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Ax’s theorem with an additive character

Ehud Hrushovski

Abstract. Motivated by Emmanuel Kowalski’s exponential sums over definable sets in finite fields,
we generalize Ax’s theorem on pseudo-finite fields to a continuous-logic setting allowing for an
additive character. The role played by Weil’s Riemann hypothesis for curves over finite fields is taken
by the ‘Weil bound’ on exponential sums. Subsequent model-theoretic developments, including
simplicity and the Chatzidakis–Van den Dries–Macintyre definable measures, also generalize.

Analytically, we have the following consequence: consider the algebra of functions Fnp ! C
obtained from the additive characters and the characteristic functions of subvarieties by pre- or post-
composing with polynomials, applying min and sup operators to the real part, and averaging over
subvarieties. Then any element of this class can be approximated, uniformly in the variables and in
the prime p, by a polynomial expression in ‰p.�/ at certain algebraic functions � of the variables,
where ‰.n mod p/ D exp.2�in=p/ is the standard additive character.

1. Introduction

The first-order theory of the class of finite fields was determined in a fundamental paper of
James Ax ([1]). He understood that the basic definable sets must be taken to be, not just the
points of algebraic varieties, but also their finite projections; in line with the étale theory
that Grothendieck and his school were developing in these years. Once this is granted, Ax
showed that Weil’s Riemann hypothesis for curves leads to a quantifier-elimination result.
Finally, having reduced to quantifier-free formulas, the set of sentences true in every (or
in almost every) finite field is determined by the Chebotarev density theorem.

Ax’s student Kieffe studied zeta functions in this connection. A definable measure,
corresponding to the leading coefficient of the asymptotic expression for the cardinality
of a definable set, was shown to exist and have good properties by Chatzidakis, van den
Dries and Macintyre in [9].

Now Weil wrote in 1948 about a “connection between various types of exponential
sums, occurring in number-theory, and the so-called Riemann hypothesis in function-
fields” [31]. An exponential sum is an expression such as

P
x2X �.f .x//, where X is

(for our purposes) a subset of F n, F a finite field, f a polynomial, and � an additive char-
acter, i.e. a homomorphism .Fq;C/! .T; �/, where TD ¹z W jzj D 1º is the unit circle in C.
On Fp , the group of characters is generated by the canonical one, n mod p 7! e2�in=p .
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From his work on the Riemann hypothesis for curves, Weil was able to derive a on expo-
nential sums. When X D C.F / with C an absolutely irreducible over F D Fq , f is not
constant on C and � ¤ 1, he showed

1

q

X
c2C.F /

�.c/ � cq�1=2;

where the constant c is bounded in algebraic families, i.e. depends only on n and the
degrees of f and polynomials cutting out C . This inequality is known as the Weil bound.
The ideas used by Weil in this connection, greatly amplified, became central in the
Grothendeick–Deligne theory, and in equidistribution results; see e.g. [25].

None of this, of course, can be represented within Ax’s theory of pseudo-finite fields,
since the additive character � is not part of the structure. Nevertheless, Emmanuel Kowal-
ski was able to demonstrate that exponential sums and definability in finite fields fit very
well together. In [23], he showed how to estimate exponential sums, not only over curves
or varieties but also when X above is a general definable set in the language of rings.

The contribution of the present paper is to allow the additive character to be part of
the model-theoretic structure. The language thus includes the symbols of the ring lan-
guageD;C; � ; 0; 1, along with an additional symbol ‰ whose interpretation is an additive
character. This changes the meaning of definability: any function obtained from �, or
from characteristic functions of varieties, by min; sup and polynomial operators taken in
any order is now viewed as definable. The measure arising from averaging in finite fields
remains definable, and thus one may include the corresponding integration operators as
well. A quantifier-elimination theorem is proved, analogous to Ax’s in that the basic func-
tions involve a push-forward from finite covers. As stated in the abstract, this implies
a posteriori that any of the functions obtained by sup, min or integration can be uni-
formly approximated by basic functions. Model-theoretic properties become meaningful;
we show that the theory is simple, and indicate some interesting phenomena, in particular,
a nontrivial connected component of the Kim–Pillay group, when it is embedded within
the model companion ACFA of the theory of difference fields.

Adding ‰ to the language presupposes a passage to continuous logic, able to accom-
modate functions with real or complex values. As equality on the field is treated in the
usual way (with no structural metric present) only a very basic form of continuous logic is
needed; we review it below, following the statement of the main theorem. In a structure F
for this logic, a formula �.x1; : : : ; xn/ is interpreted as a function �F W F n ! C, with
bounded image (the bound depends only on �). In case the image is discrete, say ¹0; 1º,
the pullback of 1 is called a definable subset of F n, or for emphasis a discretely definable
subset; but these can be rare.

For any class of (possibly enriched) fields C , we define the characteristic zero asymp-
totic theory of C to be Th.C/ [ ¹2 ¤ 0; 3 ¤ 0; : : :º. As we only consider characteristic 0
limits in this paper, we will also simply refer to this as the limit theory of C .
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Theorem 1.1. Consider the characteristic zero asymptotic theory of the class of finite
fields Fq enriched with a nontrivial additive character ‰.

(1) The theory is decidable, and has an explicit axiomatization PFC.

(2) PFC admits quantifier-elimination relative to algebraically bounded quantifiers.

(3) If F is an ultraproduct of the enriched fields .Fq; ‰/, the pseudo-finite measure
is definable. The image under ‰ of a definable subset of F n with its pseudo-
finite measure, is a finite union of rational affine subspaces of T n, with rationally
weighted Lebesgue measure.

(4) PFC is a simple theory: indeed a higher amalgamation principle holds.

(5) PFC is conservative over the pure language of rings in as far as definable sets go:
any definable subset of F n is already definable in the language of fields and falls
into Ax’s theory.

(6) The completions of PFC are determined by their ‘absolute numbers’, i.e. by the
field of algebraic numbers lying in a model of T , along with the additive charac-
ter ‰ restricted to that field.

These assertions will be explained and proved in Section 3 and Section 4. At this point
we will just make a few comments.

Decidability in (1) holds in a strong sense: given a sentence S (formed using the basic
relations, connectives and quantifiers), and � > 0, one can effectively find a sentence S 0

such that jS � S 0j < � in any model of T , and a number field L, such that S 0 has only
quantifiers ranging L; and the set of possible values of S 0 is P.Tn/ for some explicit
polynomial function P and some n.

Much of the model theory in Theorem 1.1, including a quantifier-elimination to the
level of bounded quantifiers, should carry thorough for a character of any commutative
algebraic group. For instance for multiplicative characters, the axioms will concern curves
in Cartesian powers of the multiplicative group Gm, that do not identically satisfy a mul-
tiplicative relation

Q
i x
mi
i D c of bounded height

P
i jmi j. Certainly, different issues will

arise in the interface with geometry. For example, some special multiplicative characters
– those whose image is contained in the mth roots of unity, for fixed m – are already
definable in the pseudo-finite field structure, and can be understood within the existing
theory; the new limit theory will be valid for large finite fields with sufficiently general
(rather than arbitrary nontrivial) multiplicative characters. In any case, for simplicity, we
will restrict attention for the present to the additive character.

An alternative presentation of the results is possible, employing a new sort yF for the
whole ‘definable character group’, in place of naming a single specific character. yF carries
an abelian group structure, as well as an action of Gm.F /, transitive on yF X .0/. In place
of ‰ the language includes a continuous-logic relation  on F � yF , with values in T.
The universal axioms assert that  is Z-bilinear, and  .cx; y/ D  .x; cy/. In particular,
for any d 2 yF , ‰d .x/ WD  .d; x/ is an additive character. In addition, PF yC asserts that
.F;‰c/ˆ PFC. Then PFC interprets PF yC; indeed PFC is bi-interpretable with PF yC if one
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adds a constant symbol d in the sort yF to the language, with the sole axiom d ¤ 0; the
interpretation of ‰ will be ‰d . Then Theorem 1.1 holds for PF yC in full; the completions
are now determined purely by their absolute numbers as fields. We will not adopt this
variation in part since it is special to the additive group, and also so as not to sweep under
the rug the natural question discussed in the next paragraph.

On the prime fields Fp , one can define a canonical additive character

‰pWFp ! T; a mod p 7! exp
�
2�
a

p

�
:

The limit theory of the class of finite fields .Fp; ‰p/ with this specific choice of additive
character contains PFC, and is generated over it by some quantifier-free sentences. All
the assertions of Theorem 1.1 hold for this theory with the possible exception of the first,
decidability. An explicit axiomatization PPC is suggested, that would imply decidability;
but whether or not it suffices to axiomatize the limit theory hinges on a certain open ques-
tion in number theory, close to a well-known problem (and theorem) of Duke, Friedlander,
Iwaniec in [11]. This will be discussed in Section 5.

The last section contains some remarks, conjectures and questions regarding exten-
sions to p-adic additive characters, and (especially) to difference fields and ACFA.

For a field F , F a will denote the algebraic closure.

1.2. Continuous logic

A continuous model theory quite able to deal with real- or complex-valued functions was
already available at the time of Ax’s paper; see [5]. But it was much more recently, fol-
lowing sustained work of many, that the boundaries with discrete first-order logic were
dissolved, extending the scope of model theory, almost seamlessly, beyond pure algebra;
we refer to [4]. Much of the effort in developing the general theory arises from a metric,
that replaces equality in the discrete case. For our present purposes this metric is unneces-
sary, and even impossible, i.e. the only metric one could consistently impose is the discrete
one. Thus, the framework is a very small variation on the familiar case; we briefly present
it here.

Function symbols and the formation of terms are treated in the usual way. Basic rela-
tions R come with a compact subset VR � C, their intended range of values. (We treat C
as having a distinguished

p
�1, so that a complex-valued relation is equivalent, if desired,

to two real-valued ones.) It is best to think of � not as a yes-no question with a smeared out
set of possible answers, but simply as a question that has a range of possible answers in the
first place. In case VR D ¹0;1º, we can call VR two-valued; in particular, this is the case for
the equality symbol. Formulas are formed using connectives and quantifiers, then closed
under uniform limits (uniform over all evaluations in all structures for the language). The
connectives are complex conjugation and complex polynomial operations C;�; � ; how-
ever by Stone–Weierstrass we can also throw in any continuous function from Cn to C,
without changing the set of formulas. Quantifiers are replaced by continuous C-valued
maps on the space of compact subsets of a given compact of C; suprema and infima of
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real-valued functions suffice. A structureA is a setA along with a functionRAWAn! VR,
for each basic n-ary relation �. The interpretation �A of an formula �, along with the com-
pact set V� in which it takes values, is then defined in the obvious way.

All the usual definitions and notions of basic model theory generalize readily, once one
gets used to the transposition. For instance, a sentence is a formula with no variables. For
each structure A, Th.A/ is the map � 7! �A from the set of sentences � to points in V� .
The theory of a class C of structures is the assignment of a closed subset to each V� ,
namely the closure of ¹�A W A 2 Cº. A theory is complete if it gives each sentence  a
definite value (in V ). A complete theory T is decidable if there exists an algorithm that
given a sentence  , and any � > 0, is guaranteed to terminate and output the value of  up
to a possible error below �. Likewise, a possibly incomplete theory is decidable if given
a sentence  , and any � > 0, an algorithm can output a finite subset F of V , such that
for any A ˆ T ,  A is at a distance at most � from F ; and conversely any point of F is
at a distance at most � from some such  A. When T is complete and has an explicit (or
recursive) axiomatization, it is automatically decidable.

The compactness theorem holds: if ˆ is a set of pairs is .�; B/ consisting of a sen-
tence � and a closed subset B of V� , we say ˆ is satisfiable if there exists a structure A
with �A 2 B for each pair .�; B/ 2 ˆ. ˆ is finitely satisfiable if each finite subset is
satisfiable. Then any finitely satisfiable set is satisfiable.

There is also an ultraproduct construction of A. The theory of saturated models gen-
eralizes, etc. In fact, deeper theories including stability and simplicity generalize too, [3],
but we will not use them here.

