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Exploring the unknown: The work of Louis Nirenberg
on partial differential equations

Tristan Rivière

Abstract. Partial differential equations are central objects in the mathematical modeling of natural
and social sciences (sound propagation, heat diffusion, thermodynamics, electromagnetism, elas-
ticity, fluid dynamics, quantum mechanics, population growth, finance, etc.). They were for a long
time restricted only to the study of natural phenomena or questions pertaining to geometry, before
becoming over the course of time, and especially in the last century, a field in itself.

The second half of the 20th century was the “golden age” of the exploration of partial differential
equations from a theoretical perspective. Louis Nirenberg, starting in the early 1950s, played a major
role in the growth of this fundamental area of human knowledge and his name is associated with
many of the milestones in the study of PDEs.

Louis Nirenberg passed away in January 2020 and his memory as a mathematician and colleague
is a special invitation to review the development of the field of PDEs through the work of its leading
pioneers.

Dedicated to the memory of Louis Nirenberg

1. Introduction

Louis Nirenberg used to qualify the field of partial differential equations as being “messy”
(and also often acknowledged his special taste for what he called this “messiness”), which
is probably a reference to the “intrinsic diversity” of the field. We would like to illustrate
the pertinence of this quote by contradiction and by presenting the original attempts made
mostly in the 19th century to see PDEs as a whole and the limits and inadequacies by
which this approach has been confronted.

1.1. A general existence result: The Cauchy–Kowalevski theorem

Perhaps the first general systematic study of partial differential equations goes back to
the work of Augustin-Louis Cauchy and his existence theorem for quasilinear first order
PDEs with real analytic data.
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Theorem 1.1 (Cauchy (1842)). Let .Aj /jD1;:::;n�1 be a family of n� 1 real analytic maps
from a neighborhood of .0; 0/ in Rn �Rm into the space of realm�mmatrices and let f
be a real analytic map into Rm. Then there exists a unique real analytic solution u in a
neighborhood of the origin to the following system:8̂̂<̂

:̂
@xnu D

n�1X
jD1

Aj .x; u/ @xj uC f .x; u/;

u.x1; : : : ; xn�1; 0/ � 0:

In 1874, Sofia Kowalevski (or Kowalevskaya), apparently unaware of Cauchy’s work,
proved in her thesis a general non-linear version of the previous result. Let us present the
theorem called nowadays Cauchy–Kowalevski theorem in the particular case of second
order non-linear scalar equations

F.x; u; @u; @2u/ D 0; where @u WD .@xiu/iD1;:::;n and @2u WD .@2xixj u/i;jD1;:::;n:

Here, F.x;p;q; r/ is a real analytic function of all the entries p 2R, qD .qi /iD1;:::;n 2Rn

and r D .rij /i;jD1;:::;n 2 Rn
2
. To that purpose, we introduce the notion of characteristic

direction. A direction X D .�i /iD1;:::;n 2 Rn is called characteristic at .x; p; q; r/ if

nX
i;j

@F

@rij
.x; p; q; r/ �i �j D 0:

Given a function u defined in a neighborhood of a point x0, a hypersurface f .x/ D 0 is
called non-characteristic at x0 if � WD rf .x0/ is not a characteristic direction at
.x0; u.x0/; @u.x0/; @

2u.x0//. The Cauchy–Kowalevski theorem requires that initial data,
the so called Cauchy data, be given on a non-characteristic hyper-surface. Observe that if
the PDE has the form

F.x; u; @u; @2u/ D @2xnxnu � f .x; u; @u; @
2u/;

where f does not depend on rnn, the surface xn D 0 is automatically non characteristic.
We can now state the Cauchy–Kowalevski theorem in that particular case.

Theorem 1.2 (Cauchy–Kowalevski (1874)). Let f .x; p; q; r/ be a real analytic func-
tion of its variables, and assume that f is independent of rnn. Let u0.x1; : : : ; xn�1/ and
u1.x1; : : : ; xn�1/ be two real analytic functions defined in the neighborhood of the ori-
gin 0. Then there is a unique real analytic solution defined in a neighborhood of the origin
for the problem ´

@2xnxnu D f .x; u; @u; @
2u/;

u D u0 and @xnu D u1 on xn D 0:
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1.2. Some inadequacies of the Cauchy–Kowalevski theory

The Cauchy–Kowalevski theorem requires an analytic framework. Its historical proof
consists of an argument based on the convergence of power series. Only the analyticity
assumptions with respect to xn could be relaxed. The question of whether there could
be more solutions for the same analytic data (in the C1 class, for instance) has stim-
ulated much research and, although there are uniqueness theorems for some classes of
linear PDEs, there are also counter-examples to uniqueness; see [55]. The general ques-
tion remains to be settled.

If one seeks global solutions, which are expected to exist in physical problems, there
is an “intrinsic” need to relax the analytic framework, since singularities can appear in
“finite time” (the time variable here being xn) even though all data are analytic. Consider,
for instance, the Cauchy solution to8<: @x2u D u @x1u;u.x1; 0/ D �

x1

1C x21
:

The gradient on each level set of uD u0 D�x0=.1C x20/ for any u0 2 .�1;1/ is constant,
hence each level set is made of straight segments leaving the point .x0; 0/ in the direction
given by the vector .1;u0/. These segments have to meet at points where u thus necessarily
ceases to be continuous.

In her thesis, Sofia Kowalevski illustrated the need for the assumption that the ini-
tial surface be non-characteristic by the following example. Consider locally an analytic
solution of 8<: @x2u D @

2
x1x1

u;

u.x1; 0/ D
1

1 � x1
:

An elementary computation gives the explicit value of the coefficients of the Taylor series
expansion for the solution, which happens not to converge at the origin. Hence, near the
origin, there is no analytic solution to that equation with the given initial data. The reason
why Cauchy’s theorem does not apply in this case, is that x2 D 0 is characteristic for the
equation. However this equation is nothing but the heat equation modeling in particular
the diffusion of heat in an homogeneous material starting from the data u.x1; 0/. A non-
existence result certainly seems counter-intuitive! It suggests that one should leave the
analytic framework imposed by Cauchy and Kowalevski.

