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Integrable systems and Special Kähler metrics

Nigel Hitchin

Abstract. We describe the Special Kähler structure on the base of the so-called Hitchin system in
terms of the geometry of the space of spectral curves. It yields a simple formula for the Kähler
potential. This extends to the case of a singular spectral curve and we show that this defines the
Special Kähler structure on certain natural integrable subsystems. Examples include the extreme
case where the metric is flat.

1. Introduction

The solution of classical integrable systems – like the equations for a spinning top or the
geodesics on an ellipsoid – in terms of abelian functions led to the more general concept
of an algebraically completely integrable Hamiltonian system. This is an algebraic variety
equipped with a symplectic form and a Lagrangian fibration, the generic fibre of which is
an abelian variety. In the classical examples, one sees only an affine part of the fibre but
the equation is defined by a flow which preserves the fibre and is linear with respect to the
natural group structure on the abelian variety.

Studying a family of abelian varieties leads naturally to look at the variation of the
period matrix, an issue in algebraic geometry, but there is an equivalent viewpoint which is
differential-geometric in nature, called a Special Kähler structure. This is a Kähler metric,
with special properties, on the base of the fibration and is determined entirely by the
variation of the period matrix. Its origins lie in the consideration of supersymmetric field
theories [4, 8] but it can be reformulated in a purely geometric manner as in [7].

In recent years a large class of algebraically completely integrable systems is provided
by the so-called Hitchin system. This is defined on the quasi-projective variety which is
the moduli space M of Higgs bundles on a curve † of genus g > 1. A Higgs bundle is
a pair .V; ˆ/ consisting of a holomorphic vector bundle V of rank n and a holomorphic
section (the Higgs field) of End V ˝K, where K is the canonical bundle, satisfying the
slope-stability condition for ˆ-invariant subbundles. Varying the curve or the rank of the
bundle, or replacing the general linear group by another complex Lie group, gives a large
choice of examples. In this context, there is an added interest in the Special Kähler struc-
ture, for it contributes to the asymptotic behaviour of the natural hyperkähler metric on
the moduli space [11].
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The integrable system arises from taking the curve S defined by the characteristic
equation

det.x �ˆ/ D xn C a1xn�1 C � � � C an D 0:

This is an n-fold covering of† and sits naturally in the total space of the cotangent bundle
� WT �†! †. The vector bundle V is obtained as the direct image of a line bundle on S ,
and the Higgs field by the direct image of x, a section of ��K. The base of the integrable
system consists of the space of coefficients in the characteristic polynomial and then the
abelian fibre is isomorphic to the Jacobian of S .

In [2] the authors give a simple formula for the Special Kähler structure for M. The
Kähler metric is given by a natural globally defined potential

� D Im
1

4

Z
S

� ^ x�;

where � is the canonical one-form on the cotangent bundle. Here we give first a short
survey of the situation and then an alternative proof of this result. The key point for us
is the observation that a Special Kähler structure exists more generally on the space of
deformations of a compact complex Lagrangian submanifold of a complex symplectic
manifold. The spectral curve S , being one-dimensional, is Lagrangian in the symplectic
surface T �† and we obtain a Special Kähler metric on the linear system of curves defined
by equations of the form

xn C a1x
n�1
C � � � C an D 0:

The formula for � is immediate here and the task is to show that the structures for this
family of curves and the family of its Jacobians in M coincide.

The assumption all along is that S is smooth, and in fact the Special Kähler metric
degenerates over the discriminant locus in the base of the fibration. However, the above
formula for � makes sense for a singular spectral curve, and extends, though not smoothly,
across the discriminant locus. If we fix the singularity type of S – here we restrict to
ordinary singularities of S , points of multiplicitymwithm distinct tangents – then there is
a subintegrable system of M where the abelian variety is the Jacobian of the normalization
of S . We show that the formula defines the potential for the corresponding Special Kähler
metric.

We end with a discussion of examples, in particular we find a subsystem where the
Special Kähler metric is flat.

2. Integrable systems

2.1. The geometry of integrable systems

By an integrable system we mean a symplectic manifold .M; !/ of dimension 2n and
a proper map hWM ! B to an n-dimensional base manifold B with Lagrangian fibres,
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namely ! vanishes on restriction to a fibre. By general theory a connected component of
the fibre over a regular value is a torus, and functions on B composed with h Poisson
commute. For the moment we work over the real numbers.