Let us recall also the definition of quantifier-elimination in this setting:

Definition 1.3. T admits quantifier-elimination if for any formula  and any � > 0 there
exist atomic formulas �1; : : : ; �k and a continuous function C such that wheneverM ˆ T
and a 2M x , we have

j .a/ � C
�
�1.a/; : : : ; �k.a/

�
j < �:

The usual criteria for QE go through from the discrete 1st-order logic case. When T
admits quantifier-elimination, a type is determined by a quantifier-free type (and only
then). (Proof. the continuous map restricting complete types to qf types will under these
circumstances be a bijection; as the two spaces are compact Hausdorff, it is a homeomor-
phism.) It follows likewise that T admits QE provided, for any two �C-saturated models,
� � jLj, any isomorphism between substructures of cardinality � � extends to an another
whose domain includes a prescribed element.

Exponential sums in a model theoretic setting were discussed by Tomasic in [27], who
noted that in positive characteristic the additive character is definable, and used equidistri-
bution to determine the theory of certain reducts of pseudo-finite fields. Indeed if .F;C/
has exponent p, a character �WF ! T takes only p values, the pth roots of 1; the kernel
of � can be taken to be the image of the Artin–Schreier map }.x/ D xp � x; and so Ax’s
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discrete first-order theory already interprets the p-element group Hom.F=}.F /;C�/. For
this reason, we will consider only the characteristic zero limit in this paper.

Chieu Minh Tran [29] used the exponential sum estimates to determine the (discrete)
first order theory of Fap with ‘multiplicative intervals’.

Boris Zilber [32] considers exponential sums over finite rings, with a view to quantum
mechanical integrals; he takes different limits than we do here. See also [2].

2. A wrong turn

This section is merely a “no through way” sign on a sideroad; the reader may pass it by
without loss, except perhaps of some contrast: what seems like a slight variation leads
inexorably to undecidability.

Let us identify the universe of Fp with 0;1; : : : ;p � 1, with addition and multiplication
modulo p. Define

ƒpWFp ! Œ0; 1� by ƒp.m/ D m=pI

it is the inverse of the function

Œ0; 1� \
Z

p
! Fp; x 7! px mod p:

Taking an ultraproduct of these structures, we obtain a pseudo-finite field F with a
function ƒW F ! Œ0; 1�. We have ‰ D e ı ƒ, where e.x/ D e2�ix . From the point
of view of continuous logic, this is an interpretation (e being continuous) but not a
bi-interpretation, since e is not quite injective. We will soon see that .F;C; � ; ‰/ does
not interpret .F;C; � ; ƒ/ in any way, though it does of course interpret .F;C; � ; sin ıƒ/,
and is in fact bi-interpretable with it.

On first seeing Kowalski’s results, I was struck by this statement. (I understand Lou
Van den Dries made similar observations and questions.)

Proposition 2.1 (Kowalski). For an affine algebraic variety V �An, defined over Fp , the
number of points of V in Œ0; p=2�n is approximately pdim.V /2�n, unless V is contained in
some linear hyperplane of An.

The caveat on linear hyperplanes has an innocent ring at first hearing, and the statement
sounds very much like the geometric input needed for a quantifier-elimination theorem,
in the style of Ax, for the theory of pseudo-finite fields enriched with ƒ. However, this
cannot be the case:

Proposition 2.2. Let Ip D �.Fp/ be the image in Fp of an interval in ¹0; : : : ; p � 1º.
Assume jIpj and jFp X Ipj are unbounded. Let

T D
®
� W .9 n/.8p > n/.Fp;C; � ; Ip/ ˆ �

¯
; T ? D ¹� W : � 2 T º:

Then T; T ? are recursively inseparable.
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Proof. Let< be the image of the archimedean ordering on ¹0; : : : ;p� 1º. We may assume

ap WD jIpj < p=2:

By intersecting the interval Ip with translates, one obtains a uniformly definable family
of convex definable sets including all intervals Œ0; a� with a � ap . So the restriction of <
to Œ0;ap� is definable. Note that dap=me (the integer part of ap=m) is definable for eachm,
and that dpap e is definable since Œ0;pap=2� is the largest segment contained in

Œ0; ap=4� \
®
x W x2 2 Œ0; ap=2�

¯
I

similarly for higher roots. Now consider polynomials F;G in variables x D .x1; : : : ; xk/
and of some given degree d , with non-negative integer coefficients. Let D be a set with
T � D and D \ T ? D ;. Then N ˆ .9 x/.F.x/ D G.x// if and only if

p
�
9 x1; : : : ; xk 2 Œ0; dC1

p
ap�
�
F D Gq 2 D

Thus, we can decide existence of solutions of integer polynomials if we have access toD,
so by Matiyasevich’s theorem D is not recursive.

Remark 2.3. (1) Following Gödel, using the Chinese remainder theorem, we could
define the exponential function x mod p 7! 2x mod p on an unbounded interval
contained in Œ0; log2.p/�; then we could appeal to Davis–Putnam–Robinson instead, or
(with more quantifiers) even directly to Gödel’s theorem, in place of Matiyasevich.

(2) T is in fact †02-complete: one can reduce to T the question of whether a given
r.e. set E is finite. Say again that E is defined by .9 x/.F.x/ D G.x//, with F; G of
degree d � 2. It follows from [20] that for large n, there exists a prime p with ndC1 <
p < .nC 1/dC1; so n D p dC1

p
p q. Thus, E is finite iff for all but finitely many primes p,

.Fp;C; � ; Ip/ ˆ :
�
F
�
d dC1
p
p e
�
D G

�
d dC1
p
p e
��
I

iff this sentence lies in T . (Here Ingham’s theorem was used to obtain a reasonable large
‘tally’. We could use the more basic Chebysheff’s theorem / Bertrand’s postulate instead,
obtaining arithmetic up to log.p/ in place of dC1

p
p; or a trivial bound on prime gaps,

reaching approximately log log.p/; all sufficient of course for our present purposes.)

Let us note two consequences of Proposition 2.2. The first is a curious, purely negative
alternative proof of another result of Kowalski’s, that he drew as a corollary of his positive
results.

Corollary 2.4. Intervals cannot be defined uniformly in Fp , unless they are bounded or
co-bounded.

Proof. Ax showed that the theory of pseudo-finite fields is decidable, while according to
Proposition 2.2 they cannot be uniformly defined in any decidable theory.
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We include one further statement in this vein.

Corollary 2.5. Let Xp � Fp be a definable set in the theory of pseudo-finite fields of
characteristic 0, or any decidable expansion. Assume jFp X Xpj is unbounded with p.
Let k.p/ be the minimal archimedean gap in Fp X Xp , i.e. the minimum k � 1 such that
for some a 2 Fp X Xp we have a C 1; : : : ; a C k � 1 2 Xp , a C k … Xp . Then k.p/ is
bounded.

Proof. Let k D k.p/. By taking u D a we see that®
x W .8u/

�
u … X; uC 1 2 X ) uC x 2 X

�¯
is contained in Œ1; k�; it must be equal to Œ1; k� by minimality of k. Thus, an interval of
length k.p/ is definable. So by Proposition 2.2 k.p/ is bounded, or else the interval is
cobounded, and then F XX is bounded.

Thus, one cannot expect to have a good quantifier elimination for

Th
�®
.Fp;C; � ; Ip/ W p

¯�
;

and hence not for Th.F;C; � ; �/.
I found this situation puzzling; it seems to deprive us of a natural logical setting for

Proposition 2.1, playing a role analogous to the theory [1] of pseudo-finite fields for [9].
A part of the solution is the use of continuous logic; When intervals are defined in

continuous logic, via a map Œ0; p � 1� ! Œ0; 1� or more conveniently to the unit circle
T � C, the nature of the logic blurs the endpoints of intervals, and thus removes at least
the apparent source of undecidability. The price one pays, of course, is that while the
theory accounts well for intervals of length p=m for any given m, it cannot access any
intervals of length of order o.p/.

But even the continuous logic theory of .F;C; � ; ƒ/ is undecidable. Recall that aV
-definable is called definable if its complement is also

V
-definable. On ƒ�1Œ1=3; 2=3�,

the relation ƒ.x/ < ƒ.y/ is1-definable: since ƒ.x/ < ƒ.y/ iff ƒ.x � y/ � 2=3. Thus,
ƒ�1.2=5;3=5/ is

V
-definable (the conjunction of 2=5 <ƒ.x/ and x < 3=5, both taken on

Œ1=3;2=3�; but clearly so is the complementƒ�1Œ0;2=5�[ƒ�1Œ3=5;1�; soƒ�1.2=5;3=5/
is definable, and ƒ�1.</ is definable on it.

Corollary 2.6. The continuous logic theory of the class of enriched prime fields
.Fp;C; � ; ƒ/ is undecidable.

In the next section, we begin studying the theory PFC, with ƒ replaced by e ı ƒ.
For measure-theoretic or distribution statements (see Section 3.24) it is indistinguishable
from the theory of .F;C; � ; ƒ/ and, in particular, does provide a framework including
Proposition 2.1, while remaining in the tame world.
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3. The theory of pseudo-finite fields with an additive character

We work in continuous logic, as described above.

3.1. The language

The language LC has a sort F for the field, with equality treated in the usual (discrete)
way; with the ring operations. And there is one additional unary relation

‰WF ! T;

where T D ¹z 2 C W jzj D 1º is the complex unit circle. The function

.x1; : : : ; xn/ 7!
�
‰.x1/; : : : ; ‰.xn/

�
WF n ! Tn

will be denoted by ‰.n/, or just ‰ when no confusion can arise.

3.2. Defined terms

Let P.u1; : : : ; unI x/ and Q.u1; : : : ; unI x/ be integral polynomials. In any field F , we
define �.b1; : : : ; bn/D c if there exists at least one root in F of P.b1; : : : ; bn/, and for any
such root d we haveQ.b1; : : : ; bn; d /D c. (If no such c exists, let �P;Q.b1; : : : ; bn/D 0.)
The functions � are algebraic functions, and at the same time are well-defined functions
in the usual sense; we will view them as basic terms in the language.

With these terms in the language, Ax’s theory PF (in the usual, discretely valued first
order setting) admits quantifier-elimination, and any substructure is definably closed.

We also include some defined terms using ‰. Let

‰nsym.c1; : : : ; cn/ WD
X®

‰.x/ W xn C c1x
n�1
C � � � C cn D 0

¯
(To be precise, if xn C c1xn�1 C � � � C cn D

Qn
iD1.x � ˛i / with ˛i 2 F a, we define

‰nsym.c1; : : : ; cn/
F D

Pn
iD1 ‰.˛i /; where ‰.x/ D 0 for x 2 F a X F .) ‰nsym is clearly

definable; it is our analogue of the algebraically bounded quantifiers required for
quantifier-elimination in the case of Ax.

Thus, a basic formula has the form ‰nsym.g1.u/; : : : ; gn.u// with gi a basic PF-defin-
able function as above.

Remark 3.3. We note a few closure properties of these terms.

(i) ‰1sym.�c/ D ‰.c/. In particular, 1 D ‰1sym.0/.

(ii) ‰nsym.�c1; c2; : : : ; .�1/
ncn/ is the complex conjugate of ‰nsym.c1; : : : ; cn/.

(iii) ‰nsym.c1; : : : ; cn/C‰
m
sym.d1; : : : ; dm/ D ‰

nCm
sym .e1; : : : ; enCm/, where the ei are

the coefficients of
�P

cix
i
��P

djx
j
�
.

(iv) Let ˛.x; u/ be any PF formula, such that PF ˆ .8u/.9�nx/˛.x; u/. ThenP
¹‰.x/ W ˛.x; u/º can be expressed as a basic formula. (Let t be a variable and

write …¹.t � c/ W ˛.c; u/º D
Pn
iD0 gi .u/t

n�i ; then the gi .u/.i D 0; : : : ; n/ are
PF-definable functions, and ‰˛.u/ D ‰nsym.g1.u/; : : : ; gn.u//.)
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(v) More generally, if ˇ.x; u/ is a function into N with finite image, whose level
sets are PF-definable, then

P
x¹ˇ.x; u/‰.x/ W ˛.x; u/º can be expressed as a

basic formula. (Split ˛ into a disjoint union of ˛i on which ˇ has constant value
vi 2 N, and apply the previous two items.)