The conclusion at this stage is that the analysis of PDEs cannot be captured in a single
theory having simply to do with the convergence of power series.
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2. Local solvability

2.1. The notion of local solvability and Lewy’s counterexample

The first attempt to go beyond the Cauchy–Kowalevski theory would be to give up unique-
ness requirements and look at “germs” of PDEs at a point. We are thus led to considering
the linear framework and ask whether one can enlarge the class of possible solutions from
the analytic class to theC1 class, or even to the space of distributions1 D 0. Is a linear PDE
always locally solvable? Precisely, consider a˛.x/ to be a family of C1 complex coef-
ficients defined in a neighborhood of the origin in Rn and indexed by ˛ D .˛1; : : : ; ˛n/,
where j̨ 2 N and j˛j WD

P
j̨ � p for some p 2 N�. Given any f 2 C10 .R

n;C/, does
there exist locally near the origin a complex-valued solution (if need be, even in the very
weak sense of distributions) to

Lu D
X

˛D.˛1���˛n/

a˛.x/
@j˛ju

@˛1x1 � � � @˛nxn
D f ‹

If for a given L and any f , the answer to the question is “yes”, the PDE is called locally
solvable at 0. Around 1955, Leon Ehrenpreis and Bernard Malgrange proved indepen-
dently the local solvability of any linear PDE with constant coefficients a˛.x/ � a˛;
see [25–28, 54]. Using Laurent Schwartz’s theory of tempered distributions such a PDE
can be converted into a convolution equation, and the problem is reduced to a division
problem in function algebra. Encouraged by this result, the conjecture asserting that any
linear operator L should be locally solvable became notorious in the PDE community.
That was until Hans Lewy came up in 1957 with a spectacular counter-example, namely:
there exists a non-analytic function f 2 C1 such that the PDE

@u

@x1
C i

@u

@x2
� 2 i .x1 C i x2/

@u

@x3
D f

has no C 1 solution in any neighborhood of the origin in R3; see [50]. This counter-
example triggered an intense research activity which involved many prominent analysts of
that time (such as Lars Hörmander, Louis Nirenberg, François Trèves, Yuri Vladimirovich
Egorov, and so on).They were investigating which necessary and sufficient conditions
would ensure local solvability.

2.2. The Nirenberg–Trèves local solvability condition

In three fundamental papers, Louis Nirenberg and François Trèves (see [63–65]) in 1963
proposed a condition on the principal symbol of the PDE

pm.x; �/ WD
X
j˛jDp

a˛.x/

nY
jD1

�
j̨

j

that should be necessary and sufficient for local solvability, the so called (P) condition.

1We return to this notion of weak solutions introduced by Laurent Schwartz later in this presentation.
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The bi-characteristics of a real function A.x; �/ are the curves .x.t/; �.t// that solve the
Hamilton–Jacobi equation

dx

dt
D r�A.x; �/ and

d�

dt
D �rxA.x; �/:

On such a curve, A.x.t/; �.t// is constant, and the curves for which this constant is zero
are called the null bi-characteristics of A. The Nirenberg–Trèves (P) condition reads as
follows:

On every null bi-characteristic of <pm the function =pm does not change sign; (P)

where < pm and = pm denote respectively the real and imaginary parts of the principal
symbol pm.x; �/. The necessity and sufficiency of the Nirenberg–Trèves .P / condition for
the local solvability was established for a growing number of cases in successive works
by Nirenberg and Trèves themselves, then by Beals and Fefferman [5], Hörmander [40],
until a very recent result of Nils Dencker in 2006 (see [21]), which establishes the suffi-
ciency of the generalized Nirenberg–Trèves .P / condition for general pseudo-differential
operators2, the so called Nirenberg–Trèves . / condition.

3. Cauchy problems and global solvability for linear PDEs

3.1. The notion of a Cauchy problem

Understanding the local solvability of a PDE is certainly one important question, but one
might argue that its relevance should not come into play in physical applications where
solutions are expected to be globally defined on a given subdomains of spacetime.

The question of global solvability is traditionally coupled with that of uniqueness, and
together they form what is called a Cauchy problem. A Cauchy problem, or well-posed
problem, consists of a linear PDE L, of a function space E in which the data (the input)
makes sense, of a function space F to which the expected solution (the output – also called
the “unknown”) should belong, with the requirements that:

(i) there exists exactly one solution in F of the PDE L for any given data in the
function space E;

(ii) the dependence of the solution on the data is continuous from E into F .

2This generalized notion of differential operators was introduced by Louis Nirenberg in collaboration
with Joseph J. Kohn in [46], and by Lars Hörmander in [39] a few years after the introduction by Calderón
and Zygmund of the theory of singular integral operators. This revival of the Calderón Zygmund theory
has probably been strongly stimulated by the proof of the index theorem by Michael Atiyah and Isadore
Singer in 1962.The author of this presentation would like to apologize at this stage to the mathematicians
from an important branch of the PDE community for certainly not giving enough credit to the pioneered
work of Kohn and Nirenberg which is a milestone in the modern theory of micro-local analysis. As Louis
Nirenberg used to say, mathematics is very much about taste and individual enthusiasm . . .
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Finding appropriate Cauchy problems for linear PDEs has generated a tremendous amount
of mathematical activities in the last century. It also gives the “asymptotes”, or “constraints
at the horizon”, in order to solve many non-linear problems, as we shall see.

One can illustrate the notion of Cauchy problem by looking at examples of ill-posed
problems. One of them deals with finding a holomorphic extension in the 2 dimensional
disc, that we will denote D2, of a prescribed C 1 boundary data. In other words, given
� 2 E WD C 1.@D2;C/, one seeks u 2 F WD C 1. xD2;C/ satisfying8<:Lu WD x@u D

1

2

�
@u

@x1
C i

@u

@x2

�
D 0 in D2;

u D � on @D2:

This is an ill-posed problem, because not every � 2 C 1.@D2;C/ admits a C 1 holomor-
phic extension in D2 (take for instance �.�/ D e�i� ). The ill-posedness can however
be thwarted by replacing E WD C 1.@D2;C/ with the subspace of C 1 functions that are
L2-orthogonal to e�ik� for any k 2 N�.

3.2. The fragmentation of the analysis of PDEs

The search for Cauchy problems has imposed a fragmentation of the field of PDEs into
multiple areas of analysis which have often grown independently of each other. This is
due to the very different behaviors of various differential operators. The analysis of PDEs
cannot be encapsulated into a single theory, and it is intrinsically split. It is in fact a
field that might seem disorderly from the outside. But this “messiness”, which sometimes
discourages young vocations, is in the very nature of PDEs and it is the source of an
infinite diversity of phenomena, arguments, and results. One may nevertheless attempt to
put some order in this diversity, by singling out three main families of operators that we
briefly present in the framework of linear second order scalar equations with constant
coefficients:

Lu WD

nX
i;jD1

aij
@2u

@xi @ xj
C

nX
iD1

bi
@u

@xi
C c u

with the symmetric principal symbol: aij D aj i .

(i) The elliptic operators are those for which L has no characteristic direction:

8� ¤ 0

nX
i;jD1

aij �i �j > 0:

The archetype of the elliptic operator is the Laplacian operator

Lu WD �u D

nX
iD1

@2u

@xi@xi
:

The Laplace equation �u D 0, also called the potential equation, arises in the physics of
gravitational and electromagnetic fields. The field is generated by the potential u satisfying
�u D f , where f denotes either the mass or the charge density.
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(ii) The parabolic operators are those for which one direction is singled out and does
not appear in the second derivatives. They have the form

Lu WD
@u

@t
�

n�1X
i;jD1

aij
@2u

@xi @ xj
�

n�1X
iD1

bi
@u

@xi
� c u;

where the .aij / operator for the remaining variables is (negative) elliptic:

8� ¤ 0

n�1X
i;jD1

aij �i �j > 0:

The model case of a parabolic operator is the heat operator

Lu WD
@u

@t
��u D

@u

@t
�

n�1X
iD1

@2u

@xi@xi
:

The heat equation @tu��uD 0 is a fundamental tool in the modeling of diffusion (heat,
combustion, chemical reactions, and so on).