A tangent vector X 2 TaB lifts canonically to a section of the normal bundle of the
fibre Ma – the first order deformation of Ma � M – and locally we can extend this to a
vector field zX alongMa, well-defined up to the addition of a vector field Y tangent toMa.
But Ma is Lagrangian, so the interior product iY! restricts to zero and therefore i zX!
is a well-defined global 1-form on the fibre. It is in fact a closed 1-form. The de Rham
cohomology class Œi zX!� now provides a natural isomorphism TaB Š H

1.Ma;R/.
If U � B is a contractible neighbourhood of a then homotopy invariance means the

restriction map H 1.h�1.U /;R/! H 1.Ma;R/ is an isomorphism. If a; b 2 U then this
gives a natural isomorphism TaB Š TbB . Globally this is a flat connection on the tangent
bundle of B . Since ! vanishes onMa its cohomology class inH 2.h�1.U /;R/ is zero and
there we can write ! D d� . Choosing a basis Ci 2 H1.Ma;Z/ Š Zn one obtains local
flat coordinates

xi D

Z
Ci

�:

It follows that the connection r is flat and torsion-free.
Now suppose that M is a complex manifold with a holomorphic symplectic form !c

and hWM !B is holomorphic. Then the real and imaginary parts of!c are real symplectic
forms. Let ! be the real part. Suppose in addition that M has a Kähler form �. Then the
cohomology class Œ�� 2 H 2.M;R/ defines a real symplectic form on the base:

.X; Y / D

Z
Ma

i zX! ^ i QY! ^�
n�1:

This is just the cup product of cohomology classes and so is constant with respect to the
flat connection. Hence the base B is equipped with a flat symplectic connection.

The complex structure on the base is not flat. It is an endomorphism I W T ! T such
that I 2 D �1 or equivalently a section of T � ˝ T . This is a 1-form with values in the flat
vector bundle T . Instead of I being flat, the condition it satisfies is drI D 0 where dr is
the flat de Rham differential operator dr W�1.B; T /! �2.B; T /. Locally I D drX for
a Hamiltonian vector field.

Remark. The above data – a flat torsion-free symplectic connection and a complex struc-
ture I , compatible with the symplectic form and satisfying drI D 0 – is the definition
of a Special Kähler metric on B in the approach of D. Freed [7], directed towards mathe-
maticians. The original concept appeared in the physics literature in the context of super-
symmetry [4, 8].

We could have chosen the imaginary part of !c or the real part of ei�!c to get other
flat connections and this is all part of the rich geometry of Special Kähler structures but we
shall restrict ourselves here to one aspect, which is a convenient description of the metric
given in [7] in terms of a Kähler potential.



N. Hitchin 166

In the holomorphic situation the fibreMa is a complex torus and the Kähler class of�
means we can choose a symplectic basisAi ;Bi ofH1.Ma;R/. Let xi ; yi , 1� i � n be the
real flat coordinates corresponding to this basis, then they are the real parts of holomorphic
coordinates zi and wi and a Kähler potential is given by

� D
1

2
Im
X
i

wixzi :

If !c D d�c and ˛i ; ˇi denote the dual basis ofH 1.Mx ;R/, then Œ�c �D
P
i zi˛i Cwiˇi

and the above formula can be written as

� D Im
Z
Ma

�c ^ x�c ^�n�1: (1)

2.2. Higgs bundles

The particular holomorphic integrable system we want to apply this formula to is where
M DM is the moduli space of Higgs bundles on a Riemann surface † of genus g > 1.
A Higgs bundle is a rank n vector bundle V together with a holomorphic section ˆ
of End V ˝ K, where K is the canonical bundle. It is stable if, for every ˆ-invariant
subbundle U � V we have

degU= rkU < degV= rkV:

This stability condition for the pair gives rise to a well-behaved moduli space which is a
holomorphic symplectic manifold.

We can represent a Higgs bundle as a pair .A;ˆ/, where A denotes a x@-operator

x@AW�
0.†; V /! �0;1.†; V /

on the rank n holomorphic vector bundle V andˆ, the Higgs field, is a section of EndV˝K
such that x@Aˆ D 0.