(vi) The product ‰nsym.c1; : : : ; cn/‰
m
sym.d1; : : : ; dm/ can be expressed as a basic for-

mula. (Take ˇ to give the number of ways that an element can be written as a
sum of a root of

P
cix

i and a root of
P
djx

j .)

(vii) Hence, the expressions 1
m
‰nsym.u/ form a ring, closed under complex conju-

gation. By Stone–Weierstrass, an arbitrary continuous function composed with
basic formulas can be uniformly approximated by a basic formula.

3.4. Axioms for PFC

A hyperplane Y � An is said to have height � m if it can be defined by a linear equationX
AiXi D b

with Ai 2 Z, jAi j � m.

(1) F is a field containing Q, with a unique Galois extension of order n for each n;

(2) ‰W .F;C/! T is a homomorphism;

(3) Let h 2 QŒz1; z�11 ; : : : ; zn; z
�1
n � be a finite Fourier series (Laurent polynomial)

with degrees � m, real-valued on Tn, with no constant term. For any absolutely
irreducible curve C � An, not contained in any hyperplane of height at most m,

sup
®
h.‰.n/.x// W x 2 C

¯
� 0I

(1) Of course, if we add the defined terms �; ‰sym to the language, their definition
must be included among the axioms; in particular for �,

.8u1; : : : ;un;x/
�
P.u1; : : : ;un;x/D 0!Q.u1; : : : ;un;x/D �P;Q.u1 : : : ;un/

�
:

The essential content of the AE axiom group (3) is that ‰.C/ is dense in Tn, pro-
vided C is not contained in any rational affine subspace of F n; see Lemma 3.5 below.
One could more easily formulate axioms for C not contained in any subspace of F n; but
that would not suffice.

Lemma 3.5. Let F be a field of characteristic zero, and‰W .F;C/! T a homomorphism.
Then F ˆ PFC.3/ if and only if the following condition holds:

(3*) Let C � An be an absolutely irreducible curve over F , not contained in any
rational hyperplane of An. Then ‰.n/.C.F // is dense in Tn.

Here a rational hyperplane is one defined by an equation
Pn
iD1miXiDb, withmi 2Z

and b 2 F .
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Proof. Assume PFC (3) holds. Let U be a nonempty open subset of Tn. Find a contin-
uous g � 0, whose support is contained in U , and with

R
g d� D 3, where � denotes

normalized Haar measure on Tn. Using Stone–Weierstrass, find a polynomial h.x/ in
z1; : : : ; zn; xz1; : : : ; xzn with rational coefficients, of degree say m, with kg � hk < 1 in
the uniform norm; replacing h by the average of h with its complex conjugate, we may
assume h takes real values; in particular, the constant term h0 2 R. So,

h0 D

Z
Tn
h �

�Z
Tn
g � 1

�
> 1:

By the axiom, there exists c 2 C.F / with jh.‰.c//j � 1. Thus, ‰.c/ 2 U . As U was
arbitrary, ‰.C.F // is dense in Tn.

Conversely, assume (3*). Let C;h be as in PFC (3). Let .a1; : : : ; an/ be a generic point
of C over F . Then ¹a1; : : : ; anº generate a torsion-free, hence free, subgroup of A=A.F /;
let b1; : : : ; bl 2 ha1; : : : ; ani represent a free generating set. Writing a D .a1; : : : ; an/,
b D .b1; : : : ; bl /, we have b D Ba for some l � n-integral matrix B; and a DMb C a0
for some n � l-matrix M and a0 2 F n. The matrix B defines a linear transformation
BWAn! Al , and z 7!Mz C a0 an affine transformation Al ! An; their composition is
the identity on C , showing that B restricts to an isomorphism C ! C 0 WD B.C/.

Write h D
P
cihi as a finite linear combination of Laurent monomials. For each

monomial hi we have
hi ı‰

.n/
ıM D ‰ ıHi ;

whereHi .x/D
P
kixi is a linear form with jki j � m;Hi is nonzero since h, by assump-

tion, has no constant term. The linear form Hi ıM is also nonzero: otherwise Hi would
be constant on the image of L, but this image contains C , so C is contained in a translate
of ker.Hi /, contradicting the assumption that C is not contained in any hyperplane of
height � m. It follows that

h ı‰.n/ ı L D h0 ı‰.m/

for an appropriate real-valued Laurent polynomial; the monomials of h0 are (constant mul-
tiples of) zHiıM , so h0 also has no constant term. Integrating h0 with respect to the Haar
measure on Tm, we have

R
h0 D 0 (since each monomial has integral 0 on Tm) and so

sup h0 � 0. By (3*) applied to C 0, ‰.m/.C 0/ is dense in Tm, so supC 0 h
0 ı‰.m/ � 0. This

proves (3).

Lemma 3.6. Let �q be any nontrivial additive character on Fq , and let F be any ultra-
product of .Fq; �q/ of characteristic zero. Then F ˆ PFC.

Proof. Let h be a Laurent polynomial (or finite Fourier series) of degree � m in variables
z1; : : : ; zn; z

�1
1 ; : : : ; z�1n , and taking real values on T n. By subtracting the constant term,

we may assume it is zero.
Let C � An be an absolutely irreducible curve over Fp , not contained in any subspace

of height at most m. For a nonzero k 2 Zn of height � m, we consider

f .x/ D k � x D
X
i

kixi
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as a function on C . Then f is not constant on C , so the Weil bound applies. Thus,ˇ̌̌ X
x2C.Fp/

�p.k � x/
ˇ̌̌
� bp1=2

for some b independent of p and of any parameters needed to define C � An within an
algebraic family. Now for each monomial

Q
i z
ki
i of h, we haveY

i

�p.xi /
ki D �p

�X
i

kixi

�
:

It follows that ˇ̌̌ X
x2C.Fp/

h.�.n/p .x//
ˇ̌̌
� b0p1=2

for an appropriate b0 > 0 (namely b times the number of monomials in h). Thus,

jC.Fp/j max
x2C.Fp/

h
�
�.n/p .x/

�
�

X
x2C.Fp/

h
�
�.n/p .x/

�
� �b0p1=2:

So,
max

x2C.Fp/
h
�
�.n/p .x/

�
� �b0p1=2=jC.Fp/j:

Letting p !1, taking into account that jC.Fp/j � p, we obtain the result. The proof
for Fq is identical.

3.7. Quantifier elimination

Lemma 3.8. Let F; F 0 ˆ PFC, let A; A0 be substructures of F; F 0, respectively, for the
language enriched with function symbols �; ‰.n/sym as in Section 3.2. Let ˛WA! A0 be an
isomorphism. Then ˛ extends to an isomorphism acl.A/! acl.A0/; here acl.A/ denotes
the relative algebraic closure of A in F .

Proof. Since A,A0 are closed under the �-functions, they are definably closed as substruc-
tures of the pseudo-finite fields F;F 0. We can extend ˛ further to a field isomorphism

acl.A/! acl.A0/:

Thus, we may assume
acl.A/ D acl.A0/ DW C

as fields, A D dcl.A/ � C ; F; F 0 have two additive characters ‰;‰0, agreeing on A. We
also know that‰nsym.c1; : : : ; cn/ has the same value, for c1; : : : ; cn 2A, whether computed
with respect to‰ or to‰0. We have to find in this situation a field automorphism taking‰
to ‰0. By compactness of Aut.C=A/, it suffices to find, given a finite set ˇ of elements
of C , an automorphism � of C over A such that ‰0.b/ D ‰.�.b// for b 2 ˇ. We may
enlarge ˇ so as to be Aut.C=A/-invariant. Let B D A.ˇ/, and G D Aut.B=A/. Introduce
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variables Tb for b 2ˇ. and obtain aG-action on CŒTb W b 2ˇ� (fixing C; .g; Tb/ 7! Tg.b/).
Consider the linear polynomials

f D
X
b2ˇ

‰.b/Tb; f 0 D
X
b2ˇ

‰0.b/Tb;

where Ti are variables. Let

� D
Y
g2G

g � f; �0 D
Y
g2G

g � f 0:

These are products of linear polynomials; if we show � D �0, it will follow that f
divides �0, so f D g � f 0 for some g 2 G; then g�1 would be precisely the � we are
after.

In order to show that � D �0, we compute � explicitly in terms of ‰sym over A. Write

� D
X

��T� :

Then �� is a finite linear combination, with combinatorial coefficients, of products

‰.b1/ � � �‰.bn/; n D jGj;

with b1; : : : ; bn 2 ˇ; we rewrite such products as ‰.b1 C � � � C bn/. Let nˇ be the set of
all n-fold sums of elements of ˇ; G acts naturally on nˇ. If b D .b1 C � � � C bn/ 2 nˇ and
‰.b1 C � � � C bn/ occurs in �� , then so will ‰.hb1 C � � � C hbn/, for h 2 G; we can thus
express �� as an integral linear combination of certain sums

P
h2G ‰.hb/, b 2 ˇ. WriteY

h2G

.t � hb/ D tn C d1.b/t
n�1
C � � � C dn.b/:

Then each di .b/ 2 A, andX
h2G

‰.hb/ D ‰nsym

�
d1.b/; : : : ; dn.b/

�
:

This expresses �� as a sum of ‰nsym applied to elements of A, and the same expression is
valid for �0� .

Proposition 3.9. PFC admits quantifier elimination, in the language including the defined
terms ‰.n/; � of Section 3.2.

Proof. We will use the criterion mentioned at the end of Section 1, constructing an isomor-
phism between saturated modelsM;N by an inductive back-and-forth procedure, starting
with an arbitrary isomorphism between substructures; see [6].

At a given stage we have small substructuresA ofM andB ofN , and an isomorphism
between them, preserving the field structures and the � and ‰; we are to extend it to an
isomorphism ofM andN . By Lemma 3.8, we may takeA;B to be relatively algebraically
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closed, as the isomorphism extends. It suffices to show how to extend the isomorphism by
one step, so that the domain is a small extension A0 of A within M , containing a given
element a. We may take

A0 D acl.A; a/;

the relative algebraic closure of A [ ¹aº in M . Since A0 is relative algebraic closed, it
suffices to find a field embedding A0 ! N over A, preserving ‰, and whose image B 0

is also relatively algebraically closed; for then the terms � and ‰nsym can be computed
correctly within A0 and B 0. We may assume A D B and the given isomorphism is the
identity.

Consider finitely generated substructures, say A.a1; : : : ; an/ where a D .a1; : : : ; an/
now denotes a generic point of a curve C in affine n-space; since a 2 M n and A is
relatively algebraically closed in M , C is absolutely irreducible. By compactness, it
suffices to find a generic b 2 C.N/ with ‰.n/.b/ D ‰.n/.a/. Genericity of b means
here that b … A; by another use of compactness it suffices to avoid finitely many points
˛1; : : : ; ˛k 2C.A/; replacing C by the affine curve C X ¹˛1; : : : ; ˛kº, we see that it
suffices to find any b2C.N/ with ‰.n/.b/ D ‰.n/.a/.

We can replace .a1; : : : ;an/ by Q-linearly independent elements b1; : : : ;bm generating
the same additive group as .a1; : : : ; an/. (This uses the fact that if a1 D

P
mj bj with

mj 2 Z then‰.a1/D…‰.bj /mj in the circle group.) Now by Lemma 3.5, there exists an
m-tuple .c1; : : : ; cm/ of C.N/ with the same values ‰.bi / D ‰.ci /. By saturation of N ,
we can indeed find an embedding of A0 into N , preserving ‰. If we knew that the image
of A0 is relatively algebraically closed, it would follow that ‰sym and � are preserved too.
At this point we have no basis to claim this, however.