(iii) The hyperbolic operators are those for which the matrix .aij / has signature
.C;�; : : : ;�/. The prototype is the wave operator

Lu WD
@2u

@t2
��u D

@2u

@t2
�

n�1X
iD1

@2u

@xi@xi
:

The wave equation @2
t2
u ��u D 0 is a fundamental equation arising in the modeling of

propagation of waves in gases and fluids.

This (overly) simplified classification leaves out many equations, including ones that
are relevant to physical phenomena, such as the Schrödinger equation, Korteweg–deVries
water-wave equation, Navier–Stokes, and so on. Nonetheless, understanding how the three
basic families differ from one another constitutes a first step in the study of “hybrid” and
of more complicated PDEs. Parabolic equations can be understood as elliptic equations
with time propagation, and thus these two families enjoy many similar properties, such
as smoothing effect and infinite speed propagation. Hyperbolic equations on the other
hand are very different, and they involve, for examples, finite speed propagation and the
“transport” of singularities. The work of Louis Nirenberg has a barycenter whose location
lies closer to the first two families, and this is why we shall mostly restrict this discussion
to elliptic and parabolic PDEs.

3.3. The birth of Cauchy problems: The Dirichlet principle

Peter Gustav Lejeune Dirichlet was a German mathematician of the first half of the 19th
century. His interest for physics led him to formulate a mathematical problem related
to potential theory, a field which finds its roots in Newtonian mechanics. This problem,
named after him by Riemann, is formulated as follows:
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A bounded domain empty of charge being given as well as the value of the potential
at its boundary, show mathematically that it produces a unique electromagnetic
field in the interior of the domain.

In his lecture3 on potential theory in Göttingen in 1857, Dirichlet gave a more precise
mathematical formulation of the problem. Namely, show that for any bounded connected
(smooth) domain � in R3 and for any continuous differentiable function � on @�, there
exists a unique continuously differentiable function u equal to � on @� and minimizing
the following integral, now called Dirichlet energy:

E.u/ WD

Z
�

jruj2 dx3:

Such a function satisfies the Laplace equation´
�u D 0 in �;

u D � on @�:
(3.1)

The claims made by Dirichlet in his lecture were not completely settled, but they were
however used in the following years by Bernhard Riemann in two-dimensional com-
plex analysis. This situation created some trouble in the mathematical community and
the Dirichlet principle came under attack, in particular in the work of Karl Weierstrass,
who produced examples of coercive Lagrangians (akin to the Dirichlet energy), which
do not possess minimizers for some boundary data. The revival of the Dirichlet principle
came in the early 20th century in the work of David Hilbert who solved it rigorously in
some special cases and devoted the 20th of his famous list of 23 problems to this principle.
It is hard to find papers of the beginning of the 20th century on PDE without any mention
of the Dirichlet principle. A detailed description of the steps towards the full resolution
of Dirichlet’s assertions, although very instructive, would take us on a too long detour.
The resolution of Dirichlet’s problem gave rise to numerous ad hoc tools from functional
analysis for solving PDEs, such as the notion of Sobolev spaces, distributions, weak solu-
tions, and so on. Let us also mention the names of Henri Léon Lebesgue, Leonida Tonelli,
Beppo Levi, Sergei Sobolev, Laurent Schwartz.

The modern way to solve the Dirichlet problem goes as follows. One introduces the
so called Sobolev Space of Lebesgue measurable functions u on the bounded domain �
whose Schwartz distributional derivatives lie in the Hilbert space of square integrable
functions:

W 1;2.�;R/ D ¹u 2 L2 I @xiu 2 L
2 for i D 1; : : : ; 3º;

where the distributional derivatives of u are defined by duality with compactly supported
smooth functions

8� 2 C10 .�;R/ h@xiu; �i WD �

Z
�

u
@�

@xi
dx3:

3published after his death by F. Grube in 1876; see [22, 23].
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This space is equipped with the scalar product for which it is complete, namely,

.u; v/ WD

Z
�

3X
iD1

@xiu @xi v C u v dx
3:

The Hilbert Sobolev spaceW 1;2 has favorable analytical properties, such as weak sequen-
tial pre-compactness (from any sequence with uniformly bounded norm one can extract
a subsequence converging weakly – in duality with smooth functions – to a function
in W 1;2). Furthermore, the Dirichlet energy E.u/ is weakly sequentially lower semi-
continuous and for any weakly converging sequence uk with limit u1, there holds

lim inf
k!C1

E.uk/ � E.u1/:

One proves that smooth functions are dense in this Hilbert space. Moreover, the map
which to a smooth function in x� assigns its restriction to the boundary @� is continuous
from W 1;2.�;R/ into the space of square integrable functions on the boundary @�, and
therefore extends continuously to a well defined map from W 1;2.�;R/ into L2.@�/.
These facts combined together give the existence of a minimizer of the Dirichlet energy
for any weak boundary data (L2 function �) which admits a W 1;2 extension inside �.
This subspace of L2.@�/ is denoted by H 1=2.@�/. The use of distribution theory makes
it possible to assert that any such minimizer u satisfies the Laplace equation in a weak
sense:

8� 2 C10 .�;R/ h�u; �i WD

Z
�

u�� dx3 D 0:

A fundamental lemma of Laurent Schwartz states that such a function u has to be analytic
in the interior of the domain � and is the unique solution to (3.1). This full resolution of
the Cauchy problem for the Dirichlet question (i.e. the Dirichlet Problem) can be extended
without much difficulty in the case where “inside charges” are present, and one shows that
for any smooth function f in � and any smooth function � in @�, there is a unique
solution – smooth inside � – to the inhomogeneous problem´

��u D f in �;

u D � on @�:
(3.2)

3.4. The Agmon–Douglis–Nirenberg elliptic Cauchy problems in the Banach
Lp spaces

Numerous problems from classical mechanics, quantum mechanics, chemistry, biology,
and geometry can be described by means of elliptic non-linear PDEs of the form

��u D f .x; u;ru/; (3.3)

where the highest-order term is given by the Laplace operator or more generally by an
elliptic operator which has no null characteristic. Considering this PDE on a bounded
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smooth domain� with zero boundary condition, it is tempting to view it as a perturbation
of (3.4) and use the inverse of the Dirichlet problem, which was given in the previous
section for � D 0 and which we denote by .��/�10 . Then (3.3) becomes

u D .��/�10 f .x; u;ru/:

The idea behind this reformulation is ultimately to use a fixed point argument for solving
the PDE. This is done in the same vein as for proving Cauchy–Lipschitz–Picard existence
theorem for ODEs of the form Py D f .t; y.t//. One writes the solution as an integral

y.t/ D y.t0/C

Z t

t0

f .s; y.s// ds;

before applying a fixed point argument. The difficulty is to find the right space in which
to work. In the ODE case, for smooth f , the integral operator is very explicit and one
shows that the space of Lipschitz functions gives an ad hoc framework for the fixed point
argument to work. In the case of PDEs, one must first have a thorough understanding of
the operator .��/�10 and how it acts on elements of various Banach spaces.