In this Dolbeault form a tangent vector to the moduli space M is given by the first
variation of the equation x@Aˆ D 0 which consists of a pair

. PA; P̂ / 2 �0;1.†;EndV / ��1;0.†;EndV /

satisfying x@A P̂ C Œ PA;ˆ� D 0 modulo the action of a C1 endomorphism  defining

. PA; P̂ / D
�
x@A ;�Œ ;ˆ�

�
:

The symplectic form is then

!c
�
. PA1; P̂ 1/; . PA2; P̂ 2/

�
D

Z
†

tr. PA1 P̂ 2 � PA2 P̂ 1/: (2)

The characteristic polynomial of ˆ gives

det.x �ˆ/ D xn C a1xn�1 C � � � C an;
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where the coefficient am is a holomorphic section ofKm. Since C1 automorphisms of V
act on ˆ by conjugation and the characteristic polynomial is conjugation-invariant, the
coefficients ai give a well-defined map on the moduli space:

hWM!

nM
iD1

H 0.†;Ki /:

This defines the integrable system. Later it will be useful to use the invariant polynomials
tr.ˆm/ instead of the coefficients ai to define an equivalent map h.

A point aD .a1; : : : ; an/ in the base B defines an algebraic curve det.x �ˆ/ D 0, the
spectral curve S . This is an n-fold covering � WS ! † and a line bundle L on S defines a
rank n bundle V on † by the direct image ��L: over an open set U � †,

H 0.U; V / D H 0.U; ��L/ D H
0.��1.U /; L/

by definition. The indeterminate x in the characteristic polynomial is a section of ��K
on S and then

xWH 0.��1.U /; L/! H 0.��1.U /; L��K/

defines a Higgs field ˆ on V . In this way we can identify the fibre over a point a which
defines a smooth spectral curve (a regular value of h) with the Picard variety Picd .S/ for
a fixed d depending on the degree of V . This is a torsor for the Jacobian of S and is a
complex torus.

The family of x@-operators x@A defines a determinant line bundle whose cohomology
class is given by a Kähler (actually hyperkähler) form � and restricts to the theta class on
the Jacobian [3]. So we have all the data for a Special Kähler metric on the base B.

We have one more feature which is the C�-action defined by .V; ˆ/ 7! .V; �ˆ/.
From (2) it acts on the symplectic form !c by rescaling and so if X is the holomorphic
vector field on M generated by the infinitesimal action we have LX!

c D!c or d.iX!c/C
iXd!

c D !c which, since !c is closed, means that !c D d.iX!c/: Hence, from (1) we
have a formula for the Kähler potential of the Special Kähler metric

� D Im
Z

Ma

iX!
c
^ iX!c ^�

n�1:

Note the geometric interpretation of the 1-form iX!
c on a fibre Ma. If we regard it

as a tangent vector on the base, or a first order deformation of the fibre, it is simply the
deformation given by the action of C�.

2.3. Spectral curves

The base B of the integrable system now has two interpretations: the parameter space
of Lagrangian fibres in M and the parameter space of spectral curves. Now, as shown
in [9], a Special Kähler structure exists on the moduli space of deformations of a compact
complex Lagrangian in a complex symplectic Kähler manifold, and not just the fibres of



N. Hitchin 168

an integrable system. The procedure is the same – a section of the normal bundle defines
a holomorphic 1-form and its periods define the Special Kähler structure.

A particular case consists of the spectral curves themselves. The equation

xn C a1x
n�1
C � � � C an D 0

defines the zero set of a section of ��Kn on the total space jKj ofK where x is the tauto-
logical section of ��K on jKj. Thus x embeds S as a curve in the complex surface jKj,
the cotangent bundle T �† of †, and the covering is given by the restriction of the pro-
jection � W T �†! †. The cotangent bundle is canonically symplectic and any curve is
Lagrangian. Moreover, when n D 1 the factor �n�1 disappears in the definition of the
symplectic form on the moduli space, so we do not require a Kähler form on the surface.

All sections of ��Kn on jKj are of the form a0x
n C a1x

n�1 C � � � C an and compact
zero sets require a0 ¤ 0, thus any deformation is described by the equation of a spectral
curve. In particular, since the normal bundle to a curve in a symplectic surface is the
canonical bundle KS Š ��Kn.

In [2] Baraglia and Huang show that the two Special Kähler structures – the parameter
space of fibres of hWM ! B and of curves S � T �† – are the same. We now give a
slightly different account of this result.

3. Two families of Lagrangians

3.1. Fibres of the integrable system

Consider again the tangent space to the moduli space of Higgs bundles M. As noted above
this is defined by . PA; P̂ / satisfying x@A P̂ C Œ PA;ˆ� D 0 modulo . PA; P̂ / D

�
x@A ;�Œ ;ˆ�

�
.