Call a substructure D of M full in M if the restriction homomorphism

Gal.M/! Gal.D/

is bijective, where Gal denotes the absolute Galois group. If D is full in N , and D � D0,
the composition Gal.N / ! Gal.D0/ ! Gal.D/ is injective, hence so is the restriction
Gal.N /!Gal.D0/. In caseD0 is relatively algebraically closed it is also surjective, soD0

is full. Assume A0; B 0 contain full substructures A0; B0. Let B 00 be the relative algebraic
closure of B 0 in N . Then,

yZ Š Gal.M/ Š Gal.A0/ Š Gal.B 0/:

Consider the homomorphisms

Gal.N /! Gal.B 0/! Gal.B0/:

Since the composition Gal.N /! Gal.B0/ is an isomorphism, Gal.B 0/! Gal.B0/ is sur-
jective. But a surjective self-map of yZ is an isomorphism. Thus, Gal.B 0/! Gal.B0/ is
bijective; and since Gal.N /! Gal.B0/ is surjective, Gal.N /! Gal.B 0/ must be surjec-
tive too. Thus, B 0 is relatively algebraically closed in N .
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We have shown so far, combining the smallness of the Galois group with Lemma 3.5,
that if D � M is small (compared to the saturation) and full, and D0 is an extension
of transcendence degree in which D is full too, then D0 embeds into M as a full (and
relatively algebraically closed) substructure. Thus, we will be done as soon as we extend
the original isomorphism A! B to one between full substructures (that we took to be the
identity).

By Lemma 3.11, there exists a full subfieldA0 ofM of transcendence degree 1 over Q,
and likewise B0 in N . Let A0 be the relative algebraic closure in M of A0, and B 0 of B0.
We note in passing that the Chebotarev field crossing argument does not immediately
work for fields with additive character, since the ‰-structure on a field amalgam is not
uniquely determined. However the argument does show that some amalgam A00 of A0; B 0

over A D B exists, with Galois group yZ, and A0; B 0 relatively algebraically closed in A00.
By the previous paragraph, since A0 is full inM , A00 embeds intoM over A0. Likewise A00

embeds intoM over B 0. Thus, while A0;B 0 need not be isomorphic, we can skip them and
obtain an isomorphism A00! B 00 with B 00 � N , so that we have an isomorphism between
full substructures as required.

Remark 3.10. Lemma 3.5 can be extended as follows: Let M be an @1-saturated model
of PFC,M0 �M countable, relatively algebraically closed, and p any type overM0 in the
language of pseudo-finite fields. Assume p.x1; : : : ;xn/ implies the Q-linear independence
of the images of x1; : : : ; xn in M=M0. Let ˛i 2 T . Then there exists a realization a D
.a1; : : : ; an/ 2M with ‰.ai / D ˛i .

Namely, let M 01 be a model of PF extending M0, and with a D .a1; : : : ; an/ realiz-
ing p. Extend ‰ to a homomorphism on M 01 with ‰.ai / D ˛i ; this gives a structure M1

for the language of PFC. Extend M1 iteratively to a structure satisfying PFC (1,2,3*)
(Lemma 3.5). Then, M1 ˆ PFC. By quantifier elimination over relatively algebraically
closed substructures, M1 embeds elementarily into M over M0.

Lemma 3.11. Let T be a theory of pseudo-finite fields of characteristic 0. Then there
exists F ˆ T and a subfield F1 of F of transcendence degree 1 over Q, such that the
restriction Gal.F /! Gal.F1/ is an isomorphism.

Proof. It is easy to give a direct proof, but let us use Ax’s theorem instead. LetM ˆ T and
F0DQa \M . Then F0 is the fixed field of some �0 2Aut.Qa/. LetLD limnQa..t1=n//

be the field of Puiseux series over Qa; so L is algebraically closed. Lift �0 to a (contin-
uous) automorphism of L fixing t1=n for each n. Let �1 be a topological generator of
Aut.L=Qa.t//. Let � D �0�1, and let F1 be the fixed field of � . Gal.F1/ is generated
by � .

Since yZ is free, there is a unique homomorphism yZ ! Gal.F1/ with 1 7! � , and we
denote it by m 7! �m. Since �0; �1 commute, if m 2 yZ and �m D 1, then

�m0 �
m
1 D .�0�1/

m
D 1;
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so �m1 fixes each t1=n; from this it follows that m D 0. Thus,

Gal.F1/ D yZ:

Let .L0; � 0/ ˆ ACFA with .L; �/ � .L0; � 0/. Let F D Fix.� 0/ � L0. Then F is pseudo-
finite and Gal.F /! Gal.F1/ is an isomorphism. According to Ax, F ˆ T .

3.12. Completions

As in Ax’s case, the completions are determined by the ‘absolute numbers’ as a field
with additive character. In more detail, let G D Aut.Qa=Q/ be the absolute Galois group
of Q. It follows from quantifier-elimination that the completions of PFC are determined
by pairs .�;  /, where � 2 G and

 WFix.�/! T

is a homomorphism, extending x 7! exp.2�ix/ on Z, and with �.!/ D !k ,

 .k=n/ D exp.2�i=n/

for !n D 1. Two such pairs are equivalent iff they are isomorphic as fields with additive
characters; and any pair .�; / can occur. (It is easy to find by an inductive limit argument,
a model of PFC containing the given structure on Fix.�/.)

3.13. Universal theory

PFC is the model completion of the theory described in axioms (1,2); it is easy to extend
any model of (the universal part of) this theory to a model of PFC, using Lemma 3.5 (3*).

3.14. Decidability

PFC is decidable. Given a sentence  and � > 0, one can first look for a quantifier-free
sentence 0 and a proof that the values of ; 0 are within �=2. Now 0 concerns a number
field L, that one can take to be Galois over Q, with Galois group G; and is determined
by an element g 2 G, and a homomorphism  W Fix.g/! C�. Actually only the values
of  on finitely many elements e1; : : : ; ek are concerned. Now e1; : : : ; ek generate a
finitely generated subgroup of .L;C/, isomorphic to Zl for some l , and we may replace
them by a lattice basis for the group they generate; so we may assume they are Q-linearly
independent. In this case,  .ei / 2 T can be chosen arbitrarily and independently. Using
this, we can determine the set of possible values of  0, to �=2-accuracy.

3.15. Standard exponential characters

The standard interpretation of ‰ for Fp D Z=pZ is by definition the character map

‰pWnC pZ 7! exp
�
2�i

n

p

�
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On Fq (with q a power of p) we set

‰q WD ‰p.Tr.a//;

where Tr is the trace from Fq to Fp . The field Fq endowed with the additive character ‰q
will be denoted by FCq .

Any other additive character on Fq has the form ‰q.cx/, for a unique c 2 Fq ; this
is a version of the statement that a finite abelian group is isomorphic to its dual. Hence
the group yA of all additive characters, along with the evaluation map yA � A! T, can be
interpreted in the language naming only one character.

Proposition 3.16. The characteristic 0 asymptotic theory of the standard finite fields-
with-additive-character FCq is precisely PFC. It is equal to the characteristic 0 asymptotic
theory of all finite fields with a nontrivial additive character; and also to the characteris-
tic 0 asymptotic theory of all prime fields with a nontrivial additive character.

Proof. We have seen that PFC eliminates quantifiers and hence becomes complete upon
a description of ‰ on Qa. We thus have only to show that for any � 2 Aut.Qa/ and
any homomorphism ‰W Fix.�/ ! T vanishing on Z, there exists an FCq approximating
.Fix.�/;‰/.

The following explicit statement is a little stronger than what we need: Let f .X/ be

an irreducible monic polynomial of degree d over Q,

K D QŒX�=.f /:

Assume the Galois hullL ofK is cyclic of degree d 0 overK, and let r1; : : : ; rb be elements
of K such that 1; r1; : : : ; rb are Q-linearly independent; also let r0 be the reciprocal of
some integer k > 0. Let gi 2QŒX� be a polynomial whose image modulo .f / is ri . Let U
be a nonempty open subset of Tb , and let u 2 T satisfy uk D 1. Then there exist infinitely
many primes p and such that f has a root a modulo p, and the splitting field of f over Fp
has degree d 0 over Fp; and such that, moreover, there exists e with�

‰pe .g1.a//; : : : ; ‰pe .gb.a//
�
2 U

and such that
‰pe .1=k/ D u:

Using Cebotarev, we can find an infinite sequence of primes pm and am 2 Fpm , such
that the splitting field of f over Fpm has degree d 0 over Fpm . We will let qm D p

em
m for an

appropriate sequence of integers em. Then

‰qm.gi .am// D ‰pm.emgi .am// and ‰qm.1=k/ D ‰pm.em=k/:

Let cmD .g1.am/; : : : ; gb.am//. Then it suffices to show given � > 0 that for some infinite
set of indices m, we can find em such that ‰pm.emcm/ lies in a prescribed open subset
of Tb , and ‰pm.em=k/ is a prescribed kth root of unity. This is true by Lemma 3.17,
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noting that as m!1, the gi .am/ avoid any given finite number of Z-linear relations,
even modulo 1 (since the gi .a/ and 1 are linearly independent over Q). At the same time,
we can make sure that em is relatively prime to d 0; thus the splitting field of f over Fpemm
still has degree d 0 over Fpemm .

The proof for the class of prime fields with an arbitrary nontrivial additive character
is completely parallel; at the end, having found the sequences pm; em, in place of moving
to Fpemm we remain with Fpm , but multiply the standard character by em.

Lemma 3.17. Let cm 2 Fbpm be a sequence of b-tuples from prime fields of increasing size.
Assume: for any given nonzero rational vector .˛1; : : : ; ˛b/, for almost all m it is not the
case that

bX
iD1

˛icm;i D 0:

Let U be a nonempty open subset of Tb . Also fix k 2 N and l 2 .Z=kZ/�. Then for
arbitrarily large m, for some em 2 N,

‰pm.emcm/ 2 U:

Moreover, we can choose em D l .mod k/.

Proof. This follows from an effective form of Weyl’s criterion for equidistribution; but
it also follows from the pseudo-finite version Lemma 3.18, that we will prove separately.
Note that the ‘moreover’ is obvious, since changing em by a multiple of pm does not affect
‰pm.emcm/, and pm is a unit mod k.

Lemma 3.18. Let .F;C; � ;‰/ be an ultraproduct of enriched finite fields FCq . Let n 2 N,
c 2 F n and assume m � c ¤ 0 for m 2 Zn X .0/. Then, ‰.Fc/ D Tn.

Proof. In any case, ‰.Fc/ is a closed subgroup of Tn, using @0-saturation of the ultra-
product; so if it is not all of Tn then for some m 2 Zn X .0/ we have ‰.Fc/mD1 or
‰.Fc0/D1, where c0Dm � c2F . But by assumption, c0¤0 so Fc0DF , and ‰.F /DT .

Note we could not simply apply Weyl’s theorem directly to ‰.c/, since that may fall
into some rational hyperplane.

3.19. Simplicity

Proposition 3.20. PFC admits n-amalgamation for algebraically independent
algebraically closed substructures. By the case n D 3, PFC is a simple theory.

Proof. In fact, a stronger statement is true, namely n-amalgamation over PF : letA be any
functor on the partially ordered set P.n/ of subsets of Œn� D ¹1; : : : ; nº into algebraically
closed substructures of a model of PF ; see [18]. Let P.n/� D ¹s � n W jsj < nº. Assume
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further that for s 2 P.n/�, a character ‰s is given on A.s/, so that ‰sjA.s0/ D ‰s0 when
s0 � s. Then there exists

‰Œn�WA
�
Œn�
�
! T

completing the data to a functor into models of the universal part of PFC.
The proof is similar to the proof for pseudo-finite fields [17], but moving first to the

Q-linear span of the n � 2-skeleton, arguing that the values of ‰ are determined thus far,
and that beyond this one has Q-linear independence and thus sufficient freedom in the
choice of ‰. More precisely, for jsj D n � 1, let B.s/ be the Q-span of [s0<sA.s0/. Let
.es;i W i 2 Is/ be a subset of A.s/, mapping to a Q-basis of A.s/=B.s/. We have to show
consistency of ‰.es;i / D ˛s;i , for any choice of ˛s;i 2 T. By an internalization argument
as in [17], we see that the elements�

es;i W s 2 P.n/; jsj D n � 1; i 2 Is
�

are Q-linearly independent as a set. E.g. any linear dependence among the elements
e2;3;i over A.1; 2/ [ A.1; 3/ would imply, by internalizing A.1/ into the base, a simi-
lar linear dependence over A.2/ [ A.3/, contradicting the choice of the E2;3;i . Hence, by
Remark 3.10, the PF-type ofA.Œn�/ along with‰.es;i /D ˛s;i is consistent with PFC.