In two fundamental papers published in 1959 and in 1964, Schmuel Agmon, Avron
Douglis, and Louis Nirenberg solved the elliptic Cauchy problems and the invertibility of
elliptic operators of arbitrary orders in domains; see [2, 3]. They worked in the context
of Banach Lp spaces. They obtained a series of optimal results that opened the way in
exploring not only linear but also non-linear PDEs, which were beforehand completely
out of reach. We give below the simplest example of a boundary problem solved by the
Agmon–Douglis–Nirenberg theory of Cauchy problems in Banach spaces bearing in mind
that the theory applies to a very wide family of problems.

Theorem 3.1 (Agmon–Douglis–Nirenberg (1959)). Let � be a smooth bounded domain
of Rn and p 2 .1;C1/. For any f 2 Lp.�/, there exists a unique solution u to´

��u D f in �;

u D 0 on @�;
(3.4)

such that the distributional second and first derivatives of u lie in Lp.�/, and moreoverZ
�

X
j˛j�2

j@˛ujp � C.�; p/

Z
�

jf jp;

where C.�; p/ is a positive constant independent of f 2 Lp.�/. �

With such an estimate at hand, it becomes possible to use the operator .��/�10 and
a fixed point argument in the Banach spaces Lp so as to obtain a solution to non-linear
PDEs. A major piece of the puzzle was brought in by Alberto Calderón and Antoni Zyg-
mund in 1952. The “singular integral theory” asserts in particular4 that, for Schwartz

4It is striking that the trace of the Hessian matrix encodes the whole Hessian matrix, in the Lp space
perspective.
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functions5 u, the mapping
�u! .@2xixj u/i;jD1;:::;n

is continuous for the Lp.Rn/ norm into Lp.Rn/ for any p 2 .1;C1/; see [17, 18]. The
Agmon–Douglis–Nirenberg Lp theory is parallel to a previous theory developed by the
Polish mathematician Juliusz Schauder around 1930, which involves the more regular
Hölder spaces6 instead of Lp or Sobolev spaces.

4. Inequalities and a priori estimates

4.1. Gagliardo–Nirenberg interpolation inequalities

The field of PDEs is structured by inequalities. They are the “power horses” of the field.
In the mid 1950s, functional analysis was already rich in inequalities: Hölder, Minkowski,
Poincaré, Poincaré–Wirtinger, Young, Hausdorff–Young, Hardy, Hardy–Littlewood, etc.,
and the more recent Sobolev inequalities. Deep scaling considerations (a common trait in
Louis Nirenberg’s work) led Louis Nirenberg around 1959 (see [61, 62]), and indepen-
dently Emilio Gagliardo (see [34]), to discover a large family of inequalities for Sobolev
norms “lying” between two others. As an illustration, we have that for any p 2 Œ1;C1�,
any r 2 Œ1;C1�, and any n 2N�, there exists a constant C > 0 such that for all Schwartz
functions u 2 �.Rn/, there holds�Z

Rn

X
j˛jD1

j@˛ujq dxn
�1=q
� C

�Z
Rn

jujp dxn
�1=2p�Z

Rn

X
j˛j�2

j@˛ujr dxn
�1=2r

; (4.1)

where q�1 D 2�1 .p�1 C r�1/ and dxn denotes the Lebesgue measure on Rn. In the
family of Gagliardo–Nirenberg interpolation inequalities, one also finds the following
one that we shall use later on. For any 1 � p � q < C1 and any n 2 N�, there exists
C > 0 such that for all Schwartz functions u 2 �.Rn/ there holds�Z

Rn

jujq dxn
�1=q
� C

�Z
Rn

jujp dxn
�t=p�Z

Rn

X
j˛j�1

j@˛ujn dxn
�.1�t/=n

; (4.2)

5The space of Schwartz function in Rn is the space of C1 functions whose derivatives of arbitrary
order decrease faster than any polynomial at infinity. It is preserved by the Fourier transform.

6These spaces were discovered by Otto Ludwig Hölder in his dissertation in 1882. He had been asked
to characterize the optimal regularity of the charge distribution f that would ensure that the potential u
solving (3.4) have continuous second derivatives. The continuity of f is not enough and he discovered that
the existence of ˛ > 0 such that

sup
x¤y

jf .x/ � f .y/j

jx � yj˛
< C1 (3.5)

is a sufficient condition for u to be C 2. This norm is denoted kf kC 0;˛ .
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where t D p q�1. The discovery of these estimates, together with the pioneering works
of Marcel Riesz, Olaf Thorin, and Józef Marcinkiewicz, lies at the origin of an important
subfield of functional analysis developed by Jacques-Louis Lions, Jaak Peetre (see [53])
and Alberto Calderón ([16]), and called interpolation theory.

4.2. The use of Gagliardo–Nirenberg inequalities for proving a priori estimates

The notion of a priori estimates is central in PDEs. Roughly speaking, it consists in finding
an estimate of the form

kukE < C1;

for some suitable Banach space E, all the while assuming we have a solution u of some
PDE, but prior to having actually proved the existence of such a solution. In concrete situ-
ations, looking at a given non-linear PDE problem, one establishes such an a priori bound
in order to perform one of the numerous available analytical methods in order to finally
prove the existence of a solution satisfying that bound: fixed point argument in a perturba-
tive approach, continuity method7, topological techniques (e.g. Leray–Schauder theory),
functional analysis approaches (e.g. monotone operator theory, Hille Yosida), successive
approximation (e.g. Galerkin method, convex integration), penalization approaches (e.g.
elliptization or viscosity method), variational approaches (e.g. minimization, min-max
methods, Morse theory).

Gagliardo–Nirenberg inequalities are mostly used to control non-linear terms in PDEs,
and to establish a priori estimates. There are countless applications for these inequalities.
In order to illustrate their might in dealing with non-linearities, the author of these notes
is cherry-picking a subject dear to his heart: the Dirichlet problem for maps taking values
into submanifolds, also called harmonic map or vectorial Dirichlet problem. This problem
has many applications in geometry (in minimal surface theory and in complex geometry
– it is used to describe the Teichmüller space of 2-dimensional surfaces) as well as in
physics (for instance the Dirichlet problem for maps taking values into the sphere is the
main mathematical object of the Ericksen–Leslie model of liquid crystals).

We consider exactly the same problem as the one posed by Dirichlet, that is to find
critical points of the Dirichlet energy E on a smooth bounded domain � for some bound-
ary condition, but this time under the additional constraint that the “unknown” u takes
values in a given closed sub-manifold N n � Rm of the Euclidean space. Having fixed
� 2C 1.@�;N n/, we look for a critical point u ofE with the constraint that u2N n every-
where. This constraint generates a new equation generalizing the Laplace equation (3.1)

7This method, probably first used by Serge Bernstein in 1905, consists in “deforming” continuously a
given PDE problem to one which is directly solvable, in such a way as to preserve the a priori estimates.
The continuity method applied to elliptic non-linear problems is roughly done as follows. Once the a priori
estimate is established, one linearizes the problem with respect to the deformation parameter, then calls
upon the linear Agmon–Douglis–Nirenberg Lp theory or the Schauder C 0;˛ theory, and finally uses the
local inversion theorem to ensure the “continuation” of the existence of the solution as the deformation
parameter evolves.
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and one shows that the problem is equivalent to´
�u 2 Tu.x/N

n in �;

u D � on @�;
(4.3)

where Tu.x/N n denotes the tangent space to N n in Rm at the point u.x/. The equation
�u 2 Tu.x/N

n is a natural generalization of the Laplace equation previously obtained for
the unconstrained Dirichlet problem. Indeed, it says that the tangential component of �u
to the constraint is zero, which simply implies that �u � 0 when there is no constraint.
The problem (4.3) can be recast as an elliptic non-linear equation of the form´

��u D f .u;ru/ in �;

u D � on @�:
(4.4)

This PDE is said to be semi-linear, because the term involving the highest order derivatives
is linear. In contrast with the original Dirichlet problem (3.1), one can show that (4.4)
sometimes has more than one solution (and sometimes has infinitely many of them! or
even no solutions at all for the general form (4.4)).