This space has a holomorphic interpretation as the hypercohomology H1 of the complex
of sheaves:

O.EndV /
Œˆ;��
! O.EndV ˝K/:

One of the two spectral sequences associated to this complex gives, using the vanishing
theorem coming from stability, the following:

0! H 1.†; kerˆ/! H1
! H 0.†; cokerˆ/! 0: (3)

Here kerˆ is the sheaf of centralizers of ˆ and cokerˆ the cokernel sheaf of the adjoint
action ofˆ. Since x@A P̂ D �Œ PA;ˆ�we see that P̂ is holomorphic modulo the image of adˆ
and so defines the image of . PA; P̂ / in H 0.†; cokerˆ/.

If the spectral curve is smooth then ˆ is everywhere regular and hence the centralizer
is generated by 1;ˆ; : : : ; ˆn�1 where ˆmWK�m ! EndV . It follows that

kerˆ Š O ˚K�1 ˚ � � � ˚K�.n�1/

and similarly

cokerˆ Š K ˚K2 ˚ � � � ˚Kn:
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If pWO.End V /! cokerˆ is the projection then tr.ˆm P̂ / D tr.ˆmp. P̂ // and then
the right hand arrow in (3) is

. PA; P̂ / 7!
�

tr P̂ ; tr.ˆ P̂ /; : : : ; tr.ˆn�1 P̂ /
�
2

nM
mD1

H 0.†;Km/:

We recognize this as the derivative of the projection hWM! B of the integrable system,
and so the tangent space of a fibre is

H 1.†; kerˆ/ Š
n�1M
mD0

H 1.†;K�m/:

A tangent vector to the fibre is thus represented by

PA D

n�1X
mD0

˛mˆ
m
2 �0;1.†;EndV /; (4)

where ˛m 2 �0;1.†;K�m/.
The symplectic form !c on M gives a nondegenerate pairing between the tangent

bundle of the fibre and base. In terms of the representatives above this isZ
†

tr. PA P̂ / D
n�1X
mD0

Z
†

˛m tr.ˆm P̂ / D
n�1X
mD0

hŒ˛m�; bmi; (5)

where .b1; : : : ; bm/ 2 H 0.†;K/˚ � � � ˚H 0.†;Kn/ is a tangent vector to the base and
ha; bi is Serre duality on †.

The fibre is identified with the Jacobian of the spectral curve S by the direct image.
Recall that x is a section of ��K and ˆ D ��x, so PA in (4) defines naturally

n�1X
mD0

��Œ˛m�x
m
2 H 1.S;O/

a tangent vector to the Jacobian.
As noted, the canonical bundle of S is isomorphic to ��Kn but we need to examine

the isomorphism more closely to compare the Higgs bundle pairing above with the Serre
duality pairing on the spectral curve S .

3.2. Curves in T �†

The other family of Lagrangians are the compact curves S�jKj in the linear system ��Kn,
each given by the vanishing of a section s D xn C a1xn�1 C � � � C an. The surface jKj D
T �† is the total space of the cotangent bundle of †, which has a canonical symplectic
form !. If z is a local coordinate on† then dz trivializesK and x 2 ��K is another local
coordinate. The canonical 2-form is then dx ^ dz.
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The normal bundle N of S is ��Kn and the derivative of s on S , assuming S is
smooth, is a nonvanishing section of ��Kn ˝N �. Since the canonical bundle of T �† is
trivial, N Š KS and this gives an isomorphism KS Š �

�Kn. The function z is a local
coordinate on S if sx ¤ 0 and locally the derivative of s is sxdx C szdz. Then the iso-
morphism is locally

dz 7! sx D nx
n�1
C .n � 1/a1x

n�2
C � � � C an�1:

The Abel–Jacobi map S ! Jac.S/ realizes an isomorphism between holomorphic
1-forms on S and Jac.S/ and also between H 1.S;Z/ and H 1.Jac.S/;Z/. The derivative
of this map takes a tangent vector at a point p 2 S to a tangent vector to Jac.S/. It comes
from the long exact sequence of

0! OS ! OS .p/! Op.p/! 0:

The derivative of the section of O.p/which vanishes at p identifies the normal bundle of p
(i.e. the tangent space at p) with the line bundle O.p/ so canonicallyH 0.p;Op.p//Š Tp
and the connecting homomorphism

