lemma A.3. Thus, we put D D aR2 C �, where a is a non-
negative rational number and � is an effective Q-divisor whose support does not contain
the curve R2. Then

1 D R1 �D D
�
2 �

1

2
l
�
aCR1 �� >

�
2 �

1

2
l
�
a;

where l is the number of singular points of the surface S contained in R1. Denote by xR2
the proper transform on xS of the curve R2 , and denote by x� the proper transform on xS
of the divisor �. Then the log pair�

xS; a xR2 C x�C
�
multP .D/ � 1

�
E
�
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is not log canonical atQ. Note that we already proved that a6 1. Thus, using Lemma A.6,
we get �

2 �
1

2
l
�
a D xR2 �

�
x�C

�
multP .D/ � 1

�
E
�
> 1:

This is a contradiction.
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