To what extent is this non-linear Dirichlet problem degenerate, and what sufficient
conditions would ensure that (4.4) is a well posed Cauchy problem? Taking two solutions
u and v, the difference u � v satisfies

u � v D .��/�10 .f .u;ru/ � f .v;rv//: (4.5)

In order to proceed to a “contraction mapping argument” we need to find a function
space E in which the difference of the non-linearities .��/�10 .f .u;ru/ � f .v;rv// is
controlled by the norm of the difference u � v in the same space, weighted by a constant
k < 1:

k.��/�10 .f .u;ru/ � f .v;rv// kE � kku � vkE : (4.6)

Such an inequality, also called an a priori estimate – since we have not yet settled the
question of existence for either u or v – offers the possibility to absorb the non-linear
right-hand side of (4.5) into the linear left-hand side u� v, and in turn deduce that uD v.

The Gagliardo–Nirenberg interpolation inequalities are essential to prove such a pri-
ori estimates as (4.6). Our example, picked among countless others, was chosen to illus-
trate the possibility to solve Cauchy problems for non-linear PDEs. It is however repre-
sentative of the power of the Gagliardo–Nirenberg inequalities.

Among the various inequalities pertaining to vectorial Dirichlet problems, there is
a particularly elegant one8, which, in combination with the Agmon–Douglis–Nirenberg
Lp theory, enables us to show the well-posedness of the vectorial Dirichlet problem for
two dimensional domains under small energy assumptions. Namely, there exists a constant

8This inequality, which is a particular case of (4.2), also appears in the work of Olga Ladyzenskaya.
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C.�/>0 such that for any smooth functionw supported in the two dimensional domain�
the following inequality holds:Z

�

jwj4 dx2 � C.�/

Z
�

jwj2 dx2
Z
�

jrwj2 dx2: (4.7)

This inequality was centrally used by Michael Struwe in the framework of the vectorial
Dirichlet problem to obtain a priori estimates that imply the existence and uniqueness for
the corresponding flow, also called harmonic map flow, in two dimensions; see [70].

5. The John–Nirenberg BMO space: When elasticity meets harmonic
analysis

The analysis of PDEs has evolved and keeps evolving in close “partnership” with the
development of functional analysis and function space theory. Many linear and non-linear
problems in PDE have stimulated the introduction of new function spaces – we have
already outlined above the importance of the Sobolev spaces for solving the Dirichlet
problem. The converse is also true: knowledge and properties of certain function spaces
can trigger a new understanding of PDE problems.

In 1961, the mathematician – and colleague of Louis Nirenberg at the Courant Insti-
tute in New York – Fritz John, was studying a rigidity problem from elasticity [41]. The
strain exerted on a perfect elastic solid can be measured by the distance of the gradient
of the resulting deformation with respect to the orthogonal group. In relation with this
fundamental notion in elasticity, he asked the following question:

Is it true that if the gradient of a transformation f from Euclidean space Rn into
itself is “close to” the group of rotations at every point, then it is globally close to
one single rotation?

By “close to”, it was originally meant in the L1 norm. This rigidity question finds
its origin in a work of the mathematician Arthur Korn from 1914 [47]. Extending Korn’s
results and now celebrated inequalities, Kurt Friedrichs9 proved in an important work
in 1947 (see [33]) that the gradient of a deformation is everywhere antisymmetric if and
only if it is constant, provided that suitable boundary conditions, which exclude rigid
motions, are imposed. This result is an infinitesimal version of the question asked by
John.

F. John first gave a relatively straightforward counter-example to the L1 version of
the question, but he also proved that on every ball Br .x/ � Rn of arbitrary center x and

9The name Kurt Otto Friedrichs is strongly associated with the Courant Institute for having contributed
to its development since its very beginning in the mid 1930s.
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radius r > 0, there exists a rotation Rx;r such that

1

jBr .x/j

Z
Br .x/

jrf �Rx;r j dx
n
� C k dist.rf; SO.n//k1;

where jBr .x/j is the volume of the ball Br .x/. Thus, John was proving that although the
gradient of such a deformation could not be close to one single rotation globally, it is in
average in the L1-norm at any scale close to a rotation Rx;r that possibly depends on the
ball.

In a subsequent collaboration [42], which has since become a milestone in analysis,
Fritz John and Louis Nirenberg systematically studied the sub-space of locally integrable
functions, called the space of functions of Bounded Mean Oscillation (BMO), whose ele-
ments satisfy

sup
x2Rn;r>0

1

jBr .x/j

Z
Br .x/

ju � xux;r j dx
n < C1;

where xux;r is the average of u on the ball Br .x/. They proved that this space is strictly
larger than L1, the space of globally bounded functions (e.g. log jxj 2 BMO n L1), but
that it is smaller than Lploc for any p < C1. Precisely following an ingenious decompo-
sition of Rn of Calderón–Zygmund type they proved the existence of ˛n > 0 such that for
any ball B � Rn Z

B

exp
�
˛n
ju � uj

kukBMO

�
dxn � CnjBj;

where xu is the average of u on B . The existence of such a bound for any ball is proved to
uniquely characterize the BMO space.

The BMO space, which naturally arose in the context of elasticity in 1960, was appar-
ently unknown to functional analysts. It was therefore a big surprise to discover, after the
remarkable work of Elias Stein and Charles Fefferman in 1972 ([32]), that BMO was the
Banach dual of a famous space introduced in complex function theory some 40 years ear-
lier by Friedrich Riesz [67] and named “Hardy space” after a famous work by Godfrey
Hardy from 1915 [36]. Historically, the Hardy space H1 was defined in the context of
holomorphic functions on the disc D2: it is made of the traces on the circle S1 of holo-
morphic functions f such that

lim
r!1�

Z 2�

0

jf .rei � /j d� < C1:

Note that this integral is an increasing function of the parameter r for any holomorphic
function f . The Hardy space was later extended to a much broader context of real function
space theory. The dual spaces H1 and BMO play a fundamental role in PDEs. Empirically,
one could say that they are the “natural replacements” for L1 and L1. These two spaces
are not compatible with Calderón–Zygmund theory, and in fact the Agmon–Douglis–
Nirenberg results do not hold either for L1 nor for L1. In contrast, H1 and BMO are
well behaved in these theories.
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It is unfortunately beyond the scope of this presentation to expose in its full glory
the usefulness of the duality H1 � BMO in the analysis of PDEs. It plays a central
role for instance in a theory called integrability by compensation, where some non-linear
quantities appear in the form of products with such algebraic structures that improved
integrability might be deduced. This has frequently been used in fluid mechanics as well
as in geometry.