ıWTp Š H
0.p;Op.p//! H 1.S;O/ Š T Jac.S/

gives the corresponding tangent vector.
If �.p/ is not a branch point then x takes n distinct values �1; : : : ; �n in a neighbour-

hood of �.p/ so suppose x D �1 near p. Then define in a neighbourhood

q.x/ D
.x � �2/ � � � .x � �n/

.�1 � �2/ � � � .�1 � �n/
D c0 C c1x C � � � C cn�1x

n�1;

equal to 1 when x D �1 and zero for x D �i ; i > 1. Note that the denominator is sx.�1/,
the identification of ��Kn with KS . Applying ı gives a class in H 1.S;O/ of the form

n�1X
mD0

��ı.cm/x
m
2 H 1.S;O/;

where ı.cm/ 2 H 1.†;K�m/.
Serre duality on S pairs this localized class with a holomorphic 1-form by evaluation

at p. Let bi be a holomorphic section of Ki , and consider ��bixn�i a section of ��Kn.
Then ��bixn�iq.x/ modulo .x � �1/ � � � .x � �n/ is equal to bi .�.p//�n�i1 =sx.�1/ at p
since xn�i � �n�i is divisible by x � �1.

On the other hand, the pairing via Higgs bundles in (5) is cibi .�.p//, where ci D
.�1/n�i�n�i=sx.�1/ and �k is the k-th elementary symmetric function in �2; �3; : : : ; �n.

In terms of the full symmetric functions �i we have

�k D �k � �1�k�1 C �
2
1�k�2 C � � � C .�1/

k�k1 ;
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so the homomorphism

.b1; b2; : : : ; bn/ 7!

nX
jD1

��bj .x
n�j
C ��a1x

n�j�1
C � � � C ��an�j / (6)

identifies the tangent space of B withH 0.S;��Kn/ŠH 0.S;KS / in such a way that the
Higgs bundle pairing is equal to the Serre duality pairing. This is Proposition 3.3 in [1].

3.3. The Special Kähler metric

Let Breg � B denote the space of smooth spectral curves, then we have identified the
family of Jacobians with the Higgs bundle moduli space in a form where the pairing given
by the symplectic forms coincides. The Abel–Jacobi map identifies holomorphic one-
forms and their periods on the spectral curve with those of the Jacobian and it follows that
the two Special Kähler metrics are the same.

Now the C�-action on M is given byˆ 7! �ˆ and det.x � �ˆ/D �n det.��1x �ˆ/.
So the action on spectral curves S � T �† is rescaling x 7! ��1x of the fibre of the
cotangent bundle. Call the associated vector field Y , then iY!D� is the canonical 1-form
on the cotangent bundle, and we have the following:

Proposition 1 ([2]). A Kähler potential for the Special Kähler metric on Breg is given by

� D Im
1

4

Z
S

� ^ x�:

It is instructive to see the relationship between the two holomorphic 1-forms explic-
itly. In our local coordinates on T �† we have � D xdz. Using the identification of KS
with ��Kn this becomes

xsx D x
�
nxn�1 C .n � 1/a1x

n�2
C � � � C an�1

�
D n

�
� .a1x

n�1
C � � � C an/

�
C .n � 1/a1x

n�1
C � � �

D �.a1x
n�1
C 2a2x

n�2
C � � � C nan/

using the equation of the spectral curve.
The C�-action on the Higgs field gives P̂ Dˆ and so tr.ˆm P̂ /D trˆmC1 and we sub-

stitute bj D tr.ˆj / in Equation (6). Newton’s identity for sums of powers and elementary
symmetric functions gives

kX
jD1

bjak�j D �kak

and using this in (6) gives the above formula.
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4. Singular curves

4.1. Singular curves and singular fibres

If S � T �† is now a singular curve, then the formula of Proposition 1 still makes sense
and a natural question is to understand the significance of the corresponding potential.
When S is singular, the fibre of the integrable system becomes singular. This means that
there are points where some of the Hamiltonian vector fields corresponding to functions
on the base vanish, or equivalently they are critical points of those functions. More geo-
metrically, it is where the derivative of hWM! B is not surjective.