For a definable group G in a saturated structure and a base structure A, G0A denotes
the intersection of all A-definable subgroups of finite index; whereas G00A is the smallest
subgroup of G cut out by a partial type over A, and with bounded index, i.e. the quotient
remains bounded in any elementary extension; in this case the quotient admits a natural
compact topological group structure. It has long been open, for discrete first order theories
that are simple, whether G000 must equal G00 . PFC gives a natural continuous-logic exam-
ple of a definable group G in a simple theory, where G0A D G for all A, but G000 ¤ G,
and where G00A does not stabilize with A. Indeed, let G be the additive group, and let
.ai W i 2 I / be a Q-linearly independent subset ofG.A/. Then we have a surjective homo-
morphism

G ! TA; g 7!
�
‰.aig/ W i 2 I

�
I

the kernel is clearly A-
V

-definable.

3.21. Galois group

The compact (Lascar–Kim–Pillay) absolute Galois group GT of a theory T , whether in
discrete or continuous logic, is defined as follows. A (hyper)imaginary sort has the form
S D Kn=E, with E an 1-definable equivalence relation (without parameters). If (for
someK, or all sufficiently saturatedK) S does not grow upon replacingK by an elemen-
tary extension, we say that S is bounded. One then defines a compact Hausdorff topology,
the logic topology, on S , by taking projections of definable sets (with parameters) to be
the basic closed sets.GT is by definition the automorphism group of the family of all com-
pact sorts (the permutations that extend to an automorphism of some model). It is itself
naturally a compact Hausdorff group.
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If T admits 3-amalgamation over algebraically closed sets in the discrete logic sense,
then GT is totally disconnected. For PFC this is the case by Proposition 3.20. See, how-
ever, Section 6.3.

3.22. The theory with a space of characters

Recall the theory PF yC from the introduction. When a nonzero constant symbol is added
to the dual sort yF , it is clear that PF yC becomes bi-interpretable withPFC. The results of
Theorem 1.1 thus generalize easily to PF yC. Let us only review the completeness statement,
that becomes somewhat stronger: the completions of PF yC are entirely determined by the
field of absolute numbers, i.e. by the restriction to the field language.

To see this, let M;N ˆ PF yC with N @1-saturated, and assume

M \Qa
D N \Qa

D K:

Choose � 2 yF .M/ and  2 yF .N/. Let .bi W i 2 I / be a Q-basis for K. Use saturation
of N to find d 2 N such that  .dbi /D �.bi / for i 2 I . (For any finite ¹ˇ1; : : : ; ˇkº � I ,
existence of such a d with respect to ¹ˇ1; : : : ; ˇkº follows from the axioms, since the
image of A1 under x 7! .xˇ1; : : : ; xˇk/ is not contained in any Q-linear affine space.)
Let  0.x/ D  .dx/. Then by completeness of PFC we see that .N;  0/ and .M; �/ are
elementarily equivalent in the language of PFC. It follows that M; N are elementarily
equivalent in the language of PF yC.

Corollary 3.23. The theory of the class of prime fields, enriched by their dual groups and
evaluation map, is precisely PF yC.

3.24. The theory in probability logic

An alternative and more conceptual axiomatization appears if one uses probability logic;
specifically the expectation logic in the sense of [15]. We will only evoke it in passing.

We continue to work in continuous logic as sketched in the introduction. Probability
logic, superimposed upon this, consists of additional syntactical operators Ex behaving
formally like quantifiers; thus if �.x; y1; : : : ; ym/ is interpreted as a function FmC1! C
with bound N , then Ex�.x; y1; : : : ; ym/ has free variables among y1; : : : ; ym, and is
interpreted as a functionFm!C with the same bound, intended to denote the expectation
of � with respect to x. The probability axioms are:

(1) Ex.1/ D 1 for the constant function 1 (viewed as a function of any set of vari-
ables);

(2) Ex.� C �0/ D Ex.�/C Ex.�0/, and Ex. � �/ D  � Ex.�/ when x is not free
in  ;

(3) Ex
�
j�j
�
� 0;

(4) ExEx0 D Ex0Ex .

Axioms (1)–(3) ensure that a model carries a definable Keisler measure �, and Ex� is
the �-expectation of �. Axiom (4), asserting the commutativity of the operators Ex ; Ex0 ,
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is the model-theoretic Fubini rule. We need an additional version of Fubini that we formu-
late for expansions of fields. Let C be an absolutely irreducible curve, and let f; g be two
nonconstant regular maps on C . Also let � be a C-valued definable function on C . For
x 2 F , let

f��.x/ D
X

y2C; f .y/Dx

�.y/;

the sum being taken over F -points of C . Similarly define g��.

(5) Exf�� D Exg�� .

This allows us to define EC� to be the common value of Exf��, for any nonconstant
regular f . This version is suitable for (pseudo-)finite fields, where no Jacobian term is
needed. (This extends uniquely to an integration theory on varieties, see [19, 5.14]; but
only the case of curves will be needed below.)

Now for the language of rings with an additive character, we can formulate the follow-
ing axioms:

(a) j‰.x/j = 1;

(b) ‰.x C y/ D ‰.x/‰.y/, ‰.0/ D 1;

(c) For any absolutely irreducible affine curve C , EC 1 D 1 and EC‰ D 0.

This implies the main axiom scheme of PFC: if C � An is an absolutely irreducible
affine curve, not contained in any Q-linear hyperplane, let Y � Tn be the image of ‰.n/

on a saturated model. Then Y is the support of a measure � on Tn, such thatZ
 � D EC � ı‰

.n/

for any continuous function � on PFC. The �-integral of any nontrivial character
z
m1
1 � � � z

mk
k

vanishes on Tn, while the �-integral of 1 is 1; so � is the Haar measure,
and Y D Tn. Then PFC implies elimination of sup and min quantifiers, while Axiom (c)
determines the underlying Keisler measure. We leave the details to the interested reader.

4. Definable integration, and comparison to PF

Let F be an ultraproduct of finite fields with an additive character, Fi , and let V be an
absolutely irreducible variety over F . Then for almost all i , V.Fi /we have the normalized
counting measure �i on V.Fi /; the integral of  under this measure isP

v2V.Fi /
 .v/

jV.Fi /j
:

The pseudo-finite measure �V is obtained as an ultraproduct of these normalized counting
measures.
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Proposition 4.1. The pseudo-finite counting measure �V is definable. In other words
if �.x; y/, y D .y1; : : : ; ym/ is a formula then the map

y 7!

Z
�.x; y/ d�V .x/

is a definable map in the sense of continuous logic. Moreover, when V varies in a definable
family of definable sets, �V is uniformly definable.

Proof. It will be more convenient to show definability for a different normalization,
namely for the ultraproduct of the counting measure on V divided by jFi jdim.V /. The
dimension of V is definable in definable families, and one can then obtain the probability
measure upon dividing by

R
1.

The statement reduces using Fubini to the case of affine curves Cb � An varying
in some definable family. Using quantifier elimination and Remark 3.3 (vii), it suffices
to integrate ‰nsym.c1; : : : ; ck/, where the ci are PF-definable functions of the variables.
By the definition of ‰nsym as a sum, this amounts simply to integrating ‰.x1/ over a
PF-definable subset ed of another affine curve C 0

d
, with d a definable function of the

parameters. Namely, each ci .u/ is uniformly algebraic over u. Thus, the Zariski closure
of ¹.u; c1.u/; : : : ; ck.u// W u 2 Cbº is a curve C 00

b
. Let

C 000b D ¹.x; u; z1; : : : ; zk/ W .u; z1; : : : ; zk/ 2 C
00
b ; x

n
C z1x

n�1
C � � � C zn D 0º;

and eb D ¹.x; u; z1; : : : ; zk/ 2 C
000
b W zi D ci .u/º (a PF-definable subset of C 000b ):

Then, Z
Cb

‰nsym.c1; : : : ; ck/ D

Z
eb

‰.x/:

If necessary, passing from b to a parameter d within acl.b/, break up C 000
b

into irreducible
components.

The case where  d is a finite set is directly definable via ‰nsym, see Remark 3.3 (iv).
Using definability of dimension (specifically of dimension zero), we can similarly reduce
to integrating‰.x1/ over an absolutely irreducible curve Cb . If x1 is constant on Cb , with
value v, the integral is ‰.v/�.1 d /. Otherwise, by the Weil bound, the answer is 0.

We can define, for any formula �.x/, the Fourier transform

F.�/ WD

Z
x2F n

‰.x � y/�.x/ d�.x/:

Corollary 4.2. The Fourier transform of any definable real-valued relation on Fnp is also
definable, uniformly in p, and uniformly in families of definable functions.

All definable functions on F n are bounded, in particular, square-integrable; by the
Plancherel theorem the Fourier transform of a definable function is square-integrable with
respect to the unnormalized counting measure, hence has countable support; by quantifier-
elimination the support of the Fourier transform consists of algebraic numbers, if the
original function is 0-definable.
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In particular, the Fourier inversion formula does not survive the ‘leading order’
continuous-logic ultraproduct that we are using. It would be interesting to know if it
holds using the ‘next to leading order’ measure of Section 6.5, or if a further degree of
precision is needed. Fourier inversion does hold for almost periodic functions (uniform
limits of finite linear combinations of functions ‰.cx/); I do not know if it holds for any
others or if this is the precise domain.

Proposition 4.3. The images under ‰.n/ of PF-definable subsets D of F n (in a suffi-
ciently saturated model) are finite unions of cosets of subtori of Tn. Moreover, for fixedD,
the pushforward measure ‰.n/� �D is a finite, positive Q-linear combination of Haar mea-
sures on such cosets (of dimension equal to dim.D/).

Proof. Consider the topology � on F n, whose closed sets are finite unions of Q-affine
subspaces, cut out by (inhomogeneous) Q-linear equations. Let [miD1Hi be the closure
of D in this topology. Then

Di D D \Hi

is � -dense in Hi ; and it suffices to prove the lemma for each Di separately (for the mea-
sure theoretic statement, only the top-dimensional components Di play a role, the others
having pseudo-finite measure 0). After an SLn.Z/-change of variable, and translation, we
may assume Hi is a coordinate subspace, cut out by xkC1 D � � � D xn D 0; and then we
may work in F k instead. By the axioms of PFC,‰ mapsDi surjectively to Tk . Moreover,
for any nonzero m 2 Zk , the integral of

kY
iD1

‰.xi /
mi D ‰

�
†kiD1mixi

�
under the pseudo-finite measure evaluates to 0; hence the pushforward to Tm of the
pseudo-finite measure on Di must be a multiple ˛i of the Haar measure on Tk . Since the
total measure of each Di is rational, we have ˛i 2 Q>0.

Proposition 4.3 is not directly useful to prove definability, since when D D Db varies
in a definable family, the image tori can jump; notably whenDb DD \Hb is a hyperplane
section of some fixed definable set D, ‰.n/.D \ Hb/ has lower dimension when b is
rational. The counting measure is definable despite this translation.

Corollary 4.4. LetD � F n be a PF-definable set, and let hWD! C be a PFC-definable
map. Then h.D/ has finitely many connected components. Define xEhy if h.x/, h.y/ lie
in the same connected component. Then Eh is a PF-definable equivalence relation with
finitely many classes.