We content ourselves with mentioning one application. Using some straightforward
integration by parts, one proves the following Gagliardo–Nirenberg interpolation inequal-
ity: for any n 2 N� there exists Cn > 0 such that for all Schwartz functions u in �.Rn/
one has Z

Rn

X
j˛jD1

j@˛uj4 dxn � Cn kuk
2
1

Z
Rn

X
j˛jD2

j@˛uj2 dxn:

Using more sophisticated arguments (Littlewood-Paley decomposition of tempered dis-
tributions) the author of these notes in collaboration with Yves Meyer prove a “slight”
improvement of this inequality (see [56]) by replacing the L1 norm of u with its BMO-
norm, namely: Z

Rn

X
j˛jD1

j@˛uj4 dxn � Cnkuk
2
BMO

Z
Rn

X
j˛jD2

j@˛uj2 dxn:

This improved inequality entering in a larger class of inequalities by David Adams and
Michael Fraizer (see [1]) has been crucially used in [56] for proving a partial regularity
result for stationary Yang–Mills fields, which was obtained independently by Terence Tao
and Gang Tian; see [71].

6. The maximum principle

6.1. Nirenberg’s strong maximum principle for parabolic equations

It would be impossible to speak about the work of Louis Nirenberg without mentioning
the maximum principle. The contrast between the immense range of applications of this
principle and the simplicity of the heuristic idea behind it is amazing.

In one dimension, the maximum principle states that a continuously twice differen-
tiable function on the segment Œ0; 1� satisfying

u00 � 0 (resp., u00 � 0) on Œ0; 1�

achieves its maximal (respectively, minimal) value on the boundary of the segment, i.e. on
¹0º [ ¹1º.

In higher dimension, the maximum principle was known to Gauss since 1839 for solu-
tions of the Laplace equation, owing to the mean value theorem for harmonic functions:
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A solution to the Laplace equation on a bounded smooth domain achieves its
extremal values on the boundary of the domain.

This formulation requires u to solve a PDE, and it is only at the beginning of the 20th
century that, after successive contributions by Charles Émile Picard (1905) [66], Serge
Bernstein (1910) [8] and Leon Lichtenstein (1924) [52], the idea of a general principle for
elliptic partial differential inequalities emerged.

In a seminal five-page long paper published in 1927 [37], Eberhard Hopf opened the
way to a wide range of applications of this principle by proving a general strong version
of the maximum principle for C 2 solutions to the following linear elliptic second order
inequalities on a smooth bounded domain � � Rn:

Lu WD

nX
i;jD1

aij .x/
@2u

@xi @xj
C

nX
iD1

bi .x/
@u

@xi
C c.x/u � 0; (6.1)

where aij .x/ is a map into uniformly positive definite symmetric matrices, and the coef-
ficient aij as well as bi and c are bounded in L1.�/, with moreover c.x/ � 0 in �.
A C 2 function u satisfying (6.1) is called a sub-solution of L (and a super-solution of L
if Lu � 0).

As in the 1-dimensional case, one formulates the weak version of the maximum prin-
ciple as follows:

Lu � 0 in � ) max
x2x�

u.x/ � max
x2@�

u.x/;

whereas the strong version of the maximum principle discovered by Eberhard Hopf asserts
that

Lu � 0 in � and 9 x0 2 � s.t. max
x2x�

u.x/ D u.x0/ ) u.x/ � u.x0/ in �:

In the early 1950s, a weak version of this principle was known to hold for parabolic
operators of the type @tu�Lu. In 1953, Louis Nirenberg proved the corresponding strong
version; see [59].

6.2. The notion of “barriers”, the “moving planes” method, and the
Gidas–Ni–Nirenberg symmetry principle

The heuristic idea behind the strong maximum principle, at least in the simpler ellip-
tic framework, has an interesting geometric representation. We say that a linear elliptic
operator L satisfies the strong maximum principle if the following holds. Let any pair
of hyper-surfaces realized by two graphs of respectively a sub-solution u and super-
solution v over a bounded domain, with one of them sitting above the other (i.e. u � v) be
given. The strong maximum principle says that if they touch at some interior point, then
the two hyper-surfaces are necessarily identical.

A sub-solution satisfying Lu � 0 is then said to be a “barrier” with respect to a super
solution satisfying Lv � 0, and vice versa. This geometric interpretation is an incentive
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to manufacture barriers with respect to solutions, sub-solutions, and to super-solutions in
order to prove pointwise inequalities via the maximum principle. This fruitful technique
has become a classic in analysis, where it is known as a comparison argument. Devis-
ing suitable barriers is nothing short of being an art in itself. It requires deep intuition and
thorough experience of the problems considered. Louis Nirenberg was notoriously known,
as it has been reported by his collaborators, for being a master in conceiving barrier solu-
tions.

The geometric interpretation of the maximum principle in both its strong and weak
formulations was probably first used in the 1955 work of Alexander Danilowitsch Alexan-
drov; see [4] for a later publications of his original ideas that he presented for the first time
in Zürich in 1955 according to Heinz Hopf [38]. He used a comparison argument between
the solution itself and some reflections of it in order to prove that embedded constant
mean curvature closed surfaces in R3 are necessarily isometric to a dilation of the unit
sphere S2. The relevance of the maximum principle and of elliptic theory in the reso-
lution of this geometric problem is apparent in the equation satisfied by the graph u of
constant mean curvature H , namely:

div
�

rup
1C jruj2

�
D 2H:

Following an important paper by James Serrin [69], Louis Nirenberg in collaboration with
Basilis Gidas and Wei Ming Ni, converted Alexandrov’s original idea for constant mean
curvature surfaces into a general method, as beautiful as it is efficient, nowadays known
as the “moving planes method”; see [35]. With it, one can prove symmetry results (either
with respect to a given direction, or full rotational symmetry) and uniqueness results for
positive solutions to semi-linear scalar equations of the form

��u D f .u/: (6.2)

These symmetry and uniqueness results are of utmost importance, since they extend to
a non-linear framework a fundamental principle in quantum mechanics and in spectral
theory; stating that the ground state of the Laplace operator, which is necessarily positive,

��u D �1 u

enjoys special symmetries and has multiplicity one (i.e. it is unique – Krein–Rutman the-
orem).

This method and the ensuing symmetry results have important applications to diverse
areas of science: the study of ground states of non-linear Schrödinger models in quan-
tum mechanics, the vortex theory of Onsager in thermodynamics, turbulence in statistical
physics, phase-transitions in Van der Waals fluids, the Yamabe problem in differential
geometry (which is concerned with finding constant scalar curvature metrics in a given
conformal class), etc.
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The moving planes method consists in comparing an arbitrary solution u for the
semilinear equation (6.2) with its successive reflections u� across a continuous family
of parallel hyper-planes. These reflections u� are used as barrier functions for u. A key
ingredient of the method is the strong version of the maximum principle and a refinement
of it discovered by E. Hopf in the 1950s, and now known as “Hopf lemma”. It states that
at maximum points on the boundary, the outward normal derivative of a sub-solution is
strictly positive10 unless the sub-solution is identically constant.