We observed that if ˆ is regular everywhere then surjectivity holds so suppose ˆ is
regular except on a divisor D � † (for example if the spectral curve S is reduced), then
the powers of ˆ still lie in the centralizer but now there is a quotient sheaf C supported
on D

0! O ˚K�1 ˚ � � � ˚K�.n�1/ ! kerˆ! C ! 0:

From the long exact sequence

! H 0.D;C/
ı
! H 1

�
†;O ˚K�1 ˚ � � � ˚K�.n�1/

�
!

sections of C define by Serre duality linear functions on the base of the integrable system

B D H 0.†;K/˚ � � � ˚H 0.†;Kn/:

These are functions which are critical at the point .V;ˆ/ 2M.
In rank 2, this critical locus was discussed in [10], with emphasis on a notion of

nondegeneracy of the critical locus. Here we make the simplifying assumption that the
singularities of S are ordinary singularities in the classical terminology of Walker [12],
namely that each singularity of multiplicity m has m distinct tangents. When m D 2 this
is a node. If S has k ordinary singularities of multiplicity mj and zS is the normalization
of S then its genus is

g. zS/ D g.S/ �

kX
1

mj .mj � 1/

2
: (7)

The fibres of the Higgs bundle integrable system are described in general by torsion-free
sheaves on the spectral curve which can be regarded as the direct image of line bundles on
a partial normalization. So consider the case of an ordinary singularity of S . At this point
m eigenvalues of ˆ coincide. For simplicity assume that these are zero and z is a local
coordinate on †, then the equation of S is locally of the form

.x � �1z/.x � �2z/ � � � .x � �mz/C higher order terms:

Distinct tangents mean that the �i are distinct.
The normalization of a neighbourhood of the singularity consists ofm disjoint discsUi

on which x D �izC � � � and so the direct image of x contributes a component of the Higgs
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field of the form z� C � � � where � is the diagonal matrix with entries �1; : : : ; �m. The
quotient sheaf C above is thus generated by �; �2; : : : ; �m�1 modulo powers of z� or

m�1X
jD1

pk.z/�
k ;

where pk.z/ is a polynomial of degree k � 1. Then at this singularity

dimH 0.D;C/ D 1C 2C � � � C .m � 1/ D m.m � 1/=2:

Let Bd � B denote the subvariety of spectral curves where d denotes the singularity
type (k ordinary singularities together with multiplicities mk). Note that Bd is preserved
by the C�-action. A tangent vector at a smooth point is annihilated by ıH 0.D;C/ whose
dimension is

P
mk.mk � 1/=2 and so the tangent space of Bd has dimension g. zS/

from (7). The generic fibre is isomorphic to the Jacobian of zS and so we have a subvariety
of dimension 2g. zS/.

This is a symplectic submanifold and a subintegrable system Md , in fact the local
structure can be realized as a symplectic quotient. If Bd is locally defined by functions
.f1; f2; : : : ; fm/ D 0, then these constitute the moment map for a Cm-action which trans-
lates the torus fibres Š Jac. zS/. The symplectic quotient fibres over Bd and is locally
holomorphically equivalent to the symplectic submanifold. As an integrable system in its
own right, Bd inherits a Special Kähler structure and we shall determine next the Kähler
potential by using the canonical 1-form iX!

c .

4.2. The subintegrable system

The symplectic pairing on Md provides an isomorphism between the tangent space of a
fibre, namelyH 1. zS;O/, and the cotangent space of the fibre Bd �B. In particular, there
is an identification of the sections of ��Kn on S which are annihilated by ıH 0.D; C/

with holomorphic one-forms on zS , the normalization of S . We need to see this concretely.
Near an m-fold singularity x D 0 D z, the section of ��Kn defining S is of the form

s D .x � �1z/.x � �2z/ � � � .x � �mz/C � � � :

Then on the neighbourhood Ui � zS on which x D �1z C � � � we have

sx D z
m�1dx.�1 � �2/ � � � .�1 � �m/C � � �

and since the �i are distinct this gives an isomorphism to K zS after dividing by zm�1. So
if pi 2 Ui are the points in the resolution of the singularity the derivative of s gives an
isomorphism

K zS Š �
�Kn.�.m � 1/.p1 C � � � C pm//:

(This reduces the degree by m.m � 1/ providing another argument for the genus g. zS/
whose degree is 2g. zS/ � 2.)
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Now consider

.b1; b2; : : : ; bn/ 2 H
0.†;K ˚K2 ˚ � � � ˚Kn/

annihilated by ıH 0.D;C/. A class ı.pk/ 2 H 1.†; K�k/ is represented by c0 C c1z C
� � � C ckz

k�1 modulo zk and if all such classes annihilate a section bk of Kk then bk is
divisible by zk . Moreover, since the equation of S is

xn C a1x
n�1
C � � � D .x � �1z/.x � �2z/ � � � .x � �mz/C � � � ;

ai is divisible by zi if i � m. Finally, on the open set Ui , x D �izC higher order terms.
Putting these three facts together, Equation (6) shows that the isomorphism from ��Kn to
the canonical bundle given by the derivative of the section s at smooth points of S extends
to the normalization zS .