Proof. The proof of Proposition 4.3 shows that ‰.n/.D/ D [kiD1Ci is a finite union of
cosets Ci of subgroups of Tn; moreover, we can write

D D [kiD1Di
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with Di D D \ Si definable with parameters, in fact Si is a Q-affine subspace of F n, so
that

Ci D ‰
.n/.Di /:

Now h can be expressed, after replacing D by a finite cover, as C ı ‰ with C WCn ! C
continuous. It follows that eachDi is mapped into a single connected component of h.D/,
and so the classes of Eh are finite unions of the Di .

Corollary 4.5 (PFC is conservative over PF for definable sets.). Let .F;C; � ;‰/ˆ PFC
be sufficiently saturated, let X � F n, and assume both X and F n X X are

V
-definable

(with parameters) in .F;C; � ; ‰/. Then X is definable (with parameters) in .F;C; �/.

Proof. The characteristic function ofX is definable in .F;C; � ;‰/ in these circumstances,
and so E1X is PF-definable by Lemma 4.4.

In view of this conservation result, one may wonder whether PFC is at all a proper
expansion of PF ; certainly some functions onto the interval Œ0; 1� become definable.
But by no means is this the case for ‰. In continuous logic, definability would mean
that given any two subsets A � B � T of the unit circle with A compact and B open,
there exists a formula �.x/ in the language of rings such that ‰.a/ 2 A implies �.a/,
while �.a/ implies a 2 B . This is ruled out by the undecidability results of Section 2.
But let us also see it in a more geometric fashion. Let F be a pseudo-finite field (with
nonstandard size p�), and let � > 0 be standard. A definable set D cannot contain an
interval I of length � �p�, unless the complement D0 WD F X D is finite. To see this
recall the stabilizer of [17]. In the special case of rank 1, it can be defined as follows:
let q be some rank-one type of elements of D0. Then St0.q/ is the set of elements a
with aq \ q infinite; St0.q/ generates a definable group S in two steps, and S X St0.q/
is finite; if s1; : : : ; sk 2 S are (algebraically) independent then \.si C q/ ¤ ;. Now Fp
has no proper, nonzero definable subgroups, hence neither does F . So S D F . Now one
can easily find independent s1; : : : ; sk 2 S such that the union of the translates si C I is
all of F . But then \.si CD0/ D ;, a contradiction.

A slightly different argument that PF,PFC differ: it is clear that the additive group of
an ultraproduct of finite fields with additive character admits a

V
-definable subgroup such

that the quotient is connected in the logic topology, namely the kernel of‰. But according
to results in [17] we have G0 D G00 for any definable group over any base set, i.e. no
nontrivial connected quotients exist.

5. Prime fields with standard character

In this section we will consider the class PC of prime fields with their standard character

n mod p 7! exp.2�ip=n/



Ax’s theorem with an additive character 203

embodying the natural map

Fp D Z=pZ � R=pZ Š T:

(Note that the last isomorphism is unique if R=pZ; T are viewed as compact groups, up
to inversion.)

We have found an explicit theory admitting quantifier-elimination, and true asymptot-
ically in the family of finite fields with any nontrivial additive character. It continues to
hold, of course, in the smaller class PC. So every sentence is equivalent to a quantifier-
free one (in the language with ‰sym); to axiomatize PC amounts to finding the valid
quantifier-free sentences, describing, for each number field L, the possibilities for F \ L
and for ‰j.F \ L/, where .F;‰/ is an ultraproduct of elements of PC.

One group of additional axioms, the axioms SP below relating ‰ on Q to roots of
unity in F , is certainly needed. We conjecture that this gives a full axiomatization of the
class, and show that this follows from a number theoretic conjecture, closely related to
work of Duke, Friedlander, Iwaniec, and Toth. This is the counterpart for fields with an
additive character of the use made by Ax of the Chebotarev density theorem.

We start with a description of the axiom scheme SP; it consists of axioms SPŒ1�;
SPŒ2�; : : : ; where the nth axiom asserts: SPŒn�. For some k < n prime to n we have:

� ‰
�
1
n

�
D exp.2�ik=n/; and

�

�
F \QŒ n

p
1 �
�
D Fix.˛k/,

˛k being the automorphism of QŒ n
p
1 � acting on the nth roots of 1 by kth power.

For instance, for n � 4 we have

‰.1/ D 1; ‰
�1
2

�
D �1; ‰

�1
3

�
D e2�i=3

iff F contains a primitive cube root of 1 and 4�i=3 otherwise,

‰
�1
4

�
D i if i 2 F , and

‰
�1
4

�
D �i otherwise:

Note that it follows from any SPŒn� that ‰.1/ D 1, and hence ‰.Z/ D ¹1º, i.e. ‰ induces
a character of Q=Z.

Remark 5.1. The prime field axioms are nicer to formulate in the language of differ-
ence fields, restricted to the fixed field; this coincides with the language of pseudo-finite
fields with the addition, for each n, of an algebraic imaginary constant naming (coher-
ently) a generator �n of the Galois group of the order n extension. Now both the character
group and the Galois group have a distinguished generator. In the standard models, the �n
is interpreted as the Frobenius automorphism Fr; in particular, on the nth roots of 1
(with n prime to p) the distinguished automorphism determines an integer k.n/, namely
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the unique integer modulo n such that Fr.!k/ D ! for each nth root ! of 1. In this lan-
guage the nth axiom asserts:

If �n.!/ D !k then ‰
�
�k

n

�
D exp.2�i=n/;

relating the choice of generator of the orientation module of nth roots of unity to the choice
of generator of the order n Galois group, via the additive character ‘to resolution 1=n’.

The truth of SP in the prime fields FCp with standard character, asymptotically as
p !1, is an agreeable exercise. For instance Fp contains all nth roots of 1 iff p D 1

.mod n/ iff �1=n is represented by .p � 1/=n in Fp . In this case we have

 .�1=n/ D exp
�
2�i=n � .1 � 1=p/

�
;

so the limit with large p is indeed exp.2�i=n/. More generally, if p D k .mod n/ then
‰p.�k=n/ approaches exp.2�i=n/ as p !1, and the value of ‰.1=n/ follows.

Conjecture 5.2. The characteristic zero asymptotic theory of prime fields with their stan-
dard additive character is axiomatized by PPC WD PFC C SP.

Since we already have quantifier elimination, the conjecture must be fundamentally
number-theoretic; we will now attempt to bring this out. Let Qab denote the field gener-
ated by all roots of unity, over Q. For any field F containing Q, call a homomorphism
hWF ! T acceptable if for each n 2N; n � 1, h.1=n/ is a primitive nth root of unity. The
condition is only on hjQ; it implies that h vanishes on Z, and indeed that the kernel of h
is precisely Z. If h is acceptable, there exists a unique automorphism �h of Qab such that
for any n and any primitive nth root !n of 1, for some k prime to n, �.!n/ D !kn where
h.�k=n/ D exp.2�i=n/. When F D Fix.�/, where � 2 Aut.L/, L a finite Galois exten-
sion of Q, we say h; � are compatible if h is acceptable, and there exists an automorphism
of LQab extending both � and �h.

In case L \ Qab D QŒ!� for some primitive mth root of unity !, compatibility
amounts to the equality �h.!/ D �.!/.

Proposition 5.3. The following statements are equivalent.

� W Conjecture 5.2.

� W Let L be a finite Galois extension of Q. Let � 2 Aut.L/, and let hW Fix.�/! T be
an acceptable homomorphism, compatible with � . Then .Fix.�/;C; � ; h/ embeds into an
ultraproduct of enriched prime fields from PC.

| W Let L be a finite Galois extension of Q. Assume L \ Qab D L \ QŒ!�, where !
is a primitive mth root of 1. Let � 2 Aut.L/, �.!/ D !k , and let f be an irreducible
polynomial over Q of degree d , with a root in a 2 L satisfying �.a/ D a. Then for any
� > 0 and any u1; : : : ; ud�1 2 T, there exist infinitely many primes p 2 N with p D
k mod m, and b 2 Fp , f .b/ D 0, with j‰p.bi / � ui j < �, i D 1; : : : ; d � 1.

Note that the statement p D k mod m in the conclusion of | could equally well be
replaced by j‰p.�k=m/ � u0j < �, where u0 D exp.2�i=m/.
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Proof. We saw above that PPC holds asymptotically in the class PC.
Let us show | follows from Conjecture 5.2. Let L;!; �; f; a; k be as in |. Let

hWFix.�/ ! T

be a homomorphism vanishing on Z, with h.ai / D ui , and h.�k=m/ D exp.2�i=m/.
Define an automorphism � of Qab by setting �.�/ D �j , where � is a primitive nth root
of unity, and h.�j=n/ D exp.2�i=n/; note � agrees with � on QŒ!�. Since L;Qab are
linearly disjoint over QŒ!�, one can find an automorphism x� of Qalg extending both �
and � . Then,

.Fix.x�/; h/ ˆ SP:

Let M be a model of PFC extending .Fix.x�/;C; � ; h/. By Conjecture 5.2, M embeds
elementarily into an ultraproduct of standard enriched prime fields .Fp;C; � ;‰p/. Since in
these fields ‰p.�k=m/ approaches exp.2�i=m/, it follows that p D k mod m for almost
all of these p, proving |.

Now assume �. We will show that any model M of PPC is elementarily equivalent to
an ultraproduct K of prime fields with their standard character. By Proposition 3.9, it will
suffice if

.K \Qa;C; � ; ‰/ Š .M \Qa;C; � ; ‰/:

Thus, we have to prove that for any � 2 Aut.Qa/ and any compatible homomorphism
hW Fix.�/! T , the structure .Fix.�/;C; � ; h/ is isomorphic to K \Qa for some ultra-
product K D .K;C; � ; ‰/ of prime fields with standard character. By compactness (of
the class of ultraproducts of PC), it suffices to find such an isomorphism on a prescribed
number field L, Galois over Q; or even a finitely generated subring R D OLŒ1=N � of L;
i.e. a field isomorphism

˛WL \ Fix.�/! L \K;

with ‰ ı ˛ D h holding on R. Enlarging L if necessary, we may assume it contains a
primitive N th root ! of 1.

We have reduced to a statement that is nearly provided by�; except that� only speaks
of an embedding, whereas we require the image of ˛ to be all ofK \L. To bridge this gap
we employ the Chebotarev field crossing argument; see [13] for a full account, including
the existence of the auxiliary primes l that appear below.

Let d 0 be the order of � in Aut.L/. Let l be a prime such that d 0j.l � 1/ and QŒ!0� is
linearly disjoint from L over Q, where !0 is a primitive l th root of 1. Let � be an automor-
phism of QŒ!0� of order d 0. Combine � and � to an automorphism x� of LŒ!0�; then x� still
has order d 0. Let h0WQ! T be compatible with x� (i.e. with some automorphism of Qa

extending x� ). Since �.!/ D x�.!/, and the pairs .h; �/ and .h0; x�/ are both compatible,
we have h0jZŒ1=N � D hjZŒ1=N �. Now,

OLŒ1=N � \Q D ZŒ1=N �:

Thus, there exists a homomorphism Q C OLŒ1=N �! T extending both h0ZŒ1=N � and
hjOLŒ1=N �; extend it further to xhW Fix.�/! T. The pair .xh; x�/ remains compatible since
this is tested on Q.
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By � applied to .Fix.x�/; xh /, there exists an ultraproduct .K; ‰/ of elements of PC
and an embedding

˛W .Fix.x�/; xh /! .K;‰/:

Restricting the ring R, we have xhjR D hjR, and so

‰ ı ˛jR D xhjR D hjR:

It remains only to show thatK \L is no bigger than Fix.�/. IfK \L > Fix.�/, sinceK
contains Fix.x�/, it would follow thatK \QŒ!0� > Fix.�/. However, as bothK and Fix.x�/
satisfy SP, the fields QŒ!0� \ L0, QŒ!0� \K are determined by xh.1=l/ D ‰.1=l/ and so
must be equal. This contradiction shows that

K \ L D Fix.�/;

as required.
To close the circle we prove � from |. Let L; �; h be as in �. Let a be a primitive

generator for Fix.�/=Q, i.e.