Later on, Louis Nirenberg in collaboration with Henri Berestycki introduced a new
method, still based on the strong maximum principle, and called the “sliding method”;
see, for instance, [6]. This new method was devised to prove various pointwise estimates
and asymptotic behaviors for solutions in infinite cylindrical domains to semi-linear equa-
tions of the form (6.2), as well as for their parabolic counterparts. Its extension to the case
of finite cylinder was then proposed by Luis Caffarelli. The sliding method has numer-
ous important applications to traveling fronts problems in the mathematical modelling of
combustion and flame propagation. Its novel idea consists in comparing the solution with
its translations along the axis of the cylinder, rather than using the images by successive
symmetries of the solution as barriers. It requires the use of a version of the maximum
principle on “narrow domains” where the sign of the 0th order coefficient c.x/ is not
required to be controlled due to S. R. Srinivasa Varadhan; see [7].

6.3. The Dirichlet problem for non-linear second order elliptic equations

We have stressed the importance of a priori estimates for solving the Dirichlet problem of
semi-linear equations. In order to prove such estimates, we have combined the Agmon–
Douglis–Nirenberg Lp-theory for boundary-value problems along with the Gagliardo–
Nirenberg estimates in various Banach spaces. For many scalar equations of elliptic type
which are more non-linear and also more degenerate than semi-linear equations, the max-
imum principle is an additional tool that can be added into the mix to reach the desired
estimates.

In a series of five fundamental papers written in collaboration with Luis Caffarelli and
Joel Spruck, Louis Nirenberg identified the maximum principle as a fundamental device to
obtain a priori estimates, and to solve the Dirichlet problem for “highly” non-linear PDEs
known as fully non-linear PDEs; see [10, 12–15].

An example of such an equation is the Monge–Ampère equation, which appears in
problems related to optimal transport as well as in geometric problems of prescribed cur-
vature.

Theorem 6.1 (Caffarelli–Nirenberg–Spruck (1984)). Let � be a strictly convex domain.
For any smooth and positive function f in x�, and for any smooth function � in x�, there

10This strict positivity of the normal outward derivative at the maximal point was already proved by
Leon Lichtenstein in 1923 in [52] for exact solutions of Lu D 0 in 2 dimensions.
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exists a unique strictly convex C1 solution u to´
detr2u D f in �;

u D � on @�:

The strict convexity requirement imposed on the solution forces ellipticity on the prob-
lem. To see this, let F.@2u/ WD log detr2u. Let .uij /i;jD1;:::;n denote the inverse of the
Hessian matrix of u. Assuming that u is convex, the matrix .uij / is symmetric and positive
definite. Hence,

nX
i;j

@F

@rij
.r/ �i �j D

X
i;j

uij �i �j > 0;

which is tantamount to ellipticity.
The core of the argument involves several steps. First, one establishes a priori esti-

mates for the Hölder norm of the solution (assumed to exist). These estimates follow from
the classical elliptic Agmon–Douglis–NirenbergLp-theory or Schauder theory for Hölder
spaces, provided that F.@2u/ is uniformly elliptic:

� j�j2 �
@F

@rij
�i �j � ƒ j�j

2;

for some constants 0 < � < ƒ, and also provided that the modulus of continuity of
@rF.@

2u/ can be controlled up to the boundary. In other words, the task is to prove
that @2u is uniformly bounded and uniformly continuous up to the boundary. This is
done with the help of the maximum principle and comparison arguments. Eventually, the
authors reach the a priori estimate11

k@2ukC 0;˛.x�/ � C < C1; (6.3)

where C 0;˛ is the Hölder norm defined in (3.5). Once (6.3) is established, the final part of
the argument relies on a continuity method, where one interpolates � with the determinant
of the Hessian matrix of a function which coincides with � on the boundary.

In these highly intricate works, the maximum principle is showing its full quintessence
and potential to obtain hidden a priori estimates. The core of the argument involves the
sophisticated construction of barrier functions with which the solution u and its successive
derivatives (or finite differences) are compared.

These five papers by Caffarelli, Nirenberg, Spruck and also by Joseph Kohn for one
of them, have stimulated a tremendous amount of research activity on fully non-linear
equations since their publications. These equations have an immense range of applica-
tions in many fields of science, including material sciences, finance, and computer vision.

11This bound was independently obtained by Nikolai Vladimirovich Krylov [48, 49], using works of
Lawrence Craig Evans [30, 31], and Neil Trudinger [72, 73].
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The original ideas of Nirenberg et al. have influenced the development of a whole branch
of analysis, called viscosity theory for PDEs, where the maximum principle plays a cen-
tral and decisive role. The viscosity theory for PDEs was introduced by Lawrence Craig
Evans [29] and by Michael Crandall and Pierre-Louis Lions [20].

7. Solving problems from geometry

The analysis of PDEs and differential geometry are by essence intimately intertwined.
The central roles played by the Laplace operator and by the x@-operator in Riemann sur-
face theory, constitutes the simplest illustration of this connection. The second half of the
20th century saw a dramatic acceleration of the transfer of techniques from non-linear
PDEs to the resolution of problems that seem a priori confined to geometry. A spectacular
example of the might of the PDE approach in geometry is the recent proof of the Poincaré
conjecture by Grigori Perelman, which heavily relies on the parabolic Ricci flow devised
by Richard Hamilton.

7.1. Nirenberg’s resolution of the Weyl problem

The taste for geometry and the influence of geometric questions are manifest in Louis
Nirenberg’s work. He is among the pioneers who introduced elaborate analysis tools for
solving questions pertaining to embeddings, tensors, curvature, complex structures, etc.
His doctoral work itself dealt with geometry, and, following the invitation from his advi-
sors James Stoker and Kurt Friedrichs, he solved a problem originally posed by Hermann
Weyl:

Given a metric of positive Gauss curvature on the 2-dimensional sphere, does there
exist an isometric embedding of this sphere into a convex surface of R3?

Nirenberg answered this question assuming the given metric is four times continuously
differentiable12 in [60]. In this first work, the general “philosophy” we have discussed is
already present, and it will remain recurrent in Louis Nirenberg’s papers: one looks for a
priori estimates, and combine them with suitable continuity methods that leave the a priori
estimates unchanged along the deformation. The link with the previous section is made by
writing the PDE satisfied by a graph .x; u.x// of Gaussian curvature K.x/ at .x; u.x//:

det.@2u/ D K
�
1C j@uj2

�2
:

Its associated Dirichlet problem was the subject of the last part of the first paper of the
aforementioned series by L. Caffarelli, L. Nirenberg, and J. Spruck.

12Several mathematicians had already considered this question. Hans Lewy in the case of analytic met-
rics, and more generally Aleksei Pogorelov who solved the problem with the help of different methods.
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7.2. The Nirenberg problem

The original “Nirenberg problem” can be stated as follows:

For which functionK on S2 does there exist a metric which is pointwise conformal
to the canonical metric g0, and such thatK is the Gauss curvature of that metric?