We can now follow the same procedure as in Sections 3.2 and 3.3 by choosing a
generic point p 2 S to identify the periods of the form iX!

c on M restricted to Md and the
canonical one-form on T �† pulled back under the normalization map pW zS ! S � T �†.

To complete the picture of the Special Kähler metric we observe that the Kähler
class on M was the first Chern class of the determinant line bundle. If we normalize the
degree of V to be n.g � 1/ then there is a determinant divisor – the subvariety on which
H 0.†; V / ¤ 0. But if V is the direct image of a line bundle L on zS then

H 0.†; V / D H 0. zS;L/

by definition, so this class on the Jacobian is the class of the theta-divisor. The Special
Kähler structure on Bd is therefore determined via the geometry of the normalization of
the spectral curve. In particular, since S and zS differ on a finite set of points, we obtain:

Proposition 2. A Kähler potential for the Special Kähler metric on Bd is given by

� D Im
1

4

Z
S

� ^ x�:

5. Features and examples

5.1. Translation invariance

Let ˛ be a holomorphic 1-form on † then it defines a diffeomorphism of T �† by transla-
tion in the fibre direction, mapping the spectral curve xn C a1xn�1 C � � � C an to

.x � ˛/n C a1.x � ˛/
n�1
C � � � C an:

The Kähler potential � is now

� D Im
1

4

Z
S

�
� ^ x� C ��˛ ^ x� C � ^ �� x̨ C ��˛ ^ �� x̨

�
:
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This is the addition of f C xf where f is holomorphic on B and so leaves the metric
unchanged. Thus H 0.†;K/ acts as an isometric group of translations. The quotient can
be identified with the Special Kähler manifold for the moduli space of PGL.n;C/ Higgs
bundles.

5.2. Rank 2 bundles

The lowest dimensional case for providing an example is when V has rank 2 with ƒ2V
trivial and trˆ D 0 – these are SL.2;C/-Higgs bundles and the fibre of the integrable
system is now the Prym variety inside the Jacobian of S . The spectral curve has a simple
formula x2 � q D 0 where q 2H 0.†;K2/. In this case, since x D˙

p
q, the formula for

the Kähler potential can be written as an integral over †

� D
1

2

Z
†

p
qxq:

Here qxq is a section of K2 xK2 so that
p
qxq is a positive section of K xK and therefore a

measure. This is discussed also in [11]. The singularity type to determine Bd is now just
a question of the multiple zeros of the quadratic differential q and ordinary singularities
are nodes.

Even simpler is the case where g D 2 and † is the hyperelliptic curve

y2 D f .z/ D .z � z1/ � � � .z � z6/

for then a quadratic differential can be written as

q D .c0 C c1z C c2z
2/
dz2

f .z/
;

where .c0; c1; c2/ 2 C3 Š B: The Kähler potential is then an integral over the complex
plane C:

� D
1

2

Z
C

jc0 C c1z C c2z
2j

jf .z/j
dzdxz:

For q to have one double zero requires c0 C c1z C c2z2 to vanish at a branch point
z D zi . There are six of these and so six components of B1. The quadratic differential is

q D .a0 C a1z/.z � zi /dz
2=f .z/;

where a0C a1zj ¤ 0 ensures that there are no more singularities. Each component is thus
the complement of six lines through the origin of C2.

Two double zeros implies

q D a.z � zi /.z � zj /dz
2=f .z/

for i ¤ j so B2 has 15 components each one a copy of C�. Here the Kähler potential is
� D cjaj, where c is the constant

c D
1

2

Z
C

j.z � zi /.z � zj /j

jf .z/j
dzdxz:



N. Hitchin 176

Setting a D w2 this gives � D cw xw which is a flat metric on C�. The Special Kähler
structure is non-trivial however since r.dw/ D 0 implies that the connection r in the
coordinate a is

r D
d

da
C

1

2a
and has a pole at a D 0 with nontrivial holonomy.