Fix.�/ D QŒa�; d D ŒFix.�/ W Q�:

Then h is determined by h.a/; : : : ; h.ad�1/ and hjQ. In turn, hjQ is determined by
h.1=N/ for the various N . Of course, h.1=N/, h.1=N 0/ are determined by the single
value of h.1=.NN 0//. Using compactness, it suffices to prove that for any m 2 N, the
field Fix.�/ embeds into an ultraproduct of enriched prime fields from PC, in such a way
that h.ai / D ‰.ai / for i D 1; : : : ; d , and h.1=m/ D ‰.1=m/.

We have L \Qab � QŒ�� for some root of unity �; we may assume m divides the
order of �, so that LŒ�� contains a primitive mth root ! of 1. Now,

LŒ�� \Qab
D QŒ��:

Extend � to LŒ��, compatibly with h.
Let k be such that

h.�k=m/ D exp.2�i=m/:

By SP (i.e. acceptability), upon possibly replacing � by another automorphism of L with
the same fixed field, we have �.!/ D !k . Let f be the minimal polynomial of a over Z.
By | for LŒ��; �; a, there exist primes pi D k mod m and bi 2 Fpi , f .bi / D 0, such that

j‰p.b
i / � h.ai /j < 1=k; i D 1; : : : ; d � 1:

Since pi D k mod m, we also have

‰.�k=m/ D exp.2�i=m/:

Let .K;C; � ; ‰; b/ be a nonprincipal ultraproduct of the .Fpi ;C; � ; ‰pi /, and embed
Fix.�/ D QŒa� in K via a 7! b. Then h; ‰ agree on �k=m and hence on 1=m, and
on each power ai . This finishes the proof.
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Remark 5.4. In case | has counterexamples, the characteristic zero asymptotic theory of
prime fields with their standard additive character is axiomatized by PPC along with the
list of assertions

.8x/
�
f .x/ D 0!

d�1_
iD1

j‰.xi / � ui j � � _
ˇ̌
‰
�
�k

m

�
� e2�i=m

ˇ̌
� �

�
for each such counterexample.

5.5. Equidistribution

It is natural to expect not only existence, but also equidistribution of the primes in |. We
will see that a considerably simpler (but still deeply conjectural!) one-variable equidistri-
bution statement implies it. The required statement, Conjecture 5.7, appears to be quite
close to a hypothesis raised in Duke, Friedlander and Iwaniec [11], that we recall below
as a conjecture.

Conjecture 5.6 (DFI). Let f 2 ZŒX� be an irreducible polynomial of degree d � 2. Let
0 < ˛ < ˇ � 1. Let P be the set of primes. Consider,

S.x/ WD
®
.p; �/ W p 2 P; p � x; � 2 Z; 0 � � < p; f .�/ � 0 .modp/

¯
:

View S.x/ as a probability space, with the normalized counting measure. Then the prob-
ability that ˛ � �

p
< ˇ approaches ˇ � ˛ as jS.x/j ! 1.

The quadratic case was proved in [11] and [28]; the general case was qualified as
‘far away’ in [11], a view that to my outsider knowledge has not required much revision
despite a quarter-century of progress.

We will need what seems to be a slight extension. Let L be a Galois extension of Q,
of degree ı D ŒL W Q�, with ring of integers OL. Let P 0.L; x/ denote the set of maximal
ideals p of OL, whose residue field k.p/ has cardinality at most x. According to the prime
ideal theorem, P 0.L; x/ has size asymptotic to x= log.x/. There are at most ı such ideals
above a given rational prime p. If k.p/ is not a prime field, then

p2 � jk.p/j � xI

so p �
p
x; there are thus at most ı

p
x such primes p, a negligible number

vis-a-vis jP 0.L; x/j; we will disregard them. We will thus be interested in the set P.L; x/
of primes p 2 P 0.L; x/ with residue field Fp for some prime p. We will always let p
denote the cardinality of the residue field of p.

Let a be an element of L. For all but finitely many primes p 2 P.L;1/, we have
a 2 Op, and so resp.a/ 2 k.p/ D Fp . Let ‰p be the standard additive character

n mod p 7! exp.2�in=p/:

Let �L;x be the normalized counting measure on P.L; x/, and let �ŒL; aIx� be the push-
forward under the map

p 7! ‰p.resp.a//:
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Conjecture 5.7 (Extended DFI). Let L be a Galois extension of Q, and a 2 LXQ. Then
the probability measures �ŒL;aIx� converge weakly to the Haar measure on T as x!1.

One can also state the conjecture in the style of Conjecture 5.6: the fraction of p 2

P 0.L; x/ such that ˛ � resp.a/ < ˇ approaches ˇ � ˛ as x !1.
Using Weyl’s criterion for equidistribution, as in [11] (3,4), a third equivalent form is

the truth for each h 2 Z; h ¤ 0 of the estimate:

lim
x!1

Z
�ŒL;a;x�

‰p.resp.a//
h dp D 0: (1)

Note that Conjecture 5.7 considers the value of ‰p at a single field element a,
whereas | requires the values at a; a2; : : : ; ad�1. Despite this we will see in
Proposition 5.11 that Conjecture 5.7 does imply Conjecture 5.2.

Remark 5.8. The case L D Q.a/ of Conjecture 5.7 is equivalent to Conjecture 5.6.

Proof. Assume L D Q.a/. Let f be the minimal polynomial of a over Z. Then, for
some n,

nZŒa� � OL �
1

n
ZŒa�:

Thus, putting asides the finitely many primes dividing n, a prime p of OL in P 0.L; x/
corresponds to a prime p � x of Z along with a homomorphism ZŒa�! Fp; this homo-
morphism is determined by the image of a, i.e. by choice in Fp of a root of f . Thus, �Œx�
is also induced by the pairs .p; b/ with p � x and b 2 Fp , f .b/ D 0. This is what is
counted in Conjecture 5.6.

Going a little further, evidence that removing the condition L D Q.a/ is not entirely
unreasonable is given by the following remark, treating cyclotomic extensions of Q.a/.
We state it for quadratic a, but in the same way we can show that if Conjecture 5.6 holds
true, then so does Conjecture 5.7 for the case L D QŒa; �� with � a root of unity.

Remark 5.9. Conjecture 5.7 is true for cyclotomicL and quadratic a 2L (using [11,28]).

Proof. We may assume LDQŒ��, �N D 1; we have � 2 Aut.L/, �.a/D a, �.�/D �k .
LetH DAut.L=QŒa�/; soH is an index-two subgroup of Aut.L/D .Z=NZ/�. So k 2H .
We consider the map

p 7! .‰p.a mod p/; p mod N/

on primes p of QŒa� with prime residue field Fp . Let �Œx� be the normalized counting
measure on the set of primes p of QŒa� with norm p � x. We have to show that the image
of this map becomes dense as x ! 1; we will even prove equidistribution in T � H ,
using Weyl’s method. Thus, given a character zn of T and a character ıWH ! T, not both
trivial, we must show that Z

‰p.a/
nı.p/ d�Œx�.p/ D o.1/:



Ax’s theorem with an additive character 209

In case nD 0, this does not involve‰p , and follows from the Chebotarev density theorem.
If n ¤ 0, we have

‰p.a/
nı.p/ D ‰p.naC r/

for an appropriate rational number r , with ‰p.r/ D ı.p/. The results now follows from
the quadratic case of Conjecture 5.6, a theorem of [11] and [28].

Remark 5.10. In Proposition 5.3, we obtained Conjecture 5.2 from | qualitatively. A
similar deduction could be made for the equidistribution versions; as is the case with the
usual use of the Chebotarev field crossing argument. The point is that the behavior of � on
l th roots of 1 for various l D k mod m is statistically independent among the various l ,
and hence also statistically independent from a fixed event that we would like to measure,
at least at the limit. From a stability point of view, this is the standard fact that a Morley
sequence is asymptotically independent from any given element, specialized to measure
algebras; see [4]. This allows relativizing to such an l without losing track of probabilities.

Proposition 5.11. Assume Conjecture 5.7. Let L be a Galois extension of Q and a an
element of L with d D ŒQŒa� W Q� > 1. Let �d ŒL; aIx� be the pushforward of �L;x under
the map

p 7! ‰p
�

resp.a/; resp.a
2/; : : : ; resp.a

d�1/
�
:

Then �d ŒL; aI x� weakly approaches the Haar measure on Td�1 as x !1.
For any � 2 Aut.L/ with �.a/D a and �.!/D !k , ! anmth root of 1 in L, | holds.

Proof. Again we use the Weyl equidistribution criterion, this time on Td�1. A character
of Td�1 has the form

.z1; : : : ; zd�1/ 7! z
n1
1 � � � � � z

nd�1
d�1

:

Thus, we have to prove that for any .n1; : : : ; nd�1/ 2 Zd�1 X .0/, as in (1), we have

lim
x!1

Z
�ŒL;a;x�

d�1Y
iD1

‰p.resp.a
i //ni D 0;

but
d�1Y
iD1

‰p.resp.a
i //ni D ‰p resp

d�1X
iD1

nia
i
I

as a has degree d , we have
d�1X
iD1

nia
i
… QI

hence the equation follows from (1), applied to the element
Pd�1
iD1 nia

i in place of a.
If we are also given a primitivemth root of unity ! 2 L, and � 2 Aut.L/ with �.!/D

!k and �.a/D a, letH be the subgroup of Aut.QŒ!�=Q/Š .Z=mZ/� generated by � . So
the image of k in .Z=mZ/� lies inH . Exactly as in Lemma 5.9, we obtain equidistribution
in Td�1 �H . But this clearly implies |.
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By way of illustration, consider the case where f 2 ZŒX� is monic, irreducible,
and QŒX�=f is Galois. Then, for (all but finitely many) primes p, the number of roots
of f in Fp is 0 or d . On the face of it, Conjecture 5.6 is compatible with a picture where
for each prime p where f has roots at all, either all d roots are represented by numbers
in ¹0; : : : ; .p � 1/=2º, or all d roots are represented by numbers in .pC 1/=2; : : : ; p � 1;
as long as the number of primes choosing the first option is about equal to those choosing
the second. By the Proposition, Conjecture 5.7 (at least) implies that this is not the case.
Applying ‰ to the finite set of roots gives an element of Td= Sym.d/; by varying p
among primes � x and taking the limit x ! 1, these elements equidistribute on the
subset °

.z1; : : : ; zd / 2 Td W
dY
iD1

zi D 1
±
=Sym.d/:

In particular, for many (most) p there will be roots in both lower and upper half-intervals.
We note also that [12] proves | for the case L D QŒa�, k D 0, m D 1, assuming the

Bunyakovsky conjecture.

6. Some open-ended remarks

6.1. p-adic additive character

The map ZŒ1=p�=Z ! T, a 7! exp..2�i/a/, induces a homomorphism ‰pWQp ! T.
Construed in discrete first-order logic, the theory of .Qp; ‰p/ is undecidable for reasons
similar to Proposition 2.2; pulling back appropriate arcs in T , and rescaling, one can
interpret long intervals Œ1; : : : ; a� in Z=pnZ. Likewise, the asymptotic theory (over all Qp)
is undecidable in discrete logic. However it is natural to expect that the continuous-logic
presentation will be decidable, and with definable integration with respect to the p-adic
measure, both for a single Qp and asymptotically. It is relevant that integration with an
additive character reduces motivically to exponential sums over the finite residue field
(Cluckers–Loeser, Hrushovski–Kazhdan). Developing this theory would be interesting.