By “pointwise conformal”, we mean the existence of a function u on S2 such that g D
e2ug0. Stated differently, the Nirenberg problem consists in establishing the existence (or
lack thereof) of a solution to the Liouville equation

��g0u D e
2uK � 1;

where �g0 is the negative Laplace Beltrami operator for g0, the canonical metric of S2.
This simply formulated question has brought forth an enormous amount of work since
the early 1970s. Not only because it is the “simplest” instance of a wide range of simi-
lar questions (higher dimension, different curvature tensor, scalar curvature, Q-curvature,
�k-curvatures, fractional curvatures, etc.), but also because it gives rise to the major issues
faced by conformal geometric analysts in their study of “critical non-linear PDEs”, such as
concentration of compactness phenomena, Palais–Smale sequences, Morse theory, inter
alia. These issues appear as well in many celebrated problems: the Yamabe problem, har-
monic map theory, Yang–Mills equations, constant mean curvature surfaces, Willmore
surfaces to name a few. The apparent simplicity of the Nirenberg problem fosters the uni-
versal difficulties arising in conformal geometric analysis.

It would be much beyond the scope of the present report to give a detailed account of
the various arguments and creativity which have flourished in the quest for solving Niren-
berg’s problem. This problem is moreover at the origin of the whole branch of analysis
devoted to the study of critical elliptic problems which is central in conformal differential
geometry. We content ourselves to close the presentation of the Nirenberg Problem with
mentioning that not every choice for K gives rise to a solution. This is seen, for example,
using the Gauss–Bonnet theorem, and the now well-known Kazdan–Warner necessary
condition. Let us also mention an important sufficient condition for the existence due
to Alice Sun-Yung Chang and Paul Yang [19]. Let K be positive on S2 with only non-
degenerate critical points and with at least two local maxima. If in addition �g0K > 0 at
all saddle points of K, then Nirenberg’s problem has a solution.

7.3. The Newlander–Nirenberg complex Fröbenius theorem

Louis Nirenberg made important contributions to complex geometry and complex anal-
ysis. Once again, PDE techniques lie at the heart of the approach he favored to tackle
various geometric questions.

An important one deals with the integrability of almost complex structures. The ques-
tion goes as follows. Let a map J from R2n into the space of real-valued n � n matrices
be given. Assume it satisfies everywhere the condition

J 2 D �In;
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where In is the n � n identity matrix.

Does there exist a local diffeomorphism w in a neighborhood of any point which
transports the endomorphism J into multiplication by i everywhere, after the
canonical identification R2n ' Cn?

For n D 1, the question amounts to solving locally a Beltrami equation

@xzw D �@zw:

This is successfully achieved by introducing the singular integral operator associated to
the inverse of the Cauchy–Riemann operator x@�1 and by using an elementary fixed point
argument.

The general case n > 1 is much more involved and leads to an overdetermined system
of coupled linear Cauchy–Riemann type PDEs of the form

@Szjw D

nX
kD1

�jk @zkw; (7.1)

where zj are complex coordinates for the complex structure given by the value of J at the
point in the neighborhood of which we are working. The system being overdetermined
(indeed, differentiating in Szk the j th equation has to give the same result as differentiating
in Szj the k-th equation, namely: @Szj @Szkw D @Szk@Szjw) there must be a structural constraint
on the system for it to be locally solvable. A necessary condition was discovered by Albert
Nijenhuis in his 1951 doctoral thesis, and independently by Paulette Libermann in [51],
as well as by Beno Eckmann and Alfred Frölicher in [24]13. It can be stated as follows.
We consider the complexification of the tangent space to R2n at each point, and we call
a .0; 1/ vector any vector of the complexified tangent space and of the form

X � iJX;

where X is a real vector. The necessary condition says that the space of .0; 1/ vectors
has to be stable under bracket operation. Louis Nirenberg and his student A. Newlander
succeeded in proving that this complex Fröbenius type condition is in fact sufficient for
the local solvability in the C1 framework.

Note that, unlike in the one-dimensional case, applying the inverse of the Cauchy–
Riemann operator @Szj to the right-hand side of (7.1) does not enable an iteration argument
in any classical Banach space (Hölder, Sobolev). Indeed, an integration in zj is applied to
a derivative in zk of w, for k ¤ j : this leads nowhere.

Nirenberg and Newlander in [58] had the idea to recast the problem in terms of the
inverse z.w/ of the diffeomorphism w.z/. It solves a PDE system of the form

@Swl z D F.w/@wl z:

13In these works, using the Cauchy–Kowalevski approach, this condition is also shown to be sufficient
in the analytic framework.
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Although this problem is now becoming non-linear (!) unlike the original one which was
linear, it is this time possible to implement a scheme similar to the one devised in the one-
dimensional case, since differentiation occurs with respect to only one of the independent
variables in each equation. This problem is solvable in classical Hölder spaces.

We have decided to end this presentation with this remarkable work, which can but
trigger the admiration of any mathematician, even beyond the field of partial differential
equations, and this more than 58 years after its original publication!

8. Conclusion

At the end of these notes, one feels somewhat frustrated to have only presented one part
of the prolific and monumental work of Louis Nirenberg. Many important contributions
have been omitted such as the analyticity of solutions to analytic PDEs (in collaboration
with Charles Morrey [57]), the regularity of free-boundary problems (in collaboration with
David Kinderlehrer and Joel Spruck [43–45]), the analysis of solutions to non-linear ellip-
tic equations involving critical Sobolev exponents (in collaboration with Haïm Brezis [9]),
the partial regularity of solutions to the Navier–Stokes equation (in collaboration with Luis
Caffarelli and Robert Kohn [11]) which to this day remains the optimal step towards solv-
ing the Millennium problem. The author of these notes also apologizes to the numerous
collaborators of Louis Nirenberg whose joint works with him have not been mentioned
here.

Louis Nirenberg’s scientific endeavor is an exemplary reminder to all of us that research
is first and foremost a collective venture, in which debating, discussing, and exchanging
ideas play a decisive role.

It is the result of no coincidence that Louis Nirenberg made his professional home at
the Courant Institute at New York University, a prestigious institution that has fostered
since its very creation a unique laboratory for the free exchange of scientific ideas.

Although there are still many important theoretical questions to answer14, the analysis
of partial differential equations is nowadays mostly aimed at better understanding other
fields of science, with applications in geometry, physics, mechanics, chemistry, biology,
social sciences, technology. These developments, and the ones to come, anchor their roots
on the immense efforts deployed in the last century by human intelligence in this area of
mathematics. Mathematical knowledge is however not only made of an accumulation of
truths and results confined to papers and books, and transmitted in this form to future gen-
erations. A large and immaterial share of mathematical knowledge resides in the “living
part” of mathematics, in mathematicians themselves, with their intuitions, their hesita-
tions, their perseverance, and most importantly with their esthetical quest and search for
beauty (as surprising as it may sound to non-mathematicians!). Hermann Weyl once said:

14Pertaining, inter alia, to very non-linear PDEs, degenerate PDEs, non-local PDEs, rough data, PDEs
in connection with stochastics, and much more.
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My work always tried to unite the truth with the beautiful, but when I had to choose
one or the other, I usually chose the beautiful.

We do not know whether Louis Nirenberg would have had agreed with this quote, but
we would nonetheless like to pay tribute to his memory for the beautiful mathematics he
has produced all along his life and has generously shared with us all for so many years.
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