Remark. In general we observe that the complex structure on Breg extends to Bd � B

and Proposition 2 shows that the Kähler potential extends, continuously but not smoothly.
It is the flat connection component of the Special Kähler structure which acquires a sin-
gularity, but this is typically a logarithmic singularity which induces a connection on the
divisor. For the Gauss–Manin connection considered here the induced connection is pre-
sumably the flat connection for the Special Kähler structure on the divisor B1 where the
spectral curve acquires a node.

5.3. Fixed points of a Zn-action

The last example admits a generalization to further cases where the metric is flat. Consider
the action on M of tensoring V with a line bundleU such thatU n is trivial, where nD rkV
as usual. The fixed point set of this Zn-action is described in [5].

Firstly, having a fixed point means we have an isomorphism 'W V ! V ˝ U . This is
a Higgs bundle where the twist is by U instead of K but the general theory tells us that V
is the direct image of a line bundle L on the unramified cyclic n-fold cover pWC ! †

associated to ŒU � 2 H 1.†;Zn/. Let � denote a generator of the Zn-action on C .
Since p�U is trivial, p�' is an endomorphism of p�V . To be a fixed point the Higgs

field ˆ must commute with ' and so on C

p�ˆ D c0 C c1p
�' C � � � C cn�1p

�'n�1;

where ci are sections of p�K. Then

ˆ D c0 C c1' C � � � C cn�1'
n�1

for sections ck 2 H 0.†;KU�k/.
Since pWC ! † is unramified, p�K Š KC and then the ci are sections of KC which

transform as !�i under the action of � , and an arbitrary 1-form on C can be decomposed
this way. The data is then just a holomorphic 1-form and a line bundle on C . This gives
an integrable subsystem with a flat Special Kähler metric.

Since .p�'/n D 1 its eigenvalues are 1;!;!2; : : : where ! D e2�i=n and so the eigen-
values of p�ˆ are

c0 C c1 C � � � C cn�1; c0 C !c1 C � � � C !
n�1cn�1; etc:

Put another way,  D c0 C c1 C � � � C cn�1 is a 1-form on C and the eigenvalues are
; ��; .�2/�; : : : : Hence, the spectral curve S has equation

n�1Y
kD0

.x � .�k/�/ D 0: (8)
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On C we have n single-valued roots of the characteristic polynomial so there is a map
from C to the spectral curve S . Both cover † by taking eigenvalues of ˆ so the map is
generically one-to-one. Since C is nonsingular it is the normalization of S .

If  has a simple zero at c 2 C then the other eigenvalues are 1-forms with zeros at
�.c/; �2.c/; : : : : Then Equation (8) shows that S has an ordinary singularity of multiplic-
ity n over p.c/ 2 †. Since C is an unramified n-fold covering of †, we have

2g.C / � 2 D n.2g � 2/

and  has n.2g � 2/ zeros. Thus, the number of singularities of this type on S is .2g � 2/.
But the arithmetic genus of S is n2.g � 1/C 1 and

n2.g � 1/C 1 � .2g � 2/
n.n � 1/

2
D n.g � 1/C 1 D g.C /

so S has no more singularities.
It follows that the singularity type for this subintegrable system consists of n ordinary

n-fold singularities.
The simplest case is the group SL.2;C/ where U 2 H 1.†;Z2/ is a non-trivial line

bundle of order 2. Then H 0.†; KU / has dimension g � 1 and a section s defines the
quadratic differential q D s2. Then the formula (2) gives a Kähler potential

� D
1

2

Z
†

p
qxq D

1

2

Z
†

sxs:

This Hermitian expression in s gives the flat metric on H 0.†;KU /n¹0º=˙ 1.

5.4. Hyperkähler metrics

Any Special Kähler manifold gives a semiflat hyperkähler metric on a manifold modelled
on its cotangent bundle [7, 9]. In the case of the moduli space of Higgs bundles, the flat
connection on the base preserves an integral lattice and taking the quotient by this dis-
crete group yields a metric on a torus bundle which can be identified with the fibration by
abelian varieties. On the other hand M has a naturalL2-metric given by integration of har-
monic representatives of . PA; P̂ / which has been considered in more detail quite recently
as in [6, 11]. In particular, over Breg it is shown that the semiflat metric is a good approx-
imation to the actual metric. It seems likely, then, that the formula here for the potential
could provide an approximation on the lower dimensional loci Md .

In fact, in support of this suggestion, the fixed point set in Section 5.3 is a hyperkähler
submanifold of the genuine metric on M and (because one can take the direct image of a
flat connection in an unramified cover) the induced metric is also flat.
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