6.2. Transformal geometry

The theory of fields with an automorphism � has a model companion ACFA; see e.g. [7].
The fixed field of � is denoted k. The theory of pseudo-finite fields is precisely the theory
of k; in this sense PF is contained in ACFA. The Frobenius difference fieldKp D .Fap ; �p/
with �p.x/ D xp is not a model of ACFA, but any nonprincipal ultraproduct K of such
difference fields is ([16, 30]). Over any difference field, there is a notion of transformal
dimension; it can be defined using transformal transcendence degree. OverK one can also
characterize the transformal dimension of a definable set D D ¹x W �.x/º as the unique n
such that Dp WD �.Kp/ has dimension n for almost all p. Note that Dp is a constructable
set, since �p is algebraic.
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Any variety over the fixed field k has transformal dimension 0; thus, the world of
varieties over finite fields is represented within the difference varieties of transformal
dimension 0. However, the latter category is considerably bigger. For one example, ultra-
products of Suzuki groups, defined using a square root of Frobenius, live therein.

When D has transformal dimension 0, a finer dimension called the total dimension
can be defined, and one has jDpj D O.pm/ iff D has total dimension � m. One can thus
assign a measure �0 to any definable set of transformal dimension zero, namely the limit
along the ultrafilter of jDpj=pm. This measure depends only on the theory of K (along
with any parameters used in �), and not on the specific presentation as an ultraproduct; it
has the same definability properties as shown in [9] for pseudo-finite fields.

An example of a difference variety of transformal dimension 1 is given by the trans-
formal curve Df W �.y/ � y D f .x/, where x varies over an algebraic curve C , and f is
a regular (algebraic or transformal) function on C . The specializations Df;p are algebraic
curves; their smooth completions, were used by Weil ([31]) to bridge the gap between vari-
eties and exponential sums. In a different way, not requiring smooth completions, theDf;p
were used by Grothendieck and Deligne to express additive characters in terms of l-adic
monodromy. Katz raised the question of a uniform treatment of such situations; Kazhdan
and Kowalski suggested specifically that model theory may be useful; the model theory of
difference geometry seems to be a very natural framework.

A survey of the model theory of ACFA, with relevant open questions, is planned. It is
difficult to include a summary here of reasonable length, but some minimal observations
seem to be called for.

6.3. ACFA with additive character on the fixed field

Consider a characteristic 0 model K ˆ ACFA, with constant field k, and expand k to a
model of PFC, in the language considered above.1

This simplest expansion requires no additional preparatory work: by the stable embed-
dedness of k in K, or directly from the nature of the quantifier-elimination of K, the new
theory – let us temporarily name itACFAC – admits quantifier-elimination. Nevertheless,
it presents already some aspects worth noting.

(i) In any continuous-logic theory, and any sort S of that theory, one can define a
compact analogue of the absolute Galois group along the lines of [22]. Namely, consider
all
V

-definable equivalence relations E on S with a bounded number of classes, indepen-
dently of the model. There exists a smallest such E, called EKP (recall we do not employ
the convention of allowing arbitrary parameters). If M is a saturated model, the set of
E-classes carries a natural compact topology, the logic topology, and the permutations
induced from Aut.M/ become a compact topological group. This group coincides with
Lascar’s Gc , the compact part of the general Lascar group [26]; in simple theories, it is
the full Lascar group. We will call it the Kim–Pillay group.

1In the same language, we can extend the additive character to ka . Namely, on a finite extension L of k,
define  .x/ D ‰

�
1

ŒLWk�
trL=k x

�
. We will not use this extension at present.
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Let G be the Kim–Pillay ACFAC. By contrast with ACFA (see Remark 3.21) for
ACFAC, this compact group has a nontrivial connected component of the identity, G 0.
If B is any 0-definable torsor of the additive group .k;C/, one can define an equivalence
relation E by:

xEy iff ‰.x � y/ D 0:

Then B=E is a T -torsor. In case B determines a complete type over ;, the automorphism
group of B=E is T . For instance, if a is any 0-definable element of K, then

Ba D ¹y W y � y
�
D aº

is such a torsor Ta. In fact, G 0 admits a homomorphism into Tm for each algebraic ele-
ment of K with m conjugates. Of course, the image of G 0 in

Q
a2acl.0/ Aut.Ta/ is not all

of Tacl.0/, but reflects the additive relations among the elements a.

(ii) Conversely, I believe it can be shown that G 0 is commutative, and may be pre-
cisely the above image. Let F be a difference field, relatively algebraically closed in K,
and let F 0 be the base structure consisting of F andB=E as above, for all acl.F /-definable
k-torsors B . The key is to prove 3-amalgamation over F ; we are given, symbolically, the
2-types of each pair from a; b; c over F 0, compatible on the 1-types and with each 2-type
independent over F , and must find an independent 3-type extending them. As in Proposi-
tion 3.20, the purely algebraic amalgam is known to exist; and to define ‰, it suffices to
show that the known values of ‰ on k.Fab/, k.Fac/, k.F bc/ where Fab denotes the
relative algebraic closure of F.a; b/, are compatible with any additive relations among
them. If X is an F a-definable k-torsor, and x 2 X.Fa/, y 2 X.F b/, z 2 X.Fc/, then
x � y, x � z, y � z are such a triple of elements whose sum is zero. By methods similar
to [8], it should be possible to show that all additive relations on elements of k.Fab/,
k.Fac/, k.F bc/ are generated in this way. These are taken into account in advance in
the 1-types, since ‰ can be defined on the torsor X , with values in a torsor of T . (We
may replace a by the k-internal part of a over F 0. In case a; b; c lie in the same principal
homogeneous space X for a k-definable group G, we have

F.k.Fab// D F.d/

for d a generic of G, and likewise e for bc and f for ac; if any unexpected additive
relation holds, one can find d 0 2 F.d/, e0 2 F.e/, f 0 2 F.f /with d 0C e0C f 0 D 0; then
a standard argument shows yields a homomorphism from G to the additive group Ga, say
with kernel N ; and the relation is already accounted for by the images of a; b; c in X=N .
In general, a can be taken to lie in a translation variety in the sense of [8], and the situation
requires some further analysis.)

(iii) Let f be a regular function on a curve C . We can also view C as a transformal
curve (as such, it is denoted C Œ�� in [16]). The transformal curve D defined by

�.y/ � y D f .x/
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is a transformal étale cover of C (smooth and zero-dimensional). Define D‰ as the quo-
tient ofD � T by the identification of .d; t/with .d C a; t‰.a//; we obtain a circle bundle;
if instead we take the quotient of D � C by the same relation, we find an archimedean
analogue of an l-adic local system over C . The structural automorphism � lifts, given an
element a of C.k/, to translation by ‰.f .a// on D‰ .

l-adic local systems are a central object of Grothendieck’s theory leading towards the
Weil conjectures; part of the reason for taking l-adic coefficients is their approximability
by finite coefficients, where Grothendieck proved constructability theorems for cohomol-
ogy. Deligne then had to devise methods to move over to archimedean fields, first in his
solution of the Weil conjectures, but again in the case of his equidistribution theorem. As
explained in [24], Deligne obtains equidistribution in terms of the natural measure on con-
jugacy classes in compact Lie groups by what feels like a Robinson-style model-theoretic
transfer; the compact groups themselves do not really make a geometric appearance.

Could one dream of a direct archimedean analogue of Grothendieck’s l-adic local
systems, with his constructability theorems replaced by quantifier-elimination results? The
fundamental group of a variety V is a quotient of the Shelah–Galois group of ACFF.V /: it
is the limit of Aut.F.V 0/=F.V //, where V 0=V is finite and unramified. When one moves
to simple theories, such as ACFAC, the Kim–Pillay Galois group has quotients that may
be viewed as a generalized fundamental group, no longer totally disconnected. In view
of the probable abelian nature of the connected parts for ACFAC noted in (ii), and other
reasons, it seems clear that ACFAC is not the full answer, and perhaps one needs to go
beyond the Kim–Pillay part of Galois. In any case the possibility is tantalizing.

6.4. Difference geometry in transformal dimension one

Let us also take a quick look at how Weil’s ideas in [31] may generalize. A notion
of smooth transformal varieties exists; it may be defined in elementary terms using the
usual Jacobian criterion applied to difference polynomials in place of polynomials, where
differentiation treats any monomial X� as a constant. There is also a notion of transfor-
mal blowing-up, [16]. It is plausible that the projective completion of the curves Df;�
can be made smooth upon blowing up, at least for ordinary polynomials f . (The exis-
tence of a smooth difference curve with a given function field has not been investigated,
but carries its own interest.) Assuming a smooth projective model E D Ef;� exists, a
moving lemma on E2 can be formulated, but has only been proved for the transformal-
ization of smooth projective algebraic varieties; it plausibly follows from a transposition
to difference geometry of the classical ‘synthetic geometry’ proof in [14]. One can now
define an intersection product on E � E. The coefficient ring is a ‘motivic’ ring con-
structed out of zero-dimensional difference varieties, with a dynamic ‘preservation of
number’ principle built in. Whereas the Grothendieck ring of zero-dimensional schemes
has roughly the complexity of the natural numbers (the number of points with multiplici-
ties), zero-dimensional difference schemes have at least the complexity of zeta functions;
in particular, one can apply Frobenius specialization for almost all p, to obtain a sequence
of ordinary numbers. Using [16], this coefficient ring admits a natural homomorphism
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into the field R.�/, and so one can work with these coefficients when interested in ‘next to
highest order’ estimates (see below). A Hodge index inequality is valid, though a purely
transformal proof is not at present known to me; it follows using the main theorem of [16]
from the case of ordinary algebraic varieties; presumably a direct proof is also possible.
A Weil-style trace can be defined for correspondences on E using the intersection prod-
uct with the diagonal; and exponential sums can be related to the trace of the structural
automorphism � .

6.5. Next-to-leading-order measure

Consider a definable family .Da W a 2 P / of definable sets over a pseudo-finite field F .
We take F with the induced structure as a fixed field of a model of ACFA. (It is very likely
that the statements below are true generally for definable sets of transformal dimension
zero over K ˆ ACFA.)

Using Weil’s Riemann hypothesis for curves, Will Johnson has shown [21] that count-
ing modulo a prime l is definable. Equivalently, the function a 7! jDaj from P into Z, if
viewed as a function into the compact set Zl , the l-adic completion of Z, is definable in
the sense of continuous logic.2

For an archimedean analogue, it is necessary to renormalize since the image of Z in R
is not relatively compact. We defined �0 by renormalizing by p� dim. The definability
of �0 implies, in particular, that the relation

�0.X/ D �0.X
0/

is definable on definable families.
If we consider the formal expression ŒX�� ŒX 0�, it can be viewed as a function whose

�0-integral is 0. (If X;X 0 are subsets of some ambient definable set D, we can represent
ŒX� � ŒX 0� by a function on D, the difference of characteristic functions 1X � 1X 0 .) We
can now go one step further, and consider the counting measure �1 normalized so thatZ

.1X � 1X 0/ d�1

is finite and (in general) nonzero; namely the ultralimit of

q
1
2�dim.X/�

jX j � jX 0j
�
:

Of course, it can be efficient to use a single invariant combining �0 and �1; simply let

�.D/ D �0.D/C ��1.D/:

2For l ¤ p also follows, though more elaborately, from Grothendieck’s l-adic theory, likewise dependent on
Weil’s results; see [10, Theorems 4.4.10, and 7.1.1]; see also p. 31 for the explanation of the notion of orientation,
corresponding to the richer-than-pure field language we take here. (See also §6.2 of [21].)
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This takes values in the ordered field R.�/, with 0 < � < 1=n for each n. (So, �2 ‘is’ 1
p

.)
But here we will consider them separately.

Now �0 is automatically definable with discreteness properties. �1 is not discrete,
even in pseudo-finite fields, and cannot be expected to be definable in the pseudo-finite
field itself. But in continuous logic, the measure �1 can be added to the structure; note
that �1 is bounded in bounded families. One would like to know if �1 is definable in a
tame geometric expansion of the theory in continuous logic; to begin with, as an expansion
of PF . Definability of � on families of curves (one-dimensional integration) would imply
definability over all varieties.

Here is a precise question: let .F;�1/ be an ultraproduct of finite fields with the p�1=2-
normalized counting measure. Is it true that Th.F; �1/ is simple as a continuous logic
structure, and every definable subset of F n is definable over the pseudo-finite field F
alone?
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